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ARTICLE INFO ABSTRACT

Keywords: Wildfires in Mediterranean countries are increasingly frequent, extensive, and ecologically damaging, impacting
Fire severity not only vegetation and soil but also the water cycle, specifically altering evapotranspiration (ET). Following a
Evapotranspiration wildfire, ET values experience a sharp decline, which persists until vegetation returns to its pre-fire state. This
Mediterranean countries : . . . . . . .

FCOVER study examines the factors influencing this reduction, focusing on fire severity, topography, ecosystem type

(broadleaf, conifer, mixed forests, and shrublands), and pre-fire fuel conditions, including fractional vegetation
cover (FCOVER) from PROSAIL-D RTM inversion of Landsat 8 OLI images and structural complexity from
Sentinel-1 SAR, on ET 1-year after fire. Given the heterogeneous nature of Mediterranean landscapes, where
vegetation and water availability vary widely, fine spatial resolution ET models are essential. This study utilized
the Operational Simplified Surface Energy Balance (SSEBop) model to estimate ET from Landsat imagery,
focusing on four major wildfires that occurred in Spain and Portugal in 2022. Random Forest regression iden-
tified fire severity and pre-fire FCOVER as the most influential factors in ET reduction. Results showed that fire
severity’s impact on ET reduction followed a consistent pattern across ecosystems, with the greatest relative
reductions observed in shrublands, followed by conifer and broadleaf forests. The most pronounced reductions
occurred in areas of higher fire severity. In conclusion, fire severity emerges as a key driver of short-term changes
in ET in Mediterranean environments. This study underscores the value of Landsat-based ET models as reliable
tools for assessing the ecological consequences of fire severity in these regions.

process through which water is conducted to the atmosphere from the
earth’s surface by both evaporation from soil and other surfaces, and by

1. Introduction

As a recurring natural disturbance across the Mediterranean land-
scape, wildfires are increasing both in frequency and extent (Jones and
Tingley, 2022; Koutsias et al., 2022; Seidl et al., 2014).In the Mediter-
ranean Basin, the combination of more frequent hot, dry summers, and
fuel buildup over time and space has been shown to lead to longer, more
severe fire seasons (Fernandes, 2013), which has wide-ranging envi-
ronmental, economic and social impacts (Beltran-Marcos et al., 2024;
Turiel-Santos et al., 2024). Increasing fire incidence affects not only
vegetation and soil, but also water balance cycle, including evapo-
transpiration (ET) (Clark et al., 2012; Li et al., 2018). ET refers to the

transpiration from plants (Thornthwaite, 1948). It is a crucial compo-
nent of the hydrological cycle, influencing water availability and
modulating local and regional climate through its effects on surface
energy balance, humidity, and atmospheric circulation (Allen et al.,
1998). Its decline after a wildfire because of a loss of LAI or transpira-
tional surface area due to vegetation consumption during the fire event
(Mankin and Patel, 2021) can alter local and regional weather patterns,
soil moisture dynamics and vegetation recovery (Bond-Lamberty et al.,
2009; Ueyama et al., 2014). The ET rate depends on several factors,
including solar radiation, wind speed, humidity, temperature, and the
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type and density of vegetation (Yao et al., 2013). Soil moisture and land
use (e.g., agricultural fields, forests) significantly impact ET rates; for-
ests generally have higher ET due to their larger leaf area compared to
other land types (Liang et al., 2024). Thus, ET demonstrates significant
heterogeneity across the land surface, driven by intricate environmental
controls and biophysical feedback mechanisms. (Yuan et al., 2010).

Following a wildfire, ET values decrease sharply because of reduced
leaf area, disturbing the water balance of the affected area
(Fernandez-Manso et al., 2020; Mankin and Patel, 2021). This reduction
in ET is not a short-term phenomenon, but can persists for several years
to even decades until the vegetation fully recovers, depending on the
characteristics of the ecosystem and fire severity (Ma et al., 2020; Collar
etal., 2023; Ahmad et al., 2024; Norlen et al., 2024). Numerous previous
studies investigating the connection between fire impacts and ET have
utilized field-measured surface fluxes (Bond-Lamberty et al., 2009;
Nolan et al., 2015; Dore et al., 2010; Clark et al., 2012; Ueyama et al.,
2014), due to the difficulties in accurately estimating ET at a suitable
spatial resolution using satellite data (Van der Tol and Norberto-Parodi,
2011; Yi et al., 2024). Fine spatial resolution satellite data that estimate
ET accurately have become recently available (Baris and Tombul, 2024),
however these data products enhance our ability to assess long-term
patterns and comparing data across various regions or wildfire events
(Quintano et al., 2024). Most remote sensing-based ET models depend
on either full or simplified versions of the energy balance equation (Baris
and Tombul, 2024; de la Fuente-Saiz et al., 2017). This equation ac-
counts for the energy used to convert liquid water in soil and plants into
water vapor, which is then released into the atmosphere (Zhang et al.,
2016). Among the models based on the full version of the energy balance
equation are: the Surface Energy Balance Algorithm for Land (geeSE-
BAL) (Laipelt, et al., 2021), the Google Earth Engine (GEE) imple-
mentations of Mapping Evapotranspiration at High Resolution with
Internalized Calibration (eeMETRIC) (Allen et al., 2007, Allen et al.,
2018), and the Atmosphere-Land Exchange Inverse/Disaggregation of
the Atmosphere-Land Exchange Inverse (ALEXI/DisALEXI) (Anderson
et al., 2007, Anderson et al., 2018). Simplified methods that either omit
certain parameters of the energy balance equation or use simplified
assumptions include the Priestley-Taylor Jet Propulsion Laboratory
(PT-JPL) (Fisher et al., 2008), and the Operational Simplified Surface
Energy Balance (SSEBop) (Senay et al., 2013, 2022, 2023; Senay, 2018).
Particularly, the United States Geological Service’s (USGS) 30-m oper-
ational SSEBop product provides adequate accuracy, ease of down-
loading, less complex implementation and lower associated costs than
other ET models (Filippelli et al., 2022; Quintano et al., 2024; Zimba
et al., 2024). However, to our knowledge, only Mankin and Patel (2021);
(2023) and Quintano et al. (2024) have related the 30-m SSEBop ET
Landsat-based product to fire related processes. The 70-m
ECOSTRESS-based ET product, although slightly coarser in resolution
than the 30-m Landsat-based SSEBop ET product, has also been suc-
cessfully used in wildfire-related studies at local to regional scales (e.g.,
Poulos et al., 2021; Pascolini-Campbell et al., 2022; Wilder and
Kinoshita, 2022; Joshi et al., 2024). In contrast, the 1-km MODIS-based
ET product is typically applied in regional to global scale analyses
(Shrestha et al., 2022; Nguyen et al., 2025).

Multiple elements influence the extent of post-fire reduction in ET.
Fire severity, understood as the degree of vegetation mortality caused by
the fire event (Keely, 2009), plays a crucial role (Mankin and Patel,
2023; Han et al., 2024). More severe fires tend to destroy a larger
portion of the plant biomass, significantly diminishing ecosystem
evapotranspiration (Poulos et al., 2021). Fire severity is usually esti-
mated by using remote sensing data and techniques, as the exclusive use
of field measurements is costly in time and resources, especially in
extensive burned areas (Key and Benson, 2006). Fire severity is typically
assessed by observing post-fire vegetation changes in spectral indexes
base on red, near-infrared (NIR), and/or short-wave infrared (SWIR)
spectral bands of multispectral data (e.g. Quintano et al., 2018; Gar-
cia-Llamas et al., 2019a; Fernandez-Guisuraga et al., 2024a). In
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particular, the differenced Normalized Burn Ratio (dNBR, Key and
Benson, 2006), calculated from NIR and SWIR bands, is a widely-used
metric(e.g. Boucher et al., 2017; Fernandez-Manso et al., 2019; Chen,
etal., 2021; Fernandez-Guisuraga et al., 2024b), made available through
Monitoring Trends in Burn Severity (MTBS) in the United States
(Eidenshink et al., 2007), and the European Forest Fire Information
System (EFFIS) through its Rapid Damage Assessment module.

Topographic factors like altitude and terrain slope also influence
post-fire reduction in evapotranspiration (ET) values. These variables
can alter local microclimates, affecting factors such as wind patterns,
soil moisture availability, and temperature (Ireland and Petropoulos,
2015; Zahura et al., 2024). As a result, topographic factors can slow
down or accelerate the recovery of vegetation (Lippok et al., 2013;
Petropoulos et al., 2014), directly impacting ET rates. Elevation can also
either positively or negatively affect vegetation recovery by influencing
precipitation patterns and local temperature values (Meng et al., 2015;
Viana-Soto et al., 2020); slope can also have an effect on the vegetation
recovery by impacting soil erosion and water retention (Christopoulou
et al., 2019; Evangelides and Nobajas, 2020), as can aspect by affecting
insolation (Ireland and Petropoulos, 2015; Rengers et al., 2020). Besides
fire severity and topographic factors, pre-fire vegetation conditions can
offer valuable predictions about how a given area may respond to
wildfires (Martinson and Omi, 2013; Fernandez-Guisuraga and Calvo,
2023) and how ET might be altered by fire (White et al., 2020; Collar
etal., 2023). In general, vegetation types show different responses to fire
and the consequent impacts on ET (Zhao et al., 2016; Zhu et al., 2024).
Broadleaf forests, conifer forests, mixed forests, and shrublands show
substantial differences in their ability to retain water (Stephenson, 2003;
Meészaros and Miklanek, 2009) and recover after a fire (Roche et al.,
2020). Following a fire, conifer forests typically suffer greater reductions
in ET due to the high flammability of their components, which is linked
to their composition and structure. In contrast, shrublands, with their
lower biomass and higher adaptability to frequent fires, tend to exhibit
faster recovery (Roche et al., 2020), and higher post-fire ET (Poulos
et al., 2021).

Understanding the drivers of ET reduction after wildfires is essential
for establishing effective fire management policies and predicting the
recovery trajectory of affected ecosystems (Ma et al., 2020). Previous
studies have proven that ET is highly influenced by various environ-
mental factors such as fire severity, vegetation cover, and topographic
characteristics (Collar et al., 2023; Mankin and Patel, 2023; Zahura
et al., 2024). However, the specific mechanisms through which these
factors interact and contribute to the post-fire decline in ET remain
poorly understood, particularly in Mediterranean landscapes where
ecosystem heterogeneity is pronounced. In this study, we investigate the
short-term effects of wildfires on ET in four large fire-affected areas in
Spain and Portugal during 2022. Using high-resolution remote sensing
data and the Operational Simplified Surface Energy Balance (SSEBop)
model, we assess the role of fire severity, pre-fire vegetation and
topography in determining ET reduction 1-year after the fire. The first
year is particularly important, as it typically sets the foundational trends
in post-fire water balance dynamics, though it represents a relatively
short time frame for meaningful vegetation recovery. By integrating
multiple data sources, including Landsat 8 OLI and Sentinel-1 SAR im-
agery, we aim to provide a comprehensive analysis of the key drivers
behind ET dynamics in Mediterranean wildfires. Thus, the main nov-
elties of this study are related to the methodology, as it provides a
different and simpler approach than full water balance models. First, the
study is based on operational fine spatial resolution ET products. The use
of fine spatial scale to understand water balance dynamics associated
with fires let to link vegetation responses to environmental variation.
The spatial resolution of this approach contrasts with previous studies
using low spatial resolution —1 km-, which is appropriate to regional but
not wildfire-scale analysis (Collar et al., 2023). It also differs from earlier
research that relied on empirical ET estimates, such as those derived
from NDVI and flux towers (Ma et al., 2020). And second, the study
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incorporates pre-fire FCOVER and SAR data (proxy for vegetation
structural complexity) as biophysical drivers to predict fire-induced
changes in ET behavior. By integrating this information, the analysis
accounts for post-fire variations in canopy structure and vegetation
density, which are critical for accurately modeling ET dynamics (Shaver,
(2011)). Consequently, this research emphasizes the importance of
fine-scale ET modeling for improving our understanding of ecosystem
responses to fire, while also contributes to the literature on wildfire
impacts in Mediterranean regions. In addition, the findings of this study
will offer valuable insights for post-fire management and restoration
strategies in the context of climate change, which is presumed to
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exacerbate wildfire intensity and frequency in the Mediterranean Basin
(Aparicio et al., 2022).

2. Material
2.1. Study sites

Four wildfires (Fig. 1) located in northwestern Spain were selected
for analysis. The sites cover a broad spectrum of topographic conditions,

with different elevation and slope ranges (Table 1), although none of the
sites has a complex topography, which is significant for the accuracy of
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Fig. 1. Location of the Courel (A), Valdeorras (B), Figueruela (C) and Valdueza (D) wildfires in the northwestern Iberian Peninsula. The background image is a
Landsat-8 false color composite (R = 0.85-0.88 pm -band 5-; G = 0.64-0.67 pm -band 4-; B = 0.53-0.59 pm -band 3-).
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Table 1
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Environmental characteristics of the four wildfires considered in this study. We incude the number of fire severity reference plots established within each ecosystem
type and the image dates of SPOT6/7 post-fire scenes used to estimate fire severity through visual inspection.

Environmental characteristics

Study site Wildfire Topography Climate
Size (km?) Alarm date Elevation (m) Slope (%) P (mm) Tma (°C)

Courel 136.12 07/14/2022 500-1350 20-150 1697 10.1

Valdeorras 127.35 07/15/2022 508-1525 10-130 998 8.8

Figueruela 11.86 07/15/2022 700-930 0-151 807 11.2

Valdueza 15.00 07/17/2022 950-1600 0-152 821 10.2

Fire severity reference plots

Study site # Fire severity reference plots Post-fire SPOT6/7 image date
Broadleaf forest Conifer forest Mixed forest Shrubland Total

Courel 18 52 12 19 101 07/21/2022 and 07/24/2022

Valdeorras 10 4 7 26 47 07/21/2022 and 07/28/2022

Figueruela 9 16 - 17 42 07/27/2022

Valdueza 8 16 7 19 50 07/23/2022

Total 45 88 26 81

the SSEBop ET product. The four study sites have a Csb -Temperate-
Mediterranean climate (dry summer)- according to the Koppen-Geiger
climate classification, characterized by cold winters and dry and warm
summers (AEMET-IM, 2011). The mean annual precipitation and tem-
perature values of each site are shown in Table 1.

This region is among the most wildfire-prone areas in Spain and faces
a high risk of experiencing catastrophic events, similar to those that
occurred in Portugal in 2017, where over 100 fatalities were reported
(Chas-Amil et al., 2020). The selected wildfires occurred during extreme
meteorological conditions in summer 2022, characterized by an un-
precedented drought and heat waves (Serrano-Notivoli et al., 2023).
High temperatures linked to climate change, combined with reduced soil
water retention, largely due to cumulative organic carbon losses from
recurrent fires (Lombao et al., 2020), have contributed to the emergence
of fifth- and sixth-generation wildfires, extreme events that surpass
conventional fire suppression capabilities (Regos and Diaz-Ravina,
2023). For instance, the wildfire that occurred in O Courel’ (Fig. 1,
Location A) was classified as a sixth-generation event and was also the
largest wildfire ever recorded in the Autonomous Region of Galicia.

The study region has a long-standing history of wildfires (Regos and
Diaz-Ravina, 2023), experiencing highly recurrent fire events with short
fire-free intervals in some areas. Nearly all wildfires in this region are
human-induced; around 82 % are deliberately ignited and classified as
arson, while only about 5 % are attributed to accidents or negligence
(Chas-Amil et al., 2010). The region is characterized by a mixed-severity
wildfire regime. Some areas, such as native broadleaf forests, are typi-
cally associated with low-severity fire regimes, whereas others, such as
pine-dominated stands, are more frequently affected by high-severity
fires.

Pma: Mean annual precipitation; Tp,,: Mean annual temperature.

The information on pre-fire vegetation types for each wildfire was
extracted from the Spanish Forest Map at 1:25,000 scale (MITECO,
2019, 2020, 2021). In the four wildfires analyzed (Courel, Valdeorras,
Figueruela de Arriba, and Valdueza), the post-fire response of woody
vegetation largely depends on the vegetation formation type (forest or
shrubland) and the dominant adaptive strategy (resprouting or seeding
regeneration) (Pausas and Keely, 2014). In native broadleaf forests,
resprouting species capable of regenerating from stumps, rootstocks or
epicormic buds dominate, conferring a competitive advantage over
seeder species during the early recovery of canopy cover. In contrast,
pine plantations mainly rely on seed-based regeneration. For instance,
serotinous cones of Pinus pinaster open with heat, releasing seeds and
promoting high recruitment in the early post-fire stage. Shrublands
exhibit two contrasting strategies. Some formations regenerate primar-
ily through persistent soil seed banks that germinate massively after fire.
This rapid regeneration often results in communities with high domi-
nance and structurally simple (Parra and Moreno, 2018). In contrast,

other shrubland types are dominated by resprouting species, which also
show rapid recovery dynamics (Taulavuori et al., 2013). All these
vegetation types are represented across the study sites, enabling com-
parisons of post-fire impacts on ET among broadleaf forests (Bf), conifer
forests (Cf), mixed forests (Mf), and shrublands (S) (Alberdi et al., 2010).

2.2. Background of SSEBop ET model

The SSEBop model estimates ET from satellite imagery, based on a
simplified version of the surface energy balance model (Eq. 1) (Senay
et al., 2011):

R,=LE-H-G (€9)]

where R, is the net radiation (W/mz), LE is the latent heat flux (W/m?),
G is the ground heat flux (W/mz), and H is the sensible heat flux (w/m?).

This model falls under the category of single-source energy balance
models, which analyze vegetation and soil as a combined energy budget.
These models are particularly convenient for estimating transpiration
from vegetated surfaces (McShane et al., 2017). Single source energy
balance models estimate sensible heat flux (H) by assuming that the
variation in land surface temperature (LST) is linearly related to the
temperature difference between the land surface and the air (Su, 2002).
This relationship is described by selecting two reference pixels: a "hot
pixel," representing bare, dry fields, and a "cold pixel," representing
vegetated, wet fields. These two pixels establish a temperature gradient,
which is used in an equation to estimate H. These models assumes that
the heat flux varies linearly between these two reference points,
providing an approximation of surface heat exchange dynamics in the
landscape (Senay et al., 2011).

The SSEBop model, unlike other single source energy balance
models, does not require the user to select the hot and cold reference
pixels for a study area. The SSEBop model uses thermal satellite imagery
to estimate land surface temperature (LST, Senay and Kagone, 2019;
Hiestand et al., 2024) and calculates de difference between LST and air
temperature (Ta) to handle both elevation and latitude effect on surface
temperature. This temperature difference is the main driver of the
simplified ET calculation as the key assumption in SSEBop is that surface
temperature can be used to infer differences in ET between wet (cold)
and dry (hot) surfaces. This is possible because the hot and cold refer-
ence conditions are predefined for each location and time period
through a simplified climatological energy balance approach (Senay
et al., 2013). In addition, SSEBop streamlines this process using stan-
dardized parameters, making it suitable for large-scale operational use
(Singh and Senay, 2016). Detailed information about the SSEBop model
can be found in Savoca et al. (2013); Singh et al. (2014); Senay et al.
(2022); and FAO, (2023)).

The SSEBop model is a simplified but effective tool for estimating ET.
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The model is simpler and more computationally efficient than full en-
ergy balance models, making it suitable for real-time applications
(McShane et al., 2017). It is scalable; the SSEBop model can be applied at
local to global scales using satellite platforms like MODIS, or Landsat,
providing ET estimates over large areas (Senay and Kagone, 2019;
Hiestand et al., 2024). In summary, it is widely used in water resource
management, drought assessment and agricultural monitoring due to its
scalability and operational simplicity (e,g. Genanu et al., 2016; Dias
Lopes et al., 2019).

2.3. Datasets

The four wildfires occurred in close proximity and almost simulta-
neously during the summer of 2022 in northwestern Spain. As a result, a
single ET scene was sufficient to analyze the four study sites for each
selected date. This approach streamlined the analysis and ensured
consistent temporal and spatial assessment of ET across the affected
areas. We downloaded cloud-free daily ET data with a spatial resolution
of 30 m using the SSEBop product (Senay and Kagone, 2019). The
selected dates included pre-fire (ETpre), immediately post-fire (ETo.y),
and multiple dates over the first post-fire year, including 1-year post-fire
(ET1y) (Table 2). These datasets provide a comprehensive temporal
sequence to evaluate changes in ET values before and after the wildfires,
helping to assess the short-term impacts of fire on the affected ecosys-
tems. This approach ensures high-resolution spatial analysis that aligns
with the fine-scale heterogeneity of the Mediterranean landscape.

The official wildfire perimeters were sourced from the Copernicus
Emergency Management Service (EMS), and validated by the Spanish
regional governments, specifically the Junta de Castilla y Leén and the
Xunta de Galicia. Additionally, SPOT 6 and 7 satellite images, also
provided by Copernicus-EMS, were used to gather ground-reference fire
severity data at a spatial resolution of 1.5 m (see Table 1).

Additionally, a 25 cm digital elevation model (DEM) from aerial
orthophotographs of the Spanish National Orthophoto Program (PNOA)
served as the basis for deriving all topographic predictor variables. We
used data from the Fourth Spanish National Forest Inventory (SNFI4)
and the Spanish Forest Map at a 1:25,000 scale (SFM25) to characterize
the ecosystem type; LANDSAT 8 imagery, acquired on the same date as
the ETpre, to retrieve FCOVER; and Sentinel-1 data (July 12th, 2022) to
obtain the predictors related to pre-fire vegetation structural
complexity.

3. Methods

The response of ET to wildfires has been studied from two perspec-
tives: 1) Influence of ecosystem type on the short-term evolution of post-
fire ET values; and 2) Impact of environmental factors, such as pre-fire
vegetation biophysical conditions and topography, on the reduction of
ET 1-year after the fire.

Table 2

Acquisition dates of the SSEBop evapotranspiration (ET) product. We also
indicate the ET scenario in the pre- and post-fire time series and the Landsat
sensor from which the ET estimates have been derived.

SSEBop evapotranspiration (ET) product

Year Date Julian day ET scenario Sensor

2022 July 8th 189 ETpre Landsat—8 OLI
August 9th 221 EToy Landsat—8 OLI
September 18th 252 - Landsat—9 OLI2
October 4th 277 Landsat—9 OLI2
November 5th 309 Landsat—9 OLI2

2023 March 21st 80 Landsat—8 OLI
April 6th 96 Landsat—8 OLI
May 8th 128 Landsat—8 OLI
June 25th 176 - Landsat—8 OLI
July 19th 200 ETyy Landsat—9 OLI2
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3.1. ET evolution in the short-term after fire

A regular grid of points with 100-m spacing was used to systemati-
cally sample ecosystem type from the Spanish Forest Map at 1:25000
(SFM25) derived from the fourth Spanish NFI (SNFI4)
(Alvarez-Gonzalez et al., 2014), and SSEBop ET data over the pre- and
post-fire short-term time series within each wildfire. We inspected
visually the grid to remove sample points with missing data and clearly
anomalous ET values resulting from potential cloud-masking algorithm
errors (Senay et al., 2020, 2022; Yin et al., 2020). The final dataset
consisted of 4658 sampling points. We ruled out the presence of spatial
autocorrelation patterns in the ET data base on a Moran’s I value equal
to 0.031, well-below the Moran’s I < 0.1 threshold indicated by
Diniz-Filho et al. (2012). We implemented a two-way repeated measures
ANOVA (2w-rmANOVA) to assess the influence of ecosystem type on the
ET behavior over the time series. The significant interaction between
ecosystem type and time, if present, was decomposed using a one-way
repeated measures ANOVA (1w-rmANOVA) within each ecosystem
type level (broadleaf, conifer and mixed forests, and shrublands). A
subsequent Tukey’s HSD test was implemented to evaluate whether
there were significant differences in ET between the pre-fire scenario
(ETpre), immediate post-fire situation (EToy), and 1-year after fire
(ET1.y). The same procedure (1w-rmANOVA and Tukey’s HSD test) was
used to assess differences in ETpre, ETo.y and ET;.y among ecosystem
types. We tested compliance with repeated measures ANOVA assump-
tions using diagnostic plots. Statistical significance was determined at
the 0.05 level.

3.2. Drivers of post-fire ET reduction

Absolute (aET1.y) and relative (rET1.y) reduction in ET 1-year after
fire was calculated following Eq. 1 and Eq. 2:
GET: , = (ETy —ET1 ) — (ET;,, — ET5.,) @)

pre
rET1_y = (aET1_y /ETpy) x 100 (3)

where ETpe and ET;.y correspond to the ET for burned areas in the pre-
fire situation and 1-year after fire, respectively. ETICJre and ET’i_y denote
ET in unburned control areas for the same time periods. Following Ma
et al. (2020), we used unburned control areas to isolate fire-induced
changes, similar to the widely-used offset term in the dNBR index
(Parks et al., 2014). For each fire severity reference plot and ecosystem
type (see Section 3.2.1), mean ETIC,re and ET%.y were extracted in ho-
mogeneous areas outside the fire scar and selected based on three
criteria: 1) they were located within the same watershed; 2) they were
dominated by the same ecosystem type; and 3) they fell within the same
100-m elevation bin.

Based on previous studies (e.g. Boisramé et al. 2019; Quintano et al.,
2020), we used Random Forest (RF) regression (Breiman, 2001) to
highlight how the rET1-y is shaped by fire severity, pre-fire ecosystem
conditions, and topographic and climatic factors.

3.2.1. Environmental predictors

We disentangled the behavior of fire-induced rET;.y in response to
the variability of fire severity along with ten biophysical attributes
related to the pre-fire vegetation type/structure and topographical
context (Table 3). We adopted a stratified random experimental design
(Congalton and Green, 2009) to establish 240 30 m x 30 m plots within
the four wildfires to use as fire severity reference data, i.e. ground
reference (71 low fire severity plots, 89 moderate fire severity plots, and
80 high fire severity plots), using the ecosystem type as strata. The
SFM25 was used to identify the area occupied by each ecosystem type
within the wildfires, and to extract the ecosystem type for each reference
plot. We leveraged the SSEBop ET grid to establish the plots and SPOT 6
and 7 images provided by the Copernicus-Emergency Management
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Table 3

Putative environmental predictors of the relative reduction in evapotranspira-
tion 1-year after fire (rET;.,) considered in the Random Forest (RF) regression
algorithm.

GROUP SOURCE VARIABLE ABBREVIATION  UNIT

Fire ecological
impact

Pre-fire fuel
variables

Copernicus
EMS maps
SNFI14/
SFM25
Landsat—8

Categorized - -

fire severity

Ecosystem type - -

pre-fire FCOVER -

fractional

vegetation

cover

pre-fire VH VH dB

backscatter

(structural

complexity)

pre-fire VV Vv dB

backscatter

(structural

complexity)

Altitude - m

Terrain - -

roughness

Topographic TPL -

Position Index

Compound CTI -

Topographic

Index

Heat Load HLI MJ

Index cm
year

Site Exposure SEI -

Index

Sentinel—1

Topographical PNOA DTM

context

1

Copernicus EMS: Copernicus Emergency Management Services; PNOA DTM:
Digital Terrain Model of the Spanish National Aerial Orthophotography Plan

Service (EMS) at a spatial resolution of 1.5 m to obtain ground-reference
categorized fire severity data through expert visual inspection. The la-
beling of each reference plot (Table 1) was carried out by the predom-
inant fire severity level observed within the plot. Following Quintano
et al. (2013), we assigned a reference plot as having burned at low fire
severity if it had a dead tree proportion lower than 50 %, at moderate
fire severity if the proportion ranged between 50 % and 90 %, and at
high fire severity if the proportion was higher than 90 %.

We inverted the PROSAIL-D RTM (Jacquemoud et al., 2009), which
couples the PROSPECT-D leaf hemispherical transmittance and reflec-
tance model (Féret et al., 2017) and the 4SAIL canopy reflectance model
(Verhoef et al., 2007), to retrieve pre-fire fractional vegetation cover
(FCOVER) at a spatial resolution of 30 m in Google Earth Engine
(Gorelick et al., 2017) from a Landsat-8 Operational Land Imager (OLI)
Level 2, Collection 2, Tier 1 atmospherically corrected scene. We
selected the same scene date (July 8th, 2022) as the SSEBop ETpre
product. The PROSAIL-D RTM was used to simulate top-of-canopy
spectral reflectance and the corresponding FCOVER considering prior
knowledge on the physicochemical plant traits of the species assemblage
in the study sites to parametrize the PROSPECT-D and 4SAIL models (see
Fernandez-Guisuraga et al., 2021a, 2021b, 2023a for more details). We
addressed the effect of mixed spectral signals at subpixel level by
applying a linear spectral mixing model, which takes into account
vegetation and soil endmember fractions (Fernandez-Guisuraga et al.,
2021a). A Latin hypercube sampling design was used to select a total of
10,000 combinations of the variable space as defined by the ranges of
PROSAIL-D RTM input parameters. Then, we ran PROSAIL-D RTM in
forward mode to generate a FCOVER and reflectance simulation dataset
in the optical domain (400-2500 nm by 1 nm), which was resampled to
the Landsat-8 OLI band configuration using the sensor spectral response
function and band width. The simulation dataset was uploaded to GEE
for conducting the PROSAIL-D RTM inversion. The RF regression
ensemble learning algorithm was used to construct the relationships
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between the FCOVER and the corresponding reflectance in the Landsat-8
OLI band configuration. The default hyperparameter values for the RF
implementation in GEE were preserved, except for the number of trees,
which was set to 500 to improve retrieval efficiency. The trained RF
model was then applied to the observed Landsat-8 OLI reflectance in the
pre-fire scene to retrieve pixel-based FCOVER.

In this study, we leveraged the sensitivity of synthetic aperture radar
(SAR) backscatter to the density and size distributions of stems,
branches, and foliage throughout the canopy vertical profile (Bergen
et al., 2009), particularly under the typical canopy architecture and
closure of Mediterranean forest and shrubland ecosystems
(Belenguer-Plomer et al., 2019). Therefore, we acquired a Sentinel-1
C-band SAR scene (July 12th, 2022) in GEE as a proxy for pre-fire
vegetation structural complexity (Fernandez-Guisuraga et al., 2023b;
Jimeno-Llorente et al., 2023). The Sentinel-1 scene corresponded to a
Level-1 Ground Range Detected (GRD) product acquired at dual polar-
ization (transmitter-receiver VV + VH) in interferometric wide swath
mode. Level-1 GRD products in GEE are already processed to gamma
naught (v°) backscatter coefficients in dB units at a spatial resolution of
10 m from the following steps: (i) removal of invalid data and low in-
tensity noise on Sentinel-1 scene borders, (ii) thermal noise removal,
(iii) radiometric calibration to compute radar brightness from sensor
calibration parameters, and (iv) terrain correction (i.e. orthor-
ectification) using 30-m Shuttle Radar Topography Mission (SRTM30)
elevation data (GEE, 2023).

Although not validated with field data, the pre-fire FCOVER is an
intrinsic vegetation biophysical property featuring a direct and mecha-
nistic link with field-based descriptors of fire behavior and post-fire
ecosystem functioning (De Santis and Chuvieco, 2009; Peters et al.,
2021; Fernandez-Guisuraga et al., 2023a, 2023c), which has been
applied in many previous applied remote sensing and fire ecology-based
studies (e.g. Fernandez-Garcia et al., 2022; Beltran-Marcos et al., 2023).
In this context, FCOVER retrievals through the PROSAIL-D RTM have
been extensively validated in many burned and non-burned Mediterra-
nean ecosystems (e.g. Fernandez-Guisuraga et al., 2021a, 2021b, 2023a,
2023c), showing a high overall fit (R? = 0.84-0.96), and, thus, we can
expect here a similar FCOVER retrieval performance for this study (De
Santis and Chuvieco, 2007). The same rationale can be extended to the
use of Sentinel-1 VV and VH backscatter as a proxy for pre-fire vegeta-
tion structural complexity (VH would give be related to volumetric
scattering while VV would be more sensitive to surface scattering).
These two variables may characterize the variability in the crown,
volumetric and dihedral scattering in forest and shrubland ecosystems
(e.g. Kalogirou et al., 2014; Jimeno-Llorente et al., 2023).

To evaluate topographic effects, the following variables were
included in the study (Table 3): altitude and terrain roughness; the latter
is often used as a proxy for topographic complexity based on the vari-
ability in surface height within a landscape (Riley et al., 1999).
Roughness variables included the topographic position index (TPI); the
compound topographic index (CTI); heat load index (HLI); aridity index
(AD); and the site exposure index (SEI). The TPI calculates the relative
elevation of a target pixel compared to its surrounding pixels (Guisan
et al., 1999). Positive TPI values suggest that the pixel is positioned
higher than its neighbors, typically evidencing ridge tops or elevated
areas. In wildfire scenarios, this elevation difference can contribute to
fuel pre-heating through convection, as the elevated terrain may facili-
tate heat rising from the fire, potentially drying and pre-heating vege-
tation ahead of the fire front, increasing its intensity and spread. The CTI
is closely related to the potential for water retention or drainage within a
landscape. Areas with high CTI tend to retain water, due to the shape of
the land (valleys and depressions), while low CTI areas, such as ridges or
slopes, allow water to evacuate quickly. This concept is crucial in fire
models, as it helps predict moisture availability, which influences fire
behavior and recovery processes after wildfires (Gessler et al., 1995).
The HLI was employed as a surrogate for evapotranspiration and soil
temperature in this study. It was calculated using the method outlined
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by McCune and Keon (2002), which is designed to estimate heat load on
a given site by considering factors such as slope, aspect, and latitude.
This index helps to predict the amount of solar radiation received by the
surface, influencing both evapotranspiration rates and soil temperature,
which are crucial for understanding post-fire recovery dynamics in
ecosystems. Finally, the SEI estimates relative solar exposure by
adjusting the aspect of a terrain to a north-south axis and accounting for
the steepness of the slope. This method allows for the quantification of
how terrain features affect solar radiation exposure, which can influence
processes such as plant growth and fire behavior. The method was
described by Balice et al. (2000), where the relative solar exposure is
used to understand environmental conditions affecting vegetation and
ecosystem processes.

3.2.2. ET reduction analysis

The relative reduction in ET 1-year after fire (rET1.) and their
environmental variables related to the wildfire ecological impact, pre-
fire vegetation type/structure and topographical context were extrac-
ted for each fire severity reference plot following the approach of Picotte
and Robertson (2011). For this purpose, we sampled within each plot a
systematic grid of 20 points with 5-m spacing to (i) minimize the
possible mismatch between the plot edges and the grid size of several
environmental variables in data extraction, and (ii) circumvent the use
of data resampling techniques. We fitted a two-way ANOVA
(2w-ANOVA) and subsequent Tukey’s HSD test to investigate the effects
of fire severity and ecosystem type, as well as their interaction, on the
relative reduction in evapotranspiration 1-year after fire (rETy.y). We
tested compliance with ANOVA assumptions using diagnostic plots.
Statistical significance was determined at the 0.05 level.

The RF regression was used to disentangle the relative contribution
of fire severity, pre-fire vegetation type/structure and topographical
variables (predictors; Table 3) on the rET;.y outcome (dependent vari-
able). We chose the RF algorithm because it can detect both complex
non-linear responses and interactions among the predictors, minimizes
overfitted issues and is not very sensitive to multicollinearity (Breiman,
2001; Cutler et al., 2007; Belgiu and Dragut, 2016; Gigovi¢ et al., 2019;
Quintano et al., 2023). The Boruta feature selection technique (Kursa
and Rudnicki, 2010), designed as a RF wrapper algorithm based on
permutation tests for computing variable importance measures using a
holdout approach (Hornero et al., 2021), was used to select
non-redundant features within the environmental predictors’ dataset
and thus improve RF model interpretability and predictive performance
(Speiser et al., 2019). In the Boruta algorithm, variable importance
measures (Z-scores) against shadow variables are calculated to label
predictors as unimportant, tentative and important (Kursa and Rudnicki,
2010). We retained in the RF regression algorithm predictors labeled as
important by the Boruta algorithm. The optimum RF mtry hyper-
parameter value was determined through 10-fold cross-validation tun-
ing, while we set the value of the ntree hyperparameter at 2000 to secure
stable predictions (Probst and Boulesteix, 2018). The rETyy variance
explained by the RF model (pseudo-R?) was assessed through the internal
out-of-bag error rate, and predictive performance through the mean
absolute error (MAE), the root mean squared error (RMSE), and the
mean bias error (MBE). The relationship between rETiy and each
continuous predictor included in the RF model was screened by using
partial dependence plots. The H-statistic (Friedman and Bogdan, 2008)
was used to examine the overall interaction strength per environmental
predictor (H;j) and pairwise interactions (Hjy) as a proxy for the RF
explained variability by predictor interactions rather than by their main
effects. The strongest pairwise interactions were screened by using
three-dimensional partial dependence plots.

All analyses were implemented in R (R Core Team, 2021) using the
rstatix (Kassambara, 2022), Boruta (Kursa and Rudnicki, 2010), Ran-
domForest (Liaw and Wiener, 2002), caret (Kuhn, 2020), pdp (Greenwell,
2017), iml (Molnar et al., 2018) and plotmo (Milborrow, 2022) packages.
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4. Results
4.1. ET evolution in the short-term after fire

All ecosystem types systematically sampled within each wildfire
showed a sharp and consistent pattern of ET reduction as estimated by
the SSEBop product during the first months after fire, followed by a
gradual recovery throughout the following year (Fig. 2). Reduction of ET
in the immediate post-fire scenario (ET¢.y) relative to the pre-fire ET
values (ETpe) averaged 2.09 mm in broadleaf forests, 2.15 mm in
conifer forests, 2.03 mm in mixed forests, and 2.61 mm in shrublands
(Fig. 2). Although the ET had not recovered in the short-term after fire in
each ecosystem (Table 4), the extent of ET recovery throughout the time
series was dependent on ecosystem type, as shown by the significant
interaction between ecosystem type and time (p-value < 0.001) in the
2w-rmANOVA. Importantly, broadleaf forests showed higher ET 1-year
after fire (ETy.y) than the other forest and shrubland ecosystems. There
were no differences in ETpe and EToy between broadleaf and conifer
forests (Fig. 2 and Table 4).

4.2. Drivers of post-fire ET reduction

In the fire severity reference plots, the highest relative reduction in
evapotranspiration 1-year after fire (rET;.y) was found in conifer forests,
followed by shrublands and broadleaf forests. In mixed forests, the rET;.
y did not differ from that in broadleaf forests and shrublands (Fig. 3). The
interaction between fire severity and ecosystem type was not significant
(Table 5). Indeed, the effect of fire severity on the rET;.y followed the
same behavior within each ecosystem (Fig. 3). The rET;y was more
pronounced for areas that burned at high fire severity than at low to
moderate severity. No significant differences in rET;.y were found be-
tween the latter two fire severity scenarios (Fig. 3).

Seven out of eleven environmental variables related to the wildfire
ecological impact, pre-fire fuel, and topography included in Table 3
were non-redundant and deemed as important rET;.y predictors by the
Boruta algorithm in the reference plots (Fig. 4). Fire severity and pre-fire
FCOVER were the most important variables, with a mean Z-score higher
than 20. The remaining variables with a higher importance than the
Boruta shadowMax internal variable were the ecosystem type, pre-fire
Sentinel-1 VH and VV backscatter as a proxy for vegetation structural
complexity, SEI, TPI and roughness. Their contribution ranged from a Z-
score of 7.2-13.5. The retrieval of rET1.y in the reference plots from the

-@— Broadleaf forest —@— Conifer forest —@—Mixed forest —@— Shrubland
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ETpre,

ETyy

SSEBop ET (mm)
N w £
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Fig. 2. Mean and standard deviation of the evapotranspiration (ET) as esti-
mated by the SSEBop product systematically sampled within each wildfire in
the pre-fire scenario (ETpe), immediately post-fire (ET,.,), and throughout the
short-term post-fire time series up to 1-year after fire (ET,.;) for broadleaf,
conifer and mixed forests, and shrublands.
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Table 4
Effect of ecosystem type on the evapotranspiration (ET) during the first year
post-fire as estimated by the SSEBop product systematically sampled within each
wildfire.

2w-rmANOVA Predictor F-value p-value
Ecosystem type 22.16 < 0.001
Time (ETpre,ETo. 3933.17 < 0.001
y’ETl-y)
Ecosystem type: 133.91 < 0.001
Time
1w-rmANOVA (predictor: time) Ecosystem type F-value p-value
Broadleaf forest 2446.63 < 0.001
Conifer forest 2775.12 < 0.001
Mixed forest 724.48 < 0.001
Shrubland 4393.10 < 0.001
Tukey’s HSD ETo.y ETyy
Broadleaf forest ETpre < 0.001 < 0.001
Conifer forest ETpre < 0.001 < 0.001
Mixed forest ETpre < 0.001 < 0.001
Shrubland ETpre < 0.001 < 0.001
1w-rmANOVA (predictor: Time F-value p-value
ecosystem type)
ETpre 25.83 < 0.001
ETo.y 81.80 < 0.001
ETyy 44.67 < 0.001
Tukey’s HSD (ETp.) Conifer forest Mixed Shrubland
forest
Broadleaf forest 0.875 < 0.001 0.001
Conifer forest < 0.001 0.001
Mixed forest < 0.001
Tukey’s HSD (ETo.y) Conifer forest Mixed Shrubland
forest
Broadleaf forest 0.135 < 0.001 < 0.001
Conifer forest < 0.001 < 0.001
Mixed forest < 0.001
Tukey’s HSD (ET;.y) Conifer forest Mixed Shrubland
forest
Broadleaf forest < 0.001 < 0.001 < 0.001
Conifer forest < 0.001 < 0.001
Mixed forest 0.138

ETpre: pre-fire scenario; ETy.,: immediately post-fire scenario ET.,: 1-year after
fire

Fire severity E low . moderate . high

B (44.67) BC (41.74) C (58.53)
o 100 b
S
= _A(24.38)
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©
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Ecosystem type

Fig. 3. Boxplot depicting the relationship between fire severity and the relative
reduction in evapotranspiration 1-year after fire (tET1.,) by ecosystem type in
the fire severity reference plots. Uppercase letters denote significant differences
in the mean rET;.y (in parentheses) between ecosystem types. Lowercase letters
denote significant differences in the mean rET between fire severity categories
within each ecosystem type. Statistical significance was determined at the
0.05 level.
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Table 5
Effect of fire severity and ecosystem type on the relative reduction in evapo-
transpiration 1-year after fire (rET;.y) in the fire severity reference plots.

Predictor Degrees of Sum of F- p-value
freedom squares value
Fire severity (S) 2 68,558 63.159 < 0.001
Ecosystem type 3 38,684 23.762 < 0.001
(E)
SxE 5 4215 1.553 0.174
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Fig. 4. Ranking of variable importance for predicting the relative reduction in
evapotranspiration 1-year after fire (rET,.,) as determined by the Z-score in the
Boruta algorithm in the fire severity reference plots. Variables with a Z-score
exceeding that of the shadowMax internal variable were deemed important
(right side of the red dashed line).
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Fig. 5. Relationship between observed and predicted relative reduction in
evapotranspiration 1-year after fire (rET;.,) in the reference plots using random
forest (RF) regression.

Boruta-selected environmental predictors using RF regression (Fig. 5)
featured high overall fit (pseudo-R?> = 0.722) and relatively low pre-
dictive error (RMSE = 16.906 %). The rET;.y retrievals were slightly
underestimated (MBE = —3.516 %).

The rET;.y decreased markedly in areas with high pre-fire vegetation
cover and structural complexity as determined by the FCOVER and
Sentinel-1 backscatter (VH and VV) behavior, respectively (Fig. 6). It
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Fig. 6. Partial dependence plots for the continuous predictors of the relative reduction in evapotranspiration 1-year after fire (rET;.y) in the reference plots using

random forest (RF) regression, with LOESS smooth curves fitted (red lines).

showed a negative relationship with FCOVER up to 0.7, while it was
insensitive to increases in FCOVER above that value. Low terrain
roughness and high SEI values, together with positive TPI values, were
associated with higher rETyy (Fig. 6). See Fig. 3 for the effect of fire
severity and ecosystem type on rETy.y.

The rET1.y behavior varied markedly in response to the interaction
between the environmental predictors in the RF model (Table 6). About
40 % of rETy.y prediction variability is not explained by the sum of all
predictor main effects but by their interactions (H = 0.397). The pre-fire
FCOVER was the predictor most heavily involved in interactions with
other variables (Hj = 0.201), i.e. the FCOVER interactions with other
predictors are responsible for about 20 % of the rET,., variability
(Table 6). The H;j value for the next four predictors with the highest
interaction strength (fire severity, VV backscatter, terrain roughness and
SEI) ranged from 0.147 to 0.171 (Table 6). The strongest pairwise in-
teractions (Hj) involving these five variables (Table 6) are described
through three-dimensional partial dependence plots in Fig. 7. High
terrain roughness and pre-fire vegetation structural complexity as
measured by VV backscatter constrained rET;.y, but this effect was more
apparent in broadleaf and mixed forests than in conifer forests and

Table 6

shrublands. The rET;.y was somewhat insensitive to terrain roughness in
areas burned with high fire severity. Minor rET;, were predicted in
areas where high pre-fire FCOVER coincided with high VV backscatter
and low SEIL

5. Discussion

Regarding the influence of ecosystem type on the short-term evolu-
tion of post-fire ET values, ET values immediately following fire showed
varying degrees of decline across ecosystem types, primarily due to
differences in the physiological traits, water use strategies of the
dominant vegetation species, and regrowth of fire-adapted vegetation
(Poulos et al., 2021; Ma et al., 2020). Our study supports prior findings
that wildfires lead to a decrease in ET (Li and Lawrence, 2017; Roche
et al., 2020; Collar et al., 2023; Meili et al., 2023), including Mediter-
ranean ecosystems (Sanchez et al., 2015; Hausler et al., 2018; Fernan-
dez-Manso et al., 2020; Quintano et al., 2024). Decrease in ET following
a wildfire is largely driven by a reduction in leaf cover (Seidl et al., 2014;
Liu et al., 2019), and to a lesser degree by the post-fire vegetation type
(Li and Lawrence, 2017; Niemeyer et al., 2020). Fire-induced alterations

Interaction strength as measured by the H-statistic for the environmental predictors of evapotranspiration 1-year after fire (tET;.,) in the random forest (RF) model.
The five strongest overall interactions per feature (H;) and pairwise interactions (Hj,) are highlighted in bold.

H; Ecosystem severity FCOVER VH Vv roughness TPI SEI
0.101 0.167 0.201 0.127 0.147 0.154 0.132 0.171
H; Ecosystem severity FCOVER VH \A% roughness TPI SEI
Ecosystem 0.094 0.073 0.111 0.164 0.226 0.070 0.087
severity 0.055 0.031 0.070 0.158 0.107 0.129
FCOVER 0.078 0.160 0.107 0.057 0.140
VH 0.039 0.127 0.106 0.076
A% 0.093 0.103 0.119
roughness 0.069 0.069
TPI 0.097
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rET1-year

Fig. 7. Three-dimensional partial dependence plots depicting the five strongest pairwise interactions between environmental predictors of evapotranspiration 1-year
after fire (rET,.y) in the random forest (RF) model. Table 6 displays the size of interactions.

in vegetation structure and composition can significantly influence
post-fire water dynamics (Bond-Lamberty et al., 2009), affecting how
ecosystems regulate ET and recover after fire (Blount et al., 2020, Ma
et al., 2020).

Our results revealed that conifer forests exhibited the greatest rela-
tive reduction in ET 1-year after fire (rET1-y), followed by shrublands.
This pattern contrasts in part with previous studies (e.g., Poulos et al.,
2021), which reported comparatively smaller post-fire ET declines in
shrublands, typically attributed to their rapid resprouting capacity.
However, in our study area, shrubland communities are composed of
both resprouting and obligate seeder species. These functional groups
rely on distinct post-fire survival strategies, whose success is strongly
influenced by the characteristics of the local fire regime (Paula and
Pausas, 2006; Fernandez-Garcia et al., 2020). By the contrary, broadleaf
forests of our study areas are mainly resprouters what might explain the
higher ET 1-year after fire. Our study also showed that the reduction in
ET 1-year after fire (rET;.y) was strongly influenced by fire severity. The
decrease was significantly greater in high-severity areas compared to
low-to-moderate severity areas, which is consistent with previous
studies (Nolan et al., 2015; Hausler et al., 2018; Mankin and Patel, 2023;
Quintano et al., 2024). This pattern reinforces the idea that the extent of
damage to vegetationhas a lasting impact on the recovery of transpira-
tion and overall water balance (Wine and Cadol, 2016). High-severity
fires can cause long-lasting reductions in ET, sometimes for years or
even decades, as ecosystems recover from fire damage (Dore et al., 2010;
Poulos et al., 2021; Mankin and Patel, 2023). In high-severity areas, fires
kill most aboveground vegetation, which leads to decreased leaf surface
area for transpiration, increased soil evaporation, and higher surface
runoff, particularly in the short-term after the fire (Poon and Kinoshita,
2018). Fire severity also changes local environmental conditions, such
as increasing solar radiation and vapor pressure deficits, which directly
influence soil evaporation (Aguilar et al., 2010). As a result, ecosystems
recovering from high-severity fires often experience reduced transpira-
tion (T), increased evaporation (E), and shifts in the water and carbon
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balance, with heightened runoff and stream flow (Wine and Cadol,
2016).

Following fire severity, pre-fire FCOVER emerged as the second most
important variable in predicting Post-fire ET dynamics (rETl_y), Incorporating
pre-fire FCOVER as a biophysical driver for modeling fire-induced
changes in ET is a novel approach. Although previous studies identi-
fied tree canopy cover as a driver of post-fire ET (e.g. Poulos et al., 2021)
they rely on empirical methods (e.g. spectral indices or machine
learning algorithms calibrated with field data) that may have trans-
ferability issues and low performance in heterogeneous vegetation as-
semblages and with high bare soil cover (Rigge et al., 2020;
Fernandez-Guisuraga et al., 2021a). Conversely, FCOVER retrieved from
optical imagery by the inversion of RTMs is a physically and ecologically
meaningful variable with proven effectiveness and high transferability
when monitoring heterogeneous vegetation assemblages across distinct
environmental contexts (e.g. Campos-Taberner et al., 2016; Fernan-
dez-Guisuraga et al., 2021a). FCOVER has also been used in the fire
ecology literature to predict the likelihood of extreme fire behavior and
high fire severity (Fernandez-Garcia et al., 2022; Beltran-Marcos et al.,
2024), to evaluate vegetation responses to prescribed burns aimed at
reducing fire severity (Fernandez-Guisuraga and Fernandes, 2024), and
to assess post-fire vegetation recovery (Lazzeri et al., 2021). Fernan-
dez-Guisuraga et al. (2023c) used the FCOVER recovery as a resilience
indicator of vegetation, when studying geophysical drivers of post-fire
vegetation recovery. Lastly, FCOVER has also been used as a biophysi-
cal indicator of fire severity, yielding promising results
(Fernandez-Guisuraga et al., 2023a). In that study, the FCOVER metric
(ratio of post-fire to pre-fire FCOVER) provided more accurate CBI es-
timations (R*> = 0.87 + 0.04) than conventional spectral indices (as
dNBR and relativized versions) and a better transferability performance
(nRMSE = 14.27 % =+ 3.75 %) than that of the spectral indices (nRMSE
= 21.97 % + 8.09 %). These applications highlight the FCOVER rele-
vance in understanding the long-term impacts of fire on ecosystems and
water balance.
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Among other important variables for predicting rETiy were
ecosystem type and pre-fire vegetation structural complexity (repre-
sented by SAR VV and SAR VH). The rETy.y closely related to the ET
recovery rate was different in each ecosystem (specially, in low and
moderate fire severity areas), which is in accordance with previous
research findings (e.g. Yuan et al., 2010; Poulos et al., 2021; Collar et al.,
2023). No previous studies have directly linked pre-fire vegetation
structural complexity with changes in ET post-fire. However, there is a
recognized and significant, complex relationship between pre-fire
vegetation structure and post-fire ET. The structural complexity of
vegetation prior to a fire, which includes factors like density and canopy
height, is known to significantly influence fire severity (Garcia-Llamas
et al.,, 2019b). Denser, taller canopies often create specific microcli-
mates, influencing humidity, temperature, and light availability (Jucker
et al., 2018; Davis et al., 2018), all of which affect ET processes. Denser,
taller canopies can reduce soil evaporation by shading the ground, in-
crease transpiration by providing more leaf area for water loss, and
reduce wind speed and increase humidity within the canopy, which can
either enhance or reduce ET depending on other conditions (Xu et al.,
2024). In summary, the complexity and characteristics of vegetation
structure play a crucial role in determining the rates and patterns of
evapotranspiration in an ecosystem (Poca et al., 2018). This trend be-
comes even more pronounced when considering the strong interactions
between vegetation structural complexity, FCOVER and ecosystem type
in this study. Post-fire ET was significantly related to plant species
composition. Each ecosystem has unique characteristics that influence
how quickly ET rates can return to pre-fire levels (Mankin and Patel,
2023). In our fire severity reference plots, we observed that the largest
immediate post-fire reduction in evapotranspiration (rETo.y) occurred in
plots located in shrublands. However, beginning in the following spring,
the faster regeneration of shrublands and broadleaf forests compared to
conifer forests resulted in a greater rET1.y in the plots located in conifer
forest. In forested areas, high-severity fires can lead to a significant
reduction in ET due to the extensive loss of tree canopy and understory
vegetation. Recovery in these ecosystems can take many years,
depending on the species and environmental conditions (Zalman et al.,
2023). In shrub-dominated ecosystems, the response to fire severity can
vary widely. Low-severity fires may have minimal impact on ET, while
high-severity fires can significantly reduce ET by destroying above-
ground biomass. The recovery of ET in these areas depends on the
resilience and regrowth rate of shrub species (Wasserman and Mueller,
2013). In our study, both shrublands and broadleaf forests are domi-
nated by resprouting species, which likely facilitated their rapid recov-
ery, in contrast to conifer forests, composed of obligate seeders that
regenerate more slowly. Moreover, the fact that the highest rET+-y was
observed in conifer forests is consistent with the finding that rET:-y
showed the greatest decrease in areas with high pre-fire vegetation
cover and structural complexity, as indicated by FCOVER and Sentinel-1
backscatter (VH and VV) predictors.

Three topographical variables emerged as key predictors of rETy.y,
highlighting the significant role of terrain in influencing ET recovery
after a wildfire, as previous studies have shown (Ebel, 2013, Nolan et al.,
2015; Goeking and Tarboton, 2020; Zhang and Liu, 2022). SEI, which
accounts for both slope and solar radiation exposure, ranked as the third
most important variable from the total model set. It may reflect how
solar radiation impacts plant growth, influences post-fire vegetation
recovery and, consequently, ET (Aguilar et al., 2010; Kinoshita and
Hogue, 2011; Ebel, 2013). TPI, which is indicative of relative elevation
with respect to the surroundings, can determine local conditions like
temperature, wind exposure, humidity and soil moisture availability, all
of which affect post-fire ET and plant physiological responses (Nolan
et al., 2015; Bart et al., 2016). Lastly, terrain roughness showed
important interactions with ecosystem type and fire severity, which
were the most influential variables for predicting rET1-y. Terrain
roughness may influence post-fire ET through its direct control on fire
behavior and severity (Fernandes et al., 2016), and by shaping wind
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patterns, microclimate, soil moisture distribution and vegetation struc-
ture, ultimately controlling water transfer from the land surface and
vegetation to the atmosphere (Nolan et al., 2015; Bart et al., 2016).

The availability of high-resolution ET products is enabling studies at
local and regional scales with significantly improved accuracy (Sanchez
et al., 2015; Ma et al., 2020; Mankin and Patel, 2023; Quintano et al.,
2020; Fernandez-Manso et al., 2020; Hausler et al., 2018; Collar et al.,
2023; Wilder and Kinoshita, 2022), which were previously restricted to
empirical ET estimates derived from flux measurements at highly
localized field sites (Nolan et al., 2015; Rocha and Shaver , 2011; Clark
et al., 2012; Roche et al., 2020). In this regard, our study has demon-
strated the suitability of the SSEBop Landsat-based ET product for
assessing the short-term impacts of wildfires on ET within Mediterra-
nean Basin ecosystems (Quintano et al., 2024). Our findings indicate
that ET products with high temporal and spatial resolution could play a
crucial role in advancing our understanding of these effects, especially in
the context of increasingly extreme wildfire events (Quintano et al.,
2024). However, our research only analyzed the reduction in ET 1-year
after the wildfire event. Tracking vegetation recovery over time would
be highly beneficial, enabling the analysis of regeneration patterns and
evapotranspiration (ET) recovery drivers across the various ecosystems
studied. This represents a key area for future research. Additionally,
future research could expand beyond Mediterranean ecosystems to test
whether our results are applicable to wildfires in other biomes and
ecosystems, as the fundamental processes linking ET with post-fire
landscape recovery,such as changes in canopy cover, soil exposure,
and microclimatic conditions, apply across diverse vegetation and
topo-climatic conditions. Similarly, a potential future line of research
would involve comparing the results obtained in this study (based on the
fine-resolution = SSEBop model) with those derived from
coarser-resolution ET models such as those based on MODIS or ECO-
STRESS data. A previous study (see Quintano et al., 2024) found that the
simplified SSEBop model produced results comparable to those of the
more complex eeMETRIC model. Finally, our findings could benefit from
upcoming satellite missions that will provide high-resolution ET imag-
ery on a global scale, and/or will offer opportunities to capture radar
and lidar data, such as the NASA-ISRO Synthetic Aperture Radar
(NISAR) mission and the BIOMASS series satellites, which can provide
detailed information on the biomass and three-dimensional structure of
affected ecosystems. Integrating these datasets could enhance the ac-
curacy and applicability of ET monitoring across diverse regions and
conditions, allowing for a more detailed understanding of fire impacts
on water cycles in various ecosystems. Furthermore, the ability to
combine these observations with advanced machine learning models
could facilitate the detection of complex recovery patterns in different
ecosystem types and under different fire severity conditions, optimizing
post-fire management and ecosystem restoration.

The application of the results obtained on the reduction of post-fire
ET and the biological and physical factors that influence its recovery
may have significant implications for the formulation of ecosystem
management and restoration policies in non-Mediterranean biomes. For
example, in forests where fires are natural and recurrent events, un-
derstanding the relationship between fire severity, pre-fire FCOVER and
topography could help design restoration strategies that prioritize the
conservation of species with high water retention capacity and fire
resistance (Bond-Lamberty et al., 2009). Similarly, where vegetation
recovery is rapid, but fires can have severe impacts on biodiversity and
water cycles, the use of remotely sensed ET models could facilitate the
assessment of areas requiring more intensive restoration interventions.
In addition, the implementation of policies using ET and FCOVER
assessment could help prioritize resources in wildfire management in
areas with high topographic variability, such as mountain ecosystems,
where the interaction between topography and fire severity can influ-
ence vegetation regeneration and ecosystem service recovery (Nolan
et al., 2015). These strategies may include reforestation with native
species that provide an optimal balance between ET recovery and fire
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resistance, as well as management of water catchment areas to mitigate
erosion and maximize infiltration (Ebel, 2013). This study, by identi-
fying fire severity and pre-fire FCOVER as key factors affecting post-fire
ET recovery, provides a basis for understanding how these elements
could influence ecosystem resilience in a future marked by more
extreme and prolonged fires. The role of ET as an indicator of ecosystem
health and water availability becomes even more relevant in the context
of climate change, where post-fire recovery may be slower and condi-
tions for new fires may emerge more rapidly (Nolan et al., 2015). Pro-
longed reduction of ET in areas affected by high severity fires can alter
the regional water balance, affecting not only ecological processes, but
also the human communities that depend on these ecosystems (Wine
and Cadol, 2016).

6. Conclusions

By using the SSEBop Landsat-based model, we were able to capture
the spatiotemporal dynamics of evapotranspiration (ET) across fire-
affected areas during the first post-fire year. Our results provide clear
evidence that higher fire severity leads to significant reductions in ET,
primarily due to canopy loss and associated changes in microclimatic
conditions. Among the ecosystems studied, the smallest ET reductions
were observed in broadleaf forests, followed by shrublands, likely
reflecting their relatively rapid resprouting capacity one year after fire.

While our findings are consistent with previous studies reporting
post-fire ET declines across various ecosystem types, the approach
adopted in this study is novel in three key aspects: (1) the incorporation
of FCOVER as a biophysical driver, (2) the use of SAR data to charac-
terize pre-fire vegetation structure and complexity, and (3) the appli-
cation of a simplified, Landsat-based ET model. These findings have
important implications for understanding ecosystem recovery and
resilience in the face of climate change and increasingly frequent
extreme wildfire events. By emphasizing the strong link between pre-fire
ecosystem type, vegetation structure, and post-fire ET changes, our
study contributes valuable insights for informing post-fire management
strategies. In particular, our results support the development of in-
terventions aimed at restoring hydrological balance, safeguarding
ecosystem services, and minimizing the risk of erosion and further land
degradation.

Future research should focus on long-term vegetation succession and
the role of different vegetation types in driving ET recovery. Compara-
tive evaluations of ET models with varying levels of complexity and
spatial resolution (such as SSEBop, ECOSTRESS-based, and MODIS-
based products) would be particularly valuable. Integrating high-
resolution remote sensing data with field-based hydrological measure-
ments could improve predictive accuracy and support adaptive man-
agement strategies tailored to the ecological and climatic characteristics
of Mediterranean landscapes.
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