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 a b s t r a c t

Dementia and mild cognitive impairment (MCI) due to Alzheimer’s disease (AD) are neurological pathologies 
associated with disruptions in brain electromagnetic activity, typically studied using magnetoencephalography 
(MEG) and electroencephalography (EEG). To quantify diverse brain properties, different families of param-
eters can be computed from MEG and EEG (i.e., spectral, non-linear, morphological, functional connectivity, 
or network structure and organisation). However, studying these characteristics separately overlooks the com-
plex nature of brain activity. Integrative frameworks can be useful to unveil the intricate neurophysiological 
fingerprint, as well as to characterise pathological conditions comprehensively. To that purpose, data fusion 
methodologies are crucial, despite their interpretational challenges. In this study, Machine Learning (ML) mod-
els were trained to discriminate between groups of severity, whereas the SHapley Additive eXplanations (SHAP) 
algorithm was afterwards utilised to assess the relevance of the input characteristics into the output classifica-
tion. Three databases were analysed: MEG (55 healthy controls, HC, 42 MCI patients, and 86 AD patients), EEG1 
(51 HC, 52 MCI, and 100 AD), and EEG2 (45 HC, 69 MCI, and 82 AD). The best results for the three-class classi-
fication problem were obtained by Gradient Boosting for the MEG database: 3-class Cohen’s kappa coefficient of 
0.5452 and accuracy of 72.63%. Afterwards, using SHAP on Gradient Boosting, it has been shown that spectral 
features were identified as highly relevant across all databases. Furthermore, morphology measures presented 
high relevance for the MEG database, whereas EEG1 and EEG2 databases showed functional connectivity and 
multiplex organisation measures, respectively, as relevant subgroups of parameters. Finally, commonly relevant 
features across databases were selected using SHAP to generate the neurophysiological fingerprints of AD and 
MCI. This study highlights the relevance of different MEG and EEG parameters in characterising neurological 
pathologies. The proposed framework, based on MEG and EEG, can be used to generate interpretable, robust, 
and accurate neurophysiological fingerprints of AD and MCI.

1.  Introduction

Alzheimer’s disease (AD) is the most common cause of dementia, 
presenting a significant clinical and social challenge worldwide, partic-
ularly in developed countries [1]. AD is characterised by the presence 
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of cognitive, behavioural, memory, and functional dysfunctions, induc-
ing progressive neuronal damage that ultimately results in death [1]. 
As AD progresses, diverse stages have been identified, from mild to se-
vere symptomatology [1]. Prior to clinical AD, a prodromal condition 
named mild cognitive impairment (MCI) is likely to occur [2]. MCI is 
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defined as an heterogeneous construct of symptoms characterised by 
small impairments in cognition, function, and memory [2]; these symp-
toms cannot be considered part of the healthy ageing process, but are 
not severe enough to match a diagnosis of dementia [1]. The diagnosis 
procedure was defined in 2018 by the National Institute of Aging and 
Alzheimer’s Association (NIA-AA), designing a scheme for defining and 
staging the disease across its progression [3]. This framework provides 
a full depiction of the neurodegeneration that MCI and AD induce in the 
brain by means of the use of different techniques such as positron emis-
sion tomography (PET), functional magnetic resonance imaging (fMRI), 
and/or the extraction of cerebrospinal fluid (CSF) [3]. However, due 
to their invasiveness and cost, these methods are not frequently applied 
[4]. Therefore, alternative or supporting techniques are required to help 
in AD and MCI diagnosis.

Previous studies have shown that both magnetoencephalography 
(MEG) and electroencephalography (EEG) can be useful for charac-
terising the brain alterations suffered by AD and MCI patients [4,5]. 
Both MEG and EEG (M/EEG hereinafter) offer several advantages com-
pared to other techniques, like their high temporal resolution and non-
invasiveness [6]. Therefore, neurodegenerative states have been pre-
viously characterised by means of different M/EEG measures such as 
spectral, non-linear, morphological, and based on functional connectiv-
ity and network organisation. These metrics have proven useful in as-
sessing brain activity alterations associated with AD and MCI: slowing, 
loss of complexity and irregularity, and disruption in connectivity and 
network patterns [7–12]. Due to the complex nature of the brain, their 
integrated use may provide more robust outcomes. In that sense, in a 
previous study we introduced a new framework based on association 
networks (ANs) to generate the map that summarises the organisation 
of brain activity by means of the analysis of the statistical relationships 
between M/EEG parameters [13]. However, this methodology provided 
a limited ability to discriminate between healthy controls (HC) and pa-
tients with AD, and its interpretability was limited [13].

In order to provide a better discrimination between groups, diverse 
machine learning (ML) techniques have been employed in previous liter-
ature, including linear discriminant analysis (LDA) [14], quadratic dis-
criminant analysis (QDA) [14], support vector machines (SVM) [15], 
decision trees [16], and multilayer perceptron (MLP) [14]. However, 
complex ML approaches cannot provide an interpretable framework for 
their results, hindering the analysis of the relevance of M/EEG param-
eters that characterise brain activity properties. To overcome this lim-
itation, eXplainable Artificial Intelligence (XAI) methodologies aim to 
enhance the transparency and explainability of ML models [17]. This is 
the case of Shapley Additive exPlanation (SHAP), that was introduced 
as an XAI algorithm able to assess the relevance of the input features in 
a given ML model [18]. SHAP was conceived as an algorithm based on 
game theory, aiming to equally distribute the model’s prediction among 
the input features [18]. As a result, the average contribution of each 
input feature is computed as the permutation of all the possibilities of 
including that characteristic into the model [18]. Thus, the combination 
of ML and SHAP can provide the relevance of the input metrics into the 
model, minimising the “black box” problem, inherent in complex ML 
techniques [19].

To the best of our knowledge, this is the first time an ML-SHAP frame-
work is employed to identify a robust, accurate, and interpretable rep-
resentation of MCI and dementia due to AD through M/EEG features. 
This representation, henceforth called neurophysiological fingerprint, 
enables the assessment of how patients with AD and MCI diverge from 
the healthy cognition state (i.e., HC) in terms of the most relevant fea-
tures of the brain functional organisation. Of note, the evaluation of 
M/EEG parameters to provide a multi-class classification and an inter-
pretation to their relevance is still an open challenge, as the complexity 
of the classification increases as more classes are included [20].

Hence, we hypothesise that the application of an ML-SHAP-based 
framework to a comprehensive set of M/EEG parameters is capable of 
generating the global neurophysiological fingerprints of AD and MCI. To 

that purpose, the first objective of the study is to extract different M/EEG 
parameters and use them as input to evaluate different ML models. These 
will be able to perform a discrimination between groups. Afterwards, the 
second objective of this study consists in employing the SHAP algorithm 
to evaluate the relevance of the input characteristics in order to generate 
the neurophysiological fingerprints of AD and MCI based on the most 
relevant features. Finally, the third objective is to evaluate the replica-
bility of the methodology; for that purpose, one MEG database and two 
EEG datasets were used to prove that the proposed framework provides 
generalisable results.

2.  Materials

2.1.  Subjects

In this study, three databases were analysed: one MEG database and 
two EEG databases. The sociodemographic and clinical data of the sub-
jects from the three datasets are displayed in Table 1. The MEG database, 
acquired at the Hokuto Hospital (Obihiro, Japan) and the Kumagaya 
General Hospital (Kumagaya, Japan), included 183 participants, divided 
into 55 HC individuals, 42 patients with MCI, and 86 patients with AD. 
The first EEG database, referred to as EEG1, encompassed residents of 
North Portugal and the autonomous region of Castile and Leon (Spain), 
and comprised 202 participants; these subjects consisted of 51 HC in-
dividuals, 51 patients with MCI, and 100 patients with AD. The second 
EEG database, named EEG2, was acquired at the Department of Clinical 
Neurophysiology of the Hospital Universitario Río Hortega (Valladolid, 
Spain) and included 196 participants: 45 HC individuals, 69 patients 
with MCI, and 82 patients with AD. Patients diagnoses were made in ac-
cordance to the standardised criteria of the NIA-AA [21,22]. HC groups 
consisted of elderly individuals without a history of neurological or psy-
chiatric disorders. Specific inclusion criteria for patients with MCI or 
AD encompassed a minimum age of 65, and exclusion criteria: neo-
plasia, other neurological or psychiatric diseases, advanced dementia, 
recent surgery, hypercatabolic states, vascular pathology, and medica-
tions with potential effects on M/EEG activity. To prevent misleading 
results, the impact of age and sex as confounding factors was evaluated 
in the parameters under study. Results showed no significant impact 
of these variables in any of the parameters under analysis (p-value > 
0.05, Spearman’s correlation coefficient, FDR corrected). For the three 
databases, resting-state recordings were acquired due to the advanced 

Table 1 
Socio-demographic and clinical data for each database. AD: Alzheimer’s dis-
ease; MCI: Mild cognitive impairment; HC: Healthy controls; m: Median; IQR: 
Interquartile range; M: Male; F: Female; MMSE: Mini-Mental State Examination 
score.

MEG
 Group
 AD  MCI  HC

 Participants  86  42  55
 Age (years) (m[IQR])  83.0[76.0, 86.0]  78.5[74.0, 82.0]  75.0[69.2, 78.7]
 Sex (M:F)  34:52  11:31  26:29
 MMSE (m[IQR])  19.0[14.0, 22.0]  26.5[23.0, 28.0]  29.0[28.0, 30.0]

EEG1
 Group
 AD  MCI  HC

 Participants  100  51  51
 Age (years) (m[IQR])  82.0[76.0, 86.0]  86.0[81.0, 90.0]  79.0[75.0, 85.5]
 Sex (M:F)  28:72  15:36  26:25
 MMSE (m[IQR])  20.0[13.0, 22.0]  23.0[21.0, 27.7]  29.0[28.0, 30.0]

EEG2
 Group
 AD  MCI  HC

 Participants  82  69  45
 Age (years) (m[IQR])  81.6[76.3, 83.5]  77.1[72.2, 80.3]  75.6[73.9, 78.6]
 Sex (M:F)  34:48  29:40  14:31
 MMSE (m[IQR])  21.0[18.0, 24.0]  27.0[26.0, 28.0]  29.0[28.0, 30.0]
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age of the patients, as this condition is more comfortable, simpler, and 
less demanding than task-related paradigms, especially for people suf-
fering from dementia [4].

Participants, legal representatives, family, or caregivers provided 
their written informed consent before participating in the study, accord-
ing to the recommendations of the Code of Ethics of the World Medi-
cal Association (Declaration of Helsinki). The protocol was approved 
by three organisations: a) for MEG database by the Ethics Committee 
of Kumagaya General Hospital in Kumagaya, Japan (approval numbers: 
#25, #26, #51, and #76), and Hokuto Hospital in Obihiro, Japan (ap-
proval numbers: #1001, #1007-R3, #1020, and #1038); b) for EEG1 
database by the Ethics Committee of the University of Porto, Portu-
gal (38/CEUP/2018); and c) for EEG2 database by the Ethics Com-
mittee of the “Río Hortega” University Hospital in Valladolid, Spain 
(36/2014/02).

2.2.  MEG recordings and pre-processing

The MEG database included recordings of five minutes of resting-
state neural activity, divided in five-seconds epochs. Participants were 
instructed to remain calm and awake with their eyes closed during data 
acquisition. Head position was scanned employing five coil markers 
placed on the patient’s head during the recording: 40mm above the 
nasion point, 10mm in front of the tragus on each side, and in both pre-
auricular points. The recordings were monitored in real time for safety 
purposes and to prevent drowsiness. The signals were recorded through 
a 160-channel MEG Vision PQ1160C (Yokogawa Electric, 𝑓𝑠 = 1000Hz) 
at the Hokuto Hospital and a 160-channel RICOH 160-1 (RICOH Co. 
Ltd, 𝑓𝑠 = 2000Hz) at the Kumagaya General Hospital. Both systems are 
functionally equivalent, consisting in whole-head 160-channel axial gra-
diometers systems placed in magnetically-isolated rooms. Afterwards, 
MEG signals were downsampled at 500 Hz to reduce computational cost 
and bring the sampling rate of this database in line with EEG databases.

A pre-processing stage was carried out in accordance with the follow-
ing steps [23]: (i) SOurce-estimate-Utilising Noise-Discarding (SOUND) 
algorithm performance to remove artefacts [24]; (ii) finite impulse re-
sponse (FIR) Hamming-window band-pass filtering (order 3000) be-
tween 1 and 70 Hz to limit noise bandwidth; (iii) FIR Hamming-
window band-stop filtering (order 3000) at 50 Hz to remove power-line 
noise; (iv) artefact rejection through independent component analysis 
(ICA); and (v) rejection of epochs contaminated with artefacts by visual
inspection.

2.3.  EEG recordings and pre-processing

Two EEG databases were also considered in this study. EEG1 
database was recorded with a 19-channel Nihon Kohden Neurofax 
JE-921A (𝑓𝑠 = 500Hz), while EEG2 database was acquired using a 
19-channel XLTEK® Natus Medical (𝑓𝑠 = 200Hz). In both databases, 
resting-state signals were recorded. Participants remained relaxed and 
awake with their eyes closed during the acquisition. The recordings were 
evaluated in real time for safety and drowsiness. Brain electrical activ-
ity was recorded from electrodes F3, F4, F7, F8, Fp1, Fp2, T3, T4, T5, 
T6, C3, C4, P3, P4, O1, O2, Fz, Cz, and Pz, following the international 
10–20 system. During EEG1 database acquisition, common average ref-
erence was employed. In the case of EEG2 database, bipolar registration 
was used, which was afterwards modified to a common average refer-
ence. For both databases, five minutes of resting-state EEG activity were 
recorded, divided in five-seconds epochs.

Subsequently, the EEG recordings underwent a pre-processing stage 
by means of the following steps [25,26]: (i) mean removal; (ii) FIR 
Hamming-window band-pass filtering (order 2000) between 1 and 
70 Hz to limit noise bandwidth; (iii) FIR Hamming-window band-stop 
filtering (order 2000) at 50 Hz to remove power-line noise; (iv) artefact 
rejection by means of ICA; and (v) visual inspection to remove epochs 
contaminated with artefacts.

2.4.  Source localisation

After acquiring and preprocessing the M/EEG recordings, source-
level activity was estimated by means of the standardised Low-
Resolution Brain Electromagnetic Tomography (sLORETA) algorithm 
[27]. This stage aimed to establish a common workspace for all three 
databases analysed in this study. sLORETA allows the computation of 3D 
linear solutions for the inverse problem, minimising the volume conduc-
tion effects that result from the overlapping of non-homogeneous tissue 
layers with different conductivity properties. In addition, sLORETA con-
strains solutions assuming maximal correlation between neighbour neu-
ral generators, which leads to spatially smoothed outcomes. An identity 
matrix was employed as noise covariance, since there were no available 
noise recordings. The implementation of this method is freely available 
in the Brainstorm toolbox [28].

The source-level neural generators were grouped into 68 regions of 
interest (ROIs) based on the Desikan–Killiany atlas. Employing a gyrus-
based schema, this atlas assigns different brain regions according to their 
predominant functionalities [29]. The Desikan-Killiany atlas offers a rea-
sonable trade-off between the spatial resolution at source level and the 
number of acquisition sensors used on each database [23,30–32].

3.  Methods

The workflow of the study was organised into three main steps which 
are described in the following subsections and summarised in Fig. 1. 
Once M/EEG signals were preprocessed, i) M/EEG features were ex-
tracted and categorised in two levels of analysis: local activation (spec-
tral, non-linear, and spectro-temporal morphology features), and global 
synchronisation (functional connectivity, FC, network properties, and 
multiplex network organisation parameters). Afterwards, ii) different 
ML classification models were applied to discriminate between HC, pa-
tients with MCI, and patients with AD. To that purpose, a nested cross-
validation approach was followed [33]. Based on the classification per-
formance, the best ML model was selected. In the next step, iii) the SHAP 
algorithm was employed to estimate the relevance of each feature on 
the best ML model; moreover, a 10-fold cross-validation strategy, was 
applied to strengthen our model reliability [34,35]. From SHAP expla-
nation, iv) the most relevant features were selected to display the global 
neurophysiological fingerprints of AD and MCI. Statistically significant 
differences between groups were calculated for all selected features and 
databases.

3.1.  Feature extraction

In order to characterise the brain activity, multiple M/EEG-derived 
parameters were considered. A total of 89 features were extracted from 
the M/EEG signals (see Supplementary Material). These can be cate-
gorised in two different levels according to the literature: local activa-
tion and global synchronisation [4,36].

The local activation level reflects the properties of specific brain re-
gions [7]. At this level, three subgroups of metrics can be considered:

a) Spectral parameters. The metrics included in this subgroup are able 
to quantify intrinsic features of the spectral content of the signals. 
They were computed from the normalised power spectral density. 
The slowing and the alterations in the distribution of neural oscilla-
tors that have been observed in neurodegenerative states can be mea-
sured by means of relative power (RP), median frequency (MF), in-
dividual alpha frequency (IAF), transition frequency (TF), and 95% 
spectral edge frequency (SEF95) [14,37,38]. Furthermore, changes 
in irregularity and diversity of spectral content of the normalised 
power spectral density have been also observed in neurodegenera-
tive diseases; they can be quantified using metrics such as spectral 
entropy (SE), Tsallis entropy (TsE), Escort-Tsallis entropy (ETsE), 
and Rènyi entropy (RE) [8,38,39].
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Fig. 1. Flow diagram summarising the methodology to compute the global neurophysiological fingerprints of AD and MCI. As a prior step, the three databases were 
preprocessed and their source-level time signals were reconstructed: (1) Feature extraction - For all subjects, different parameters from local activation and global 
synchronisation levels were computed to characterise AD and MCI groups; (2) ML performance - For each database, different ML classification models were tested 
by means of a nested cross-validation strategy; (3) Relevance assessment using SHAP - The model with the best averaged accuracy was further analysed using the 
SHAP algorithm to identify the most relevant features; (4) Neurophysiological fingerprint representation - From the most relevant parameters selected on step 
(3), those common to all 3 databases, or at least shared by two of them, were selected.

b) Non-linear metrics. The brain has a non-linear behaviour due to 
threshold and saturation phenomena involved in neuronal dynamics 
[5]. As a consequence, linear methods may not be precise enough 
to fully characterise neuronal alterations. Non-linear techniques of-
fer a complementary framework to address this issue [5]. They pro-
vide relevant information of non-linear changes due to AD or MCI, 
such as a loss of complexity, which can be measured by means of 
the Lempel-Ziv complexity (LZC), Higuchi’s fractal dimension (HFD), 
and Katz’s fractal dimension (KFD) [8,40,41]; a reduction in variabil-
ity, computed by central tendency measure (CTM) [42]; a disruption 
of predictability, quantified by means of auto-mutual information 
(AMI) [43]; and alterations in irregularity patterns, observed with 

approximate entropy (ApEn), sample entropy (SampEn), and fuzzy 
entropy (FuzzyEn) [14,44,45].

c) Morphological features. M/EEG signals are generated by a highly 
dynamic system, which is characterised by transient and fast rhyth-
mic neural activity. Those rapid fluctuations can be affected by AD 
and MCI, inducing alterations in the temporal distribution of M/EEG 
signals and, consequently, in their morphological properties [9,10]. 
Hjorth’s activity (HjA) and mobility (HjM) are parameters useful to 
quantify the variability and diversity of the morphological changes, 
respectively [10]. On the other hand, Hjorth’s complexity (HjC) es-
timates the similarity of the signal to a pure sine wave [10]. In ad-
dition, statistical moments (i.e., variance, skewness, and kurtosis) of 
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the spectrum, the original signal, and its first and second derivatives 
were computed [9,10].
The global synchronisation level evaluates the statistical dependen-

cies between brain regions [46]. In this case, three main categories can 
be considered:

a) Functional connectivity parameters. AD and MCI have been iden-
tified as disconnection syndromes [47]; thereby, the assessment 
of the associated functional connectivity (FC) alterations between 
M/EEG signals is of paramount importance. To quantify them, two 
FC metrics were computed [48]: the phase lag index (PLI) to es-
timate the phase-based coupling and the amplitude envelope cor-
relation (AEC) to measure the amplitude-based connectivity. These 
parameters were calculated at the conventional frequency bands 
(delta: 1–4 Hz; theta: 4–8 Hz; alpha: 8–13 Hz; beta 1: 13–19 Hz; 
beta 2: 19–30 Hz; and gamma: 30–70 Hz), averaging the connectiv-
ity weights afterwards to obtain the global connectivity strength for 
all conventional frequency bands.

b) Network properties. The brain functional network is generated by 
the connectivity patterns between ROIs. Its organisation and struc-
ture can be more thoroughly assessed using metrics derived from 
graph theory. They are useful to summarise complex properties of 
the brain network: integration, calculated through the characteris-
tic path length (PL) [49]; segregation, computed using the cluster-
ing coefficient (ClC) [49]; and centrality, estimated by the closeness 
centrality (CC) [50].

c) Multiplex network organisation. There is evidence of diverse in-
teractions between neural oscillations in different frequency bands 
[11]. This phenomenon is also observable in frequency-dependent 
brain networks, where a multilayer structure can be estimated by 
examining the functional network within each canonical frequency 
band [11]. This approach allows the computation of different multi-
plex network properties to assess the organisation of the brain net-
work across levels, considering both phase- (PLI) and amplitude-
based (AEC) coupling metrics. Specifically, in this study two multi-
plex properties were considered: the role of each ROI as a multiplex 
hub through the computation of the overlapping weighted degree 
(OWD); and the homogeneity of the connectivity contribution from 
one ROI to others among layers by means of the participation coef-
ficient (P) [11].

3.2.  Machine learning models

ML algorithms manage to recognise patterns and effectively learn to 
predict or produce automatic decisions [51]. In this study, we tested 
LDA, SVM, Decision Tree, Random Forest, Gradient Boosting, and XG-
Boost to assess their classification performances. LDA uses linear hy-
perplanes to assign input vectors to labelled classes, assuming diverse 
Gaussian distributions for class generation [52]. SVM model efficiently 
searches for separating hyperplanes in high-dimensional feature spaces, 
maximising the margin between classes [53]. Decision Tree employs 
flowchart-like structures, with nodes representing logical tests and each 
leaf presenting the predictions [54,55]; it provides an interpretable 
model, but is prone to over-fitting [54,55]. In that sense, Random Forest 
mitigates over-fitting by averaging predictions from multiple decision 
trees built on bootstrap samples [55]. We also used Gradient Boosting, 
a boosting algorithm that consecutively fits the model to improve esti-
mation by maximising correlation with the negative gradient of the loss 
function [56]. Finally, XGBoost is an update of Gradient Boosting which 
is based on learning the negative gradient from the second derivative of 
the loss function and introduces regularisation to prevent over-fitting 
and improve efficiency [57].

3.2.1.  Feature selection
Of note, the use of a high number of input parameters compared to 

the number of subjects might lead to over-fitting. This problem is com-

monly mentioned as the “curse of dimensionality” [58]. In this study fea-
ture selection was performed for all ML models; the method employed 
was fast correlation-based filter (FCBF) [59]. Based on the symmetri-
cal uncertainty [59], FCBF allows the detection of an optimal subset of 
relevant and non-redundant features, reducing the high dimensionality 
and complexity of predictive models [60]. Furthermore, it is a filter-
type feature selection algorithm, so it provides results that do not de-
pend on posterior analysis [60]. In order to generate a stable subset 
of parameters, FCBF was applied to 1000 bootstrap iterations for each 
database. The average significance, defined as the sum of the number 
of times the features are selected divided by the total number of input 
features, was used as threshold. Those parameters that were selected a 
number of times equal or higher than the average significance consti-
tuted the optimal subset for each database. Concretely, 32, 28, and 32 
features were selected for MEG, EEG1, and EEG2 databases, respectively 
signals by means of FCBF (for further information, see Supplementary
Material).

3.2.2.  Hyper-parameter tuning
In order to tune the employed ML models, a grid-search algorithm 

was performed with the datasets, utilising a nested cross-validation 
approach. This algorithm is described as two nested loops of cross-
validation. The inner loop allows the selection of the hyper-parameters 
according to the inner cross-validation error, whereas the outer loop 
evaluates the generalisability of the model on an independent subset 
[33]. In both loops, a 10-fold cross-validation was implemented. Addi-
tional information on the hyper-parameters found by the grid-search is 
available in the Supplementary Material.

3.2.3.  Machine learning model selection
Once the nested cross-validation was performed, different classifica-

tion scores were obtained from averaging all the nested cross-validation 
iterations. From them, the model which obtained the best performance 
in most of the databases for the multi-class classification was selected 
to undergo the subsequent steps. Furthermore, in the subsequent stages 
of the methodology, the hyper-parameters associated with the database 
which obtained the best multi-class performance were selected.

3.3.  Shapley additive explanations

The ability to interpret ML-derived results is of paramount impor-
tance across different fields. In the case of medical applications, provid-
ing an explanation of the contribution of each input variable in group 
discrimination is essential for decision making [19]. ML systems can 
operate in intricate and unpredictable manners in which decisions re-
main concealed. For this reason, XAI methods have been designed to 
provide further information on the relevance of the input parameters in 
the model, facilitating the interpretability of the results [19].

In the present study, we used SHAP in order to explain the clas-
sification models. By applying SHAP, we uncover the M/EEG features 
that significantly influence the final classification outcomes. SHAP is a 
theoretical approach used to provide an explanation to the outcomes 
of ML models [18]. It generates an additive feature attribution scheme 
providing a specific predicted importance score to each characteristic. 
Summing these scores, named SHAP values, it is possible to explain the 
final decisions. SHAP values represent the contribution of each feature 
towards prediction performance; thereby, the higher the SHAP value the 
higher the contribution [18]. Further description of the SHAP algorithm 
is included in the Supplementary Material. In this study, TreeExplainer 
was employed to obtain a visual representation of the parameters that 
most influence the output. TreeExplainer is utilised to estimate SHAP 
values for tree models and ensembles of trees, under several possible 
assumptions about feature dependence [61].
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3.4.  Identification of the neurophysiological fingerprint

Once the ML model that provides the best classification scores was 
selected and the SHAP algorithm has been applied, a set of input pa-
rameters was selected. This subset presents the most relevant M/EEG 
parameters for the ML model. The selected parameters have to fulfil 
two requirements: i) relevancy, as it has to be one of the top-half most 
relevant parameters; and ii) consistency, as these variables have to be 
shared at least for two out of the three databases. Once the parameters 
were selected, the representation of the neurophysiological fingerprints 
was obtained.

Statistically significant differences between pairs of groups were 
computed for all selected variables by means of the Mann–Whitney test. 
The significant threshold was set to 𝛼 = 0.05. The multiple comparison 
problem was addressed by applying false discovery rate (FDR) correc-
tion using the Benjamini and Hochberg procedure [62].

Afterwards, Spearman’s correlation was computed to measure the 
similarity between the fingerprints obtained for each group on each 
database. This provides a measure of the alignment between the three 
databases and, therefore, about the robustness of the neurophysiological 
fingerprints.

4.  Results

4.1.  Models’ performance

The metrics used to evaluate the classification performance of the 
tested models included accuracy and Cohen’s kappa, averaged across 
each iteration of the nested cross-validation. Table 2 summarises binary 
and three-class classification values for all ML models employed on each 
database. In addition, Table S2 (in Supplementary Material) presents 
sensitivity, specificity, precision, negative predictive value, and F1-score 
values of ML models for each database. For three-class classification, 
Gradient Boosting outperformed the remaining ML models in terms of 
Cohen’s kappa for the MEG and EEG2 databases, and in accuracy for 
EEG2 database. On the other hand, for the EEG1 set, the best classifi-
cation scores were obtained using XGBoost. Finally, although Random 
Forest presented the highest classification scores for the MEG database 
in terms of accuracy, Gradient Boosting score was similar.

As Gradient Boosting obtained the best three-class classification per-
formance, it was selected as the model which best discriminates between 
HC, patients with MCI, and patients with AD. Thus, Gradient Boosting 
was the ML model considered in next steps.

4.2.  SHAP interpretation

In order to provide an interpretation of the most relevant input fea-
tures for Gradient Boosting, the SHAP algorithm was applied. Specifi-
cally, TreeExplainer was used and the SHAP values from all input vari-

ables were obtained. Following the criteria stated in Section 3.4, the 
most relevant variables common to at least two databases were iden-
tified. From them, a subset of the most representative metrics for the 
subgroups of parameters described in 3.1 were selected; that is, for each 
subgroup of metrics, those who presented the highest averaged SHAP 
values were included into the subset. These features were:

• Spectral: Relative power (RP) in theta frequency band and individ-
ual alpha frequency (IAF).

• Nonlinearity: Auto-mutual information (AMI).
• Morphology: Spectral skewness, Hjorth’s activity (HjA), and second 
derivative’s kurtosis.

• FC: Phase lag index (PLI) in theta and beta 2 frequency bands.
• Network properties: Path length (PL) in gamma frequency band, 
clustering coefficient (ClC) in delta frequency band, and closeness 
centrality (CC) in beta 1 frequency band, all of them derived from 
PLI.

• Multiplex network organisation: Participation coefficient (P) and 
overlapping weighted degree (OWD) derived from PLI.

The relevance of the selected features for the Gradient Boosting 
model is depicted as summary plots for MEG, EEG1, and EEG2 databases 
in Figs. 2a,  3a, and  4a, respectively. It can be observed that, for the 
MEG database, RP in theta frequency band and second derivative’s kur-
tosis are the two most influential variables. This can also be observed 
in Fig. 2b, and  2c, where the relationships between these parameters 
and their associated SHAP values can be observed. These figures indi-
cate that the higher the SHAP values assigned to the subjects, the more 
relevant is the parameter to classify them within the target class. It can 
be observed that RP in theta frequency band was relevant to HC and AD 
classification, whereas second derivative’s kurtosis played an important 
role especially for AD discrimination, and AMI and IAF were relevant to 
AD and MCI classification.

On the other hand, for the EEG1 database, the two most relevant 
parameters were PLI and RP in theta frequency band. Specifically, these 
parameters are relevant to HC and AD classification. For the EEG2 
database, the two most relevant features were RP in theta frequency 
band and P derived from PLI. Concretely, RP in theta is relevant to clas-
sify HC and AD, and P derived from PLI presents a key role in identifying 
HC and MCI. The relevance of these parameters in the discrimination can 
be observed in Figs. 3b and  3c for EEG1, and 4b, 4c for EEG2.

4.3.  Neurophysiological fingerprints

Previously selected input variables were used to generate a represen-
tation of the neurophysiological fingerprints of AD and MCI. These fin-
gerprints are depicted in Figs. 5a, 5b, and  5c for MEG, EEG1, and EEG2 
databases, respectively. It can be observed that, for all three databases, 
the tendencies were similar, specially between HC and patients with 

Table 2 
ML models average accuracy and Cohen’s kappa values for each database obtained from a nested cross-validation strategy. For both binary 
and three-class classification approaches, the highest classification statistics on each database were highlighted.

ML Models Metric
 HC vs. all  AD vs. all  Three-class classification
 MEG  EEG1  EEG2  MEG  EEG1  EEG2  MEG  EEG1  EEG2

LDA  Accuracy  87.60%  80.64%  75.08%  77.13%  83.62%  51.03%  70.67%  65.40%  52.61%
 Cohen’s kappa  –  –  –  –  –  –  0.5328  0.4360  0.2697

SVM  Accuracy  83.68%  73.19%  77.68%  72.40%  77.69%  53.13%  68.92%  64.88%  53.03%
 Cohen’s kappa  –  –  –  –  –  –  0.5016  0.4300  2627

Decision Tree  Accuracy  88.10%  75.19%  70.87%  70.15%  61.88%  57.74%  61.14%  54.97%  48.92%
 Cohen’s kappa  –  –  –  –  –  –  0.3667  0.2707  0.2255

Random Forest  Accuracy  85.94%  78.12%  76.13%  76.70%  72.26%  55.71%  72.72%  64.38%  50.53%
 Cohen’s kappa  –  –  –  –  –  –  0.5300  0.3991  0.2205

Gradient Boosting  Accuracy  86.49%  83.57%  77.63%  73.92%  76.26%  53.55%  72.63%  67.33%  53.76%
 Cohen’s kappa  –  –  –  –  –  –  0.5452  0.4593  0.2729

XGBoost  Accuracy  86.40%  80.12%  76.13%  76.08%  74.76%  55.61%  71.02%  69.33%  51.26%
 Cohen’s kappa  –  –  –  –  –  –  0.5147  0.4879  0.2428
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Fig. 2. Influence of the selected input parameters from the MEG database for the Gradient Boosting model measured with SHAP, when classifying the individuals 
as HC, MCI, or AD: a) Summary plot ranking the variables based on their global influence; b) Dependence plot of RP in theta frequency band, the most influential 
variable in the MEG database; c) Dependence plot of second derivative’s kurtosis, the second most influential variable in the MEG database. Images b) and c) represent 
the relationship between the parameter values and their corresponding SHAP values; that is, the higher SHAP value associated with the subjects, the more relevance 
the parameter has to classify them within the target class, and vice versa.

Fig. 3. Influence of the selected input parameters from the EEG1 database for the Gradient Boosting model measured with SHAP, when classifying the individuals 
as HC, MCI, or AD: a) Summary plot ranking the variables based on their global influence; b) Dependence plot of PLI in theta frequency band, the most influential 
variable in the EEG1 database; c) Dependence plot of RP in theta frequency band, the second most influential variable in the EEG1 database. Images b) and c) 
represent the relationship between the parameter values and their corresponding SHAP values; that is, the higher SHAP value associated with the subjects, the more 
relevance the parameter has to classify them within the target class, and vice versa.
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Fig. 4. Influence of the selected input parameters from the EEG2 database for the Gradient Boosting model measured with SHAP, when classifying the individuals 
as HC, MCI, or AD: a) Summary plot ranking the variables based on their global influence; b) Dependence plot of RP in theta frequency band, the most influential 
variable in the EEG2 database; c) Dependence plot of P derived from PLI, the second most influential variable in the EEG2 database. Images b) and c) represent the 
relationship between the parameter values and their corresponding SHAP values; that is, the higher SHAP value associated with the subjects, the more relevance the 
parameter has to classify them within the target class, and vice versa.

Table 3 
Spearman’s correlation coefficients between the neurophysiological fin-
gerprints of each database for each group under study (Spearman’s rho 
[𝑝-value]).

Groups
 Comparisons
 MEG vs. EEG1  MEG vs. EEG2  EEG1 vs. EEG2

 HC  0.9835 (𝑝 < 0.001)  0.9780 (𝑝 < 0.001)  0.9615 (𝑝 < 0.001)
 MCI  0.9780 (𝑝 < 0.001)  0.9505 (𝑝 < 0.001)  0.9451 (𝑝 < 0.001)
 AD  0.9890 (𝑝 < 0.001)  0.9615 (𝑝 < 0.001)  0.9615 (𝑝 < 0.001)

AD, which supports the replicability of the results across databases. Fur-
thermore, statistically significant differences between pairs of groups 
were assessed. Shared differences among the three databases were found 
in spectral, morphology, FC, and multiplex organisation parameters 
(𝑝 < 0.05, Mann–Whitney U-tests, FDR corrected).

In order to assess the similarity between databases, the Spearman’s 
correlation between the fingerprints obtained for each group on each 
database was calculated. These values, as well as the associated 𝑝-values, 
are included in Table 3. As it can be appreciated, all comparisons showed 
statistically significant Spearman’s correlations, being all of them higher 
than 0.94 (𝑝 < 0.001, FDR corrected). These results support the general-
isation capability of this methodology.

Moreover, Fig. S1 shows the median values of the parameters given 
only by the subjects that were successfully classified by the ML model. 
Even though the tendencies between groups are maintained, the case 
of the subjects that were correctly classified presents less prominent 
statistically significant differences between pairs of groups (𝑝 < 0.05, 
Mann–Whitney U-tests, FDR corrected). Of note, replicability between 
databases can be also appreciated in Table S3, with statistically sig-
nificant Spearman’s correlation coefficient between the fingerprint ob-
tained for each group on each database (𝑝 < 0.001, FDR corrected).

5.  Discussion

This study aims to characterise the neurophysiological fingerprint of 
HC, MCI, and AD in order to provide an accurate, interpretable, and ro-
bust representation of the disease-induced alterations in the brain elec-
tromagnetic activity. To that purpose, different ML-models were applied 
to analyse their classification performance. Finally, we obtained an in-
terpretation of the three-class classification by assessing the input vari-
ables through a XAI approach based on SHAP. Our XAI framework not 
only provided explanations for the model performance based on the in-
put characteristics, but also allowed us to comprehend how the model 
interprets the input variables in order to detect whether a subject be-
longs to a particular group.

5.1.  Pursuing an accurate M/EEG-based biomarker

In this study, different ML models were employed to perform bi-
nary and multi-class classification between HC, MCI, and AD. Our results 
showed that, for the HC vs. all classification, Gradient Boosting achieved 
the highest accuracy values for EEG1 (83.57%) database, whereas De-
cision Tree and SVM models achieved the highest accuracy for MEG 
(88.10%) and EEG2 (77.68%) databases, respectively. Additionally, for 
the AD vs. all discrimination, Decision Tree achieved the highest accu-
racy for the EEG2 (57.74%) database, whilst LDA reached the highest 
accuracy values for MEG (77.13%) and EEG1 (83.62%) databases. On 
the other hand, for multi-class discrimination, Gradient Boosting and 
XGBoost achieved the highest performance for MEG, EEG1, and EEG2 
databases, as observed in Table 2. These accuracy and Cohen’s kappa 
values were 72.63% and 0.5452 for the MEG database, 69.33% and 
0.4879 for the EEG1 database, and 53.76% and 0.2729 for the EEG2 
database.

There are other studies that performed AD and MCI discrimina-
tion (see Table S3) using ML models [14,15,63–75], while others em-

Biocybernetics and Biomedical Engineering 45 (2025) 438–450 

445 



V. Gutiérrez-de Pablo et al.

Fig. 5. Median values of the selected variables, representing the neurophysiological fingerprints of AD and MCI. In blue, HC; in green, patients with MCI; in red, 
patients with AD: a) MEG database; b) EEG1 database; c) EEG2 database. Asterisks represent statistically significant differences between: In black, HC and MCI 
comparison; in green, HC and AD differences; and in magenta, MCI and AD differentiation (𝑝 < 0.05, Mann–Whitney U-test, FDR corrected)

ployed ROC curves [40,76–78]. Some of these studies carried out the 
classification between HC and patients with AD using M/EEG sig-
nals, achieving accuracy values that range between 69.00% and 100% 
[15,40,63–70,73–78]. The HC vs. MCI comparison was also addressed 
in some of these studies, showing accuracy values ranging between 
59.48% and 97.00% [63,64,66,73,74]. In the case of the discrimina-
tion between MCI and AD the accuracies ranged between 49.00% and 
94.05% [63,64,66,73]. Finally, comparisons between HC vs. all, and 
AD vs. all were also computed, achieving accuracy values ranging be-
tween 76.47% and 89.00% [14,73], and between 69.70% and 74.51% 
[14,71]. However, it must be noted that all these studies performed the 
classification analyses only in one database. Furthermore, most of them 
employed small databases, which limits their generalisation capability, 
even though the classification scores are high. Besides, the inclusion of 
different M/EEG parameters quantifying diverse properties of the brain 
activity provides detailed information regarding the brain functional 
organisation. The integration of different brain activity properties pro-
vides a more complete and detailed analysis, which might lead to more 
robust results. Our proposal was designed and assessed in three different 
databases, including M/EEG recordings, and each one is formed by more 
than 180 participants. Of note, for the HC vs. all comparison, our mod-
els achieved performances close to the maximum values of these ranges, 
whereas for the AD vs. all discrimination, our results outperformed the 
previous models. Additionally, for binary classifications, few studies in-
cluded XAI algorithms in order to assess the relevance of their input 
parameters [69,70]. However, our approach provides the influence of 
the most relevant features on each group under study, assessing the in-
fluence of those M/EEG parameters on each group.

In the case of multi-class classification between HC, MCI, and AD, 
other studies obtained accuracy values that range between 58.82% and 
86.00% [14,72,73], and Cohen’s kappa value of 0.2540 [71]. Our multi-
class model was assessed in different databases with higher sample sizes, 
which allowed the analysis of the robustness of our framework. Addi-
tionally, in the case of the Cohen’s kappa, our methodology outperforms 
the previous ones in most comparisons. It must be also noted that, for 
the multi-class discrimination, no studies provided the interpretation on 
how their input parameters influence their models. The analysis of the 
relevance of the parameters provides how the model interpreted the in-
put variables to discriminate between HC, MCI, and AD.

5.2.  Towards an interpretable approach for M/EEG-based discrimination 
model

The SHAP algorithm provides an interpretation of the influence of 
input characteristics on the classification statistics [19]. To the best of 
our knowledge, this is the first study that uses SHAP to evaluate the 
relevance of different parameters derived from M/EEG recordings in 
the context of AD and MCI detection.

In the MEG database, RP in theta frequency band and second deriva-
tive’s kurtosis were the two most relevant parameters for the model’s 
output decision. As it can be observed in Fig. 2a, RP in theta frequency 
band is relevant for HC and AD classification in opposite manner: in 
HC, lower RP in theta values are associated with higher SHAP values, 
and vice-versa in AD group. In addition, second derivative’s kurtosis is 
relevant mainly for AD categorisation, with higher second derivative’s 
kurtosis values related to higher SHAP values. Of note, the opposite 
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trend is observed for HC and MCI detection. In previous studies, it was 
found an increase of RP at the theta frequency band in early AD stages, 
being a typical M/EEG feature of neurodegeneration [79,80]. The sec-
ond derivative’s kurtosis of M/EEG activity quantifies patterns related 
to rapid increments and decrements of amplitude in the original signal, 
allowing the analysis of sharp peaks that could remain unnoticed in a 
visual evaluation [81]. In addition, kurtosis allows the analysis of the 
data distribution in terms of its peak and tails [9]. The presence of these 
sharp waves has been detected in epileptiform activity, which has been 
observed to induce acute effects on cognition and detrimental impair-
ments related to plasticity [82]. In addition, it has been observed that 
the incidence of beta-amyloid plaques was greater in patients with tem-
poral lobe epilepsy rather than control individuals [82], being a clear 
biomarker of AD development as well. Therefore, the computation of 
the kurtosis in the second derivative’s M/EEG signal provides further 
information of the appearance rate of these quick, sharp peaks in the 
M/EEG activity, allowing a better differentiation between AD patients 
and HC. On the other hand, the two most relevant parameters for the 
EEG1 and EEG2 databases were PLI and RP in theta, and RP in theta and 
P derived from PLI, respectively. Of note, RP in theta was common in 
all databases, showing its relevance to HC, MCI, and AD discrimination. 
Additionally, regarding the EEG1 database, increased global PLI values 
in the theta band have been previously associated with MCI and AD, 
supporting the hypothesis of the dementia due to AD as a disconnection 
syndrome [48,83]. In fact, the relationship between theta band connec-
tivity and cognitive decline has been previously assessed, in such a way 
that the higher the connectivity in theta band, the worse cognitive dys-
function is observed on the patients [84]. For the EEG2 database, P is 
a metric that evaluates the heterogeneity of the contribution of a node 
to each of the networks at different frequency bands that make up the 
multiplex structure [11]. This index quantifies the centrality of different 
brain regions across frequency bands. Disruption of the multiplex struc-
ture, such as in MCI and AD, is suggested to lead to abnormal cognitive 
and behavioural symptoms [11].

It has been observed that RP in theta presented high relevance to 
discriminate between subjects in all three databases. Nevertheless, for 
MEG database, morphology patterns also played a pivotal role in influ-
encing the models, whereas for EEG1 and EEG2 databases FC and mul-
tiplex organisation parameters provide higher relevance to the model, 
respectively.

5.3.  Unveiling the neurophysiological fingerprints

The most relevant features of each parameter subgroup were selected 
to generate the neurophysiological fingerprints of AD and MCI. As ob-
served in Fig. 5, these M/EEG parameters follow similar tendencies in 
the three databases for both local activation and global synchronisation 
levels of analysis. Firstly, regarding local activation, it can be observed 
that RP in theta frequency band and IAF present higher and lower val-
ues in AD compared to HC, respectively. In addition, MCI is observed 
to be an intermediate stage. These patterns were previously shown as 
markers of the slowing that AD and MCI induce [38,80,85]. In addition, 
AMI present values closer to zero in AD, compared to HC and MCI. As 
AMI was observed to be related with entropy, that is, irregularity, values 
closer to zero are associated with more regular time series [43]. How-
ever, differences between HC, MCI, and AD in morphology measures are 
not as significant as the spectral and non-linear parameters. On the other 
hand, second derivative’s kurtosis was the only morphology parameter 
that presented statistically significant differences between HC and MCI 
in all three databases, showing lower values in HC compared to MCI. 
For the same parameter, differences between HC and AD were found in 
MEG and EEG2 databases. AD, since its mild stage, could present rapid, 
sharp peaks compared to the normative state (i.e., HC) [82]. Thus, this 
measure could be applied as a relevant marker of these signal shapes and 
provide further information for classification purposes [9,81]. However, 
spectral skewness and HjA do not present robust statistically significant 

differences between pairs of groups, as the former presents differences 
between HC and AD in the EEG1 database, and between HC and MCI 
in the EEG2 dataset; whereas the latter only displays differences be-
tween MCI and AD in the EEG1 database. This may indicate a lower 
relevance of morphology parameters in order to discriminate HC, MCI, 
and AD. To sum up, it can be suggested that spectral and non-linear pa-
rameters are the most relevant metrics to discriminate pathological and 
non-pathological states.

Secondly, regarding global synchronisation, the tendencies are not 
as similar as in the case of local activation. The only parameters that 
presented consistent statistically significant differences among all three 
databases were PLI in theta frequency band and P derived from the 
PLI for the HC and AD comparison. FC parameters, mainly in terms 
of PLI in theta, show a connectivity increase associated to AD, which is 
aligned with previous results [48,83]. On the other hand, P derived from 
PLI presents similar outcomes in MEG and EEG1. In addition, network 
parameters only exhibit statistically significant differences in the MEG 
database, although the tendencies are similar in the three databases. As 
MEG presents a higher number of sensors than the ROIs available in 
the atlas employed with sLORETA, the definition of the ROIs is more 
accurate in MEG. This may lead to more precise global synchronisation 
parameters and, thus, the statistically significant differences that are 
observed in the network parameters. However, EEG databases present 
the opposite scenario, which may lead to a less precise definition of the 
ROIs by means of sLORETA. Due to these opposite scenarios observed in 
M/EEG databases regarding the significant differences between groups 
in FC and network organisation features, it can be hypothesised that 
global synchronisation may play a less relevant role, compared to local 
activation, to discriminate between HC, MCI, and AD.

Additionally, Spearman’s intra-class correlation between databases 
displayed values higher than 0.94, revealing a clear alignment between 
databases. The degree of replicability observed in the results derived 
from M/EEG recordings is of paramount importance to develop a ro-
bust approach to address brain disorders analysis, and can contribute to 
overcome the replication crisis existing in this research field [86]. There-
fore, it can be hypothesised that both M/EEG signals, although gener-
ated from different neural sources, there is concordance regarding the 
information that can be extracted from them, which allows their com-
plementary use [87,88]. Furthermore, our results support the idea that 
AD and MCI exhibit different neurophysiological fingerprints, which di-
verge from that corresponding to the HC.

5.4.  Limitations and future work

While this study has yielded promising results, there are certain limi-
tations that need to be further considered. First, it must be noted that the 
proposed ML-SHAP framework led to robust results from relatively small 
databases. The use of deep learning approaches could provide more pre-
cise results, although they require larger datasets. Nevertheless, XAI al-
gorithms should be also considered, as deep learning decision-making 
interpretation must be addressed as well. However, as XAI algorithms 
relied on local interpretations, the combination of deep learning and 
XAI in the field of M/EEG should be carefully addressed.

Secondly, it would be interesting to identify differences between cor-
rectly classified and misclassified subjects. The analysis of their M/EEG 
parameters could be useful to improve the discrimination performance. 
For this task, clustering or community detection algorithms, such as K-
means, Newman’s or Louvain’s algorithm could be useful.

Aligned with the previous ideas, it may be interesting to explore the 
possibility of training using a database and then, testing the model with 
another dataset. It may provide a framework to unify databases obtained 
not only by using different techniques, but also with diverse systems and 
recorded under different conditions.

Additionally, different M/EEG pre-processing approaches could be 
assessed to improve the noise reduction. In this regard, it would be in-
teresting to test other pre-processing methods to enhance the generalis-
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ability of the outcomes provided not only with M/EEG recordings, but 
also with different EEG databases.

Next, this approach has been performed by computing M/EEG pa-
rameters at source level, in order to find a common ground between 
MEG and EEG databases. However, it would be interesting to perform 
the same framework on sensor level signals in future work. That would 
provide information to check whether a different number of channels 
would affect the analysis.

Finally, in this work, brain activity has been assessed by means of 
M/EEG. However, other data such as structural and metabolic informa-
tion of the brain, socio-demographic and clinical data, and genetics are 
also relevant for characterising AD and MCI. The model developed in 
this study could be adapted to analyse different types of data, including 
those previously mentioned. This might provide a more comprehensive 
picture of the diseases. In addition, it would be interesting to extend the 
assessment of the method to other neurological or psychiatric disorders.

6.  Conclusions

In this study, we generated the neurophysiological fingerprints of 
AD and MCI using M/EEG activity through an ML-SHAP framework. For 
the three-class classification, Gradient Boosting outperformed the other 
ML models in terms of accuracy and Cohen’s kappa for the multi-class 
classification.

The use of XAI, and particularly the SHAP algorithm, enhanced the 
interpretability of the ML models. Spectral measures, and specifically 
RP in theta frequency band, played a relevant role in order to distin-
guish HC, patients with MCI, and patients with AD in all three databases. 
However, whilst in the MEG database temporal morphology parameters 
were also relevant to that purpose, FC and multiplex organisation fea-
tures presented high relevance in EEG1 and EEG2 datasets, respectively.

The neurophysiological fingerprints generated showed that the three 
databases presented similar patterns, which support the generalisation 
ability of the proposed methodology. Our results support the idea that 
AD and MCI exhibit particular patterns that are different from the nor-
mative state, that is, healthy ageing. The neurophysiological fingerprints 
provide an accurate, interpretable, and robust framework that could 
help not only for AD and MCI diagnosis, but also for other conditions 
that affect the central nervous system.
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