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In this work, multilayer crisscross errors and erasures are 
considered, which affect entire rows and columns in the 
matrices of a list of matrices. To measure such errors and 
erasures, the multi-cover metric is introduced. Several bounds 
are derived, including a Singleton bound, and maximum 
multi-cover distance (MMCD) codes are defined as those 
attaining it. Duality, puncturing and shortening of linear 
MMCD codes are studied. It is shown that the dual of a 
linear MMCD code is not necessarily MMCD, and those 
satisfying this duality condition are defined as dually MMCD 
codes. Finally, some constructions of codes in the multi-cover 
metric are given, including dually MMCD codes, together with 
efficient decoding algorithms for them.
© 2025 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).

1. Introduction

The cover metric was introduced independently in [5,7,22] to measure the number of 
crisscross errors in memory chip arrays [22]. Later they proved to be useful in narrow
band power line communication (NB-PLC) smart grids [10,26]. Crisscross errors affect 
entire rows and columns of a matrix that encodes the stored information. Two types 
of codes attaining the Singleton bound for the cover metric were introduced in [5,22], 
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Fig. 1. Illustration of a pattern of crisscross errors throughout two 4 × 4 binary matrices (which constitute 
one single codeword). The error pattern affects almost entirely (but not necessarily entirely) two rows in 
the first matrix and one column and one row in the second matrix. Thus in this example we are considering 
ℓ = 2 realizations of a channel with crisscross errors, where a total 4 multilayer crisscross errors occurred 
(2 in the first realization and 2 in the second one).

one of them based on the rank metric and patented in [20]. Since then, codes in the 
cover metric with other correcting features (e.g., probabilistic, list-decoding, etc.) were 
subsequently studied [1,11,13,23--25].

In this work, we extend the cover metric to tuples of ℓ matrices or arrays, where 
the length ℓ is a fixed positive integer. We call the new metric the multi-cover met
ric. This metric is suitable to correct simultaneously a number of crisscross errors and 
erasures distributed over the ℓ matrices in any way and without knowledge of the dis
tribution at the decoding end. We call such errors and erasures multilayer crisscross 
errors and erasures. These patterns of errors and erasures occur naturally when one 
considers ℓ independent realizations of channels or systems where crisscross errors and 
erasures occur. This is the case, for instance, when one considers correction across mul
tiple memory chip arrays simultaneously, or when one considers multiple NB-PLC smart 
grids. In such situations, considering a Cartesian product of codes attaining the Sin
gleton bound for the cover metric or a concatenation with convolutional codes do not 
yield codes attaining the Singleton bound for the multi-cover metric. Hence, if one wants 
optimal codes (meaning those whose minimum multi-cover distance attains the Single
ton bound), one needs to consider other methods (see the bounds and constructions in 
Sections 3 and 5, respectively). See Fig. 1 above for a typical multilayer crisscross error 
pattern.

The organization and main contributions of this manuscript are as follows. In Sec
tion 2, we provide the main definitions, notations and some preliminary results. In 
Section 3, we provide several bounds on the parameters of codes in the multi-cover met
ric, including a Singleton-like bound. Maximum multi-cover distance (MMCD) codes 
are then defined as those attaining it. In Section 4, we explore the duality, puncturing 
and shortening of linear MMCD codes. It is shown that the dual of a linear MMCD 
code is not MMCD in general, in contrast with other classical metrics. Dually MMCD 
codes are defined as those linear MMCD codes whose duals are also MMCD. We char
acterize dually MMCD codes in terms of information multi-covers, which generalize the 
notion of information sets. Finally in Section 5, we provide several constructions of 
codes in the multi-cover metric, including dually MMCD codes, and provide decoders 
for them.
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2. Definitions and basic properties

Denote N = {0, 1, 2, . . .} and fix a prime power q. We denote by Fq the finite field with 
q elements. For positive integers m and n, we denote by Fm×n

q the set of m×n matrices 
with entries in Fq. We also define [n] = {1, 2, . . . , n}. Throughout this manuscript, we 
will fix positive integers ℓ, n1, n2, . . . , nℓ, m1,m2, . . . ,mℓ, and we will consider codes 
as subsets of 

∏︁ℓ
i=1 F

mi×ni
q . Linear codes will be Fq-linear subspaces of such a vector 

space.
Set m = (m1,m2, . . . ,mℓ) and n = (n1, n2, . . . , nℓ). A multi-cover in 

∏︁ℓ
i=1 F

mi×ni
q is 

a tuple of ℓ pairs (Xi, Yi)ℓi=1, where Xi ⊆ [mi] and Yi ⊆ [ni], for i ∈ [ℓ]. We denote by 
MC(m,n) = {(Xi, Yi)ℓi=1 | Xi ⊆ [mi], Yi ⊆ [ni]} the set of multi-covers in 

∏︁ℓ
i=1 F

mi×ni
q . 

Finally, given X = (Xi, Yi)ℓi=1 ∈ MC(m,n), we define its size as |X| =
∑︁ℓ

i=1(|Xi|+ |Yi|)
and its projection map πX :

∏︁ℓ
i=1 F

mi×ni
q −→ ∏︁ℓ

i=1 F
(mi−|Xi|)×(ni−|Yi|)
q by removing 

from Ci ∈ Fmi×ni
q the rows indexed by Xi and the columns indexed by Yi in order to 

obtain πX(C1, C2, . . . , Cℓ). Given C ∈ Fm×n
q and (C1, C2, . . . , Cℓ) ∈ ∏︁ℓ

i=1 F
mi×ni
q , we 

denote by Ca,b and Ci,a,b the entries in row a and column b of the matrices C and Ci, 
respectively. Throughout the manuscript, we will also assume, without loss of generality, 
that ni ≤ mi, for i ∈ [ℓ], and m1 ≥ . . . ≥ mℓ.

We extend the definition of the cover metric from [7,22] to the multilayer case, as 
follows. Note that the name ``term rank metric'' is also used for the cover metric, see 
[6].

Definition 1. Let C = (C1, C2, . . . , Cℓ) ∈ ∏︁ℓ
i=1 F

mi×ni
q , where Ci ∈ Fmi×ni

q , for i ∈ [ℓ]. 
We say that (Xi, Yi)ℓi=1 ∈ MC(m,n) is a multi-cover of C if (Xi, Yi) is a cover of Ci, 
which means that if Ci,a,b ̸= 0, then a ∈ Xi or b ∈ Yi, for i ∈ [ℓ]. We denote by MC(C)
the set of all multi-covers of C (note that MC(C) ⊆ MC(m,n)). The multi-cover weight 
of C is then defined as wtMC(C) = min{|X| | X ∈ MC(C)}. The multi-cover metric 
is defined as dMC : (

∏︁ℓ
i=1 F

mi×ni
q )2 −→ N, where dMC(C,D) = wtMC(C − D), for 

C,D ∈ ∏︁ℓ
i=1 F

mi×ni
q . Given a code 𝒞 ⊆ ∏︁ℓ

i=1 F
mi×ni
q , we define its minimum multi

cover distance as dMC(𝒞) = min{dMC(C,D) | C,D ∈ 𝒞, C ̸= D}. When considering the 
minimum distance of a code 𝒞, we implicitly assume that |𝒞| > 1.

Throughout this manuscript, we will consider the column-wise Hamming weight and 
metric in 

∏︁ℓ
i=1 F

mi×ni
q , and we will denote them, respectively, as wtCH and dC

H . More con
cretely, if C = (C1, C2, . . . , Cℓ) ∈

∏︁ℓ
i=1 F

mi×ni
q , then we define wtCH(C) =

∑︁ℓ
i=1 wtCH(Ci), 

where wtCH(Ci) is the number of non-zero columns of the matrix Ci ∈ Fmi×ni
q , for i ∈ [ℓ]. 

We then define dC
H(C,D) = wtCH(C −D), for C,D ∈∏︁ℓ

i=1 F
mi×ni
q .

Note that the cover metric [7,22] is recovered from the multi-cover metric when ℓ = 1
(in particular, the multi-cover metric is indeed a metric as it is a sum of metrics). 
Similarly, the multi-cover metric and the Hamming metric coincide in 

∏︁ℓ
i=1 F

mi×ni
q if 

mi = ni = 1, for i ∈ [ℓ]. In this way, the multi-cover metric interpolates between the 
cover metric and the Hamming metric. We also have the following trivial relation.
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Proposition 2. For C ∈∏︁ℓ
i=1 F

mi×ni
q and 𝒞 ⊆∏︁ℓ

i=1 F
mi×ni
q , we have

wtMC(C) ≤ wtCH(C) and dMC(𝒞) ≤ dC
H(𝒞).

As usual, note that if 𝒞 ⊆∏︁ℓ
i=1 F

mi×ni
q is linear, then

dMC(𝒞) = min{wtMC(C) | C ∈ 𝒞 \ {0}}.

Next, we define decoders for multilayer crisscross errors and erasures. This defines 
implicitly the concept of such errors and erasures.

Definition 3. Fix positive integers ρ and t, let 𝒞 ⊆∏︁ℓ
i=1 F

mi×ni
q and let X = (Xi, Yi)ℓi=1 ∈

MC(m,n) be such that |X| = ρ. A t-error and ρ-erasure-correcting decoder for the code 
𝒞 and the erasure pattern X is a map D :

∏︁ℓ
i=1 F

mi×ni
q −→ ∏︁ℓ

i=1 F
(mi−|Xi|)×(ni−|Yi|)
q

such that D(πX(C) + E) = C, for all C ∈ 𝒞 and all E ∈ ∏︁ℓ
i=1 F

(mi−|Xi|)×(ni−|Yi|)
q with 

wtMC(E) ≤ t. In general, the decoder D will depend on 𝒞, X and t (which are known 
by the decoder), but we do not write this dependency for brevity.

The fact that the decoder D depends on X reflects the fact that the erasure pattern 
X is known by the decoder.

We have the following characterization of the multilayer crisscross error and erasure
correction capability of a code. This result implies that the multi-cover metric is the 
right metric to determine the capability of a code to correct a given number of multilayer 
crisscross errors and erasures.

Proposition 4. Fix positive integers t and ρ and fix a code 𝒞 ⊆ ∏︁ℓ
i=1 F

mi×ni
q . There 

exists a t-error and ρ-erasure-correcting decoder for 𝒞 and for every X ∈ MC(m,n) with 
|X| = ρ if, and only if, 2t + ρ < dMC(𝒞).

Proof. First, assume that there exists X ∈ MC(m,n) such that |X| = ρ and there is no 
t-error and ρ-erasure-correcting decoder for 𝒞 and X. Hence, there exist distinct C,D ∈ 𝒞
and E,F ∈∏︁ℓ

i=1 F
(mi−|Xi|)×(ni−|Yi|)
q such that πX(C) +E = πX(D) +F , wtMC(E) ≤ t

and wtMC(F ) ≤ t. We have that

wtMC(C −D) ≤ wtMC(πX(C −D)) + |X| = wtMC(E − F ) + ρ ≤ 2t + ρ.

Hence 2t + ρ ≥ dMC(𝒞).
Conversely, assume that 2t + ρ ≥ dMC(𝒞). Then there exist distinct C,D ∈ 𝒞 such 

that wtMC(C − D) ≤ 2t + ρ. Therefore, there exist X,X ′, X ′′ ∈ MC(m,n) such that 
|X| = ρ, |X ′| = |X ′′| = t and X ∪X ′ ∪X ′′ ∈ MC(C −D), where X ∪X ′ ∪X ′′ is defined 
in the obvious way.

Let E′, F ′ ∈∏︁ℓ
i=1 F

mi×ni
q be formed by the entries of −C and −D inside X ′ and X ′′, 

respectively, and zero outside. Finally, let E = πX(E′) and F = πX(F ′). The reader may 
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verify that πX(C) +E = 0 = πX(D) + F , wtMC(E) ≤ t and wtMC(F ) ≤ t. Hence there 
is no t-error and ρ-erasure-correcting decoder for 𝒞 and X. □
3. Bounds on code parameters

In this section, we provide bounds on different multi-cover-metric parameters of a 
code. We start by providing a Singleton bound for the multi-cover metric. We note 
that it holds in the same way for the Hamming metric by columns, which constitutes a 
strengthening of [2, Th. 3.2]. However, it may be proven as in that article, thus we omit 
the proof for brevity. The case of the multi-cover metric is trivial from the case of the 
Hamming metric by columns by Proposition 2.

Theorem 1. Let 𝒞 ⊆ ∏︁ℓ
i=1 F

mi×ni
q be a code, and set d = dC

H(𝒞) or d = dMC(𝒞). Let δ
and j be the unique integers such that d−1 =

∑︁j−1
i=1 ni+δ, 1 ≤ j ≤ ℓ and 0 ≤ δ ≤ nj−1. 

Then

|𝒞| ≤ q
∑︁ℓ

i=j mini−mjδ. (1)

As a consequence, we define maximum multi-cover distance (MMCD) codes as follows.

Definition 5. We say that a code 𝒞 ⊆ ∏︁ℓ
i=1 F

mi×ni
q is maximum multi-cover distance 

(MMCD) if equality holds in (1).

In the case of equal numbers of rows m = m1 = . . . = mℓ, we obtain a more classical 
form of the Singleton bound from (1):

|𝒞| ≤ qm(N−d+1).

Similarly, when m = m1 = . . . = mℓ, we may identify the vector spaces 
∏︁ℓ

i=1 F
m×ni
q

and FN
qm , with N = n1 + · · · + nℓ, and all the classical upper bounds on the minimum 

distance or the code size still hold by Proposition 2 (see, e.g., [9, Ch. 2] for bounds).
Next we explore bounds involving the size of a ball in the multi-cover metric. Define 

the ball in the multi-cover metric centered in C and of radius r as

ℬr(C) =
{︄
D ∈

ℓ ∏︂
i=1

Fmi×ni
q

⃓⃓⃓
⃓⃓ dMC(C,D) ≤ r

}︄
,

where r ∈ N and C ∈∏︁ℓ
i=1 F

mi×ni
q . We also denote Br = |ℬr(0)|, for r ∈ N. The task of 

finding exactly the size Br seems challenging. In Subsection 3.1, we will provide upper 
and lower bounds on its size that coincide asymptotically when q tends to infinity.

We start with a sphere-packing bound, which is straightforward and proven in the 
same way as for any metric.
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Theorem 2. For a code 𝒞 ⊆∏︁ℓ
i=1 F

mi×ni
q , setting r = ⌊(dMC(𝒞) − 1)/2⌋, we have that

Br · |𝒞| ≤ q
∑︁ℓ

i=1 mini . (2)

As a consequence, we may define perfect codes for the multi-cover metric as follows.

Definition 6. We say that a code 𝒞 ⊆ ∏︁ℓ
i=1 F

mi×ni
q is a perfect code for the multi-cover 

metric if equality holds in (2).

In the case r = 1, it is straightforward to check that

B1 = 1 +
ℓ ∑︂

i=1 
(ni (qmi − 1) + mi (qni − 1) −mini(q − 1)) . (3)

Using (3), we may obtain a projective sphere-packing bound by making use of projections, 
similarly to [2, Th. 3.7]. The proof is analogous thus omitted.

Theorem 3. Let 𝒞 ⊆∏︁ℓ
i=1 F

mi×ni
q with |𝒞| ≥ 2, d = dMC(𝒞) and 3 ≤ d ≤ n1 +n2 + · · ·+

nℓ. Let j and δ be the unique integers such that 1 ≤ j ≤ ℓ − 1, 1 ≤ δ ≤ nj+1 − 1, and 
d− 3 =

∑︁j
i=1 ni + δ. Define n′

j+1 = nj+1 − δ and n′
i = ni if i > j + 1. Then

|𝒞| ≤
⎢⎢⎢⎣ q

∑︁ℓ
i=j+1 min

′
i

1 +
∑︁ℓ

i=j+1

(︂
n′
j+1(qmj − 1) + mj+1(qn

′
j+1 − 1) −mj+1n′

j+1(q − 1)
)︂
⎥⎥⎥⎦ .

Combining Theorems 1 and 3, we may obtain a bound on ℓ for MMCD codes in the 
case of equal rows and equal columns.

Theorem 4. Assume that m = m1 = . . . = mℓ and n = n1 = . . . = nℓ (thus n ≤ m). 
Assume that there exists an MMCD code 𝒞 ⊆ (Fm×n

q )ℓ with d = dMC(𝒞). Let 0 ≤ δ ≤
n− 1 be the remainder of the Euclidean division of d− 3 by n. Then

ℓ ≤
⌊︃
q2m − 1 −m(qn−δ − 1) − (n− δ)(qm − 1) + m(n− δ)(q − 1)

m(qn − 1) + n(qm − 1) −mn(q − 1) 

⌋︃
+
⌊︃
d− 3
n 

⌋︃
+ 1. 

(4)
Now assume that m = n. If q ≥ 4 and n ≥ 2, or if q = 3 and n ≥ 3, or if q = 2 and 
n ≥ 4, then the upper bound (4) is tighter than (and thus implies) the bound

ℓ ≤
⌊︃

2qn

3n 

⌋︃
+
⌊︃
d− 3
n 

⌋︃
+ 1. (5)

Proof. Define ℓ′ = ℓ−⌊(d−3)/n⌋ and note that, since 𝒞 is MMCD, then |𝒞| = qm(ℓn−d+1). 
Thus, applying Theorem 3, we get
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qm(ℓn−d+1)(1 + (ℓ′ − 1)(m(qn − 1) + n(qm − 1) −mn(q − 1)) + m(qn−δ − 1)

+(n− δ)(qm − 1) −m(n− δ)(q − 1)) ≤ qm(ℓn−d+3).

After simplifying this inequality, we obtain (4).
Now assume that m = n. Since 0 ≤ δ ≤ n− 1, we have

ℓ−
⌊︃
d− 3
n 

⌋︃
− 1 ≤ q2n − 1 − n(qn−δ − 1) − (n− δ)(qn − 1) + n(n− δ)(q − 1)

2n(qn − 1) − n2(q − 1) 

≤ q2n − 1 − n(q − 1) − (qn − 1) + n2(q − 1)
2n(qn − 1) − n2(q − 1) 

≤ 2qn

3n 
,

where the last inequality is equivalent to

qn
(︃
qn − 1
q − 1 

− 2n
)︃

≥ 3n(n− 1).

The reader may verify by induction on n that

qn ≥ 3n(n− 1) and qn − 1
q − 1 

− 2n ≥ 1,

if q ≥ 4 and n ≥ 2, or if q = 3 and n ≥ 3, or if q = 2 and n ≥ 4, and the result follows. □
Observe that, in the Hamming-metric case m = n = 1, we have δ = 0 and (4) reads

ℓ ≤ q2 − 1 
2(q − 1) − (q − 1) + d− 3

1 
= q + d− 2, (6)

which is a well-known bound on the length of MDS codes [9, Cor. 7.4.3(ii)]. Observe now 
that, by Proposition 2, the bound (6) implies that

ℓ ≤
⌊︃
qn + d− 2

n 

⌋︃
. (7)

However, the bound (5) is tighter than (7), and therefore, so is (4), in the cases stated 
in Theorem 4.

We next turn to the non-existence of perfect codes for the multi-cover metric.

Proposition 7. Assume that n = m1 = . . . = mℓ = n1 = . . . = nℓ and let p be the prime 
that divides q. If there is a perfect code in (Fn×n

q )ℓ of minimum multi-cover distance 
d = 3, then

ℓn(n− 2) ≡ −1 (mod p).
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In particular, if p divides ℓ, n or n− 2, then no such perfect code exists.

Proof. If there is one such perfect code 𝒞 ⊆ (Fn×n
q )ℓ, then according to Theorem 2,

qℓn
2

= (1 + ℓn(2(qn − 1) − n(q − 1)))|𝒞|,

and the result follows, since qℓn
2 is a power of p. □

We conclude with a basic Gilbert-Varshamove-like or Sphere-covering existential 
bound for the multi-cover metric. It is based on ball sizes and is proven in the same 
way as for any metric.

Theorem 5. Let d ∈ [n1 + n2 + · · · + nℓ] and define

k =
⌈︄
logq

⌈︄
q
∑︁ℓ

i=1 mini

Bd−1

⌉︄⌉︄
.

There exists a linear code 𝒞 ⊆∏︁ℓ
i=1 F

mi×ni
q with dim(𝒞) = k and dMC(𝒞) ≥ d.

3.1. The size of a ball

In this subsection, we estimate the size of a ball of radius r in the multi-cover metric, 
that is, the number Br. We will provide upper and lower bounds whose limit is the same 
as that of Br as q tends to infinity. Thus we provide the order of the growth of Br as a 
function of q, being the other parameters fixed. Define

𝒮r(C) =
{︄
D ∈

ℓ ∏︂
i=1

Fmi×ni
q

⃓⃓⃓
⃓⃓ dMC(C,D) = r

}︄
,

where r ∈ N and C ∈∏︁ℓ
i=1 F

mi×ni
q . We also denote Sr = |𝒮r(0)|, for r ∈ N. Clearly, we 

have Br =
∑︁r

i=0 Si, so we only need to compute Sr. For convenience, we define also

Sm,n
r = |{C ∈ Fm×n

q | wtMC(C) = r}|,

for positive integers m, n and r. Clearly, it holds that Si =
∑︁

r∈Nℓ,|r|=i

∏︁ℓ
j=1 S

mj ,nj
rj , 

where |r| = r1 + r2 + · · · + rℓ, and therefore,

Br =
r∑︂

i=0 

∑︂
r∈Nℓ,|r|=i

ℓ ∏︂
j=1

Smj ,nj
rj .

Thus, we only need to find Sm,n
r for positive integers m, n and r, which has not yet been 

computed, to the best of our knowledge. We give the following upper and lower bounds. 
The proof can be found in the Appendix.
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Theorem 6. For any positive integers m, n and r, with 1 ≤ r ≤ min{m,n}, it holds that 
Sm,n
r = UBr − DCr, where UBr ≥ DCr ≥ 0 are integers such that

UBr =
r∑︂

s=0 

(︃
m

s 

)︃(︃
n 

r − s

)︃
(qm−s − 1)r−s(qn−r+s − 1)sqs(r−s),

DCr ≤
r−1 ∑︂
ω=0

ω∑︂
u=0

(︃
m

u 

)︃(︃
n 

ω − u

)︃ r−ω∑︂
s=0 

r−ω∑︂
t=s 

[︃(︃
m− u

s, t 

)︃(︃
n− ω + u 

r − ω − s, r − ω − t

)︃

· qu(ω−u) · qt(r−ω−s)+s(r−ω−t)

· (︁qt+s(qm−u−s−t − 1) + (qs − 1)(qt − 1)
)︁ω−u

·
(︃
q(r−ω−t)+(r−ω−s)(qn−(ω−u)−(r−ω−t)−(r−ω−s) − 1)

+ (qr−ω−s − 1)(qr−ω−t − 1)
)︃u]︃

,

DCr ≥
r−1 ∑︂
ω=0

ω∑︂
u=0

(︃
m

u 

)︃(︃
n 

ω − u

)︃ r−ω∑︂
s=0 

r−ω∑︂
t=s 

[︃(︃
m− u

s, t 

)︃(︃
n− ω + u 

r − ω − s, r − ω − t

)︃

· qu(ω−u) · (q − 1)t(r−ω−s)+s(r−ω−t)

· (︁qt+s(qm−u−s−t − 1) + (qs − 1)(qt − 1)
)︁ω−u

·
(︃
q(r−ω−t)+(r−ω−s)(qn−(ω−u)−(r−ω−t)−(r−ω−s) − 1)

+ (qr−ω−s − 1)(qr−ω−t − 1)
)︃u]︃

.

Here, for integers m ≥ 1, 0 ≤ s ≤ m and s ≤ t ≤ m, we define

(︃
m 
s, t

)︃
=
{︄

m! 
s!t!(m−s−t)! if s ̸= 0 or t ̸= 0,
0 if s = t = 0.

In the case r = 1, the reader may verify that UB1 = n(qm − 1) + m(qn − 1) and 
the upper and lower bounds in Theorem 6 coincide and give DC1 = mn(q − 1). Hence 
Sm,n

1 = n(qm − 1) + m(qn − 1) −mn(q − 1), as computed in (3).
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In general, for r > 1, the upper and lower bounds in Theorem 6 do not coincide. How
ever, when m, n and r are fixed but q grows, the upper and lower bounds in Theorem 6
coincide asymptotically. In particular, we may asymptotically compute the order of both 
Sm,n
r and Bm,n

r =
∑︁r

i=0 S
m,n
i as functions of q.

Corollary 8. Let 1 ≤ r ≤ n ≤ m be positive integers. Then Sm,n
r and Bm,n

r grow as 
polynomials in q and satisfy

lim 
q→∞

Sm,n
r(︁

n
r

)︁
qmr

= lim 
q→∞

Bm,n
r(︁

n
r

)︁
qmr

=
{︄

1 if n < m,

2 if n = m.

Proof. It follows from Theorem 6 by observing that the upper and lower bounds in that 
theorem are polynomials in q and computing their leading terms. □

Finally, since Br =
∑︁r

i=0
∑︁

r∈Nℓ,|r|=i

∏︁ℓ
j=1 S

mj ,nj
rj , then Br also grows as a polynomial 

in q. In addition, there exist integers j and δ such that 1 ≤ j ≤ ℓ, 0 ≤ δ ≤ nj − 1 and 
Br grows as qt, where

t = max
{︄

ℓ ∑︂
i=1 

miri

⃓⃓⃓
0 ≤ ri ≤ ni,

ℓ ∑︂
i=1 

ri = r

}︄
=

j−1 ∑︂
i=1 

mini + mjδ,

where the last equality follows from [2, Lemma III.12].

4. Duality, puncturing and shortening

In this section, we study duality, puncturing and shortening for the multi-cover metric. 
We will consider duality with respect to the trace product, given by

⟨C,D⟩ =
ℓ ∑︂

i=1 
Tr(CiDi), (8)

where C = (C1, C2, . . . , Cℓ), D = (D1, D2, . . . , Dℓ) ∈ ∏︁ℓ
i=1 F

mi×ni
q , and where Tr(A)

denotes the trace of the matrix A. Observe that ⟨·, ·⟩ is nothing but the usual inner 
product over Fq seeing 

∏︁ℓ
i=1 F

mi×ni
q as F

∑︁ℓ
i=1 mini

q (in the obvious way). We then define 

the dual of a linear code 𝒞 ⊆∏︁ℓ
i=1 F

mi×ni
q in the usual way,

𝒞⊥ =
{︄
D ∈

ℓ ∏︂
i=1

Fmi×ni
q

⃓⃓⃓
⃓⃓ ⟨C,D⟩ = 0, for all C ∈ 𝒞

}︄
.

4.1. Puncturing and shortening

In this subsection, we define puncturing and shortening, which extend the classical 
concepts of puncturing and shortening for the Hamming metric [9, Sec. 1.5]. As in the 
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classical Hamming-metric case, puncturing and shortening enables us to explicitly con
struct shorter codes from known codes. To the best of our knowledge, these concepts 
have not yet been introduced in the classical cover metric case (ℓ = 1).

Definition 9. Let X = (Xi, Yi)ℓi=1 ∈ MC(m,n). Given a code 𝒞 ⊆ ∏︁ℓ
i=1 F

mi×ni
q , we 

define its puncturing and shortening on X, respectively, as

𝒞X = πX(𝒞),

𝒞X = {πX(C) | C ∈ 𝒞, Ci,a,b = 0 if a ∈ Xi or b ∈ Yi, i ∈ [ℓ]},

both of which are codes in 
∏︁ℓ

i=1 F
(mi−|Xi|)×(ni−|Yi|)
q .

We now describe the basic properties of punctured and shortened codes in general.

Proposition 10. Given a linear code 𝒞 ⊆ ∏︁ℓ
i=1 F

mi×ni
q and a multi-cover X =

(Xi, Yi)ℓi=1 ∈ MC(m,n), then 𝒞X and 𝒞X are linear codes satisfying the following:

1. (𝒞X)⊥ = (𝒞⊥)X and (𝒞X)⊥ = (𝒞⊥)X .
2. dim(𝒞X) ≥ dim(𝒞) −∑︁ℓ

i=1 (ni|Xi| + mi|Yi| − |Xi| · |Yi|).
3. dim(𝒞X) ≥ dim(𝒞) −∑︁ℓ

i=1 (ni|Xi| + mi|Yi| − |Xi| · |Yi|).
4. dMC(𝒞X) ≥ dMC(𝒞) − |X|.
5. dMC(𝒞X) ≥ dMC(𝒞).

Proof. Items 4 and 5 are straightforward. Item 1 coincides with the classical result [9, 
Th. 1.5.7(i)]. Items 2 and 3 coincide with the classical results after realizing that the 
number of deleted positions is exactly 

∑︁ℓ
i=1 (ni|Xi| + mi|Yi| − |Xi| · |Yi|). □

More interestingly, we may obtain shorter linear MMCD codes from known linear 
MMCD codes.

Theorem 7. Let 𝒞 ⊆ ∏︁ℓ
i=1 F

mi×ni
q be a linear MMCD code. Set d = dMC(𝒞) and let δ

and j be the unique integers such that d−1 =
∑︁j−1

i=1 ni+δ, 1 ≤ j ≤ ℓ and 0 ≤ δ ≤ nj−1. 
Let X = (Xi, Yi)ℓi=1 ∈ MC(m,n). The following hold:

1. Let 1 ≤ k ≤ j, assume that d > 1, Xi = ∅, for all i ∈ [ℓ], Yi = ∅ if i ̸= k and 
|Yk| = 1. Further assume δ > 0 if k = j. Then 𝒞X is a linear MMCD code with 
dim(𝒞X) = dim(𝒞) and dMC(𝒞X) = dMC(𝒞) − 1.

2. Let j + 1 ≤ k ≤ ℓ, and assume that Yi = ∅, for all i ∈ [ℓ], Xi = ∅ if i ̸= k

and |Xk| = 1. Then 𝒞X is a linear MMCD code with dim(𝒞X) = dim(𝒞) − nk and 
dMC(𝒞X) = dMC(𝒞).

3. Let j ≤ k ≤ ℓ, and assume that Xi = ∅, for all i ∈ [ℓ], Yi = ∅ if i ̸= k and 
|Yk| = 1. Then 𝒞X is a linear MMCD code with dim(𝒞X) = dim(𝒞) − mk and 
dMC(𝒞X) = dMC(𝒞).
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Proof. We start by proving Item 1. Let n′
i = ni if i ̸= k, and let n′

k = nk − 1. Note 

that 𝒞X ⊆ ∏︁ℓ
i=1 F

mi×n′
i

q . Set also δ′ = δ − 1 if k = j, and δ′ = δ otherwise. Thus 
0 ≤ δ′ ≤ n′

j − 1 by the assumptions. By Proposition 10, we have that

dMC(𝒞X) − 1 ≥ d− 2 =
j−1 ∑︂
i=1 

ni + δ − 1 =
j−1 ∑︂
i=1 

n′
i + δ′,

and since d > 1, we also have that

dim(𝒞X) = dim(𝒞) =
ℓ ∑︂

i=j 
mini −mjδ =

ℓ ∑︂
i=j 

min
′
i −mjδ

′.

Therefore, 𝒞X must be MMCD and the inequality above is an equality.
We next prove Item 2. Let m′

i = mi if i ̸= k, and let m′
k = mk − 1. Note that 

𝒞X ⊆∏︁ℓ
i=1 F

m′
i×ni

q . By Proposition 10, we have that

dMC(𝒞X) − 1 ≥ d− 1 =
j−1 ∑︂
i=1 

ni + δ, and

dim(𝒞X) ≥ dim(𝒞) − nk =
ℓ ∑︂

i=j 
m′

ini −m′
jδ.

Therefore, 𝒞X must be MMCD and the inequalities above are equalities.
Finally we prove Item 3. Let n′

i = ni if i ̸= k, and let n′
k = nk − 1. Note that 

𝒞X ⊆∏︁ℓ
i=1 F

mi×n′
i

q . By Proposition 10, we have that

dMC(𝒞X) − 1 ≥ d− 1 =
j−1 ∑︂
i=1 

ni + δ =
j−1 ∑︂
i=1 

n′
i + δ, and

dim(𝒞X) ≥ dim(𝒞) −mk =
ℓ ∑︂

i=j 
min

′
i −mjδ.

Therefore, 𝒞X must be MMCD and the inequalities above are equalities. □
4.2. Dually MMCD codes and MDS codes by rows and columns

In Section 2, we considered the Hamming metric by columns and related it to the 
multi-cover metric. We may similarly define the Hamming metric by rows in Fn×n

q by 
transposition, i.e., we may consider

𝒞⊺ = {C⊺ | C ∈ 𝒞} ⊆ Fn×n
q ,
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for 𝒞 ⊆ Fn×n
q , where C⊺ denotes the transposed of a matrix C. We may define the 

minimum Hamming distance of 𝒞 by rows as dR
H(𝒞) = dC

H(𝒞⊺). The Singleton bound 
from Theorem 1 holds in the same way for both rows and columns, i.e.,

|𝒞| ≤ qn(n−d+1),

whether d = dR
H or d = dC

H . A code attaining this bound for dR
H will be called MDS 

by rows, and analogously for columns. Clearly, if 𝒞 is MMCD, then it is both MDS by 
rows and by columns. In particular, if it is linear, then 𝒞⊥ is also MDS by rows and by 
columns, since the MDS property is preserved by duality (the proof of [9, Th. 2.4.3] may 
be extended to matrix codes and the trace product in a straightforward way).

However, as we now show, the dual of a linear MMCD code is not necessarily MMCD 
itself and a linear code that is MDS by rows and by columns is not necessarily MMCD 
either.

Example 11. Consider 𝒞 ⊆ F3×3
2 generated by

A =

⎛
⎜⎝ 1 1 1

1 0 0
1 0 0

⎞
⎟⎠ , B =

⎛
⎜⎝ 0 1 0

1 1 1
0 1 0

⎞
⎟⎠ , and C =

⎛
⎜⎝ 0 0 1

0 0 1
1 1 1

⎞
⎟⎠ .

Since 𝒞 = {0, A,B,C,A+B,B +C,C +A,A+B +C} and dim(𝒞) = 3, it is easy to see 
that 𝒞 is MDS by columns and by rows since dR

H(𝒞) = dC
H(𝒞) = 3, but it is not MMCD, 

since dMC(𝒞) = 2. Now, 𝒞⊥ ⊆ F3×3
2 has dim(𝒞⊥) = 6. Moreover, by inspection one can 

see that there is no D ∈ 𝒞⊥ with wtMC(D) = 1. Therefore, dMC(𝒞⊥) = 2 and 𝒞⊥ is a 
linear MMCD code, even though 𝒞 is not.

The example above motivates the following definition.

Definition 12. We say that 𝒞 ⊆ ∏︁ℓ
i=1 F

mi×ni
q is a dually MMCD code if it is linear and 

both 𝒞 and 𝒞⊥ are MMCD codes.

In Section 5, we will provide some explicit constructions of dually MMCD codes for 
general parameters.

To conclude the subsection, we observe that the equivalence of linear MMCD codes, 
dually MMCD codes and MDS codes by rows and by columns holds for very small 
parameters. For the case ℓ > 1, we need to consider different combinations of transposi
tions in different positions. To this end, given C = (C1, C2, . . . , Cℓ) ∈

∏︁ℓ
i=1 F

mi×ni
q and 

t ∈ {0, 1}ℓ, we define Ct = (D1, D2, . . . , Dℓ) by

Di =
{︄

Ci if ti = 0,
C⊺

i if ti = 1.
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We then define 𝒞t = {Ct | C ∈ 𝒞}, for 𝒞 ⊆∏︁ℓ
i=1 F

mi×ni
q .

The proofs of the following two propositions are based on the fact that, in the two 
cases, we only need to consider covers in Fm×n

q of sizes 1 or 2, and these can always be 
chosen as only columns or only rows in such cases.

Proposition 13. Let 𝒞 ⊆ (Fn×n
q )ℓ be a linear code with dim(𝒞) = n(ℓn − 1). Then 𝒞 is 

MMCD if, and only if, 𝒞t is MDS by columns for all t ∈ {0, 1}ℓ.

Proposition 14. Let 𝒞 ⊆ (F2×2
q )ℓ be a linear code. The following are equivalent:

1. 𝒞t is MDS by columns for all t ∈ {0, 1}ℓ.
2. 𝒞 is MMCD.
3. 𝒞 is dually MMCD.

Recall that the multi-cover metric in (F1×1
q )ℓ is simply the classical Hamming metric 

in F ℓ
q , hence the previous proposition also holds but is trivial in this case.

4.3. Information multi-covers

In this subsection, we explore the notion of information sets for the multi-cover met
ric. We will present two types, information multi-covers and complementary information 
multi-covers. The former characterize when the dual code is MMCD and the latter char
acterize when the primary code is MMCD. Both types of multi-covers extend information 
sets in the Hamming-metric case [9, p. 4] and our characterizations recover in that case 
the characterizations of classical MDS codes based on information sets [9, Th. 2.4.3].

We start with a notion of support space similar to that from the Hamming-metric 
case [4, Sec. II].

Definition 15. We define the support space of X ∈ MC(m,n) as the vector subspace

𝒱X =
{︄
C ∈

ℓ ∏︂
i=1

Fmi×ni
q

⃓⃓⃓
⃓⃓X ∈ MC(C)

}︄
.

Observe that, if X = (Xi, Yi)ℓi=1 ∈ MC(m,n), then

dim(𝒱X) =
ℓ ∑︂

i=1 
(ni|Xi| + mi|Yi| − |Xi| · |Yi|).

Other basic properties hold, as in the Hamming-metric case. However, duals of support 
spaces will not be themselves support spaces in general. In fact, we may easily character
ize when duals of support spaces are again support spaces. The proof is straightforward.
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Proposition 16. Given X ∈ MC(m,n), there exist X ′ ∈ MC(m,n) with 𝒱⊥
X = 𝒱X′ if, 

and only if, for all i ∈ [ℓ], we have Xi = ∅ or Yi = ∅.

We next define information multi-covers and complementary information multi-covers. 
Recall that, for X = (Xi, Yi)ℓi=1 ∈ MC(m,n), we have defined the projection map

πX :
ℓ ∏︂

i=1
Fmi×ni
q −→

ℓ ∏︂
i=1

F (mi−|Xi|)×(ni−|Yi|)
q (9)

by removing all the entries covered by X (i.e., all rows indexed by Xi and all columns 
indexed by Yi, for i ∈ [ℓ]). We then define complementary information multi-covers as 
follows.

Definition 17. Given a code 𝒞 ⊆∏︁ℓ
i=1 F

mi×ni
q , we say that X = (Xi, Yi)ℓi=1 ∈ MC(m,n)

is a complementary information multi-cover of 𝒞 if one of the following equivalent con
ditions hold:

1. The restriction of the projection map in (9) to the code 𝒞, that is, πX : 𝒞 −→∏︁ℓ
i=1 F

(mi−|Xi|)×(ni−|Yi|)
q , is injective.

2. |𝒞X | = |𝒞|.
3. (If 𝒞 is linear) dim(𝒞X) = dim(𝒞).

In other words, when removing the entries indexed by X from a codeword in 𝒞, we 
may still reconstruct the whole codeword (i.e., we may correct any erasures inside X). 
Since X is formed by the indices of the erased coordinates (i.e., the indices not containing 
the information that we have), the term complementary information cover is justified.

We next observe the monotonicity of complementary information multi-covers, which 
will allow us to only consider maximal complementary information multi-covers in the 
subsequent results.

Lemma 18. If 𝒞 ⊆ ∏︁ℓ
i=1 F

mi×ni
q is a code and X = (Xi, Yi)ℓi=1 ∈ MC(m,n) is a com

plementary information multi-cover of 𝒞, then so is any X ′ = (X ′
i, Y

′
i )ℓi=1 ∈ MC(m,n)

such that X ′
i ⊆ Xi and Y ′

i ⊆ Yi, for i ∈ [ℓ].

As in the classical Hamming-metric case [9, Th. 1.4.15], it is easy to characterize the 
minimum multi-cover distance in terms of support spaces and complementary informa
tion multi-covers. The proof is straightforward.

Lemma 19. Given a code 𝒞 ⊆ ∏︁ℓ
i=1 F

mi×ni
q and a positive integer d, the following are 

equivalent:

1. dMC(𝒞) ≥ d.



364 U. Martínez-Peñas / Linear Algebra and its Applications 728 (2026) 349--375 

2. |𝒞 ∩ 𝒱X | = 1, for all X ∈ MC(m,n) such that |X| = d− 1.
3. Any X ∈ MC(m,n) such that |X| = d − 1 is a complementary information multi

cover of 𝒞.

As a consequence, we may characterize linear MMCD codes in terms of complementary 
information multi-covers, as in the Hamming-metric case [9, Th. 2.4.3].

Proposition 20. Assume that m = m1 = . . . = mℓ and set N = n1 +n2 + · · ·+nℓ. Given 
a linear code 𝒞 ⊆ ∏︁ℓ

i=1 F
m×ni
q whose dimension is a multiple of m, the following are 

equivalent:

1. 𝒞 is MMCD.
2. Any X ∈ MC(m,n) with m(N − |X|) = dim(𝒞) is a complementary information 

multi-cover of 𝒞.

Proof. Assume first that Item 1 holds. Then d = N−dim(𝒞)/m+1, hence m(N−|X|) =
dim(𝒞) if, and only if, |X| = d− 1, and in that case, X is a complementary information 
multi-cover by Lemma 19. Assume now that Item 2 holds. Define d = N−dim(𝒞)/m+1, 
which is an integer since dim(𝒞) is a multiple of m. Now, m(N − |X|) = dim(𝒞) if, and 
only if, |X| = d − 1. Since all such multi-covers are complementary information multi
covers, then dMC(𝒞) ≥ d by Lemma 19, and by Theorem 1, 𝒞 must be MMCD. □

As noted above, duality does not work as expected for all multi-covers X ∈ MC(m,n). 
Thus we define a notion of information multi-cover, which is a dual concept of that 
of complementary information multi-covers. These are the type of multi-covers that 
characterize when the dual of a linear code is MMCD. Since we are concerned with 
duality, we only consider linear codes in the remainder of this subsection.

For X ∈ MC(m,n), define the projection map

πX :
ℓ ∏︂

i=1
Fmi×ni
q −→ F

∑︁ℓ
i=1(ni|Xi|+mi|Yi|−|Xi|·|Yi|)

q (10)

defined by removing all the entries not covered by X.

Definition 21. Given a linear code 𝒞 ⊆ ∏︁ℓ
i=1 F

mi×ni
q , we say that X = (Xi, Yi)ℓi=1 ∈

MC(m,n) is an information multi-cover of 𝒞 if one of the following equivalent conditions 
hold:

1. The restriction of the projection map in (10) to the code 𝒞, that is, πX : 𝒞 −→
F
∑︁ℓ

i=1(ni|Xi|+mi|Yi|−|Xi|·|Yi|)
q , is surjective.

2. dim(𝒞X) = dim(𝒞) −∑︁ℓ
i=1(m|Xi| + m|Yi| − |Xi| · |Yi|).
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Once again, it can be easily shown that information multi-covers satisfy the following 
monotonicity property. Again, this monotonicity property will allow us to only consider 
maximal information multi-covers in the subsequent results.

Lemma 22. If 𝒞 ⊆ ∏︁ℓ
i=1 F

mi×ni
q is a linear code and X = (Xi, Yi)ℓi=1 ∈ MC(m,n) is an 

information multi-cover of 𝒞, then so is any X ′ = (X ′
i, Y

′
i )ℓi=1 ∈ MC(m,n) such that 

X ′
i ⊆ Xi and Y ′

i ⊆ Yi, for i ∈ [ℓ].

The reason why we use the term information multi-covers is due to the following 
theorem, which acts as the dual of Proposition 20

Proposition 23. Assume that m = m1 = . . . = mℓ and set N = n1 +n2 + · · ·+nℓ. Given 
a linear code 𝒞 ⊆ ∏︁ℓ

i=1 F
m×ni
q whose dimension is a multiple of m, the following are 

equivalent:

1. 𝒞⊥ is MMCD.
2. Any X ∈ MC(m,n) with m|X| = dim(𝒞) is an information multi-cover of 𝒞.

Proof. Let d⊥ = dMC(𝒞⊥). By definition, 𝒞⊥ is MMCD if, and only if, dim(𝒞⊥) =
m(N−d⊥+1), which is in turn equivalent to dim(𝒞) = m(d⊥−1). Hence by Lemma 19, 𝒞⊥

is MMCD if, and only if, for any X = (Xi, Yi)ℓi=1 ∈ MC(m,n) such that m|X| = dim(𝒞), 
it holds that dim(𝒞⊥ ∩ 𝒱X) = 0. Now, by linear algebra, we have that

dim(𝒞⊥ ∩ 𝒱X) = mN − dim(𝒞 + 𝒱⊥
X)

= mN − dim(𝒞) − dim(𝒱⊥
X) + dim(𝒞 ∩ 𝒱⊥

X)

= dim(𝒞 ∩ 𝒱⊥
X) − dim(𝒞) +

ℓ ∑︂
i=1 

(m|Xi| + m|Yi| − |Xi| · |Yi|).

Furthermore, note that πX(𝒞 ∩ 𝒱⊥
X) = 𝒞X . Hence, dim(𝒞⊥ ∩ 𝒱X) = 0 if, and only if,

dim(𝒞X) = dim(𝒞) −
ℓ ∑︂

i=1 
(m|Xi| + m|Yi| − |Xi| · |Yi|),

which means that X is an information multi-cover of 𝒞, and we are done. □
5. Constructions

In this section, we provide several methods of constructing codes for the multi-cover 
metric, focusing on linear MMCD codes and dually MMCD codes.
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5.1. Codes in the sum-rank metric

Similarly to the case of the rank metric and the cover metric [5,22], we show in this 
subsection that sum-rank metric codes may be used as multi-cover metric codes. The 
sum-rank metric was formally defined in [19, Sec. III-D], but it was implicitly used earlier 
in [14, Sec. III].

Definition 24 (Sum-rank metric [14,19]). We define the sum-rank weight of C =
(C1, C2, . . . , Cℓ) ∈

∏︁ℓ
i=1 F

mi×ni
q as

wtSR(C) =
ℓ ∑︂

i=1 
Rk(Ci).

The sum-rank metric is then defined as dSR : (
∏︁ℓ

i=1 F
mi×ni
q )2 −→ N, where dSR(C,D) =

wtSR(C −D), for C,D ∈∏︁ℓ
i=1 F

mi×ni
q .

The bound in Theorem 1 is also valid for the sum-rank metric [2, Th. III.2], and a 
code attaining it is called maximum sum-rank distance (MSRD).

We have the following connections between both metrics. They constitute an extension 
to ℓ ≥ 1 of the corresponding results for the case ℓ = 1, which were first observed in 
[5,22]. Item 4 follows from combining Item 3 with the fact that the dual of a linear MSRD 
code is again MSRD code under the given conditions [2, Th. VI.1].

Proposition 25. Fix C ∈∏︁ℓ
i=1 F

mi×ni
q and 𝒞 ⊆∏︁ℓ

i=1 F
mi×ni
q . The following hold:

1. wtSR(C) ≤ wtMC(C).
2. dSR(𝒞) ≤ dMC(𝒞).
3. If 𝒞 is an MSRD code, then it is also MMCD.
4. If 𝒞 is a linear MSRD code and m1 = m2 = . . . = mℓ, then 𝒞 is a dually MMCD 

code.

We now show that sum-rank error and erasure correcting algorithms may be used to 
correct multilayer crisscross errors and erasures. There exist two equivalent formulations 
of error and erasure correction in the sum-rank metric. We consider both column and row 
erasures, which was first considered in [21]. Item 2 is included since it was the formulation 
used in [8,21], but the connection with the multi-cover metric is easier using Item 3. The 
equivalence between the two is proven as in [15, Prop. 17].

Proposition 26. Let 𝒞 ⊆ ∏︁ℓ
i=1 F

mi×ni
q be a code, and let ρR, ρC and t be non-negative 

integers. The following are equivalent:

1. 2t + ρR + ρC < dSR(𝒞).
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2. For 𝒱R = (𝒱R,i)ℓi=1 and 𝒱C = (𝒱C,i)ℓi=1, where 𝒱R,i ⊆ Fni
q and 𝒱C,i ⊆ Fmi

q are 

vector subspaces (known to the receiver), for i ∈ [ℓ], with 
∑︁ℓ

i=1 dim(𝒱R,i) ≤ ρR and ∑︁ℓ
i=1 dim(𝒱C,i) ≤ ρC , there exists a decoder D𝒱R,𝒱C ,t :

∏︁ℓ
i=1 F

mi×ni
q −→ 𝒞 such that

D𝒱R,𝒱C ,t(C + E + ER + EC) = C,

for all C ∈ 𝒞 and all E,ER, EC ∈∏︁ℓ
i=1 F

mi×ni
q such that wtSR(E) ≤ t, wtSR(ER) ≤

ρR and wtSR(EC) ≤ ρC , and the row space of the ith component of ER and column 
space of the ith component of EC are 𝒱R,i and 𝒱C,i, respectively.

3. For partitions ρR =
∑︁ℓ

i=1 ρR,i and ρC =
∑︁ℓ

i=1 ρC,i into non-negative integers, and 
for block-diagonal matrices A = diag(A1, A2, . . . , Aℓ) and B = diag(B1, B2, . . . , Bℓ), 
for full-rank matrices Ai ∈ F

(mi−ρR,i)×mi
q and Bi ∈ F

ni×(ni−ρC,i)
q (known to the 

receiver), there exists a decoder DA,B,t :
∏︁ℓ

i=1 F
(mi−ρR,i)×(ni−ρC,i)
q −→ 𝒞 such that

DA,B,t(ACB + E) = C,

for all C ∈ 𝒞 and all E ∈∏︁ℓ
i=1 F

(mi−ρR,i)×(ni−ρC,i)
q such that wtSR(E) ≤ t.

In particular, we deduce that codes able to correct sum-rank errors and erasures (in 
rows and columns) may without any change also correct multilayer crisscross errors and 
erasures as in Definition 3. Simply choose A and B as suitable projection matrices.

5.2. A nested construction

In this subsection, we provide a general method to construct codes for the multi
cover metric from other multi-cover metric codes. The idea is to adequately arrange the 
components of a Cartesian product. Throughout this subsection, we fix positive integers 
m = ur, n = us and t = uℓ, and we will assume that n ≤ m (thus s ≤ r).

Construction 1. Let 𝒞 ⊆ (Fr×s
q )t be a code. We define φ(𝒞u) ⊆ (Fm×n

q )ℓ as the image of 
𝒞u by the linear map φ : ((Fr×s

q )t)u −→ (Fm×n
q )ℓ, where φ

(︁
C1, C2, . . . , Cu

)︁
=

⎛
⎜⎜⎜⎜⎝

C1
1 C2

1 . . . Cu
1 C1

u+1 C2
u+1 . . . Cu

u+1 . . . C1
(ℓ−1)u+1 C2

(ℓ−1)u+1 . . . Cu
(ℓ−1)u+1

Cu
2 C1

2 . . . Cu−1
2 Cu

u+2 C1
u+2 . . . Cu−1

u+2 . . . Cu
(ℓ−1)u+2 C1

(ℓ−1)u+2 . . . Cu−1
(ℓ−1)u+2

...
...

. . .
...

...
...

. . .
...

. . .
...

...
. . .

...
C2

u C3
u . . . C1

u C2
2u C3

2u . . . C1
2u . . . C2

t C3
t . . . C1

t

⎞
⎟⎟⎟⎟⎠ ,

for Ci = (Ci
1, C

i
2, . . . , C

i
t) ∈ (Fr×s

q )t, for i ∈ [u].

We now relate the multi-cover metric parameters of 𝒞 and φ(𝒞u).

Theorem 8. Let 𝒞 ⊆ (Fr×s
q )t. The following hold:
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1. dMC(φ(𝒞u)) = dMC(𝒞) and |φ(𝒞u)| = |𝒞|u.
2. φ(𝒞u) is MMCD if, and only if, so is 𝒞.
3. φ(𝒞u) is linear if, and only if, so is 𝒞, and in that case, dim(φ(𝒞u)) = u dim(𝒞) and 

φ(𝒞u)⊥ = φ((𝒞⊥)u).
4. (If 𝒞 is linear) φ(𝒞u) is a dually MMCD code if, and only if, so is 𝒞.

Proof. The equality |φ(𝒞u)| = |𝒞|u and Item 3 are straightforward, since φ(𝒞u) ∼ = 𝒞u

as vector spaces and the inner product is preserved through a natural isomorphism. We 
next prove that dMC(φ(𝒞u)) = dMC(𝒞).

Let C = φ
(︁
C1, C2, . . . , Cu

)︁
, where Ci ∈ 𝒞, for i ∈ [u]. Let (Xi, Yi)ℓi=1 ∈ MC(C). 

Partition Xi =
⋃︁u

j=1 Xi,j and Yi =
⋃︁u

j=1 Yi,j , where Xi,j ⊆ [(j − 1)r + 1, jr] and Yi,j ⊆
[(j−1)s+1, js], for j ∈ [u] and i ∈ [ℓ]. If we identify Xi,j and Yi,j in the obvious way with 
subsets of [r] and [s], respectively, then it is easy to see that (Xi,j , Yi,j+k−1)ℓ,ui=1,j=1 ∈
MC(Ck), for k ∈ [u] (j + k − 1 is taken mod u). Assume that C ̸= 0, wtMC(C) =
dMC(φ(𝒞u)) and (Xi, Yi)ℓi=1 ∈ MC(C) is of minimum size. Assuming w.l.o.g. C1 ̸= 0,

dMC(φ(𝒞u)) = wtMC(C) =
ℓ ∑︂

i=1 
(|Xi| + |Yi|)

=
ℓ ∑︂

i=1 

u ∑︂
j=1 

(|Xi,j | + |Yi,j |) ≥ wtMC(C1) ≥ dMC(𝒞).

Conversely, let D ∈ 𝒞 \ 0, and let (X ′
k, Y

′
k)tk=1 ∈ MC(D). Define Xi,j = (j − 1)r +

X ′
(i−1)ℓ+j ⊆ [(j − 1)r + 1, jr] and Yi,j = (j − 1)s + Y ′

(i−1)ℓ+j ⊆ [(j − 1)s + 1, js], for 
j ∈ [u] and i ∈ [ℓ]. Finally define Xi =

⋃︁u
j=1 Xi,j and Yi =

⋃︁u
j=1 Yi,j , for i ∈ [ℓ]. Then 

(Xi, Yi)ℓi=1 ∈ MC(φ(D, 0, . . . , 0)) and φ(D, 0, . . . , 0) ∈ φ(𝒞u). Assume that wtMC(D) =
dMC(𝒞) and (X ′

k, Y
′
k)tk=1 ∈ MC(D) is of minimum size. Hence, we conclude that

dMC(𝒞) = wtMC(D) =
t ∑︂

k=1

(|X ′
k| + |Y ′

k|)

=
ℓ ∑︂

i=1 
(|Xi| + |Yi|) ≥ wtMC(φ(D, 0, . . . , 0)) ≥ dMC(φ(𝒞u)).

Thus Item 1 is proven. We now prove Item 2. Assume that 𝒞 is MMCD, that is, 
|𝒞| = qr(ts−d+1), where d = dMC(𝒞) = dMC(φ(𝒞u)). Since m = ur, n = us and t = uℓ, 
we have that

|φ(𝒞u)| = |𝒞|u = qur(ts−d+1) = qm(ℓn−d+1),

hence φ(𝒞u) is also MMCD. For the reversed implication, we may show in the same way 
that if |𝒞| < qr(ts−d+1), then |φ(𝒞u)| < qm(ℓn−d+1).

Finally, Item 4 follows from Items 2 and 3. □
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In this way, we may construct codes in (Fm×n
q )ℓ for the multi-cover metric from codes 

in (Fr×s
q )t for the refined multi-cover metric. Note that, if we set r = s = 1, then we 

may construct multi-cover metric codes in (Fn×n
q )ℓ from Hamming-metric codes in F t

q.
In addition, a decoder for 𝒞 may be directly used to obtain a decoder for φ(𝒞u), as 

we now show. The proof is similar to that of Theorem 8 and is omitted for brevity.

Proposition 27. Let X = (Xi, Yi)ℓi=1 ∈ MC(m,n), partition Xi =
⋃︁u

j=1 Xi,j and Yi =⋃︁u
j=1 Yi,j, where Xi,j ⊆ [(j−1)r+1, jr] and Yi,j ⊆ [(j−1)s+1, js], for j ∈ [u] and i ∈ [ℓ]. 

Next identify Xi,j and Yi,j in the obvious way with subsets of [r] and [s], respectively, 
and define X ′

k = (Xi,j , Yi,j+k−1)ℓ,si=1,j=1 (j + k − 1 is taken mod u). Set ρ = |X| = |X ′|.
Let 𝒞 ⊆ (Fr×s

q )t. Assume that 2t + ρ < d = dMC(φ(𝒞u)) = dMC(𝒞). Let D𝒞,X′
k

:
(Fr×s

q )t −→ 𝒞 be a t-error and ρ-erasure-correcting decoder for 𝒞 and X ′
k. Define 

Dφ(𝒞u),X : (Fm×n
q )ℓ −→ φ(𝒞u) as the decoder that decodes φ(C1, C2, . . . , Cu) by us

ing D𝒞,X′
k

on Ck ∈ 𝒞, for k ∈ [u]. Then Dφ(𝒞u),X is a t-error and ρ-erasure-correcting 
decoder for φ(𝒞u) and X.

5.3. Some explicit codes

In this subsection, we put together the two methods for constructing multi-cover 
metric codes from Subsections 5.1 and 5.2 in order to give explicit codes in the multi
cover metric. We consider positive integers n = us and t = uℓ, as in the previous 
subsection (we will consider m = n and r = s, i.e., square matrices).

We start by providing explicit families of dually MMCD codes.

Theorem 9. Assume that q > t. For any k ∈ [st] = [ℓn], let 𝒞 ⊆ (Fs×s
q )t be an (sk)

dimensional linearized Reed–Solomon code [16, Def. 31]. Then the code φ(𝒞u) ⊆ (Fn×n
q )ℓ

obtained from 𝒞 as in Construction 1 is a dually MMCD code of dimension dim(φ(𝒞u)) =
nk. Furthermore, it can correct any t errors and ρ erasures for the multi-cover metric, as 
in Definition 3, where 2t + ρ ≤ ℓn− k, with a complexity of 𝒪(tℓn2) sums and products 
over the finite field of size qℓn/t = 𝒪(t)ℓn/t.

Proof. Since 𝒞 is MSRD [16, Th. 4], we have that φ(𝒞u) is dually MMCD by Propo
sition 25 and Theorem 8. Second, 𝒞 can correct t errors and ρ erasures (in rows or 
columns) for the sum-rank metric, as in Item 2 in Proposition 26, with a complexity of 
𝒪(s2t2) sums and products over the finite field Fqs , by the algorithm in [8]. By Propo
sitions 26 and 27, we may decode φ(𝒞u) by using such a decoder u times. Hence the 
number of operations over Fqs is 𝒪(rs2t2) = 𝒪(tℓn2). Since we may choose q = 𝒪(t), 
then qs = qℓn/t = 𝒪(t)ℓn/t, and we are done. □

Assume that a multiplication in F2b costs 𝒪(b2) operations in F2. Then if q is even, 
the dually MMCD code in Theorem 9 can be decoded with

𝒪 (︁t−1 log2(t + 1)2ℓ3n4)︁
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operations over F2. This complexity is smaller for larger values of t. However, the alphabet 
size for the multi-cover metric needs to satisfy q > t. Thus we arrive at an alphabet
complexity trade-off : Codes for larger t are faster to decode but require larger alphabets 
(i.e., can be applied to a smaller set of alphabets), whereas codes for smaller t are less 
fast but can be used for a wider range of alphabets.

Remark 28. Note that, for t = 1, Theorem 9 corresponds to using Gabidulin codes 
as MMCD codes via Construction 1, since in this case linearized Reed-Solomon codes 
recover Gabidulin codes [16]. This is the only choice of t for the alphabet F2 but is 
also the least computationally efficient choice. Further setting ℓ = 1, we obtain the 
classical rank-metric construction for the cover metric [5,22]. On the other end, if we 
set t = ℓn (i.e., s = 1), then Theorem 9 corresponds to using classical Reed-Solomon 
codes as MMCD codes via Construction 1, since in this case linearized Reed-Solomon 
codes recover classical Reed-Solomon codes [16]. Further setting ℓ = 1, we also recover 
the construction of cover-metric codes based on Reed-Solomon codes from [22].

Remark 29. There exist other families of MSRD codes for further parameter regimes 
[18]. In particular, those from [18] attain smaller field sizes than linearized Reed-Solomon 
codes for several parameter regimes, and have therefore a better potential of having a 
faster decoder. However such MSRD codes do not work for square matrices (m = n). All 
of these MSRD codes may be turned into MMCD codes as in Theorem 9.

Finally, we describe a family of codes in the multi-cover metric obtained from sum
rank BCH codes [17], which contain the best codes in the sum-rank metric for the binary 
field F2 and 2 × 2 matrices (see [17, App.]). We will use the simplified bound on their 
parameters from [17, Th. 9], and we will not explicitly describe the codes for brevity.

Proposition 30. Let n = us, t = uℓ and 0 ≤ δ ≤ ℓn be positive integers. Assume that t and 
s are coprime, t and q are coprime, and t divides q− 1. Let q0 and r be positive integers 
such that q = qr0. Let xt − 1 = m1(x)m2(x) · · ·mv(x) be the irreducible decomposition of 
the polynomial xt − 1 in Fqs0 [x]. Then there exists a linear code 𝒞 ⊆ (Fn×n

q0 )ℓ such that 
dMC(𝒞) ≥ δ and

dim(𝒞) ≥ ℓn2 − n
v∑︂

i=1 
min {sdi, rki} , (11)

where di = deg(mi(x)) and ki = |{j ∈ N | 0 ≤ j ≤ δ− 2,mi(ab+j) = 0}|, for i ∈ [v], and 
where a ∈ Fq is a primitive t-th root of unity, which always exists [12, Sec. 2.4] [9, Page 
105].

Proof. With the assumptions in the proposition, it holds by [17, Th. 9] that there exists 
an Fq0-linear code 𝒟 ⊆ (Fs×s

q0 )t with dSR(𝒟) ≥ δ and
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dimFq0
(𝒟) ≥ s

(︄
ts−

v∑︂
i=1 

min {sdi, rki}
)︄
.

Define 𝒞 = φ(𝒟u) ⊆ (Fn×n
q0 )ℓ with φ as in Construction 1. By Proposition 25 and 

Theorem 8, we have dMC(𝒞) = dMC(𝒟) ≥ dSR(𝒟) ≥ δ. Finally, by Theorem 8, we have

dim(𝒞) = u dim(𝒟) ≥ us

(︄
ts−

v∑︂
i=1 

min {sdi, rki}
)︄

= ℓn2 − n
v∑︂

i=1 
min {sdi, rki} . □

The codes in Proposition 30 have an advantage over general subfield subcodes of linear 
MMCD codes, due to the following. One may consider Delsarte’s lower bound on the 
dimension of a subfield subcode [3]. More concretely, let 𝒟 ⊆ (Fn×n

q )ℓ be a linear MMCD 
code of dimension n(δ − 1), q = qr0 and 𝒞 = 𝒟⊥ ∩ (Fn×n

q0 )ℓ, for positive integers δ and r. 
Then dMD(𝒞) ≥ δ and Delsarte’s bound [3] states that

dim(𝒞) ≥ ℓn2 − nr(δ − 1). (12)

However, as shown in [17, Sec. VII-C], the lower bound (11) is tighter than (12) in all 
cases. See also [17, App.] for numerical tables.

Finally, as shown in [17, Sec. VII-D], a sum-rank BCH code (used in Proposition 30) 
may be decoded for the sum-rank metric by decoding the corresponding linearized Reed--
Solomon code. Since these latter codes may correct sum-rank errors and erasures (by 
rows and columns) by [8], then the same holds for the codes in Proposition 30, by 
Propositions 26 and 27.
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Appendix. Proof of Theorem 6

Let (X,Y ) ∈ MC(m,n) with |X| + |Y | = r. Set s = |X|, thus r − s = |Y |. The 
number of matrices having (X,Y ) as a minimal cover (thus of cover weight r) is exactly 
(qm−s − 1)r−s(qn−r+s − 1)sqs(r−s). To see this, consider Fig. 2.

In this figure, horizontal lines correspond to the rows indexed by X and vertical lines 
correspond to columns indexed by Y . A matrix in Fm×n

q having (X,Y ) as a minimal cover 
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Fig. 2. Patter of positions with non-zero entries for matrices having (X,Y ) as a minimal cover. Here, s = |X|
is the number of horizontal lines and r − s = |Y | is the number of vertical lines. The number of circles is 
thus s(r − s).

would have zeros everywhere except in the lines shown in Fig. 2. Furthermore, in the 
positions depicted with circles, it may have any value from Fq. Since there are s(r − s)
such circles, there are qs(r−s) possibilities for such entries. On the other hand, when 
removing the positions depicted by circles from a given line, the remaining entries must 
form a nonzero vector (whose nonzero entries are depicted with squares). Since there 
are s horizontal lines and r − s vertical lines, this means that there are (qn−r+s − 1)s
possibilities for the horizontal lines and (qm−s − 1)r−s possibilities for the vertical lines. 
In total, we have exactly (qm−s−1)r−s(qn−r+s−1)sqs(r−s) matrices in Fm×n

q with (X,Y )
as a minimal cover.

If we add such numbers, running over all cover patterns of cover weight r, we obtain 
an upper bound on Sm,n

r ,

UBr =
r∑︂

s=0 

(︃
m

s 

)︃(︃
n 

r − s

)︃
(qm−s − 1)r−s(qn−r+s − 1)sqs(r−s).

In order to find the exact value of Sm,n
r , we need to subtract from UBr all the matrices 

that we have double-counted when considering two of their minimal covers. This double
counting excess is the number DCr = UBr − Sm,n

r .
Let (X,Y ), (X ′, Y ′) ∈ MC(m,n) be such that (X,Y ) ̸= (X ′, Y ′) and |X| + |Y | =

|X ′| + |Y ′| = r. Let ω = |X ∩ X ′| + |Y ∩ Y ′| be the number of lines that (X,Y ) and 
(X ′, Y ′) have in common. Clearly, 0 ≤ ω ≤ r−1 since (X,Y ) ̸= (X ′, Y ′). Let u = |X∩X ′|
be the number of common rows, thus ω−u = |Y ∩Y ′| is the number of common columns. 
In Fig. 3, we represent the two covers (X,Y ) and (X ′, Y ′).

In this figure, horizontal lines, solid and dashed, correspond to the rows indexed by X; 
horizontal lines, solid and dotted, correspond to rows indexed by X ′; vertical lines, solid 
and dashed, correspond to columns indexed by Y ; and vertical lines, solid and dotted, 
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Fig. 3. Patter of positions with non-zero entries for matrices having both (X,Y ) and (X′, Y ′) as minimal 
covers. Here, u = |X ∩ X′| and ω − u = |Y ∩ Y ′| are the numbers of solid horizontal and vertical lines, 
respectively, s = |X| − |X ∩ X′| and r − ω − s = |Y | − |Y ∩ Y ′| are the numbers of dashed horizontal and 
vertical lines, respectively, and t = |X′| − |X ∩ X′| and r − ω − t = |Y ′| − |Y ∩ Y ′| are the numbers of 
dotted horizontal and vertical lines, respectively.

correspond to columns indexed by Y ′. In other words, solid lines belong to both (X,Y )
and (X ′, Y ′).

Consider matrices in Fm×n
q having both (X,Y ) and (X ′, Y ′) as minimal covers. First, 

such matrices would have zeros everywhere except in the solid lines and in the intersec
tions between a dashed line and a dotted line, depicted with diamonds and squares in 
Fig. 3. We now check how many possibilities there are for such entries for such matrices, 
thus counting the number of such matrices.

Such matrices may have any values in Fq in the positions depicted with crosses (they 
do not determine whether a solid line is redundant or not). Since there are u(ω−u) such 
crosses, there are qu(ω−u) possibilities for such entries.

Next, consider the t(r − ω − s) entries depicted with diamonds, which form a matrix 
in F t×(r−ω−s)

q . Clearly there are at most qt(r−ω−s) possibilities for such entries. On the 
other hand, there are at least (q− 1)t(r−ω−s) possibilities for such entries, because none 
of the lines incident to such diamonds would be redundant as a cover of a matrix if 
that matrix has no zero entry in such diamond positions. Analogously, there are at most 
qs(r−ω−t) and at least (q − 1)s(r−ω−t) possibilities for the s(r − ω − t) entries depicted 
with squares.

Finally, we need to check which values in the entries not depicted with crosses make 
a solid line non-redundant for both (X,Y ) and (X ′, Y ′). Consider a solid vertical line. If 
the matrix contains nonzero entries in that line in the indices not depicted with crosses 
or circles in Fig. 2, then the line is non-redundant for both (X,Y ) and (X ′, Y ′). There 
are qt+s(qm−u−s−t − 1) possibilities for such a case (the entries in the t + s positions 
depicted with circles may have any values, and the entries depicted with crosses are not 
considered in this paragraph). The other option is that all the entries in the indices not 
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depicted with crosses or circles in Fig. 2 are zero. In that case, the entries indexed by 
circles and part of a dotted line in Fig. 2 must form a nonzero vector, since otherwise 
the solid line is redundant for the cover (X,Y ). Similarly, the entries indexed by circles 
and part of a dashed line in Fig. 2 must form a nonzero vector. There are (qs−1)(qt−1)
possibilities for such a case. Thus, there are

qt+s(qm−u−s−t − 1) + (qs − 1)(qt − 1)

possibilities for a given vertical line to not be redundant for both (X,Y ) and (X ′, Y ′). 
Similarly, there are

q(r−ω−t)+(r−ω−s)(qn−(ω−u)−(r−ω−t)−(r−ω−s) − 1) + (qr−ω−s − 1)(qr−ω−t − 1)

possibilities for a given horizontal line to not be redundant for both (X,Y ) and (X ′, Y ′). 
Since the redundancy of a solid line (horizontal or vertical) is independent of any other 
line (horizontal or vertical), and there are ω−u solid vertical lines and u solid horizontal 
lines, then there are

(︁
qt+s(qm−u−s−t − 1) + (qs − 1)(qt − 1)

)︁ω−u

·
(︂
q(r−ω−t)+(r−ω−s)(qn−(ω−u)−(r−ω−t)−(r−ω−s) − 1) + (qr−ω−s − 1)(qr−ω−t − 1)

)︂u
possibilities for all solid lines not to be redundant.

We have exactly counted the matrices in Fm×n
q that have both (X,Y ) and (X ′, Y ′)

as minimal covers. However, some of them may have other covers as minimal covers. 
Hence, the number of matrices that we have double-counted in UBr, which is exactly 
DCr = UBr − Sm,n

r ≥ 0, satisfies the upper bound in the theorem. Consider now the 
matrices that have both (X,Y ) and (X ′, Y ′) as minimal covers, but all of whose entries 
depicted with diamonds and squares are nonzero. Clearly, those matrices cannot have 
a third cover of cover weight r as a minimal cover. Since these are only some of the 
double-counted matrices, our double-counting excess DCr satisfies the lower bound in 
the theorem.
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No data was used for the research described in the article.
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