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A B S T R A C T

Wildfires in Mediterranean countries are increasingly frequent, extensive, and ecologically damaging, impacting 
not only vegetation and soil but also the water cycle, specifically altering evapotranspiration (ET). Following a 
wildfire, ET values experience a sharp decline, which persists until vegetation returns to its pre-fire state. This 
study examines the factors influencing this reduction, focusing on fire severity, topography, ecosystem type 
(broadleaf, conifer, mixed forests, and shrublands), and pre-fire fuel conditions, including fractional vegetation 
cover (FCOVER) from PROSAIL-D RTM inversion of Landsat 8 OLI images and structural complexity from 
Sentinel-1 SAR, on ET 1-year after fire. Given the heterogeneous nature of Mediterranean landscapes, where 
vegetation and water availability vary widely, fine spatial resolution ET models are essential. This study utilized 
the Operational Simplified Surface Energy Balance (SSEBop) model to estimate ET from Landsat imagery, 
focusing on four major wildfires that occurred in Spain and Portugal in 2022. Random Forest regression iden
tified fire severity and pre-fire FCOVER as the most influential factors in ET reduction. Results showed that fire 
severity’s impact on ET reduction followed a consistent pattern across ecosystems, with the greatest relative 
reductions observed in shrublands, followed by conifer and broadleaf forests. The most pronounced reductions 
occurred in areas of higher fire severity. In conclusion, fire severity emerges as a key driver of short-term changes 
in ET in Mediterranean environments. This study underscores the value of Landsat-based ET models as reliable 
tools for assessing the ecological consequences of fire severity in these regions.

1. Introduction

As a recurring natural disturbance across the Mediterranean land
scape, wildfires are increasing both in frequency and extent (Jones and 
Tingley, 2022; Koutsias et al., 2022; Seidl et al., 2014).In the Mediter
ranean Basin, the combination of more frequent hot, dry summers, and 
fuel buildup over time and space has been shown to lead to longer, more 
severe fire seasons (Fernandes, 2013), which has wide-ranging envi
ronmental, economic and social impacts (Beltrán-Marcos et al., 2024; 
Turiel-Santos et al., 2024). Increasing fire incidence affects not only 
vegetation and soil, but also water balance cycle, including evapo
transpiration (ET) (Clark et al., 2012; Li et al., 2018). ET refers to the 

process through which water is conducted to the atmosphere from the 
earth’s surface by both evaporation from soil and other surfaces, and by 
transpiration from plants (Thornthwaite, 1948). It is a crucial compo
nent of the hydrological cycle, influencing water availability and 
modulating local and regional climate through its effects on surface 
energy balance, humidity, and atmospheric circulation (Allen et al., 
1998). Its decline after a wildfire because of a loss of LAI or transpira
tional surface area due to vegetation consumption during the fire event 
(Mankin and Patel, 2021) can alter local and regional weather patterns, 
soil moisture dynamics and vegetation recovery (Bond-Lamberty et al., 
2009; Ueyama et al., 2014). The ET rate depends on several factors, 
including solar radiation, wind speed, humidity, temperature, and the 
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type and density of vegetation (Yao et al., 2013). Soil moisture and land 
use (e.g., agricultural fields, forests) significantly impact ET rates; for
ests generally have higher ET due to their larger leaf area compared to 
other land types (Liang et al., 2024). Thus, ET demonstrates significant 
heterogeneity across the land surface, driven by intricate environmental 
controls and biophysical feedback mechanisms. (Yuan et al., 2010).

Following a wildfire, ET values decrease sharply because of reduced 
leaf area, disturbing the water balance of the affected area 
(Fernández-Manso et al., 2020; Mankin and Patel, 2021). This reduction 
in ET is not a short-term phenomenon, but can persists for several years 
to even decades until the vegetation fully recovers, depending on the 
characteristics of the ecosystem and fire severity (Ma et al., 2020; Collar 
et al., 2023; Ahmad et al., 2024; Norlen et al., 2024). Numerous previous 
studies investigating the connection between fire impacts and ET have 
utilized field-measured surface fluxes (Bond-Lamberty et al., 2009; 
Nolan et al., 2015; Dore et al., 2010; Clark et al., 2012; Ueyama et al., 
2014), due to the difficulties in accurately estimating ET at a suitable 
spatial resolution using satellite data (Van der Tol and Norberto-Parodi, 
2011; Yi et al., 2024). Fine spatial resolution satellite data that estimate 
ET accurately have become recently available (Bariş and Tombul, 2024), 
however these data products enhance our ability to assess long-term 
patterns and comparing data across various regions or wildfire events 
(Quintano et al., 2024). Most remote sensing-based ET models depend 
on either full or simplified versions of the energy balance equation (Bariş 
and Tombul, 2024; de la Fuente-Sáiz et al., 2017). This equation ac
counts for the energy used to convert liquid water in soil and plants into 
water vapor, which is then released into the atmosphere (Zhang et al., 
2016). Among the models based on the full version of the energy balance 
equation are: the Surface Energy Balance Algorithm for Land (geeSE
BAL) (Laipelt, et al., 2021), the Google Earth Engine (GEE) imple
mentations of Mapping Evapotranspiration at High Resolution with 
Internalized Calibration (eeMETRIC) (Allen et al., 2007, Allen et al., 
2018), and the Atmosphere–Land Exchange Inverse/Disaggregation of 
the Atmosphere–Land Exchange Inverse (ALEXI/DisALEXI) (Anderson 
et al., 2007, Anderson et al., 2018). Simplified methods that either omit 
certain parameters of the energy balance equation or use simplified 
assumptions include the Priestley–Taylor Jet Propulsion Laboratory 
(PT-JPL) (Fisher et al., 2008), and the Operational Simplified Surface 
Energy Balance (SSEBop) (Senay et al., 2013, 2022, 2023; Senay, 2018). 
Particularly, the United States Geological Service’s (USGS) 30-m oper
ational SSEBop product provides adequate accuracy, ease of down
loading, less complex implementation and lower associated costs than 
other ET models (Filippelli et al., 2022; Quintano et al., 2024; Zimba 
et al., 2024). However, to our knowledge, only Mankin and Patel (2021); 
(2023) and Quintano et al. (2024) have related the 30-m SSEBop ET 
Landsat-based product to fire related processes. The 70-m 
ECOSTRESS-based ET product, although slightly coarser in resolution 
than the 30-m Landsat-based SSEBop ET product, has also been suc
cessfully used in wildfire-related studies at local to regional scales (e.g., 
Poulos et al., 2021; Pascolini-Campbell et al., 2022; Wilder and 
Kinoshita, 2022; Joshi et al., 2024). In contrast, the 1-km MODIS-based 
ET product is typically applied in regional to global scale analyses 
(Shrestha et al., 2022; Nguyen et al., 2025).

Multiple elements influence the extent of post-fire reduction in ET. 
Fire severity, understood as the degree of vegetation mortality caused by 
the fire event (Keely, 2009), plays a crucial role (Mankin and Patel, 
2023; Han et al., 2024). More severe fires tend to destroy a larger 
portion of the plant biomass, significantly diminishing ecosystem 
evapotranspiration (Poulos et al., 2021). Fire severity is usually esti
mated by using remote sensing data and techniques, as the exclusive use 
of field measurements is costly in time and resources, especially in 
extensive burned areas (Key and Benson, 2006). Fire severity is typically 
assessed by observing post-fire vegetation changes in spectral indexes 
base on red, near-infrared (NIR), and/or short-wave infrared (SWIR) 
spectral bands of multispectral data (e.g. Quintano et al., 2018; Gar
cía-Llamas et al., 2019a; Fernández-Guisuraga et al., 2024a). In 

particular, the differenced Normalized Burn Ratio (dNBR, Key and 
Benson, 2006), calculated from NIR and SWIR bands, is a widely-used 
metric(e.g. Boucher et al., 2017; Fernández-Manso et al., 2019; Chen, 
et al., 2021; Fernández-Guisuraga et al., 2024b), made available through 
Monitoring Trends in Burn Severity (MTBS) in the United States 
(Eidenshink et al., 2007), and the European Forest Fire Information 
System (EFFIS) through its Rapid Damage Assessment module.

Topographic factors like altitude and terrain slope also influence 
post-fire reduction in evapotranspiration (ET) values. These variables 
can alter local microclimates, affecting factors such as wind patterns, 
soil moisture availability, and temperature (Ireland and Petropoulos, 
2015; Zahura et al., 2024). As a result, topographic factors can slow 
down or accelerate the recovery of vegetation (Lippok et al., 2013; 
Petropoulos et al., 2014), directly impacting ET rates. Elevation can also 
either positively or negatively affect vegetation recovery by influencing 
precipitation patterns and local temperature values (Meng et al., 2015; 
Viana-Soto et al., 2020); slope can also have an effect on the vegetation 
recovery by impacting soil erosion and water retention (Christopoulou 
et al., 2019; Evangelides and Nobajas, 2020), as can aspect by affecting 
insolation (Ireland and Petropoulos, 2015; Rengers et al., 2020). Besides 
fire severity and topographic factors, pre-fire vegetation conditions can 
offer valuable predictions about how a given area may respond to 
wildfires (Martinson and Omi, 2013; Fernández-Guisuraga and Calvo, 
2023) and how ET might be altered by fire (White et al., 2020; Collar 
et al., 2023). In general, vegetation types show different responses to fire 
and the consequent impacts on ET (Zhao et al., 2016; Zhu et al., 2024). 
Broadleaf forests, conifer forests, mixed forests, and shrublands show 
substantial differences in their ability to retain water (Stephenson, 2003; 
Mészároš and Miklánek, 2009) and recover after a fire (Roche et al., 
2020). Following a fire, conifer forests typically suffer greater reductions 
in ET due to the high flammability of their components, which is linked 
to their composition and structure. In contrast, shrublands, with their 
lower biomass and higher adaptability to frequent fires, tend to exhibit 
faster recovery (Roche et al., 2020), and higher post-fire ET (Poulos 
et al., 2021).

Understanding the drivers of ET reduction after wildfires is essential 
for establishing effective fire management policies and predicting the 
recovery trajectory of affected ecosystems (Ma et al., 2020). Previous 
studies have proven that ET is highly influenced by various environ
mental factors such as fire severity, vegetation cover, and topographic 
characteristics (Collar et al., 2023; Mankin and Patel, 2023; Zahura 
et al., 2024). However, the specific mechanisms through which these 
factors interact and contribute to the post-fire decline in ET remain 
poorly understood, particularly in Mediterranean landscapes where 
ecosystem heterogeneity is pronounced. In this study, we investigate the 
short-term effects of wildfires on ET in four large fire-affected areas in 
Spain and Portugal during 2022. Using high-resolution remote sensing 
data and the Operational Simplified Surface Energy Balance (SSEBop) 
model, we assess the role of fire severity, pre-fire vegetation and 
topography in determining ET reduction 1-year after the fire. The first 
year is particularly important, as it typically sets the foundational trends 
in post-fire water balance dynamics, though it represents a relatively 
short time frame for meaningful vegetation recovery. By integrating 
multiple data sources, including Landsat 8 OLI and Sentinel-1 SAR im
agery, we aim to provide a comprehensive analysis of the key drivers 
behind ET dynamics in Mediterranean wildfires. Thus, the main nov
elties of this study are related to the methodology, as it provides a 
different and simpler approach than full water balance models. First, the 
study is based on operational fine spatial resolution ET products. The use 
of fine spatial scale to understand water balance dynamics associated 
with fires let to link vegetation responses to environmental variation. 
The spatial resolution of this approach contrasts with previous studies 
using low spatial resolution − 1 km-, which is appropriate to regional but 
not wildfire-scale analysis (Collar et al., 2023). It also differs from earlier 
research that relied on empirical ET estimates, such as those derived 
from NDVI and flux towers (Ma et al., 2020). And second, the study 
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incorporates pre-fire FCOVER and SAR data (proxy for vegetation 
structural complexity) as biophysical drivers to predict fire-induced 
changes in ET behavior. By integrating this information, the analysis 
accounts for post-fire variations in canopy structure and vegetation 
density, which are critical for accurately modeling ET dynamics (Shaver, 
(2011)). Consequently, this research emphasizes the importance of 
fine-scale ET modeling for improving our understanding of ecosystem 
responses to fire, while also contributes to the literature on wildfire 
impacts in Mediterranean regions. In addition, the findings of this study 
will offer valuable insights for post-fire management and restoration 
strategies in the context of climate change, which is presumed to 

exacerbate wildfire intensity and frequency in the Mediterranean Basin 
(Aparício et al., 2022).

2. Material

2.1. Study sites

Four wildfires (Fig. 1) located in northwestern Spain were selected 
for analysis. The sites cover a broad spectrum of topographic conditions, 
with different elevation and slope ranges (Table 1), although none of the 
sites has a complex topography, which is significant for the accuracy of 

Fig. 1. Location of the Courel (A), Valdeorras (B), Figueruela (C) and Valdueza (D) wildfires in the northwestern Iberian Peninsula. The background image is a 
Landsat-8 false color composite (R = 0.85–0.88 μm -band 5-; G = 0.64–0.67 μm -band 4-; B = 0.53–0.59 μm -band 3-).
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the SSEBop ET product. The four study sites have a Csb -Temperate- 
Mediterranean climate (dry summer)- according to the Köppen-Geiger 
climate classification, characterized by cold winters and dry and warm 
summers (AEMET-IM, 2011). The mean annual precipitation and tem
perature values of each site are shown in Table 1.

This region is among the most wildfire-prone areas in Spain and faces 
a high risk of experiencing catastrophic events, similar to those that 
occurred in Portugal in 2017, where over 100 fatalities were reported 
(Chas-Amil et al., 2020). The selected wildfires occurred during extreme 
meteorological conditions in summer 2022, characterized by an un
precedented drought and heat waves (Serrano-Notivoli et al., 2023). 
High temperatures linked to climate change, combined with reduced soil 
water retention, largely due to cumulative organic carbon losses from 
recurrent fires (Lombao et al., 2020), have contributed to the emergence 
of fifth- and sixth-generation wildfires, extreme events that surpass 
conventional fire suppression capabilities (Regos and Díaz-Raviña, 
2023). For instance, the wildfire that occurred in ’O Courel’ (Fig. 1, 
Location A) was classified as a sixth-generation event and was also the 
largest wildfire ever recorded in the Autonomous Region of Galicia.

The study region has a long-standing history of wildfires (Regos and 
Díaz-Raviña, 2023), experiencing highly recurrent fire events with short 
fire-free intervals in some areas. Nearly all wildfires in this region are 
human-induced; around 82 % are deliberately ignited and classified as 
arson, while only about 5 % are attributed to accidents or negligence 
(Chas-Amil et al., 2010). The region is characterized by a mixed-severity 
wildfire regime. Some areas, such as native broadleaf forests, are typi
cally associated with low-severity fire regimes, whereas others, such as 
pine-dominated stands, are more frequently affected by high-severity 
fires.

Pma: Mean annual precipitation; Tma: Mean annual temperature.
The information on pre-fire vegetation types for each wildfire was 

extracted from the Spanish Forest Map at 1:25,000 scale (MITECO, 
2019, 2020, 2021). In the four wildfires analyzed (Courel, Valdeorras, 
Figueruela de Arriba, and Valdueza), the post-fire response of woody 
vegetation largely depends on the vegetation formation type (forest or 
shrubland) and the dominant adaptive strategy (resprouting or seeding 
regeneration) (Pausas and Keely, 2014). In native broadleaf forests, 
resprouting species capable of regenerating from stumps, rootstocks or 
epicormic buds dominate, conferring a competitive advantage over 
seeder species during the early recovery of canopy cover. In contrast, 
pine plantations mainly rely on seed-based regeneration. For instance, 
serotinous cones of Pinus pinaster open with heat, releasing seeds and 
promoting high recruitment in the early post-fire stage. Shrublands 
exhibit two contrasting strategies. Some formations regenerate primar
ily through persistent soil seed banks that germinate massively after fire. 
This rapid regeneration often results in communities with high domi
nance and structurally simple (Parra and Moreno, 2018). In contrast, 

other shrubland types are dominated by resprouting species, which also 
show rapid recovery dynamics (Taulavuori et al., 2013). All these 
vegetation types are represented across the study sites, enabling com
parisons of post-fire impacts on ET among broadleaf forests (Bf), conifer 
forests (Cf), mixed forests (Mf), and shrublands (S) (Alberdi et al., 2010).

2.2. Background of SSEBop ET model

The SSEBop model estimates ET from satellite imagery, based on a 
simplified version of the surface energy balance model (Eq. 1) (Senay 
et al., 2011): 

Rn = LE − H − G (1) 

where Rn is the net radiation (W/m2), LE is the latent heat flux (W/m2), 
G is the ground heat flux (W/m2), and H is the sensible heat flux (w/m2).

This model falls under the category of single-source energy balance 
models, which analyze vegetation and soil as a combined energy budget. 
These models are particularly convenient for estimating transpiration 
from vegetated surfaces (McShane et al., 2017). Single source energy 
balance models estimate sensible heat flux (H) by assuming that the 
variation in land surface temperature (LST) is linearly related to the 
temperature difference between the land surface and the air (Su, 2002). 
This relationship is described by selecting two reference pixels: a "hot 
pixel," representing bare, dry fields, and a "cold pixel," representing 
vegetated, wet fields. These two pixels establish a temperature gradient, 
which is used in an equation to estimate H. These models assumes that 
the heat flux varies linearly between these two reference points, 
providing an approximation of surface heat exchange dynamics in the 
landscape (Senay et al., 2011).

The SSEBop model, unlike other single source energy balance 
models, does not require the user to select the hot and cold reference 
pixels for a study area. The SSEBop model uses thermal satellite imagery 
to estimate land surface temperature (LST, Senay and Kagone, 2019; 
Hiestand et al., 2024) and calculates de difference between LST and air 
temperature (Ta) to handle both elevation and latitude effect on surface 
temperature. This temperature difference is the main driver of the 
simplified ET calculation as the key assumption in SSEBop is that surface 
temperature can be used to infer differences in ET between wet (cold) 
and dry (hot) surfaces. This is possible because the hot and cold refer
ence conditions are predefined for each location and time period 
through a simplified climatological energy balance approach (Senay 
et al., 2013). In addition, SSEBop streamlines this process using stan
dardized parameters, making it suitable for large-scale operational use 
(Singh and Senay, 2016). Detailed information about the SSEBop model 
can be found in Savoca et al. (2013); Singh et al. (2014); Senay et al. 
(2022); and FAO, (2023)).

The SSEBop model is a simplified but effective tool for estimating ET. 

Table 1 
Environmental characteristics of the four wildfires considered in this study. We incude the number of fire severity reference plots established within each ecosystem 
type and the image dates of SPOT6/7 post-fire scenes used to estimate fire severity through visual inspection.

Environmental characteristics

Study site Wildfire Topography Climate

Size (km2) Alarm date Elevation (m) Slope (%) Pma (mm) Tma (ºC)

Courel 136.12 07/14/2022 500–1350 20–150 1697 10.1
Valdeorras 127.35 07/15/2022 508–1525 10–130 998 8.8
Figueruela 11.86 07/15/2022 700–930 0–151 807 11.2
Valdueza 15.00 07/17/2022 950–1600 0–152 821 10.2
Fire severity reference plots
Study site # Fire severity reference plots Post-fire SPOT6/7 image date

Broadleaf forest Conifer forest Mixed forest Shrubland Total
Courel 18 52 12 19 101 07/21/2022 and 07/24/2022
Valdeorras 10 4 7 26 47 07/21/2022 and 07/28/2022
Figueruela 9 16 - 17 42 07/27/2022
Valdueza 8 16 7 19 50 07/23/2022
Total 45 88 26 81 ​ ​
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The model is simpler and more computationally efficient than full en
ergy balance models, making it suitable for real-time applications 
(McShane et al., 2017). It is scalable; the SSEBop model can be applied at 
local to global scales using satellite platforms like MODIS, or Landsat, 
providing ET estimates over large areas (Senay and Kagone, 2019; 
Hiestand et al., 2024). In summary, it is widely used in water resource 
management, drought assessment and agricultural monitoring due to its 
scalability and operational simplicity (e,g. Genanu et al., 2016; Dias 
Lopes et al., 2019).

2.3. Datasets

The four wildfires occurred in close proximity and almost simulta
neously during the summer of 2022 in northwestern Spain. As a result, a 
single ET scene was sufficient to analyze the four study sites for each 
selected date. This approach streamlined the analysis and ensured 
consistent temporal and spatial assessment of ET across the affected 
areas. We downloaded cloud-free daily ET data with a spatial resolution 
of 30 m using the SSEBop product (Senay and Kagone, 2019). The 
selected dates included pre-fire (ETpre), immediately post-fire (ET0-y), 
and multiple dates over the first post-fire year, including 1-year post-fire 
(ET1-y) (Table 2). These datasets provide a comprehensive temporal 
sequence to evaluate changes in ET values before and after the wildfires, 
helping to assess the short-term impacts of fire on the affected ecosys
tems. This approach ensures high-resolution spatial analysis that aligns 
with the fine-scale heterogeneity of the Mediterranean landscape.

The official wildfire perimeters were sourced from the Copernicus 
Emergency Management Service (EMS), and validated by the Spanish 
regional governments, specifically the Junta de Castilla y León and the 
Xunta de Galicia. Additionally, SPOT 6 and 7 satellite images, also 
provided by Copernicus-EMS, were used to gather ground-reference fire 
severity data at a spatial resolution of 1.5 m (see Table 1).

Additionally, a 25 cm digital elevation model (DEM) from aerial 
orthophotographs of the Spanish National Orthophoto Program (PNOA) 
served as the basis for deriving all topographic predictor variables. We 
used data from the Fourth Spanish National Forest Inventory (SNFI4) 
and the Spanish Forest Map at a 1:25,000 scale (SFM25) to characterize 
the ecosystem type; LANDSAT 8 imagery, acquired on the same date as 
the ETpre, to retrieve FCOVER; and Sentinel-1 data (July 12th, 2022) to 
obtain the predictors related to pre-fire vegetation structural 
complexity.

3. Methods

The response of ET to wildfires has been studied from two perspec
tives: 1) Influence of ecosystem type on the short-term evolution of post- 
fire ET values; and 2) Impact of environmental factors, such as pre-fire 
vegetation biophysical conditions and topography, on the reduction of 
ET 1-year after the fire.

3.1. ET evolution in the short-term after fire

A regular grid of points with 100-m spacing was used to systemati
cally sample ecosystem type from the Spanish Forest Map at 1:25000 
(SFM25) derived from the fourth Spanish NFI (SNFI4) 
(Álvarez-González et al., 2014), and SSEBop ET data over the pre- and 
post-fire short-term time series within each wildfire. We inspected 
visually the grid to remove sample points with missing data and clearly 
anomalous ET values resulting from potential cloud-masking algorithm 
errors (Senay et al., 2020, 2022; Yin et al., 2020). The final dataset 
consisted of 4658 sampling points. We ruled out the presence of spatial 
autocorrelation patterns in the ET data base on a Moran’s I value equal 
to 0.031, well-below the Moran’s I < 0.1 threshold indicated by 
Diniz-Filho et al. (2012). We implemented a two-way repeated measures 
ANOVA (2w-rmANOVA) to assess the influence of ecosystem type on the 
ET behavior over the time series. The significant interaction between 
ecosystem type and time, if present, was decomposed using a one-way 
repeated measures ANOVA (1w-rmANOVA) within each ecosystem 
type level (broadleaf, conifer and mixed forests, and shrublands). A 
subsequent Tukey’s HSD test was implemented to evaluate whether 
there were significant differences in ET between the pre-fire scenario 
(ETpre), immediate post-fire situation (ET0-y), and 1-year after fire 
(ET1-y). The same procedure (1w-rmANOVA and Tukey’s HSD test) was 
used to assess differences in ETpre, ET0-y and ET1-y among ecosystem 
types. We tested compliance with repeated measures ANOVA assump
tions using diagnostic plots. Statistical significance was determined at 
the 0.05 level.

3.2. Drivers of post-fire ET reduction

Absolute (aET1-y) and relative (rET1-y) reduction in ET 1-year after 
fire was calculated following Eq. 1 and Eq. 2: 

aET1− y =
(
ETpre − ET1− y

)
−
(

ETc
pre − ETc

1− y

)
(2) 

rET1− y =
(
aET1− y

/
ETpre

)
× 100 (3) 

where ETpre and ET1-y correspond to the ET for burned areas in the pre- 
fire situation and 1-year after fire, respectively. ETc

pre and ETc
1-y denote 

ET in unburned control areas for the same time periods. Following Ma 
et al. (2020), we used unburned control areas to isolate fire-induced 
changes, similar to the widely-used offset term in the dNBR index 
(Parks et al., 2014). For each fire severity reference plot and ecosystem 
type (see Section 3.2.1), mean ETc

pre and ETc
1-y were extracted in ho

mogeneous areas outside the fire scar and selected based on three 
criteria: 1) they were located within the same watershed; 2) they were 
dominated by the same ecosystem type; and 3) they fell within the same 
100-m elevation bin.

Based on previous studies (e.g. Boisramé et al. 2019; Quintano et al., 
2020), we used Random Forest (RF) regression (Breiman, 2001) to 
highlight how the rET1-y is shaped by fire severity, pre-fire ecosystem 
conditions, and topographic and climatic factors.

3.2.1. Environmental predictors
We disentangled the behavior of fire-induced rET1-y in response to 

the variability of fire severity along with ten biophysical attributes 
related to the pre-fire vegetation type/structure and topographical 
context (Table 3). We adopted a stratified random experimental design 
(Congalton and Green, 2009) to establish 240 30 m × 30 m plots within 
the four wildfires to use as fire severity reference data, i.e. ground 
reference (71 low fire severity plots, 89 moderate fire severity plots, and 
80 high fire severity plots), using the ecosystem type as strata. The 
SFM25 was used to identify the area occupied by each ecosystem type 
within the wildfires, and to extract the ecosystem type for each reference 
plot. We leveraged the SSEBop ET grid to establish the plots and SPOT 6 
and 7 images provided by the Copernicus-Emergency Management 

Table 2 
Acquisition dates of the SSEBop evapotranspiration (ET) product. We also 
indicate the ET scenario in the pre- and post-fire time series and the Landsat 
sensor from which the ET estimates have been derived.

SSEBop evapotranspiration (ET) product

Year Date Julian day ET scenario Sensor

2022 July 8th 189 ETpre Landsat− 8 OLI
August 9th 221 ET0-y Landsat− 8 OLI
September 18th 252 - Landsat− 9 OLI2
October 4th 277 - Landsat− 9 OLI2
November 5th 309 - Landsat− 9 OLI2

2023 March 21st 80 - Landsat− 8 OLI
April 6th 96 - Landsat− 8 OLI
May 8th 128 - Landsat− 8 OLI
June 25th 176 - Landsat− 8 OLI
July 19th 200 ET1-y Landsat− 9 OLI2
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Service (EMS) at a spatial resolution of 1.5 m to obtain ground-reference 
categorized fire severity data through expert visual inspection. The la
beling of each reference plot (Table 1) was carried out by the predom
inant fire severity level observed within the plot. Following Quintano 
et al. (2013), we assigned a reference plot as having burned at low fire 
severity if it had a dead tree proportion lower than 50 %, at moderate 
fire severity if the proportion ranged between 50 % and 90 %, and at 
high fire severity if the proportion was higher than 90 %.

We inverted the PROSAIL-D RTM (Jacquemoud et al., 2009), which 
couples the PROSPECT-D leaf hemispherical transmittance and reflec
tance model (Féret et al., 2017) and the 4SAIL canopy reflectance model 
(Verhoef et al., 2007), to retrieve pre-fire fractional vegetation cover 
(FCOVER) at a spatial resolution of 30 m in Google Earth Engine 
(Gorelick et al., 2017) from a Landsat-8 Operational Land Imager (OLI) 
Level 2, Collection 2, Tier 1 atmospherically corrected scene. We 
selected the same scene date (July 8th, 2022) as the SSEBop ETpre 
product. The PROSAIL-D RTM was used to simulate top-of-canopy 
spectral reflectance and the corresponding FCOVER considering prior 
knowledge on the physicochemical plant traits of the species assemblage 
in the study sites to parametrize the PROSPECT-D and 4SAIL models (see 
Fernández-Guisuraga et al., 2021a, 2021b, 2023a for more details). We 
addressed the effect of mixed spectral signals at subpixel level by 
applying a linear spectral mixing model, which takes into account 
vegetation and soil endmember fractions (Fernández-Guisuraga et al., 
2021a). A Latin hypercube sampling design was used to select a total of 
10,000 combinations of the variable space as defined by the ranges of 
PROSAIL-D RTM input parameters. Then, we ran PROSAIL-D RTM in 
forward mode to generate a FCOVER and reflectance simulation dataset 
in the optical domain (400–2500 nm by 1 nm), which was resampled to 
the Landsat-8 OLI band configuration using the sensor spectral response 
function and band width. The simulation dataset was uploaded to GEE 
for conducting the PROSAIL-D RTM inversion. The RF regression 
ensemble learning algorithm was used to construct the relationships 

between the FCOVER and the corresponding reflectance in the Landsat-8 
OLI band configuration. The default hyperparameter values for the RF 
implementation in GEE were preserved, except for the number of trees, 
which was set to 500 to improve retrieval efficiency. The trained RF 
model was then applied to the observed Landsat-8 OLI reflectance in the 
pre-fire scene to retrieve pixel-based FCOVER.

In this study, we leveraged the sensitivity of synthetic aperture radar 
(SAR) backscatter to the density and size distributions of stems, 
branches, and foliage throughout the canopy vertical profile (Bergen 
et al., 2009), particularly under the typical canopy architecture and 
closure of Mediterranean forest and shrubland ecosystems 
(Belenguer-Plomer et al., 2019). Therefore, we acquired a Sentinel-1 
C-band SAR scene (July 12th, 2022) in GEE as a proxy for pre-fire 
vegetation structural complexity (Fernández-Guisuraga et al., 2023b; 
Jimeno-Llorente et al., 2023). The Sentinel-1 scene corresponded to a 
Level-1 Ground Range Detected (GRD) product acquired at dual polar
ization (transmitter-receiver VV + VH) in interferometric wide swath 
mode. Level-1 GRD products in GEE are already processed to gamma 
naught (γ0) backscatter coefficients in dB units at a spatial resolution of 
10 m from the following steps: (i) removal of invalid data and low in
tensity noise on Sentinel-1 scene borders, (ii) thermal noise removal, 
(iii) radiometric calibration to compute radar brightness from sensor 
calibration parameters, and (iv) terrain correction (i.e. orthor
ectification) using 30-m Shuttle Radar Topography Mission (SRTM30) 
elevation data (GEE, 2023).

Although not validated with field data, the pre-fire FCOVER is an 
intrinsic vegetation biophysical property featuring a direct and mecha
nistic link with field-based descriptors of fire behavior and post-fire 
ecosystem functioning (De Santis and Chuvieco, 2009; Peters et al., 
2021; Fernández-Guisuraga et al., 2023a, 2023c), which has been 
applied in many previous applied remote sensing and fire ecology-based 
studies (e.g. Fernández-García et al., 2022; Beltrán-Marcos et al., 2023). 
In this context, FCOVER retrievals through the PROSAIL-D RTM have 
been extensively validated in many burned and non-burned Mediterra
nean ecosystems (e.g. Fernández-Guisuraga et al., 2021a, 2021b, 2023a, 
2023c), showing a high overall fit (R2 = 0.84–0.96), and, thus, we can 
expect here a similar FCOVER retrieval performance for this study (De 
Santis and Chuvieco, 2007). The same rationale can be extended to the 
use of Sentinel-1 VV and VH backscatter as a proxy for pre-fire vegeta
tion structural complexity (VH would give be related to volumetric 
scattering while VV would be more sensitive to surface scattering). 
These two variables may characterize the variability in the crown, 
volumetric and dihedral scattering in forest and shrubland ecosystems 
(e.g. Kalogirou et al., 2014; Jimeno-Llorente et al., 2023).

To evaluate topographic effects, the following variables were 
included in the study (Table 3): altitude and terrain roughness; the latter 
is often used as a proxy for topographic complexity based on the vari
ability in surface height within a landscape (Riley et al., 1999). 
Roughness variables included the topographic position index (TPI); the 
compound topographic index (CTI); heat load index (HLI); aridity index 
(AI); and the site exposure index (SEI). The TPI calculates the relative 
elevation of a target pixel compared to its surrounding pixels (Guisan 
et al., 1999). Positive TPI values suggest that the pixel is positioned 
higher than its neighbors, typically evidencing ridge tops or elevated 
areas. In wildfire scenarios, this elevation difference can contribute to 
fuel pre-heating through convection, as the elevated terrain may facili
tate heat rising from the fire, potentially drying and pre-heating vege
tation ahead of the fire front, increasing its intensity and spread. The CTI 
is closely related to the potential for water retention or drainage within a 
landscape. Areas with high CTI tend to retain water, due to the shape of 
the land (valleys and depressions), while low CTI areas, such as ridges or 
slopes, allow water to evacuate quickly. This concept is crucial in fire 
models, as it helps predict moisture availability, which influences fire 
behavior and recovery processes after wildfires (Gessler et al., 1995). 
The HLI was employed as a surrogate for evapotranspiration and soil 
temperature in this study. It was calculated using the method outlined 

Table 3 
Putative environmental predictors of the relative reduction in evapotranspira
tion 1-year after fire (rET1-y) considered in the Random Forest (RF) regression 
algorithm.

GROUP SOURCE VARIABLE ABBREVIATION UNIT

Fire ecological 
impact

Copernicus 
EMS maps

Categorized 
fire severity

- -

Pre-fire fuel 
variables

SNFI4/ 
SFM25

Ecosystem type - -

Landsat− 8 pre-fire 
fractional 
vegetation 
cover

FCOVER -

Sentinel− 1 pre-fire VH 
backscatter 
(structural 
complexity)

VH dB

​ pre-fire VV 
backscatter 
(structural 
complexity)

VV dB

Topographical 
context

PNOA DTM Altitude - m
​ Terrain 

roughness
- -

​ Topographic 
Position Index

TPI -

​ Compound 
Topographic 
Index

CTI -

​ Heat Load 
Index

HLI MJ 
cm− 2 

year− 1

​ Site Exposure 
Index

SEI -

Copernicus EMS: Copernicus Emergency Management Services; PNOA DTM: 
Digital Terrain Model of the Spanish National Aerial Orthophotography Plan
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by McCune and Keon (2002), which is designed to estimate heat load on 
a given site by considering factors such as slope, aspect, and latitude. 
This index helps to predict the amount of solar radiation received by the 
surface, influencing both evapotranspiration rates and soil temperature, 
which are crucial for understanding post-fire recovery dynamics in 
ecosystems. Finally, the SEI estimates relative solar exposure by 
adjusting the aspect of a terrain to a north-south axis and accounting for 
the steepness of the slope. This method allows for the quantification of 
how terrain features affect solar radiation exposure, which can influence 
processes such as plant growth and fire behavior. The method was 
described by Balice et al. (2000), where the relative solar exposure is 
used to understand environmental conditions affecting vegetation and 
ecosystem processes.

3.2.2. ET reduction analysis
The relative reduction in ET 1-year after fire (rET1-y) and their 

environmental variables related to the wildfire ecological impact, pre- 
fire vegetation type/structure and topographical context were extrac
ted for each fire severity reference plot following the approach of Picotte 
and Robertson (2011). For this purpose, we sampled within each plot a 
systematic grid of 20 points with 5-m spacing to (i) minimize the 
possible mismatch between the plot edges and the grid size of several 
environmental variables in data extraction, and (ii) circumvent the use 
of data resampling techniques. We fitted a two-way ANOVA 
(2w-ANOVA) and subsequent Tukey’s HSD test to investigate the effects 
of fire severity and ecosystem type, as well as their interaction, on the 
relative reduction in evapotranspiration 1-year after fire (rET1-y). We 
tested compliance with ANOVA assumptions using diagnostic plots. 
Statistical significance was determined at the 0.05 level.

The RF regression was used to disentangle the relative contribution 
of fire severity, pre-fire vegetation type/structure and topographical 
variables (predictors; Table 3) on the rET1-y outcome (dependent vari
able). We chose the RF algorithm because it can detect both complex 
non-linear responses and interactions among the predictors, minimizes 
overfitted issues and is not very sensitive to multicollinearity (Breiman, 
2001; Cutler et al., 2007; Belgiu and Drăguţ, 2016; Gigović et al., 2019; 
Quintano et al., 2023). The Boruta feature selection technique (Kursa 
and Rudnicki, 2010), designed as a RF wrapper algorithm based on 
permutation tests for computing variable importance measures using a 
holdout approach (Hornero et al., 2021), was used to select 
non-redundant features within the environmental predictors’ dataset 
and thus improve RF model interpretability and predictive performance 
(Speiser et al., 2019). In the Boruta algorithm, variable importance 
measures (Z-scores) against shadow variables are calculated to label 
predictors as unimportant, tentative and important (Kursa and Rudnicki, 
2010). We retained in the RF regression algorithm predictors labeled as 
important by the Boruta algorithm. The optimum RF mtry hyper
parameter value was determined through 10-fold cross-validation tun
ing, while we set the value of the ntree hyperparameter at 2000 to secure 
stable predictions (Probst and Boulesteix, 2018). The rET1-y variance 
explained by the RF model (pseudo-R2) was assessed through the internal 
out-of-bag error rate, and predictive performance through the mean 
absolute error (MAE), the root mean squared error (RMSE), and the 
mean bias error (MBE). The relationship between rET1-y and each 
continuous predictor included in the RF model was screened by using 
partial dependence plots. The H-statistic (Friedman and Bogdan, 2008) 
was used to examine the overall interaction strength per environmental 
predictor (Hj) and pairwise interactions (Hj,k) as a proxy for the RF 
explained variability by predictor interactions rather than by their main 
effects. The strongest pairwise interactions were screened by using 
three-dimensional partial dependence plots.

All analyses were implemented in R (R Core Team, 2021) using the 
rstatix (Kassambara, 2022), Boruta (Kursa and Rudnicki, 2010), Ran
domForest (Liaw and Wiener, 2002), caret (Kuhn, 2020), pdp (Greenwell, 
2017), iml (Molnar et al., 2018) and plotmo (Milborrow, 2022) packages.

4. Results

4.1. ET evolution in the short-term after fire

All ecosystem types systematically sampled within each wildfire 
showed a sharp and consistent pattern of ET reduction as estimated by 
the SSEBop product during the first months after fire, followed by a 
gradual recovery throughout the following year (Fig. 2). Reduction of ET 
in the immediate post-fire scenario (ET0-y) relative to the pre-fire ET 
values (ETpre) averaged 2.09 mm in broadleaf forests, 2.15 mm in 
conifer forests, 2.03 mm in mixed forests, and 2.61 mm in shrublands 
(Fig. 2). Although the ET had not recovered in the short-term after fire in 
each ecosystem (Table 4), the extent of ET recovery throughout the time 
series was dependent on ecosystem type, as shown by the significant 
interaction between ecosystem type and time (p-value < 0.001) in the 
2w-rmANOVA. Importantly, broadleaf forests showed higher ET 1-year 
after fire (ET1-y) than the other forest and shrubland ecosystems. There 
were no differences in ETpre and ET0-y between broadleaf and conifer 
forests (Fig. 2 and Table 4).

4.2. Drivers of post-fire ET reduction

In the fire severity reference plots, the highest relative reduction in 
evapotranspiration 1-year after fire (rET1-y) was found in conifer forests, 
followed by shrublands and broadleaf forests. In mixed forests, the rET1- 

y did not differ from that in broadleaf forests and shrublands (Fig. 3). The 
interaction between fire severity and ecosystem type was not significant 
(Table 5). Indeed, the effect of fire severity on the rET1-y followed the 
same behavior within each ecosystem (Fig. 3). The rET1-y was more 
pronounced for areas that burned at high fire severity than at low to 
moderate severity. No significant differences in rET1-y were found be
tween the latter two fire severity scenarios (Fig. 3).

Seven out of eleven environmental variables related to the wildfire 
ecological impact, pre-fire fuel, and topography included in Table 3
were non-redundant and deemed as important rET1-y predictors by the 
Boruta algorithm in the reference plots (Fig. 4). Fire severity and pre-fire 
FCOVER were the most important variables, with a mean Z-score higher 
than 20. The remaining variables with a higher importance than the 
Boruta shadowMax internal variable were the ecosystem type, pre-fire 
Sentinel-1 VH and VV backscatter as a proxy for vegetation structural 
complexity, SEI, TPI and roughness. Their contribution ranged from a Z- 
score of 7.2–13.5. The retrieval of rET1-y in the reference plots from the 

Fig. 2. Mean and standard deviation of the evapotranspiration (ET) as esti
mated by the SSEBop product systematically sampled within each wildfire in 
the pre-fire scenario (ETpre), immediately post-fire (ET0-y), and throughout the 
short-term post-fire time series up to 1-year after fire (ET1-y) for broadleaf, 
conifer and mixed forests, and shrublands.
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Boruta-selected environmental predictors using RF regression (Fig. 5) 
featured high overall fit (pseudo-R2 = 0.722) and relatively low pre
dictive error (RMSE = 16.906 %). The rET1-y retrievals were slightly 
underestimated (MBE = − 3.516 %).

The rET1-y decreased markedly in areas with high pre-fire vegetation 
cover and structural complexity as determined by the FCOVER and 
Sentinel-1 backscatter (VH and VV) behavior, respectively (Fig. 6). It 

Table 4 
Effect of ecosystem type on the evapotranspiration (ET) during the first year 
post-fire as estimated by the SSEBop product systematically sampled within each 
wildfire.

2w-rmANOVA Predictor F-value p-value

​ Ecosystem type 22.16 < 0.001
​ Time (ETpre,ET0- 

y,ET1-y)
3933.17 < 0.001

​ Ecosystem type: 
Time

133.91 < 0.001

1w-rmANOVA (predictor: time) Ecosystem type F-value p-value
​ Broadleaf forest 2446.63 < 0.001
​ Conifer forest 2775.12 < 0.001
​ Mixed forest 724.48 < 0.001
​ Shrubland 4393.10 < 0.001
Tukey’s HSD ​ ET0-y ET1-y ​
Broadleaf forest ETpre < 0.001 < 0.001 ​
Conifer forest ETpre < 0.001 < 0.001 ​
Mixed forest ETpre < 0.001 < 0.001 ​
Shrubland ETpre < 0.001 < 0.001 ​
1w-rmANOVA (predictor: 

ecosystem type)
Time F-value p-value

​ ETpre 25.83 < 0.001
​ ET0-y 81.80 < 0.001
​ ET1-y 44.67 < 0.001
Tukey’s HSD (ETpre) Conifer forest Mixed 

forest
Shrubland

Broadleaf forest 0.875 < 0.001 0.001
Conifer forest ​ < 0.001 0.001
Mixed forest ​ ​ < 0.001
Tukey’s HSD (ET0-y) Conifer forest Mixed 

forest
Shrubland

Broadleaf forest 0.135 < 0.001 < 0.001
Conifer forest ​ < 0.001 < 0.001
Mixed forest ​ ​ < 0.001
Tukey’s HSD (ET1-y) Conifer forest Mixed 

forest
Shrubland

Broadleaf forest < 0.001 < 0.001 < 0.001
Conifer forest ​ < 0.001 < 0.001
Mixed forest ​ ​ 0.138

ETpre: pre-fire scenario; ET0-y: immediately post-fire scenario ET1-y: 1-year after 
fire

Fig. 3. Boxplot depicting the relationship between fire severity and the relative 
reduction in evapotranspiration 1-year after fire (rET1-y) by ecosystem type in 
the fire severity reference plots. Uppercase letters denote significant differences 
in the mean rET1-y (in parentheses) between ecosystem types. Lowercase letters 
denote significant differences in the mean rET between fire severity categories 
within each ecosystem type. Statistical significance was determined at the 
0.05 level.

Table 5 
Effect of fire severity and ecosystem type on the relative reduction in evapo
transpiration 1-year after fire (rET1-y) in the fire severity reference plots.

Predictor Degrees of 
freedom

Sum of 
squares

F- 
value

p-value

Fire severity (S) 2 68,558 63.159 < 0.001
Ecosystem type 

(E)
3 38,684 23.762 < 0.001

S × E 5 4215 1.553 0.174

Fig. 4. Ranking of variable importance for predicting the relative reduction in 
evapotranspiration 1-year after fire (rET1-y) as determined by the Z-score in the 
Boruta algorithm in the fire severity reference plots. Variables with a Z-score 
exceeding that of the shadowMax internal variable were deemed important 
(right side of the red dashed line).

Fig. 5. Relationship between observed and predicted relative reduction in 
evapotranspiration 1-year after fire (rET1-y) in the reference plots using random 
forest (RF) regression.
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showed a negative relationship with FCOVER up to 0.7, while it was 
insensitive to increases in FCOVER above that value. Low terrain 
roughness and high SEI values, together with positive TPI values, were 
associated with higher rET1-y (Fig. 6). See Fig. 3 for the effect of fire 
severity and ecosystem type on rET1-y.

The rET1-y behavior varied markedly in response to the interaction 
between the environmental predictors in the RF model (Table 6). About 
40 % of rET1-y prediction variability is not explained by the sum of all 
predictor main effects but by their interactions (H = 0.397). The pre-fire 
FCOVER was the predictor most heavily involved in interactions with 
other variables (Hj = 0.201), i.e. the FCOVER interactions with other 
predictors are responsible for about 20 % of the rET1-y variability 
(Table 6). The Hj value for the next four predictors with the highest 
interaction strength (fire severity, VV backscatter, terrain roughness and 
SEI) ranged from 0.147 to 0.171 (Table 6). The strongest pairwise in
teractions (Hj,k) involving these five variables (Table 6) are described 
through three-dimensional partial dependence plots in Fig. 7. High 
terrain roughness and pre-fire vegetation structural complexity as 
measured by VV backscatter constrained rET1-y, but this effect was more 
apparent in broadleaf and mixed forests than in conifer forests and 

shrublands. The rET1-y was somewhat insensitive to terrain roughness in 
areas burned with high fire severity. Minor rET1-y were predicted in 
areas where high pre-fire FCOVER coincided with high VV backscatter 
and low SEI.

5. Discussion

Regarding the influence of ecosystem type on the short-term evolu
tion of post-fire ET values, ET values immediately following fire showed 
varying degrees of decline across ecosystem types, primarily due to 
differences in the physiological traits, water use strategies of the 
dominant vegetation species, and regrowth of fire-adapted vegetation 
(Poulos et al., 2021; Ma et al., 2020). Our study supports prior findings 
that wildfires lead to a decrease in ET (Li and Lawrence, 2017; Roche 
et al., 2020; Collar et al., 2023; Meili et al., 2023), including Mediter
ranean ecosystems (Sánchez et al., 2015; Häusler et al., 2018; Fernán
dez-Manso et al., 2020; Quintano et al., 2024). Decrease in ET following 
a wildfire is largely driven by a reduction in leaf cover (Seidl et al., 2014; 
Liu et al., 2019), and to a lesser degree by the post-fire vegetation type 
(Li and Lawrence, 2017; Niemeyer et al., 2020). Fire-induced alterations 

Fig. 6. Partial dependence plots for the continuous predictors of the relative reduction in evapotranspiration 1-year after fire (rET1-y) in the reference plots using 
random forest (RF) regression, with LOESS smooth curves fitted (red lines).

Table 6 
Interaction strength as measured by the H-statistic for the environmental predictors of evapotranspiration 1-year after fire (rET1-y) in the random forest (RF) model. 
The five strongest overall interactions per feature (Hj) and pairwise interactions (Hj,k) are highlighted in bold.

Hj Ecosystem severity FCOVER VH VV roughness TPI SEI

​ 0.101 0.167 0.201 0.127 0.147 0.154 0.132 0.171
Hj,k Ecosystem severity FCOVER VH VV roughness TPI SEI
Ecosystem ​ 0.094 0.073 0.111 0.164 0.226 0.070 0.087
severity ​ ​ 0.055 0.031 0.070 0.158 0.107 0.129
FCOVER ​ ​ ​ 0.078 0.160 0.107 0.057 0.140
VH ​ ​ ​ ​ 0.039 0.127 0.106 0.076
VV ​ ​ ​ ​ ​ 0.093 0.103 0.119
roughness ​ ​ ​ ​ ​ ​ 0.069 0.069
TPI ​ ​ ​ ​ ​ ​ ​ 0.097
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in vegetation structure and composition can significantly influence 
post-fire water dynamics (Bond-Lamberty et al., 2009), affecting how 
ecosystems regulate ET and recover after fire (Blount et al., 2020, Ma 
et al., 2020).

Our results revealed that conifer forests exhibited the greatest rela
tive reduction in ET 1-year after fire (rET₁-y), followed by shrublands. 
This pattern contrasts in part with previous studies (e.g., Poulos et al., 
2021), which reported comparatively smaller post-fire ET declines in 
shrublands, typically attributed to their rapid resprouting capacity. 
However, in our study area, shrubland communities are composed of 
both resprouting and obligate seeder species. These functional groups 
rely on distinct post-fire survival strategies, whose success is strongly 
influenced by the characteristics of the local fire regime (Paula and 
Pausas, 2006; Fernández-García et al., 2020). By the contrary, broadleaf 
forests of our study areas are mainly resprouters what might explain the 
higher ET 1-year after fire. Our study also showed that the reduction in 
ET 1-year after fire (rET1-y) was strongly influenced by fire severity. The 
decrease was significantly greater in high-severity areas compared to 
low-to-moderate severity areas, which is consistent with previous 
studies (Nolan et al., 2015; Häusler et al., 2018; Mankin and Patel, 2023; 
Quintano et al., 2024). This pattern reinforces the idea that the extent of 
damage to vegetationhas a lasting impact on the recovery of transpira
tion and overall water balance (Wine and Cadol, 2016). High-severity 
fires can cause long-lasting reductions in ET, sometimes for years or 
even decades, as ecosystems recover from fire damage (Dore et al., 2010; 
Poulos et al., 2021; Mankin and Patel, 2023). In high-severity areas, fires 
kill most aboveground vegetation, which leads to decreased leaf surface 
area for transpiration, increased soil evaporation, and higher surface 
runoff, particularly in the short-term after the fire (Poon and Kinoshita, 
2018). Fire severity also changes local environmental conditions, such 
as increasing solar radiation and vapor pressure deficits, which directly 
influence soil evaporation (Aguilar et al., 2010). As a result, ecosystems 
recovering from high-severity fires often experience reduced transpira
tion (T), increased evaporation (E), and shifts in the water and carbon 

balance, with heightened runoff and stream flow (Wine and Cadol, 
2016).

Following fire severity, pre-fire FCOVER emerged as the second most 
important variable in predicting post-fire ET dynamics (rET1-y). Incorporating 
pre-fire FCOVER as a biophysical driver for modeling fire-induced 
changes in ET is a novel approach. Although previous studies identi
fied tree canopy cover as a driver of post-fire ET (e.g. Poulos et al., 2021) 
they rely on empirical methods (e.g. spectral indices or machine 
learning algorithms calibrated with field data) that may have trans
ferability issues and low performance in heterogeneous vegetation as
semblages and with high bare soil cover (Rigge et al., 2020; 
Fernández-Guisuraga et al., 2021a). Conversely, FCOVER retrieved from 
optical imagery by the inversion of RTMs is a physically and ecologically 
meaningful variable with proven effectiveness and high transferability 
when monitoring heterogeneous vegetation assemblages across distinct 
environmental contexts (e.g. Campos-Taberner et al., 2016; Fernán
dez-Guisuraga et al., 2021a). FCOVER has also been used in the fire 
ecology literature to predict the likelihood of extreme fire behavior and 
high fire severity (Fernández-García et al., 2022; Beltrán-Marcos et al., 
2024), to evaluate vegetation responses to prescribed burns aimed at 
reducing fire severity (Fernández-Guisuraga and Fernandes, 2024), and 
to assess post-fire vegetation recovery (Lazzeri et al., 2021). Fernán
dez-Guisuraga et al. (2023c) used the FCOVER recovery as a resilience 
indicator of vegetation, when studying geophysical drivers of post-fire 
vegetation recovery. Lastly, FCOVER has also been used as a biophysi
cal indicator of fire severity, yielding promising results 
(Fernández-Guisuraga et al., 2023a). In that study, the FCOVER metric 
(ratio of post-fire to pre-fire FCOVER) provided more accurate CBI es
timations (R2 = 0.87 ± 0.04) than conventional spectral indices (as 
dNBR and relativized versions) and a better transferability performance 
(nRMSE = 14.27 % ± 3.75 %) than that of the spectral indices (nRMSE 
= 21.97 % ± 8.09 %). These applications highlight the FCOVER rele
vance in understanding the long-term impacts of fire on ecosystems and 
water balance.

Fig. 7. Three-dimensional partial dependence plots depicting the five strongest pairwise interactions between environmental predictors of evapotranspiration 1-year 
after fire (rET1-y) in the random forest (RF) model. Table 6 displays the size of interactions.

J.M. Fernández-Guisuraga et al.                                                                                                                                                                                                             Forest Ecology and Management 594 (2025) 122945 

10 



Among other important variables for predicting rET1-y were 
ecosystem type and pre-fire vegetation structural complexity (repre
sented by SAR VV and SAR VH). The rET1-y closely related to the ET 
recovery rate was different in each ecosystem (specially, in low and 
moderate fire severity areas), which is in accordance with previous 
research findings (e.g. Yuan et al., 2010; Poulos et al., 2021; Collar et al., 
2023). No previous studies have directly linked pre-fire vegetation 
structural complexity with changes in ET post-fire. However, there is a 
recognized and significant, complex relationship between pre-fire 
vegetation structure and post-fire ET. The structural complexity of 
vegetation prior to a fire, which includes factors like density and canopy 
height, is known to significantly influence fire severity (García-Llamas 
et al., 2019b). Denser, taller canopies often create specific microcli
mates, influencing humidity, temperature, and light availability (Jucker 
et al., 2018; Davis et al., 2018), all of which affect ET processes. Denser, 
taller canopies can reduce soil evaporation by shading the ground, in
crease transpiration by providing more leaf area for water loss, and 
reduce wind speed and increase humidity within the canopy, which can 
either enhance or reduce ET depending on other conditions (Xu et al., 
2024). In summary, the complexity and characteristics of vegetation 
structure play a crucial role in determining the rates and patterns of 
evapotranspiration in an ecosystem (Poca et al., 2018). This trend be
comes even more pronounced when considering the strong interactions 
between vegetation structural complexity, FCOVER and ecosystem type 
in this study. Post-fire ET was significantly related to plant species 
composition. Each ecosystem has unique characteristics that influence 
how quickly ET rates can return to pre-fire levels (Mankin and Patel, 
2023). In our fire severity reference plots, we observed that the largest 
immediate post-fire reduction in evapotranspiration (rET0-y) occurred in 
plots located in shrublands. However, beginning in the following spring, 
the faster regeneration of shrublands and broadleaf forests compared to 
conifer forests resulted in a greater rET1-y in the plots located in conifer 
forest. In forested areas, high-severity fires can lead to a significant 
reduction in ET due to the extensive loss of tree canopy and understory 
vegetation. Recovery in these ecosystems can take many years, 
depending on the species and environmental conditions (Zalman et al., 
2023). In shrub-dominated ecosystems, the response to fire severity can 
vary widely. Low-severity fires may have minimal impact on ET, while 
high-severity fires can significantly reduce ET by destroying above
ground biomass. The recovery of ET in these areas depends on the 
resilience and regrowth rate of shrub species (Wasserman and Mueller, 
2013). In our study, both shrublands and broadleaf forests are domi
nated by resprouting species, which likely facilitated their rapid recov
ery, in contrast to conifer forests, composed of obligate seeders that 
regenerate more slowly. Moreover, the fact that the highest rET₁-y was 
observed in conifer forests is consistent with the finding that rET₁-y 
showed the greatest decrease in areas with high pre-fire vegetation 
cover and structural complexity, as indicated by FCOVER and Sentinel-1 
backscatter (VH and VV) predictors.

Three topographical variables emerged as key predictors of rET1-y, 
highlighting the significant role of terrain in influencing ET recovery 
after a wildfire, as previous studies have shown (Ebel, 2013, Nolan et al., 
2015; Goeking and Tarboton, 2020; Zhang and Liu, 2022). SEI, which 
accounts for both slope and solar radiation exposure, ranked as the third 
most important variable from the total model set. It may reflect how 
solar radiation impacts plant growth, influences post-fire vegetation 
recovery and, consequently, ET (Aguilar et al., 2010; Kinoshita and 
Hogue, 2011; Ebel, 2013). TPI, which is indicative of relative elevation 
with respect to the surroundings, can determine local conditions like 
temperature, wind exposure, humidity and soil moisture availability, all 
of which affect post-fire ET and plant physiological responses (Nolan 
et al., 2015; Bart et al., 2016). Lastly, terrain roughness showed 
important interactions with ecosystem type and fire severity, which 
were the most influential variables for predicting rET1-y. Terrain 
roughness may influence post-fire ET through its direct control on fire 
behavior and severity (Fernandes et al., 2016), and by shaping wind 

patterns, microclimate, soil moisture distribution and vegetation struc
ture, ultimately controlling water transfer from the land surface and 
vegetation to the atmosphere (Nolan et al., 2015; Bart et al., 2016).

The availability of high-resolution ET products is enabling studies at 
local and regional scales with significantly improved accuracy (Sánchez 
et al., 2015; Ma et al., 2020; Mankin and Patel, 2023; Quintano et al., 
2020; Fernández-Manso et al., 2020; Hausler et al., 2018; Collar et al., 
2023; Wilder and Kinoshita, 2022), which were previously restricted to 
empirical ET estimates derived from flux measurements at highly 
localized field sites (Nolan et al., 2015; Rocha and Shaver , 2011; Clark 
et al., 2012; Roche et al., 2020). In this regard, our study has demon
strated the suitability of the SSEBop Landsat-based ET product for 
assessing the short-term impacts of wildfires on ET within Mediterra
nean Basin ecosystems (Quintano et al., 2024). Our findings indicate 
that ET products with high temporal and spatial resolution could play a 
crucial role in advancing our understanding of these effects, especially in 
the context of increasingly extreme wildfire events (Quintano et al., 
2024). However, our research only analyzed the reduction in ET 1-year 
after the wildfire event. Tracking vegetation recovery over time would 
be highly beneficial, enabling the analysis of regeneration patterns and 
evapotranspiration (ET) recovery drivers across the various ecosystems 
studied. This represents a key area for future research. Additionally, 
future research could expand beyond Mediterranean ecosystems to test 
whether our results are applicable to wildfires in other biomes and 
ecosystems, as the fundamental processes linking ET with post-fire 
landscape recovery,such as changes in canopy cover, soil exposure, 
and microclimatic conditions, apply across diverse vegetation and 
topo-climatic conditions. Similarly, a potential future line of research 
would involve comparing the results obtained in this study (based on the 
fine-resolution SSEBop model) with those derived from 
coarser-resolution ET models such as those based on MODIS or ECO
STRESS data. A previous study (see Quintano et al., 2024) found that the 
simplified SSEBop model produced results comparable to those of the 
more complex eeMETRIC model. Finally, our findings could benefit from 
upcoming satellite missions that will provide high-resolution ET imag
ery on a global scale, and/or will offer opportunities to capture radar 
and lidar data, such as the NASA-ISRO Synthetic Aperture Radar 
(NISAR) mission and the BIOMASS series satellites, which can provide 
detailed information on the biomass and three-dimensional structure of 
affected ecosystems. Integrating these datasets could enhance the ac
curacy and applicability of ET monitoring across diverse regions and 
conditions, allowing for a more detailed understanding of fire impacts 
on water cycles in various ecosystems. Furthermore, the ability to 
combine these observations with advanced machine learning models 
could facilitate the detection of complex recovery patterns in different 
ecosystem types and under different fire severity conditions, optimizing 
post-fire management and ecosystem restoration.

The application of the results obtained on the reduction of post-fire 
ET and the biological and physical factors that influence its recovery 
may have significant implications for the formulation of ecosystem 
management and restoration policies in non-Mediterranean biomes. For 
example, in forests where fires are natural and recurrent events, un
derstanding the relationship between fire severity, pre-fire FCOVER and 
topography could help design restoration strategies that prioritize the 
conservation of species with high water retention capacity and fire 
resistance (Bond-Lamberty et al., 2009). Similarly, where vegetation 
recovery is rapid, but fires can have severe impacts on biodiversity and 
water cycles, the use of remotely sensed ET models could facilitate the 
assessment of areas requiring more intensive restoration interventions. 
In addition, the implementation of policies using ET and FCOVER 
assessment could help prioritize resources in wildfire management in 
areas with high topographic variability, such as mountain ecosystems, 
where the interaction between topography and fire severity can influ
ence vegetation regeneration and ecosystem service recovery (Nolan 
et al., 2015). These strategies may include reforestation with native 
species that provide an optimal balance between ET recovery and fire 
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resistance, as well as management of water catchment areas to mitigate 
erosion and maximize infiltration (Ebel, 2013). This study, by identi
fying fire severity and pre-fire FCOVER as key factors affecting post-fire 
ET recovery, provides a basis for understanding how these elements 
could influence ecosystem resilience in a future marked by more 
extreme and prolonged fires. The role of ET as an indicator of ecosystem 
health and water availability becomes even more relevant in the context 
of climate change, where post-fire recovery may be slower and condi
tions for new fires may emerge more rapidly (Nolan et al., 2015). Pro
longed reduction of ET in areas affected by high severity fires can alter 
the regional water balance, affecting not only ecological processes, but 
also the human communities that depend on these ecosystems (Wine 
and Cadol, 2016).

6. Conclusions

By using the SSEBop Landsat-based model, we were able to capture 
the spatiotemporal dynamics of evapotranspiration (ET) across fire- 
affected areas during the first post-fire year. Our results provide clear 
evidence that higher fire severity leads to significant reductions in ET, 
primarily due to canopy loss and associated changes in microclimatic 
conditions. Among the ecosystems studied, the smallest ET reductions 
were observed in broadleaf forests, followed by shrublands, likely 
reflecting their relatively rapid resprouting capacity one year after fire.

While our findings are consistent with previous studies reporting 
post-fire ET declines across various ecosystem types, the approach 
adopted in this study is novel in three key aspects: (1) the incorporation 
of FCOVER as a biophysical driver, (2) the use of SAR data to charac
terize pre-fire vegetation structure and complexity, and (3) the appli
cation of a simplified, Landsat-based ET model. These findings have 
important implications for understanding ecosystem recovery and 
resilience in the face of climate change and increasingly frequent 
extreme wildfire events. By emphasizing the strong link between pre-fire 
ecosystem type, vegetation structure, and post-fire ET changes, our 
study contributes valuable insights for informing post-fire management 
strategies. In particular, our results support the development of in
terventions aimed at restoring hydrological balance, safeguarding 
ecosystem services, and minimizing the risk of erosion and further land 
degradation.

Future research should focus on long-term vegetation succession and 
the role of different vegetation types in driving ET recovery. Compara
tive evaluations of ET models with varying levels of complexity and 
spatial resolution (such as SSEBop, ECOSTRESS-based, and MODIS- 
based products) would be particularly valuable. Integrating high- 
resolution remote sensing data with field-based hydrological measure
ments could improve predictive accuracy and support adaptive man
agement strategies tailored to the ecological and climatic characteristics 
of Mediterranean landscapes.
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2022. Unravelling the effect of climate change on fire danger and fire behaviour in 
the transboundary biosphere reserve of Meseta Ibérica (Portugal-Spain). Clim. 
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Bariş, M., Tombul, M., 2024. A review on models, products and techniques for 
evapotranspiration measurement, estimation, and validation. Environ. Qual. Manag. 
34 (1), e22250. DOI: 10.1002/tqem.22250. 

Bart, R.R., Tague, C.L., Moritz, M.A., 2016. Effect of tree-to-shrub type conversion in 
lower montane forests of the Sierra Nevada (USA) on Streamflow. PLoS One 11, 
e0161805. https://doi.org/10.1371/journal.pone.0161805.

Belenguer-Plomer, M.A., Tanase, M.A., Fernandez-Carrillo, A., Chuvieco, E., 2019. 
Burned area detection and mapping using Sentinel-1 backscatter coefficient and 
thermal anomalies. Remote Sens. Environ. 233, 111345.
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Fernández-Guisuraga, J.M., Suárez-Seoane, S., Calvo, L., 2023b. Radar and multispectral 
remote sensing data accurately estimate vegetation vertical structure diversity as a 
fire resilience indicator. Remote Sens. Ecol. Conserv. 9, 117–132.

Fernández-Guisuraga, J.M., Verrelst, J., Calvo, L., Suárez-Seoane, S., 2021a. Hybrid 
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