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Abstract
Purpose: Rotational invariants (RIs) are at the root of many dMRI applications.
Among others, they are presented as a sensible way of reducing the dimension-
ality of biophysical models. While thermal noise impact on diffusion metrics has
been well studied, little is known on its effect on spherical harmonics-based RI
(RISH) features and derived markers. In this work, we evaluate the effect of noise
on RISH features and downstream Standard Model Imaging (SMI) estimates.
Theory and Methods: Using simulated and test/retest multishell MRI data,
we assess the accuracy and precision of RISH features and SMI parameters in
the presence of thermal noise, as well as its robustness to variations in protocol
design. We further propose and evaluate correction strategies that bypass the
need of rotational invariant features as an intermediate step.
Results: Both RISH features and SMI estimates are impacted by SNR-dependent
Rician biases. However, higher-order RISH features are susceptible to a sec-
ondary noise-related source of bias, which not only depends on SNR, but also
protocol and underlying microstructure. Rician bias-correcting techniques are
insufficient to maximize the accuracy of RISH and SMI features, or to ensure
consistency across protocols. SMI estimators that avoid RISH features by fit-
ting the model to the directional diffusion MRI data outperform RISH-based
approaches in accuracy, repeatability, and reproducibility across acquisition
protocols.
Conclusions: RISH features are increasingly used in dMRI analysis, yet they
are prone to various sources of noise that lower their accuracy and reproducibil-
ity. Understanding the impact of noise and mitigating such biases is critical to
maximize the validity, repeatability, and reproducibility of dMRI studies.
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1 INTRODUCTION

Diffusion MRI (dMRI) has been demonstrated to be a pow-
erful method to non-invasively probe brain microstruc-
ture at a sub-voxel resolution.1–5 Its metrics are sen-
sitive to microstructural changes in the brain related
to development,6 maturation,7 aging,8,9 and pathology.10

However, the clinical utility of dMRI remains challenged
by a lack of specificity of the diffusion-weighted contrast
to microstructural features such as demyelination, axonal
loss, or inflammation.11

Such lack of specificity is being addressed through the
development of biophysical models by decomposing the
macroscopic diffusion-weighted (DW) signal in a set of
compartments with presumed morphological and diffu-
sion characteristics.12 Typically, said models propose to
estimate microstructural information of multiple param-
eterized compartments by fitting a given diffusion model
onto DW data acquired with various b-values, gradi-
ent directions,12–17 and possibly diffusion times,18,19 echo
times,20 or tensor encodings.21

Biophysical models of diffusion in anisotropic brain
white-matter tissue have a high dimensionality given the
necessity to parametrize the fiber orientation distribution
function (fODF), possibly resulting in poor precision and
robustness.22,23 An initial strategy to reduce the number of
model parameters of biophysical models is the adoption of
simplified models of the fODFs, such as Watson or Bing-
ham distribution, with the risk of reduced validity.16,24,25

Alternatively, the dimensionality of biophysical models
can be reduced by extracting rotationally invariant sig-
nal features that encode the microstructural informa-
tion of fiber fascicles, but not the macroscopic orienta-
tion distribution function of such fascicles, disentangling
microstructural properties from their orientation distri-
bution function (ODF).12,26,27 In other words, rotationally
invariant features, typically derived from the spherical har-
monic (SH) representation of the DW signal, are agnostic
to any kind of rotation that data might endure, thus remov-
ing the directional dependency of the signal.

Today, rotationally invariant signal features form
the basis of numerous biophysical models of the white
matter27–30 or the gray matter.18,19 Common exam-
ples include the spherical mean technique,31 standard
model imaging (SMI),23 axon diameter mapping,32 free
water imaging,33,34 SANDI,18 neurite exchange imag-
ing model (NEXI),19 and standard model with exchange
(SMEX).35 Within the context of modeling, the most
commonly used rotationally invariant signal feature
is the “spherical mean,”26,31 which corresponds to the
zeroth-order SH coefficient, but the use of higher orders
has recently been promoted, as it provides complimentary
information.23,27,29,36,37 Therefore, for anisotropic tissue,

including higher-order rotational invariants, such as l = 2
or above, provides additional information to resolve the
model while lowering the necessity for numerous b-shells,
thereby making biophysical models compatible with many
publicly available data sets.38

Alongside their use in biophysical modeling, rotation-
ally invariant features are also used as sensitive biomark-
ers in the analysis of diffusion MRI data7,39,40 as fea-
tures to drive data harmonization across scanners and
protocols26,41,42 and to train deep learning tools.39 As we
witness an increased use of rotationally invariant signal
features for a variety of analysis approaches, it becomes
increasingly important to understand the confounds in its
quantification, including its robustness to experimental
factors such signal-to-noise ratio (SNR) or protocol design.

Despite increasing attempts to achieve higher SNR
through hardware and software improvements, such as
increasing field strengths,43 stronger imaging gradients,44

better receiver coil arrays,45 and denoising,46 dMRI is
an imaging technique that is intrinsically poor in SNR.
Thermal noise affects the quantification of diffusion
metrics in various ways, with eigenvalue repulsion47

and Rician signal biases48 being notorious examples.
Under some often-met conditions, diffusion MRI data are
Rician-distributed. Therefore, the expectation value of the
signal is higher than the noise-free underlying signal. This
bias, often referred to as Rician signal bias, is stronger at
lower SNR and results in an SNR-dependent misestima-
tion of apparent diffusivities, fractional anisotropy (FA),
and kurtosis values if parameter estimators do not explic-
itly account for the actual probability distribution function
of magnitude MRI data.48,49 In the context of biophysical
modeling, Rician signal biases have been associated with
a still water fraction.50 Yet, little is known on the effect of
noise on rotational invariants and its downstream effect on
derived biophysical model parameters.

In this work, we assess the effect of thermal noise
on rotational invariants via both simulated and in vivo
data. We also evaluate the effect of noise in down-
stream biophysical models that are derived from such rota-
tional invariants by considering the SMI microstructural
parameters. Finally, we propose and evaluate correction
strategies.

2 THEORY

2.1 Rotationally invariant spherical
harmonic features

The attenuation signal S(b, g), acquired for a
diffusion-weighting strength b and gradient direction g,
can be represented as
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S(b, g) = 1
S(0) ∫∣n∣=1

dn (n)(
b, gTn

)
, (1)

where (n) is the fODF, normalized so that ∫ dn(n) ≡ 1,
and  is the signal response kernel of a fascicle aligned to
the direction n.15,27 Similar to Novikov et al., we normalize
dn = sin(𝜃)d𝜃d𝜑

4𝜋
so that ∫ dn = 1.23 The fODF (n) is typi-

cally parameterized by means of its projection onto the SH,
such that

(n) = 1 +
∞∑

l=2 (l even)

l∑
m=−l

plmYlm(n), (2)

where plm are the coefficients in the SH basis, as follows:

Ylm(n) =

√
2l + 1

4𝜋
(l − m)!
(l + m)!

Plm(cos(𝜃))eim𝜑, (3)

where n = [𝜃, 𝜑], 𝜃 ∈ [0, 𝜋] and 𝜑 ∈ [0, 2𝜋), and Plm(x) is
the generalized Legendre polynomial with degree l and
order m. Notice that only real SH (even orders of l) are
being introduced under the assumption of antipodally
symmetric diffusion.51

Similarly, for a given b-value, S(b, g) samples the sig-
nal orientation distribution function, which can also be
parameterized in such SH basis using SH coefficients
Slm(b), as follows:

S(b, g) =
∞∑

l=0 (l even)

l∑
m=−l

Slm(b)Ylm(g). (4)

Although Slm(b) are dependent on the orientation of the
underlying microstructure, we can derive SH-rotational
invariants (RISH) of the lth order Sl as follows:

Sl(b) =
1

Nl

√√√√ l∑
m=−l

|Slm(b)|2, (5)

where Nl =
√

4𝜋(2l + 1) is a normalization
parameter.23,26,27 We limit ourselves to the zeroth and
second-order RISH features (l = 0 and l = 2), given that
the signal contribution of higher-order terms decays
exponentially fast, therefore resulting in

S0(b) =
√

1
4𝜋

S00(b), (6)

and

S2(b) =

√√√√ 1
20𝜋

2∑
m=−2

[
S2m(b)

]2
. (7)

Note that S0 is often referred to as the spherical mean. The
value of S2, on the other hand, is closely related to the
recently introduced spherical variance.29

2.2 Biophysical modeling

2.2.1 Model

The SMI draws an overarching picture of biophysical mod-
els that describe DW signal as a sum of nonexchanging
Gaussian compartments.23 The signal kernel  of Eq. (1)
is defined as follows:

(b, 𝜁) = S(0)
[
f exp

(
−bDa𝜁

2)]
+ S(0)

[
(1 − f ) exp

(
−bD⟂

e − b
(

D∥
e − D⟂

e

)
𝜁2
)]

,

(8)

where S(0) = S(b = 0) is the average baseline signal, and
𝜁 = gTn depicts the relative angle between the gradi-
ent direction and the fascicle (i.e., cos𝜃 = gTn). The
kernel parameters, corresponding to the microstructural
parameters to be estimated within the white matter, are
defined as the intracellular signal fraction f , longitudi-
nal intra-cellular diffusivity Da, extracellular parallel D∥

e ,
and perpendicular D⊥

e diffusivities. Note that intracellular
perpendicular diffusivity is assumed to be zero.52

Following the parameterization of the fODF in the SH
basis, Eq. (1) can be rewritten as

S(b, g) =
∞∑

l=0 (l even)

l∑
m=−l

plmKl(b;𝜽)Ylm(g), (9)

where Kl is the projection of the response kernel onto the
Legendre polynomials for a given set of parameters 𝜽 ={

f ,Da, D||
e , D⊥

e

}
, as per Funk-Hecke’s theorem.53

We can further simplify this equation by representing
S(b, g) in the SH basis, as follows:

Slm(b) = plmKl(b;𝜽), (10)

or the derived rotational-invariant features as follows:

Sl(b) = plKl(b;𝜽), (11)

where pl = 1
Nl

√∑l
m=−l|plm|2.

The fODF rotational invariants pl are either defined as
p0 = 1 or estimated as part of the microstructural parame-
ters that measure the coherence of the fODF p2.

Note that, for l = 0, the number of parameters is 4
(f , Da, D∥

e , D⊥
e ), whereas for l ≥ 2, additional modeling

 15222594, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

rm
.70035 by U

niversidad D
e V

alladolid, W
iley O

nline L
ibrary on [06/10/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



4 PARÍS et al.

parameters pl have to be estimated. The coherence index p2
varies between 0 and 1. For a fully isotropic fODF, p2 = 0,
although a delta function on a sphere, has p2 = 1.

2.2.2 Fitting

Given the multitude of SMI representations, such as
Eqs. (9) and (11), it is clear there is no unique way of model
fitting to extract the parameters of interest from dMRI data.

The biophysical model parameter vector 𝜽 is most esti-
mated by minimizing the equation as follows:

𝜽̂
(2)

= arg min
𝜽

Nb∑
𝑗=1

L∑
l=0 (l even)

1
𝜎2

lj

|||Sl
(

b𝑗

)
− plKl(b𝑗 ;𝜽)

|||2, (12)

where b𝑗 is the b-value for each of the Nb DW shells; L is the
maximum SH degree; and 𝜎2

lj∼(2l + 1)∕Ng weights to com-
pensate for the heteroscedasticity, with Ng being the num-
ber of diffusion gradients in the jth shell.23 In its essence,
this presents a two-step fitting process SH-SMI, referenc-
ing the intermediate step of estimated SH coefficients
Slm(b) and derived rotation-invariants S0(b) and S2(b). The
value of Slm(b) is commonly estimated using linear least
squares (LLS) estimators, as it is computationally efficient
and various software libraries provide open-source imple-
mentations of such estimators (e.g., MRtrix),54 as follows:

Ŝlm(b) = arg min
c

Ng∑
𝑗=1

(
S
(

b, g𝑗
)
− cYlm

(
g𝑗
))2

, (13)

which has a trivial closed-form solution. Note that Ng is
the number of DW signals with b-value b. This two-step fit-
ting process is commonly used in many of the listed models
(e.g., SMT,31 SMI,23 SANDI,18 NEXI,19 SMEX35).

Alternatively, one can bypass the intermediate step
of computing rotational invariants. Following Eq. (9), we
can estimate the model parameters, alongside the fODF,
directly from the DW data S(b, g) using the following non-
linear least-squares estimator:

𝜽̂
(1)

= arg min
𝜽

N∑
𝑗=1

(
S
(

b𝑗 , g𝑗
)
−

L∑
l=0 (l even)

l∑
m=−l

plmKl(b;𝜽)

)2

.

(14)
This single-step fitting (or direct fit, DF) strategy was

initially proposed by Jespersen et al.15 Although SH-based
modeling approaches gained interest, preliminary results
suggested the effect of direct fitting in settings where DW
data are not acquired in conventional b-shells, by design or
due to gradient nonlinearities.55

The estimators of Ŝlm(b) and 𝜽̂
(1)

are (asymptotically)
unbiased if the DW data S(b, g) are Gaussian-distributed.

2.3 Data distributions

2.3.1 Rician distribution of dMRI data

The reconstruction of DW images typically includes
the computation of the magnitude of the otherwise
normally distributed, complex-valued MR image. Their
phase—sensitive to macroscopic tissue motion due to car-
diac pulsation, perfusion, and others—varies from image
to image, and impedes further modeling if not corrected or
omitted.56 In computing the magnitude s, its distribution
is no longer Gaussian, but Rician under some often-met
conditions.57 Therefore, the probability density function
p(s|v, 𝜎) of magnitude MRI data is then

p(s, v|𝜎) = s
𝜎2 exp

(
− s2 + v2

2𝜎2

)
I0

( sv
𝜎2

)
, s ≥ 0, (15)

where v is the noiseless signal amplitude; 𝜎 the Gaussian
noise standard deviation; and I0 is the zeroth-order mod-
ified Bessel function of the first kind.57,58 Its conditional
expectation is given by the following formula:

E[s|𝜈, 𝜎] = 𝜇 = 𝜎 ⋅

√
𝜋

2
⋅ L1∕2

(
−v2

2𝜎2

)
(16)

where L1∕2 is Laguerre’s polynomial. The positive offset
between 𝜇 and v is SNR-dependent, exacerbated on the
low-intensity data points such as those acquired in higher
b-values, and often referred to as the Rician signal bias.
This signal bias affects the accuracy of the estimated model
parameters.47–49,59,60

2.3.2 Correction approaches

Common estimators, such as least squares estimators, are
biased if the data are Rician-distributed. The magnitude
of the bias is SNR-dependent but cannot be ignored if any
of the DW signals has an SNR below 2.58 To address this
issue, various strategies have been presented to mitigate
the bias either (i) by lowering the initial noise level in
the complex61,62 or spatial domain37,63 or (ii) by mitigating
its propagation to the dMRI metrics by means of maxi-
mum likelihood estimators,57,64 conditional least squares
(CLS),65 or signal transformations.66

In this work, we make use of a CLS implementa-
tion embedding the Rician expectation (Eq. [16]) to offset
model predictions50,65:

vCLS = arg min
v

N∑
i
(si − E[s, v|𝜎])2 (17)
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PARÍS et al. 5

where si are the observed signals, and the model prediction
term is replaced by their corresponding Rician expectation
with v being the model prediction itself and 𝜎 the Gaussian
noise standard deviation. We will here refer to Rician bias
correction (RBC) when using this approach.

Such estimator is a generic approach that can be
adopted to estimate Ŝlm(b) or 𝜽̂

(1)
by modifying Eqs. (13)

and (14) accordingly. Unlike maximum likelihood estima-
tors, we model the signal offset due to the Rician signal
bias using its expectation value only, thereby ignoring
higher-order terms of the data distribution. As demon-
strated by Veraart et al., such an approach is suitable even
when image preprocessing methods alter the data distri-
bution, as long as the expectation value is preserved.65

Common examples include data interpolation in a locally
homogeneous neighborhood65 or image denoising using
MPPCA.67

2.3.3 Noncentral Chi distribution of RISH
features

Note that the Ŝlm(b) coefficients are not noise-free. Indeed,
they are asymptotically normal (under the central limit
theorem) with their standard deviation dependent on 𝜎

and scan protocol, such as number of gradient direc-
tions. The rotational invariant S0 will thus be (asymp-
totically) Gaussian distributed. However, assuming the
same variance on each of these S2m coefficients (with
m ranging from −2 to 2), the S2 follows a noncen-
tral Chi distribution.57 Similar to the Rician distribution,
the expectation value of the noncentral Chi distribution
exceeds its underlying noise-free value. Therefore, Ŝ2(b)
is prone to a systematic numeric bias that depends on
the noise level of Ŝlm(b), which is affected by various fac-
tors, including SNR of data, data preprocessing steps such
as denoising, and scan protocol. Note that this source of
bias is complementary to any errors that arise from Rician
signal biases.

3 METHODS

3.1 In silico data

We evaluated the properties of the various estimates using
simulated data for varying b-values, gradient directions,
biophysical model parameters, fiber configurations, and
SNR values. Equation (9) was used as a forward model
to generate simulated DW signals for given parameters,
setting Lmax = 6. For crossing fiber configurations, we

generated DWI signals for two fascicles that are rotated
with respect to each other by a rotation angle 𝛼, but
identical otherwise. These signals were added with rel-
ative weight w before adding noise. We added com-
plex Gaussian noise with 𝜎 = 1∕ SNR, for different SNR
values, before computing the signal’s magnitude.65 The
resulting DW data are Rician-distributed.58 All param-
eter settings are specified when relevant in the follow-
ing sections. However, briefly, SNR varied between 5 and
45 in our experiments. In agreement with our in vivo
MRI data, b-values were generally set to [0.5, 1, 2.5, 6]
ms/𝜇m2. Unless specified otherwise, the biophysical
model parameters were uniformly sampled within the
following ranges: f ∈ [0.25,0.75], Da ∈ [0.5, 2.5] 𝜇m2/ms,
D∥

e ∈ [0.5,2.5] 𝜇m2/ms, D⊥
e ∈ [0.1,1] 𝜇m2/ms, and p2 ∈

[0, 1]. Moreover, the elevation angle between two simu-
lated fibers was randomly set to 𝛼 ∈

[
0, 𝜋

2

]
. Finally, the

number of gradient directions was set to 32.

3.2 In vivo data set

3.2.1 Data acquisition

This study presents the secondary analysis of test/retest
dMRI data32,68 of 5 healthy adult volunteers who were
previously collected under the approval of the Cardiff Uni-
versity School of Psychology Ethics Committee. All data
were acquired on a Siemens Connectom 3T MRI scanner
using a 32-channel receiver coil. Subjects underwent a test
and retest scans during the same visit, but they were repo-
sitioned between the scans. All dMRI data were acquired
with a multiband blipped-CAIPI accelerated (simultane-
ous multislice= 2) echo-planar imaging sequence. The
acquisition was further accelerated using GRAPPA accel-
eration (R= 2), using adaptive combine reconstruction
to obtain Rician-distributed results.69 All images were
acquired with repetition time/echo time= 3500/66 ms and
an in-plane spatial resolution of 2.5× 2.5 mm2 and slice
thickness of 2.5 mm. In addition to 23 non-DWI, DW
images were recorded by applying diffusion gradients
with Δ/δ= 30/15 ms and varying gradient amplitude. The
acquisition distributed DWIs across the following b-shells:
0.5, 1.0, 2.5, and 6.0 ms/μm2. The corresponding number
of gradient directions, distributed on a sphere, were 30,
30, 30, and 120, respectively. The last shell, however, was
acquired in two sets of 60 uniformly distributed gradients.
Ten non-DW images with reversed phase encoding were
acquired in support of susceptibility-induced geometrical
distortion correction.
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6 PARÍS et al.

3.2.2 Data preprocessing

Preprocessing of the data included detection and removal
of signal outliers70 and the corrections for Gibbs ringings,71

subject motion, and susceptibility and eddy current
distortions.72 Gradient nonlinearities were corrected by
scaling the b-values voxel-by-voxel.73 The noise level was
estimated from the data acquired with b-values up to
1 ms/𝜇m2 using MPPCA with a window size of [5, 5, 5] to
avoid Rician biases in the noise map.67

3.2.3 Region-of-interest analysis

We performed image registration using the ANTsRegistra-
tionSyN tool (ANTs toolbox) between the subject’s FA map
and the JHU FA template (JHU-ICBM-FA-1 mm). The reg-
istration was only computed for the subject’s test data and
includes both an affine transformation and a diffeomor-
phic warp field. The JHU labels (JHU-ICBM-labels-1 mm;
Analysis Group, FMRIB, Oxford, UK)74 were then trans-
formed into the subject’s space by applying the inverse
transformation using nearest-neighbor interpolation. We
accounted for any misalignment between the test and
retest data using an additional rigid registration transfor-
mation. Each of the white-matter regions of interest (ROIs)
was then masked by means of threshold masks of the
white-matter tract density imaging,75 removing voxels that
were not intersected by tracts, and thus possibly repre-
senting gray matter or cerebrospinal fluid. Finally, ROIs
containing less than 50 voxels were discarded. A represen-
tative of each region (a total of 27 of the 48 original labels)
was computed as the median for each SMI estimate. An
overview of the included ROIs is listed in Table S1.

3.3 Parameter estimation

The microstructural parameters within the SMI frame-
work are estimated by means of two estimation strategies,
which are derived from Eqs. (6), (7), (12), and (14), respec-
tively. In the first approach, 𝜽̂

(2)
, we first estimate Ŝlm(b)

and derive the corresponding Ŝ0(b) and Ŝ2(b) as an inter-
mediate step. Thereafter, we estimate the standard model
parameters 𝜽̂

(2)
using Eq. (12). In contrast, in the second

approach, 𝜽̂
(1)

, we fit the standard model directly to the
direction DW signals as in Eq. (14) to estimate 𝜽̂

(1)
, respec-

tively. Note that the superscript denotes the number of
estimation steps of the approach.

The estimation of Ŝlm(b) and 𝜽̂
(1)

can be performed
using the least-squares estimators of Eqs. (13) and (14),
respectively. However, to account for Rician signal biases,

we will compare such estimators to the CLS estimators,
𝜽̂
(1)
RBC and 𝜽̂

(2)
RBC, which model the Rician expectation value

operator at the relevant steps. Following Eq. (17), the
Rician bias correction requires prior knowledge of the
noise level. For simulated data, we know this value by
design, whereas for the experimental data, we use the
noise levels as estimated in Section 3.2.2.

All code was implemented using standard library func-
tions from the optimization toolbox of MATLAB (Version:
23.2.0, R2023b; MathWorks, Natick, MA, USA).

3.4 Statistical analyses

In this study, we measure the test/retest repeatability of
estimators, and we quantify the agreement between two
sets of measurements to quantify the robustness of the
estimators to variations in scan protocols. The agreement
between scan protocols is done by using half of the last
b-shell (b = 6 ms/𝜇m2) gradient directions. We will use
the coefficient of variation between two repeated mea-
surements to measure test/retest reproducibility, whereas
Lin’s concordance correlation coefficient (CCC)76 is used
to measure agreement between two paired measurements.

3.4.1 Test/retest repeatability

To assess the repeatability and reliability of the metrics, the
coefficient of variation was computed as follows:

COV =
√
𝜋

Ns

Ns∑
i=1

|||xi − x′i
|||

xi + x′i
× 100 [%] (18)

where xi and x′i are the test and retest measurements of a
diffusion metric-of-interest of the ith subject, respectively,
and Ns is the number of subjects.

3.4.2 Concordance

The agreement between two subject-matched sets of mea-
surements of a diffusion metric of interest was computed
as follows:

𝜌C =
2𝜌𝜎x𝜎y

(𝜇X − 𝜇Y )2 + 𝜎2
X + 𝜎2

Y

, (19)

where 𝜌 is the Pearson’s correlation coefficient between X
and Y ; 𝜇X and 𝜇Y are the average values; and 𝜎x and 𝜎y are
the standard deviations. The values of X and Y are both
[Ns, 1] ∈ ℜN vectors, representing a diffusion metric for
each subject and measurement.
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PARÍS et al. 7

4 RESULTS

4.1 Simulations: Thermal noise effect
on RISH features

Figure 1 shows the effect of signal noise on the accu-
racy and precision of Ŝ0(b) and Ŝ2(b) for a wide range of
b-values and parameter values (n= 100.000, sampled from
distributions defined in Section 3.1 in relation to distribu-
tion of the dMRI data and the used estimator (LLS versus
CLS). We observe an SNR-dependent overestimation of
Ŝ0(b) if the dMRI data are Rician-distributed but an ordi-
nary LLS estimator has been used to estimate Ŝlm(b). The
error is significantly reduced when using the CLS estima-
tor instead. In contrast, Ŝ2(b) is prone to error, even in
the case of Gaussian-distributed dMRI data. We observe
SNR-dependent overestimation of Ŝ2(b) with a magnitude
of error that is inversely proportional to its underlying
value S2(b). Rician signal biases result in an underestima-
tion of Ŝ2(b), with a magnitude that is proportional to S2(b).
The use of a Rician bias–correcting estimator does not mit-
igate the bias introduced by taking the magnitude of noisy
SH coefficients.

Figure 2 outlines the effect of SNR, number of gra-
dient directions, and p2 on Ŝ0(b) and Ŝ2(b) for Gaussian
and Rician-distributed dMRI data. In these single-fiber
simulations (w= 1), the following parameters were fixed
to f = 0.75, Da = 2.5 𝜇m2/ms, D∥

e ∈ 2 𝜇m2/ms, and D⊥
e =

0.5 𝜇m2/ms. When not varying, the number of gradient
directions was set to 32 and SNR to 30. Moreover, p2
was set to 0.2 or 0.6 when varying the number of gradi-
ent directions or SNR, respectively. First, we observe that
the error in the estimation of Ŝ0(b) depends on the SNR,
and p2 in the case of Rician-distributed data only. The
Rician signal bias results in an overestimation of Ŝ0(b),
particularly at low SNR and high p2 with relative errors
up to 20%. The error in the estimation of Ŝ2(b) depends
on SNR, number of gradient directions, and p2. How-
ever, unlike Ŝ0(b), Ŝ2(b) is subject to such errors even in
the case of Gaussian-distributed dMRI data. Indeed, for
Gaussian-distributed dMRI, we observe an overestimation
Ŝ2(b) that increases with decreasing SNR, number of gra-
dient directions, and p2. In the case of Rician-distributed
dMRI data, this overestimation is counterbalanced, often-
times resulting in underestimation of Ŝ2(b). This effect is
most pronounced at low SNR and high p2.

F I G U R E 1 Rotational invariants S0 and S2 estimates against their ground truth for varying b-values and signal-to-noise ratio (SNR)
levels: Gaussian noise with linear least squares (LLS) estimation (left), Rician noise with LLS estimation (middle), and Rician noise with
conditional least squares (CLS) estimation (right). Top row: Behavior of S0. Under Gaussian noise, estimates are unbiased. Under Rician
noise, however, low S0 values are systematically overestimated. This bias is corrected when using CLS estimators, restoring an unbiased
behavior. Bottom row: Behavior of S2. Even under Gaussian noise, S2 tends to be overestimated at low values. Under Rician noise, two sources
of bias emerge: Overestimation at low S2 values and underestimation at high values. Applying CLS to Rician data mitigates the second source
of bias, restoring the estimation pattern observed in the Gaussian case.
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8 PARÍS et al.

F I G U R E 2 Relative error of S0 and S2 estimates for b= 6 ms/𝜇m2 varying signal-to-noise ratio (SNR; left), varying number of gradients
per shell (middle), and varying p2 (right). When not varying, the number of gradient directions was set to 32 and SNR to 30. Also, p2 was set to
0.2 or 0.6 when varying the number of gradient directions or SNR, respectively. Top row: Behavior of S0. Gaussian noise is unbiased in all
scenarios. Under Rician noise, however, S0 is overestimated in all three cases. The overestimation diminishes for increasing SNR and
decreasing axon dispersion p2. The number of gradients per shell does not affect the overestimation. Bottom row: Behavior of S2. Under
Gaussian noise, S2 is systematically overestimated, and such overestimation diminishes with increasing SNR, number of gradients per shell,
and axon dispersion p2. Under Rician noise, however, more complex interactions come into play.

4.2 Simulations: Thermal noise effect
on biophysical modeling parameters across
estimators

Figure 3 illustrates how the errors in the estimation of Ŝ0(b)
and Ŝ2(b) propagate and affect the accuracy of 𝜽̂

(2)
(i.e.,

SH-based) estimators. Using the same simulated data as
used for Figure 2, we demonstrate the effect of SNR, num-
ber of gradient directions, and p2 on 𝜽̂

(2)
for Gaussian and

Rician-distributed dMRI data. As 𝜽̂
(2)

is derived from Ŝ0(b)
and Ŝ2(b) simultaneously, we observe errors in the case of
Gaussian and Rician-distributed dMRI data, but the direc-
tion and magnitude of the error depends on the data distri-
bution. However, even for Gaussian-distributed data, esti-
mation errors increase across all parameters as SNR, num-
ber of gradients, or p2 decrease, with errors ranging from a
few percent to over 50%. For Rician-distributed dMRI data,
the magnitude of the errors typically increases. However,
instead of an overestimation, we observe an underestima-
tion of D̂⊥

e and p̂2. Although 𝜽̂
(2)

had relatively low errors

for high p2 values under Gaussian-distributed data, we
observe a strong error increase for Rician-distributed data.

Figure 4 presents violin plots of the error in the
estimation of 𝜽̂

(2)
, 𝜽̂

(2)
RBC, and 𝜽̂

(1)
RBC for a wide range of

parameter values (n= 1500, sampled from distributions
defined in Section 3.1). All simulated dMRI data were
Rician-distributed with randomly varying SNR. In addi-
tion, we computed the mean squared error (Table 1).
For all metrics, the mean squared error—a measure that
combines accuracy and precision—was lowest for 𝜽̂

(1)
RBC,

indicating superior overall performance.

4.3 In vivo results

Figure 5 renders the in vivo maps of the different esti-
mates for a single subject’s white matter, overlapped with
its grayscale FA. Overall, we observe a substantial noisy
behavior on the original 𝜽̂

(2)
, probably intensified by the

degeneracy of the problem and the inability of the branch
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PARÍS et al. 9

F I G U R E 3 Percentage relative error in 𝜃(2) microstructural estimates for Gaussian-distributed and Rician-distributed data for varying
levels of signal-to-noise ratio (SNR; left), number of gradients per shell (middle), and axon dispersion p2 (right). When not varying, the number
of gradient directions was set to 32 and SNR to 30; p2 was set to 0.2 or 0.6 when varying the number of gradient directions or SNR, respectively.
Errors arise from inaccuracies in both S0(b) and S2(b), with Gaussian data showing increasing overestimation as SNR, number of directions,
or p2 decrease. Rician noise leads to generally larger errors, typically manifesting as underestimation, particularly at low SNR and high p2.

F I G U R E 4 Relative error distributions of Standard Model Imaging microstructural estimates. Solid black line represents the ground
truth (relative error equal to 0). Violin plots show errors in 𝜽̂

(2)
, 𝜽̂

(2)
RBC, and 𝜽̂

(1)
RBC across 1500 Rician-distributed diffusion MRI simulations with

varying parameters. The estimates’ modes derived from 𝜽̂
(2)

and 𝜽̂
(2)
RBC show consistent bias, in contrast to the unbiased estimates obtained

from 𝜽̂
(1)
RBC.
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10 PARÍS et al.

selection algorithm to correctly decide the solution. In
comparison, 𝜽̂

(2)
RBC and 𝜽̂

(1)
RBC depict more robust and sta-

ble maps throughout the white matter. Although the

T A B L E 1 Mean square error (MSE) of the estimated
biophysical model parameters using simulated data with a wide
range of underlying parameters. The value of 𝜽̂

(1)
RBC outperforms the

other strategies by resulting in the lower MSE. Bold values depict
the lowest MSE values for a given parameter.

MSE f Da D||

e D⊥

e

𝜽̂
(2)

0.0124 0.1704 0.2075 0.0262

𝜽̂
(2)
RBC 0.0152 0.2445 0.2858 0.0311

𝜽̂
(1)
RBC 0.0064 0.1085 0.1119 0.0115

difference on stability/robustness between 𝜽̂
(2)

and the
other strategies can be observed in any of the maps, it is
more prominent in the f and D⊥

e parameters.

4.4 Protocol dependency

Table 2 reports Lin’s CCC score obtained for each of the
methods. From the three methods under study, 𝜽̂

(1)
RBC out-

performs the other methods nominally for all SMI met-
rics. Following the guidelines for interpretation,77 the per-
formance of 𝜽̂

(1)
RBC ranges from substantial (0.95–0.99) to

almost perfect. The performance of 𝜽̂
(2)
RBC is more vari-

able, ranging from poor to substantial, whereas 𝜽̂
(2)

is
overall poor.

F I G U R E 5 Real data comparison of
the estimation strategies. Comparison
among the three approaches under study of
microstructural estimates from in vivo data,
masked via white-matter tract density
imaging; see more in Section 3). Noticeably,
𝜽̂
(2)

outputs noisier maps, probably due to
the degenerate landscape of the problem.
This is mitigated in the proposed strategies
(𝜽̂

(2)
RBC and 𝜽̂

(1)
RBC), which result in more

robust maps.

 15222594, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

rm
.70035 by U

niversidad D
e V

alladolid, W
iley O

nline L
ibrary on [06/10/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



PARÍS et al. 11

4.5 Reproducibility analysis

Figure 6 shows the COV between ROI medians within
test–retest sessions for 𝜽̂

(2)
RBC and 𝜽̂

(1)
RBC. To show the general

trend, we perform a weighted linear fit, where the weights
are defined by the number of voxels enclosed within each
region. We observe an improved test/retest repeatability
when using 𝜽̂

(1)
RBC, in particular for the intracellular model

parameters. The fit line slope remains below 0.5 in all cases
except D||

e (the slope is 1.12), implying an improved repro-
ducibility of 𝜽̂

(1)
RBC with respect to 𝜽̂

(2)
RBC. The average COV is

25.5% for the 𝜽̂
(2)

, 5.8% for 𝜽̂
(2)
RBC, and 3.12% for 𝜽̂

(1)
RBC.

5 DISCUSSION

To promote the use of rotational invariants in downstream
analyses, support more specific inferences, and maximize
their intersite and intrasite reproducibility, we must under-
stand the confounds in their quantification, including
their robustness to experimental factors such as SNR or

T A B L E 2 Lin’s concordance correlation coefficient (CCC) of
the estimates from the full acquisition protocol against the halved
last shell protocol. The value of 𝜃(1)RBC outperforms the other
strategies scoring from substantial to almost perfect results in all
parameters. Bold values depict the highest CCC scores for a given
parameter.

CCC f Da D||

e D⊥

e

𝜃(2) 0.86 0.84 0.85 0.71

𝜃
(2)
RBC 0.96 0.84 0.95 0.97

𝜃
(1)
RBC 0.99 0.93 0.99 0.97

protocol design, as well as develop parameter estimators
that have a high accuracy, precision, and robustness.

The so-called Rician signal biases are known to affect
the accuracy of commonly used least-squares estimators of
diffusion metrics. Various works have previously reported
that ignoring the Rician data distributions in parameter
estimation results in underestimated mean diffusivities
and FA, overestimated kurtosis values, and loss of angu-
lar resolution.48,49 Here we complement previous works
by evaluating the effect of Rician signal biases on RISH
features and SMI parameters.

There are various strategies to mitigate the effect of the
Rician signal bias. Real-valued MRI provides a promising
avenue if the raw or complex MRI data are accessible56;
however, most often, there is a need for estimators that
model the data distributions explicitly. Although MLE is
a popular example due its favorable properties in terms of
accuracy and precision, it has been shown that it is not
compatible with the series of image-preprocessing steps
that alter the data distribution before fitting.65 In contrast,
RBC—a CLS estimator that offsets the model prediction
by the Rician expectation value operator—has been shown
to be a more accurate78 and efficient alternative in miti-
gating biases in various diffusion metrics,50,78 which also
applies to the estimation of SHs. However, the Rician bias
correction of SH is insufficient to maximize the accuracy
of S2.

We observe that S0 is overestimated when not account-
ing for the Rician distribution of the DW data. The
magnitude of the error depends on the SNR, underly-
ing diffusion properties, and other factors that affect the
nominal DW signal, including b-value and echo time. The
effect of noise on S2 is less trivial as multiple sources of
error contribute. Overall, the Rician signal bias primarily

F I G U R E 6 Test–retest reproducibility. Comparison of the coefficient of variation (COV) between the two red blood cell (RBC)–derived
approaches for the four microstructural estimates from in vivo data. Colored dots depict COVs calculated from different regions of interest
(ROIs; see legend). The full names of the ROIs are listed in Table S1 for completeness. Dashed black line represents x = y line. Black solid line
represents the linear fit of the dots, weighted by the number of voxels enclosed within each region. Dotted black lines depict the 95%
confidence intervals of the fit. As shown, 𝜽̂

(1)
RBC consistently results in similar or smaller COV values, resulting in fitting lines that range from

the identity line to slopes smaller than one. Thus, test–retest repeatability does not decrease with the proposed 𝜽̂
(1)
RBC strategy.

 15222594, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

rm
.70035 by U

niversidad D
e V

alladolid, W
iley O

nline L
ibrary on [06/10/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



12 PARÍS et al.

results in an underestimation of S2, primarily in voxels
with high anisotropy, when compared to simulations with
Gaussian-distributed data. Given the high correlation
between S2 and FA, it is not surprising that similar trends
have been observed in previous DTI studies. However,
when S2 is low, such as in crossing fibers or isotropic struc-
tures, there is a significant overestimation of S2, which is
further amplified at low SNR or low number of gradient
directions. Indeed, S2 is vulnerable to a secondary source of
noise bias that affects its accuracy. All SH coefficient esti-
mates are intrinsically noisy, and their noise level depends
on the gradient-encoding schemes. The noise on each indi-
vidual SH coefficient is asymptotically Gaussian, but the
computation of the rotational invariant features skews the
noise distribution if the order is larger than 0. Hence, the
expectation value of S2 exceeds its underlying value.37,59

The offset depends on the underlying value and noise level
of the SH coefficients, which in turn depends on the SNR
of the dMRI data and the number of gradient directions.
The dependency of the errors in the estimation of S0 and
S2 on SNR, scan protocol settings, and/or microstructure
is a barrier to data harmonization and reproducibility of
diffusion metrics in a wide range of applications.

The RISH features are commonly used as a basis
for biophysical modeling. Therefore, any of these biases
might affect the accuracy, the reproducibility, and inter-
site comparison of metrics derived from the models. Here,
we focus our evaluation of such effects on SMI param-
eters. Given that SMI builds on S0 and S2, it is vulner-
able to both sources of biases. Indeed, when simulating
Gaussian-distributed noise, p2 and Da are underestimated,
whereas f and D||

e are overestimated. Similar biases are
observed when using a Rician bias–correcting estimator
in the case of Rician-distributed data. The magnitude
of the effects is dependent on the SNR, protocol, and
underlying microstructure. The Rician bias itself might
amplify or mask any of such effects, as it independently
biases the parameters as follows: increased f , Da and D||

e ,
and decreased D⊥

e and p2. To maximize the accuracy and
robustness of SMI parameters across protocols and studies,
it is critical to minimize both noise biases.

Leysen et al. presented a voxel-wise Rank-1 decompo-
sition of SH coefficients of the DW signal to lower their
noise level, hence improving the accuracy of higher-order
RISH features.79 Denoising the raw data or optimizing
the experimental design favoring a large number of DW
gradients per b-shell will also improve the accuracy of
biophysical models that are derived from RISH features.
Although favorable, none of these approaches will resolve
the effect in their entirety and might not be feasible in lim-
ited scan times. Here, we evaluate an alternative fitting
strategy for SMI that avoids the use of SH projections as an
intermediate step, thereby evading the secondary source of

noise. Despite its increased dimensionality, this alternative
strategy shows an improved robustness to noise, reduced
prevalence of degenerate solutions, enhanced consistency
across estimates from different protocol acquisitions, and
an improved test/retest repeatability scores when com-
pared with SH-based SMI (see Figures 4 to 6 and Tables 1
and 2). However, the accuracy of the estimator will depend
on the adequacy of the selected SH order to capture the
complexity of the underlying WM configuration. There-
fore, we recommend its use in DW data with sufficiently
dense sampling of gradient directions.80

The intermediate use of RISH features was initially
motivated by the decreased dimensionality of the model.
Indeed, by disentangling the microstructural kernel from
the fiber ODF, the number of parameters that are to be
estimated drops significantly. However, here we show that
the simultaneous estimation of both the microstructural
kernel and the fiber ODF does not negatively affect the
precision of the typical microstructural parameters: f , Da,
D||

e , and D⊥
e . Instead, following our experimental data, we

observe that maps are overall cleaner and less contami-
nated by the significant degeneracies that are commonly
observed in SMI. Moreover, the proposed method offers
the opportunity for an integration of microstructure and
tractography by means of an fODF estimation, without the
need of a globally estimated kernel. It must be noted, how-
ever, that the proposed model might be less tuned to the
use of alternative estimators, including machine learning
approaches.18,27,81–83

A key limitation of this study is that the use of this
estimator requires prior information on the data that are
not always available. Before parameter estimation, (i) it
must be verified that the data of the unprocessed magni-
tude MRI are Rician distributed, and (ii) the noise level
is assumed to be known. In our study, we adopted the
MPPCA technique for noise map estimation, as it has been
shown to be accurate if applied to uncorrelated Gaussian
distributed data. The error in the noise level has shown
to be as low as 1%.67 In that case, the downstream effect
on SMI parameters using RBC is below 0.5%. To meet that
requirement, we estimated the noise level from the lower
b-values only. Note, however, that other estimators might
also be used if proven accurate and can be used inter-
changeably (e.g., Pieciak et al.84 under the assumption of
Rician-distributed data or Henriques et al.85 in the case of
correlated noise).

Moreover, we evaluated the downstream effect of
biases in RISH features on SMI parameters using realistic
scan protocols. However, it is important to note that 𝜽̂

(1)

only exhibits asymptotic normality and consistency.65 As
our accuracy measures are based on normality assump-
tions (e.g., mean of distribution), minimal scan protocols
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PARÍS et al. 13

may give the appearance of inaccurate estimates. These
errors, however, tend to diminish as the number of gra-
dient directions and/or b-values increases, with estimates
converging to the right solution. We further hypothesize
that our findings can be translated to other models that
currently use a two-step fitting process centered around
RISH features, including axon diameter mapping,32

SANDI,18 NEXI,19 SMEX,35 and others.
In summary, we evaluated the effect of thermal noise

on widely used RISH features and its effect on derived bio-
physical models such as the SMI. We propose an alterna-
tive fitting strategy bypassing RISH features and correcting
for Rician bias via CLS estimators that has proven to be
not only more accurate and robust, but also equal or more
repeatable across sessions and more reproducible across
protocol acquisitions.
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