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paris2.fr. ORCID: 0000-0001-5521-7926.
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1 Introduction

We study cooperative capacity investment strategies in a dynamic version of Cournot oligopoly

model of complements. In this model, consumers have a downward-sloping demand for a final

product which is made out of n different components, each of which is being produced by a monopoly

supplier. These n components are perfect complements in the sense that one unit of the final good

requires one unit of each of the complement goods (think of a computer and its operating system, an

electric guitar and its amplifier, a console and a video game and so on). Therefore, when consumers

demand one unit of the final good, they actually demand one unit of each of the complement goods

and as a consequence the price of this final good is the sum of the prices of the complement goods.

Cooperation through capacity investment is especially important in international transport. First

of all, there has been a wave of mergers/acquisitions among global carriers and a rise in the number

of alliances. In these alliances carriers share vessels in order to decrease their costs and get broader

service coverage. In particular, as carriers are often stronger in certain regions or lanes, mergers

and alliances are worthwhile in complementary regions (Mitsuhashi and Greve, 2009 and Ghorbani

et al., 2022). Mergers and alliances also avoid free-rider effects of carriers benefiting from reduction

of fleet overcapacity without scrapping their own capacity themselves (see Merk et al., 2018, p. 41).

More generally, capacity decisions in markets for complements pertain to capacity decisions in

revenue-sharing joint ventures where resources shared are complementary (the final product or the

effective capacity being constrained by the scarcest resource). As an example, consider the joint

ventures that took place between Imax, an entertainment technology company, with theaters. In

these joint ventures, IMAX contributes the projection systems (at a reduced charge) while the

theaters provide the physical space and labor (see, Levi et al., 2020, for a careful analysis of these

joint ventures).

Capacity decisions in sharing consortia or joint ventures are, of course, of a different nature than

capacity decisions made in merged companies. That is because, when firms agree to a partnership,

they pay more attention to their own returns which can be harmful for the cooperation outcome.1

In this connection, aligning the stakeholders’ interests is crucial. One way to do that is to make sure

that the capacity decisions result in a profit that is close to the profit achieved when the decisions

are made centrally (as would happen if the participating partners had merged). Therefore, to design

1According to a study by Bamford et al. (2004), only half of the join ventures in their study succeeded.
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efficient sharing consortia and joint ventures it is important to study coordination by merged firms

as a benchmark. In this study it is also important to unravel the impact of a number of different

operational factors, such as the market size, the shape of adjustment costs and the depreciation

rate of firms’ capacities. This is what this paper aims to contribute.

For the sake of clarity, we concentrate on a simple setup, i.e., a duopoly, where firms maximize

the sum of their profits with respect to capacity investments. Time is continuous and the firms’

decision horizon is infinite. To produce one unit of each complementary product, one needs one

unit of a specific capacity. Moreover, to build up capacities, firms face direct investment costs as

well as linear-quadratic adjustment costs and take into account the fact that capacities depreciate

at fixed rates.

A key issue regarding capacity building for complementary products is how to avoid overcapacity.

That is because, when firms start aligning their decisions, they almost always face an overcapacity

problem, as there is no a priori reason that capacities are equal. In this connection, our research

questions are as follows

• Does cooperation always entail reducing the greatest initial capacity?

� Should the cooperators always increase the lowest initial capacity?

� If both capacities must be downsized, how downsizing must be organized?

� How the answers to the previous questions depend on key parameters like the unit investment

cost, the adjustment cost of capacity, the capacity depreciation rate, as well as the demand

parameters (the choke price and the sensitivity of final demand to its price)?

We show that there is a finite date at which firms capacities must become equal. Before this

date, firms follow specific investment policies which aim at achieving the equality of the capacities.

Thereafter, under certain conditions, firms’ capacities remain equal. Moreover, the common value

of the capacities evolves in a monotonically way and converges to a steady state.

We enrich our theoretical study with a numerical analysis of the optimal decisions. We find that

if the lowest initial production capacity is relatively small, aligning capacity investments entails

increasing this capacity. Furthermore, it may happen that it is optimal to decrease initially the

largest capacity and then begin to increase this capacity while ensuring that the lowest capacity
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catches up with the largest (this may occur when the firm with the lowest initial capacity has the

highest depreciation rate). Moreover, it is possible that the investment of the firm with the lowest

initial capacity is non-monotonic. Finally, we also observe that when producing becomes more

profitable, overcapacity is removed earlier. It is noteworthy that the same conclusion applies when

the direct cost of investment increases.

The remainder of the paper unfolds as follows. In the next section, we present a brief literature

review. We set up the model in Section 3. Section 4 studies the capacity choices focusing on

the case where optimal capacities are equal. Section 5 concentrates on the date at which optimal

capacities become equal from that date on. Section 6 presents numerical comparative statics results

with respect to a change in different operational factors. Section 7 concludes. Some proofs and

detailed simulations results are relegated to the appendix.

2 Literature Review

Cooperation between firms is ubiquitous and applies to many different topics.2 To save space,

however, we shall concentrate on cooperation between firms producing complementary products.

The approach to producing and marketing complementary products differs from that for substi-

tutable products. That is because, complementary products benefit from each other’s sales instead

of losing sales to the other products. In this connection, Amir and Gama (2019) generalize Cournot

(1838) result that integrating n-different monopoly suppliers of complementary products is Pareto-

improving. To wit, the price of the final good made out of the complementary products is lower,

its quantity higher, and the profits of the monopoly suppliers are higher as well.

Cooperation is also useful when competition is not viable. Dobson (1992) argues that with certain

types of “rational” non-cooperative behavior complementary monopolists will produce zero output.

He suggests that cooperation between firms makes the market function effectively; for example,

2In the case where firms face dynamic problems, one such a topic is advertising (see, e.g., Cellini and Lambertini
(2003, a,b), Jørgensen and Zacccour (2014), and Jørgensen and Gromova (2016)). Another issue on which cooperation
is expected is R&D (concerning either process innovation or product innovation). See, e.g, Lambertini (2018), chapter
6, for an overview of R&D in differential games. See also Colombo and Labrecciosa (2018), section 5. Yet another
issue in which cooperation is specially fruitful is the management of natural resources and the environment. For
instance, cooperation (through collusive behavior) reduces production, and thus emissions (see, e.g., Benchekroun
and Chaudhury (2011)). Cooperation also reduces the over-exploitation of natural resources (at the cost of raising
their prices). See Lambertini, (2018), chapter 7, for a lucid presentation of this literature.
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through the complementary firms aiming for joint profit maximization (e.g., by a merger or an

overt agreement such as establishing a “joint venture” or a tacit understanding).

Yet, adopting a dynamic viewpoint, Casadesus-Masanell and Yoffie (2007) challenge the view that

two tight complements (like Intel and Microsoft) will generally have well-aligned incentives. They

demonstrate that natural conflicts emerge over pricing, or the timing of new product releases, and

over who captures the greatest value at different phases of product generations. Conflicts occur

when one firm wants to serve the installed base of goods (e.g., computers), whereas the other firm

favors selling new goods (e.g., software). While both firms have similar incentives to invest in R&D,

they conflict over prices (Microsoft favors low prices initially, whereas Intel favors high prices).

In a similar vein, Yalcin et al. (2013) provide a two-stage analysis of what they called value-

capture and value-creation problems. In their approach, the demands of complement goods depend

on their prices and their qualities. Quality choices are made before the price decisions. Improving

the quality of one complement enhances the demand for the others. But quality improvement is

costly. Consequently, there is a risk of quality underprovision for all products (this is the value-

creation problem). They show that relying on a royalty fee (for rewarding the quality choice made

by the first firm) does not solve the problem (allowing more competition is a better way to address

the problem of quality understand).3

Mantovani and Ruiz-Aliseda (2015) propose an explanation of the burst in the number of collab-

orative activities among firms selling complementary products. They assume that firms first form

pairwise collaboration, then invest cooperatively in order to improve the quality of the match and

finally make price decisions non-cooperatively. They find that while firms end up forming as many

collaboration ties as it is possible, they would all prefer a scenario where collaboration is forbidden.

Another aspect of cooperation between firms refers to coordination in supply chains.4 Coordination

refers to a mechanism (e.g., a contract) that allows all firms within a chain to be economically better

off (Cachon, 2003), notably to avoid the double marginalization effect (that is, the fact that all

firms charge a high price, which decreases the demand for the final good, and eventually firms’

profits). The literature that investigates successful coordination in supply chains includes two

3Dobson and Chakraborty (2020) study the effect of managers remuneration contracts on the innovation efforts
of complementors. They show that these kinds of contract alleviate the problem of value creation mentioned above.

4Interestingly, in this setting, competition is not always viable. Crettez et al. (2025) show that because the final
good price may be a discontinuous function of production capacities, open-loop equilibria for the game played by the
manufacturers do not always exist.

5



groups: non-price-based and price-based mechanisms (for a brief and thoughtful overview of the

literature, see Buratto et al. (2019), Introduction). Non-price-based coordination mechanisms refer

to the establishment of contracts based on operational issues (i.e., inventory, advertising, and so

on).5 A second stream of research focuses on pricing-based contracts in which coordination relies

on both the pricing strategies and the sharing mechanisms (see, e.g., Cachon and Lariviere (2005)).

In relation to these mechanisms, the strategies used to coordinate decisions within and between

supply chains for complementary products are different from those for substitutable products.

Bundling and joint selling partnerships are instances of these strategies (see, e.g., Granot and Yin

(2008), for in chain coordination). He and Yin (2015) study how competition, either at the suppliers’

level, or the retailers’ level affects the choice to joint selling complementary goods (competition

between chains at the suppliers’ level discourages this choice; the opposite effect occurs, however,

if competition between chains applies at the retailers’ level).

Coordination may also be realized at different levels of the supply chains. In this regard, Wei et

al. (2019) consider the integration of two supply chains with complementary products and they

pay attention to the effects of downstream, upstream and vertical integration on the supply chain

members’ decisions and profits.6 Considering centralized and decentralized decision models as

benchmarks, they show that the total profit of the supply chain increases with the number of inte-

grated players and that vertical integration can be more profitable than upstream and downstream

integrations.

This paper focuses on cooperative capacity buildings and adopts a dynamic viewpoint.7 As was

mentioned above, a key issue regarding capacity building for complementary products is how to

avoid overcapacity. In this respect, a key issue is the determination of the first date at which

capacities become equal. This issue will be tackled in a latter section.

5A relatively new issue, in this regard, is closed-loop supply chains. This issue is tackled in Hamed et al. (2020).
In their approach, a manufacturer first sets his prices (for two complements) and the return rate, then a retailer
makes a price decision. They show that the choice among the different options for the closed-loop supply chain is
especially difficult when the manufacturer sells complementary products.

6Upstream integration means integration of the suppliers; downstream integration means integration of the retailers
and vertical integration means integration of a supplier and a retailer.

7In contrast to Wang and Gerchak (2003), demand is certain.
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3 Model

Consider a final product that is made out of two complementary products supplied by two firms

i and j, and let P be its price. Let Kh(t) denote firm h’s production capacity. In the spirit of

Cournot model of complements assume that the inverse demand function for the final good is given

by:

P (t) = a− bmin{Ki(t),Kj(t)},

where a and b are positive real numbers. In the equation above a represents the maximum will-

ingness to pay whereas b is a parameter showing how much the price of the final good changes for

each unit of change in the quantity of the complementary products. For the sake of simplicity, we

further assume that firms have zero production cost. Without loss of generality, we assume that

the initial values Ki0 and Kj0 of the firms’ capacities are such that min{Ki0,Kj0} < a
2b .

8

The law of motion of firm h’s capacity reads

K̇h(t) = Ih(t)− δhKh(t), Kh(0) = Kh0,

where Ih is firm h’s investment and δh (δh > 0) is the rate of depreciation of firm h’s capacity.

Investing is costly. We let Ch(Ih) be the investment cost borne by firm h and we suppose that

Ch(Ih) = αhIh +
βh
2
I2h,

where αh > 0 and βh > 0. The parameter αh represents the unit cost of investment, and the

parameter βh measures the adjustment cost of the capacity. We allow for different investment

costs. Namely, αi ̸= αj , βi ̸= βj . This is a relevant assumption if the production processes are

genuinely different (recall the Microsoft-Intel example: it is likely that producing software requires

different machines than producing chips).

In order to obtain non-trivial (i.e. non-nil) steady-state capacity, we shall also assume that

a− αiδi − αjδj − r(αi + αj) > 0,

8Under this assumption, the minimum capacity is always fully used since production cost are nil and because it
is lower than the quantity that would be chosen by a static monopoly.
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where r > 0 is the instantaneous discount rate.

To interpret this condition, rewrite it as follows:
a−αiδi−αjδj

r − (αi + αj) > 0. Assume that the

initial value of the investment rates and the capacities are nil. Now increase Ii and Ij by one unit,

at time zero so that the two capacities approximately increase by one unit as well. The increase

in the investment costs is approximately αi + αj . Further, assume that we maintain forever the

new capacities. This brings about a permanent net income equal to a − αiδi − αjδj . In this

expression a is the marginal receipt and the terms αkδk correspond to the costs of maintaining

the capacities. Notice that the present value of the permanent net income is equal to
a−αiδi−αjδj

r .

The inequality above means that the present value of the permanent net income is higher than the

initial investment costs, so that operating the two firms is worthwhile.

Let K(t) = min{Ki(t),Kj(t)} and R(t) = P (t)×K(t) be the sales revenues. That is,

R
(
K(t)

)
=

(
a− bK(t)

)
K(t), if K(t) ≤ a

2b
.

Firms maximize the sum of their discounted payoffs. Formally, they solve the following problem

max
Ii(t), Ij(t)

∫ ∞

0
e−rt

(
R
(
K(t)

)
− αiIi(t)−

βi
2
(Ii(t))

2 − αjIj(t)−
βj
2
(Ij(t))

2

)
dt

for all Ii(·) and Ij(·) such that

K̇i(t) = Ii(t)− δiKi(t), Ki(0) = Ki0,

K̇j(t) = Ij(t)− δjKj(t), Kj(0) = Kj0,

A solution to the problem above is a cooperative solution.

Before analyzing this solution a comment on non-cooperative solutions is in order. Assume that at

each time, the two firms first compete in price, and then choose their capacity in a non-coordinated

way. That is, there is a price game, and then a capacity game. The reason why this paper focuses

on the cooperative solution is given in the following result.

Proposition 1 There is no open-loop Nash equilibrium for the dynamic game where at each time

firms first play a price game, and then a capacity game.
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Proof. Under our assumptions, the dynamic game corresponds formally to the game played by

two supply chain that is analyzed in Crettez et al. (2025) where ωi = 0, and ϕi = 1/2, αi = α,

βi = β, i = 1, 2. Then the conclusion results from Theorem 3 in Crettez et al. (ibid).

Thus, because there might be no equilibrium when firms do not coordinate their decisions, it is

worth considering what occurs when they cooperate.

Reformulation of the problem

To avoid using the variable K, the minimum value of two state variables, and technical intricacies,

we next reformulate the problem above. Specifically, we consider the following problem

max
Ii(t), Ij(t),K(t)

∫ ∞

0
e−rt

(
R
(
K(t)

)
− αiIi(t)−

βi
2
(Ii(t))

2 − αjIj(t)−
βj
2
(Ij(t))

2

)
dt (1)

for all Ii(·) and Ij(·) such that

K̇i(t) = Ii(t)− δiKi(t), Ki(0) = Ki0, (2)

K̇j(t) = Ij(t)− δjKj(t), Kj(0) = Kj0, (3)

K(t) ≤ Ki(t), (4)

K(t) ≤ Kj(t). (5)

In this problem above, K is a control variable (and not a state variable).9 The set of admissible

paths comprises the paths K(·), Ih(·), Kh(·), where K, Ih are piecewise continuous, Kh is contin-

uous, piecewise continuously differentiable and such that K̇h(t) = Ih(t) − δhKh(t) whenever Ih is

continuous at t. We shall assume that there exists an admissible solution. Since the integrand is

strictly concave with respect to the controls K and Ih, if there is a solution, it is unique.

To state optimality conditions, define the Hamiltonian

H(Ii, Ij ,K,Ki,Kj , λi, λj , ηi, ηj) = e−rt

(
(a− bK)K − αiIi −

βi
2
I2i − αjIj −

βj
2
I2j

)
+ λi (Ii − δiKi) + λj (Ij − δjKj) + ηi(Ki −K) + ηj(Kj −K). (6)

Notice that the Hamiltonian is regular in the terminology of Grass et al. (2010). That is, the

controls that maximize the Hamiltonian are always unique. That is because, the Hamiltonian is

9Notice that the inequality constraints are mixed in the sense that they include both control and state variables.
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strictly concave with respect to K and Ih. Therefore, the optimal commands K, Ih are everywhere

continuous (see Grass et al. (2010), Proposition 3.62).

Denoting with a star as superscript the optimal solution, the necessary conditions read for all t

e−rt(a− 2bK∗)− ηi − ηj = 0, (7)

−e−rt (αi + βiI
∗
i ) + λi = 0, (8)

−e−rt
(
αj + βjI

∗
j

)
+ λj = 0, (9)

λ̇i = δiλi − ηi, (10)

λ̇j = δjλj − ηj , (11)

K∗ ≤ K∗
i , (12)

K∗ ≤ K∗
j , (13)

ηi(K
∗
i −K∗) = 0, (14)

ηi ≥ 0, (15)

ηj(K
∗
j −K∗) = 0, (16)

ηj ≥ 0. (17)

The adjoint variables λi and λj can be interpreted as the shadow values of the capacities of firm

i and j, respectively. Equations (8) and (9) provides the rules for making investment decisions.

These equations state that at each date, the marginal cost of investment of capacity h is equal

to its shadow value. The term ηh is the Lagrange multiplied appended to the capacity constraint

K ≤ Kh. This multiplier can be interpreted as the static shadow value of capacity h. That is,

ηh is the marginal revenue that the cooperators could obtain if capacity h were increased by one

unit. If capacities are large enough, of course, ηh = 0, since the cooperators can maximize instant

profits without operating at full capacity. This property is reflected in the conditions (14) and

(16), i.e., the complementary slackness conditions. Equations (10) and (11) give the dynamics of

the shadow values of the capacities. The instantaneous change in the shadow value of firm h’s

capacity at t reads λ̇h(t) = −(ηh − δhλh). The decrease in the shadow value includes the difference

of two terms. The first term, ηh(t), is what could have been earned at t if the capacity of firm h

had been increased by one unit. As time goes by, this is no longer possible (what was available is

irremediably lost). The second term, δhλh(t) refers to the instantaneous depreciation of firm h’s
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capacity Kh. More precisely, increasing firm h’s capacity by one unit implies that there is more

instantaneous depreciated capital. As the instantaneous depreciated capital can no longer be put

at used and be profitable, there is a corresponding instantaneous loss of future incomes that must

be subtracted from ηh(t).

4 Capacity choices

Considering the problem (1)-(5), we first establish that in a cooperative solution capacities neces-

sarily meet.

Proposition 2 Suppose that Ki0 < Kj0 and that there exists a cooperative solution. Then there is

a date t ∈ R+ such that K∗
j (t) = K∗

i (t).

Proof. The proof is by way of a contradiction. By assumption, Ki0 < Kj0. If K∗
i (t) < K∗

j (t) for

all t ∈ R+, then K∗(t) = K∗
i (t) < K∗

j (t) for all t and using the first-order conditions above we get

that ηj(t) = 0 for all t and thus it holds that

λj(t) = (αj + βjI
∗
j (t))e

−rt, (18)

λ̇j(t) = δjλj(t),

K̇∗
j (t) = I∗j (t)− δjK

∗
j (t), Kj(0) = Kj0.

The second equation yields λj(t) = c1e
δjt where c1 ∈ R. Substituting this value in equation (18) we

get I∗j (t) =
1
βj
[c1e

(δj+r)t −αj ] and the last equation becomes K̇∗
j (t) =

1
βj
[c1e

(δj+r)t −αj ]− δjK
∗
j (t).

The solution to this equation reads K∗
j (t) = c2e

−δjt+ c1
βj(r+2δj)

e(δj+r)t− αj

βjδj
. Since K∗

j (t) is bounded

c1 = 0 and we have K∗
j (t) = c2e

−δjt− αj

βjδj
. It is clear, however, that K∗

j (t) goes to a negative value

which is impossible.

The intuition of the result above is as follows. If capacities never meet, then there is always

overcapacity. Yet it pays for the two firms to let the highest capacity always depreciate. This, of

course, is impossible because even if the lowest capacity decreases over time, it never goes to zero

as producing is always profitable. But then, there must be a date at which the highest capacity

meets the lowest.
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While capacities must become equal at some date, once they meet, they could become different at

some future date. However, we shall now concentrate on the case where capacities remain equal

forever once they meet. For the sake of simplicity, we shall suppose that capacities are equal from

date zero on.

Proposition 3 Assume that the optimal capacities are equal from date 0 on and that K∗(t) =

K∗
i (t) = K∗

j (t) for all t. Then we have

K∗(t) = (K0 −K∞)ez1t +K∞, (19)

where

K∞ =
a− (αiδi + αjδj + r(αi + αj))

βiδi(δi + r) + βjδj(δj + r) + 2b

and z1 is the negative root of the following polynomial

z2 − rz − βiδi(δi + r) + βjδj(δj + r) + 2b

βi + βj
= 0.

Proof. By assumption, we have for all t

I∗i (t) = K̇∗(t) + δiK
∗(t),

I∗j (t) = K̇∗(t) + δjK
∗(t).

Then using the first-order conditions (8) and (9), we also get

λi = e−rt(αi + βi
(
K̇∗ + δiK

∗)),
λj = e−rt(αj + βj

(
K̇∗ + δjK

∗)),
and thus (since Ih and K̇h are differentiable)

λ̇i = −rλi + e−rtβi
(
K̈∗ + δiK̇

∗),
λ̇j = −rλj + e−rtβj

(
K̈∗ + δjK̇

∗).
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Using equations (7), (10) and (11) we also have

e−rt
(
a− 2bK∗) = ηi + ηj

= −λ̇i + δiλi − λ̇j + δjλj .

Using the expressions of λh and λ̇h above and rearranging, we arrive at

K̈∗ − rK̇∗ − βiδi(δi + r) + βjδj(δj + r) + 2b

βi + βj
K∗ +

a− (αiδi + αjδj + r(αi + αj))

βi + βj
= 0.

Considering the polynomial equation

z2 − rz − βiδi(δi + r) + βjδj(δj + r) + 2b

βi + βj
= 0 (20)

associated with the above second-order differential equation, the negative root is given by

z1 =
r −

√
△

2

where

△ = r2 + 4
βiδi(δi + r) + βjδj(δj + r) + 2b

βi + βj
.

The value of K∞ is easily obtained.

According to Proposition 3, the common value of the capacity goes to a finite value in the long run.

This value increases with the choke price a, and decreases with the depreciation rates δh, as well as

the parameters of the investment cost function αh and βh, the interest rate r and the parameter b

describing the sensitivity of the demand for the final product to its price. The speed ez1t at which

convergence occurs decreases with the interest rate, the rates of depreciation, the parameter βh

associated with the quadratic part of the investment cost, and the parameter b.

In the Proposition above, we have obtained the optimal investment decisions under the assumption

that firms’ capacities are always equal. In the next result, we provide sufficient conditions under

which this assumption holds.
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Proposition 4 Assume that Ki0 = Kj0 = K0. Furthermore, assume that either K0 < K∞ or

K∞ < K0 <
(r + δh)αh + βhK∞δh(r + δh)

−βhz1(r − z1)
+K∞, h = i, j. (21)

Then, K∗(t) = K∗
i (t) = K∗

j (t) for all t.

Proof. Consider the candidate optimal solution for the capacities given in Proposition 3. From

these values we can use equations (2) and (3) to get candidate optimal values for the investment

decisions. In turn, we can use equations (8) to (11) and the optimal values of Ih and Kh to get

candidate optimal values for λh and λ̇h. Moreover, because the Hamiltonian is concave the first-

order conditions (7)-(17) are sufficient. Thus the candidate optimal solution (for Ih and Kh) is

indeed the optimal solution if ηh(t) ≥ 0 for all t and all h (see inequalities (15) and (17)). Using

the condition ηh(t) = δhλh(t) − λ̇h(t), and substituting for the expressions of λh(t) and λ̇h(t)

respectively, we obtain that

ηh(t) = e−rt
(
αh(r + δh) + (r + δh)βhδhK

∗ + rβhK̇
∗ − βhK̈

∗
)

= e−rt
(
αh(r + δh) + (r + δh)βhδh

(
K∞ + (K0 −K∞)ez1t

)
+rβhz1(K0 −K∞)ez1t − βhz

2
1(K0 −K∞)ez1t

)
. (22)

Assume first that K0 < K∞. Inspecting equation (22) one can check that ηh(t) > 0 for all h.

Suppose instead that K0 > K∞. Then, we have

ηh(t) ≥ e−rt (αh(r + δh) + (r + δh)βhδhK∞

+rβhz1(K0 −K∞)− βhz
2
1(K0 −K∞)

)
= e−rt((r + δh)(αh + βhδhK∞) + βhz1(K0 −K∞)(r − z1)).

Now,

(r + δh)αh + βhδh(r + δh)K∞ − βhz1K∞(r − z1) > −βhz1K0(r − z1)

⇐⇒ K0 <
(r + δh)αh

−βhz1(r − z1)
+ βh

K∞[δh(r + δh)− z1(r − z1)]

−βhz1(r − z1)

i.e. K0 <
(r + δh)αh + βhK∞δh(r + δh)

−βhz1(r − z1)
+K∞

By assumption, the inequality above always holds, and thus ηh(t) ≥ 0 for all h and t. As the
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candidate solution satisfies all the necessary and sufficient conditions, it is indeed the optimal

solution (the latter being unique).

5 Study of the Date t at which Capacities Meet

In the preceding section, we have studied the optimal path of the capacities assuming that there are

always equal. We have also provided some sufficient conditions under which optimal capacities do

remain equal if they are so initially. We now study the optimal paths assuming that the capacities

are different initially, and that they become forever equal at a finite positive date t. Our objective

is to determine t but also to have a better understanding of the investment decisions made before

t.

Proposition 5 Assume that when the optimal capacities meet for the first time they remain forever

equal. Then, the date t at which firms’ capacities become equal forever is a solution to the following

equation

K∗,i(t) = K∗,j(t), (23)

where

K∗,h(t) =(
z2he

z2ht − z1he
z1ht

) (
Kh0e

z1ht +Kh∞(1− ez1ht)
)
−
(
z1K∞ + (Kh0 −Kh∞)z1he

z1ht
) (

ez2ht − ez1ht
)

z2hez2ht − z1hez1ht − z1
(
ez2ht − ez1ht

) .

(24)

Moreover, the dynamics of firm h’s capacity up to date t is given by

K∗
h(t) = Ahe

z1ht +Bhe
z2ht +Kh∞, (25)
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where Ah and Bh satisfy

Ah = Kh0 −Bh −Kh∞,

Bh =
z1(K

∗(t)−K∞)− (Kh0 −Kh∞)z1he
z1ht

z2hez2ht − z1hez1ht
,

Ki∞ =
a− αi

(
r + δi

)
2b+ βiδi(r + δi)

,

Kj∞ = − αj

βjδj
,

with

z1i =
r −

√
△i

2

z2i =
r +

√
△i

2

where

△i = r2 + 4

(
2b

βi
+ δi(r + δi)

)
,

z1j = −δj ,

z2i = r + δj ,

and z1 is the negative root of the polynomial in (39).

Proof. See the appendix.

In view of the preceding Proposition, a necessary condition for the optimal path to be such that

capacities meet forever at date t when they differ initially, is that there is a solutionK∗,i(t) = K∗,j(t)

to the equation (23) . The next result ensures that this equation always has a solution.

Lemma 1 There exists a solution to the equation (23) K∗,i(t) = K∗,j(t).

Proof. Consider the function φ : (0,∞) → R, defined by φ(t) = K∗,i(t) −K∗,j(t), where K∗,h(t)

is given by the right-hand side of equation (24). Observe that

lim
t→0+

φ(t) = Ki0 −Kj0 < 0. (26)
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lim
t→∞

φ(t) =
z2iKi∞ − z1K∞

z2i − z1
− z2jKj∞ − z1K∞

z2j − z1
(27)

=
z2iKi∞
z2i − z1

− z2jKj∞
z2j − z1

− z1K∞

(
1

z2i − z1
− 1

z2j − z1

)
(28)

=
z2iKi∞
z2i − z1

− z2jKj∞
z2j − z1

− z1K∞
z2j − z2i

(z2i − z1)(z2j − z1)
> 0, (29)

because z1h < 0, z2h > 0 for h = 1, 2, z1 < 0, Ki∞ > 0, Kj∞ < 0, K∞ > 0, and z2j − z2i =

r+
√
△i

2 + δj > 0.

Since φ(·) is continuous, there is a date t such that φ(t) = 0.

In the previous Lemma, we have assumed that the optimal capacities are equal forever after they

meet for the first time. We now provide conditions under which this assumption is satisfied. That

is, we provide conditions under which the optimal values of the capacities are given by equations

(25) for t ≤ t, t solves equation (24), and the common optimal value for the capacity after t is

provided by equation (19).10

Proposition 6 Assume either that

Ki0 < Kj0 < K∞ (30)

or that

K∞ < max
h

Kh0 < min
h

(r + δh)αh + βhK∞δh(r + δh)

−βhz1(r − z1)
+K∞, h = i, j. (31)

Then there is a date t at which optimal capacities meet, remain forever equal and converge to K∞.

Proof. See the appendix.

Notice that the result above also ensures that there exists an optimal solution since the first-order

conditions are sufficient.

We shall assume from now on that one of the sufficient conditions provided in the Proposition above

hold. We shall also build on the results obtained heretofore to perform a sensitivity analysis of the

optimal solution. Unfortunately, because the date t at which firms’ capacities meet is determined

10In equation (19), we must substitute K∗(t) for K0, and take care of the fact that the dynamics is presented
assuming that t is the starting date.
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only implicitly through equation (24), it is difficult to carry out an analytical study of the sensitivity

of the optimal solution to changes in the values of the parameters or the initial conditions. We

shall instead rely on a numerical approach that we present next.11

6 Numerical Illustrations

In this section we follow a numerical approach to address the ensuing questions: How do the date

t at which capacities meet for the first time change with the key operational factors faced by the

firms? When the initial value of the lowest capacity is lower than its stationary value, should we

reduce overcapacity by decreasing the capacity which is the highest initially? When the initial value

of the lowest capacity is higher than its stationary value, how should we organize the downsizing

of these capacities?

To address these questions we now perform numerical simulations for three different scenarios,

depending on how the initial conditions of the capital stocks, Ki0, Kj0, and the steady state of the

capital, K∞, compare.12 These scenarios are as follows.

� Scenario I: Ki0 < Kj0 < K∞.

� Scenario II: Ki0 < K∞ < Kj0.

� Scenario III: K∞ < Ki0 < Kj0.

The effect on the date t at which capacities first meet of changes in the operational factors in the

completely symmetric case, that is, where firms only differ in the initial values of their capacities,

are collected in Table 1.13

α ↑ β ↑ δ ↑ r ↑ a ↑ b ↑ Ki0 ↑ Kj0 ↑
t ↓ ↑ ↓ ↓ ↓ ↑ ↓ ↑

Table 1: Sensitivity analysis of t with respect to changes in parameters or initial conditions.

11In all of our numerical results, the parameters satisfy one of the conditions provided in Proposition 6.
12To simplify the analysis, we consider that the parameters pertaining to both firms are the same, except for the

depreciation rates and the initial values of the capacities. As a benchmark case we retain the following parameter
values: αi = αj = α = 1, βi = βj = β = 1, δi = δj = δ = 0.01, r = 0.05, a = 1, b = 1, and the following initial
conditions: Ki0 = 0.25, Kj0 = 0.3.

13See the appendix B for a detailed presentation of the simulations.
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That a rise in Ki0 or decrease in Kj0 have a negative effect on t is expected since these changes

make the initial values of the capacities closer. We also observe that if the choke price a increases or

if the demand for the final good is less sensible to its price (b takes lower values) then the meeting

date t is advanced.14 When the lowest capacity is lower than its steady state value, a rise in a or

a decrease in b makes production more profitable. It thus pays to increase the lowest capacity at

a higher rate which allows to catching up at an earlier date with the highest capacity (the highest

capacity might increase as well, however). When the lowest capacity is higher than the steady state

value, a rise in a or a decrease in b makes the steady state common capacity closer to the lowest

capacity. Thus, both capacities decrease at a slower rate, but the lowest capacity decreases at a rate

which is lower than that of the highest capacity.15 Interestingly, a rise in α and β, the parameters

of the cost function have opposite effects on t, even though in both cases the steady state value K∞

decreases. Recall that under or symmetry assumption the marginal cost of investment for each firm

is α+ βI. A rise in α refers to a rise in the unit cost of investment and has an effect that is similar

to that of a decrease in the choke price a. A rise in β affects the quadratic part of the investment

cost. Its effect depends on the value of investment. The higher this value the higher the marginal

cost (this is in contrast with what occurs with a rise in α which has the same effect, whatever the

value of the investment rates). When β increases, there is both a short run and a long-run effects.

In the long run, the steady state value of investment is lower because it is costlier to maintain a

given value of capacity. In the short run, since the adjustment cost is higher, it is worthwhile to

slow the building (or the downsizing) of the capacity. For instance, suppose that capacities are

lower than their steady-state value. A rise in β results in a decrease in this steady-state value. As

the long-run common capacity value is lower, it pays to build less capacity, and thus overcapacity

should be eliminated earlier. But on the other hand, as the marginal cost of investment is higher,

firms are better off by scaling down their investments and thus it takes a longer time to build

capacity. It turns out, however, that this positive effect dominates the negative one.

All the preceding effects are also obtained when firms differ with respect to the depreciation rates

of their capacities. Specifically, the date t at which capacities become equal increases when the

depreciation rate of firm i’s capacity is greater than the depreciation rate of firm j’s capacity, and

vice versa. To understand this effect, suppose that Ki0 is lower than the steady state value. On

14Moreover, under these assumptions we see that the long-term value of the stationary capacity K∞ =
a−(αiδi+αjδj+r(αi+αj))
βiδi(δi+r)+βjδj(δj+r)+2b

is higher.
15The negative effect of a rise in r or in the depreciation rate δ on t can be understood in a similar way.
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the one hand, if firm i’s depreciation rate is higher than firm j’s, it takes a longer time to build

capacity and thus to catch up with firm j’s capacity. On the other hand, the steady state value is

lower (since it is costlier to maintain a given common capacity) and thus firms need to build less

capacity so that overcapacity can be eliminated earlier. As the date t at which capacities become

equal increases, this second negative effect is compensated by the first positive one.

Let us turn to the investment decisions and the evolution of capacities. Our simulations illustrate

the fact that Kj does not necessarily decrease initially to get rid of overcapacity. Indeed, figure

1 shows that when the long-run value of the common capacity is higher than the initial values of

the capacities, then as both capacities must eventually increase, it is not optimal to decrease firm

j’s capacity. Yet even if the initial capacities are lower than the long-run common values, it can

be that it is optimal to first decrease firm j’s capacity and then let it grow afterwards. Figure 2

illustrates this case. Such case occurs when the depreciation rate of firm i is much higher than firm

j’s (δi = 0.2, δi = 0.01). In that case, it takes more time to build firm i’s capacity and it this then

worthwhile to reduce firm j’s overcapacity initially (moreover, building firm j’s capacity is cheaper

than building firm i’s).

Now assume that firms must downsize their capacities. Interestingly, it is not always the case that

their investments are monotonic. Figure 3 displays a case where firm i’s investment first increases,

and then decreases after having reached a maximum value (in this case, the unit cost of investment

takes its highest value, i.e., α = 5). Afterwards, the common value of investment increases again

(it must go to a positive value in order to maintain the common value of the capacity). Notice that

firm i’s investment always grows at a slower rate than firm j’s before date t. The reason why firm

i’s investment rate is non-monotonic is that because firms’ depreciation rates are equal, when their

capacities meet at date t their investment must be equal at this date as well (otherwise capacities

would evolve differently at t). Since firm j decreases its capacity at a higher rate than firm i, firm

i must downsize at a higher rate at some time to catching up with firm j’ investment. Firm i’s

downsizing rate cannot be monotonic, however, because that would imply decreasing its capacity at

a higher rate at the starting date. But doing so is costly (the investment cost would be higher) and

would imply that firms’ investments become equal at an earlier date than t while their capacities

would be different at this date. Yet it is not optimal to choose the same investment rates if the

capacities are not identical.
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investment_benchmark_scenario_I.png capital_benchmark_scenario_I.png

Figure 1: Scenario I: Investment (left) and capacity (right) optimal paths. Benchmark case.

investment_benchmark_scenario_I_deltai_02mayor_deltaj.pngcapital_benchmark_scenario_I_deltai_02mayor_deltaj.png

Figure 2: Scenario I: Investment (left) and capacity (right) optimal paths. α = 1, δi = 0.2, δj = 0.01

7 Conclusion

This paper has advanced the analysis of the dynamic version of Cournot duopoly with perfect

complements. We have analyzed the cooperative outcome that is obtained when firms behave like

a monopoly selling complementary goods and coordinate their capacity investment decisions and

we have studied how this outcome changed with different operational factors, like the market size,

the shape of adjustment cost and the depreciation rate. We have highlighted the fact that optimal

firms’ capacities must become identical in a finite time (and, under some conditions, remain equal

forever). Indeed, cooperation is useful as long as it eliminates overcapacity, and overcapacity always

holds whenever initial capacities are different. Yet, our numerical results highlight the fact that
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Figure 3: Scenario III: Investment (left) and capital (right) optimal paths. b = 2,Ki0 = 0.24, α = 5.

eliminating overcapacity does not always mean decreasing the highest initial capacity. We have seen

that when the stationary capacity is relatively high, cooperation entails increasing both production

capacities. However, when the depreciation rate of the firms with the lowest capacity is the highest,

the best policy is to start downsizing the highest capacity initially. These findings are useful in

order to assess the optimal investment policy of firms involved in a merger or in a joint venture.

There are at least four avenues for future research, besides considering a setting with more than two

firms. First, it would be worthwhile to pay attention to different forms of adjustment cost. While

we have considered a quadratic cost function, one could also include a term that depends on the

value of the capacity (e.g., ratio of investment to the capacity). Second, it would also be worthwhile

to take into account a demand saturation effect, as in Ngendakuriyo and Taboubi (2017). Third,

it would be interesting to consider the case where investment is not always reversible (that is,

when the investment decisions Ii are always non-negative). Fourth, it would also be interesting to

consider pollution emissions and the choice of abatement policies as in El Ouardighi (2016, 2021).
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A Proofs

Proof of Proposition 5

Using the optimality conditions (7)-(17) for all t < t, we have

e−rt(a− 2bK∗)− ηi = 0

−e−rt (αi + βiI
∗
i ) + λi = 0

−e−rt
(
αj + βjI

∗
j

)
+ λj = 0

λ̇i = −ηi + δiλi

λ̇j = δjλj

K∗ ≤ K∗
i

K∗ ≤ K∗
j

ηi(K
∗
i −K∗) = 0

ηi ≥ 0

ηj(K
∗
j −K∗) = 0

ηj = 0

as well as

K∗
h(t) = K∗(t) = K∗(t).

Since the controls K∗ and I∗h are continuous using Proposition 3 we obtain that

I∗h(t) = K̇∗(t) + δhK
∗(t)

= z1
(
K∗(t)−K∞

)
+ δhK

∗(t).

Let us concentrate of firm i’s decisions before date t.

Using the first-order conditions, we get

e−rt
(
a− 2bK∗(t)

)
= ηi(t)

= δiλi(t)− λ̇i(t).
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As we have already observed, the differential equations are well-defined everywhere (the controls

being continuous) so that both λ̇h and K̇h are differentiable. Using this fact in the expression above

we have

e−rt
(
a− 2bK∗(t)

)
= ηi(t)

= δiλi(t)− λ̇i(t)

= (δi + r)e−rt
(
αi + βiI

∗
i

)
− e−rtβiİ

∗
i .

Rearranging, we get

K̈∗ − rK̇∗ − 2b+ βiδi(r + δi)

βi
K∗ +

a− αi(r + δi)

βi
= 0.

The characteristic roots are given by

z1i =
r −

√
△i

2

z2i =
r +

√
△i

2

where

△i = r2 + 4
(2b
βi

+ δi(r + δi)
)
.

Then we get

K∗
i (t) = K∗(t) = Aie

z1it +Bie
z2it +

a− αi

(
r + δi

)
2b+ βiδi(r + δi)

,

where Ai and Bi are such that

Ki0 = K∗
i (0) = Ai +Bi +

a− αi

(
r + δi

)
2b+ βiδi(r + δi)

K∗
i (t) = K∗

j (t) = Aie
z1it +Bie

z2it +
a− αi

(
r + δi

)
2b+ βiδi(r + δi)

.

Notice that K∗
i (t) = K∗

j (t) are still to be determined. To proceed, let us turn to firm j’s program.
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Proceeding as for firm i, we arrive at the following second-order differential equation

K̈∗
j (t)− rK̇∗

j (t)− (r + δj)δjK
∗
j (t)−

αj(r + δj)

βj
= 0.

The characteristic roots are given by

z1j = −δj

z2j = r + δj .

We thus have

K∗
j (t) = Aje

−δjt +Bje
(r+δj)t − αj

βjδj

where Aj and Bj are such that

Kj0 = K∗
j (0) = Aj +Bj −

αj

βjδj

K∗
j (t) = K∗(t) = Aje

−δjt +Bje
(r+δj)t − αj

βjδj
.

From

I∗h(t) = K̇∗(t) + δhK
∗(t)

= z1
(
K∗(t)−K∞

)
+ δhK

∗(t),

we see that the following relations must also hold

z1iAie
z1it + z2iBie

z2it + δiK
∗(t) = z1

(
K∗(t)−K∞

)
+ δiK

∗(t)

⇐⇒ z1iAie
z1it + z2iBie

z2it = z1
(
K∗(t)−K∞

)
,

z1jAje
z1jt + z2jBje

z2jt + δjK
∗(t) = z1

(
K∗(t)−K∞

)
+ δjK

∗(t)

⇐⇒ z1jAje
z1jt + z2jBje

z2jt = z1
(
K∗(t)−K∞

)
,
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which implies that

z1iAie
z1it + z2iBie

z2it = z1
(
K∗(t)−K∞

)
= z1jAje

z1jt + z2jBje
z2jt.

So we have 6 equations for 6 unknowns (that is Ai, Bi, Aj , Bj , K
∗(t) and t).

Define

Ki∞ =
a− αi

(
r + δi

)
2b+ βiδi(r + δi)

,

Kj∞ = − αj

βjδj
.

Using the relation Ah = Kh0 −Bh −Kh∞ and z1hAhe
z1ht + z2hBhe

z2ht = z1(K
∗(t)−K∞), we get

Bh =
z1(K

∗(t)−K∞)− (Kh0 −Kh∞)z1he
z1ht

z2hez2ht − z1hez1ht
.

From the relation Ah = Kh0 −Bh −Kh∞ and Ahe
z1ht +Bhe

z2ht +Kh∞ = K∗(t), we obtain

K∗(t) =

(
z2he

z2ht − z1he
z1ht

) (
Kh0e

z1ht +Kh∞(1− ez1ht)
)
−
(
z1K∞ + (Kh0 −Kh∞)z1he

z1ht
) (

ez2ht − ez1ht
)

z2hez2ht − z1hez1ht − z1
(
ez2ht − ez1ht

)
(32)

Denote by K∗,h(t) the right-hand side of the equation above. Clearly, t is the solution of the

following equation

K∗,i(t) = K∗,j(t). (33)

and the proof is complete.

Proof of Proposition 6

a) Assume that Ki0 < Kj0 < K∞.

In view of Proposition 4 it suffices to establish that the date t at which capacities meet (whose

existence is asserted by Proposition 1) is such that K∗
i (t) = K∗

j (t) < K∞. Let us establish this

result. We have:

K∗,j(t) =

(
z2je

z2jt − z1je
z1jt

) (
Kj0e

z1jt +Kj∞(1− ez1jt)
)
−
(
z1K∞ + (Kj0 −Kj∞)z1je

z1jt
) (

ez2jt − ez1jt
)

z2jez2jt − z1jez1jt − z1
(
ez2jt − ez1jt

) .
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Taking out the common factor Kj0 in the numerator we get

K∗,j(t) =
1

z2jez2jt − z1jez1jt − z1
(
ez2jt − ez1jt

) {[(z2jez2jt − z1je
z1jt

)
ez1jt − z1je

z1jt
(
ez2jt − ez1jt

)]
Kj0

(34)

+
(
z2je

z2jt − z1je
z1jt

)
Kj∞(1− ez1jt)−

(
z1K∞ −Kj∞z1je

z1jt
) (

ez2jt − ez1jt
)}

. (35)

The denominator is positive and the term in brackets multiplying Kj0 is positive too, because zij

and z1 are negative and z2j is positive. Therefore, if Kj0 < K∞,

K∗,j(t) <
1

z2jez2jt − z1jez1jt − z1
(
ez2jt − ez1jt

) {[(z2jez2jt − z1je
z1jt

)
ez1jt − z1je

z1jt
(
ez2jt − ez1jt

)]
K∞

+
(
z2je

z2jt − z1je
z1jt

)
Kj∞(1− ez1jt)−

(
z1K∞ −Kj∞z1je

z1jt
) (

ez2jt − ez1jt
)}

and the fulfillment of the following inequality

1

z2jez2jt − z1jez1jt − z1
(
ez2jt − ez1jt

) {[(z2jez2jt − z1je
z1jt

)
ez1jt − z1je

z1jt
(
ez2jt − ez1jt

)]
K∞

+
(
z2je

z2jt − z1je
z1jt

)
Kj∞(1− ez1jt)−

(
z1K∞ −Kj∞z1je

z1jt
) (

ez2jt − ez1jt
)}

< K∞, (36)

implies the fulfillment of K∗,j(t) < K∞. Inequality (36) can be rewritten as

[(
z2je

z2jt − z1je
z1jt

)
ez1jt − z1je

z1jt
(
ez2jt − ez1jt

)
− (z2je

z2jt − z1je
z1jt) + z1

(
ez2jt − ez1jt

)]
K∞

+
(
z2je

z2jt − z1je
z1jt

)
Kj∞(1− ez1jt)−

(
z1K∞ −Kj∞z1je

z1jt
) (

ez2jt − ez1jt
)
< 0.

Equivalently,

[(
z2je

z2jt − z1je
z1jt

) (
ez1jt − 1

)
−
(
ez2jt − ez1jt

)
(z1je

z1jt − z1)
]
K∞

+
[(
z2je

z2jt − z1je
z1jt

)
(1− ez1jt) +

(
ez2jt − ez1jt

)
z1je

z1jt
]
Kj∞ − z1K∞

(
ez2jt − ez1jt

)
< 0[(

z2je
z2jt − z1je

z1jt
) (

ez1jt − 1
)
−
(
ez2jt − ez1jt

)
z1je

z1jt
]
K∞

+
[(
z2je

z2jt − z1je
z1jt

)
(1− ez1jt) +

(
ez2jt − ez1jt

)
z1je

z1jt
]
Kj∞ < 0[(

z2je
z2jt − z1je

z1jt
) (

ez1jt − 1
)
−
(
ez2jt − ez1jt

)
z1je

z1jt
]
(K∞ −Kj∞) < 0.
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Because K∞ is positive and Kj∞ is negative, the inequality above is satisfied if and only if

(
z2je

z2jt − z1je
z1jt

) (
ez1jt − 1

)
−
(
ez2jt − ez1jt

)
z1je

z1jt < 0. (37)

Inequality (37) can be rewritten as:

ez1jt
(
z2je

z2jt − z1je
z1jt − z1j(e

z2jt)− ez1jt)
)
− (z2je

z2jt − z1je
z1jt) < 0.

ez1jt (z2j − z1j) e
z2jt − (z2je

z2jt − z1je
z1jt) < 0.

Multiplying by e−z1jt, we have

(z2j − z1j) e
z2jt − z2je

(z2j−z1j)t + z1j < 0.

The left-hand side of the inequality evaluated at t = 0 is zero, and the derivative with respect to t

reads:

(z2j − z1j) z2je
z2jt − z2j(z2j − z1j)e

(z2j−z1j)t

which is equal to

z2j(z2j − z1j)e
z2jt(1− e−z1jt).

Last expression takes negative values for any positive t. Therefore,

(z2j − z1j) e
z2jt − z2je

(z2j−z1j)t + z1j ,

is a decreasing function of t, that takes negative values for any positive t.

b) Assume that

K∞ < max
h

Kh0 < min
h

(r + δh)αh + βhK∞δh(r + δh)

−βhz1(r − z1)
+K∞, h = i, j (38)

First observe that from equation (35) it holds that

K∗,j(t) = (Kj0 −Kj∞)ez1jt
(
λj(t)−

z1j(e
z2jt − ez1jt)

z2jez2jt − z1jez1jt − z1 (ez2jt − ez1jt)

)
+ λj(t)Kj∞ + (1− λj(t))K∞
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where

λj(t) =
z2je

z2jt − z1je
z1jt

z2jez2jt − z1jez1jt − z1 (ez2jt − ez1jt)
. (39)

Thus,

K∗,j(t) = (Kj0 −Kj∞)ez1jt
(

(z2j − z1j)e
z2jt

z2jez2jt − z1jez1jt − z1 (ez2jt − ez1jt)

)
+ λj(t)Kj∞ + (1− λi(t))K∞.

Secondly, let us show that

ez1jt
(

(z2j − z1j)e
z2jt

z2jez2jt − z1jez1jt − z1 (ez2jt − ez1jt)

)
≤ λj(t) =

z2je
z2jt − z1je

z1jt

z2jez2jt − z1jez1jt − z1 (ez2jt − ez1jt)
.

To see this, notice that the above inequality reduces to

(r + 2δj)e
(r+δj)t ≤ (r + δj)e

r+2δj + δj . (40)

The above relation is true for t = 0. Set

f(t) = (r + 2δj)e
(r+δj)t

g(t) = (r + δj)e
(r+2δj)t + δj .

It holds that

f ′(t) = (r + 2δj)(r + δj)e
(r+δj)t < g′(t) = (r + 2δj)(r + δj)e

(r+2δj)t.

Thus the inequality (40) is always satisfied.

Thirdly, we have:

K∗,j(t) = (Kj0 −Kj∞)ez1jt
(

(z2j − z1j)e
z2jt

z2jez2jt − z1jez1jt − z1 (ez2jt − ez1jt)

)
+ λj(t)Kj∞ + (1− λi(t))K∞

(41)

≤ (Kj0 −Kj∞)λj(t) + λj(t)Kj∞ + (1− λi(t))K∞ (42)

≤ Kj0λj(t) + (1− λi(t))K∞ (43)

≤ Kj0. (44)
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Then, the result directly follows from Proposition 4.

B A Numerical Analysis of the Sensitivity of t with Respect to

Changes in Parameters or Initial Conditions.

We consider the three scenarios in turn.

Scenario I. Ki0 < Kj0 < K∞

Benchmark parameter values: αi = αj = α = 1, βi = βj = β = 1, δi = δj = δ = 0.01, r = 0.05, a =

1, b = 1, and initial conditions: Ki0 = 0.25, Kj0 = 0.3.

In all the simulations in this scenario, we keep the values of all the parameters and the initial

conditions as in the benchmark case, except for a single value that we change as indicated in tables

2, 3, 4 and 5.

Tables 6, 7, 8 and 9 collect the results when the completely symmetric case is relaxed, and different

depreciation rates of the firms’ capacities are considered (δi = 0.015, δj = 0.01).

Scenario II. Ki0 < K∞ < Kj0

Benchmark parameter values: αi = αj = α = 1, βi = βj = β = 1, δi = δj = δ = 0.01, r = 0.05, a =

1, b = 1, and initial conditions: Ki0 = 0.25, Kj0 = 0.5.

In all the simulations in this scenario, we keep the values of all the parameters and the initial

conditions as in the benchmark case, except for a single value that we change as indicated in tables

10, 11, 12 and 13. When the result of a case analyzed in Scenario I is not included in any of the

tables below, it is because that case is not feasible in Scenario II.

Tables 14, 15, 16 and 17 present the results for the case δi > δj .

Scenario III. K∞ < Ki0 < Kj0

Benchmark parameter values: αi = αj = α = 1, βi = βj = β = 1, δi = δj = δ = 0.01, r = 0.05, a =

1, b = 2, and initial conditions: Ki0 = 0.24, Kj0 = 0.5.
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In all the simulations in this scenario, we keep the values of all the parameters and the initial

conditions as in the benchmark case, except for a single value that we change as indicated in tables

18 and 19. When the result of a case analyzed in Scenario I is not included in any of the tables, it is

either because that case is not feasible in Scenario III or for condition Ki0 < a/(2b) to be fulfilled,

more than one parameter value needs to be changed. Tables 20 and 21 present the results for the

case δi > δj .

α β

α = 0.1 α = 0.5 α = 1 α = 2 β = 0.5 β = 1 β = 1.5

t 0.55559 0.54185 0.52684 0.52202 0.37238 0.52684 0.64542
K∞ 0.49370 0.46972 0.43974 0.37977 0.43487 0.43974 0.43960

Table 2: Scenario I. Sensitivity with respect to changes in α and β.

δ r

δ = 0.005 δ = 0.01 δ = 0.015 r = 0.045 r = 0.05 r = 0.055

t 0.52926 0.52684 0.52446 0.52912 0.52684 0.52462
K∞ 0.44488 0.43974 0.43458 0.44476 0.43974 0.43472

Table 3: Scenario I. Sensitivity with respect to changes in δ and r.

a b

a = 0.75 a = 1 a = 1.5 b = 0.75 b = 1 b = 1.25

t 0.75743 0.52684 0.35718 0.45352 0.52684 0.63386
K∞ 0.31481 0.43974 0.68959 0.58619 0.43974 0.35183

Table 4: Scenario I. Sensitivity with respect to changes in a and b.

Ki0 Kj0

Ki0 = 0.2 Ki0 = 0.25 Ki0 = 0.28 Kj0 = 0.28 Kj0 = 0.3 Kj0 = 0.35

t 0.73768 0.52684 0.23252 0.38979 0.52684 0.82210

Table 5: Scenario I. Sensitivity with respect to changes in Ki0 and Kj0.

α β

α = 0.1 α = 0.5 α = 1 α = 2 β = 0.5 β = 1 β = 1.5

t 0.55603 0.54356 0.52985 0.50701 0.37448 0.52985 0.64915
K∞ 0.49336 0.46838 0.43716 0.37471 0.43733 0.43716 0.43698

Table 6: Scenario I. Sensitivity with respect to changes in α and β. δi = 0.015, δj = 0.01.
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r

r = 0.045 r = 0.05 r = 0.055

t 0.53218 0.52985 0.52758
K∞ 0.44218 0.43716 0.43213

Table 7: Scenario I. Sensitivity with respect to changes in r. δi = 0.015, δj = 0.01.

a b

a = 0.75 a = 1 a = 1.5 b = 0.75 b = 1 b = 1.25

t 0.76487 0.52985 0.35831 0.45557 0.52985 0.63855
K∞ 0.31225 0.43716 0.68696 0.58272 0.43716 0.34978

Table 8: Scenario I. Sensitivity with respect to changes in a and b. δi = 0.015, δj = 0.01.

Ki0 Kj0

Ki0 = 0.2 Ki0 = 0.25 Ki0 = 0.28 Kj0 = 0.28 Kj0 = 0.3 Kj0 = 0.35

t 0.74148 0.52985 0.23399 0.39195 0.52985 0.82708

Table 9: Scenario I. Sensitivity with respect to changes in Ki0 and Kj0. δi = 0.015, δj = 0.01.

α β

α = 0.1 α = 0.5 α = 1 α = 2 α = 5 β = 0.5 β = 1 β = 1.5

t 2.73095 1.95456 1.65268 1.37820 1.06301 1.16552 1.65268 2.02800
K∞ 0.49370 0.46972 0.43974 0.37977 0.19988 0.43987 0.43974 0.43960

Table 10: Scenario II. Sensitivity with respect to changes in α and β.

δ r

δ = 0.005 δ = 0.01 δ = 0.015 r = 0.045 r = 0.05 r = 0.055

t 1.69031 1.65268 1.61844 1.68747 1.65268 1.62116
K∞ 0.44488 0.43974 0.43458 0.44476 0.43974 0.43472

Table 11: Scenario II. Sensitivity with respect to changes in δ and r.

a b

a = 0.75 a = 1 a = 1.1 b = 1 b = 1.25 b = 1.5

t 2.23798 1.65268 1.47404 1.65268 2.04939 2.40274
K∞ 0.31481 0.43974 0.48971 0.43974 0.35183 0.29322

Table 12: Scenario II. Sensitivity with respect to changes in a and b.

Ki0 Kj0

Ki0 = 0.2 Ki0 = 0.25 Ki0 = 0.29 Kj0 = 0.5 Kj0 = 0.6 Kj0 = 0.8

t 1.73003 1.65268 1.58057 1.65268 2.20967 3.24450

Table 13: Scenario II. Sensitivity with respect to changes in Ki0 and Kj0.

36



α β

α = 0.1 α = 0.5 α = 1 α = 2 β = 0.5 β = 1 β = 1.5

t 2.73779 1.96312 1.66281 1.38991 1.17250 1.66281 2.04067
K∞ 0.49336 0.46838 0.43716 0.37471 0.43733 0.43716 0.43698

Table 14: Scenario II. Sensitivity with respect to changes in α and β. δi = 0.015, δj = 0.01.

r

r = 0.045 r = 0.05 r = 0.055

t 1.69823 1.66281 1.63073
K∞ 0.44218 0.43716 0.43213

Table 15: Scenario II. Sensitivity with respect to changes in r. δi = 0.015, δj = 0.01.

a b

a = 0.75 a = 1 a = 1.1 b = 1 b = 1.25 b = 1.5

t 2.25149 1.66281 1.48243 1.66281 2.06067 2.41294
K∞ 0.31225 0.43716 0.48712 0.43716 0.34978 0.29151

Table 16: Scenario II. Sensitivity with respect to changes in a and b. δi = 0.015, δj = 0.01.

Ki0 Kj0

Ki0 = 0.2 Ki0 = 0.25 Ki0 = 0.29 Kj0 = 0.5 Kj0 = 0.6 Kj0 = 0.8

t 1.73971 1.66281 1.59114 1.66281 2.22157 3.25630

Table 17: Scenario II. Sensitivity with respect to changes in Ki0 and Kj0. δi = 0.015, δj = 0.01.

α β

α = 0.5 α = 1 α = 2 α = 5 β = 0.5 β = 1 β = 1.5

t 4.10391 2.87916 2.33520 1.33123 2.02108 2.87916 3.54555
K∞ 0.23493 0.21993 0.18994 0.09997 0.219967 0.21993 0.21990

Table 18: Scenario III. Sensitivity with respect to changes in α and β.

δ r

δ = 0.005 δ = 0.01 δ = 0.015 r = 0.045 r = 0.05 r = 0.055

t 3.01102 2.87916 2.76335 3.00036 2.87916 2.77257
K∞ 0.22247 0.219993 0.21739 0.22244 0.21993 0.217429

Table 19: Scenario III. Sensitivity with respect to changes in δ and r.

α β

α = 0.5 α = 1 α = 2 α = 5 β = 0.5 β = 1 β = 1.5

t 4.10946 2.88644 2.05301 1.34371997 0.21187 0.21866 0.218621

Table 20: Scenario III. Sensitivity with respect to changes in α and β. δi = 0.015, δj = 0.01.
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r

r = 0.045 r = 0.05 r = 0.055

t 3.00798 2.88644 2.77954
K∞ 0.22117 0.21866 0.21616

Table 21: Scenario III. Sensitivity with respect to changes in r. δi = 0.015, δj = 0.01.
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