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 A B S T R A C T

The aim of this study is to examine how variations in the microtubule-associated protein tau (MAPT ) gene 
affect the brain functional network. For this purpose, resting-state electroencephalogram (EEG) data from 
155 participants were acquired. This database included healthy controls and Alzheimer’s disease patients 
carrying seven MAPT alleles associated with risk or protective effects against neuropathologies or abnormal 
tau levels. To assess the impact of each genotype on brain function, a multiplex network analysis quantified the 
connectivity contribution of each brain region across multiple EEG frequency bands (delta, theta, alpha, and 
beta). To this end, brain functional connectivity was first calculated for each brain region and frequency band 
using the phase lag index (PLI) parameter. The PLI adjacency matrices in each frequency band corresponded to 
the layers conforming the multiplex network. Subsequently, the participation coefficient (P) was computed in 
each brain region to reflect node degree diversification among frequency bands. Carriers of risk and protective 
alleles exhibited distinct values of P, especially in the left default mode network in healthy controls. In addition, 
carriers of the risk alleles generally presented higher network disruptions. Finally, significant differences in 
node degree values were observed across SNPs in the theta and beta frequency bands. These results suggest 
that different MAPT variants may lead to diverse tau species that influence brain function, particularly in brain 
regions involved in information flow management in preclinical states. These insights may help understanding 
network disturbances caused by molecular factors.
1. Introduction

Tauopathies are a group of neurodegenerative disorders that are 
characterized by the abnormal accumulation of tau protein in the 
brain [1]. Tau is a critical component in stabilizing cytoskeletal micro-
tubules, which are essential for maintaining the structure and function 
of neurons [1]. However, in tauopathies, tau protein becomes hyper-
phosphorylated, leading to its detachment from microtubules and the 
formation of abnormal intracellular aggregates known as neurofibril-
lary tangles (NFTs) [1]. These tangles are considered to disrupt the 
normal functioning of neurons and are one of the histological hallmarks 
of multiple neurodegenerative diseases, such as Alzheimer’s disease 
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(AD) [1]. Previous studies have suggested that tau alterations may 
contribute to AD pathology through multiple biological pathways [2,3], 
indicating the significance of tau in various physiological mechanisms 
beyond cytoskeletal stabilization. Moreover, NFTs have been observed 
to exhibit cytotoxic properties and are associated with atrophy [4], 
cortical neurodegeneration [4], and cognitive impairment [5].

Human tau is encoded by the microtubule-associated protein tau 
(MAPT ) gene, which spans approximately 133.9 kb of nucleotide se-
quence on chromosome 17q21 [6]. This protein is expressed in six 
major isoforms, assembled by the alternative splicing of exons 2, 3, and 
10 [7]. Depending on the inclusion or exclusion of exon 10, tau is com-
posed of three (3R-tau) or four (4R-tau) microtubule-binding domains, 
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and abnormal splicing has been associated with several tauopathies [6]. 
The sophisticated process of RNA splicing is catalyzed by genetic sig-
nals located mainly in intronic sequences [8]. Therefore, spontaneous 
mutations or genetic inheritance could potentially modify tau structure 
and behavior by altering the genetic information. Single-nucleotide 
polymorphisms (SNPs) are the most common form of genetic modifi-
cations, which are single-base changes in specific genetic loci [9]. The 
effects of SNPs on various diseases have been assessed through multiple 
genome-wide association studies. Previous research has found statis-
tical associations between specific genotypes and neurodegeneration 
as well as changes in plasma tau levels [10–12]. Different variants of 
the MAPT  gene have been linked to these disorders, suggesting that 
certain MAPT  alleles may confer a higher risk or protective effect. 
Although the molecular mechanisms affected by specific base variations 
in the genetic code are diverse, individual gene changes have been 
proposed to exert pleiotropic effects that influence tau misfolding [13]. 
This insight implies that SNPs may have a significant impact on tau 
molecular properties, which could affect its aggregation capacity and 
lead to more profuse NFT formation.

NFTs are not only associated with physiological disturbances, but 
also exhibit specific spatial deposition patterns. These molecules have 
consistently revealed a hierarchical propagation across the AD brain 
[7]. Moreover, it has been discovered that NFTs and other tau species 
spread throughout the brain by prion-like transfer mechanisms [14], 
that occur more frequently in regions with higher synaptic density [15]. 
Consequently, neural populations that act as central sites in the brain 
connectome may assimilate higher concentrations of NFTs. In fact, this 
predisposition has been suggested in other studies, with the default 
mode network (DMN) identified as the common region for all NFT 
propagation patterns [16]. The DMN is a characteristic brain region 
particularly activated during resting state and displaying high central-
ity in the brain network [17]. Additionally, the DMN is considered 
a brain ‘‘hub’’ that manages high-level cognitive functions, such as 
emotional processing, self-referential mental activity, and the evocation 
of previous experiences [18]. From a connectivity standpoint, brain 
hubs are defined as regions functionally connected to multiple clusters 
or occupying central positions within a single functional cluster [19]. 
Hubs balance the integration of information from different sources and 
its segregation into multiple, specialized pathways [20].

Since hubs consist of central nodes in the brain connectome, these 
regions suffer increased vulnerability. Damage to these nodes causes 
severe alterations in the structural integrity of the functional net-
work [21]. Neurodegeneration states such as AD have been associated 
with abnormal DMN activation [22–24]. For this reason, obtaining 
information from cortical network functioning is crucial. Fortunately, 
brain functional connectivity can be studied by means of a relatively 
simple technique called electroencephalography (EEG). EEG captures 
spontaneous electrical activity in the cortex by measuring the synchro-
nized fluctuations of pyramidal neurons using a set of electrodes placed 
on the scalp. Due to its high temporal resolution, EEG is sensitive 
to rapid and transient changes in neural rhythms, making it useful 
for assessing relationships between multiple brain oscillators. EEG is 
commonly used in the study of neurological disorders because of its 
low cost, portability, and non-invasiveness, and has been shown to be 
useful in detecting abnormalities in physiological patterns [25–27].

Some of the most notable changes of the EEG in AD are the shift 
of spectral power to slower frequency bands [28], lower entropy and 
complexity [29], and alterations in functional connectivity [30–32]. 
This last point is particularly important since it describes communi-
cations between different brain systems. Metrics such as amplitude 
envelope correlation [33], coherence [34], phase locking value [35], 
and phase lag index (PLI) [36] are used to study the connectivity 
between pairs of nodes. The latter two metrics are based on the 
relationship between the instantaneous phase properties from two se-
quences, which contain useful information to characterize changes 
2 
in the brain functional network in pathological or stimulatory con-
ditions [37–39]. For this reason, phase-derived metrics are suitable 
to study anomalies in diverse network properties calculated through 
graph theory parameters. On the other hand, graph parameters such as 
small-world features [40–42], path length [36,43,44], and clustering 
coefficient [45] are used to characterize AD-induced perturbations 
in the brain connectome. These observations suggest that the brain 
functional organization in AD is shaped towards more randomized, less 
efficient network configurations. In fact, AD has been even conceived 
as a ‘‘disconnection syndrome’’ in terms of functional and structural 
connectivity [46], also transcending into molecular disruptions re-
sulting in selective hub vulnerability [47]. However, the interactions 
between multiple frequency bands are often neglected despite their 
importance in high-level cognitive processes [48–50]. Multiplex net-
work analysis (MNA) is a novel technique that allows evaluating the 
integration of connectivity patterns across different frequency bands, 
enabling the assessment of nodal interactions through inter-layer cou-
pling [51,52]. This technique demonstrated that functional networks 
activating in diverse frequency bands do not act as independent entities 
but rather in a more integrated manner [52]. MNA has been used 
to identify selective disruptions of hub regions in neurodegenerative 
states and cognitive disorders [51,53–57], providing useful evidence 
for understanding pathological mechanisms.

Since MNA has proven its ability to characterize relevant features of 
functional neural networks, it can be used to investigate how clinical 
factors, such as genetic features, could contribute to brain connectivity 
alterations. Based on this, we hypothesize that MAPT  genotypes asso-
ciated with neurodegeneration or tau anomalies may have an impact 
on brain electrical activity, particularly in regions located in the most 
active functional networks during resting-state. These changes would 
manifest as disruptions in the hub capacity across the brain, depending 
on the contribution of each region to the structure of the functional 
network. Thus, we aim to analyze the inter-layer properties of the brain 
functional connectivity between various MAPT  variants to evaluate 
the impact of genetic sequencing on brain dynamics. To accomplish 
this, we propose applying MNA to EEG data from healthy control 
(HC) subjects and AD patients carrying risk and protective alleles of 
multiple SNPs located in MAPT. We anticipate that variations that are 
consistent among SNPs will be more closely related to tau properties 
and their effects on neurophysiology than to other aspects. To the best 
of our knowledge, no other study has used MNA to characterize the 
impact of several variants of the same gene on the brain functional 
network. As a result, this study combines advanced computational 
techniques with biological information to elucidate neurophysiological 
changes, which reflects a remarkable level of novelty. This manuscript 
is organized as follows: First, the ‘‘Materials and methods’’ section 
describes in detail the characteristics of the used database, the genetic 
analysis and selection criteria, and the stages of EEG processing and 
analysis. The ‘‘Results’’ section presents the findings obtained using the 
proposed methodology. Subsequently, the ‘‘Discussion’’ section offers 
physiological interpretations of the MNA alterations associated with the 
examined genetic variants. Finally, the ‘‘Conclusions’’ section is devoted 
to summarizing the main contributions of this work.

2. Materials and methods

2.1. Subjects

This study enrolled 155 elderly participants, who were classified 
in two groups: HC subjects (n = 45) and AD patients (n = 110). The 
latter were diagnosed according to the National Institute on Aging 
– Alzheimer’s Association (NIA-AA) criteria [58]. Participants with 
specific clinical conditions, such as recent surgery, vascular pathology, 
hypercatabolic states, clinical history of neoplasia (active or under 
treatment), and chronic alcoholism were excluded. AD patients with 
atypical signs of disease progression were also excluded to minimize 
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Table 1
Demographic and genetic data. 𝑥, average; SD, standard deviation; Ref, reference allele; Alt, altered allele; M, male; F, female; MMSE, Mini-
Mental State Examination score; Eff, effect of the allele; R, risk allele; P, protective allele; HC, healthy control subjects; AD, Alzheimer’s disease 
patients; In, intronic variant; Ex, exonic variant; 3’UTR, 3’ untranslated region; A, adenine; T, thymine; C, cytosine; G, guanine.
 SNP Base Eff Subjects Sex (M:F) Age (𝑥 ± SD) (yrs.) MMSE (𝑥 ± SD)
 HC AD HC AD HC AD HC AD

 rs2258689 (In/Ex)a T (Ref) P 27 75 14:13 40:35 80.0 ± 7.4 79.9 ± 7.5 28.9 ± 1.1 16.0 ± 7.6 
 C (Alt) R 18 35 8:10 20:15 79.2 ± 7.2 82.0 ± 6.6 28.8 ± 1.2 13.3 ± 8.2 
 rs242557 (In) G (Ref) P 18 44 8:10 22:22 81.3 ± 8.1 79.1 ± 7.2 28.8 ± 1.2 14.4 ± 8.3 
 A (Alt) R 27 66 14:13 35:31 78.7 ± 6.6 81.6 ± 7.2 28.9 ± 1.1 15.6 ± 7.6 
 rs11656151 (In) A (Ref) P 33 76 17:16 40:36 80.6 ± 8.0 80.8 ± 7.2 28.6 ± 1.1 15.3 ± 7.6 
 G (Alt) R 12 34 6:6 20:14 77.3 ± 4.3 80.1 ± 7.4 29.5 ± 0.7 14.6 ± 8.5 
 rs2435207 (In) G (Ref) P 20 52 9:11 25:27 80.4 ± 7.9 80.4 ± 6.3 29.1 ± 1.1 13.3 ± 8.3 
 A (Alt) R 25 58 14:11 30:28 79.2 ± 6.9 80.7 ± 8.1 28.7 ± 1.1 16.7 ± 7.2 
 rs16940758 (In) C (Ref) P 31 69 16:15 37:32 80.1 ± 6.9 80.6 ± 7.3 29.1 ± 1.0 14.3 ± 8.1 
 T (Alt) R 14 41 8:6 23:18 78.9 ± 8.2 80.6 ± 7.2 28.4 ± 1.2 16.4 ± 7.4 
 rs7521 (3’UTR) C (Ref) P 17 41 8:9 22:19 82.0 ± 8.4 80.0 ± 7.3 28.6 ± 1.2 16.2 ± 8.0 
 A (Alt) R 28 69 15:13 37:32 78.3 ± 6.3 80.9 ± 7.3 29.0 ± 1.1 14.5 ± 7.8 
 rs8070723 (In) A (Ref) R 23 62 12:11 34:28 77.7 ± 6.2 81.1 ± 7.0 28.7 ± 1.2 15.7 ± 7.5 
 G (Alt) P 22 48 11:11 24:24 81.8 ± 7.8 79.8 ± 7.6 29.0 ± 1.0 14.4 ± 8.4 
a rs2258689 belongs to exon 6 or to an intron depending on the splicing process.
bias against other forms of dementia. The assessment of the cognitive 
state was carried out by means of the Mini-Mental State Examination 
(MMSE) test [59]. Each participant, relative, or legal representative 
provided informed consent, according to the recommendations of the 
Code of Ethics of the World Medical Association. This study was con-
ducted in compliance with the Declaration of Helsinki and its protocol 
was approved by the Ethics Committee of the University of Porto 
(Porto, Portugal, Report nº 38/CEUP/2018).

2.2. Genetic analysis

In this study, biological material for genetic characterization was 
obtained from each subject through either a sample of saliva or buccal 
mucosa. Saliva samples (2 ml) were preferred and collected using 
the Oragene DNA 500 collection kit (DNAgenotek). For patients at 
advanced stages of the disease unable to voluntarily spit, we obtained 
buccal mucosa by means of three buccal swabs as an alternative. DNA 
extraction and quality control assessments were performed on all sam-
ples prior to analysis with the genome-wide Axiom Spain Biobank Array 
(Thermo Fisher Scientific) at the Spanish National Center for Geno-
typing (CEGEN). Variant calling quality control (QC) procedures were 
developed for both individuals and markers, according to Affymetrix 
best practices guide [60]. All analyses were performed using either 
Affymetrix Power Tools or PLINK [61]. Variants of the probes belonging 
to the recommended calling categories were annotated accordingly to 
the Genome Reference Consortium Human Build 37 (GRCh37) SNP 
assembly. Individual QC analyses were performed considering the sex 
of the individuals, duplications or relatedness, as well as divergent 
ancestry. In per-marker QC analysis, deviation from Hardy-Weinberg 
equilibrium and missingness rates were assessed.

Previous studies have shown significant associations between MAPT
polymorphisms and neuropathologies or alterations in phosphorylated 
and total tau presence in cerebrospinal fluid (CSF). Matching them with 
those available in our database, the following 11 SNPs were selected: 
rs2258689 [62], rs242557 [63,64], rs11656151 [11], rs2435207 [62,
65], rs16940758 [66], rs7521 [67], rs8070723 [68], rs242562 [62,
65], rs1052553 [69], rs62063857 [69], and rs9468 [11]. A linkage 
disequilibrium (LD) test was conducted to assure no significant associ-
ations between these polymorphisms, resorting to the informatics tool 
LDlink [70], hosted by the Division of Cancer Epidemiology and Ge-
netics site (National Institutes of Health, https://ldlink.nci.nih.gov; ac-
cessed February 15, 2023). The latter four SNPs (rs242562, rs1052553, 
rs62063857, and rs9468) showed high correlation values with other 
SNPs and were therefore disregarded to avoid redundant informa-
tion. The remaining seven SNPs (rs2258689, rs242557, rs11656151, 
rs2435207, rs16940758, rs7521, and rs8070723) showed pairwise R2 
3 
values lower than 0.25 and were selected for further analysis. Het-
erozygotic and homozygotic subjects with altered alleles were classi-
fied in the same class. The SNPs rs242557, rs11656151, rs2435207, 
rs16940758, and rs8070723 were designated as variants in intronic 
loci; rs7521 was assigned as a variant in the 3’ untranslated region 
(3’UTR); and rs2258689 is located at an intron or an exon depending on 
the splicing process according to GRCh37 patch release 13 (consulted at 
National Institutes of Health, https://www.ncbi.nlm.nih.gov; accessed 
February 20, 2023). Genetic and demographic data regarding each SNP 
are displayed in Table  1.

2.3. EEG recordings and pre-processing

For each subject, a 5-min EEG recording was acquired with a 
sampling frequency of 500 Hz and common average reference using 
a 19-channel Nihon Kohden Neurofax JE-921A EEG system. Electrodes 
were placed according to the international 10–20 system at Fp1, Fp2, 
F3, F4, F7, F8, T3, T4, T5, T6, C3, C4, P3, P4, O1, O2, Fz, Cz, 
and Pz. EEG recordings were obtained under resting-state conditions 
with closed eyes in a relaxed and noise-free environment. The skin 
impedance was attempted not to exceed 5 kΩ in each channel. The 
researchers controlled the state of vigilance of each subject to mini-
mize drowsiness. The resulting data were stored in ASCII format on a 
personal computer.

Next, the EEG signals were pre-processed using a series of steps [71–
73]: (i) mean removal; (ii) 1–30 Hz Hamming-window band-pass finite 
impulse response (FIR) filter, order 1000; (iii) removal of noise caused 
by electrode impedance and other biosignals using independent compo-
nent analysis; (iv) signal segmentation into 5-s epochs, which provides 
a trade-off between stable statistical estimations and reliable feature 
extraction; (v) visual inspection of the signal and rejection of epochs 
contaminated with artifacts. The average number of artifact-free epochs 
among all subjects was 39.95 ± 12.74 (mean ± standard deviation, SD).

Once the EEG data were pre-processed, source-level signals were 
estimated using the standardized low resolution brain electromagnetic 
tomography (sLORETA) algorithm [74]. This algorithm estimates the 
distribution of electrical activity by maximizing the correlation be-
tween neighboring sources. Noise covariance was established as an 
identity matrix since no noise information was available. Noteworthy, 
this transformation may introduce bias in the calculation of the source-
level activity if an atlas with higher number of sources than electrodes 
is used. For this reason, the Yeo-7 Network altas [75] with 14 regions 
of interest (ROIs) was proposed (7 ROIs in each hemisphere). This 
atlas defines each ROI according to distinct connectivity profiles from 
local networks named as: (i) visual network, (ii) somatomotor network, 
(iii) dorsal attention network, (iv) ventral attention network, (v) limbic 
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network, (vi) frontoparietal network, and (vii) DMN [75]. The EEG 
processing and pre-processing were performed digitally with MATLAB®
(R2021b version, Mathworks, Natick, MA).

2.4. EEG analysis

First, the connectivity between each pair of ROIs was estimated 
from source-level EEG at each frequency layer. In this study, each 
layer corresponded to the classical frequency bands, defined as delta (𝛿, 
1–4 Hz), theta (𝜃, 4–8 Hz), alpha (𝛼, 8–13 Hz), and beta (𝛽, 13–30 Hz). 
When calculating connectivity, it is important to consider primary and 
secondary leakage as they can lead to spurious estimations [76,77]. To 
address this issue, PLI was used since it is relatively insensitive to the 
effects of volume conduction [36,78]. PLI measures the asymmetry of 
the distributions of instantaneous phase differences between two time 
series [36], and it is defined as follows: 
𝑃𝐿𝐼 = |⟨𝑠𝑖𝑔𝑛[𝑠𝑖𝑛(𝛥𝜙(𝑡𝑘))]⟩|, (1)

where 𝛥𝜙(𝑡𝑘) is the phase difference for each sample between two 
signals and ⟨⋅⟩ indicates the mean value [36]. The resulting PLI values 
range between 0 and 1, with 0 denoting lack of coupling or a phase 
difference centered in zero (or 𝜋), and 1 a perfect, non-zero-centered, 
phase locking [36]. PLI was computed for each epoch, frequency band, 
and subject. Each PLI calculation resulted in a 14 × 14 adjacency 
matrix, representing pairwise connections between every ROI within 
the brain. This matrix captures the functional connectivity strength 
between different ROIs, indicating the degree of synchronization or 
correlation in neural activity. Finally, the average of all adjacency 
matrices of all the epochs at each frequency band was calculated; 
therefore, 4 matrices (i.e., frequency layers), were assigned for each 
subject. The integration of these layers, consisting of the PLI-based 
functional connectivity between each pair of ROIs at each frequency 
band, yielded the multiplex network. In this study, the analysis focused 
on the relationships between each single node and the remaining nodes 
of its own layer, as well as itself in other layers, without considering 
inter-layer connections between different nodes [51,52,57].

In order to reveal multiplex features of specific nodes in a network, 
the calculation of the participation coefficient (P) was proposed. P
quantifies the heterogeneity of the connectivity contribution of a node 
to the different communities of a network [79]. In this case, each com-
munity refers to each layer of the multiplex network. In other words,
P allows to determine to what extent a node allocates its connectivity 
links to either a single layer or multiple layers homogeneously. P has 
previously been used to assess hub disruption in AD [53,57], aiding in 
characterizing the network alterations caused by the disease. To obtain 
this parameter, the degree of the node i on a layer 𝜓 must first be 
computed [57,79]: 

𝑠[𝜓]𝑖 =

𝑛
∑

𝑗=1

𝑤[𝜓]
𝑖𝑗 , 𝜓 = {𝛿, 𝜃, 𝛼, 𝛽}, (2)

where 𝑤𝑖𝑗 is the PLI value between node 𝑖 and 𝑗, and 𝑛 = 14 is the num-
ber of nodes. Each layer (defined as 𝜓) corresponds to the PLI network 
obtained from the source-level signals filtered at each frequency band. 
Subsequently, the overlapped weighted degree was calculated as the 
sum of the PLI values between a node and its neighbors across layers. 
The overlapped weighted degree for the node i is 

𝑜𝑖 =
∑

𝜓

𝑠[𝜓]𝑖 , 𝜓 = {𝛿, 𝜃, 𝛼, 𝛽}. (3)

The overlapped weighted degree was computed for each node 
resulting in 14 values for each subject. Finally, the value of the P
coefficient associated with the node i was calculated as follows [57,79]:

𝑃𝑖 =
𝑀

𝑀 − 1

⎡

⎢

⎢

⎢

1 −
∑

(

𝑠[𝜓]𝑖
𝑜𝑖

)2⎤
⎥

⎥

⎥

, 𝜓 = {𝛿, 𝜃, 𝛼, 𝛽}, (4)
⎣

𝜓
⎦
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where 𝑀 = 4 is the number of layers. P values are ranged between 
0 and 1. 𝑃 = 0 indicates that connections between i and the rest of 
nodes lie in a single layer, whilst 𝑃 = 1 corresponds to a perfectly 
homogeneous distribution of connectivity across all the layers [79]. To 
provide a clearer understanding, Fig.  1 illustrates the methodological 
process carried out to compute P. Subsequently, the obtained values of
P coefficient in each ROI were categorized as risk-related or protective-
related values depending on whether the subject was listed as carrying 
risk or protective alleles for each SNP. Finally, the grand average of 
the P values by subjects is calculated, yielding two values for each ROI 
and SNP: the risk- and the protective-related values. This process was 
conducted for both groups: HC subjects and AD patients.

After quantifying the heterogeneity of the connectivity contribution 
of each node with the P coefficient, the hub disruption was evaluated 
by means of the hub disruption index (k), proposed by Achard and 
colleagues [80]. The k parameter reflects the gradient of the regression 
line (least-squares first-order polynomial fit) that fits the P values of 
AD patients minus the average of the P values among HC subjects
vs. the mean from the HC subjects. Values of k close to zero would 
imply similar impact exerted by genotypes in both healthy and patho-
logical conditions, since variations of P in healthy subjects would be 
associated with equivalent variations in AD patients. Therefore, the k
parameter allows to compare hub properties of a functional network 
between different groups. In this study, this process was repeated for 
each genetic variant of each SNP, and the results were displayed in 
a scatter-plot. The 𝑦-axis values in the chart represent P disruption, 
which we have defined as the difference between P values from AD 
patients and HC subjects [57]. Each SNP was represented by two 
sets of 14 ROIs, one for the risk allele and one for the protective 
allele populations. This representation allowed visual comparison of 
the differences between HC subjects and AD patients among different 
genotypes. Finally, the degree values of the nodes were analyzed in 
each layer individually, enabling a comparison of changes in func-
tional connectivity between genotypes within each frequency band. 
This last step was conducted by calculating the node degree for each 
ROI within every layer. This parameter provides an absolute view of 
‘‘gross’’ connectivity associated with each brain region and frequency 
band. Together with the P coefficient, which estimates the uniformity 
of connectivity value distribution across layers, both metrics allow a 
more exhaustive inspection of the multiplex network configuration. The 
methodological approach previously described represents an innovative 
application of MNA to elucidate alterations in the brain functional 
network, as the P coefficient and the node degree in each layer are used 
simultaneously to characterize the effects of various MAPT  variations 
on cortical activation.

2.5. Statistical analysis

The Kolmogorov–Smirnov and Levene tests were performed to eval-
uate the normality and homoscedasticity of P and node degree values. 
Neither of these parameters met parametric assumptions. Thus, statis-
tically significant differences between genotypes were identified using 
the non-parametric Mann–Whitney U -test (𝛼 = 0.05). Additionally, 
multiple comparisons problem was dealt by means of false discovering 
rate (FDR) controlling procedure [81].

3. Results

In this study, the P coefficient was calculated from EEG data of 
HC subjects and AD patients. This metric was then used to determine 
differences in connectivity between subjects with risk and protective 
alleles in seven genetic MAPT  loci. First, the hub disruption scatterplot 
was displayed in Fig.  2, where each point represents the P disruption 
value (i.e., P in AD minus P in HC) vs. the average P value in HC 
subjects across ROIs. Protective allele carriers generally had lower P
disruption values than risk allele carriers, with the former exhibiting 
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Fig. 1. Processing pipeline used to compute the participation coefficient (P): (a) The process begins with the segmentation of the 14-source EEG data into 5-s epochs, which 
have been pre-filtered in each frequency band; (b) Then the PLI matrices (14 × 14 size) are calculated for each epoch; subsequently, all the PLI matrices are averaged by epochs, 
resulting in a single 14 × 14 matrix for each frequency band; (c) Finally, the multiplex network is built from the four grand-averaged matrices (delta, theta, alpha, and beta), 
from which a value of P per ROI is calculated.
Fig. 2. Scatterplot of P disruption values vs. P values obtained from the HC group. Each symbol corresponds to an SNP. The symbols related to each SNP are as follows: circle 
for rs242557, square for rs7521, diamond for rs8070723, upward-pointing triangle for rs2258689, downward-pointing triangle for rs11656151, pentagram for rs2435207, and 
hexagram for rs16940758. Symbols with a black border represent the left DMN region. Red and blue colors display risk and protective alleles, respectively. The black dashed line 
indicates the zero crossing.
a grand average of −0.0010 ± 0.0015 and the latter showing a grand 
average of 0.0018 ± 0.0012 (mean ± SD). Noteworthy, a quick inspec-
tion of Fig.  2 reveals some SNPs whose protective alleles are related to 
the lowest values of P disruption averaged by ROIs, which are rs7521 
(−0.0032 ± 9.688 ⋅ 10−4), rs8070723 (−0.0019 ± 0.0015), and rs2435207 
(−0.0022 ± 0.0016). In addition, these SNPs showed the highest values 
of the P coefficient averaged by ROIs in HC subjects for these alleles 
(0.9729 ± 0.0013, 0.9717 ± 0.0016, and 0.9722 ± 0.0011, respectively). 
5 
Particularly, the SNP rs7521 presented the highest value of P coefficient 
in the controls’ left DMN (0.9756).

Differences in P disruption values between genotypes may be due 
to three causes: (i) different connectivity patterns in controls, (ii) 
different connectivity patterns in AD patients, or (iii) both. To solve 
this question, the distribution of the P values in each SNP and genotype 
was obtained (Fig.  3). In the HC group, five of the seven SNPs reported 
significantly higher values of P in the protective alleles than in the risk 
alleles (rs7521, rs8070723, rs11656151, rs2435207, and rs16940758), 
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Fig. 3. Average P distribution between genotypes for all ROIs in (a) HC group and (b) AD group for each SNP. Also, P disruption values were displayed in (c). Statistically 
significant differences between genotypes were indicated with a red asterisk (p-values < 0.05, Mann–Whitney U -test with FDR correction). A black cross in each distribution 
indicates the value in the left DMN region.
one SNP showed the opposite relation (rs2258689), and one SNP did 
not show statistically significant differences between both subgroups 
(rs242557). In the AD group, significantly higher P values were ob-
tained in the risk group in four SNPs (rs242557, rs7521, rs8070723, 
and rs2435207). The rest of the SNPs showed no statistically significant 
differences. These results suggest that different connectivity patterns 
in both HC subjects and AD patients contribute to the discrepancy in
P disruption values between genotypes, as can also be observed in Fig. 
3c. Fig.  3 also displayed the P and P disruption values regarding the left 
DMN (black crosses in each boxplot). This ROI was not only associated 
with the highest values of P in HC carriers of the protective alleles in 
most cases, but also with low values of P disruption (even the lowest 
in some SNPs). In fact, the absolute mean value of the P disruption 
across SNPs was highest in the left DMN (4.6 ⋅ 10−3). In addition, the 
left DMN exhibited higher P values in HC protective carriers in each 
SNP, with the highest mean across SNPs (0.974) in this allele. These 
observations suggest that this ROI is generally the most sensitive to 
genotype variations.

To evaluate the connectivity implications from each layer in the 
multiplex network, each frequency band was assessed individually. 
Theta and beta bands showed the most consistent trends in node degree 
between HC and AD patients, whilst delta and alpha bands exhibited 
more diverse patterns. Theta and beta band results were displayed in 
Fig.  4. In HC subjects, the protection allele group generally had lower 
node degree in the theta band, except for the SNPs rs2435207 and 
rs16940758. The opposite trend was observed in the beta band in all 
SNPs, except for rs11656151. In addition, AD patients showed generally 
lower and less consistent differences in node degree across all frequency 
bands.

Finally, the P-derived parameter k was obtained for each SNP and 
genotype from Fig.  2 and presented in Table  2. It is noteworthy that 
every SNP exhibited a negative value of k, which reflects an association 
between regions with high values of P in HC subjects and negative 
values of P disruption (i.e., higher values of P in AD than HC). Also, 
significant differences were found between k values from risk and 
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Table 2
Hub disruption index (k) obtained from the gradient coefficient of the regression line 
from the P disruption scatterplot in each SNP. The statistical significance (Mann–
Whitney U -test) of the differences between genotypes was also displayed.
 SNP 𝑘𝑟𝑖𝑠𝑘 𝑘𝑝𝑟𝑜𝑡𝑒𝑐𝑡  
 rs242557 −1.112 −0.595 
 rs7521 −0.733 −0.352 
 rs8070723 −0.864 −0.704 
 rs2258689 −1.135 −0.660 
 rs11656151 −0.989 −0.628 
 rs2435207 −0.837 −0.108 
 rs16940758 −1.001 −0.402 
 Mean −0.953 −0.631 
 p-value 0.011

protective alleles (p-value = 0.011, Mann–Whitney U -test). This result 
indicates that ROIs with high P in a healthy brain functional network 
show more evident relative decreases of P in AD carriers of risk alleles.

4. Discussion

MNA of resting-state EEG activity was conducted for HC subjects 
and AD patients with different MAPT  variants. Seven SNPs were stud-
ied in order to ascertain common alterations, which would be more 
likely to be associated with changes in the structural or biochemical 
properties of the tau protein.

4.1. Implications of  MAPT  variation on the global connectivity patterns

The P disruption values (P values in AD patients minus P values 
in HC subjects) were obtained for each SNP and ROI, and displayed in 
Fig.  2. Also, the P coefficient distribution across ROIs was expressed 
according to each SNP in Fig.  3. The analysis revealed that the P
disruption values tended to be positive for risk alleles and negative for 
protective alleles. This observation suggests that the P coefficient in 
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Fig. 4. Average node degree distribution in the theta and beta bands between subjects for all ROIs in each SNP: (a) HC group in theta band, (b) AD group in theta band, (c) 
HC group in beta band, and (d) AD group in beta band. Statistically significant differences between genotypes were indicated with a red asterisk (p-values < 0.05, Mann–Whitney
U -test with FDR correction).
the AD group is higher in subjects with risk alleles compared to those 
with protective alleles, while the tendency is just the opposite for HC 
subjects. This disparity may arise due to the fact that the P coefficient 
in the AD group is significantly higher in subjects with risk alleles than 
in those with protective alleles, or that the P coefficient in the HC group 
is significantly higher in subjects with protective alleles than in those 
with risk alleles. At least, one of these premises is supported in every 
SNP, except in rs2258689, as it can be observed in Fig.  3. Moreover, the 
results of the analysis suggest that the effect of MAPT  gene variations 
could differ depending on the clinical status. It was observed that 
different genotypes have a greater impact on the global network in 
healthy states, as shown in Fig.  3a, but milder effects in dementia 
states, as shown in Fig.  3b, resulting in an overall lower P disruption 
for protective groups, as shown in Fig.  3c. It is noteworthy that all 
SNPs of interest, except rs2258689, are located in non-coding regions, 
suggesting that these modifications are not related to translational 
processes that could directly affect the amino acid sequence. However, 
intronic variants have been previously linked to disruptions in splicing 
mechanisms that result in the inclusion of fragments of intronic code 
as pseudo-exons during mRNA maturation [82]. This phenomenon may 
lead to different tau isoforms that could have varied impacts, which 
may be more beneficial in preclinical stages but more detrimental in 
pathological stages. Since distinct sets of tau isoforms have been linked 
to different pathologies [6], it is plausible that structural changes could 
influence their cytotoxic behavior. Lastly, the SNPs rs7521, rs8070723, 
and rs2435207 reported the lowest P disruption values and the highest
P coefficient values in controls. This observation implies that specific 
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alterations to the tau protein hold a more pronounced influence on 
cerebral electrical activity, resulting in more evident deviations within 
the neural functional network. The SNP rs7521 was especially remark-
able for the highest value of P coefficient associated with the left DMN 
in HC subjects. This finding could reflect the relation between some 
SNPs and physiological implications intimately related to maintaining 
healthy cognition or overall brain functioning. Previously, variations 
in rs7521 have been related to differences in 4R-tau expression, which 
contributes to altering the ratios between 4R and 3R tau [83]. In this 
way, the protective allele of rs7521 may play a crucial role in managing 
the balance of different tau isoforms with the aim of maintaining 
healthy ratios. This insight confirms that genetic variations do not 
affect physiological mechanisms in isolation, but rather interact in a 
non-linear and convoluted manner with other genetic features.

Furthermore, Table  2 displays the k coefficient for each SNP. This 
parameter reflects the impact of each genotype on the hub disruption 
of a network, which allows quantifying the loss of global ability of all 
the nodes to behave as hubs. The k values obtained from P in all SNPs 
showed statistically significant differences between genotypes. Also, the 
risk alleles were associated with lower values of k. This observation 
indicates that nodes that reported more homogeneous contributions 
across layers on the multiplex functional network in HC subjects ex-
hibited less homogeneous contributions in AD patients when evaluating 
carriers of risk alleles. This insight suggests that the protective alleles 
of various SNPs could be generating a damping effect on the network 
disruptions, especially in hub regions.
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4.2. Higher sensitivity to disruption and hub capacity in the left DMN region

The protective carriers subgroup of HC subjects shows the highest 
values of P in most of the SNPs, particularly in the left DMN region, as 
seen in Fig.  3a. Additionally, Fig.  3a reveals that HC subjects carrying 
protective alleles exhibit higher P coefficients in the left DMN than 
those with risk alleles, which indicates that the left DMN of HC subjects 
with protective alleles has greater inter-layer connectivity. This sug-
gests that the protective allele helps to maintain the hub properties of 
the DMN when communicating with other brain regions during resting 
states, even in preclinical circumstances. Furthermore, the P disrup-
tion associated with the left DMN showed the lowest values in most 
cases (Fig.  3c) and was also negative in contrast to the risk genotype 
subgroups. Low P disruption values imply a more concentrated node 
contribution in a single layer. Therefore, we can infer that the left DMN 
of HC subjects carrying risk alleles may be associated with neuronal 
populations lacking the ability to integrate information from different 
layers, possibly due to their diminished hub capabilities.

As different frequency bands have been suggested to participate in 
brain functions at different spatio-temporal scales [84], lower values of
P associated with HC carriers of risk alleles may indicate a slight deficit 
in functional specialization of the left DMN. Additionally, negative
P disruption values in the left DMN could mean that this region is 
particularly sensitive to different isoforms of tau, altering its neural 
activity more significantly depending on the cytotoxic characteristics 
of this molecule. While only rs2258689 can be part of an exon during 
mRNA maturation, intronic variations are able to trigger alternative 
splicing processes. In fact, alternative splicing of pre-mRNAs is a major 
contributor to proteomic diversity [8]. Regarding AD groups, greater 
similarity between genotypes in patients may be due to the fact that 
the effect that tau may exert in neurodegenerative states is overshad-
owed by other physiological disruptions. Furthermore, the observed P
fluctuations between ROIs could be a manifestation of compensatory 
mechanisms in specific brain regions in processes involving flow and 
management of neural information. Previously, this idea was proposed 
when obtaining an increase of P in frontal areas in AD [53]. In this 
sense, brain regions that are not typically acting as hubs could be 
adopting this role with the aim of maintaining the functional integrity 
of the network.

An anatomical explanation for the multiplex disruptions in the DMN 
is demyelination. Histological examinations have shown a correlation 
between the spread of AD pathology and the reversed myelination pro-
cess during brain development [85]. Since this propagation is similar 
to NFT deposition along the AD continuum, these neuronal populations 
may be more resistant to the cytotoxic effects of hyperphosphorylated 
tau. In fact, a previous study has suggested a relationship between 
myelin and resistance against the detrimental effects of tau [86], which 
complements the finding of a robust association between decreased 
myelin and elevated tau concentrations [87]. Given the late myeli-
nation displayed by the DMN during brain development [88], these 
regions may be notably more sensitive to MAPT  variability.

Another effect behind the obtained results is related to greater sen-
sitivity of the DMN to tau cytotoxicity, which could be associated with 
a greater predisposition to accumulate elevated levels of this protein. 
NFTs and other tau by-products are known to spread between neuronal 
populations by means of prion-like transfer mechanisms [14], which 
are more likely to activate in regions of high synaptic density [15]. 
Recently, resting-state networks, such as the DMN, have reported in-
creased synaptic density compared to other brain regions [89]. Since 
this feature reflects greater structural connection between diverse neu-
ral populations, the likelihood to collect higher concentrations of tau 
is expected to increase. Conversely, brain regions with lower synaptic 
density may be less affected not due to resistance to cytotoxicity, but 
simply because of lower protein presence. Typically, genetic variations 
in expression quantitative trait loci (eQTL, see [90]) have been asso-
ciated with differences in transcript abundance. The SNP rs8070723 is 
8 
the only one previously cataloged as an eQTL for the MAPT  gene in the 
brain (p-value < 0.001, consulted at GTEx Portal v8, Broad Institute 
of MIT and Harvard, https://www.gtexportal.org; accessed February 
21, 2023). However, alternative genetic traits associated with different 
protein concentrations have been suggested [12], implicating that not 
only eQTLs may cause alterations in genetic expression levels.

4.3. Consistent changes in specific frequency bands may be directly related 
with different tau species

After applying MNA to the EEG data, the contribution of each indi-
vidual layer to the functional network was assessed. For this purpose, 
the node degree at each frequency band was obtained by averaging 
across subjects. This approach can identify which layers are most 
affected by genotype variations. Theta and beta bands showed mostly 
consistent results, which are presented in Fig.  4. The theta band has 
been widely studied in neurodegenerative processes, with multiple 
pieces of evidence linking alterations in theta activity to cognitive im-
pairment [25]. Previous research examining brain activity disruptions 
has also reported a strong association between tau/amyloid ratios and 
an increase in relative theta activity in healthy subjects [91]. Addition-
ally, evidence linking different tau species to the theta frequency band 
has been documented in mice models, suggesting that the sequence of 
tau can modulate the power of specific brain oscillations [92]. These 
insights could explain the alterations in node degree values found in 
the theta band between genotypes in the HC group. On the other 
hand, brain beta oscillations are also affected in the slowing of brain 
activity associated with neurodegeneration progression [25]. Again, 
further evidence has shown that abnormal tau levels are correlated 
with decreased functional connectivity [93] and global power [94] in 
fast frequencies. As different MAPT  variants may be associated with 
an increase of tau levels [12], beta activity could also be affected by 
genetic variations. We suggest these mechanisms could be partially 
the reason for the consistent trends in beta and theta bands between 
genotypes obtained in this study.

4.4. Potential physiological repercussions of diverse tau configurations in 
the brain functional network

There are various potential explanations as to why different alleles 
of MAPT  could be disrupting functional connectivity in the brain. 
Firstly, it is possible that these disruptions could be a result of the quan-
tity of tau produced. It has been suggested that distinct MAPT  alleles 
are associated with different concentrations of CSF tau in amyloid-
positive individuals [95]. In fact, one of the studied SNPs (rs16940758) 
has been related with this alteration, although it was not the case for 
rs7521, rs242557, and rs2258689 [95]. However, it is plausible that 
the other selected SNPs could also have a similar impact. Furthermore, 
it is worth noting that different variants in MAPT  may not necessarily 
be associated with increased tau synthesis, as certain isoforms may 
be more susceptible to degradation or removal from brain tissue than 
others. This may be related to the ubiquitin-proteasome system, which 
recognizes and degrades proteins with abnormal folding patterns [96].

Another potential explanation for the disruption of functional con-
nectivity is the abnormal folding of tau. An earlier study suggested that 
alterations in tau folding can result in increased protein aggregations 
due to elevated tau-tau interactions [97]. While this study linked these 
abnormal folds to the presence of beta-amyloid, it is possible that tau 
configurations that affect its folding could lead to higher concentra-
tions of this molecule and more intense cytotoxic and immunological 
responses.

In addition, multiple tau variants may have significant effects on 
their spreading pathways through the brain. A previous study reported 
evidence of heterogeneous tau pathology propagation resulting from 
different tau species [98]. This factor may be important in elucidating 
why certain SNPs are associated with more pronounced disruptions in 

https://www.gtexportal.org
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the DMN than others. This relationship can also be explained by the 
folding of tau, as evidence suggests that distinct structural configura-
tions of tau are associated with different propagation patterns in the 
brain [99]. This supports the idea that changes in the primary structure 
of tau can lead to alterations in tau folding.

Finally, it is worth noting that different tau species may lead to a 
variety of physiological disruptions, such as reduced binding to micro-
tubules resulting in decreased tubulin assembly [6]. Other sources have 
linked specific structural configurations with impaired functionality. 
For instance, paired helical filaments of tau were shown to be nearly 
incompetent in terms of microtubule assembly [100], demonstrating 
that the structure of tau can affect its physiological properties. Even 
small changes, such as the substitution of serine and threonine residues 
with glutamate, can have significant impact on tau cytotoxicity [101]. 
This point supports the idea that minimal alterations in the peptide 
chain of a protein can result in significant perturbations in cell function.

In order to minimize the damage derived from tau isoforms associ-
ated with disruptions in the brain connectome, tau-targeted therapies 
could be applied. These clinical approaches obtained promising results 
in detecting and removing specific tau species from the brain tissue. 
Immunotherapy is able to facilitate tau clearance from the brain to 
the periphery, as evidenced by increased tau concentrations in blood 
following immunization [102]. In addition, various tau species can be 
targeted, including amino- and carboxy-termini, proline-rich areas, and 
microtubule-binding domains [103]. Therefore, tau isoforms diverging 
from the wild variant in specific amino acids may be potentially tar-
getable and removed in the near future. During the past years, clinical 
trials have been conducted to evaluate the safety and efficacy of tau-
targeted immunotherapies in humans [103,104]. These applications 
show potential to diminish the impact of the most pathogenic tau 
species that could be trackable by genetic screenings.

4.5. Limitations and future research

While this study found significant associations between MAPT  vari-
ants and changes in the brain functional network, some limitations 
are necessary to be pointed out. First and foremost, the study was 
conducted exclusively using EEG and genetic data, and as such, there 
is no direct evidence confirming the link between MAPT  sequence 
and neurophysiological alterations. The factors proposed in this work 
relating to genotypes, tau properties, and EEG disruptions are not 
intended to describe causal relationships, but rather suggest a variety 
of possible implications that could explain the results obtained. To 
validate these associations, additional clinical data, such as medical 
imaging, would be required to determine tau-related alterations. Sec-
ondly, the participants were classified into genetic subgroups for each 
category, which resulted in relatively sparse sample sets, especially for 
the HC subgroups. This issue could lead to outliers and bias in the data 
provided by the MNA. For this reason, efforts directed towards obtain-
ing larger datasets should be encouraged. Furthermore, our database 
consists in 19-channel EEG data, which is relatively lacking in spatial 
resolution. While we aimed to keep costs low for the sake of feasibility, 
our goal in future research is to gain access to more sophisticated means 
of acquisition. Increasing the spatial resolution would allow the use 
of more detailed atlases, thus providing more accurate information on 
specific brain regions. Finally, only SNPs were considered in this study, 
despite other polymorphisms, such as insertions or deletions, may also 
provide interesting insights when analyzing EEG alterations.

In future research, we plan to expand the methodological frame-
work established in this study by incorporating additional perspectives. 
Specifically, we will examine a broader set of metrics derived from 
EEG signals, including spectral and nonlinear metrics, as well as graph 
theory parameters computed across multiple frequency bands. These 
features have been shown to capture anomalies resulting from both 
pathological and non-pathological brain perturbations [53,105].
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5. Conclusions

This study analyzed resting-state EEG data from HC subjects and 
AD patients carrying risk and protective variants of MAPT  against neu-
rodegeneration or tau anomalies using MNA. The main contributions 
of this work are twofold. First, we proposed a relationship between 
hub behavior and alterations in MNA-derived parameters; and second, 
we identified genetically driven associations linking these two key 
aspects with tau potential anomalies. This insight may be related to 
the effects of different tau structural properties on the configuration of 
the brain functional network. The most evident differences in the left 
DMN between genotypes were observed in HC subjects, which indicates 
that the effect of genetic factors may be more prominent in preclinical 
states than in pathological ones. This could be due to the fact that the 
impact of alterations caused by different tau isoforms diminishes as the 
level of structural disruption increases. Additionally, this observation 
suggests that the detrimental effects of different tau species in the left 
DMN can influence brain electrical activity before any AD symptoms 
develop. However, further investigation is needed to fully understand 
the mechanisms that play a role in these disruptions.

CRediT authorship contribution statement

Aarón Maturana-Candelas: Writing – review & editing, Writing 
– original draft, Visualization, Resources, Methodology, Investigation, 
Formal analysis, Data curation, Conceptualization. Roberto Hornero: 
Writing – review & editing, Validation, Resources, Project adminis-
tration, Conceptualization. Jesús Poza: Writing – review & editing, 
Validation, Conceptualization. Víctor Rodríguez-González: Writing 
– review & editing, Validation, Data curation. Víctor Gutiérrez-de 
Pablo: Writing – review & editing, Validation. Nadia Pinto: Writing 
– review & editing, Validation, Resources. Miguel A. Rebelo: Writing 
– review & editing, Validation. Carlos Gómez: Writing – review & 
editing, Validation.

Funding

This research has been developed under the grant PGC2018-098214
-A-I00 funded by ‘‘Ministerio de Ciencia e Innovación’’/‘‘Agencia Es-
tatal de Investigación’’/10.13039/501100011033 and by ‘European 
Regional Development Fund (ERDF) A way of making Europe’, by the 
‘European Union’; under the R+D+i project ‘‘Análisis y correlación 
entre la epigenética y la actividad cerebral para evaluar el riesgo de 
migraña crónica y episódica en mujeres’’ (‘Cooperation Programme 
Interreg V-A Spain-Portugal POCTEP 2014–2020’) funded by ‘European 
Commission’ and ERDF; by ‘‘CIBER en Bioingeniería, Biomateriales 
y Nanomedicina (CIBER-BBN)’’ through ‘‘Instituto de Salud Carlos 
III (ISCIII)’’ co-funded with ERDF funds; under the grant PID2022-
138286NB-I00 funded by ‘‘Ministerio de Ciencia e Innovación’’/
‘‘Agencia Estatal de Investigación’’/10.13039/501100011033 and by 
‘‘ERDF A way of making Europe’’; and by Portuguese funds through 
‘‘FCT-Fundação para a Ciência e a Tecnologia’’/‘‘Ministério da Ciência, 
Tecnologia e Inovação’’ in the framework of the projects ‘Institute for 
Research and Innovation in Health Sciences’ (POCI-01–0145-FEDER-
007274). A.M.-C. was in receipt of a PIF grant by the ‘‘Consejería 
de Educación de la Junta de Castilla y León’’. V.R.-G. and V.G.-d.P. 
were in receipt of a PIF grant by the ‘University of Valladolid’. N.P. 
is supported by ‘‘FCT-Fundação para a Ciência e a Tecnologia’’, under 
the program contract provided in Decree-Law no.57/2016 of August 
29. The genotyping service was carried out at CEGEN-PRB3-ISCIII; it 
is supported by grant PT17/0019, of the PE I+D+i 2013–2016, funded 
by ISCIII and ERDF.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to 
influence the work reported in this paper.



A. Maturana-Candelas et al. Biomedical Signal Processing and Control 110 (2025) 108129 
Acknowledgments

We deeply thank all participants, families and institutions involved: 
Asociación de Familiares de Enfermos de Alzheimer de Ávila, Ávila; 
Associação de Pensionistas e Reformados de Viana do Castelo, Viana 
do Castelo; Casa do Povo de Alvito S.Pedro, Barcelos; Santa Casa da 
Misericórdia de Vila Nova de Gaia; Obra Social Nossa Senhora da 
Boa Viagem, Porto; Gero Vida, Villaralbo (Zamora); Asociación de 
Familiares de Alzheimer de León; Residencia San Raimundo en Coreses; 
Centro de Dia S. João de Deus, da Santa Casa da Misericórdia do Porto; 
Lar Santa Rita, da Santa Casa da Misericórdia de Caminha; Centro 
Social e Cultural de Vila Praia de Âncora; Lar Casa de Magalhães; Ar-
monía Centro de Día, Zamora. Also, we want to express our gratitude to 
Patricia Sousa from ‘Associação Portuguesa de Familiares e Amigos dos 
Doentes de Alzheimer’ and Carmen Pita from ‘Asociación de Familiares 
y Amigos de Enfermos de Alzheimer y Otras Demencias de Zamora’. 
They contributed with their psychological and caregiver skills to ease 
the stress of the patients.

Data availability

Data will be made available on request.

References

[1] H. Chi, T.-K. Sang, H.-Y. Chang, Tauopathy, 2019, http://dx.doi.org/10.5772/
intechopen.73198.

[2] Q. Feng, Y. Luo, X.-N. Zhang, X.-F. Yang, X.-Y. Hong, D.-S. Sun, X.-C. Li, Y. Hu, 
X.-G. Li, J.-F. Zhang, X. Li, Y. Yang, Q. Wang, G.-P. Liu, J.-Z. Wang, MAPT/Tau 
accumulation represses autophagy flux by disrupting IST1-regulated ESCRT-III 
complex formation: a vicious cycle in Alzheimer neurodegeneration, Autophagy 
16 (4) (2020) 641–658, http://dx.doi.org/10.1080/15548627.2019.1633862.

[3] S.A. Kent, T.L. Spires-Jones, C.S. Durrant, The physiological roles of tau and 
A𝛽: implications for Alzheimer’s disease pathology and therapeutics, Acta 
Neuropathol. 140 (4) (2020) 417–447, http://dx.doi.org/10.1007/s00401-020-
02196-w.

[4] R. La Joie, A.V. Visani, S.L. Baker, J.A. Brown, V. Bourakova, J. Cha, K. 
Chaudhary, L. Edwards, L. Iaccarino, M. Janabi, O.H. Lesman-Segev, Z.A. Miller, 
D.C. Perry, J.P. O’Neil, J. Pham, J.C. Rojas, H.J. Rosen, W.W. Seeley, R.M. Tsai, 
B.L. Miller, W.J. Jagust, G.D. Rabinovici, Prospective longitudinal atrophy in 
Alzheimer’s disease correlates with the intensity and topography of baseline tau-
PET, Sci. Transl. Med. 12 (524) (2020) http://dx.doi.org/10.1126/scitranslmed.
aau5732.

[5] A. Bejanin, D.R. Schonhaut, R. La Joie, J.H. Kramer, S.L. Baker, N. Sosa, 
N. Ayakta, A. Cantwell, M. Janabi, M. Lauriola, J.P. O’Neil, M.L. Gorno-
Tempini, Z.A. Miller, H.J. Rosen, B.L. Miller, W.J. Jagust, G.D. Rabinovici, 
Tau pathology and neurodegeneration contribute to cognitive impairment in 
Alzheimer’s disease, Brain 140 (12) (2017) 3286–3300, http://dx.doi.org/10.
1093/brain/awx243.

[6] A. Corsi, C. Bombieri, M.T. Valenti, M.G. Romanelli, Tau isoforms: Gaining 
insight into MAPT alternative splicing, Int. J. Mol. Sci. 23 (23) (2022) 15383, 
http://dx.doi.org/10.3390/ijms232315383.

[7] S. Takeda, Progression of Alzheimer’s disease, tau propagation, and its modifi-
able risk factors, Neurosci. Res. 141 (2019) 36–42, http://dx.doi.org/10.1016/
j.neures.2018.08.005.

[8] Z. Wang, C.B. Burge, Splicing regulation: From a parts list of regulatory 
elements to an integrated splicing code, RNA 14 (5) (2008) 802–813, http:
//dx.doi.org/10.1261/rna.876308.

[9] T. Fadason, S. Farrow, S. Gokuladhas, E. Golovina, D. Nyaga, J.M. O’Sullivan, 
W. Schierding, Assigning function to SNPs: Considerations when interpreting 
genetic variation, Semin. Cell Dev. Biol. 121 (2022) 135–142, http://dx.doi.
org/10.1016/j.semcdb.2021.08.008.

[10] M. Tábuas-Pereira, I. Santana, R. Guerreiro, J. Brás, Alzheimer’s disease 
genetics: Review of novel loci associated with disease, Curr. Genet. Med. Rep. 
8 (1) (2020) 1–16, http://dx.doi.org/10.1007/s40142-020-00182-y.

[11] A. Gerrish, G. Russo, A. Richards, V. Moskvina, D. Ivanov, D. Harold, R. 
Sims, R. Abraham, P. Hollingworth, J. Chapman, M. Hamshere, J.S. Pahwa, 
K. Dowzell, A. Williams, N. Jones, C. Thomas, A. Stretton, A.R. Morgan, S. 
Lovestone, J. Powell, P. Proitsi, M.K. Lupton, C. Brayne, D.C. Rubinsztein, M. 
Gill, B. Lawlor, A. Lynch, K. Morgan, K.S. Brown, P.A. Passmore, D. Craig, 
B. McGuinness, S. Todd, J.A. Johnston, C. Holmes, D. Mann, A.D. Smith, 
S. Love, P.G. Kehoe, J. Hardy, S. Mead, N. Fox, M. Rossor, J. Collinge, W. 
Maier, F. Jessen, H. Kölsch, R. Heun, B. Schürmann, H.V.D. Bussche, I. Heuser, 
J. Kornhuber, J. Wiltfang, M. Dichgans, L. Frölich, H. Hampel, M. Hüll, D. 
10 
Rujescu, A.M. Goate, J.S.K. Kauwe, C. Cruchaga, P. Nowotny, J.C. Morris, 
K. Mayo, G. Livingston, N.J. Bass, H. Gurling, A. McQuillin, R. Gwilliam, P. 
Deloukas, G. Davies, S.E. Harris, J.M. Starr, I.J. Deary, A. Al-Chalabi, C.E. 
Shaw, M. Tsolaki, A.B. Singleton, R. Guerreiro, T.W. Mühleisen, M.M. Nöthen, 
S. Moebus, K.-H. Jöckel, N. Klopp, H.-E. Wichmann, M.M. Carrasquillo, V.S. 
Pankratz, S.G. Younkin, L. Jones, P.A. Holmans, M.C. O’Donovan, M.J. Owen, 
J. Williams, The role of variation at A𝛽PP, PSEN1, PSEN2, and MAPT in 
late onset Alzheimer’s disease, J. Alzheimer’s Dis. 28 (2) (2012) 377–387, 
http://dx.doi.org/10.3233/JAD-2011-110824.

[12] J. Chen, J.-T. Yu, K. Wojta, H.-F. Wang, H. Zetterberg, K. Blennow, J.S. 
Yokoyama, M.W. Weiner, J.H. Kramer, H. Rosen, B.L. Miller, G. Coppola, A.L. 
Boxer, Genome-wide association study identifies MAPT locus influencing human 
plasma tau levels, Neurology 88 (7) (2017) 669–676, http://dx.doi.org/10.
1212/WNL.0000000000003615.

[13] Y. Chornenkyy, D.W. Fardo, P.T. Nelson, Tau and TDP-43 proteinopathies: 
kindred pathologic cascades and genetic pleiotropy, Lab. Invest. 99 (7) (2019) 
993–1007, http://dx.doi.org/10.1038/s41374-019-0196-y.

[14] A. Mudher, M. Colin, S. Dujardin, M. Medina, I. Dewachter, S.M. Alavi Naini, 
E.-M. Mandelkow, E. Mandelkow, L. Buée, M. Goedert, J.-P. Brion, What is 
the evidence that tau pathology spreads through prion-like propagation? Acta 
Neuropathol. Commun. 5 (1) (2017) 99, http://dx.doi.org/10.1186/s40478-
017-0488-7.

[15] S. Calafate, A. Buist, K. Miskiewicz, V. Vijayan, G. Daneels, B. de Strooper, 
J. de Wit, P. Verstreken, D. Moechars, Synaptic contacts enhance cell-to-
cell Tau pathology propagation, Cell Rep. 11 (8) (2015) 1176–1183, http:
//dx.doi.org/10.1016/j.celrep.2015.04.043.

[16] J.W. Vogel, A.L. Young, N.P. Oxtoby, R. Smith, R. Ossenkoppele, O.T. Strand-
berg, R. La Joie, L.M. Aksman, M.J. Grothe, Y. Iturria-Medina, M.J. Pontecorvo, 
M.D. Devous, G.D. Rabinovici, D.C. Alexander, C.H. Lyoo, A.C. Evans, O. Hans-
son, Four distinct trajectories of tau deposition identified in Alzheimer’s disease, 
Nature Med. 27 (5) (2021) 871–881, http://dx.doi.org/10.1038/s41591-021-
01309-6.

[17] K. Smitha, K. Akhil Raja, K. Arun, P. Rajesh, B. Thomas, T. Kapilamoorthy, C. 
Kesavadas, Resting state fMRI: A review on methods in resting state connectivity 
analysis and resting state networks, Neuroradiol. J. 30 (4) (2017) 305–317, 
http://dx.doi.org/10.1177/1971400917697342.

[18] M.E. Raichle, The brain’s default mode network, Annu. Rev. Neurosci. 38 (1) 
(2015) 433–447, http://dx.doi.org/10.1146/annurev-neuro-071013-014030.

[19] C.J. Honey, R. Kötter, M. Breakspear, O. Sporns, Network structure of cerebral 
cortex shapes functional connectivity on multiple time scales, Proc. Natl. 
Acad. Sci. 104 (24) (2007) 10240–10245, http://dx.doi.org/10.1073/pnas.
0701519104.

[20] R.L. Buckner, J. Sepulcre, T. Talukdar, F.M. Krienen, H. Liu, T. Hedden, 
J.R. Andrews-Hanna, R.A. Sperling, K.A. Johnson, Cortical Hubs revealed by 
intrinsic functional connectivity: Mapping, assessment of stability, and relation 
to Alzheimer’s disease, J. Neurosci. 29 (6) (2009) 1860–1873, http://dx.doi.
org/10.1523/JNEUROSCI.5062-08.2009.

[21] X. Wang, Q. Lin, M. Xia, Y. He, Differentially categorized structural brain hubs 
are involved in different microstructural, functional, and cognitive characteris-
tics and contribute to individual identification, Hum. Brain Mapp. 39 (4) (2018) 
1647–1663, http://dx.doi.org/10.1002/hbm.23941.

[22] D.T. Jones, M.M. Machulda, P. Vemuri, E.M. McDade, G. Zeng, M.L. Senjem, 
J.L. Gunter, S.A. Przybelski, R.T. Avula, D.S. Knopman, B.F. Boeve, R.C. 
Petersen, C.R. Jack, Age-related changes in the default mode network are 
more advanced in Alzheimer disease, Neurology 77 (16) (2011) 1524–1531, 
http://dx.doi.org/10.1212/WNL.0b013e318233b33d.

[23] K. Mevel, G. Chételat, F. Eustache, B. Desgranges, The default mode network 
in healthy aging and Alzheimer’s disease, Int. J. Alzheimer’s Dis. 2011 (2011) 
1–9, http://dx.doi.org/10.4061/2011/535816.

[24] G. Simic, M. Babic, F. Borovecki, P.R. Hof, Early failure of the default-mode 
network and the pathogenesis of Alzheimer’s disease, CNS Neurosci. Ther. 20 
(7) (2014) 692–698, http://dx.doi.org/10.1111/cns.12260.

[25] C. Babiloni, X. Arakaki, H. Azami, K. Bennys, K. Blinowska, L. Bonanni, A. 
Bujan, M.C. Carrillo, A. Cichocki, J. Frutos-Lucas, C. Del Percio, B. Dubois, R. 
Edelmayer, G. Egan, S. Epelbaum, J. Escudero, A. Evans, F. Farina, K. Fargo, 
A. Fernández, R. Ferri, G. Frisoni, H. Hampel, M.G. Harrington, V. Jelic, J. 
Jeong, Y. Jiang, M. Kaminski, V. Kavcic, K. Kilborn, S. Kumar, A. Lam, L. 
Lim, R. Lizio, D. Lopez, S. Lopez, B. Lucey, F. Maestú, W.J. McGeown, I. 
McKeith, D.V. Moretti, F. Nobili, G. Noce, J. Olichney, M. Onofrj, R. Osorio, 
M. Parra-Rodriguez, T. Rajji, P. Ritter, A. Soricelli, F. Stocchi, I. Tarnanas, J.P. 
Taylor, S. Teipel, F. Tucci, M. Valdes-Sosa, P. Valdes-Sosa, M. Weiergräber, G. 
Yener, B. Guntekin, Measures of resting state EEG rhythms for clinical trials in 
Alzheimer’s disease: Recommendations of an expert panel, Alzheimer’ s Dement. 
17 (9) (2021) 1528–1553, http://dx.doi.org/10.1002/alz.12311.

[26] J. Jeong, EEG dynamics in patients with Alzheimer’s disease, Clin. Neuro-
physiol. 115 (7) (2004) 1490–1505, http://dx.doi.org/10.1016/j.clinph.2004.
01.001.

[27] F. Vecchio, C. Babiloni, R. Lizio, F. De Vico Fallani, K. Blinowska, G. Verrienti, 
G. Frisoni, P.M. Rossini, Resting state cortical EEG rhythms in Alzheimer’s 

http://dx.doi.org/10.5772/intechopen.73198
http://dx.doi.org/10.5772/intechopen.73198
http://dx.doi.org/10.5772/intechopen.73198
http://dx.doi.org/10.1080/15548627.2019.1633862
http://dx.doi.org/10.1007/s00401-020-02196-w
http://dx.doi.org/10.1007/s00401-020-02196-w
http://dx.doi.org/10.1007/s00401-020-02196-w
http://dx.doi.org/10.1126/scitranslmed.aau5732
http://dx.doi.org/10.1126/scitranslmed.aau5732
http://dx.doi.org/10.1126/scitranslmed.aau5732
http://dx.doi.org/10.1093/brain/awx243
http://dx.doi.org/10.1093/brain/awx243
http://dx.doi.org/10.1093/brain/awx243
http://dx.doi.org/10.3390/ijms232315383
http://dx.doi.org/10.1016/j.neures.2018.08.005
http://dx.doi.org/10.1016/j.neures.2018.08.005
http://dx.doi.org/10.1016/j.neures.2018.08.005
http://dx.doi.org/10.1261/rna.876308
http://dx.doi.org/10.1261/rna.876308
http://dx.doi.org/10.1261/rna.876308
http://dx.doi.org/10.1016/j.semcdb.2021.08.008
http://dx.doi.org/10.1016/j.semcdb.2021.08.008
http://dx.doi.org/10.1016/j.semcdb.2021.08.008
http://dx.doi.org/10.1007/s40142-020-00182-y
http://dx.doi.org/10.3233/JAD-2011-110824
http://dx.doi.org/10.1212/WNL.0000000000003615
http://dx.doi.org/10.1212/WNL.0000000000003615
http://dx.doi.org/10.1212/WNL.0000000000003615
http://dx.doi.org/10.1038/s41374-019-0196-y
http://dx.doi.org/10.1186/s40478-017-0488-7
http://dx.doi.org/10.1186/s40478-017-0488-7
http://dx.doi.org/10.1186/s40478-017-0488-7
http://dx.doi.org/10.1016/j.celrep.2015.04.043
http://dx.doi.org/10.1016/j.celrep.2015.04.043
http://dx.doi.org/10.1016/j.celrep.2015.04.043
http://dx.doi.org/10.1038/s41591-021-01309-6
http://dx.doi.org/10.1038/s41591-021-01309-6
http://dx.doi.org/10.1038/s41591-021-01309-6
http://dx.doi.org/10.1177/1971400917697342
http://dx.doi.org/10.1146/annurev-neuro-071013-014030
http://dx.doi.org/10.1073/pnas.0701519104
http://dx.doi.org/10.1073/pnas.0701519104
http://dx.doi.org/10.1073/pnas.0701519104
http://dx.doi.org/10.1523/JNEUROSCI.5062-08.2009
http://dx.doi.org/10.1523/JNEUROSCI.5062-08.2009
http://dx.doi.org/10.1523/JNEUROSCI.5062-08.2009
http://dx.doi.org/10.1002/hbm.23941
http://dx.doi.org/10.1212/WNL.0b013e318233b33d
http://dx.doi.org/10.4061/2011/535816
http://dx.doi.org/10.1111/cns.12260
http://dx.doi.org/10.1002/alz.12311
http://dx.doi.org/10.1016/j.clinph.2004.01.001
http://dx.doi.org/10.1016/j.clinph.2004.01.001
http://dx.doi.org/10.1016/j.clinph.2004.01.001


A. Maturana-Candelas et al. Biomedical Signal Processing and Control 110 (2025) 108129 
disease, in: Supplements To Clinical Neurophysiology, Vol. 62, Suppl Clin Neu-
rophysiol, 2013, pp. 223–236, http://dx.doi.org/10.1016/B978-0-7020-5307-
8.00015-6.

[28] U. Smailovic, V. Jelic, Neurophysiological markers of Alzheimer’s disease: 
Quantitative EEG approach, Neurol. Ther. 8 (S2) (2019) 37–55, http://dx.doi.
org/10.1007/s40120-019-00169-0.

[29] M. Şeker, Y. Özbek, G. Yener, M.S. Özerdem, Complexity of EEG dynamics for 
early diagnosis of Alzheimer’s disease using permutation entropy neuromarker, 
Comput. Methods Programs Biomed. 206 (2021) 106116, http://dx.doi.org/10.
1016/j.cmpb.2021.106116.

[30] C.T. Briels, D.N. Schoonhoven, C.J. Stam, H. de Waal, P. Scheltens, A.A. 
Gouw, Reproducibility of EEG functional connectivity in Alzheimer’s disease, 
Alzheimer’ s Res. Ther. 12 (1) (2020) 68, http://dx.doi.org/10.1186/s13195-
020-00632-3.

[31] M.M. Engels, C.J. Stam, W.M. van der Flier, P. Scheltens, H. de Waal, E.C. 
van Straaten, Declining functional connectivity and changing hub locations 
in Alzheimer’s disease: an EEG study, BMC Neurol. 15 (1) (2015) 145, http:
//dx.doi.org/10.1186/s12883-015-0400-7.

[32] P. Núñez, J. Poza, C. Gómez, V. Rodríguez-González, A. Hillebrand, M.A. 
Tola-Arribas, M. Cano, R. Hornero, Characterizing the fluctuations of dynamic 
resting-state electrophysiological functional connectivity: reduced neuronal cou-
pling variability in mild cognitive impairment and dementia due to Alzheimer’s 
disease, J. Neural Eng. 16 (5) (2019) 056030, http://dx.doi.org/10.1088/1741-
2552/ab234b.

[33] G.C. O’Neill, E.L. Barratt, B.A.E. Hunt, P.K. Tewarie, M.J. Brookes, Measuring 
electrophysiological connectivity by power envelope correlation: a technical 
review on MEG methods, Phys. Med. Biol. 60 (21) (2015) R271–R295, http:
//dx.doi.org/10.1088/0031-9155/60/21/R271.

[34] B.J. Roach, D.H. Mathalon, Event-related EEG time-frequency analysis: An 
overview of measures and an analysis of early Gamma band phase locking 
in schizophrenia, Schizophr. Bull. 34 (5) (2008) 907–926, http://dx.doi.org/
10.1093/schbul/sbn093.

[35] P. Tass, M.G. Rosenblum, J. Weule, J. Kurths, A. Pikovsky, J. Volkmann, 
A. Schnitzler, H.-J. Freund, Detection of m:n phase locking from noisy data: 
Application to magnetoencephalography, Phys. Rev. Lett. 81 (1998) 3291–3294, 
http://dx.doi.org/10.1103/PhysRevLett.81.3291.

[36] C.J. Stam, G. Nolte, A. Daffertshofer, Phase lag index: Assessment of functional 
connectivity from multi channel EEG and MEG with diminished bias from 
common sources, Hum. Brain Mapp. 28 (11) (2007) 1178–1193, http://dx.doi.
org/10.1002/hbm.20346.

[37] S. Kasakawa, T. Yamanishi, T. Takahashi, K. Ueno, M. Kikuchi, H. Nishimura, 
Approaches of phase lag index to EEG signals in Alzheimer’s disease from 
complex network analysis, in: Smart Innovation, Systems and Technologies, 
Vol. 45, Springer Science and Business Media Deutschland GmbH, 2016, pp. 
459–468, http://dx.doi.org/10.1007/978-3-319-23024-5_42.

[38] H. Yu, X. Wu, L. Cai, B. Deng, J. Wang, Modulation of spectral power and 
functional connectivity in human brain by acupuncture stimulation, IEEE Trans. 
Neural Syst. Rehabil. Eng. 26 (2018) 977–986, http://dx.doi.org/10.1109/
TNSRE.2018.2828143.

[39] H. Yu, X. Li, X. Lei, J. Wang, Modulation effect of acupuncture on functional 
brain networks and classification of its manipulation with EEG signals, IEEE 
Trans. Neural Syst. Rehabil. Eng. 27 (2019) 1973–1984, http://dx.doi.org/10.
1109/TNSRE.2019.2939655.

[40] W. de Haan, Y.A. Pijnenburg, R.L. Strijers, Y. van der Made, W.M. van der Flier, 
P. Scheltens, C.J. Stam, Functional neural network analysis in frontotemporal 
dementia and alzheimer’s disease using EEG and graph theory, BMC Neurosci. 
10 (1) (2009) 1–12, http://dx.doi.org/10.1186/1471-2202-10-101/FIGURES/6.

[41] C.A. Frantzidis, A.B. Vivas, A. Tsolaki, M.A. Klados, M. Tsolaki, P.D. Bamidis, 
Functional disorganization of small-world brain networks in mild Alzheimer’s 
disease and amnestic mild cognitive impairment: an EEG study using relative 
wavelet entropy (RWE), Front. Aging Neurosci. 6 (AUG) (2014) 224, http:
//dx.doi.org/10.3389/fnagi.2014.00224.

[42] C. Stam, B. Jones, G. Nolte, M. Breakspear, P. Scheltens, Small-world networks 
and functional connectivity in Alzheimer’s disease, Cerebral Cortex 17 (1) 
(2006) 92–99, http://dx.doi.org/10.1093/cercor/bhj127.

[43] F.C. Morabito, M. Campolo, D. Labate, G. Morabito, L. Bonanno, A. Bramanti, 
S. de Salvo, A. Marra, P. Bramanti, A longitudinal EEG study of Alzheimer’s 
disease progression based on a complex network approach, Int. J. Neural Syst. 
25 (02) (2015) 1550005, http://dx.doi.org/10.1142/S0129065715500057.

[44] R. Wang, Z. Yang, J. Wang, L. Shi, An improved visibility graph analysis of EEG 
signals of Alzheimer brain, in: 2018 11th International Congress on Image and 
Signal Processing, BioMedical Engineering and Informatics, CISP-BMEI, IEEE, 
2018, pp. 1–5, http://dx.doi.org/10.1109/CISP-BMEI.2018.8633052.

[45] H. Yu, X. Lei, Z. Song, C. Liu, J. Wang, Supervised network-based fuzzy learning 
of EEG signals for Alzheimer’s disease identification, IEEE Trans. Fuzzy Syst. 
28 (2020) 60–71, http://dx.doi.org/10.1109/TFUZZ.2019.2903753.

[46] A.L. Bokde, M. Ewers, H. Hampel, Assessing neuronal networks: Understanding 
Alzheimer’s disease, Prog. Neurobiol. 89 (2) (2009) 125–133, http://dx.doi.org/
10.1016/j.pneurobio.2009.06.004.
11 
[47] M. Yu, O. Sporns, A.J. Saykin, The human connectome in Alzheimer disease 
— relationship to biomarkers and genetics, Nat. Rev. Neurol. 17 (9) (2021) 
545–563, http://dx.doi.org/10.1038/s41582-021-00529-1.

[48] T. Demiralp, Z. Bayraktaroglu, D. Lenz, S. Junge, N.A. Busch, B. Maess, M. 
Ergen, C.S. Herrmann, Gamma amplitudes are coupled to theta phase in human 
EEG during visual perception, Int. J. Psychophysiol. 64 (1) (2007) 24–30, 
http://dx.doi.org/10.1016/j.ijpsycho.2006.07.005.

[49] A. Morillas-Romero, M. Tortella-Feliu, X. Bornas, P. Putman, Spontaneous EEG 
theta/beta ratio and delta–beta coupling in relation to attentional network 
functioning and self-reported attentional control, Cogn. Affect. Behav. Neurosci. 
15 (3) (2015) 598–606, http://dx.doi.org/10.3758/s13415-015-0351-x.

[50] J.P. Trammell, P.G. MacRae, G. Davis, D. Bergstedt, A.E. Anderson, The 
relationship of cognitive performance and the theta-alpha power ratio is age-
dependent: An EEG study of short term memory and reasoning during task and 
resting-state in healthy Young and old adults, Front. Aging Neurosci. 9 (NOV) 
(2017) 364, http://dx.doi.org/10.3389/fnagi.2017.00364.

[51] M.J. Brookes, P.K. Tewarie, B.A. Hunt, S.E. Robson, L.E. Gascoyne, E.B. 
Liddle, P.F. Liddle, P.G. Morris, A multi-layer network approach to MEG 
connectivity analysis, NeuroImage 132 (2016) 425–438, http://dx.doi.org/10.
1016/j.neuroimage.2016.02.045.

[52] P. Tewarie, A. Hillebrand, B.W. van Dijk, C.J. Stam, G.C. O’Neill, P. Van 
Mieghem, J.M. Meier, M.W. Woolrich, P.G. Morris, M.J. Brookes, Integrating 
cross-frequency and within band functional networks in resting-state MEG: A 
multi-layer network approach, NeuroImage 142 (2016) 324–336, http://dx.doi.
org/10.1016/j.neuroimage.2016.07.057.

[53] L. Cai, X. Wei, J. Liu, L. Zhu, J. Wang, B. Deng, H. Yu, R. Wang, Functional 
integration and segregation in multiplex brain networks for Alzheimer’s disease, 
Front. Neurosci. 14 (2020) 51, http://dx.doi.org/10.3389/FNINS.2020.00051.

[54] A. Naro, M.G. Maggio, A. Leo, R.S. Calabrò, Multiplex and multilayer network 
EEG analyses: A novel strategy in the differential diagnosis of patients with 
chronic disorders of consciousness, Int. J. Neural Syst. 31 (02) (2021) 2050052, 
http://dx.doi.org/10.1142/S0129065720500525.

[55] S.J. Ruiz-Gómez, R. Hornero, J. Poza, E. Santamaría-Vázquez, V. Rodríguez-
González, A. Maturana-Candelas, C. Gómez, A new method to build multiplex 
networks using canonical correlation analysis for the characterization of the 
Alzheimer’s disease continuum, J. Neural Eng. 18 (2) (2021) 026002, http:
//dx.doi.org/10.1088/1741-2552/abd82c.

[56] J. Guillon, Y. Attal, O. Colliot, V. La Corte, B. Dubois, D. Schwartz, M. Chavez, 
F. De Vico Fallani, Loss of brain inter-frequency hubs in Alzheimer’s disease, 
Sci. Rep. 7 (1) (2017) 10879, http://dx.doi.org/10.1038/s41598-017-07846-w, 
arXiv:1701.00096.

[57] M. Yu, M.M.A. Engels, A. Hillebrand, E.C.W. van Straaten, A.A. Gouw, C. 
Teunissen, W.M. van der Flier, P. Scheltens, C.J. Stam, Selective impairment 
of hippocampus and posterior hub areas in alzheimer’s disease: an MEG-based 
multiplex network study, Brain 140 (5) (2017) 1466–1485, http://dx.doi.org/
10.1093/brain/awx050.

[58] G.M. McKhann, D.S. Knopman, H. Chertkow, B.T. Hyman, C.R. Jack, C.H. 
Kawas, W.E. Klunk, W.J. Koroshetz, J.J. Manly, R. Mayeux, R.C. Mohs, J.C. 
Morris, M.N. Rossor, P. Scheltens, M.C. Carrillo, B. Thies, S. Weintraub, C.H. 
Phelps, The diagnosis of dementia due to Alzheimer’s disease: Recommendations 
from the National Institute on Aging-Alzheimer’s Association workgroups on 
diagnostic guidelines for Alzheimer’s disease, Alzheimer’ s Dement. 7 (3) (2011) 
263–269, http://dx.doi.org/10.1016/j.jalz.2011.03.005.

[59] M.F. Folstein, S.E. Folstein, P.R. McHugh, "Mini-mental status". a practical 
method for grading the cognitive state of patients for the clinician, J. Psychiatr. 
Res. 12 (3) (1975) 189–198, http://dx.doi.org/10.1016/0022-3956(75)90026-6.

[60] C.A. Anderson, F.H. Pettersson, G.M. Clarke, L.R. Cardon, A.P. Morris, K.T. 
Zondervan, Data quality control in genetic case-control association studies, Nat. 
Protoc. 5 (9) (2010) 1564–1573, http://dx.doi.org/10.1038/nprot.2010.116.

[61] S. Purcell, B. Neale, K. Todd-Brown, L. Thomas, M.A. Ferreira, D. Bender, J. 
Maller, P. Sklar, P.I. de Bakker, M.J. Daly, P.C. Sham, PLINK: A tool set for 
whole-genome association and population-based linkage analyses, Am. J. Hum. 
Genet. 81 (3) (2007) 559–575, http://dx.doi.org/10.1086/519795.

[62] P.D. Sundar, C.-E. Yu, W. Sieh, E. Steinbart, R.M. Garruto, K. Oyanagi, U.-K. 
Craig, T.D. Bird, E.M. Wijsman, D.R. Galasko, G.D. Schellenberg, Two sites in 
the MAPT region confer genetic risk for Guam ALS/PDC and dementia, Hum. 
Mol. Gen. 16 (3) (2007) 295–306, http://dx.doi.org/10.1093/hmg/ddl463.

[63] A. Myers, M. Kaleem, L. Marlowe, A. Pittman, A. Lees, H. Fung, J. Duckworth, 
D. Leung, A. Gibson, C. Morris, R. de Silva, J. Hardy, The H1c haplotype at 
the MAPT locus is associated with Alzheimer’s disease, Hum. Mol. Gen. 14 (16) 
(2005) 2399–2404, http://dx.doi.org/10.1093/hmg/ddi241.

[64] Y. Compta, M. Ezquerra, E. Muñoz, E. Tolosa, F. Valldeoriola, J. Rios, A. 
Cámara, M. Fernández, M.T. Buongiorno, M.J. Marti, High cerebrospinal tau 
levels are associated with the rs242557 tau gene variant and low cerebrospinal 
𝛽-amyloid in Parkinson disease, Neurosci. Lett. 487 (2) (2011) 169–173, http:
//dx.doi.org/10.1016/j.neulet.2010.10.015.

[65] L. Fidani, K. Kalinderi, S. Bostantjopoulou, J. Clarimon, A. Goulas, Z. Katsarou, 
J. Hardy, A. Kotsis, Association of the Tau haplotype with Parkinson’s disease 
in the Greek population, Mov. Disorders 21 (7) (2006) 1036–1039, http:
//dx.doi.org/10.1002/mds.20864.

http://dx.doi.org/10.1016/B978-0-7020-5307-8.00015-6
http://dx.doi.org/10.1016/B978-0-7020-5307-8.00015-6
http://dx.doi.org/10.1016/B978-0-7020-5307-8.00015-6
http://dx.doi.org/10.1007/s40120-019-00169-0
http://dx.doi.org/10.1007/s40120-019-00169-0
http://dx.doi.org/10.1007/s40120-019-00169-0
http://dx.doi.org/10.1016/j.cmpb.2021.106116
http://dx.doi.org/10.1016/j.cmpb.2021.106116
http://dx.doi.org/10.1016/j.cmpb.2021.106116
http://dx.doi.org/10.1186/s13195-020-00632-3
http://dx.doi.org/10.1186/s13195-020-00632-3
http://dx.doi.org/10.1186/s13195-020-00632-3
http://dx.doi.org/10.1186/s12883-015-0400-7
http://dx.doi.org/10.1186/s12883-015-0400-7
http://dx.doi.org/10.1186/s12883-015-0400-7
http://dx.doi.org/10.1088/1741-2552/ab234b
http://dx.doi.org/10.1088/1741-2552/ab234b
http://dx.doi.org/10.1088/1741-2552/ab234b
http://dx.doi.org/10.1088/0031-9155/60/21/R271
http://dx.doi.org/10.1088/0031-9155/60/21/R271
http://dx.doi.org/10.1088/0031-9155/60/21/R271
http://dx.doi.org/10.1093/schbul/sbn093
http://dx.doi.org/10.1093/schbul/sbn093
http://dx.doi.org/10.1093/schbul/sbn093
http://dx.doi.org/10.1103/PhysRevLett.81.3291
http://dx.doi.org/10.1002/hbm.20346
http://dx.doi.org/10.1002/hbm.20346
http://dx.doi.org/10.1002/hbm.20346
http://dx.doi.org/10.1007/978-3-319-23024-5_42
http://dx.doi.org/10.1109/TNSRE.2018.2828143
http://dx.doi.org/10.1109/TNSRE.2018.2828143
http://dx.doi.org/10.1109/TNSRE.2018.2828143
http://dx.doi.org/10.1109/TNSRE.2019.2939655
http://dx.doi.org/10.1109/TNSRE.2019.2939655
http://dx.doi.org/10.1109/TNSRE.2019.2939655
http://dx.doi.org/10.1186/1471-2202-10-101/FIGURES/6
http://dx.doi.org/10.3389/fnagi.2014.00224
http://dx.doi.org/10.3389/fnagi.2014.00224
http://dx.doi.org/10.3389/fnagi.2014.00224
http://dx.doi.org/10.1093/cercor/bhj127
http://dx.doi.org/10.1142/S0129065715500057
http://dx.doi.org/10.1109/CISP-BMEI.2018.8633052
http://dx.doi.org/10.1109/TFUZZ.2019.2903753
http://dx.doi.org/10.1016/j.pneurobio.2009.06.004
http://dx.doi.org/10.1016/j.pneurobio.2009.06.004
http://dx.doi.org/10.1016/j.pneurobio.2009.06.004
http://dx.doi.org/10.1038/s41582-021-00529-1
http://dx.doi.org/10.1016/j.ijpsycho.2006.07.005
http://dx.doi.org/10.3758/s13415-015-0351-x
http://dx.doi.org/10.3389/fnagi.2017.00364
http://dx.doi.org/10.1016/j.neuroimage.2016.02.045
http://dx.doi.org/10.1016/j.neuroimage.2016.02.045
http://dx.doi.org/10.1016/j.neuroimage.2016.02.045
http://dx.doi.org/10.1016/j.neuroimage.2016.07.057
http://dx.doi.org/10.1016/j.neuroimage.2016.07.057
http://dx.doi.org/10.1016/j.neuroimage.2016.07.057
http://dx.doi.org/10.3389/FNINS.2020.00051
http://dx.doi.org/10.1142/S0129065720500525
http://dx.doi.org/10.1088/1741-2552/abd82c
http://dx.doi.org/10.1088/1741-2552/abd82c
http://dx.doi.org/10.1088/1741-2552/abd82c
http://dx.doi.org/10.1038/s41598-017-07846-w
http://arxiv.org/abs/1701.00096
http://dx.doi.org/10.1093/brain/awx050
http://dx.doi.org/10.1093/brain/awx050
http://dx.doi.org/10.1093/brain/awx050
http://dx.doi.org/10.1016/j.jalz.2011.03.005
http://dx.doi.org/10.1016/0022-3956(75)90026-6
http://dx.doi.org/10.1038/nprot.2010.116
http://dx.doi.org/10.1086/519795
http://dx.doi.org/10.1093/hmg/ddl463
http://dx.doi.org/10.1093/hmg/ddi241
http://dx.doi.org/10.1016/j.neulet.2010.10.015
http://dx.doi.org/10.1016/j.neulet.2010.10.015
http://dx.doi.org/10.1016/j.neulet.2010.10.015
http://dx.doi.org/10.1002/mds.20864
http://dx.doi.org/10.1002/mds.20864
http://dx.doi.org/10.1002/mds.20864


A. Maturana-Candelas et al. Biomedical Signal Processing and Control 110 (2025) 108129 
[66] L.S. Elias-Sonnenschein, S. Helisalmi, T. Natunen, A. Hall, T. Paajanen, S.-K. 
Herukka, M. Laitinen, A.M. Remes, A.M. Koivisto, K.M. Mattila, T. Lehtimäki, 
F.R.J. Verhey, P.J. Visser, H. Soininen, M. Hiltunen, Genetic loci associated 
with Alzheimer’s disease and cerebrospinal fluid biomarkers in a finnish case-
control cohort, in: P. Lewis (Ed.), PLoS ONE 8 (4) (2013) e59676, http:
//dx.doi.org/10.1371/journal.pone.0059676.

[67] G. Das, A.K. Misra, S.K. Das, K. Ray, J. Ray, Microtubule-associated protein 
tau (MAPT) influences the risk of Parkinson’s disease among Indians, Neurosci. 
Lett. 460 (1) (2009) 16–20, http://dx.doi.org/10.1016/j.neulet.2009.05.031.

[68] M. Allen, M. Kachadoorian, Z. Quicksall, F. Zou, H. Chai, C. Younkin, J.E. 
Crook, V. Pankratz, M.M. Carrasquillo, S. Krishnan, T. Nguyen, L. Ma, K. 
Malphrus, S. Lincoln, G. Bisceglio, C.P. Kolbert, J. Jen, S. Mukherjee, J.K. 
Kauwe, P.K. Crane, J.L. Haines, R. Mayeux, M.A. Pericak-Vance, L.A. Farrer, 
G.D. Schellenberg, J.E. Parisi, R.C. Petersen, N.R. Graff-Radford, D.W. Dick-
son, S.G. Younkin, N. Ertekin-Taner, Association of MAPT haplotypes with 
Alzheimer’s disease risk and MAPT brain gene expression levels, Alzheimer’ 
s Res. Ther. 6 (4) (2014) 39, http://dx.doi.org/10.1186/alzrt268.

[69] C. Wider, C. Vilariño-Güell, B. Jasinska-Myga, M.G. Heckman, A.I. Soto-
Ortolaza, S.A. Cobb, J.O. Aasly, J.M. Gibson, T. Lynch, R.J. Uitti, Z.K. Wszolek, 
M.J. Farrer, O.A. Ross, Association of the MAPT locus with Parkinson’s disease, 
Eur. J. Neurol. 17 (3) (2010) 483–486, http://dx.doi.org/10.1111/j.1468-1331.
2009.02847.x.

[70] M.J. Machiela, S.J. Chanock, Ldlink: a web-based application for exploring 
population-specific haplotype structure and linking correlated alleles of possible 
functional variants: Fig. 1., Bioinformatics 31 (21) (2015) 3555–3557, http:
//dx.doi.org/10.1093/bioinformatics/btv402.

[71] A. Maturana-Candelas, C. Gómez, J. Poza, N. Pinto, R. Hornero, EEG character-
ization of the Alzheimer’s disease continuum by means of multiscale entropies, 
Entropy 21 (6) (2019) 544, http://dx.doi.org/10.3390/e21060544.

[72] A. Maturana-Candelas, C. Gómez, J. Poza, S.J. Ruiz-Gómez, R. Hornero, Inter-
band bispectral analysis of EEG background activity to characterize Alzheimer’s 
disease continuum, Front. Comput. Neurosci. 14 (2020) 70, http://dx.doi.org/
10.3389/fncom.2020.00070.

[73] S. Ruiz-Gómez, C. Gómez, J. Poza, G. Gutiérrez-Tobal, M. Tola-Arribas, M. Cano, 
R. Hornero, Automated multiclass classification of spontaneous EEG activity in 
Alzheimer’s disease and mild cognitive impairment, Entropy 20 (1) (2018) 35, 
http://dx.doi.org/10.3390/e20010035.

[74] R.D. Pascual-Marqui, Standardized low-resolution brain electromagnetic tomog-
raphy (sLORETA): technical details, Methods Find. Exp. Clin. Pharmacol. 24 
Suppl D (2002) 5–12.

[75] B.T.T. Yeo, F.M. Krienen, J. Sepulcre, M.R. Sabuncu, D. Lashkari, M. 
Hollinshead, J.L. Roffman, J.W. Smoller, L. Zöllei, J.R. Polimeni, B. Fischl, H. 
Liu, R.L. Buckner, The organization of the human cerebral cortex estimated by 
intrinsic functional connectivity, J. Neurophysiol. 106 (3) (2011) 1125–1165, 
http://dx.doi.org/10.1152/jn.00338.2011.

[76] S. Palva, J.M. Palva, Discovering oscillatory interaction networks with M/EEG: 
challenges and breakthroughs, Trends Cogn. Sci. 16 (4) (2012) 219–230, http:
//dx.doi.org/10.1016/j.tics.2012.02.004.

[77] J.-M. Schoffelen, J. Gross, Source connectivity analysis with MEG and EEG, 
Hum. Brain Mapp. 30 (6) (2009) 1857–1865, http://dx.doi.org/10.1002/hbm.
20745.

[78] S.J. Ruiz-Gómez, R. Hornero, J. Poza, A. Maturana-Candelas, N. Pinto, C. 
Gómez, Computational modeling of the effects of EEG volume conduction on 
functional connectivity metrics. Application to Alzheimer’s disease continuum, 
J. Neural Eng. 16 (6) (2019) 066019, http://dx.doi.org/10.1088/1741-2552/
ab4024.

[79] F. Battiston, V. Nicosia, V. Latora, Structural measures for multiplex networks, 
Phys. Rev. E 89 (3) (2014) 032804, http://dx.doi.org/10.1103/PhysRevE.89.
032804, arXiv:1308.3182.

[80] S. Achard, C. Delon-Martin, P.E. Vértes, F. Renard, M. Schenck, F. Schneider, 
C. Heinrich, S. Kremer, E.T. Bullmore, Hubs of brain functional networks are 
radically reorganized in comatose patients, Proc. Natl. Acad. Sci. 109 (50) 
(2012) 20608–20613, http://dx.doi.org/10.1073/pnas.1208933109.

[81] Y. Benjamini, Y. Hochberg, Controlling the false discovery rate: A practical and 
powerful approach to multiple testing, J. R. Stat. Soc. Ser. B Stat. Methodol. 57 
(1) (1995) 289–300, http://dx.doi.org/10.1111/j.2517-6161.1995.tb02031.x.

[82] R. Vaz-Drago, N. Custódio, M. Carmo-Fonseca, Deep intronic mutations and 
human disease, Hum. Genet. 136 (9) (2017) 1093–1111, http://dx.doi.org/10.
1007/s00439-017-1809-4.

[83] E. Majounie, W. Cross, V. Newsway, A. Dillman, J. Vandrovcova, C.M. Morris, 
M.A. Nalls, L. Ferrucci, M.J. Owen, M.C. O’Donovan, M.R. Cookson, A.B. 
Singleton, R. de Silva, H.R. Morris, Variation in tau isoform expression in 
different brain regions and disease states, Neurobiol. Aging 34 (7) (2013) 
1922.e7–1922.e12, http://dx.doi.org/10.1016/j.neurobiolaging.2013.01.017.

[84] C. Beste, A. Münchau, C. Frings, Towards a systematization of brain oscillatory 
activity in actions, Commun. Biol. 6 (1) (2023) 137, http://dx.doi.org/10.1038/
s42003-023-04531-9.

[85] H. Braak, K. Del-Tredici, C. Schultz, E. Braak, Vulnerability of select neuronal 
types to Alzheimer’s disease, Ann. New York Acad. Sci. 924 (2000) 53–61, 
http://dx.doi.org/10.1111/j.1749-6632.2000.tb05560.x.
12 
[86] A. Rubinski, N. Franzmeier, A. Dewenter, Y. Luan, R. Smith, O. Strandberg, R. 
Ossenkoppele, M. Dichgans, O. Hansson, M. Ewers, Higher levels of myelin are 
associated with higher resistance against tau pathology in Alzheimer’s disease, 
Alzheimer’ s Res. Ther. 14 (1) (2022) 139, http://dx.doi.org/10.1186/s13195-
022-01074-9.

[87] D.C. Dean, S.A. Hurley, S.R. Kecskemeti, J.P. O’Grady, C. Canda, N.J. 
Davenport-Sis, C.M. Carlsson, H. Zetterberg, K. Blennow, S. Asthana, M.A. 
Sager, S.C. Johnson, A.L. Alexander, B.B. Bendlin, Association of amyloid 
pathology with Myelin alteration in preclinical Alzheimer disease, JAMA 
Neurol. 74 (1) (2017) 41–49, http://dx.doi.org/10.1001/JAMANEUROL.2016.
3232.

[88] J.M. Kernbach, B.T. Thomas Yeo, J. Smallwood, D.S. Margulies, M.T. De 
Schotten, H. Walter, M.R. Sabuncu, A.J. Holmes, A. Gramfort, G. Varo-
quaux, B. Thirion, D. Bzdok, Subspecialization within default mode nodes 
characterized in 10,000 UK biobank participants, Proc. Natl. Acad. Sci. USA 
115 (48) (2018) 12295–12300, http://dx.doi.org/10.1073/PNAS.1804876115/
SUPPL_FILE/PNAS.1804876115.SAPP.PDF.

[89] X.T. Fang, T. Volpi, S.E. Holmes, I. Esterlis, R.E. Carson, P.D. Worhunsky, 
Linking resting-state network fluctuations with systems of coherent synaptic 
density: A multimodal fMRI and 11C-UCB-J PET study, Front. Hum. Neurosci. 
17 (2023) 1124254, http://dx.doi.org/10.3389/fnhum.2023.1124254.

[90] M.V. Rockman, L. Kruglyak, Genetics of global gene expression, Nature Rev. 
Genet. 7 (11) (2006) 862–872, http://dx.doi.org/10.1038/nrg1964.

[91] E. Stomrud, O. Hansson, L. Minthon, K. Blennow, I. Rosén, E. Londos, Slowing 
of EEG correlates with CSF biomarkers and reduced cognitive speed in elderly 
with normal cognition over 4 years, Neurobiol. Aging 31 (2) (2010) 215–223, 
http://dx.doi.org/10.1016/j.neurobiolaging.2008.03.025.

[92] M. Das, S. Maeda, B. Hu, G.-Q. Yu, W. Guo, I. Lopez, X. Yu, C. Tai, X. Wang, 
L. Mucke, Neuronal levels and sequence of tau modulate the power of brain 
rhythms, Neurobiol. Dis. 117 (2018) 181–188, http://dx.doi.org/10.1016/j.nbd.
2018.05.020.

[93] L. Canuet, S. Pusil, M.E. Lopez, R. Bajo, J.A. Pineda-Pardo, P. Cuesta, G. Galvez, 
J.M. Gaztelu, D. Lourido, G. Garcia-Ribas, F. Maestu, Network disruption and 
cerebrospinal fluid amyloid-beta and phospho-Tau levels in mild cognitive 
impairment, J. Neurosci. 35 (28) (2015) 10325–10330, http://dx.doi.org/10.
1523/JNEUROSCI.0704-15.2015.

[94] U. Smailovic, T. Koenig, I. Kåreholt, T. Andersson, M.G. Kramberger, B. 
Winblad, V. Jelic, Quantitative EEG power and synchronization correlate with 
Alzheimer’s disease CSF biomarkers, Neurobiol. Aging 63 (2018) 88–95, http:
//dx.doi.org/10.1016/j.neurobiolaging.2017.11.005.

[95] J.S.K. Kauwe, C. Cruchaga, K. Mayo, C. Fenoglio, S. Bertelsen, P. Nowotny, D. 
Galimberti, E. Scarpini, J.C. Morris, A.M. Fagan, D.M. Holtzman, A.M. Goate, 
Variation in MAPT is associated with cerebrospinal fluid tau levels in the 
presence of amyloid-beta deposition, Proc. Natl. Acad. Sci. 105 (23) (2008) 
8050–8054, http://dx.doi.org/10.1073/pnas.0801227105.

[96] T. Ravid, M. Hochstrasser, Diversity of degradation signals in the ubiquitin–
proteasome system, Nature Rev. Mol. Cell Biol. 9 (9) (2008) 679–689, http:
//dx.doi.org/10.1038/nrm2468.

[97] L.K. Rudenko, H. Wallrabe, A. Periasamy, K.H. Siller, Z. Svindrych, M.E. 
Seward, M.N. Best, G.S. Bloom, Intraneuronal Tau misfolding induced by 
extracellular amyloid-𝛽 oligomers, in: A. Alonso (Ed.), J. Alzheimer’ s Dis. 71 
(4) (2019) 1125–1138, http://dx.doi.org/10.3233/JAD-190226.

[98] S. Dujardin, S. Bégard, R. Caillierez, C. Lachaud, S. Carrier, S. Lieger, J.A. 
Gonzalez, V. Deramecourt, N. Déglon, C.-A. Maurage, M.P. Frosch, B.T. Hyman, 
M. Colin, L. Buée, Different tau species lead to heterogeneous tau pathology 
propagation and misfolding, Acta Neuropathol. Commun. 6 (1) (2018) 132, 
http://dx.doi.org/10.1186/s40478-018-0637-7.

[99] G.I. Hallinan, M. Vargas-Caballero, J. West, K. Deinhardt, Tau misfolding 
efficiently propagates between individual intact Hippocampal neurons, J. Neu-
rosci. 39 (48) (2019) 9623–9632, http://dx.doi.org/10.1523/JNEUROSCI.1590-
19.2019.

[100] N.I. Luna-Viramontes, B.B. Campa-Córdoba, M.Á. Ontiveros-Torres, C.R. Har-
rington, I. Villanueva-Fierro, P. Guadarrama-Ortíz, L. Garcés-Ramírez, F. de la 
Cruz, M. Hernandes-Alejandro, S. Martínez-Robles, E. González-Ballesteros, M. 
Pacheco-Herrero, J. Luna-Muñoz, PHF-core tau as the potential initiating event 
for Tau pathology in Alzheimer’s disease, Front. Cell. Neurosci. 14 (2020) 247, 
http://dx.doi.org/10.3389/fncel.2020.00247.

[101] T. Fath, J. Eidenmüller, R. Brandt, Tau-mediated cytotoxicity in a pseudohy-
perphosphorylation model of Alzheimer’s disease, J. Neurosci. 22 (22) (2002) 
9733–9741, http://dx.doi.org/10.1523/JNEUROSCI.22-22-09733.2002.

[102] L. Troquier, R. Caillierez, S. Burnouf, F. J Fernandez-Gomez, M.-E. Grosjean, 
N. Zommer, N. Sergeant, S. Schraen-Maschke, D. Blum, L. Buee, Targeting 
phospho-ser422 by active tau immunotherapy in the THYTau22 mouse model: 
a suitable therapeutic approach, Curr. Alzheimer Res. 9 (4) (2012) 397–405.

[103] S. Jadhav, J. Avila, M. Schöll, G.G. Kovacs, E. Kövari, R. Skrabana, L.D. 
Evans, E. Kontsekova, B. Malawska, R. de Silva, L. Buee, N. Zilka, A walk 
through tau therapeutic strategies, Acta Neuropathol. Commun. 7 (2019) 22, 
http://dx.doi.org/10.1186/s40478-019-0664-z.

http://dx.doi.org/10.1371/journal.pone.0059676
http://dx.doi.org/10.1371/journal.pone.0059676
http://dx.doi.org/10.1371/journal.pone.0059676
http://dx.doi.org/10.1016/j.neulet.2009.05.031
http://dx.doi.org/10.1186/alzrt268
http://dx.doi.org/10.1111/j.1468-1331.2009.02847.x
http://dx.doi.org/10.1111/j.1468-1331.2009.02847.x
http://dx.doi.org/10.1111/j.1468-1331.2009.02847.x
http://dx.doi.org/10.1093/bioinformatics/btv402
http://dx.doi.org/10.1093/bioinformatics/btv402
http://dx.doi.org/10.1093/bioinformatics/btv402
http://dx.doi.org/10.3390/e21060544
http://dx.doi.org/10.3389/fncom.2020.00070
http://dx.doi.org/10.3389/fncom.2020.00070
http://dx.doi.org/10.3389/fncom.2020.00070
http://dx.doi.org/10.3390/e20010035
http://refhub.elsevier.com/S1746-8094(25)00640-8/sb74
http://refhub.elsevier.com/S1746-8094(25)00640-8/sb74
http://refhub.elsevier.com/S1746-8094(25)00640-8/sb74
http://refhub.elsevier.com/S1746-8094(25)00640-8/sb74
http://refhub.elsevier.com/S1746-8094(25)00640-8/sb74
http://dx.doi.org/10.1152/jn.00338.2011
http://dx.doi.org/10.1016/j.tics.2012.02.004
http://dx.doi.org/10.1016/j.tics.2012.02.004
http://dx.doi.org/10.1016/j.tics.2012.02.004
http://dx.doi.org/10.1002/hbm.20745
http://dx.doi.org/10.1002/hbm.20745
http://dx.doi.org/10.1002/hbm.20745
http://dx.doi.org/10.1088/1741-2552/ab4024
http://dx.doi.org/10.1088/1741-2552/ab4024
http://dx.doi.org/10.1088/1741-2552/ab4024
http://dx.doi.org/10.1103/PhysRevE.89.032804
http://dx.doi.org/10.1103/PhysRevE.89.032804
http://dx.doi.org/10.1103/PhysRevE.89.032804
http://arxiv.org/abs/1308.3182
http://dx.doi.org/10.1073/pnas.1208933109
http://dx.doi.org/10.1111/j.2517-6161.1995.tb02031.x
http://dx.doi.org/10.1007/s00439-017-1809-4
http://dx.doi.org/10.1007/s00439-017-1809-4
http://dx.doi.org/10.1007/s00439-017-1809-4
http://dx.doi.org/10.1016/j.neurobiolaging.2013.01.017
http://dx.doi.org/10.1038/s42003-023-04531-9
http://dx.doi.org/10.1038/s42003-023-04531-9
http://dx.doi.org/10.1038/s42003-023-04531-9
http://dx.doi.org/10.1111/j.1749-6632.2000.tb05560.x
http://dx.doi.org/10.1186/s13195-022-01074-9
http://dx.doi.org/10.1186/s13195-022-01074-9
http://dx.doi.org/10.1186/s13195-022-01074-9
http://dx.doi.org/10.1001/JAMANEUROL.2016.3232
http://dx.doi.org/10.1001/JAMANEUROL.2016.3232
http://dx.doi.org/10.1001/JAMANEUROL.2016.3232
http://dx.doi.org/10.1073/PNAS.1804876115/SUPPL_FILE/PNAS.1804876115.SAPP.PDF
http://dx.doi.org/10.1073/PNAS.1804876115/SUPPL_FILE/PNAS.1804876115.SAPP.PDF
http://dx.doi.org/10.1073/PNAS.1804876115/SUPPL_FILE/PNAS.1804876115.SAPP.PDF
http://dx.doi.org/10.3389/fnhum.2023.1124254
http://dx.doi.org/10.1038/nrg1964
http://dx.doi.org/10.1016/j.neurobiolaging.2008.03.025
http://dx.doi.org/10.1016/j.nbd.2018.05.020
http://dx.doi.org/10.1016/j.nbd.2018.05.020
http://dx.doi.org/10.1016/j.nbd.2018.05.020
http://dx.doi.org/10.1523/JNEUROSCI.0704-15.2015
http://dx.doi.org/10.1523/JNEUROSCI.0704-15.2015
http://dx.doi.org/10.1523/JNEUROSCI.0704-15.2015
http://dx.doi.org/10.1016/j.neurobiolaging.2017.11.005
http://dx.doi.org/10.1016/j.neurobiolaging.2017.11.005
http://dx.doi.org/10.1016/j.neurobiolaging.2017.11.005
http://dx.doi.org/10.1073/pnas.0801227105
http://dx.doi.org/10.1038/nrm2468
http://dx.doi.org/10.1038/nrm2468
http://dx.doi.org/10.1038/nrm2468
http://dx.doi.org/10.3233/JAD-190226
http://dx.doi.org/10.1186/s40478-018-0637-7
http://dx.doi.org/10.1523/JNEUROSCI.1590-19.2019
http://dx.doi.org/10.1523/JNEUROSCI.1590-19.2019
http://dx.doi.org/10.1523/JNEUROSCI.1590-19.2019
http://dx.doi.org/10.3389/fncel.2020.00247
http://dx.doi.org/10.1523/JNEUROSCI.22-22-09733.2002
http://refhub.elsevier.com/S1746-8094(25)00640-8/sb102
http://refhub.elsevier.com/S1746-8094(25)00640-8/sb102
http://refhub.elsevier.com/S1746-8094(25)00640-8/sb102
http://refhub.elsevier.com/S1746-8094(25)00640-8/sb102
http://refhub.elsevier.com/S1746-8094(25)00640-8/sb102
http://refhub.elsevier.com/S1746-8094(25)00640-8/sb102
http://refhub.elsevier.com/S1746-8094(25)00640-8/sb102
http://dx.doi.org/10.1186/s40478-019-0664-z


A. Maturana-Candelas et al. Biomedical Signal Processing and Control 110 (2025) 108129 
[104] N.E. Kadmiri, Tau-targeted immunotherapy for Alzheimer’s disease: Insight into 
clinical trials, OBM Neurobiol. 08 (2024) 1–7, http://dx.doi.org/10.21926/obm.
neurobiol.2403238.
13 
[105] H. Yu, F. Li, J. Liu, D. Liu, H. Guo, J. Wang, G. Li, Evaluation of acupuncture 
efficacy in modulating brain activity with periodic-aperiodic EEG measure-
ments, IEEE Trans. Neural Syst. Rehabil. Eng. 32 (2024) 2450–2459, http:
//dx.doi.org/10.1109/TNSRE.2024.3421648.

http://dx.doi.org/10.21926/obm.neurobiol.2403238
http://dx.doi.org/10.21926/obm.neurobiol.2403238
http://dx.doi.org/10.21926/obm.neurobiol.2403238
http://dx.doi.org/10.1109/TNSRE.2024.3421648
http://dx.doi.org/10.1109/TNSRE.2024.3421648
http://dx.doi.org/10.1109/TNSRE.2024.3421648

	Effect of MAPT gene variations on the brain electrical activity: A multiplex network study
	Introduction
	Materials and methods
	Subjects
	Genetic analysis
	EEG recordings and pre-processing
	EEG analysis
	Statistical analysis

	Results
	Discussion
	Implications of MAPT variation on the global connectivity patterns
	Higher sensitivity to disruption and hub capacity in the left DMN region
	Consistent changes in specific frequency bands may be directly related with different tau species
	Potential physiological repercussions of diverse tau configurations in the brain functional network
	Limitations and future research

	Conclusions
	CRediT authorship contribution statement
	Funding
	Declaration of competing interest
	Acknowledgments
	Data availability
	References


