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A B S T R A C T

Ocular artifacts (OA) are the most common artifacts in electroencephalography (EEG), significantly affecting
signal quality and analysis. Common approaches like indepentent component analysis (ICA) or regression-based
methods address this problem but require several minutes of subject-specific EEG and electrooculography
(EOG) calibration, making them impractical for real-time applications like brain–computer interfaces (BCI).
In this study, we introduce EEGOAR-Net, a deep learning architecture designed to reduce OA in EEG. It
address these issues while also providing flexibility across various EEG montages. Based on U-Net architecture,
EEGOAR-Net was trained with contaminated EEG signals in order to reconstruct them with OA attenuated,
using SGEYESUB as the reference method. In addition, a novel training methodology based on masking signals
from different channels was applied to make EEGOAR-Net independent of the EEG montage used. A cross-
validation analysis was conducted to assess EEGOAR-Net’s performance, demonstrating its ability to reduce
EEG-EOG correlations to chance levels across most brain regions with minimal information loss. Thus, the
performance of EEGOAR-Net is comparable to that of the reference method without the need for subject-
specific calibration or EOG channels. Furthermore, validation on an additional dataset confirmed effective
blink reduction and superior preservation of neural information compared to the state-of-the-art models: 1D-
ResCNN and IC-U-Net. EEGOAR-Net’s performance across datasets and versatility across montages prove it to
be a reliable and practical solution for EEG-based research and BCI applications, ensuring a notable reduction
of OA on signal while maintaining the integrity of neural information.
1. Introduction

Electroencephalography (EEG) is a non-invasive brain activity ac-
quisition method. By placing electrodes on the scalp, this technique
can record changes in the electrical field caused by the activity of
neurons in the cerebral cortex [1,2]. One of its main advantages is
its high temporal resolution [1]. This allows to capture the rapid
changes in brain dynamics. It is also worth noting its portability and
relatively low cost, compared to other neuroimaging modalities [2].
These features make EEG one of the most widespread methods for
studying brain activity, being employed in numerous field, such as the
characterization of neurocognitive and psychiatric disorders [3–5], the
diagnosis of neurological pathologies [6] or brain–computer interfaces
(BCI) [1,7–9]. However, a significant drawback of this technique is the
low voltage of the recorded signal. Ranging from 10 μV to 100 μV,
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the EEG can be influenced by other non-neural physiological activities,
such as eye blinks, muscle movements, or cardiac activity [2,10].
The presence of these artifacts significantly worsens signal quality,
limiting EEG usability [2,10]. For instance, an EEG contaminated with
artifacts could hinder, or even confound, the analyses needed to diag-
nose a neurological disorder [2]. With respect to BCI, artifacts have
been shown to reduce the performance of these systems [11]. In this
regard, the accuracy of BCI based on command selection can be di-
minished considerably [11]. On the other hand, neurofeedback (NF)
training applications intend for the user to self-regulate his or her own
brain activity patterns [9]. Therefore, a contaminated EEG could result
in feedback not based on the user’s brain activity, putting training
outcomes at risk [12].
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Ocular artifacts (OA) have the most significant influence on EEG
ignals [2,10]. Unlike artifacts related to muscle movement, their oc-
urrence is hardly avoidable [13]. Furthermore, as their magnitude

ranges between 50 μV to 200 μV [2], OA can completely mask neuronal
ctivity [2,10]. The most frequent OA are those caused by eye rotation
nd eye blinking [2,10,12]. During eyeball rotation, the electric dipole
ormed by the cornea and retina changes its orientation. As a result,
his produces a variation of the potential that masks the neural activity

captured by EEG electrodes [2,12]. The influence of such artifacts af-
ects mainly the signal recorded at frontal electrodes, although they can
lso disturb the signal at posterior electrodes [2]. On the other hand,
he large amplitude potential introduced during blinks is produced by
he sliding of the eyelid across the positively charged cornea [2,12].

These artifacts show up in the EEG as sharp waves located in the frontal
region [2]. The overall impact of OA on each sensor may vary and
depends on several factors, such as electrode position, head geometry,
conductivities of the tissue layers, and the interface between the scalp
and the electrode [12].

OA correction has become a critical step in the EEG processing
ipeline to ensure that the analysis of the EEG signal does not yield
onfusing results [2,10,12]. Currently, blind source separation (BSS)
ethods are the most popular for removing artifacts from EEG [2,

10]. These methods assume that the EEG is a mixture of neural and
ther non-neural source signals, such as OA. Based on various assump-
ions about the statistical relationship between neural and non-neural
ources, these techniques can separate them without prior knowledge
f the source signals [2,10,14]. Independent component analysis (ICA)
s the method most widely reported by researchers to remove OA and
ther artifacts from EEG [2,10]. This BSS technique attempts to find

different components that satisfy an assumption of statistical indepen-
dence. ICA has proven to be highly effective in attenuating artifacts,
especially when a large amount of data is available [11]. However, its
mplementation is not exempt from limitations. Once the independent
omponents have been found, the researcher has to decide which ones
re of non-neural origin and eliminate them. This introduces a human
actor that may affect the results of the artifact removal task [2].

Moreover, the results worsen when the number of EEG electrodes used
decreases [10]. This limits the use of ICA to recordings with a large
umber of EEG channels. In such cases, OA-related artifacts may not be
epresented by a single component but by several at once, mixed with
eural information. Therefore, the use of ICA may also result in the loss

of such neural information [10]. Importantly, the different algorithms
mployed to find out the independent components are computationally
xpensive, limiting their application to offline analysis [2,10]. These
rawbacks prevent the use of ICA in those applications that need to
nalyze EEG in real time, such as BCI.

BCI systems require an automatic and computationally inexpensive
OA removal technique [12]. An approach that meets these require-

ents is the regression method, which considers EEG as a linear
ombination of neural signal and OA [2,10]. This method provides the

artifact-free signal by subtracting the contribution of the OA from the
original one. Notably, this process does not depend on the researcher’s
criteria, as in the case of ICA, which makes it much more objective.
However, to determine the contribution of OA, the use of electrooculog-
raphy (EOG) channels is necessary [2], which makes EEG experiments
more complex, uncomfortable and expensive. In addition, it should
be noted that a considerable amount of neural activity can also be
removed [2,10,12]. In this context, the subspace subtraction methods

ere presented to address such limitation [12,15]. This approach uses
EG and EOG data from a calibration composed of short periods of eye

movements and eye blinking. It provides a brain activity model that
estimates how neural and OA sources are mixed [15]. By removing OA-
elated subspaces, their contribution to the EEG is suppressed . Thus,

this method operates considering artifact sources instead of a linear
combination of EOG channels [15]. This process is computationally
nexpensive, since it is based on matrix multiplication [12]. Based
2 
on this approach, Kobler et al. (2020) [12] introduced the Sparse
Generalized Eye Artifact Subspace Subtraction (SGEYESUB) algorithm.
It uses calibration data to estimate and attenuate three sources of OA.
Specifically, blinks and vertical and horizontal eye movements. Resting
EEG signal is also registered at the calibration phase to reduce the
algorithm influence on the artifact-free signal. The authors compre-
hensively evaluated the performance of SGEYESUB both in attenuating
OA from EEG and preserving the original information carried by EEG
signal. Such evaluation was conducted using EEG recordings of 45
participants from four different datasets. Furthermore, the results were
compared with the performance of other four representative correction
algorithms: one based on the regression method (EYEREG) [16], one
based on ICA (EYEEEG) [17], and two based on subspace subtraction
EYESUBTRACT and GEYESUB) [18,19]. The evaluation showed that

SGEYESUB effectively attenuated OA and had little impact on the
artifact-free EEG signal. Furthermore, the comparison yielded that the
performance of SGEYESUB was the best among the algorithms consid-
ered. This confirmed SGEYESUB as a valuable OA removal technique
o be applied in BCI experiments [12]. Nevertheless, some limitations
hould be noted. This method requires a brief calibration for each
articipant before each BCI session, which reduces the BCI usage time.
n addition, although the use of EOG during calibration is not strictly
ecessary, the authors noted that the results worsen in its absence [12].

Therefore, BCI researchers would benefit from a method that achieves
the performance of SGEYESUB without the need for calibration nor
EOG.

Over the last few years, the growing interest in deep learning
DL) has also been reflected in neuroscience research [8]. Thanks to

its ability to extract underlying features from data, DL models have
been proposed to expand the state-of-the-art in many fields, such as
Alzheimer’s diagnosis [20], emotion recognition [21–23], or BCI [7].
Several DL-based approaches have also been proposed to address the
roblem of OA in EEG. These models are of great value as they
ave made it possible to overcome some of the limitations of the
raditional techniques mentioned above. The most commonly employed
pproach is based on convolutional neural networks (CNNs) and single

channel EEG cleaning. Among them, 1D-ResCNN stands out [24]. This
network was compared with other models based on CNNs and other
raditional techniques, showing higher artifact attenuation compared

to its competitors [24,25]. Other notable alternatives are DTP-Net [26],
an encoder–decoder type architecture based on time–frequency domain
feature extraction, and MultiResU-Net3+ [27], which is based on a fully
connected U-Net (U-Net3+) [28] with residual connections. In addition,
it is worth mentioning IC-U-Net [11], an approach that does not rely
n channel-by-channel EEG cleaning, but acts on a set of 30 electrodes.
his network, unlike most existing models that were trained using
EG contaminated with artifacts synthetically, uses EEG signal with
rtifacts that were removed using ICA. In this sense, IC-U-Net allows
o apply an approximation of ICA for the cleaning of EEG artifacts in
n automatic and unsupervised way. The main inconvenience of most
f the EEG-based models proposed (both for OA attenuation and other
pplications) is their dependence on a specific EEG montage. As these
odels are trained using EEG recorded with determined electrodes,

heir use is limited to that configuration. Consequently, they cannot be
sed in experiments involving a different EEG montage. This especially
ffects BCI experiments since one of their goals is to develop systems
hat can be controlled using as few EEG channels as possible [29].

A proposed solution to this limitation is to design one-dimensional
models, which allows them to be applied to any EEG signal, regardless
of the EEG montage used [24–27]. However, this implies that the
model does not differentiate from which brain region the signal comes
from. Consequently, it is hypothesized that this type of single-channel
architecture loses valuable information given by the spatial location of
each channel [11,26]. To the best of our knowledge, there are no EEG-
based DL models that can be applied to signals recorded with different
EEG montages from the ones used in the training dataset, and that at
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Fig. 1. (A) Schematic of the masking process of the different EEG signal examples used during DL model training: The channels colored in red in the different topoplots represent
the masked channels. The red lines in the different EEGs represent the masked signals, i.e. they have been replaced by zeros. (B) Schematic example of the channel expansion
process necessary to be able to use a model trained with our approach on an EEG signal Z with R channels (𝑅 < 𝑁). The box on the left represents an EEG signal (Z) with R
channels and its EEG montage. The box on the right represents the new EEG signal (Z ’) with N channels. The N - R channels not included in the original montage have been
added to the Z ’ signal as zeros and are represented with red lines in the EEG and in the lower topoplot as red electrodes.
the same time leverage the spatial relationships between the various
electrodes.

The main goal of this study is to design, develop, and test a new
DL model for OA reduction that addresses the limitations of the afore-
mentioned methods. We decided to base the performance of our model
on the OA reduction of the SGEYESUB algorithm, as this approach
overcomes the methodological drawbacks of traditional methods such
as regression and ICA. In addition, it has proven to be highly effective
in the target problem and that its performance is comparable or even
superior to other methods. Our model, called EEG Ocular Artifact
Reduction Network (EEGOAR-Net), was trained using the data and
algorithm implementation provided by Kobler et al. (2020) [12] to
learn the underlying mechanism employed by SGEYESUB to attenu-
ate OA. Afterwards, its performance was compared with SGEYESUB’s.
In addition, the generalizability of EEGOAR-Net on new data was
tested by evaluating its performance on an additional public dataset
and was compared with two state-of-the-art DL models. Our primary
contributions are summarized in the following points:

• We have succeeded in achieving OA attenuation comparable to
SGEYESUB with our model while overcoming its limitations.

• We have made EEGOAR-Net overcome inter-subject variability,
making calibration not required for its use. This makes it a
plug-and-play tool. In addition, EOG channels are not necessary
with our model, which reduces the complexity of EEG-based
experiments.

• We have implemented a novel methodology that allows EEGOAR-
Net to be applied using different EEG montages. Thus, the use of
our model is not limited to the EEG montage used in the training
database.

An open source implementation of the architecture is provided in https:
//github.com/dmarcos97/EEGOAR-Net.

2. Materials and methods

2.1. Datasets

In order to train a DL model to attenuate OA, we used both the
algorithm implementation and the four datasets provided by the au-
thors [12,30]. These datasets (Koblers datasets) contain EEG recorded
under various OA and resting state conditions. We applied SGEYESUB
to the EEG and thus obtained a new dataset composed of EEG examples
with and without OA. This dataset was used to train EEGOAR-Net
by showing examples of how OA should be attenuated. In addition,
these four datasets were also used to compare the performance of
EEGOAR-Net and SGEYESUB in OA reduction.
3 
The four datasets employed include EEG signals from 45 partici-
pants recorded in a single session along with four different BCI exper-
iments. Dataset 1 includes 5 participants, Dataset 2 includes 15 partic-
ipants, Dataset 3 includes 10 participants, and Dataset 4 includes 15
participants [30]. The signals included in each dataset were recorded
under four different conditions : (1) eyes open at rest; (2) vertical eye
movement; (3) horizontal eye movement; and (4) blinks. A paradigm
was used to guide participants through the recording of each condi-
tion. [12]. For each session, the average number of repetitions for
each condition was as follows: 15.2 ± 2.3 rest, 10.2 ± 1.6 vertical eye
movement, 9.8 ± 1.9 horizontal eye movement and 11.2 ± 0.9 blink.
Each condition had an average duration of 8 s and contained several OA
events. The EEG signals of all four studies were acquired using active
electrodes (actiCAP, Brain Products GmbH, Germany) and the same
biosignal amplifier system (Brain Amp, Brain Products GmbH, Ger-
many). EEG and EOG montages varied across studies: Dataset 1 used 58
EEG and 6 EOG electrodes; Dataset 2 and Dataset 3 used 64 EEG and 6
EOG electrodes; and Dataset 4 used 61 EEG and 3 EOG electrodes [12].
Dataset 1, Dataset 2 and Dataset 3 were acquired at a 200 Hz sampling
rate, while Dataset 4 was acquired at a 100 Hz sampling rate. The EEG
signals from these datasets were already pre-processed. A notch filter
between 49 and 51 Hz, and a high-pass filter at 0.4 Hz were applied
bidirectionally to attenuate line noise and drifts [12]. Moreover, the
authors also provided vertical (VEOG) and horizontal (HEOEG) EOG
derivatives. They were calculated as the difference of signals from
different EOG electrodes placed above, below, and to the sides of the
eyes. The authors’ pre-processing included low-pass filtering at 5 Hz of
VEOG and HEOG. For more information, see Koblert et al. (2020) [12].

On the other hand, a different public dataset (Ehrlich dataset) [31]
was used to validate the performance of EEGOAR-Net on EEG recorded
under different acquisition conditions (i.e., different equipment, op-
erators and participants). This dataset includes EEG signals from 13
participants recorded in a single session. We tested EEGOAR-Net on
the following conditions: (1) eyes open at rest; (2) smooth vertical eye
movement; (3) saccadic vertical eye movement; (4) smooth horizontal
eye movement; (5) saccadic horizontal eye movement; and (6) blinks.
The different conditions were recorded using a paradigm such as the
one described in Kobler et al. (2020) to guide the participants [12,31].
For each participant, the EEG was composed of 60 s of resting state and
10 repetitions of each OA condition. These have an average duration
of 10 s. EEG was acquired using 32 active electrodes and a biosignal
amplifier system (actiCHamp, Brain Products GmbH, Germany) at a
sampling rate of 200 Hz. Twenty-five electrodes were used to record
EEG and three to record EOG (placed at the forehead, right and left
outer canthi) [16].

https://github.com/dmarcos97/EEGOAR-Net
https://github.com/dmarcos97/EEGOAR-Net
https://github.com/dmarcos97/EEGOAR-Net
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2.1.1. Signal conditioning
In order to homogenize the conditions of the EEG signals used, both

from the Kobler and Ehrlich datasets, a decimation to 128 Hz was
erformed [7]. This also aimed to reduce the computational cost of the

model. In addition, the same pre-processing used on the Kobler datasets
was applied to the EEG of the Ehrlich dataset. Finally, all EEG signals
were divided into 1-s segments without overlap.

2.2. Ensuring EEG montage independence

We consider that not being able to use current EEG-based DL models
with EEG montages other than those used in the training dataset is a
ignificant limitation. As this notably decreases the potential usefulness
f these models, we implemented a novel method to make them more
ndependent of EEG montages. It should be noted that this method is
ot specifically designed for EEGOAR-Net, but it could be useful for

generalizing other EEG DL models to different electrode configurations
as well. The main idea is to encourage the DL model to delve deeper
nto the spatial relationships between the different EEG channels. To

this end, it is necessary that the model not rely only on a few relevant
hannels. This can be achieved by selectively excluding the signal from
pecific EEG channels during model training. Consequently, the DL
odel could perform a specific task without as much dependence on

he EEG montage since it has learned to rely more generally on the
nformation provided by available EEG channels. The implementation
f the method is described below.

Let 𝑿𝑖 be the i’th training example of the EEG signal dataset
ith dimensions T × N, where T is the number of temporal samples

ontained in the signal and N the number of EEG channels. We define
 set of k different EEG montages, each consisting of a different number
nd distribution of channels. These montages cannot contain channels
hat are not included in the total of N channels. Associated to the set of
ontages is defined a set 𝐌 = {𝐌1,𝐌2,… ,𝐌𝑘}, where 𝐌𝑘 is a matrix

f dimensions T 𝑥 N. Each matrix represents a mask in which the EEG
hannels contained in the corresponding montage take a value of 1,
nd those not included take value of 0. During the training of the DL
odel, for each training example 𝑿𝑖, a 𝐌𝑘 is randomly chosen and

pplied. Thus, the EEG signal of the channels not contained in the EEG
ontage corresponding to 𝐌𝑘 is replaced by zeros (see Fig. 1.a). This
rocess is repeated at each training iteration. As a consequence, the
ame training example 𝑿𝑖 provides different information by applying
ifferent masks. This forces the DL model to not depend only on a few
hannels, since sometimes the signal provided is just composed of zeros.

Consider the situation in which the output of the DL model is a
ector of the same dimensions as 𝑿𝑖. This is the case of EEGOAR-Net.
n such a situation, the example to be predicted, 𝒀 𝑔 𝑡

𝑖 (i.e., the ground
ruth), must also be masked with the same matrix 𝐌𝑘 as 𝑿𝑖. Moreover,
et 𝒀 𝑜𝑢𝑡

𝑖 be the result of the DL model. It is likely that the reconstructed
ignal at the masked channels is not exactly zero. Since the objective of
he training is to make 𝒀 𝑜𝑢𝑡

𝑖 as close as possible to 𝒀 𝑔 𝑡
𝑖 , it is necessary

hat the loss function does not take into account these differences in
he masked channels. For this purpose, the same mask 𝑴𝑘 is applied
o 𝒀 𝑜𝑢𝑡

𝑖 before being introduced into the loss function. Therefore, the
odel weights will be updated to make the signal 𝒀 𝑜𝑢𝑡

𝑖 more similar to
𝑔 𝑡
𝑖 only in the unmasked channels. That is, paying attention only to

he information provided by the available channels.
The procedure to apply this model, once trained, to new datasets

ith different EEG montages is described below. First, let Z be an EEG
ignal composed of R channels (where R < N) and T time samples. Z
as to be transformed to Z’ , with dimensions T × N. This is necessary

because the model has been previously trained on examples with such
dimensions. The resulting signal Z’ will have R channels with EEG
ignal and N - R channels with a signal composed of zeros (see Fig. 1.b).

Due to the process of random masking of EEG channels during training,
the DL model is expected to ignore the channels with a null signal and
erform the desired task, focusing on the data provided by the available
hannels.
4 
2.3. EEGOAR-Net

Our goal was to develop a DL model that extracts abstract features
regarding how neural sources are mixed with OA in the EEG and
reconstructs it without the influence of such artifacts. Therefore, the
output signal must have the same dimensions as the input one. This
makes an encoder–decoder type architecture suitable for such pur-
poses [11]. In this context, U-Net [32] is a popular convolutional neural
etwork (CNN) architecture originally developed for biomedical image
egmentation, but which has also proven effective in other domains,
ncluding EEG-related tasks [11,33]. We designed the EEGOAR-Net

architecture based on U-Net, as its features are appropriate for the
urpose we aim to address. The encoder side, through convolutions
ver temporal and spatial dimensions, can embed the signal into a
atent space in which neural and OA sources are distinguishable and

can be unmixed [11,32]. Furthermore, the decoder side can reconstruct
the signal without losing features thanks to the skip connections be-
tween the two sides. On the other hand, EEGOAR-Net also includes
Inception modules and depthwise convolutions. These techniques were
applied for the first time to an EEG-based DL model by Santamaría
et al. (2020) [7]. The multiscale spatio-temporal analysis performed
n Inception module branches has proven useful for capturing different
EG patterns [7,8]. Consequently, the inclusion of Inception modules is

expected to help extract features at a higher level of abstraction during
the signal encoding process. Of note, each convolution operation of
EEGOAR-Net includes batch normalization and the exponential linear
unit ‘elu’ activation function. In addition, convolutions on the encoder
side also include spatial dropout regularization.

The selection of the dropout rate (dr) and learning rate (lr) hyper-
parameters was determined by grid search on the validation set. The
earch spaces were: dr = [0.1 : 0.05 : 0.5]; and lr = [0.01, 0.001,
.0001]. The values selected were 0.15 and 0.001, respectively. On the
ther hand, the number of layers, the number of Inception modules, the
umber of filters, the kernel sizes, and the size of the pool operators
ere chosen heuristically.

We followed the method presented in Section 2.2 to make EEGOAR-
Net suitable for use with different EEG montages. The maximum num-
ber of EEG channels available in the training dataset (i.e., the 64 EEG
channels used in Dataset 2 and Dataset 3) was used. Therefore, the
model’s input signal is a 128 × 64 shape matrix, with the first dimension
being the temporal axis (i.e., EEG samples) and the second dimension
orresponding to the spatial axis (i.e., EEG channels). Furthermore,

to ensure that the output signal has the same masked EEG channels
s the input signal, a mask vector of shape 1 × 64 is introduced as
n additional model input. This vector is applied at the end of the
econstruction to the output signal.

The architecture can be divided into an encoder and a decoder side.
 schematic overview of the architecture is presented in Fig. 2.

1. EEGOAR-Net has four blocks on its encoder side. Of these, the
first two are Inception modules, such as those implemented
in EEG-Inception [7]. This attempts to leverage the ability of
the Inception modules to extract spatio-temporal features from
the EEG signal at different scales. Both Inception modules are
formed by three branches. First, the signal of each EEG channel
is processed separately by means of convolutions in the time
dimension. Following the original implementation, the kernel
sizes of the convolutions for each branch were chosen such that
they corresponded to temporal windows of 500 ms, 250 ms,
and 125 ms [7]. The spatial domain is then processed using
depthwise convolutions. Afterwards, the outputs of the branches
are concatenated. Finally, a max-pool operator is used for di-
mensionality reduction. The number of filters per branch is the
same for both Inception modules. This is because it was found
that increasing the number of filters in the second module did
not improve the performance of the architecture but increased



D. Marcos-Martínez et al. Biomedical Signal Processing and Control 110 (2025) 108147 
Fig. 2. Overview of the EEGOAR-Net architecture. Spatial dropout regularization is only applied after 2D convolutions on the encoder side. The kernel size of each convolution
operation and pooling layers are displayed. The output sizes of each operation are indicated. The signal dimensions are [Time samples, EEG channels, Filters].
its computational cost. The last two encoder blocks include two
convolution operations each, applied to the temporal dimension.
The kernel size used is 3 × 1. These blocks are designed to extract
additional temporal features at a higher abstraction level. For
this purpose, the number of features in each block is increased.
The max-pool operator is only applied in the first of these two
convolutional blocks.

2. The decoder side consists of four convolutional blocks. The first
three are intended to reconstruct the EEG signal from latent
space, while the last one is the output block. The reconstruction
blocks first apply a two-dimensional upscaling operator to grad-
ually recover the signal dimensions [32]. Next, a convolution is
performed in the temporal and spatial domains, with a kernel of
size 3 × 3. The results of the convolution are concatenated with
the output of the corresponding encoder block. This ensures that
features extracted in the encoding stage, transferred through skip
connections, are accounted for during signal reconstruction [32].
Finally, another 3 × 3 convolution is applied. The last block
of the decoder provides the output signal. As the last layer of
the U-Net [32], it performs a 1 × 1 convolution operation. The
activation function used is ‘linear’.

To ensure that the output signal maintains the characteristics of the
ground truth signal in both the time and spectral domains, we used
a custom loss function based on the one proposed in [11]. This loss
function calculates, on the one hand, the mean squared error (MSE)
between the output signal and the ground truth. In addition, the Fast
Fourier Transform (FFT) is applied to both signals, and then the MSE
is calculated between their spectral estimates:

ℒ𝑖 =
1
𝑁

[

1
𝑇

𝑇
∑

𝑗=1
(𝑌 𝑔 𝑡

𝑖,𝑗 − 𝑌 𝑜𝑢𝑡
𝑖,𝑗 ) + 1

𝐹

𝐹
∑

𝑘=1
(ℱ 𝑌 𝑔 𝑡

𝑖,𝑘 −ℱ 𝑌 𝑜𝑢𝑡
𝑖,𝑘 )

]

, (1)

where 𝒀̂ 𝑖 denotes the 𝑖th example of the masked model output 𝒀̂ 𝑜𝑢𝑡
𝑖 =

𝒀 𝑜𝑢𝑡
𝑖 ⋅ 𝑴𝑘 (see Section 2.2), ℱ 𝑌 𝑔 𝑡

𝑖 and ℱ 𝑌 𝑜𝑢𝑡
𝑖 represent the spectral

estimates of the 𝑖th example of the ground truth and the model output
signals, respectively, 𝑁 is the number of EEG channels of the signals, 𝑇
the number of the samples and 𝐹 the number of the bins of the spectral
estimates. During the model training, we applied early stopping when
the loss of the validation set did not improve for 20 consecutive training
epochs.
5 
2.4. Performance evaluation

The two analyses conducted to evaluate the performance of
EEGOAR-Net are presented below.

2.4.1. Cross-validation analysis
A five-fold cross-validation analysis was conducted to evaluate the

EEGOAR-Net performance in attenuating OA. This aims to ensure the
reliability and robustness of the model. To train the model, EEG sam-
ples with (the original dataset) and without OA (the dataset after
applying SGEYESUB) were used after applying SGEYESUB (see Fig. 2).
EEG signals were divided into training and validation sets with a ratio
of 8 to 2, respectively. At each fold, the test set was composed of
EEG from 9 participants, while the training and validation sets were
composed of EEG from the remaining 36 participants. Consequently,
this analysis also evaluated the applicability of EEGOAR-Net to new
EEG data, acting as a plug-and-play model.

A set composed of nine different EEG montages was predefined to
apply the method described in Section 2.2. Each montage contained a
multiple of 8 EEG channels, from 8 to 64. This was chosen because the
most common EEG montages usually use multiples of 8 electrodes [4,
5,7,9,29]. For each one, the position of the electrodes was heuristically
chosen so that the distribution along the head surface was homo-
geneous. Additionally, a montage with 8 electrodes arranged in the
positions typically used in BCI experiments for visual evoked-potential
(VEP) detection was included [7]. S.Fig 1 in the supplementary material
shows each of these 9 montages. We randomly applied the mask vectors
related to these montages to the EEG segments from the training set
at each training iteration. To obtain a stable insight into the model’s
performance on the validation set, the same mask vectors were applied
to their EEG segments at each iteration. Thus, the loss function of the
validation set was always computed on the same examples masked
consistently.

The different EEG segments of the test set were divided according
to their condition (i.e., resting, blinking, vertical eye movements or
horizontal eye movements). Once the models were trained, they were
applied to those segments to attenuate OA. We followed an analysis
based on the research conducted in Kobler et al. (2020) [12] to evaluate
our model performance:
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1. Reduction of blink and vertical eye movements was measured
by computing the absolute values of Pearson correlation |𝑟| be-
tween the EEG signal after applying EEGOAR-Net, and the VEOG
during the uncorrected blink and vertical movement segments,
respectively.

2. Horizontal eye movement reduction was measured by computing
|𝑟| between the EEG signal after applying EEGOAR-Net and the
HEOG during uncorrected epochs of horizontal movement.

3. The undesired influence of EEGOAR-Net on EEG segments with-
out OA (i.e., at resting condition) was assessed by calculating the
root mean squared error (RMSE) between the original signal and
the EEG signal after applying the model.

4. The influence of EEGOAR-Net on the spectral domain was an-
alyzed by estimating the relative power spectral distribution
(PSD). This was performed for EEG segments of the resting
condition, both the original and those obtained after applying
our model. This was carried out using the Welch method employ-
ing 2-second windows (1-second overlap) [12]. In addition, the
relative spectral power of the following frequency bands was cal-
culated from each PSD: delta (𝛿, 1–4 Hz); theta (𝜃, 4–8 Hz); alpha
(𝛼, 8–13 Hz); beta 1 (𝛽1, 13–19 Hz); and beta 2 (𝛽2, 19–30 Hz).
Differences between the relative band powers obtained from the
original signal and those extracted after applying EEGOAR-Net
were analyzed.

We also performed all these analyses for SGEYESUB. This allowed us to
statistically analyze the differences between the performances of both
approaches for the 64-channel EEG montage. In addition, we evaluated
the performance of EEGOAR-Net in the case of different EEG montages.
To this end, we applied the same analyses to each of the predefined
montages used during model training.

The different statistical analyses were performed using two-sided
aired permutation tests (10000 permutations). Type I errors were
ddressed using the Bonferroni approach. A 𝑝-value < 0.05 was consid-
red statistically significant. On the other hand, to estimate the chance
evel for Pearson correlation for each OA condition, bootstrapping was
pplied [19]. We randomly selected 5 participants from the Kobler
ataset (2020) [30]. From each participants, an 8-second long window
f each OA condition was randomly selected and the EOG derivatives
i.e., VEOG or HEOG) recorded during that window were extracted.
n addition, an EEG window of 8 s in the resting state was randomly

chosen. We then calculated |𝑟| with the EOG derivatives and the EEG
at rest. This process was repeated 5000 times for each OA type. We
ssume that during resting periods there is no OA present in the EEG.
herefore, taking the 95%-quantile, the spurious |𝑟| value that can be
ielded for each condition was obtained.

2.4.2. Evaluation on a different dataset
The applicability of EEGOAR-Net in a real experiment was evaluated

on the Ehrlich dataset (2019) [31] and its results were compared
ith two state-of-the-art models, namely 1D-ResCNN [24] and IC-U-

Net [11]. EEGOAR-Net and the competing models were applied to
he original EEG signal, and the reduction of the OA was analyzed

in the same way as described before (see Section 2.4.1). That is, |𝑟|
was calculated between the EOG channel located in the forehead and
he EEG segments recorded during blinks, saccades and smooth vertical
ye movements. Pearson’s correlation was also calculated between the
OG channels located at the sides of the eyes and the EEG segments
ecorded during smooth and saccadic horizontal eye movements. Fi-
ally, the influence of the models on EEG without OA was evaluated
y calculating the RMSE between the original and the attenuated
ignals. The PSD of these signals was also calculated and compared.
he aforementioned process to estimate the chance level for each OA
ondition was conducted as well.

The 1D-ResCNN [24] model was trained and tuned with the bench-
mark dataset EEGDenoiseNet [25], as described by the authors. We
6 
used the implementation available in [34]. In turn, for IC-U-Net, we
used the pre-trained implementation provided by the authors [11,35].
Since this model can only be applied to a fixed set of 30 EEG channels,

e had to adapt the EEG signal to the IC-U-Net channels using an
nterpolation method [36]. To learn more about this interpolation

process, please refer to section S.III of the supplementary material.

3. Results

3.1. Validation on Kobler datasets

The topographic distributions of the |𝑟| values calculated for the
different OA, as well as the RMSE for the resting condition are shown
in Fig. 3. Values for uncorrected EEG are depicted in the first column,

hile values for EEG after applying SGEYESUB are depicted in the
econd one. The third column onwards shows the results obtained after
pplying EEGOAR-Net with different EEG montages. In order to com-
rehensively compare the SGEYESUB and EEGOAR-Net performances,
e divided the 64 EEG channels contained in the original montage

nto 4 regions (frontal, central, parieto-occipital and temporal) and
averaged the |𝑟| and RMSE values across these regions (see Fig. 4). The
assignment of channels to each of the regions is detailed in the section
.II in the supplementary material. The RMSE distribution (Fig. 3)

shows the EEG information loss as a result of applying SGEYESUB
and EEGOAR-Net. Overall, it displays a gradient of descending RMSE
values from the frontal region to the occipital region. This pattern is
observed in the attenuation achieved by both methods, indicating the
same capacity to maintain neuronal information. In terms of regionally
averaged values (Fig. 4), it is worth noting that EEGOAR-Net removes
less EEG information than SGEYESUB in the frontal and central regions,
while it produces the same influence in the temporal and parieto-
occipital regions. The greatest influence, as with SGEYESUB, is in the
frontal region. However, this amount is small, remaining on average
below 2 μV. The statistical analysis reported no significant differences
between the RMSE values obtained for each approach. On the other
hand, it can be seen in Fig. 3 how the reduction of EEG channels used
for the different montages does not lead to a large increase in RMSE,
remaining always under 4 μV. Regarding the OA conditions, EEGOAR-
Net achieves a remarkable homogeneous reduction of its influence on
he EEG. Of note, the |𝑟| values obtained for each region in the cases of

horizontal eye movement and blinks are below or close to the chance
level. On the other hand, chance level values are not achieved except
for the temporal region in the vertical eye movement condition. How-
ver, when comparing with the |𝑟| values of uncorrected EEG, a large
eduction in vertical eye movements is observed. Statistical analysis
f the differences between the |𝑟| values obtained for each approach

reported significant differences between SGEYESUB and EEGOAR-Net
in all regions for the vertical eye movement condition and in the
emporal region in the blink condition. Considering the OA attenuation
chieved by EEGOAR-Net using different EEG montages (Fig. 3), the
eduction of EEG channels is not found to negatively influence the
erformance of our tool. Despite the gradual decrease in the number

of electrodes used, the |𝑟| values are in the same range. Indeed, a clear
improvement in the attenuation of vertical eye movements is observed
from the 56-channel montage compared to the 64-channel montage.
This is shown as a general reduction of |𝑟| values, especially in the
central and frontal regions.

Fig. 5 shows the PSD for the resting condition calculated on the
64-channel EEG without applying any method, and after applying
SGEYESUB and EEGOAR-Net. The PSD of each EEG channel was aver-
aged according to the 4 regions defined above. In the statistical analysis
of the influence of EEGOAR-Net on spectral information, significant
ifferences were found in the 𝛿 relative band power in the frontal, tem-

poral and parieto-occipital regions. On the other hand, the comparison
of the relative powers for each frequency band in each region after

applying SGEYESUB and EEGOAR-Net reported significant differences
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Fig. 3. Topographic distribution of Pearson correlation values |𝑟| in absolute units (a.u.) between the EOG derivatives and the EEG signal after applying EEGOAR-Net to the Kobler
dataset. The first row corresponds to the horizontal eye movement condition (Horz. mov.), the second to the vertical eye movement condition (Vert. mov.) and the third to the
blinking condition. In addition, the fourth row presents the RMSE values in μV calculated for the original resting EEG signal and after applying an artifact reduction approach.
The first column shows these values for the original EEG (i.e., without applying any OA reduction method), the second column shows the results after applying SGEYESUB. The
following columns show the EEGOAR-Net results using different EEG montages.
Fig. 4. Bar charts represents |𝑟| in absolute units (a.u.) and RMSE values in μV averaged across regions in Kobler datasets. Upper left shows the RMSE in each region after
applying SGEYESUB and EEGOAR-Net to the resting condition. Upper right, lower left and lower right depict the correlation of the EEG signals (uncorrected, applying SGEYESUB
and EEGOAR-Net) with the corresponding EOG during horizontal movements, vertical movements and blinks, respectively. The dashed horizontal line reflects the chance-level of
each OA condition. Error bars indicate the 95% confidence interval of the mean.
only in the 𝛿 band power in the temporal regions. Finally, statistical
analysis of the spectral influence of our model on each of the other 8
EEG montages used yielded the following results: we found significantly
lower relative powers for the 𝛿 band for each region and each EEG
montage; for the 𝜃 and the 𝛼 frequency bands, we found no significant
differences in relative band power in either EEG montages; in the
𝛽1 frequency band, we found significant differences for the relative
power values calculated over the frontal regions in the 40-channel, 32-
channel, 24-channel, and VEP-based EEG montages; and we also found
significant differences in the 𝛽 relative power values calculated over
2

7 
the frontal region in the 48-channel, 8-channel, and VEP-based EEG
montages.

3.2. Validation on Ehrlich dataset

Fig. 6 shows the topographic distribution of the values obtained
in the correlation and RMSE analyses on Ehrlich’s dataset for each
of the compared DL models. The values obtained for the uncorrected
signal and after applying the different methods are compared. Note that
the IC-U-Net results are presented using the original EEG montage of
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Fig. 5. PSD in normalized units (n.u.) calculated on the signals (uncorrected, applying SGEYESUB and EEGOAR-Net) at the resting condition for the four considered regions in
the Kobler datasets. Shades indicate the 95% confidence interval of the mean.
the data set. This was done for comparison purposes by applying the
interpolation method to the IC-U-Net results [36]. Individual examples
in the time domain of the performance of each model on the different
types of OA are shown in section S.IV of the supplementary material.
As with the Kobler datasets, for a better understanding of the results,
they were averaged by regions (Fig. 7). The assignment of channels
to each of the regions can be consulted in the section S.II in the
supplementary material. The RMSE analysis (Fig. 6) reflects the same
distribution as that observed in the cross-validation analysis (Fig. 3)
for our architecture. In this sense, our model mainly affects the frontal
region channels. In this region, an average RMSE of less than 3 μV
was obtained, while in the rest of the regions, average values around
1 μV were obtained. In turn, both competing models have a greater
negative impact on EEG information compared to EEGOAR-Net. For IC-
U-Net, the average RMSE in the frontal and temporal regions is 4.5 μV
while the values for the central and parieto-occipital regions is greater
than 3 μV. Regarding 1D-ResCNN, this model yields a RMSE of 7.5 μV
for the frontal region and values above 6 μV for the central, parieto-
occipital and temporal regions. A visual example of the ability of each
model to maintain the original EEG characteristics is shown in S.Fig
7 of the supplementary material. Regarding the reduction of the OA
influence, different performance is observed for each type of OA. The
blinks attenuation achieved with EEGOAR-Net shows |𝑟| values below
the chance level in all regions. Therefore, a total reduction of blink
artifacts is achieved. In a similar way, 1D-ResCNN produces an EEG
signal with fully attenuated blinks, whereas IC-U-Net is not able to
reduce the EEG correlation with the EOG to the chance level. However,
our proposed method achieved a lower reduction of artifacts related
to eye movements in this dataset. Of note, in the two types of hori-
zontal movements, none of the regions reflect an |𝑟| below the chance
level. In contrast, the attenuation of this type of artifacts achieved
by the competing models was superior. Vertical movement reduction
with EEGOAR-Net also does not reach the chance level in the frontal
and central region channels. However, compared to the correlation
values with EOG derivatives for the uncorrected signal, the attenuation
achieved with EEGOAR-Net is notable. As for the competing models,
1D-ResCNN achieves a complete attenuation of this type of artifacts,
8 
reaching correlation values below chance level, while the attenuation
of IC-U-Net is similar to that of EEGOAR-Net in all regions.

The spectral analysis of the EEG at resting condition after applying
the different models is shown in Fig. 8. Statistical analyses yielded
significant differences only for the 𝛿 frequency band in the frontal
and temporal regions when EEGOAR-Net is applied to artifact-free EEG
signal. For 1D-ResCNN, significant differences are observed in the 𝛿
band in the frontal and central regions, in the 𝜃 band in the temporal
region and in the 𝛼 band in the frontal and central regions. On the
other hand, the analysis of the distortion of the spectral information
introduced by IC-U-Net shows significant differences mainly in the
temporal region. This is observed in the 𝜃, 𝛼, 𝛽1 and 𝛽2 bands. In
addition, significant differences are also observed in the frontal, central
and parieto-occipital regions for the 𝛽1 band and in the frontal region
for the 𝛿 frequency band.

4. Discussion

In this study, we propose EEGOAR-Net, a new DL architecture
to attenuate the influence of OA on EEG. Our aim is to provide a
plug-and-play tool that allows OA attenuation without performing any
prior calibration or using EOG channels. In addition, we introduce a
novel training methodology to ensure that EEG-based DL models are
montage independent, allowing them to be used with different EEG
montages. In order to evaluate the different features of our proposal, an
extensive analysis has been carried out using different datasets [30,31]
with a total of 58 participants. Furthermore, its performance has been
compared to that of two models of the state-of-the-art [11,24]. The
results of these analyses are discussed below.

4.1. EEGOAR-Net vs. SGEYESUB

The performance’s results of EEGOAR-Net in the 64-channel EEG
montage for the Kobler datasets were analyzed and compared with the
SGEYESUB ones. Applying EEGOAR-Net, the |𝑟| values of the signal
with EOG in the horizontal eye movement and blinking conditions are
decreased to the chance level in all regions considered. That is, the
influence on the EEG of these OAs is completely attenuated. On the
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Fig. 6. Topographic distributions of |𝑟| in absolute units (a.u.) and RMSE in μV calculated in the Ehrlich dataset. The first column shows the RMSE for each channel between
EEG signals during the resting condition, using the uncorrected signal as a reference. The five following columns displays the topographic distributions of |𝑟| between each EEG
channel and the corresponding EOG during different OA conditions calculated. The first row shows the values for the uncorrected EEG, the second, third and fourth rows the
values after applying 1D-ResCNN, IC-U-Net and EEGOAR-Net, respectively.

Fig. 7. Bar charts represent the |𝑟| in absolute units (a.u.) and RMSE values in μV averaged across regions in the Ehrlich dataset. Upper left shows the RMSE in each region
between uncorrected EEG and EEG signals after applying 1D-ResCNN, IC-U-Net and EEGOAR-Net during rest condition. Upper middle and upper right depict the correlation of the
EEG signals with the corresponding EOG during saccadic and smooth horizontal movements, respectively. Lower left, lower middle and lower right depict a correlation with EOG
during saccadic and smooth vertical movements, and blinks, respectively. The dashed horizontal line reflects the chance-level of each OA condition. Error bars indicate the 95%
confidence interval of the mean.
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Fig. 8. PSD calculated on the signals (uncorrected and 1D-ResCNN, IC-U-Net and EEGOAR-Net) at the resting condition for the four regions considered in the Ehrlich dataset.
Shades indicate the 95% confidence interval of the mean.
other hand, artifacts derived from vertical eye movements are the least
affected by the action of EEGOAR-Net. Even so, the correlation values
|𝑟| of EOG with the corrected signal are close to the chance level and
their reduction with respect to the uncorrected signal is notable. For
instance, the correlation values in the frontal region before applying
our method averaged |𝑟| = 0.6, while the value for the signal corrected
with EEGOAR-Net is around |𝑟| = 0.3. Similarly, in the central region,
the value for the uncorrected signal is approximately |𝑟| = 0.5, while
in the signal corrected by our model decreases to |𝑟| = 0.3. Therefore,
although we cannot confirm that the influence of vertical eye move-
ments on EEG is completely eliminated, EEGOAR-Net leads to a large
reduction. Comparing these results with those obtained by applying
SGEYESUB confirms that the attenuation of vertical eye movements
achieved by EEGOAR-Net is significantly lower. This makes sense be-
cause SGEYESUB is a method that requires training for each participant
and each session, so it is best suited to the specific characteristics of
the signal in each use. However, this statistical analysis also notes
that the reduction of blinks and horizontal eye movements achieved
by EEGOAR-Net is comparable to that of SGEYESUB, despite the fact
that our proposal is a technique that does not require prior calibration.
Regarding the undesired influence on the EEG, our model produces a
similar, or even lesser, impact on the time domain than SGEYESUB.
As with the algorithm on which it is based, EEGOAR-Net affects more
the anterior regions. This is because it is in the channels of these
regions that OA manifests itself most intensely [2]. Despite this, the
largest information loss presents a value of less than 2 μV. Considering
that the range of characteristic EEG values is between 10 μV and 100
μV [2,10], this undesired influence does not represent a great distortion
of the information contained in the original EEG. Statistical analysis
confirms that the influence of EEGOAR-Net on the time domain signal
is not significantly different from that of SGEYESUB. From a spectral
domain perspective, EEGOAR-Net produces a greater undesired impact
on the EEG PSD than SGEYESUB. This was manifested in the statistical
analysis as significant lower band relative powers in frontal, parieto-
occipital and temporal regions in the 𝛿 frequency band. This significant
decrease in 𝛿 band relative power may be due to the fact that the
spectral influence of OA is mainly observed in this frequency band [37].
10 
Therefore, it makes sense for EEGOAR-Net to focus its actuation on the
𝛿 band, even when no OA is present.

Taking all these results together, we can state that EEGOAR-Net
performance is comparable to that of SGEYESUB, both in terms of OA
reduction and preservation of EEG neural information. However, there
is a significant difference between the two methods. While SGEYESUB
is a tool that requires a calibration prior to its use and EOG channels,
EEGOAR-Net overcomes such limitations. This has made it possible
for our model to be applied to the EEG of participants who were
not included in the training set. That is, our model has proven to
work as a plug-and-play tool. Therefore, we consider that the results
obtained are satisfactory, since they demonstrate a performance similar
to SGEYESUB under more complex evaluation conditions (i.e., without
prior calibration and use of EOG).

4.2. Evaluation of the method for EEG montage independence

We evaluated our method for making DL models independent of
the EEG montage. To do so, EEGOAR-Net was trained using eight
additional EEG montages, in which the signal from different channels
was masked. This method was evaluated by masking the EEG signals
of the test set. The same analyses were performed to determine the
degree of reduction of the artifacts and the degree of influence on
the EEG information. As can be seen in Fig. 3, both the values of
|𝑟| for the different OA conditions, and the RMSE calculated during
resting, are in the same range as the results obtained for the 64-channel
montage. Notably, the results for vertical eye movement attenuation
and resting conditions are better when having a lesser number of EEG
channels compared to the original 64-channel montage. The model has
learned to perform the task using spatial information from the different
channels available, however, it can be that the information provided by
some channels has a negative influence on the task. This could occur if
the signal recorded on those channels presents strange information that
may confuse the network. For example, the 64-channel montage con-
tains peripheral electrodes, such as temporal channels. These channels
are more likely to contain noisy signals due to muscle activity [38], so
this could be the reason why not including these channels results in
better EEGOAR-Net performance. Overall, the results suggest that the
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proposed methodology for training EEGOAR-Net allows attenuating OA
independently of the EEG montage employed. Moreover, this does not
result in a large loss of EEG signal information in the time domain. This
would ensure, for example, the use of EEGOAR-Net in VEP-based BCI
experiments, which concentrate EEG channels in the parieto-occipital
region [7]. Regarding the spectral analyses, the frequency band that
s mainly affected is the 𝛿 band. These results are in line with those
iscussed in the analysis on the 64-channel EEG montage (see Sec-

tion 4.1). On the other hand, the significant increase in the relative
power of the 𝛽1 and 𝛽2 bands found in the frontal region for some
EG montages could also be the result of the influence of the model
n the low frequencies of the spectrum. In this sense, the decrease in
he relative power of the 𝛿 band results in an increase of the relative
ower of the rest of the bands, which is significant in the high frequency
ands. Even so, we consider that the influence on the EEG spectral
omain of EEGOAR-Net would not prevent the satisfactory use of this
ool in different applications, such as BCI systems. For instance, in the
otor imagery (MI) paradigm [39], the activity typically employed to
iscern the user’s intentions are sensorimotor rhythms, which occur in

the sensorimotor zone (i.e., central region) and are characterized by 𝜇
ctivity (8–13 Hz) [1].

Based on these results, we believe that the objective of making our
odel independent of the montage has been achieved. Therefore, it
as been shown that masking the EEG signal from different channels

during model training helps the model learn deep spatial EEG rela-
tionships. Thus, we conclude that this novel method is of great value,
s it can contribute to overcoming the dependence of EEG-based DL
rchitectures on the montages used.

4.3. EEGOAR-Net in a different scenario

EEGOAR-Net was applied to attenuate OA contained in EEG from
a public dataset presented by Ehrlich et al. (2019) [31]. The results
demonstrate that our tool can attenuate the influence of OA on EEG
ignals without prior calibration or the need for an EOG channel, while
reserving the original characteristics of the EEG. The RMSE values

obtained during the resting state with respect to the uncorrected EEG
re 3 μV on average in the frontal region and 1 μV on average in the

rest of the regions. These results are comparable to those obtained in
the cross-validation analysis. Therefore, it is proven that the ability to
not significantly influence the EEG signal in the absence of OA is main-
tained when EEGOAR-Net is applied to new setup settings. These results
contrast with those of competing methods, which have higher RMSE
values, meaning that they may produce a greater loss of the neuronal
nformation present in the EEG. A similar behavior can be observed in
he statistical analysis of the differences in the spectral domain. While

EEGOAR-Net only significantly distorts the spectral distribution of the
signal in the 𝛿 band in the frontal and temporal regions, the undesired
nfluence of 1D-ResCNN and IC-U-Net is much greater, affecting more

frequency bands in different regions. Therefore, the results of the time
and spectral domain analyses indicate that EEGOAR-Net is far superior
o competing methods in preserving the original EEG signal informa-
ion. This is of particular importance since the main goal of applying
A attenuation techniques in EEG is to reduce the influence of these
rtifacts while preserving the neural information present. Otherwise,
he result could be a signal with completely different information, thus
egatively affecting further analysis. This is especially worrying if this
ignal were to be used for the diagnosis or study of pathologies from
EG signal.

With respect to OA attenuation, EEGOAR-Net achieved excellent
esults removing blink influence. It is observed that the |𝑟| values

of each region are reduced down to the chance level. That is, these
A are completely attenuated from the EEG signal. This is of great

importance, since blinks are the most frequent OA during recordings,
as they are unavoidable. Furthermore, blinks are the OA that most
11 
influence EEG. Only 1D-ResCNN achieved similar results, while IC-U-
et failed to completely attenuate these prominent artifacts. However,

t should be noted that the reduction of OA related to eye movements
did not reach the chance level in some of the brain regions. Although
EEGOAR-Net achieved a significant reduction compared to the original
|𝑟| values, its performance with horizontal eye movements was worse
than that of competing methods. Regarding vertical eye movements,
the attenuation achieved by EEGOAR-Net was comparable to that of
C-U-Net, but inferior to that of 1D-ResCNN. Considering the obtained
esults, we believe that the lower performance of our network in
ttenuating eye movements may be attributed to its strong ability to
reserve the original EEG characteristics. In this sense, unlike blinks,
ye movements do not produce such a significant disruption of the
EG signal. In fact, these artifacts manifest themselves as deviations
i.e. rises and falls) from the average value [2]. However, much of the

neural information is still present in the EEG. This can be seen in figures
S.Fig 9, S.Fig 10, S.Fig 11 and S.Fig 12 included in the supplementary

aterial. Therefore, we hypothesize that since these types of OA have
 lesser impact on the EEG, our network tends to affect it to a slightly
esser extent, prioritizing the preservation of its original characteristics.
his is evident in the figures mentioned above, which illustrate how

EEGOAR-Net reduces the deviation introduced by eye movements while
preserving EEG fluctuations unrelated to OA.

Based on all these results, we believe that EEGOAR-Net has proven
to be a valuable approach for EEG-based experiments. In particular,
our model could be of great usefulness in BCI experiments, since it
achieves a remarkable attenuation of OA, especially blinks, produces
minimal alteration of EEG information, and can be used with different
EEG montages. Moreover, all this is achieved without the need for
EOG channels and without prior calibration. On the other hand, when
compared to the two state-of-the-art methods considered, EEGOAR-Net
presents a similar or even superior performance to IC-U-Net in terms of
reducing certain OAs in the EEG, but inferior to that of 1D-ResCNN.
However, in general terms it can be stated that the performance of
our network is more desirable than that of competing methods, since it
achieves a remarkable reduction of OAs while ensuring the preservation
of the original information present in the EEG. This makes EEGOAR-Net
a more reliable tool than its competitors.

4.4. Contributions

This study proposes a novel approach to address the problem of
EEG contamination by OA. Through different analyses we have demon-
strated the advantages of our method, which overcomes the limitations
of existing alternatives. First, unlike methods such as SGEYESUB [12]
or regression [2], EEGOAR-Net does not require the use of EOG chan-
nels. This simplifies the setup of EEG experiments and makes it more
comfortable for the experimental participant. Secondly, our model is
completely inter-subject, as the results of the different analyses car-
ried out have shown. Unlike the method presented by Kobler et al.
(2020) [12], EEGOAR-Net can act on the EEG of any user without the
eed for calibration prior to each use. This significantly reduces the

time spent in the experiments on issues unrelated to the experiment
itself. Third, the novel training methodology we propose to make our
network independent of the EEG montage has proven to be effective.
In this regard, in this study, we propose for the first time an EEG-based
DL network that can be applied to different EEG montages. This makes
our network very versatile and useful for EEG-based research, where
different montages are used depending on the object of study. Finally,
our proposal does not depend on human factors in its performance.
Unlike ICA, which requires a person to determine which components
must be eliminated [11], our model acts in a self-supervised manner,
which allows it to be applied in real time. Therefore, this makes it
possible for our proposal to be applied to BCI systems.
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4.5. Limitations and future work

Despite the promising results presented, our study is not exempt
from limitations. First of all, the EEG datasets with which the model
was trained must be taken into account. These have EEG signals from a
limited number of participants (i.e., 45) [30]. Given the generalizability
of DL models, more data would certainly help improve the results [8].
Also, it has been shown that the attenuation of eye movements still
has room for improvement. Therefore, recording different types of eye
movements could help improve the attenuation of such artifacts. For
this purpose, we have developed a publicly available application for the
BCI Medusa platform (https://medusabci.com/market/blink/), which
emulates the OA recording paradigm used in [12,31]. This allows the
frequency of the stimuli to be modified, thus enabling them to be
recorded at different speeds. Regarding the proposed method for the
independence of EEG montages, it should be noted that the models
trained with this method cannot be applied to all EEG signals. In
this sense, they can only be applied to signals whose EEG channels
are included in the training dataset montage. However, we believe
that the 64 EEG channels with which our model has been trained
allow it to be used in many of the montages typically used in the
literature. In this sense, EEGOAR-Net covers completely the channels
of the 10–20 standard system and most of the channels of the 10–
10 standard system. Concerning the design of our model, there are
some aspects that could be relevant and are worth studying in the
future. For example, it should be analyzed how the number of montages
(k) and their electrode distribution influence the proposed training
methodology. Finally, other relevant features of the EEG signal, such
as its complexity [40] or functional connectivity [4], have not been
aken into account in the development of EEGOAR-Net. Therefore, it is

necessary to thoroughly study how EEGOAR-Net affects these features.
In addition, its performance has only been evaluated on basal EEG,
which makes it worth evaluating in the future on EEG signals recorded
under different conditions, such as in different BCI applications.

5. Conclusion

In this study, we have presented EEGOAR-Net, a novel DL architec-
ure for OA reduction in EEG. This model attempts to overcome the
imitations of current approaches. In particular, we have designed our
odel so that it does not depend on the human factor, does not require

calibration or EOG channels, and can be used in real time and with
different EEG montages. The model was trained using the SGEYESUB
algorithm as a reference attenuation mechanism. Furthermore, a novel
training methodology was employed to ensure that our model performs
correctly regardless of the EEG montage employed. The OA reduction
ability of EEGOAR-Net was exhaustively validated on several datasets
and compared with two state-of-the-art DL models. The results obtained
showed the great ability of EEGOAR-Net to reduce the influence of OA
on EEG, especially from one of the most common artifacts, the blinks,
while producing minimal influence on the original EEG information. It
has also proven to overcome the need for calibration and the use of
EOG channels, as well as the dependence on a single EEG montage.
Therefore, we can conclude that EEGOAR-Net is a versatile and useful
tool for OA reduction, with performance comparable to SGEYESUB and
even superior to competing methods. Our approach could contribute
to improving EEG-based studies without decreasing the effective time
of use of the systems or conditioning the allocation of EEG channels
used. Of particular interest, the proposed method to make DL models
independent of EEG montage has been shown to be effective. In the
future, this method could be applied to other EEG-based DL models to
allow their use in a wider variety of EEG and BCI experiments.
12 
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