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Abstract

In this paper we analyze a dynamic Cournot oligopoly to study the relationship between

competition and green innovation. Firms face a tax on emissions and react to this tax

investing in an abatement technology. The tax is given by the feedback Stackelberg

equilibrium of a dynamic policy game between a regulator and a polluting oligopoly

where environmental damages depend on the pollution stock. For constant marginal

damages, we find that firms’ R&D investment increases monotonically with the number

of firms in the industry because competition increases the tax. This effect is explained

by the fact that the tax can be decomposed in two terms, one negative that reflects the

divergence between the price and the marginal revenue because of the market power of

firms, and another positive that reflects the divergence between the social valuation of

the pollution stock and the private valuation. When the number of firms in the industry

increases, the absolute value of the first term decreases and the tax increases, leading

to more investment. Moreover, as in this case firms increase their stock of abatement

capital, net emissions decrease causing a reduction of the pollution stock.

Keywords: oligopoly, homogeneous good, Cournot competition, green R&D, end-of-

the-pipe abatement technology, emission tax, time consistency, differential games

JEL Classification System: H23, L12, L51, Q52, Q55
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1 Introduction

The effects of competition on firms’ innovation is a classical issue in the literature on

industrial organization. It goes back to the indirect debate between Schumpeter (1942)

and Arrow (1962) focusing on the so-called Schumpeterian hypothesis: one should expect

to observe an inverse relationship between innovation and the intensity of competition,

because monopoly rents would vanish as competition becomes stronger. A hypothesis

discussed by Arrow (1962) who claims that a competitive firm has a larger incentive to

innovate than a monopolist who could be interested in postponing the R&D investment

(a review of this literature can be found in Tirole (1988)). This debate received a new

impulse with the publication of a paper by Aghion et al. (2005) that, based on a neo-

Schumpeterian endogenous growth model, provides evidence of an inverted-U relationship

between aggregate R&D and the intensity of market competition using UK panel data.1

A more recent paper by Aghion et al. (2023) investigates the effects of consumers’

environmental concerns and market competition on firms’ decision to innovate in clean

technologies. They find a significant positive effect of environmental concerns on the

probability for a firm to innovate in the clean direction, a positive effect that is larger

the higher the competition is.

Despite the abundant literature on this issue, only a few scholars and very recently

have been interested in the relationship between green innovation and the competitive

pressure. The list of papers addressing this issue consists of Feichtinger et al. (2016),

Lambertini et al. (2017), Menezes and Pereira (2017), and Dragone et al. (2022). Our aim

is to contribute to the literature with new insights, analyzing this issue in the framework

of a dynamic Cournot oligopoly that produces an homogeneous good, where firms react to

an emission tax investing in green R&D that generates some spillovers.2 The tax is given

1Hashmi (2013) revisits the inverted-U relationship by using US data finding a mildly negative rela-

tionship between competition and innovation. An assessment of the lessons learnt from Schumpeterian

growth theory can be found in Aghion et al. (2013).
2An excellent review of the effects of competition on innovation in the framework of the oligopoly

theory can be found in Vives (2008). Recently, Yanase and Long (2024) has revisited this issue using

a dynamic model of an industry consisting of a few large firms and a fringe of small firms that pro-
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by the feedback Stackelberg equilibrium of a dynamic policy game between a regulator

and a polluting oligopoly where environmental damages depend on the stock of pollution.

The regulator playing as the leader chooses an emission tax to maximize net social welfare,

and the firms acting as followers select their R&D investment in an abatement technology

and output to maximize profits. We compute the tax for a linear-state policy game.

Our findings show that firms’ R&D investment increases with the number of firms

in the industry. This effect operates through the positive influence that the tax has on

R&D investment.3 The tax leads firms to invest in the abatement technology, but we

find that the tax increases with the number of firms in the industry, and as a result,

more competition translates into greater R&D investment. This effect is explained by

the fact that the optimal tax is the addition of a subsidy that corrects the divergence

between the price and the marginal revenue because of the market power of firms, and

a tax that closes the divergence between the social valuation of the pollution stock and

the private valuation because of the negative externality. If the environmental damages

are high enough, the second component dominates the first one, and the optimal policy

consists of taxing emissions.4 Thus, if the number of firms in the industry increases,

the market power of firms decreases and the absolute value of the first component of

the tax also decreases, causing an increase in the tax and the corresponding investment

increases that lead to a higher steady-state value of the abatement capital. Thus, our

duce horizontally differentiated products, where each firm’s marginal cost depends of a common pool

of knowledge that accumulates over time due to large firms’ investment. The authors find that for the

open-loop Nash equilibrium, the relationship between the number of large firms and the steady-state

stock of knowledge capital shows an inverted-U shape. However, this relationship does not necessarily

appear for the Markov-perfect Nash equilibria.
3Dijkstra and Gil-Moltó (2018) find that the effect of the strictness of the environmental policy on

green innovation is non-monotonic for the case of a static Cournot oligopoly. Our results do not support

this conclusion, but it should be taken into account for assessing this divergence that we are considering

different types of innovation.
4Obviously, if damages are low enough the tax could become a subsidy and firms would not invest

in an abatement technology. In this case, the more severe problem with the market allocation would be

the lack of competence and not the environmental problem. In this paper, we are interested in the cases

where emission taxation is justified.

4



findings go in the line of those obtained by Aghion et al. (2023), that supports the idea

that market competition promotes the adoption of cleaner technologies. In our model,

this effect is independent of the degree of spillovers because the tax does not depend on

spillovers. Spillovers are associated with the abatement capital so that they do not affect

the decisions of firms on output and R&D investment, but only affect the dynamics of

the pollution stock. The result is that, although spillovers do not affect the accumulation

of the abatement capital, with higher spillovers net emissions decrease and this causes a

reduction of the steady-state value of the pollution stock. The same occurs with more

competition, but in this case because of the increase in abatement capital.

We also find that the steady state is a global asymptotically stable point so that the

regulated market converges asymptotically to the steady-state abatement capacity and

pollution stock from any initial conditions. In the paper, we focus on some particular

initial conditions that we consider the more interesting case. We assume that the initial

value of the abatement capacity is zero and that the initial pollution stock is higher than

the steady-state pollution stock. Assuming that the initial value of abatement capacity is

zero is consistent with the idea that firms will only invest in R&D if a tax is set up by the

regulator. Thus, if the initial conditions reflect the state of the market before regulation

it seems reasonable to assume that the initial abatement capacity is zero. On the other

hand, if the initial value of the pollution stock were lower than the steady-state pollution

stock, regulation would lead to an increase in the pollution stock. We are more interested

in the case where taxation reduces the pollution stock.5 For these initial conditions, the

abatement capacity increases monotonically. However, the pollution stock could increase

provided that the initial stock of pollution is not too large, but only during an initial

period of time. In the long run, the pollution stock will always decrease. Finally, we

show that the effects that competition and spillovers have on the steady-state values of

the abatement capital and the pollution stock also occur outside the steady state.

Our research contributes to the literature of competition and innovation that has been

commented at the beginning of this section, and also to the literature on environmental

5Nevertheless, in Appendix C we completely characterize the dynamics of the model considering all

possible initial conditions with respect to the steady-state values.
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regulation of firms with market power in a dynamic setting. The seminal paper of this

literature is Benchekroun and Long (1998). In this paper a subgame-perfect tax rule that

implements the efficient outcome for a Cournot oligopoly is designed when environmental

damage is caused by a stock pollutant.6 Later contributions to this literature are Yanase

(2009), Benchekroun and Chaudhuri (2011), Feichtinger et al. (2016), Mart́ın-Herrán and

Rubio (2018a, 2023) and Dragone et al. (2022).7 Benchekroun and Chaudhuri (2011)

show that the imposition of a tax that depends on the pollution stock can induce stable

cartelization in a polluting oligopoly as the one analyzed by Benchekroun and Long

(1998).

Yanase (2009) was the first paper introducing abatement activities by firms. Abate-

ment activities reduce emissions in each period of time, but firms do not invest in R&D.

He examines a dynamic policy game between national governments that fix taxes or

standards in a model of international pollution control for duopolists that compete my-

opically in quantities in a third country with product differentiation.8 The same approach

is adopted by Mart́ın-Herrán and Rubio (2018a, 2023) in their analysis of the optimal

environmental policy for the case of a polluting monopoly developed in Mart́ın-Herrán

and Rubio (2018a), and for the case of an oligopoly addressed in Mart́ın-Herrán and

Rubio (2023). In Feichtinger et al. (2016) firms invest in productive capacity and abate

6Benchekroun and Long (2002) focused on the case of a polluting monopoly. For this case, they

show that tax rules are not unique. Lambertini (2018a) reviews the literature on dynamic polluting

oligopolists.
7We could also include in this list the papers by Stimming (1999), Feenstra et al. (2001) and more

recently Walter (2018), but all these papers consider a flow pollutant and focus on the effect of the

environmental policy on the accumulation of capital. Stimming (1999) and Feenstra et al. (2001)

investigate the effects of taxes and standards on the accumulation of productive capital for the case of

a duopoly, whereas Walter (2018) studies the effect of a tax on emissions over the investment in R&D

also in a duopolistic market. Xepapadeas (1992) and Kort (1996) also address these issues, but in their

papers the market structure where the polluting firm operates is not clearly recognized.
8More recently, Yanase and Kamei (2022) study a two-country differential game model of transbound-

ary pollution with international polluting oligopolies. The authors assume that governments use permits

to regulate pollution. They compare autarky and bilateral free trade and conclude that free trade is

better for the environment than autarky.
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emissions with some spillovers in each period of time, but as in Yanase (2009), they do

not invest in R&D. In their model, the environmental regulator charges an emission tax

rate on the accumulated emissions of each firm, and also fixes the price of the output,

eliminating in this way the interdependence between firms through their influence on

price. Finally, they assume that the optimal tax is the tax that maximizes the steady-

state level of social welfare and that the regulated price depends on the number of firms

in the industry. Their results show that there exists a constellation of parameter values

wherein the aggregate abatement of the industry at steady state is non-monotonic in the

number of firms, presenting in some case an inverted-U relationship. They claim that

this result is a consequence of some form of regulation, in their paper the regulation of

the price, that modifies the aggregate behavior of the industry. Our analysis does not

detect this kind of relationship, but our model diverges from theirs in several aspects.

We study an oligopoly model where firms invest in R&D, the price is endogenous and

the tax is charged on current emissions as in the seminal paper by Benchekroun and

Long (1998). Dragone et al. (2022) model presents the essential elements of Feichtinger

et al. (2016) model, but they do not include investment in productive capacity or price

regulation, although as in Feichtinger et al. (2016) the tax is charged on accumulated

emissions. Their analysis also yields an inverted-U relationship between the aggregate

abatement and the intensity of competition, but they highlight the role of spillovers in

abatement activities to explain this result instead of the role of regulation as Feichtinger

et al. (2016).

Finally, we would like to comment the papers by Menezes and Pereira (2017) and

Mart́ın-Herrán and Rubio (2018b) where firms invest in R&D. Menezes and Pereira (2017)

study the dynamic competition of a duopoly in supply schedules. The focus of the paper

is on the characterization of the optimal policy mix consisting of a tax on emissions

and a subsidy on investment costs. They find that an increase in the intensity of the

competition augments the tax and reduces the subsidy, but they do not address the effect

on investment. Mart́ın-Herrán and Rubio (2018b) analyze the second-best emission tax

for a polluting monopoly, and consequently, the issue studied in this paper is outside the

scope of their analysis.
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The remainder of the paper is organized as follows. Section 2 presents the model of

a polluting oligopoly. Section 3 characterizes the feedback Stackelberg equilibrium. In

Section 4 the relationship between competition and green innovation is studied in the

framework of a linear-state dynamic game. Section 5 offers some concluding remarks and

points out lines for future research.

2 The Model

We consider a Cournot oligopoly that faces a market demand represented by the de-

creasing inverse demand function P (Q(t)), where Q(t) =
∑n

i=1 qi(t) is the output of the

industry at time t, qi(t) is the output of firm i at time t, and n ≥ 2 is the number of

firms. Firms produce a homogeneous good using the same productive technology de-

scribed by the cost function PC(qi(t)) = cqi(t), where c is a positive constant. The

production process generates pollution emissions, but after an appropriate choice of mea-

surement units we can say that each unit of output generates one unit of pollution.

Emissions are subject to a per unit tax, τ(t). As a response to the tax, firms can de-

crease their output and/or invest in R&D to reduce the emission per unit of output.

We assume that the firm adopts an end-of-the-pipe abatement technology such that net

emissions are εi(t) = qi(t)− ai(Yi(t)), where ai(Yi(t)) is the abatement function and Yi(t)

is the effective stock of R&D capital.9 Function ai(Yi(t)) satisfies the following properties:

ai(0) = 0, ai(Yi(t)) ≤ qi, a′(Yi(t)) > 0 and a′′i (Yi(t)) < 0 for all Yi(t) ≥ 0. With positive

spillovers, if the firms R&D capital stocks or abatement capacities are y1(t), . . . , yn(t),

respectively, the firm i’s effective stock of R&D capital is Yi(t) = yi(t) + β
∑n

j ̸=i yj(t),

where β ∈ [0, 1] measures the degree of spillovers. However, in this paper we adhere to

the approach proposed by D’Aspremont and Jacquemin (1988) for modelling innovation

in a Cournot duopoly assuming that ai(Yi(t)) is a linear function and that the decreasing

returns of the abatement function are captured by a strictly convex R&D cost function

9Notice that this type of abatement does not reduce the coefficient gross emissions/output, but the

coefficient net emissions/output, since εi(t)/qi(t) = 1− (ai(Yi(t))/qi(t)). Thus, for a given value of the

output, the higher the abatement, the lower the ratio εi(t)/qi(t).
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IC(wi(t)), where wi(t) stands for the R&D investment of firm i. In fact, we redefine

Yi(t) in terms of abated emissions, in such a way that this variable can also be inter-

preted as the abatement capacity of firm i, and net emissions can be written as follows

εi(t) = qi(t) − yi(t) − β
∑n

j ̸=i yj(t).
10 Thus, the dynamics of the abatement capacity for

each firm is defined by the differential equation

ẏi(t) = wi(t)− δyyi(t), yi(0) = y0 ≥ 0, i = 1, . . . , n, (1)

where δy stands for the depreciation rate of the abatement capacity. The focus of the

paper is on a stock pollutant that evolves according to the following differential equation

ẋ(t) =
n∑

i=1

(
qi(t)− yi(t)− β

n∑
j ̸=i

yj(t)

)
− δxx(t), x(0) = x0 ≥ 0, (2)

where x(t) stands for the pollution stock at time t and δx > 0 for the decay rate of

pollution stock. Environmental damages are given by D(x(t)) with Dx > 0 and Dxx ≥ 0.

The differential equation describing the dynamics of the pollution stock can be equiv-

alently rewritten as follows

ẋ(t) =
n∑

i=1

qi(t)− (1 + β(n− 1))
n∑

i=1

yi(t)− δxx(t), x(0) = x0 ≥ 0. (3)

The objective of firm i is to choose output and R&D investment in order to maximize

the discount present value of net profits given by the following expression

max
qi(t),wi(t)

∫ ∞

0

e−rt {P (Q(t))qi(t)− cqi(t)− IC(wi(t))

−τ(t)

(
qi(t)− yi(t)− β

n∑
j ̸=i

yj(t)

)}
dt, (4)

subject to differential Eqs. (1) and (3), initial conditions and the usual non-negativity

constraints, where r is the time discount rate.

On the other hand, the regulator chooses the emission tax with the aim of maximiz-

ing net social welfare given by the sum of consumer surplus and firms’ net profits plus

10This approach was first adopted by Poyago-Theotoky (2007) in a static model, and more recently has

been used by Menezes and Pereira (2017) and Mart́ın-Herrán and Rubio (2018b) in a dynamic context.

9



tax revenues minus environmental damages. As firms’ tax expenses and regulator tax

revenues cancel out, the dynamic optimization problem for the regulator can be written

as follows:

max
τ(t)

∫ ∞

0

e−rt

{∫ Q(t)

0

P (z(t))dz(t)− cQ(t)−
n∑

i=1

IC(wi(t))−D(x(t))

}
dt. (5)

The regulator also solves this problem subject to differential Eqs. (1) and (3), initial

conditions and the usual non-negativity constraints.

Thus, the optimal tax rate is defined by the solution to a dynamic policy game given

by (4) and (5) and differential Eqs. (1) and (3).

3 The Feedback Stackelberg Equilibrium

The equilibrium concept used to solve this differential game is the feedback Stackelberg

equilibrium (FSE). This equilibrium concept, that was introduced by Başar and Haurie

(1984), assumes that the leader, in our case the regulator, has a stagewise first-mover

advantage over the followers, which in a continuous time setting means that the leader

has an instantaneous strategic advantage at each point in time.11 The calculus of the

FSE involves two stages. First, the instantaneous or state-dependent best responses of

the followers to the leader’s strategy are calculated. Second, the leader, considering

the followers’ best responses solves its maximization problem. Therefore, to find out the

leader’s feedback strategy, backward induction is used, substituting the followers’ reaction

functions in the leader’s Hamilton-Jacobi-Bellman (HJB) equation, and, computing the

leader’s optimal strategy by maximizing the right-hand side (RHS) of the equation for

given values of the state variables. Thus, the leader at any time selects the optimal level

of the control, but the first-order condition (FOC) defines a Markovian strategy because

it depends on the derivatives of the value function with respect to the state variables.

For this type of equilibrium, no commitment is needed for the entire temporal horizon,

but only a stagewise first-mover advantage. The result is that the FSE satisfies subgame

11The reader interested in this equilibrium concept could consult the book by Başar and Zaccour

(2018) on dynamic games.
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perfection, and consequently, is time consistent.12

Others authors as Bencheckroun and Long (1998), who also study the case of a pol-

luting oligopoly, have proposed an alternative method to calculate a feedback Stackelberg

equilibrium, that is known in the literature as the global Stackelberg equilibrium (GSE).

The method proposed by these authors follows the classical approach of market regula-

tion. First, the output strategy that maximizes net social welfare is derived assuming

that the regulator can control the firms’ decisions acting as a social planner. Second,

the Markov-perfect Nash equilibrium of the game played by firms is calculated for the

emission tax rule decided by the regulator. The tax is a tax on emissions, although the

tax rate depends on the pollution stock.13The optimal tax rule is the one for which the

regulated market equilibrium implements the efficient outcome and it is calculated by

equalizing the first-order conditions that characterize the regulated market equilibrium

and those that characterize the efficient outcome. Recently, Mart́ın-Herrán and Rubio

(2021) have showed that for the oligopoly model proposed by Bencheckroun and Long

(1998), the two approaches coincide, the classical approach and the game theory approach

yield the same feedback strategies for the tax rate and the outcome. This coincidence

occurs when the first-best policy is calculated, but the approaches will diverge when a

second-best policy is implemented as occurs in this paper. Given the limitations of the

GSE, we compute the FSE following the methodology proposed by Başar and Haurie

12The concepts of time consistency and subgame perfection in differential games are formally explained

in the book by Dockner et al. (2000). In a few words, we can claim that a FSE is time consistent if it

is also a FSE of every subgame along the original equilibrium temporal trajectory of the state variables.

Time consistency could be seen as a minimal requirement for the credibility of an equilibrium strategy. In

contrast to time consistency, subgame perfectness not only requires the previous property, but that the

FSE it is also a FSE for all subgames, i.e. for all admissible temporal trajectories of the state variables.

Of course, subgame perfectness of a FSE implies its time consistency. Lambertini (2018b) distinguishes

between weak time consistency and strong time consistency. Strong time consistency requires subgame

perfection.
13In Bencheckroun and Long’s (1998) paper, there is no abatement and emissions are equal to output.

In our paper, firms invest in abatement capacity and the tax rule depends on both the pollution stock

and firms’ abatement capacity and it is applied on net emissions.
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(1984).14

According to the definition of the FSE given above, we can see it as the solution to

a temporal sequence of one-shot games where the leader moves first. The procedure to

calculate the equilibrium guarantees that the equilibrium is intertemporally consistent,

but it is not clear that it guarantees the intratemporal consistency of the one-shot game

played at each point in time. In order to verify whether this additional requirement of

time consistency is satisfied, we propose to calculate the instantaneous reaction functions

of the follower in two stages, first, firms decide on investment and then they take their

decisions on output. In this way, we can analyze the time consistency of the one-shot

game changing the timing of the game with the regulator revising the tax after firms have

decided on investment. The intratemporal consistency requires that no deviation occurs

with respect to the tax announced when the regulator moves first.15 Thus, the FSE in

this paper is characterized solving a three-stage game backwards.

3.1 The Third Stage: The Output Decision

The output selection of firm i must satisfy the following Hamilton-Jacobi-Bellman (HJB)

equation:16

rVi(x, ȳ) = max
qi

{
P (Q)qi − cqi − IC(wi)− τ

(
qi − yi − β

n∑
j ̸=i

yj

)

+
∂Vi

∂x

(
n∑

i=1

qi − (1 + β(n− 1))
n∑

i=1

yi − δxx

)
+

n∑
k=1

∂Vi

∂yk
(wk − δyyk)

}
, (6)

where ȳ = (y1, ..., yn) with i = 1, 2, ..., n and Vi(x, ȳ) stands for the maximum discounted

present value of net profits of firm i for the current values of the pollution stock and

abatement capacities.

14See the book by Dockner et al. (2000, pp. 134-142) for an example of the application of the GSE

and an assessment of its limitations.
15The first analysis of the time consistency of a tax on emissions for firms with market power in a

static multistage game was provided by Petrakis and Xepapadeas (2001, 2003).
16Time argument will be eliminated when no confusion arises.
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From the first-order condition (FOC) for the maximization of the right-hand side

(RHS) of the HJB equation, we obtain that

P ′(Q)qi + P (Q) = c+ τ − ∂Vi

∂x
, (7)

where the left-hand side (LHS) represents the marginal revenue of the firm and the RHS

the marginal costs. These costs are formed by the marginal cost of production, the tax

and firm i’s shadow price of the pollution stock. The latter is given by the reduction in

the discounted present value of firm i’s net profits because of the increase in the pollution

stock produced by the increase in production. Adding condition (7) for the number of

firms we obtain an expression that implicitly defines the dependence of total output with

respect to the tax and state variables.

P ′(Q)
n∑

i=1

qi + nP (Q) = n(c+ τ)−
n∑

i=1

∂Vi

∂x
,

P ′(Q)Q+ nP (Q) = n(c+ τ)−
n∑

i=1

∂Vi

∂x
. (8)

From this expression we have that

∂Q

∂τ
=

n

P ′′(Q)Q+ (n+ 1)P ′(Q)
, (9)

so that P ′′ ≤ 0 is a sufficient condition to obtain that an increase in the tax reduces the

output of the industry for given values of the state variables. Condition (8) implicitly

defines Q(τ, x, ȳ), and using (7) we can write firm i’s output as a function of the tax and

state variables:

qi(τ, x, ȳ) =
1

P ′(Q(τ, x, ȳ))

(
c+ τ − ∂Vi

∂x
− P (Q(τ, x, ȳ))

)
. (10)

This expression is the instantaneous or state-dependent reaction function of the output

of firm i to the tax. For a given number of firms if P ′′ ≤ 0 the slope of this reaction

function is negative. Thus, we obtain that the output is a strategic substitute of the tax.

3.2 The Second Stage: The Investment Decision

The investment decision is given by the maximization of the RHS of (6) with respect

to wi. As the output does not depend on the R&D investment, we obtain the following

FOC
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IC ′(wi) =
∂Vi

∂yi
, i = 1, 2, . . . , n. (11)

The LHS of the condition stands for the marginal investment cost. On the other hand,

the RHS stands for the marginal benefit, that is defined by the increase in the discounted

present value of net profits coming from the increase in the abatement capacity. Notice

that the tax has not an intratemporal influence on firms’ investment. In other words, the

reaction function of the investment is orthogonal with respect to the tax. This means

that (11) directly defines the optimal strategy of the investment, wi(x, ȳ), for the FSE.

Obviously, this fact does not mean that the tax has no influence on firms’ investment,

but rather that this influence operates intertemporally. Notice that with a tax, firms

can reduce the quantity of taxes decreasing output or/and investing in the abatement

capacity. This effect is captured by the derivative of the value function with respect to

the abatement capacity in (11) and it will be positive only if there is a tax on emissions.

3.3 The First Stage: The Optimal Tax

Once we recognize the dependence of the output on the tax, we can calculate the optimal

tax solving the following optimization problem:

rW (x, ȳ) =max
τ

{∫ Q(τ,x,ȳ)

0

P (z)dz − cQ(τ, x, ȳ)−
n∑

i=1

IC(wi(x, ȳ))−D(x)

+
∂W

∂x

(
Q(τ, x, ȳ)− (1 + β(n− 1))

n∑
i=1

yi − δxx

)
+

n∑
k=1

∂W

∂yk
(wk(x, ȳ)− δyyk)

}
, (12)

where W (x, ȳ) stands for the regulator’s value function.

The FOC for the maximization of the RHS of the HJB equation yields(
P (Q(τ, x, ȳ)− c+

∂W

∂x

)
∂Q

∂τ
= 0.

As ∂Q/∂τ ̸= 0, this condition requires that

P (Q(τ, x, ȳ) = c− ∂W

∂x
. (13)
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Thus, the price must be equal to marginal costs, that now include the marginal cost of

production and the social shadow price of the pollution stock. This condition implicitly

defines the optimal tax rule, τ(x, ȳ), corresponding to the FSE. Finally, substituting the

tax rule in (10) we obtain the optimal feedback strategy for output, qi(x, ȳ).

Next, we can check whether this optimal tax is intratemporally consistent, changing

the timing of the game. Suppose now that the regulator chooses the tax after the firms

decide on investment. Under this assumption, the following HJB equation has to be

satisfied:

rW (x, ȳ) = max
τ

{∫ Q(τ,x,ȳ)

0

P (z)dz − cQ(τ, x, ȳ)−
n∑

i=1

IC(wi)−D(x)

+
∂W

∂x

(
Q(τ, x, ȳ)− (1 + β(n− 1))

n∑
i=1

yi − δxx

)
+

n∑
k=1

∂W

∂yk
(wk − δyyk)

}
, (14)

that yields the same condition (13).17 The regulator would not revise the tax and the

optimal tax corresponding to the FSE is time consistent for the one-shot game played in

each period of time. This observation allows us to claim that

Proposition 1 The FSE when the regulator is the leader of the game is intertemporallly

and intratemporally consistent.

This result is explained by the fact that the instantaneous reactions functions (11)

and (13) are orthogonal. The optimal investment does not depend on the tax and the

optimal tax does not depend on the investment. Thus, the regulator cannot influence

the investment decisions of firms when it moves first, but the firms cannot influence on

the regulator’s decisions either when they move first in the one-shot game played by the

regulator and the firms at each point in time.

Finally, we characterize the tax of the FSE. Using (8) and (13) we can derive the

following expression for the tax

τ =
1

n

P

ξ
−

(
∂W

∂x
− 1

n

n∑
i=1

∂Vi

∂x

)
, (15)

17Notice that HJB equation (14) is not exactly the HJB equation (12) because in (14) appear the levels

of investment, whereas in (12) these levels have already been substituted by the feedback investment

strategies.
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where ξ is the price elasticity of the demand curve. This expression reflects the two

market distortions associated with production. One caused by the market power of firms

and the other by a negative externality. The first term of the RHS of (15) reflects the first

distortion and consequently is a subsidy, the term is negative. As is well known we find

that the lower the elasticity the higher the subsidy. The second term, that is equal to the

difference between the social shadow price of the pollution stock and the average of the

private shadow price of the pollution stock, is explained by the negative externality and

is expected to be positive. Unfortunately, at this point we cannot advance in the analysis

of the tax terms and their signs without giving more structure to our model, because at

this level of generality the shadow prices of the pollution stock are given by unknown

value function derivatives. For this reason, in the next section, we investigate this issue

addressing a linear-state policy game where environmental damages are linear.

4 The Linear-State (LS) Policy Game

The LS differential game we study in this section considers an oligopoly that faces a linear

(inverse) demand function given by P = a−Q with a > c, and operates with a quadratic

investment cost function IC(wi) = γw2
i /2 with γ > 0. Moreover, the environmental

damages are given by the linear function D(x) = dx with d > 0.

For this specification of the policy game, the FOC (7) reads

a−Q−i − 2qi = c+ τ − ∂Vi

∂x
, i = 1, 2, ..., n,

where Q−i =
∑n

j ̸=i qi and the LHS is the marginal revenue of the firm for a linear demand

function. Using this condition we can write the aggregate and individual outputs as

functions of the tax

Q(τ, x, ȳ) =
1

n+ 1

(
n(s− τ) +

n∑
i=1

∂Vi

∂x

)
,

∂Q

∂τ
= − n

n+ 1
, (16)

qi(τ, x, ȳ) =
1

n+ 1

(
s− τ −

n∑
k=1

∂Vk

∂x

)
+

∂Vi

∂x
, (17)

where s = a− c.
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On the other hand, FOC (13) yields

Q(τ, x, ȳ) = s+
∂W

∂x
, (18)

and therefore, (16) and (18) allow us to derive the feedback strategy for the tax

τ(x, ȳ) =
1

n

(
n∑

i=1

∂Vi

∂x
− (n+ 1)

∂W

∂x
− s

)
, (19)

and by substitution in (17) the feedback strategy for firm i’s output

qi(x, ȳ) =
1

n

(
s+

∂W

∂x
−

n∑
k=1

∂Vk

∂x

)
+

∂Vi

∂x
. (20)

Finally, FOC (11) gives us directly the feedback strategy for the R&D investment of firm

i

wi(x, ȳ) =
1

γ

∂Vi

∂yi
. (21)

Now, for computing the value functions of the regulator and the firms we have to

substitute the feedback strategies in the HJB equations, (12) and (6), and solve them.

Substituting the aggregate output and the investment in the regulator’s HJB equation

(12) and rearranging terms we obtain the following partial differential equation:

rW (x, ȳ) =
1

2

(
s+

∂W

∂x

)2

− 1

2γ

n∑
i=1

(
∂Vi

∂yi

)2

− dx

−∂W

∂x

(
(1 + β(n− 1))

n∑
i=1

yi + δxx

)
+

n∑
k=1

∂W

∂yk

(
1

γ

∂Vk

∂yk
− δyyk

)
. (22)

Next, substituting the aggregate and individual outputs, the tax and the investment in

firm i’s HJB equation (6) yields the following differential equation:

rVi(x, ȳ) = −∂W

∂x

(
1

n

(
s+

∂W

∂x
−

n∑
i=1

∂Vi

∂x

)
+

∂Vi

∂x

)
− 1

2γ

(
∂Vi

∂yi

)2

− 1

n

(
n∑

i=1

∂Vi

∂x
− (n+ 1)

∂W

∂x
− s

)(
1

n

(
s+

∂W

∂x
−

n∑
i=1

∂Vi

∂x

)
+

∂Vi

∂x
− yi − β

n∑
j ̸=i

yj

)

+
∂Vi

∂x

(
s+

∂W

∂x
− (1 + β(n− 1))

n∑
i=1

yi − δxx

)
+

n∑
k=1

∂Vi

∂yk

(
1

γ

∂Vk

∂yk
− δyyk

)
. (23)

17



For solving equations (22) and (23) we conjecture linear representations of the value

functions18

W (x, ȳ) = Awx+
n∑

i=1

Bi
wyi + Cw, Vi(x, ȳ) = Aix+Bi

iyi +
n∑

k=1, k ̸=i

Bk
i yk + Ci, (24)

that gives ∂W/∂x = Aw, ∂W/∂yi = Bi
w, ∂Vi/∂x = Ai, ∂Vi/∂yi = Bi

i , ∂Vi/∂yk = Bk
i

with Aw, Bi
w, Ai, Bi

i and Bk
i unknowns to be determined.

SubstitutingW, ∂W/∂x , ∂W/∂yi and ∂Vi/∂yi into Eq. (22) and Vi, ∂Vi/∂x, ∂W/∂x, ∂Vi/∂yi

and ∂Vi/∂yk into Eq. (23) and equalizing the coefficients of variables x, yi and yk we

obtain a unique solution for the coefficients of the value functions19

Aw = − d

r + δx
, Bi

w =
d(1 + β(n− 1))

(r + δx)(r + δy)
,

Ai = 0, Bi
i =

(n+ 1)d− s(r + δx)

n(r + δx)(r + δy)
, Bk

i =
β((n+ 1)d− s(r + δx))

n(r + δx)(r + δy)
.

From this solution we can conclude that

Proposition 2 The optimal strategies for the production and R&D investment of firm i

are

q∗i =
1

n

(
s− d

r + δx

)
, w∗

i =
d(n+ 1)− s(r + δx)

nγ(r + δx)(r + δy)
. (25)

The two variables satisfy the non-negativity constraint provided that

d ∈
[
s(r + δx)

n+ 1
, s(r + δx)

]
. (26)

Observe that if d is large enough, it does not make sense to produce the good from an

economic perspective, because the environmental damages are extremely huge. Instead,

if d is too low, it is not profitable to invest in abatement capacity because the marginal

benefit of abatement capacity of the firm, ∂Vi/∂yi = Bi
i , is negative. Moreover, it is

easy to check that an increase in marginal damages decreases production and increases

R&D investment. On the other hand, we see that spillovers have no influence on the

18Where the subscripts w and i stand for the regulator and firm i, respectively.
19Details for this calculation are given in Appendix A. We omit coefficients Cw and Ci because they

do not affect the results obtained in this section.
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optimal strategies of production and R&D investment. Spillovers affect emissions and

consequently will influence the dynamics of the pollution stock as we will see below,

but they do not affect the firms’ decisions on output and R&D investment. Notice

that, although ∂Vi/∂yk = Bi
k depends on the degree of spillovers so that they will affect

the discount present value of firms’ net profits, the marginal benefit of own abatement

capacity given by ∂Vi/∂yi = Bi
i does not depend on β, and consequently, spillovers

do no influence the decision of firms on R&D investment. Finally, we investigate the

effect of competition on production and R&D investment. The effect on output is clear,

competition decreases the production of firms. However, the output of the industry is

constant. This result is explained by condition (13) establishing that the maximization of

net social welfare requires that the price should be equal to the marginal cost of production

plus the social shadow price of the pollution stock, but as this latter is constant, the price

of the good must be constant, and consequently, the output of the industry. The effect

of competition on R&D investment is not so obvious. However, taking the derivative of

w∗
i with respect to n we obtain the following expression

∂w∗
i

∂n
=

s(r + δx)− d

n2γ(r + δx)(r + δy)
, (27)

that is positive if condition (26) is satisfied. We highlight this result in the following

proposition

Proposition 3 If the firms invest in abatement capacity, the investment increases with

competition.

This result adheres to the hypothesis that competition promotes innovation, in our

model, green innovation. If more firms compete in quantities in a polluting oligopoly, the

result is that firms end investing more in abatement capacity.

Finally, using (19) we calculate the emission tax.

Proposition 4 The optimal emission tax is

τ ∗ = − 1

n

(
s− d

r + δx

)
+

d

r + δx
= −q∗i −

∂W

∂x
, (28)

which is positive if condition (26) holds.
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According to expression (15), the first term of the tax should be P/nξ. It is easy to

check that if the demand function is Q = a − P, P/nξ = −qi. The second term is the

difference between the social shadow price of the pollution stock, −∂W/∂x = −Aw =

d/(r + δx), that is positive, and the average of the private shadow prices ∂Vi/∂x = Ai,

that for constant marginal damages is zero. Thus, the second term is positive and the

sign of the tax depends on the severity of environmental damages. If these damages are

large enough as justify a positive R&D investment, the tax is positive and increasing

with marginal damages and competition. In any case, it should be highlighted that the

tax is lower than the social shadow price of the pollution stock, just because the tax also

corrects the distortion caused by the firms’ market power.

We would also like to point out that firms do not associate any price to the pollution

stock, what means that the optimal decision on output is given by the maximization of

current net profits, i.e. by the static Cournot equilibrium. Thus, for constant marginal

damages the Stackelberg equilibrium can be also computed assuming that firms myopi-

cally select the output level in the third stage, that they choose the investment in the

second stage for a given constant tax, and that, finally, the regulator selects the optimal

level of the tax. According to this procedure the firms’ value functions are calculated

in the second stage assuming a constant tax rate. In this case, at the second stage the

optimal strategy of the investment depends explicitly on the tax. However, the same

value functions and strategies than those derived in this section are obtained once the

optimal tax is substituted in the optimal strategy of the investment calculated at the

second stage. In fact, using (28) we can retrieve the optimal strategy of the investment

depending on the tax substituting in (25). Notice that the tax can be rewritten as follows

τ ∗ =
(n+ 1)d− s(r + δx)

n(r + δx)
,

so that (n + 1)d − s(r + δx) = τ ∗n(r + δx). Then, substituting the numerator of w∗
i in

(25) by τ ∗n(r + δx), we obtain the optimal strategy of the investment depending on the

tax:

w∗
i =

τ ∗

γ(r + δy)
. (29)

This expression tells us that firms will only invest if the equilibrium policy is indeed a

20



tax and the previous expression indicates that for a given value of marginal damages,

a minimum level of competition is required to have a positive tax rate and hence a

positive investment. If competition is below this minimum, the optimal policy would

be a subsidy. In this case, the main distortion in the market is the one caused by the

lack of competition and the negative term of the tax dominates in the expression given

by (28), yielding a negative value for the optimal policy. Then, we would have a corner

solution for the investment. This expression also indicates that the interval of admissible

values for marginal damages defined by (26) for which the output, the investment and

the tax are positive, increases with the number of firms in the industry. Finally, we see

that the higher the tax, the higher the firms’ R&D investment, and as the tax increases

with competition, we can conclude that more competition leads to more investment.

This expression clarifies that competition influences investment through the effect that

competition has on the optimal tax.

It is straightforward to see that if firms’ investment increases with the number of firms,

the aggregate, i.e., the investment of the industry increases too. Nevertheless, it would

be interesting to write the expression for the aggregate expression in order to evaluate

which are the conditions that support this result. The investment of the industry is

W ∗ = nw∗
i =

d(n+ 1)− s(r + δx)

γ(r + δx)(r + δy)
. (30)

As expected the condition that guarantees that the firms’ investment is positive is suffi-

cient to guarantee that the investment at the industry level is also positive. Now, taking

the first derivative of (30) we obtain that

∂W ∗

∂n
=

d

γ(r + δx)(r + δy)
.

Thus, no additional condition is required to conclude that the investment of the industry

increases with the dimension of the industry. Moreover, for the LS model studied in this

section, we see that the investment of the industry increases linearly with the number of

firms.

We end the study of the policy game analyzing the dynamics of the state variables,
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which is given by the following system of differential equations:

ẋ =
(r + δx)s− d

r + δx
− n(1 + β(n− 1))y − δxx, x(0) = x0 ≥ 0, (31)

ẏ =
d(n+ 1)− s(r + δx)

γn(r + δy)(r + δx)
− δyy, y(0) = y0 ≥ 0. (32)

The steady state of the system is:20

x∗
ss =

1

δx(r + δx)

(
(δyγ(r + δy) + 1 + β(n− 1))(r + δx)s

δyγ(r + δy)

−((1 + β(n− 1))(n+ 1) + δyγ(r + δy))d

δyγ(r + δy)

)
, (33)

y∗ss =
d(n+ 1)− s(r + δx)

δynγ(r + δx)(r + δy)
, (34)

and for industry emissions

E∗
ss = Q∗ − n (1 + β(n− 1)) y∗ss = x∗

ssδx, (35)

where

Q∗ =
(r + δx)s− d

r + δx
.

The steady-state values are non-negative for values of d in the following interval

d ∈
[
s(r + δx)

n+ 1
,
(δyγ(r + δy) + 1 + β(n− 1))(r + δx)s

(1 + β(n− 1))(n+ 1) + δyγ(r + δy)

]
, (36)

where the upper bound of this interval is lower than the upper bound of the interval in

(26).

It can be seen that the steady-state abatement capacity does not depend on spillovers.

However, it increases with the number of firms in the industry. Notice that ∂y∗ss/∂n =

(1/δx)∂w
∗/∂n and we have established that the R&D investment increases with com-

petition. It is also straightforward from (35) that steady-state emissions decrease with

the spillovers and the number of firms in the industry. Notice that gross emissions, that

depend on the industry output, are independent of the number of firms and spillovers and

that the steady-state abatement capacity increases with competition. Thus an augmen-

tation in the degree of spillovers increases abatement and also an increase in competition,

20Subscript ss stands for steady state.
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the result is a decrease in net emissions, and consequently, a reduction in the steady-state

pollution stock.

Although our LS policy game yields constant values for the control variables, the net

emissions, the abatement capacity and the pollution stock evolve over time. In order

to know how these variables evolve over time and, in particular, the type of stability of

its steady state, we evaluate the trace and determinant of the following 2 x 2 Jacobian

matrix:

J =

 ∂ẋ
∂x

∂ẋ
∂y

∂ẏ
∂x

∂ẏ
∂y

 =

 −δx −n(1 + β(n− 1))

0 −δy

 .

The trace is Υ(J) = −(δx+δy) < 0 while the determinant is △(J) = δxδy > 0. Therefore,

the steady-state equilibrium is a global asymptotically stable point and we can conclude

that

Proposition 5 The system of differential equations for the stock of pollution and abate-

ment capacity has a unique positive steady state provided that the marginal damages d

belong to the interior of interval (36). The steady state is a stable node and is globally

stable, i.e. the market converges asymptotically to the steady-state abatement capacity and

pollution stock from any initial condition. Moreover, an increase in competition increases

the steady-state abatement capacity and reduces the steady-state pollution stock.

Finally, we solve the system of differential equation describing the dynamics of the

pollution stock and the abatement capital stock.

The differential equation of the abatement capital stock can be solved independently

of the equation of the pollution stock. The solution to equation (32) reads:

y(t) = y∗ss
(
1− e−δyt

)
+ y0e

−δyt, (37)

where y∗ss is the the steady-state value of the abatement capital stock given in (34).

The solution to equation (18) reads21:

� If δx ̸= δy, then

x(t) = x∗
ss + (x0−x∗

ss) e
−δxt +

n (1+β(n−1)) (y∗ss−y0)

δx−δy
(e−δyt − e−δxt). (38)

21The details of the computation are presented in Appendix B.
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� If δx = δy = δ, then

x(t) = x∗
ss + (x0 − x∗

ss) e
−δt + n (1 + β(n− 1)) (y∗ss − y0)te

−δt. (39)

where x∗
ss is the steady-state value of the pollution stock given in (33).

The dynamics of the abatement capacity depends on the initial value of this stock, y0.

It increases (decreases) if the initial abatement capacity is lower (larger) than its steady

state value. However, the dynamics of the pollution stock is more complex and depends

not only on the initial value, but also on the relationship between the depreciation rate

of abatement capacity and the natural rate of decay of the pollution stock. In Appendix

C, the reader can find a detailed analysis of the dynamics of the model. Here, we focus

on a particular case that we think is the more interesting. First, we assume that the

initial value of the abatement capacity is zero, consistently with the idea that firms do

not invest in R&D if no tax is applied on emissions. Second, we suppose that the initial

value of the pollution stock is larger than its steady-state value. If this is not the case,

the optimal policy will lead to an accumulation of emissions. A case that it does not seem

very interesting. For x0 > x∗
ss and y0 = 0, (38) for the general case δx ̸= δy simplifies to

yield

x(t) = x∗
ss + (x0 − x∗

ss) e
−δxt +

n (1 + β(n− 1)) y∗ss
δx − δy

(e−δyt − e−δxt),

and the first derivative with respect to time is

ẋ =

(
−(x0−x∗

ss) +
n (1+β(n−1)) y∗ss

δx−δy

)
δxe

−δxt − n (1+β(n−1)) y∗ss
δx−δy

δye
−δyt, (40)

where the first term of the first parenthesis on the RHS is negative and the sign of the

other terms depends on the relationship between δx and δy.

For δx > δy, x(t) will present an extreme if the following condition is satisfied

n (1+β(n−1)) y∗ss
δx−δy

δxe
−δxt =

n (1+β(n−1)) y∗ss
δx−δy

δye
−δyt + (x0−x∗

ss)δxe
−δxt.

This condition can be rewritten as follows

n (1+β(n−1)) y∗ss
δx−δy

δx =
n (1+β(n−1)) y∗ss

δx−δy
δye

(δx−δy)t + (x0−x∗
ss)δx, (41)
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where the LHS is constant with respect to time and the RHS is a strictly convex increasing

function. Thus, if (41) has a solution it must be satisfied that

n (1+β(n−1)) y∗ss
δx−δy

δx >
n (1+β(n−1)) y∗ss

δx−δy
δy + (x0−x∗

ss)δx,

i.e. the LHS of (41) must be higher than the value of the RHS for t = 0. This condition

requires that

x0 < x∗
ss +

1

δx
n (1 + β(n− 1)) y∗ss,

that using (35) yields

x0 <
1

δx
Q∗ =

(r + δx)s− d

δx(r + δx)
. (42)

Thus, we can conclude that if this condition is satisfied, the pollution stock increases

until it reaches a maximum and decreases afterwards. On the contrary, if x0 is higher

than this upper bound, the pollution stock decreases for all t ≥ 0.

When δx < δy, the pollution stock could attain a maximum too if the following

condition is satisfied for a finite value of t :

−n (1+β(n−1)) y∗ss
δx−δy

δye
−δyt =

(
−(x0−x∗

ss) +
n (1+β(n−1)) y∗ss

δx−δy

)
δxe

−δxt.

This condition can be rewritten as follows

−n (1+β(n−1)) y∗ss
δx−δy

δy =

(
x0−x∗

ss−
n (1+β(n−1)) y∗ss

δx−δy

)
δxe

(δy−δx)t, (43)

where the LHS is constant with respect to time and the RHS is a strictly convex increasing

function. Thus, if (43) has a solution it must be satisfied that

−n (1+β(n−1)) y∗ss
δx−δy

δy >

(
x0−x∗

ss−
n (1+β(n−1)) y∗ss

δx−δy

)
δx,

i.e. the LHS of (41) must be higher than the value of the RHS for t = 0. From this

expression we obtain the same condition that the one derived for δx > δy.

Finally, we analyze the case with δx = δy = δ. If these two parameters are identical,

the derivative of the pollution stock with respect to time is

ẋ = (−δ (x0 − x∗
ss) + n (1 + β(n− 1)) y∗ss(1− δt))e−δt,
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where the first term between parenthesis is negative and the sign of the second term

depends on t. In this case, this derivative will be zero for a finite time provided that

x0 < x∗
ss +

1

δ
n (1 + β(n− 1)) y∗ss,

that is the same condition obtained for the other two cases. All these results are summa-

rized in the following proposition:

Proposition 6 When x0 > x∗
ss and y0 = 0, the abatement capacity increases and the

pollution stock decreases if the initial stock of pollution is higher than the threshold value

defined by (42). However, when the initial pollution stock is lower, the pollution stock

first increases until it reaches a maximum and decreases afterwards.

This analysis shows that for the initial conditions we consider the reaction of firms

to the tax is to build an abatement capacity that reduces industry emissions. However,

even if the initial value of the pollution stock is larger than the steady-state value, the

stock of pollution could increase, but only during an initial period of time. In the long

run, the pollution stock will decrease.

Finally, we evaluate the effect of spillovers and competition on the optimal temporal

paths of abatement capacity and pollution stock. As was established above spillovers do

not affect the R&D investment, and consequently, they do not have any effect on the op-

timal path of abatement capacity. However, we have seen that competition increases the

steady-state abatement capacity and according to (37) competition increases abatement

capacity at any time. The effects on the pollution stock are not so straightforward as the

effects on abatement capacity are. To evaluate these effects we rewrite (38) as follows

x(t) = x0e
−δxt + x∗

ss(1− e−δxt) +
n (1+β(n−1)) y∗ss

δx−δy
(e−δyt − e−δxt).

Now, using (35) we can eliminate x∗
ss

x(t) = x0e
−δxt +

1

δx
(Q∗ − n (1 + β(n− 1)) y∗ss)(1− e−δxt)

+
n (1+β(n−1)) y∗ss

δx−δy
(e−δyt − e−δxt),

26



where Q∗ does not depend on either β or n. The expression above can be rewritten as

follows

x(t) = x0e
−δxt +

1

δx
Q∗(1− e−δxt)

+n (1 + β(n− 1)) y∗ss

(
e−δyt − e−δxt

δx−δy
− 1

δx
(1− e−δxt)

)
. (44)

Then, as ∂y∗ss/∂β = 0 and ∂y∗ss/∂n > 0, the signs of ∂x(t)/∂β and ∂x(t)/∂n will depend

on the sign of
e−δyt − e−δxt

δx−δy
− 1

δx
(1− e−δxt). (45)

We show in Appendix D that this expression is negative for all t > 0, and we can conclude

that ∂x(t)/∂β and ∂x(t)/∂n are negative for the general case δx ̸= δy. Notice that y∗ss

according to (34) does not depend on β and increases with n.

When δx = δy = δ, for x0 > x∗
ss and y0 = 0, (39) simplifies to yield

x(t) = x0e
−δt + x∗

ss(1− e−δt) + n (1 + β(n− 1)) y∗sste
−δt.

Proceeding as in the general case, eliminating x∗
ss using (35), we have:

x(t) = x0e
−δt +

1

δ
Q∗(1− e−δt)− n(1 + β(n− 1))y∗ss

(
1

δ
−
(
t+

1

δ

)
e−δt

)
, (46)

where
1

δ
−
(
t+

1

δ

)
e−δt > 0 for all t > 0.

Thus, we obtain that also in case δx = δy = δ, at any time, ∂x/∂β and ∂x/∂n are

negative.

These results are summarized in the last proposition of the paper:

Proposition 7 When x0 > x∗
ss and y0 = 0, the abatement capacity increases with com-

petition for all t > 0. However, the stock of pollution decreases. On the other hand, an

increase in the degree of spillover does not affect the abatement capacity, but reduces the

pollution stock.

This proposition tells us that the effects that spillovers and competition have on

the steady-state values of the abatement capacity and pollution stock also apply at any
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time.22 Thus, the model presents some general results on the effects of spillovers and

competition on the state variables that are not restricted to the steady-state values.

5 Conclusions

In this paper a dynamic Cournot oligopoly is used with the aim of studying the re-

lationship between competition and green innovation. The intensity of competition is

approached by the number of firms in the industry. The firms face a tax on emissions

and react to this tax investing in R&D to reduce the emissions per unit of output (green

innovation). R&D accumulates and determines the abatement capacity of firms. The

optimal tax rate is given by the feedback Stackelberg equilibrium of a dynamic policy

game between a regulator and a polluting oligopoly for a stock pollutant. We compute

the tax for a linear-state policy game.

Our analysis shows that firms’ R&D investment increases with competition. This

effect occurs because the optimal tax increases with competition. In a polluting oligopoly

the tax is lower than the difference between the social shadow price of the pollution stock

and its private shadow price, because the tax has to correct also the market distortion

caused by the market power of the firms. But as the competition increases, this distortion

weakens and the tax increases to reflect the difference between the social shadow price

of the pollution stock and its private shadow price. Thus, more competition implies a

higher abatement capacity, lower emissions and finally a lower pollution stock. This effect

does not depend on the degree of spillovers since the tax does not depend on spillovers.

In our model, spillovers are associated with the abatement capital, and consequently,

they do not affect the decisions on output and R&D investment, but only affect the

dynamics of the pollution stock. However, spillovers reduce net emission and we find

that the higher the spillovers, the lower the pollution stock. Our model also shows that

the steady state is a global asymptotically stable point with a dynamics for the state

variables that depends on the initial conditions. For the abatement capacity we find that

is monotonically increasing if it is assumed that its initial value is zero. An assumption

22This result can be easily extended for y0 > 0 as is showed in Appendix E.
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that seems consistent with the idea that firms’ only invest in R&D if emissions are taxed.

We also find that the pollution stock could increase even if its initial value is higher than

the steady-state pollution stock. Nevertheless, in the long run, the pollution stock will

always decrease.

Although in the model it is assumed that the damages function could be strictly

convex, in Section 4 the model is solved for a linear damages function. This allows us

to analytically calculate the FSE of a LS differential game between the regulator and

the firms, but leaves open the question of the influence of this assumption on the results

derived in the paper. According to the numerical simulations done by Mart́ın-Herrán

and Rubio (2018b) for the case of a polluting monopoly with quadratic damages, we

should expect that for the polluting oligopoly the tax depends positively on the pollution

stock and negatively on the abatement capacities. In this case, we could find as occurs in

Mart́ın-Herrán and Rubio (2018b), that the optimal policy is an increasing subsidy when

it approaches the steady state. This result will be driven by the negative effect that the

increase in the abatement capacities has on the tax.23 However, our conjecture is that

the qualitative relationship between competition, taxation and green innovation might

not change with strictly convex damages. If we look at expression (15) that characterizes

the optimal tax, we see that the first term of this expression, that is negative, does not

depend on the damages function. Moreover, the absolute value of this term, that reflects

the market power of firms, decreases with competition, causing ceteris paribus an increase

in the tax. The second term of (15) depends on the difference between the social shadow

price of the pollution stock and the representative firm’s shadow price for the symmetric

solution. For this kind of solution, condition (13) establishes that optimal total output

does not depend on the number of firms. Notice that with identical firms net social

welfare can be written as function of the total output. Thus, we expect that the social

shadow price of the pollution stock does not change with the number of firms.24 On the

23The possibility of having a negative tax for low values of the pollution stock was already pointed out

by Bencheckroun and Long (1998).
24In fact, for the LS differential game solved in Section 4 we find that both the output of the industry

and the social shadow price of the pollution stock are independent of the number of firms.
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other hand, we envisage a decrease in the representative firm’s shadow price because with

more firms an increase in the emissions by one firm has a lower impact in the pollution

stock, because the higher the number of firms the higher the spillovers. If this is the case,

regardless of whether the difference between the social shadow price of the pollution

stock and the private shadow price is positive or negative, an increase in competition will

increase this difference. The result of this argument is that with strictly convex damages

is plausible that an increase in competition has a positive impact on the tax and hence

on green innovation.

In our model it is assumed that firms are identical. Thus, it would be also interesting

to assess the role of this assumption on the results derived in this paper. There are

different types of asymmetry we could consider. For instance, firms could have different

production cost. However, we do not think that this assumption changes the positive

relationship between competition and green innovation we found in the paper, because

the conditions that determine the FSE would be the same, except that the marginal cost

of production that appears in these conditions would be the highest that the demand

would allow, although in the equilibrium the intramarginal firms with lower costs would

obtain extraordinary profits and will work at the maximum of their capacity. Another

interesting asymmetry worth investigating would be to consider that firms can operate

with technologies that present different emissions/production coefficients. This extension

of the model would lead us beyond the assumption that firms use an end-of-the-pipe

abatement technology to focus on the case of firms that can produce the good using

technologies with a different emissions intensity. The final stage of this extension would

be a model where firms can invest in a cleaner technology, i.e., a model where green

innovation consists of a reduction of the emissions/production coefficient.25 Another

25Three recent papers addressing this issue are Walter (2018), Langinier and Chaudhuri (2020) and De

Frutos et al. (2022). In these papers, the R&D investment reduces the coefficient emissions/production.

Walter (2018) studies in a dynamic setting the effects of an emission tax on the coefficient emis-

sions/production depending on the degree of cooperation when firms invest in R&D. Langinier and

Chaudhuri (2020) investigate in a static setting the effect of patent policies and emission taxes on green

innovation, and on the emission level in the presence of green consumers. De Frutos et al. (2022) ana-

lyze the investment in cleaner technology in a transboundary pollution dynamic game where the ratio
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feature of this paper is that environmental policy is based on the use of only one policy

instrument, the tax on emissions, when there are several distortions that affect the market

allocation. There is a negative externality due to pollution, but also a positive externality

due to spillovers. Moreover, firms have market power. It could be very interesting to

characterize the first-best policy based on a combination of different policy instruments

to assess how the environmental policy could affect the relationship between competition

and green innovation. The recent paper by Aghion et al. (2023) highlights the effects

of consumers’ environmental concerns on innovation, and also the paper by Langinier

and Chaudhuri (2020) analyzes innovation with green consumers. In this line, we could

extend our dynamic model to incorporate the pollution stock to the utility function of

consumers. In this case, the willingness to pay for the good would depend on the level

of the pollution stock and firms would have an incentive to invest in R&D even if no tax

is charged on emissions. Finally, we have concentrated on a model where the intensity

of competition is given by the number of firms in the industry. Thus, it would be also

interesting to look at an oligopoly with product differentiation to consider other types of

intensity in competition as the variation in the degree of product substitutability.

Appendix

A Calculating the Coefficients of the Value Functions

Using the value functions

W (x, ȳ) = Awx+
n∑

i=1

Bi
wyi + Cw, Vi(x, ȳ) = Aix+Bi

iyi +
n∑

k=1, k ̸=i

Bk
i yk + Ci,

we can rewrite HJB equations (22) and (23) as follows

r

(
Awx+

n∑
i=1

Bi
wyi + Cw

)
=

1

2
(s+ Aw)

2 − 1

2γ

n∑
i=1

(Bi
i)

2 − dx

−Aw

(
(1 + β(n− 1))

n∑
i=1

yi + δxx

)
+

n∑
k=1

Bk
w

(
1

γ
Bk

k − δyyk

)
, (47)

of emissions to output is a decreasing function of the level of the stock of cleaner technology which is

assumed to be public knowledge.
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r

(
Aix+Bi

iyi +
n∑

k=1, k ̸=i

Bk
i yk + Ci

)
= −Aw

(
1

n

(
s+ Aw −

n∑
i=1

Ai

)
+ Ai

)
− 1

2γ

(
Bi

i

)2
− 1

n

(
n∑

i=1

Ai − (n+ 1)Aw − s

)(
1

n

(
s+ Aw −

n∑
i=1

Ai

)
+ Ai − yi − β

n∑
j ̸=i

yj

)

+Ai

(
s+ Aw − (1 + β(n− 1))

n∑
i=1

yi − δxx

)
+

n∑
k=1

Bk
i

(
1

γ
Bk

k − δyyk

)
. (48)

At this point, we look for a symmetric solution taking into account that the cross effects

of the y variables in the value function of firms are not identical to the own effects. Notice

that if we look at differential equation (3) that describes the dynamics of the pollution

stock and the differential equation showing the dynamics of the abatement capacity of

each firm, we see that the effect of control variables of each firm on the dynamics of the

state variables is completely symmetric for all firms. However, from the expression of

firm i’s current net profits

πi = (a−Q)qi − cqi −
γ

2
w2

i − τ

(
qi − yi − β

n∑
j=1, j ̸=i

yj

)

we realize that the effect of yi is different from the effect of yj with j ̸= i.

Therefore, we cannot assume that the value functions of all firms are identical, but

we can assume the following symmetric properties: Ai takes the same value for all firms,

Bi
i also takes the same value for all firms, and the same occurs for Bk

i . In this case, the

HJB equation (48) yields

r
(
Aix+Bi

iyi + (n− 1)Bk
i yk + Ci

)
= −Aw

(
1

n
(s+ Aw − nAi) + Ai

)
− 1

2γ

(
Bi

i

)2
− 1

n
(nAi − (n+ 1)Aw − s)

(
1

n
(s+ Aw − nAi) + Ai − yi − β(n− 1)yk

)
+Ai (s+ Aw − (1 + β(n− 1)) yi − (1 + β(n− 1)) yi − δxx)

+Bi
i

(
1

γ
Bi

i − δyyi

)
+ (n− 1)Bk

i

(
1

γ
Bk

k − δyyk

)
. (49)

Now grouping the coefficients of x, we obtain that (r + δ)Aix = 0 which implies that

Ai = 0. This allows us to simplify expression (49)

r
(
Bi

iyi + (n− 1)Bk
i yk + Ci

)
= −Aw

1

n
(s+ Aw)−

1

2γ

(
Bi

i

)2
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+
1

n
((n+ 1)Aw + s)

(
1

n
(s+ Aw)− yi − β(n− 1)yk

)
+Bi

i

(
1

γ
Bi

i − δyyi

)
+ (n− 1)Bk

i

(
1

γ
Bk

k − δyyk

)
. (50)

Grouping terms in yi gives

(rBi
i +

1

n
((n+ 1)Aw + s) +Bi

iδy)yi = 0,

that allows us to calculate

Bi
i = −(n+ 1)Aw + s

n(r + δy)
. (51)

Finally, grouping terms in yk gives

(n− 1)(rBk
i +

1

n
((n+ 1)Aw + s)β +Bk

i δy)yk = 0,

from where we obtain that Bk
i = βBi

i .

Now, because of the symmetric role of all y variables in the regulator’s problem, and

focussing on symmetric solutions we assume that Bi
w are identical for all y variables, and

(47) simplifies as follows

r
(
Awx+ nBi

wyi + Cw

)
=

1

2
(s+ Aw)

2 − 1

2γ
n(Bi

i)
2 − dx

−Aw ((1 + β(n− 1)) yi + δxx) + nBi
w

(
1

γ
Bi

i − δyyi

)
. (52)

From this expression we can derive the following condition for Aw

((r + δx)Aw + d)x = 0,

so that the value of Aw is

Aw = − d

r + δx
. (53)

We can also obtain a condition for Bi
w

n((r + δy)B
i
w + Aw(1 + β(n− 1)))yi = 0,

that using (53) yields

Bi
w =

d(1 + β(n− 1))

(r + δx)(r + δy)
. (54)
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Finally, substituting Aw in (51) we obtain the coefficient

Bi
i =

(n+ 1)d− s(r + δx)

n(r + δx)(r + δy)
. (55)

Coefficients Ci and Cw can be also calculated using (50) and (52), but as the optimal

strategies do not depend on these coefficients in order to save space we will omit these

calculations.

B Solution to the differential equation describing the dynamics

of the pollution stock

The dynamics of the pollution stock in (31) once the solution of the abatement capital

stock given in (37) is substituted reads:

ẋ+ δxx =
(r + δx)s− d

r + δx
− n(1 + β(n− 1))(y∗ss

(
1− e−δyt

)
+ y0e

−δyt). (56)

First, we solve the homogeneous first-order linear equation ẋ+ δxx = 0. The general

solution to this equation reads: xh(t) = Ce−δxt, with C a constant of integration. Second,

we postulate a particular solution of the non-homogenous equation as follows: xnh(t) =

A+Be−δyt if δx ̸= δy and xnh(t) = A+Bte−δt if δx = δy = δ.

Substituting in the differential equation (56) if δx ̸= δy we get:

−δyBe−δyt + δx(A+Be−δyt) =
(r + δx)s− d

r + δx
− n(1 + β(n− 1))(y∗ss

(
1− e−δyt

)
+ y0e

−δyt).

Identifying terms:

−δyB + δxB = −n(1 + β(n− 1))(−y∗ss + y0),

δxA =
(r + δx)s− d

r + δx
− n(1 + β(n− 1))y∗ss.

Hence,

A =
1

δx

[
(r + δx)s− d

r + δx
− n(1 + β(n− 1))y∗ss

]
,

B =
n (1 + β(n− 1)) (y∗ss − y0)

δx − δy
. (57)
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Simplifying the expression of A we can easily show that A coincides with the steady-

state value of the pollution stock, x∗
ss, given in (33). The solution to equation (56) is

given by x(t) = xh(t) + xnh(t) = Ce−δxt + x∗
ss + Be−δyt, with B given in (57). From the

initial condition x(0) = x0, we determine the constant of integration C, which is given

by C = x0 − x∗
ss −B.

Substituting in the differential equation (56) if δx = δy = δ we get:

(1− δt)Be−δt + δ(A+Bte−δt) =
(r + δ)s− d

r + δ
− n(1 + β(n− 1))(y∗ss

(
1− e−δt

)
+ y0e

−δt).

Identifying terms:

B = n (1 + β(n− 1)) (y∗ss − y0),

δA = −n(1 + β(n− 1))y∗ss +
(r + δ)s− d

r + δx
.

Hence,

A =
1

δ

[
−n(1 + β(n− 1))y∗ss +

(r + δ)s− d

r + δ

]
= x∗

ss,

B = n(1 + β(n− 1))(y∗ − y0). (58)

Again, the solution to equation (56) is given by x(t) = xh(t)+xnh(t) = Ce−δt+x∗
ss+Bte−δt,

with B given in (58). From the initial condition x(0) = x0, we have C = x0 − x∗
ss.

C The dynamics of the state variables

In order to evaluate the dynamics of the pollution stock, we calculate the first derivative

of (38) that can be rearranged as follows

ẋ(t) = (x∗
ss − x0)δxe

−δxt − n(1 + β(n− 1))(y0 − y∗SS)

δx − δy

(
δx
eδxt

− δy
eδyt

)
. (59)

To evaluate the sign of this derivative and to know whether the stock is increasing or

decreasing, we begin studying whether ẋ(t) = 0 has a solution. For ẋ(t) = 0, expression

(59) yields

(x∗
ss − x0)δx =

n(1 + β(n− 1))(y0 − y∗ss)

δx − δy

(
δx − δye

(δx−δy)t
)
. (60)
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On the left-hand side we have a constant and on the right-hand side a function of t with

the following features: initial value, n(1+β(n−1))(y0−y∗ss); first derivative, −n(1+β(n−

1))(y0−y∗ss)δye
(δx−δy)t; and second derivative, −n(1+β(n−1))(y0−y∗ss)δy(δx−δy)e

(δx−δy)t.

Thus, the existence of a solution for this equation depends on the sign of the differences:

x∗
ss − x0, y0 − y∗ss and δx − δy.

We initiate the analysis considering δx > δy and y0 < y∗ss. In this case, the function

on the RHS of (60) is an increasing convex function with a negative initial value, and

consequently equation (60) has a unique positive solution provided that (x∗
ss − x0)δx >

n(1 + β(n− 1))(y0 − y∗ss). This condition is satisfied if (y∗ss − δx(x0 − x∗
ss))/(n(1 + β(n−

1))) < y0, i.e. if vector (x0, y0) is below isocline ẋ = 0. Notice that isocline ẋ = 0

is a straight line with slope −δx/(n(1 + β(n − 1))), so that we can write it as follows

y − y∗ss = −δx/(n(1 + β(n− 1)))(x− x∗
ss). Thus, we can conclude that if (x0, y0) is below

isoclines ẋ = ẏ = 0, the stock of pollution first increases until line ẋ = 0 is reached, and

decreases afterwards. However, if (x0, y0) is below isocline ẏ = 0 but above isocline ẋ = 0,

the pollution stock is a monotone decreasing function of time. Next, we suppose that

y0 > y∗ss. In this case, the function on the RHS of (60) is a decreasing concave function with

a positive initial value, and then equation (60) has a unique positive solution provided

that (x∗
ss − x0)δx < /(n(1 + β(n − 1)))(y0 − y∗ss), i.e. if vector (x0, y0) is above isocline

ẋ = 0. This implies that if (x0, y0) is above isoclines ẋ = ẏ = 0, the stock of pollution

first decreases until line ẋ = 0 is reached, and increases afterwards. But in the case that

(x0, y0) is below isocline ẋ = 0 and above isocline ẏ = 0, the pollution stock is a monotone

increasing function of time.

We continue the analysis considering δx < δy and y0 < y∗ss. In this case, the RHS of

(60) is an increasing concave function of time with a negative initial value that converges

to the following value

lim
t→+∞

(y0 − y∗ss)(n(1 + β(n− 1)))

δx − δy

(
δx − δye

(δx−δy)t
)
=

y0 − y∗ss
δx − δy

δxn(1 + β(n− 1)) > 0.

In this case, equation (60) has a unique positive solution if

(y0 − y∗ss)n(1 + β(n− 1)) < (x∗
ss − x0)δx <

y0 − y∗ss
δx − δy

n(1 + β(n− 1))δx. (61)
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This condition implies, on the one hand, that y0 < y∗ss−δx(x0−x∗
ss)/(n(1+β(n−1))) and,

on the other hand, that y0 < n(1+β(n−1))y∗ss+(x0−x∗
ss)(δy−δx) that requires that (x0, y0)

is below isocline ẋ = 0 and below the straight line that passes through the stationary point

(x∗
ss, y

∗
ss) and has as direction vector the eigenvector (1, (δy−δx)/(n(1+β(n−1)))). If this

is the case, the pollution stock first increases until isocline ẋ = 0 is reached, and decreases

afterwards. When this condition is not satisfied because the initial point is above isocline

ẋ = 0, the pollution stock is a monotone decreasing function; while if it is not satisfied

because the initial point is above the line y − y∗ss = (δy − δx)/(n(1 + β(n− 1)))(x− x∗
ss),

the pollution stock is a monotone increasing function.

Next, we suppose that y0 > y∗ss. When the initial value of the abatement capacity is

larger than its steady-state value, the RHS of (60) is a decreasing convex function of time

with a positive initial value that converges to the negative value: n(1 + β(n − 1))(y0 −

y∗ss)δx/(δx − δy). Now, equation (60) has a unique positive solution provided that

n(1 + β(n− 1))
y0 − y∗ss
δx − δy

δx < (x∗
ss − x0)δx < n(1 + β(n− 1))(y0 − y∗ss).

This condition holds now if (x0, y0) is above isocline ẋ = 0 and line y − y∗ss = (δy −

δx)/(n(1 + β(n− 1)))(x− x∗
ss). If this is the case, the pollution stock first decreases until

isocline ẋ = 0 is reached, and increases afterwards. When this condition does not hold,

two possibilities arise. In the first possibility the initial point is below isocline ẋ = 0,

and then the pollution stock is a monotone increasing function of time. In the second

possibility the initial point is below the line with direction vector (1, (δy − δx)/(n(1 +

β(n− 1)))), and in this case the stock of pollution is a monotone decreasing function of

time.

Finally, we address the case δx = δy. When the decay rate of the pollution stock is

equal to the depreciation rate of the abatement capacity the two roots of the characteristic

equation (δx, δy) are identical and equal to δ. Then, there are no changes in the solution

of differential equation (32) that can be written as follows

y(t) = (y0 − y∗ss)e
−δt + y∗ss.

However, now the solution for the differential equation of the pollution stock reads

x(t) = x0e
−δt + (1− e−δt)x∗

ss − n(1 + β(n− 1))(y0 − y∗ss)te
−δt.
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For this solution the first derivative is

ẋ(t) = e−δt ((x∗
ss − x0)δ − n(1 + β(n− 1))(y0 − y∗ss)(1− tδ)) ,

so that equation ẋ(t) = 0 has a positive solution provided that the following expression

is positive

t =
1

δ
+

x0 − x∗
ss

(y0 − y∗ss)n(1 + β(n− 1))
. (62)

It is obvious that this expression is positive if x0 > x∗
ss and y0 > y∗ss or if x0 < x∗

ss and

y0 < y∗ss. When x0 > x∗
ss and y0 < y∗ss, (62) is positive if y0 < y∗ss − δ(x0 − x∗

ss), i.e. if

the initial point is below isocline ẋ = 0. When x0 < x∗
ss and y0 > y∗ss, (62) is positive

if y0 > y∗ss − δ(x0 − x∗
ss)/(n(1 + β(n − 1))), i.e. if the initial point is above isocline

ẋ = 0. Thus, if the initial point is below (above) isoclines ẋ = ẏ = 0, the pollution stock

first increases (decreases) until isocline ẋ = 0 is reached, and then begins to decrease

(increase). In the other cases, the pollution stock increases (decreases) if the initial stock

is below (above) its steady-state value.

D Determination of the sign of (45)

Next we analyze function

f(t) =
e−δyt − e−δxt

δx − δy
− 1

δx
(1− e−δxt).

Function f(t) is exclusively zero at t = 0 and takes a negative value if t > 0.

It is clear that f(0) = 0 and to show that f(t) < 0 if t > 0, we prove that f(t) is a

strictly decreasing function for any t > 0.

The derivative of function f(t) reads:

f ′(t) =
1

δx − δy

(
−δye

−δyt + δxe
−δxt
)
− e−δxt.

Then,

f ′(t) < 0 ⇔ 1

δx − δy

(
−δye

−δyt + δxe
−δxt
)
− e−δxt < 0.

Multiplying by eδxt, we have

f ′(t) < 0 ⇔ 1

δx − δy

(
−δye

(δx−δy)t + δx
)
− 1 < 0 ⇔ 1

δx − δy

(
−δye

(δx−δy)t + δx
)
< 1.
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Therefore, if δx > δy, then

f ′(t) < 0 ⇔ −δye
(δx−δy)t + δx < δx − δy ⇔ −δye

(δx−δy)t < −δy ⇔ e(δx−δy)t > 1.

Last inequality always applies under assumptions δx > δy and t > 0.

If δx < δy, then

f ′(t) < 0 ⇔ −δye
(δx−δy)t + δx > δx − δy ⇔ −δye

(δx−δy)t > −δy ⇔ e(δx−δy)t < 1.

Last inequality always applies under assumptions δx < δy and t > 0

Consequently, we have proved that f ′(t) < 0 for any t > 0, regardless of how δx and

δy compares, and hence, f(t) < 0 for any t > 0.

E Effects of β and n on the pollution stock for y0 > 0.

For y0 > 0, expression (44) has an additional term associated with y0

x(t) = x0e
−δxt +

1

δx
Q∗(1− e−δxt)

+n (1 + β(n− 1)) y∗ssf(t)− y0n(1 + β(n− 1))g(t), (63)

where

f(t) =
e−δyt − e−δxt

δx − δy
− 1

δx
(1− e−δxt) and g(t) =

e−δyt − e−δxt

δy − δx
.

In Appendix D, it is showed that f(t) is negative for any t > 0 and it can be easily

proved that g(t) is positive for all t > 0, regardless of the values of δx and δy. If δy > δx

the denominator of g(t) is positive, but then e−δyt < e−δxt and the numerator is negative.

However, if δy < δx the denominator is negative, but then e−δyt > e−δxt and the numerator

is positive. Taking into account this, and because y∗ss does not depend on β, we have:

∂x(t)

∂β
= n(n− 1)(y∗ssf(t)− g(t)) < 0, for all t > 0.

The steady-state of the capital stock y∗ss does depend positively on n, and therefore

∂x(t)

∂n
= (1+ β(n− 1) + βn)(y∗ssf(t)− g(t)) + n(1 + β(n− 1))

∂y∗ss
∂n

f(t) < 0, for all t > 0.
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For δx = δy = δ,(46) also presents an additional term associated with y0

x(t) = x0e
−δt +

1

δ
Q∗(1− e−δt)− n(1 + β(n− 1))y∗ss

(
1

δ
−
(
t+

1

δ

)
e−δt

)
−n(1 + β(n− 1))y0e

−δt. (64)

But as this term is negative, we also obtain that ∂x(t)/∂β and ∂x(t)/∂n are negative.
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[6] Başar, Tamer, and Georges Zaccour (2018). Handbook of Dynamic Game Theory,

Springer International Publishing.

40



[7] Benchekroun, Hassan, and Amrita Ray Chaudhuri (2011). “Environmental Policy

and Stable Collusion: The Case of a Dynamic Polluting Oligopoly.” Journal of

Economic Dynamics & Control, 35, 479-490.

[8] Benchekroun, Hassan and Ngo Van Long (1998). “Efficiency-Inducing Taxation for

Polluting Oligopolists.” Journal of Public Economics, 70, 325-342.

[9] Benchekroun, Hassan and Ngo Van Long (2002). “On the Multiplicity of Efficiency-

Inducing Tax Rules.” Economics Letters, 76, 331-336.

[10] D’Aspremont, Claude, and Alexis Jacquemin (1988). “Cooperative and Noncooper-

ative R&D in Duopoly with Spillovers.” American Economic Review, 78, 1133-1137.

[11] De Frutos, Javier, Vı́ctor Gatón, Paula M. López-Pérez, and Guiomar Mart́ın-Herrán
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