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Abstract
Purpose: (a) To design a methodology for drawing random samples of any
Ensemble Average Propagator (EAP) (b) to modify the KomaMRI simulator
to accommodate them as realistic spin movements to simulate diffusion MRI
(dMRI) and (c) to compare these simulations with those based on the Diffusion
Tensor (DT) model.
Theory and Methods: The rejection method is used for random sampling of
EAPs: starting from a probability law that is easily sampled, and whose density
function wraps the target EAP, samples are accepted when they lie inside the
targeted region. This is used to sample the EAP as described by Mean Appar-
ent Propagator MRI (MAP-MRI) and in Spherical Convolution (SC) based on
Spherical Harmonics (SH). With this methodology, MAP-MRI and SC repre-
sentations are calculated over in-vitro pig hearts images, and a simulation of a
pulsed-gradient spin echo (PGSE) dMRI sequence inside the myocardial wall is
undertaken with the KomaMRI simulator.
Results: MAP-MRI shows better agreement with the actual acquisition than
conventional DT-based simulations, in terms of Mean Squared Errors and cor-
relation with improvements up to 1.7 % for the former and 2.2 % for the
latter.
Conclusion: dMRI sequences can be simulated accurately (yet, efficiently)
if phantoms with a proper per-spin description of the diffusion process are
made available. Moreover, our findings suggest that the study of non-Gaussian
diffusion of the heart might be feasible, at least in vitro.
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1 INTRODUCTION

MRI simulators constitute a useful tool for educational and
research purposes. For the former, clinical demands and
equipment cost imply extensive scanner use, so hands-on
sessions for practitioners can hardly be afforded.1,2 For
the latter, simulations allow users to isolate specific phe-
nomena by selectively removing undesired effects, such
as off-resonance and non-ideal hardware behavior. Con-
sequently, several MRI simulators have been proposed in
the literature since the early days3,4 and different com-
putationally efficient simulators are available for different
purposes,5–12 with some including diffusion.6,9,13

Among the diversity of MRI sequences, diffusion
MRI (dMRI) has an unparalleled potential to reveal the
anisotropy of soft tissues (e.g., the organization of myeli-
nated axons of the white matter of the brain or the mus-
cular fibers of the myocardial wall). This is achieved,
among others,14,15 by combining the original Spin Echo
(SE) sequence with two strong pulsed gradients with the
same polarity, plus an inversion pulse in between. This
way, the random movement of water molecules during
the lapse between the two gradients produces a Diffu-
sion Weighted Image (DWI) whose attenuation depends
on the movement direction relative to the orientation of
the gradients.16 Although applications based on Diffusion
Tensor Imaging (DTI) implicitly model this movement
as Gaussian,17 DTI is an oversimplified model in many
situations.18

This issue carries over to dMRI simulation: while
Gaussian diffusion can be simulated by numerically solv-
ing the Bloch-Torrey’s equation,19 more general diffusion
is challenging. Alternatively, diffusion can be simulated
by tuning the proton density (PD) with a diffusion-driven
attenuation model9; however, this is only an approxima-
tion. Microstructural simulation,6,13 on the other hand,
relies heavily on an accurate model for the simulated
anatomy.

In this work, we aim at simulating non-Gaussian
behaviors in dMRI. Instead of attempting to generalize and
solve the Bloch-Torrey’s equation, we (1) design a solu-
tion to draw random samples from general 3D EAPs to
simulate spin motion during the diffusion time, and (2)
extend the capabilities of the KomaMRI simulator11 to
accommodate this motion. To our knowledge, only one
procedure for a similar sampling has been used for a
diffusion-related task,20 but not for modeling end-to-end
spin displacements intended for DWI simulation. We
base the description of spin movements on signal repre-
sentations rather than on biologically inspired models18

to attain an anatomy-agnostic methodology. Specifically,
we have focused on two such representations, namely:
Mean Apparent Propagator MRI —MAP-MRI—21 and

Spherical Convolution —SC— based on Spherical Har-
monics —SH—.22 However, our approach extrapolates to
any other signal representation.

As a proof of concept, we have chosen to simulate dif-
fusion in the myocardium of an in-vitro heart.23 reported
that high-order diffusion models, compared to DTI, were
unlikely to provide more accurate descriptions due to long
TEs together with the T2 signal loss effect. Simulation pro-
vides a ground to test the validity of this statement in ideal
conditions with a still heart. If in these conditions differ-
ences are not observed, the statement seems well founded.
Otherwise, room for further research exists when these
conditions are not ideal.

2 THEORY

2.1 The Ensemble Average Propagator
in dMRI

Let 𝛿 be the duration of the pulsed gradients and Δ the
inter-pulse lapse of the sequence, so that the effective dif-
fusion time is 𝜏 = Δ − 𝛿∕3. Within 𝜏, water molecules are
driven by Brownian motion, and their net displacement
R ∈ R3 can be modeled as a 3-D random variable (RV)
whose Probability Density Function (PDF), P(R; 𝜏,D), is
dubbed Ensemble Average Propagator (EAP).16 For Gaus-
sian diffusion:

P(R; 𝜏,D) = 1√
(4𝜋𝜏)3|D| exp

(
−RTD−1R

4𝜏

)
, (1)

where D is the diffusion tensor (DT), the 3 × 3 symmet-
ric, positive-semidefinite covariance matrix of the process.
Drawing samples from such distribution is straightforward
by generating 3 uncorrelated Gaussians with zero mean
and unit standard deviation, S = [u, v,w]T ∶ {u, v,w} ∼
 (0, 1), and computing: R = D1∕2S. Non-Gaussian diffu-
sion does not admit a general expression for the EAP, since
P(R; 𝜏,D) can be any non-negative, unit-mass distribution
that fulfills antipodal symmetry: P(R; 𝜏,D) = P(−R; 𝜏,D).
Among the many methods aimed at describing arbitrary
EAP representations, we will focus on the following two:

• Using Cartesian coordinates, the MAP-MRI formal-
ism draws the EAP as a basis functions expansion in
terms of Hermite’s polynomials Hn (with physicists’
convention):21

P(R′; 𝜏,D) =
Nmax∑
(even)
N=0

∑∑∑
n1+n2+n3=N
{n1 ,n2 ,n3}

an1 ,n2 ,n3
n1

(x′; sx)n2
(y′; sy)n3

(z′; sz)

∶ n(t; s) = 1√
2n+1∕ 𝜋 n! s

exp
(
− t2

2 s2

)
Hn

( t
s

)
, (2)
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RODRÍGUEZ-GALVÁN et al. 3

with rotated coordinates [x′, y′, z′]T and scaling factors
{sx, sy, sz} related to the spectrum of D as:

R′ = UTR;
⎡⎢⎢⎢⎣
sx

sy

sz

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
√

2 𝜏 𝜆x√
2 𝜏 𝜆y√
2 𝜏 𝜆z

⎤⎥⎥⎥⎦ ∶ D = UΛUT , (3)

with U the matrix of eigenvectors of D and 𝜆x ≥ 𝜆y ≥ 𝜆z
its eigenvalues, hence Λ = diag

(
𝜆x, 𝜆y, 𝜆z

)
.

• Using Spherical coordinates, the EAP can otherwise
be expressed as the SC of a fiber-Orientation Distri-
bution Function (fODF), Φ(r), r ∈  ≡ {∀ v ∈ R3 ∶||v|| = 1}, with a rotation-invariant Gaussian kernel:

P
(
R; 𝜏, 𝜆||, 𝜆⊥) = ∫ ∫𝒮

Φ(v) 𝜅
(
R, v; 𝜆||, 𝜆⊥, 𝜏)dv, (4)

where 𝜅
(
R, v; 𝜆||, 𝜆⊥, 𝜏) has the functional form in

Equation (1) for a DT, D, whose main eigenvector and
eigenvalue are, respectively, v and 𝜆||, and whose two
remaining eigenvalues are both 𝜆⊥. Equation (4) is a
spherical mixture model, so that P(R; 𝜏,D) can be sam-
pled by randomly picking an orientation v according to
the fODF, Φ(v), then building D from its eigenspace,
and finally using the aforementioned procedure to draw
a Gaussian sample. The fODF is most often represented
as an expansion in the basis of real-valued, symmetric
SH over the manifold  , Ỹ m

l (𝜃, 𝜑):22

Φ(r) ≡ Φ̃(𝜃, 𝜑) =
L∑

(even)
l=0

l∑
m=−l

𝜙m
l Ỹ m

l (𝜃, 𝜑)

≡
L∑

(even)
l=0

l∑
m=−l

𝜙m
l

√
2l + 1

2𝜋
(l − m)!
(l + m)!

Pm
l (cos(𝜃)) (m𝜑),

(5)

where r = [sin(𝜃) cos(𝜑), sin(𝜃) sin(𝜑), cos(𝜃)]T , 0 ≤ 𝜃 <

𝜋, 0 ≤ 𝜑 < 2𝜋 with the usual convention for spherical
coordinates, Pm

l are the associated Legendre polynomi-
als, and  is either the sine (m > 0), the cosine (m < 0),
or 2−1∕2 (m = 0).

2.2 The rejection method for sampling
arbitrary PDFs

Sampling of arbitrary EAPs reduces to the generation of
either 3-D (Cartesian) or 2-D (spherical) random sam-
ples from known PDFs. We will use the rejection method
described in,24 which is illustrated in Figure 1 for a 1-D
RV, X. The method involves the target PDF of X, fX, an

auxiliary PDF fU of a 1-D RV U that we know how to
sample and a constant c > 1 fulfilling fX(t) ≤ c ⋅ fU(t), ∀t,
see Figure 1A. For each instance u of U, the dimension-
ality of the problem is increased with an auxiliary RV
V which is uniformly distributed when conditioned to
U, i.e., fV|U(v|u) = (c ⋅ fU(u))−1, Figure 1B. The 2-D RV
{U,V} is uniform within Ω′ ≡ {∀u, v ∶ 0 ≤ v ≤ c ⋅ fU(u)},
since fU,V(u, v) = fV|U(v|u)fU(u) = (c ⋅ fU(u))−1fU(u) = c−1,
see Figure 1C. Note both U and V|U are trivially sampled
(the former by hypothesis, the latter because it is uniform).

The method then rejects all samples {u, v} that
lie outside Ω ≡ {∀x, y ∶ 0 ≤ y ≤ fX(x)}, while those
inside Ω are accepted as {x = u, y = v}, i.e.,: {X,Y} ≡
{U,V} | {U,V} ∈ Ω. As Figure 1D depicts, this results
in a 2-D RV {X,Y} that is uniformly distributed in the
new domain Ω, as long as Ω ⊂ Ω′ (which is guaranteed by
the condition on c). It remains to discard the additional
dimension Y to retrieve a 1-D variable X whose marginal
PDF is fX(x) = ∫ fX(x)

0 1 ⋅ dy, see Figure 1E.
This same idea can be extrapolated to any number of

RV, by adding 1 additional dimension, provided we can (i)
evaluate the N-D PDF (e.g., using eqs. (2) or (5)), (ii) find
a suitable N-D wrapper PDF that we know how to sample
(say, Equation 1), and (iii) find a constant c > 1 such that
the domain of the (N + 1)-D RV expanded from the latter
PDF embeds the (N + 1)-D domain of that expanded from
the former.

3 METHODS

3.1 Materials

For the creation of the phantom to simulate with, we had
access to an ex-vivo pig’s heart left ventricle which pre-
sented signs of ischemic cardiomyopathy scar. The acqui-
sitions included dMRI and T1/T2 relaxometry.

Diffusion images were obtained with a Stejskal-Tanner
Pulsed-Gradient SE (PGSE) sequence (Δ∕𝛿 = 55.7∕
16.6 ms), followed by an Echo Planar Imaging (EPI)
readout. Aside from a baseline acquisition, 192 DWIs
were distributed among 6 shells, namely: 300, 600, 900,
1200, 2000, and 3600 s∕mm2. FOV was set to 140 mm,
getting 126 lines through SENSE factor 2 resulting in
a voxel size of 1.09 × 1.09 × 1.1 mm3. Flip angle = 90o,
TE = 113.725 ms, and TR = 50, 033 ms. The raw images
underwent a standard preprocessing pipeline that con-
sisted on denoising and Gibbs ringing correction through
Marchenko-Pastur and PCA techniques,25–27 followed
by correction of eddy currents, motion, and B0/B1
inhomogeneities.28–30

T1-relaxometry consisted in a 3D Look-Locker
sequence with 39 different inversion times (TI), starting
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4 RODRÍGUEZ-GALVÁN et al.

(A)

(D) (E)

(B) (C)

F I G U R E 1 A 1-D sketch of the rejection method. (A) fX is the target PDF, fU is a PDF that can be easily sampled (e.g., the Gaussian in
the picture), and c > 1 is a constant that ensures c ⋅ fU(t) ≥ fX(t),∀t. (B) For any instance u generated according to fU, a uniformly distributed
sample v is generated within the range (0, c ⋅ fU(u)). (C) By systematically doing so, we get a uniform sampling of the (1+1)-D variable {U,V}
within the domain Ω′. (D) The method rejects all samples outside the domain Ω whose upper boundary is defined by fX, which yields a
(1+1)-D variable {X,Y} uniformly distributed in Ω itself. (E) Finally, the component Y is discarded, so that the marginal variable X is
distributed according to fX(x) as we pursued.

at 250 ms and separated each by 133 ms. Flip angle = 5o,
TE = 2.88 ms and TR = 6.043 ms. Voxel size was 0.972 ×
0.972 × 0.97 mm3. T2-relaxometry used a 3D GraSE acqui-
sition with 18 echoes split by 13 ms. TR = 1500 ms; Flip
angle = 90o; resolution: 0.97 × 0.97 × 0.97 mm3. T1 and T2
maps were obtained from the relaxometry sequences by
least-squares fitting using a custom script. Since a specific
PD acquisition did not take place, the spin density map, 𝜌,
was estimated as a function of the diffusion baseline, S, T1
and T2 assuming an ideal behavior:

S ∝ 𝜌
(
1 − e−TR∕T1

)
e−TE∕T2 ⇒ 𝜌 ∝ S(

1 − e−TR∕T1
)

e−TE∕T2
.

(6)
The protocols indicated above were applied to three

slices at different heights in the long axis direction.

3.2 Computation of EAP models

From the test data described in Section 3.1, we com-
pute per-voxel EAPs in both Cartesian and spherical
coordinates as described in Section 2.1. To compute
the coefficients an1,n2,n3 in Equation (2) we used the

Laplacian-Weighted MAP-MRI (MAPL,31), with Nmax = 6
as the maximum order for the series expansion, a penalty
term for the Laplacian computed via cross-validation,
and 631 positivity constraints defined over the nor-
malized domain of the EAP. Kernel parameters 𝜆||, 𝜆⊥
in Equation (4) were computed using the procedure
described in32 based on the spherical means calculated
over each shell. Afterward, the coefficients𝜙m

l up to degree
L = 6 in Equation (5) were obtained by SH-based spherical
deconvolution.22 In both cases, we used the open-source
Matlab© implementations provided in https://www.lpi.tel
.uva.es/dmrilab.

3.3 Simulation of spins movements

As in Figure 1A, we need a PDF fU that can wrap the target
PDF fX once multiplied by c. For fODF sampling, since the
target PDF is defined in the compact-supported manifold
 , we use a uniform PDF1 in or, equivalently, fU,V(𝜃, 𝜑) =
(sin(𝜃))−1. For MAP-MRI sampling, as Figure 2A shows,
the basic functions have an unbounded support at each
normalized coordinate, since they are calculated as the
product of a standard Gaussian PDF,  (0, 1), with a
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RODRÍGUEZ-GALVÁN et al. 5

F I G U R E 2 Illustrative examples of random sampling of synthetic PDFs mimicking realistic anatomical configurations ((A) through
(D) for MAP-MRI and (E) through (G) for SC): (A) shows some of the first (normalized) basis functions used to expand the EAP in
Equation (2), together with the auxiliary (Gaussian) wrapper function fU used by the rejection method at each normalized coordinate.
Histograms of the samples generated according to Equation (2) are compared to the target marginal PDFs in (B) and (C), respectively, for axes
‘x’ and ‘z’ axes, and 2-D marginalization on the ‘x-z’ plane in (D). Corresponding results for Equation (5) are the marginal PDFs of each
spherical coordinate in (E) and (F) and the joint target PDF in (G).

polynomial. Therefore, our wrapper function is designed
for each normalized coordinate as the product of the
 (0, 1) times an exponential exp(𝜅 ⋅ t2), 0 < 𝜅 < 1∕2; this
exponential grows faster than a polynomial of any degree,
hence the wrapper function decays to 0 more slowly than
the Hermite functions and it can upper-bound the target
PDF in its entire domain. The product of both exponentials
reads (except for constants): g(t; 𝜈) = exp

(
−t2∕2𝜈2), with

𝜈 = (1 − 2𝜅)−1∕2 > 1, so that the final wrapper function
reads g(x; 𝜈) ⋅ g(y; 𝜈) ⋅ g(z; 𝜈). In practice, we test discrete
values of 𝜈 from 1.1 to 1.5 and keep the one leading to the
smallest value of c.

Once the wrapper function is defined in each case, the
constant c is empirically calculated as the maximum of
fX∕fU within a fixed discrete grid ([−5, 5)3 for MAP-MRI,
as Figure 2A suggests, or [0, 𝜋) × [0, 2𝜋) for fODFs).

For MAP-MRI, once the random sample [x′, y′, z′]T is
generated, it is rotated back by inverting Equation (3):
R = U R′. For SC, from the random orientation [𝜃, 𝜑],
we build: u1 = [sin(𝜃) cos(𝜑), sin(𝜃) sin(𝜑), cos(𝜃)], u2 =
[− sin(𝜑), cos(𝜑), 0], u3 = u1 × u2. The DT is calculated
as D = UΛUT , for U = [u1,u2,u3], Λ = diag(𝜆||, 𝜆⊥, 𝜆⊥).
A 3-D Gaussian sample S with independent components
S{x,y,z} ∼  (0, 1) is created, and finally R = D1∕2S. We are

not enforcing strict non-negativity of the PDFs to sample:33

in case negative lobes appear due to numerical issues, the
rejection method will crop them by construction, since any
candidate value within [0, c ⋅ g(x)]will be positive. Figure 2
illustrates the consistency of the method to produce ran-
dom samples with both approaches.

3.4 Simulated diffusion sequence

KomaMRI11 requires both a phantom and a sequence.
The phantom consists of spins; for each we have to pro-
vide an initial position, a value of the tuple (T1,T2,PD)
and, if moving, a trajectory. In our case, the information
provided by the EAP is the displacement at the end of
the Δ-interval given by an instance of the variable R. All
the spins located at the same initial position have the same
EAP, although we draw one instance of R per spin. Then,
KomaMRI creates a Path2 which conveys the spatial posi-
tion of each spin for each time point needed in the simula-
tion; with the information provided, the Path is the linear
interpolation between the original and the final position
of the spin (i.e., the original position plus the displace-
ment). This is illustrated in Figure 3, lower-left corner. This
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6 RODRÍGUEZ-GALVÁN et al.

F I G U R E 3 Depiction of acquisition sequence’s design delivered by KomaMRI, Δ and TE indicators were included afterward. X-axis
represents time in milliseconds, Y-axis represents gradient strength in mT/m. RF pulses are represented in purple whilst gradient pulses are
represented in blue, red, and green, representing x, y, and z axis encoding, respectively. This particular case represents a PGSE encoded by a
gradient with direction [0.9962627247, 0.0780837655, −0.03692572235] at a b-value of 3600 s/mm2. Diffusion motion is set to occur in the
midst of both diffusion gradients, taken the effective diffusion time 𝜏 as the interval labeled as Δ. The representation in the lower-left corner
illustrates that the spin movement is interpolated between the original and the final position within the Δ interval. The units in both axes do
not apply for this representation.

procedure lets us depart from the random-walk model
which, due to the Central Limit Theorem, tends to create
Gaussian end-to-end displacements for a large number of
steps in the walk. Finally, as initial positions we used the
2D pixel grid of each slice. Each grid position within the
myocardium was populated with 2000 spins.

As for the sequence, we use PGSE with an EPI readout,
see Figure 3. As the current KomaMRI version has no mul-
ticoil support, SENSE was bypassed by interlacing two dif-
ferent acquisitions with a blip of difference. Non-selective

excitation is used since the phantom consists of a single
slice.

3.5 Numerical validation

A three-fold quality assessment procedure was followed:

1. To check that the simulation was recreating the same
orientations, a standard color-code representation was
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RODRÍGUEZ-GALVÁN et al. 7

computed. For that purpose, a DT model was calculated
over each model’s simulation.

2. To verify that the simulation was consistent with the
source data, pixelwise Pearson correlation maps were
computed. Specifically, for each shell, we define a vec-
tor per pixel consisting of the DWI values across the
gradients. For each correlation value, we carry out a
Fisher transformation and execute a unilateral test of
equality of correlation (i.e., the correlation is at least
as high as a tested value). Correlation maps were com-
puted between the simulation and the DWI synthesized
by each model, on the one hand, and between the
simulation and the acquired DWI, on the other.

3. We computed the normalized mean squared error:

NMSE(x, s) =

∑Ns
g

𝑗=1

(
SS(x, qs

𝑗
) − Sref(x, qs

𝑗
)
)2

∑Ns
g

𝑗=1Sref(x, qs
𝑗
)2

(7)

with x the pixel position, s the shell index, Ns
g the num-

ber of gradients in shell s, qs
𝑗

the 𝑗-th gradient in that
shell, SS(x, qs

𝑗
) the simulated DWI at pixel x for gradient

qs
𝑗

and EAP of the selected model, and Sref is the DWI
value of the reference (for the same pixel and gradient).
We used the same two references as for the correlation,
i.e., either the DWI synthesized by the selected model
or the acquired DWI.

To eliminate the influence of scale factors a normal-
ization of the simulated DWIs with respect to the original
acquisition was made beforehand.

4 RESULTS

Results are presented in Figures 4 and 5. The former
shows color-orientation maps following the standard RGB
code for DT —red for right-left, blue for inferior-superior
and green for anterior-posterior— in the two first rows
and color-correlation maps in the last two. As for the
orientation maps, the first row corresponds to b-value
600 and the second one to b-value 2000 s/mm2. Cor-
relation maps use a color temperature code, following
blue-green-yellow-red-purple for intervals [0.5,0.6) until
[0.9,1] with a step of 0.1 (see the color bars on the
right-hand side). Each pixel shows a color value that cor-
responds to the maximum correlation accepted by the
hypothesis test. Black pixels are those for which the corre-
lation is not at least 0.5. Each column depicts results for a
different diffusion model, as the legend shows.

Figure 5 depicts boxplots of both NMSE (left column)
and correlation (right column). In all the cases, the vari-
able in the horizontal axis is the b-value of each shell.

The first row shows boxplots between the simulated DWI
and the DWI generated by each diffusion model while the
second row compares simulation and actual DWI values.
The third row shows the NMSE and the correlation for
MAP-MRI with respect to the actual values parameterized
by the number of spins in the simulation.

5 DISCUSSION AND
CONCLUSIONS

The color-orientation maps from Figure 4 confirm the
coherence of the simulation for the three models (DTI,
MAP, and SC). The correlation maps with respect to the
DWIs synthesized from each model EAP (third row) show
that DTI and MAP-MRI simulations closely follow their
respective models while SC shows scattered areas with
lower correlation. Since models are estimated from noisy
data —which explains isolated model mismatches— these
results mean that the simulation, in essence, does as
expected. As for correlation with respect to the acquired
DWIs, values are lower although without obvious visual
differences between them.

The boxplots in Figure 5 show a similar pattern to
that shown in Figure 4. Taking as a reference the model
—subfigures (A) and (B)— the three diffusion schemes
show similar behaviours, although SC shows a worse fit.
In comparison with the original acquisition —subfigures
(C) and (D)— MAP-MRI is consistently better than DTI
and SC for both NMSE and correlation for all the shells.
Hence, MAP-MRI was selected for comparing perfor-
mance parameterized by the number of spins; the results
in subfigures (E) and (F) show that the improvement in
NMSE and correlation with the number of spins grows for
higher shells. In terms of NMSE, 2000 spins seem a sen-
sible trade-off between performance and computational
complexity. We have used this number in the experiments
referred to above.

In terms of computation time, EAP sampling and
acquisition simulation must be differentiated since they
are carried out in CPU and GPU, respectively. The number
of grid positions per slice is 1757, 1739, and 711, respec-
tively, for slices 1 through 3. The computation of 2000
samples per grid position took on the order of 7–8 ms in
both an AMD Epyc 7513 and an Apple M1-Pro proces-
sor. As for simulation, each grid position took 27 ms in
an NVIDIA RTX A5000. Overall, each DWI took roughly
1 min for slices 1 and 2.

Overall, we have chosen two non-Gaussian diffusion
models, which make use of both Cartesian and spherical
coordinates, and we have shown that both the EAP sam-
pling and the spin-oriented simulation with a PGSE-EPI
sequence provide acceptable simulation results for a wide
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8 RODRÍGUEZ-GALVÁN et al.

F I G U R E 4 Color orientation maps and color correlation maps. Beginning from the left, first column represents DTI model results,
second column MAP-MRI, and last SC for each row. First row represents color orientation maps for shell of b-value 600. Second row
represents color orientation maps for shell of b-value 2000. Each map is obtained by adjusting a DTI model to the simulated DWIs in the
indicated shell (using the EAP for the simulation corresponding to each model). The last two rows represent correlation maps against the
respective model and the original acquisition, respectively, for the 2000 s/mm2 shell. Color code follows color temperature, being blue a
correlation coefficient of at least 0.5, green 𝜌 of at least 0.6, yellow 𝜌 of at least 0.7, red 𝜌 of at least 0.8, and purple 𝜌 of at least 0.9.

range of b-values. Moreover, this methodology shows gen-
erality so it carries over to other diffusion models and
anatomical locations. As for the diffusion models them-
selves, MAP-MRI has shown better performance than

both DTI and SC. This leaves room for further research
on the suitability of higher order diffusion models in
the cardiac case. Accordingly, simulation would provide
means to anticipate the result in non-ideal hardware
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RODRÍGUEZ-GALVÁN et al. 9

(A) (B)

(C) (D)

(E) (F)

F I G U R E 5 Boxplots comparing point-to-point metrics aggregated across three slices. Left column, subfigures (A,C,E): NMSE. Right
column, subfigures (B,D,F): correlation. In all the figures, the horizontal axis represents the b-value. First row, subfigures (A,B) compare each
simulation result with its corresponding model. Second row, subfigures (C,D) compare simulation with the original acquisition. Bottom row,
subfigures (E,F) illustrate the metrics results for MAP-MRI and the original acquisition parameterized by the number of simulated spins
—from 100 to 10 000— per grid position.

conditions, presence of off-resonance effects, usage of dif-
ferent gradient waveforms or, generally speaking, of dif-
ferent sequences. The limitation is that the simulation

remains valid as long as the diffusion time coincides with
the one that gave rise to the EAP. This is the price to pay to
avoid microstructure in the simulation.
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ENDNOTES

1This is equivalent to uniformly choosing random 3-D orientations
r, which is trivially accomplished by generating 3-D Gaussian sam-
ples with independent components R ∼  (0, 1), then computing
r = R∕||R||.

2See https://juliahealth.org/KomaMRI.jl/stable/tutorial/06-Diffusion
Motion/.
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