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 a b s t r a c t

Background and objective: Brain-computer interface (BCI) systems can assist individuals with severe motor dis-
abilities by enabling communication through their brain signals using spellers, which allow selecting commands 
from a set of options. For this technology, accuracy, speed and user comfort are essential. Code-modulated visual 
evoked potentials (c-VEPs) have demonstrated promising performance in BCI control. Integrating BCI systems 
with mixed reality (MR) could provide portability and autonomy. However, to the best of our knowledge, no 
existing studies have explored the feasibility of combining MR with c-VEP-based BCIs. This study aims to: (1) 
evaluate the performance of integrating MR with c-VEP-based BCIs and (2) study the visual fatigue induced 
by c-VEPs compared to traditional screen. Methods: Twenty participants used a 36-character speller to select 
words in both MR and traditional screen conditions. Metrics like accuracy and information transfer rate (ITR) 
were measured. Usability and eyestrain were evaluated through questionnaires. Results: The integration of MR 
with c-VEPs achieved an accuracy of 96.71% and an ITR of 27.55 bits/min, compared to 95.98% accuracy 
and 27.10 bits/min for the conventional screen condition. The questionnaires revealed minimal levels of visual 
fatigue in both conditions and high usability. No significant differences were observed between conditions in 
terms of performance or visual fatigue. Conclusions: The c-VEP-based speller with MR-BCI technology proved 
feasible, achieving performance levels similar to the conventional setup, with high accuracy in both conditions. 
The study also found comparable visual fatigue between MR and traditional screens, supporting the practicality 
of MR integration in BCI systems.

1.  Introduction

A brain-computer interface (BCI) is defined as a communication sys-
tem that enables users to interact with their environment without the 
use of muscles or peripheral nerves [1]. Specifically, BCI systems achieve 
this by decoding user intentions through the monitoring and processing 
of brain activity. The most commonly employed technique is electroen-
cephalography (EEG), which is non-invasive, portable and cost-effective 
compared to other methods. Traditionally, these systems have been used 
as an alternative means of communication for individuals with motor 
disabilities, allowing users to achieve greater independence and regain 
a significant degree of social interaction [1].

Although BCI systems can be employed for a wide range of assis-
tive applications, such as wheelchair control [2], web navigation [3], 
video gaming [4] or the operation of everyday electronic devices [5], 
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the most common application for augmentative and alternative commu-
nication is the BCI speller [6]. This application is particularly useful as 
it enables users to write, through a graphical user interface that displays 
letters, numbers and special characters. The first speller application was 
introduced by Farwell and Donchin in 1988 [7]. Different control sig-
nals, such as P300 potentials and steady-state visual evoked potentials 
(SSVEPs), have been employed to develop BCI spellers, achieving vary-
ing performance in terms of accuracy and information transfer rate (ITR) 
[6]. For BCI spelling applications, speed, accuracy and user comfort are 
the most important factors.

Nevertheless, recent advancements have introduced code-modulated 
visual evoked potentials (c-VEPs), as a novel control signal, demonstrat-
ing superior accuracy and selection speeds [8,9]. This control signal 
encodes commands by using shifted versions of a pseudo-random se-
quence. Usually, visual stimuli are displayed to the user as a series of 
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black and white flashes, which blink in accordance with the sequence. 
The application of c-VEPs in communication and control systems holds 
significant promise, owing to their capability to achieve high accuracy 
with reduced calibration times (e.g., > 90% with selections of 0.5-5s per 
command and calibrations of 1–5 min) [9]. Several spellers have been 
developed using c-VEPs. In 2019, Nagel et al. [10] introduced a key-
board including letters, numbers and special characters, obtaining an 
accuracy of 98.2% and an ITR of 109.1 bits/min in 10 users. In addition, 
Gembler et al. [11] developed a speller with a suggestion dictionary, dis-
playing 18 commands on the screen: 4 upper commands with grouped 
letters and 4 lower commands with suggested words and a correction 
command. This system, tested with 18 users, achieved an accuracy of 
95.9% and an ITR of 57.8 bits/min. In 2021, Verbaarschot et al. [12] 
presented a c-VEP keyboard for patients with amyotrophic lateral scle-
rosis (ALS). The study involved three groups: 12 healthy subjects under 
35 years, 8 healthy subjects over 35 years and 10 ALS patients. The ac-
curacies and ITRs for a task involving 22 selections were 94.3% and 
24.8 bits/min, 88.3% and 21.0 bits/min and 79.3% and 20.3 bits/min, 
respectively, for each group. Spellers have been utilized for an extended 
period, not only for augmentative and alternative communication (AAC) 
but also to evaluate the performance of BCI systems.

The rise of extended reality (XR) technologies has further expanded 
the potential of BCI systems. XR encompasses immersive technologies 
like virtual reality (VR), augmented reality (AR) and mixed reality (MR) 
[13]. Its capacity to create highly immersive, interactive environments is 
critical for driving successful outcomes. As this field has rapidly evolved 
and gained traction, its relevance across sectors has only increased [14]. 
XR and head-mounted displays (HMDs) are optimal candidates for gen-
erating visual stimuli, as the images are projected directly into the user’s 
eyes, enhancing contrast, reducing the distance between the user and the 
stimuli and simultaneously minimizing noise factors from the surround-
ing environment [15]. Within this context, MR refers to environments 
where real and virtual subjects and objects interact in real time, allowing 
users to engage with both types of components, i.e, users can naturally 
interact with virtual elements within the physical space [16]. Combin-
ing the strengths of AR and VR, MR offers versatile applications. For 
instance, He et al. [17] investigated how stimulus color affects SSVEP-
based BCI performance in MR environments, demonstrating that color 
and background influence system performance. Similarly, Li et al. [18] 
developed an MR-based BCI system, but with a focus on robotic device 
control rather than communication systems like spellers. Their system 
utilizes P300 signals and integrates a real-time live view of a mobile 
manipulator to enhance control accuracy, showing that MR can also be 
applied effectively in robotics by allowing users to control complex de-
vices through brain signals. In a similar vein, Wang et al. [19] introduced 
a 3D Green Virtual Face P300 spelling paradigm based on MR, illustrat-
ing the growing trend of integrating BCI systems with XR technologies. 
However, the study also highlights the necessity for further exploration 
into user comfort and the scalability of such systems in real-world ap-
plications.

There are also studies that have investigated the use of BCI systems 
in VR environments combined with HMDs, using control signals such 
as P300, SSVEPs or motor imagery (MI) [20–22]. Findings from several 
studies indicate that the performance of a VR-based BCI is comparable 
to or even better than of a traditional computer-based BCI [20,23,24]. 
Kathner et al. [20] examined a P300-based speller system to compare the 
accuracy of HMD devices with conventional screens. The results showed 
that VR devices could achieve similar accuracy to traditional displays, 
with comparable online spelling performance (96% vs 95%), while also 
enabling fast P300-BCI communication in VR environments. Also, Cho et 
al. [23] explored neurofeedback (NF) in a VR setting and found that VR 
significantly improved focus and concentration. Participants reported 
that while training with a desktop monitor was often tedious, using a 
HMD enhanced motivation and engagement.

Recently, AR with HMDs have been used to replace traditional 
screens in SSVEP and P300 BCI applications [15]. This has resulted in 

more user-friendly and portable BCIs, improving flexibility and mobil-
ity. In this setup, stimuli and objects coexist within the same field of 
view, allowing for more intuitive control of external devices, offering 
an immersive experience.

All these studies conclude that integrating BCI with XR applications 
can enhance the sense of immersion. Besides, XR appears to accelerate 
the learning process for BCI and improve user performance by increas-
ing motivation [25]. Within the realm of XR, our study will focus on 
MR due to its superior potential for immersive and interactive appli-
cations. MR provides a more natural and flexible framework, enabling 
dynamic, real-time interactions between physical and virtual elements. 
MR stands out for its ability to provide immersion without disrupting 
the user’s connection to the physical world, offering a crucial advantage 
for practical applications where awareness of the real environment is 
essential, such as in safety, navigation or collaborative interactions. In 
contrast, the complete disconnection of VR systems with the physical en-
vironment can be a barrier for scenarios requiring synchronization with 
the real world, often leading to challenges in user comfort and adapta-
tion. Similarly, AR systems reliance on overlaying virtual elements lacks 
the depth of interaction and immersion that MR can achieve. By seam-
lessly merging virtual and physical elements in real time, MR emerges 
as the most promising option to overcome the limitations of AR and VR, 
offering greater versatility and paving the way for scalable and prac-
tical applications in real-world contexts. For instance, MR combined 
with BCI systems could enable both assistive and non-assistive applica-
tions. In assistive contexts, individuals with severe motor impairments 
could control smart home devices (such as lights, doors, or appliances) 
and communicate through virtual keyboards or symbol grids. In non-
assistive scenarios, MR-BCI systems could support immersive gaming, 
hands-free control in virtual workspaces or adaptive training simula-
tions that respond to users’ cognitive states, offering enhanced engage-
ment and usability in diverse real-world settings. However, no studies 
have been conducted that combine MR with c-VEP-based BCI systems, 
despite the fact that this control signal has demonstrated the ability to 
achieve high accuracy and selection speeds.

Visual fatigue is a pressing issue in c-VEP-based BCI applications 
[26]. Continuous exposure to changes in luminance can sometimes be 
uncomfortable for users in XR environments [27]. Given that accuracy 
rates are already remarkably high, the next step is to enhance user com-
fort. In this regard, several studies in XR combined with SSVEPs have ex-
amined how different characteristics of visual stimuli can affect system 
performance, such as color, size and brightness levels [28,29]. However, 
similar research has yet to be conducted for c-VEP stimuli in XR envi-
ronments, leaving a gap in understanding how these immersive setups 
impact visual fatigue. Comfort and ease of use are critical factors for the 
acceptance and success of BCI applications. Therefore, investigating how 
immersive environments impact visual fatigue levels compared to non-
immersive setups is not only relevant but essential for optimizing user 
experience. Understanding whether these environments induce more, 
less or the same level of visual fatigue will enable the development of 
effective strategies to mitigate this issue and ensure a more comfortable 
and sustainable interaction with BCI technologies.

Hence, the present study has a twofold purpose: (i) to assess the fea-
sibility of integrating a c-VEP-based BCI into a MR environment, and 
(ii) to compare the visual fatigue induced by c-VEP stimuli between 
the MR environment and a traditional screen setup. To accomplish this, 
a MR application utilizing c-VEPs has been designed, developed and 
evaluated on 20 healthy users. This novel approach not only explores 
technical feasibility but also directly responds to the need for more us-
able, comfortable, and context-aware BCI systems. It represents the first 
evaluation of integrating a c-VEP-based BCI system with MR, exploring 
its effectiveness and comparing visual fatigue between MR and conven-
tional screen.

This novel approach represents the first evaluation of integrating a 
c-VEP-based BCI system with MR, exploring its effectiveness and com-
paring visual fatigue between MR and conventional screen.
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Fig. 1. (A), (B) and (C) Different speller matrices for the conventional screen condition. (D) The shifted versions of the m-sequence corresponding to each command.

2.  Methods

2.1.  Subjects

A total of 20 healthy users (aged 27 ± 2.70 years, 8 females and 12 
males) participated in the experiments. Among the participants, 13 had 
prior experience with controlling BCI systems and 3 had previous expe-
rience using XR headsets. All participants provided informed consent to 
participate in the study.

2.2.  Signal acquisition

EEG data were recorded using g.USBamp amplifier (g.Tec, Guger 
Technologies, Austria), with a sampling rate of 256 Hz. Sixteen elec-
trodes were placed on the scalp at positions F3, Fz, F4, C3, Cz, C4, 
CPz, P3, Pz, P4, PO7, PO8, POz, Oz, I1 and I2, using the right ear-
lobe as reference (A2) and grounded on AFz, in accordance with the 
International System 10-10 [30]. The equipment was attached to a PC 
Intel(R) Core(TM) i7-10700F CPU@ 2.90GHz, 32 GB RAM. The display 
devices used were (i) a Keep Out XGM24F+23.8" LED FullHD FreeSync 
monitor with a maximum refresh rate of 144 Hz, and (ii) Meta Quest 3 
(Meta Platforms, Inc) headset, set at 120 Hz. The acquisition, process-
ing and application stages of the BCI system have been implemented 
within MEDUSA© software ecosystem [31]. The signal acquisition was 
performed employing the lab streaming layer (LSL) protocol.

2.3.  Application

The application stage is responsible for interpreting the selected com-
mands and providing real-time feedback to the user. This application 
consists of a 36-command keyboard designed in a QWERTY-style lay-
out. As can be observed in Fig. 1(A)–(C), three different matrices with 
various commands can be selected. The keyboard initially displays the 
uppercase matrix on the screen. By selecting the ‘caps lock’ command, 
users can toggle between uppercase and lowercase matrices. Addition-

ally, selecting the ‘123’ command shows a matrix containing numbers 
and special commands. Users can return to the previous matrix at any 
time.

The keyboard also includes delete and enter commands, with the lat-
ter used to submit the text and clear the input field. At the top of the 
screen, four items were included to assist with typing, either through 
the autocomplete function or through suggestions. If the system de-
tects that a word is being typed, it suggests words that start with those
characters. To implement this functionality, a 1-gram of the 1000 most 
common Spanish words was collected and sorted according to frequency 
of use. An n-gram is a contiguous sequence of 𝑛 items (usually words) 
used in statistical language processing to predict the next word in a 
given context [32]. In our application, this concept is utilized through 
2-gram, 3-gram and 4-gram models, which include the 100,000, 80,000 
and 80,000 most common combinations in Spanish, respectively. The 
2-gram model predicts the next word based on the current word, while 
the 3-gram uses the previous two words, and the 4-gram considers the 
last three words. These n-grams were generated by analyzing extensive 
text corpora in Spanish, where the frequency of individual words and 
word sequences was calculated. The data was then processed to create 
dictionaries that map sequences of 𝑁 − 1 words to their most likely sub-
sequent words, allowing the system to efficiently predict and suggest 
words in real-time based on the user’s input.

The graphical interface was developed using Unity, a game en-
gine that employs the C# programming language. Unity was se-
lected for its seamless integration with XR devices and its ability 
to control each monitor refresh frame. Precise stimulation timing is 
essential for c-VEPs, as even minor variations in latency can lead 
to decoding errors [8]. Communication between the graphical in-
terface and the processing stage was established through a bidirec-
tional full-duplex TCP/IP client-server architecture [31]. The codifi-
cation of the keyboard commands is achieved using a binary maxi-
mum length sequence (m-sequence) consisting of 𝑁 = 127 bits. This 
sequence is generated by a linear feedback shift register (LFSR) ini-
tialized with the state 1100000 and using base 2 (i.e., 0 white
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stimulus, 1 black stimulus) with an order of 7 [33]. Fig. 1(D) displays 
the command matrix encoding based on this sequence. The sequence 
exhibits a flat autocorrelation function, being 1 for the original signal 
and −1∕𝑁 for all other shifts [8].

Each selection matrix consists of 36 commands, each corresponding 
to a specific character that can be selected. While the sequence used has 
a flat autocorrelation, this does not guarantee that the EEG response 
will exhibit the same property. To improve the decoding process, the 
assigned delays were distributed as widely as possible across the 127-
bit sequence [8]. To encode the different commands, the original m-
sequence was time-shifted by of 𝜃𝑖 = 4 ⋅ 𝑖, where 𝑖 = 0, 1,…35. A genetic 
algorithm was utilized to ensure that commands with consecutive delays 
were not placed adjacently.

2.4.  Processing stage

The signal processing stage is based on the standard processing 
pipeline for the c-VEP circular shifting paradigm, as detailed by Martí-
nez-Cagigal et al. [8]. Initially, the processing stage begins with the pre-
processing of the EEG signal, focusing on removing frequency bands that 
are not relevant to c-VEP detection. EEG signals were pre-processed us-
ing a series of 7th-order infinite impulse response (IIR) Butterworth fil-
ters. Initially, a notch filter at 50 Hz was applied to eliminate power line 
interference. Subsequently, a filter bank composed of three bandpass 
filters was employed, covering frequency ranges of 1–60 Hz, 12–60 Hz 
and 30–60 Hz. This approach aligns with the methodology proposed by 
Gembler et al. [34], where the use of specific and overlapping frequency 
bands was demonstrated to optimize signal-to-noise ratio (SNR) and im-
prove the real-time decoding of user commands. Following the filtering 
process, canonical correlation analysis (CCA) was applied in each trial 
to decode the user’s intended target command in real-time. In this stage, 
two phases are distinguished: calibration and testing. During the calibra-
tion process, the signal is recorded while the user directs their attention 
to the command encoded with the original m-sequence (i.e., without 
delay) for 𝑘 numbers of cycles (i.e., repetitions of the m-sequence). Two 
versions of the EEG response were obtained after preprocessing: (i) the 
concatenated epochs 𝑨 ∈ ℝ𝑘𝑁𝑠 ,𝑁𝑐  (i.e., 𝑁𝑠 is the number of samples and 
𝑁𝑐 the number of channels); and (ii) the epochs averaged over all cycles 
𝑩 ∈ ℝ𝑘𝑁𝑠 ,𝑁𝑐  repeated 𝑘 times to match the dimensions. CCA was applied 
to maximize the correlation between 𝑨 and 𝑩. The spatial filter, 𝒘𝒃, is 
selected as the projection that maximizes the correlation coefficient be-
tween these two versions. Consequently, the main template was calcu-
lated by projecting the averaged response using the CCA-trained spatial 
filter. Three main templates were obtained, one for each filtered sig-
nal from the filter bank. Templates for the rest of the commands were 
generated by circularly shifting the main template according to each 
lag [8].

Additionally, we have addressed non-stationary artifacts that could 
negatively impact model performance, such as blinking or electrode-
pops. During the calibration process, the standard deviation (𝜎𝐴) of each 
channel’s data in the concatenated epochs is calculated. Artifacts are 
identified within a cycle if the standard deviation of that epoch exceeds 
three times 𝜎𝐴. Only epochs without artifacts on any channel were used 
to calibrate the system [35].

Subsequently, in the online mode, the epochs of each trial are ex-
tracted and spatially projected with the spatial filter 𝒘𝒃. The response 
of the trial is then compared against all templates corresponding to 
each filtered signal, resulting in a vector that contains the Pearson’s
correlation coefficients for each command. The average correlation 
across the entire bank of filters is computed. Then, the command se-
lected would be the one associated with the maximum coefficient [35].

2.5.  Experimental protocol

In order to evaluate the feasibility of using MR with c-VEPs, both 
quantitative and qualitative metrics were analyzed. Firstly, two met-

rics were employed: (i) accuracy (%), quantifying the percentage of cor-
rectly classified selections among all predicted selections; and (ii) ITR 
(bits/min), parameter that offers an objective assessment of the system’s 
information transfer rate [1]. The ITR was calculated using the following 
formula:

𝐼𝑇𝑅( 𝑏𝑖𝑡𝑠
𝑚𝑖𝑛

) = 𝑄 ⋅
[

𝑙𝑜𝑔2𝑆 + 𝑃 ⋅ 𝑙𝑜𝑔2𝑃 + (1 − 𝑃 )𝑙𝑜𝑔2
( 1 − 𝑃
𝑆 − 1

)

]

, (1)

where 𝑄 denotes the number of selections per minute, 𝑃  represents ac-
curacy and 𝑆 the number of commands [36]. Additionally, a qualitative 
evaluation was conducted by means of questionnaires such as system 
usability scale (SUS) and eyestrain test.

The experiment was conducted in a single session lasting approxi-
mately 55min. Each session included a series of tasks with a total dura-
tion of 45 min. Tasks were performed under two conditions: (i) MR; and 
(ii) conventional screen. Participants were seated during both conditions 
to ensure consistent EEG signal acquisition and to minimize motion-
related artifacts. They were required to make the same selections in both 
conditions and were instructed to focus their attention on selecting the 
corresponding commands without getting distracted. The same applica-
tion was used for both MR and conventional screen conditions, with the 
order of these conditions randomized across participants to avoid bias. 
In the MR condition, the default gray background was replaced with the 
passthrough feature of the Quest 3, which provides a real-time, visually 
immersive 3D view of the physical environment through the Meta Quest 
headsets. The background in this condition was a monotone wall, simi-
lar to conventional screen setup. This configuration remained consistent 
throughout the experiment to ensure that visual performance was not 
influenced by variations in contrast or brightness of the background in 
the MR environment.

Each condition included both calibration and online stages. It is im-
portant to note that a refresh rate of 120 Hz was used for both conditions. 
This higher frequency, compared to the standard 60 Hz, was chosen to 
improve system responsiveness and user comfort, as supported by pre-
vious studies [11,35]. Consequently, the duration of a complete cycle 
of the sequence was 1.05s (i.e., 127/120). The calibration stage was 
crucial for establishing the c-VEP templates specific to each user. These 
templates are used to identify the selected command during the online 
phase. Participants were instructed to look at the letter ‘P’, which corre-
sponds to the command encoding the original m-sequence without lag. 
This phase had a duration of 105s, corresponding with 2 runs of 5 tri-
als each, so 100 cycles (10 cycles per trial) were recorded. Following 
this, a decoding model was trained using the signal processing pipeline 
detailed in Section 2.4.

The next step involved conducting online tasks, where all users were 
asked to select the same set of predefined content, consisting of both 
individual words and short phrases (e.g., “NEURONAS", “CEREBRO", 
“HOLA QUE TAL"). Fig. 2 displays a screenshot showing the command 
matrix with their corresponding flashes in both conditions. Each com-
mand required a selection time of 10.50s, corresponding to 10 estab-
lished cycles. The experiment consisted of 6 runs, with 5 to 8 trials 
per run and 10 cycles per trial. This amounted to a total of 41 selec-
tions. Notably, if a participant accidentally selected a wrong command, 
they were instructed to proceed to the next character without correcting 
the mistake. The autocomplete function or through suggestions was not 
employed during the experiment to ensure that it did not influence the 
number of selections.

After completing all the tasks, users were asked to fill out question-
naires to assess eyestrain and usability. The usability of the application 
was evaluated using a SUS questionnaire, consisting of 10 alternating 
positive and negative statements to reduce acquiescence bias [37]. Par-
ticipants rated their answers on a 5-point Likert scale [38]. Further-
more, the last item invited them to offer suggestions for improving the 
application. The eyestrain test consisted of 8 questions, also using a 
Likert scale. This test included two additional final questions aimed at
evaluating visual fatigue on a scale from 1 to 10 under each condition. 
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Fig. 2. (A) Screenshot of the speller with its corresponding flashes with a gray background for the conventional screen condition and (B) HMD view with passthrough 
for the MR condition.

The additional resources, including data, code, and methodological in-
formation, can be made available upon reasonable request, in accor-
dance with ethical guidelines.

3.  Results

The accuracy and ITR analysis consisted of examining the results of 
the spelling tasks completed by users under both conditions. Table 1 

Table 1 
Accuracies and ITRs by all users for each condition.
 User  Mixed reality  Conventional screen

 Accuracy (%)  ITR (bits/min)  Accuracy (%)  ITR (bits/min)
 U01  100.0  29.31  100.0  29.31
 U02  92.68  25.04  85.37  21.65
 U03  100.0  29.31  100.0  29.31
 U04  100.0  29.31  100.0  29.31
 U05  100.0  29.31  100.0  29.31
 U06  80.49  21.65  92.68  25.04
 U07  100.0  29.31  97.56  27.66
 U08  100.0  29.31  97.56  27.66
 U09  95.12  26.30  92.86  25.13
 U10  100.0  29.31  100.0  29.31
 U11  100.0  29.31  92.68  25.04
 U12  100.0  29.31  75.61  17.67
 U13  100.0  29.31  97.56  27.66
 U14  92.68  25.04  95.12  26.30
 U15  95.12  26.30  100.0  29.31
 U16  82.93  20.61  100.0  29.31
 U17  100.0  29.31  100.0  29.31
 U18  100.0  29.31  92.68  25.04
 U19  95.24  26.36  100.0  29.31
 U20  100.0  29.31  100.0  29.31
 Average  96.71  27.55  95.98  27.10
 SD  5.63  2.69  6.08  3.05

SD: Standard deviation. Ten cycles were utilized.

Table 2 
Average accuracies achieved by all users as a function of the 
number of cycles for both conditions, their corresponding p-
values and time per cycle.
𝐍𝐨 Cycles  Selection Time  Accuracy  p-value

 MR  Screen
 1  1.05 s  49.72%  44.37%  0.57
 2  2.10 s  76.39%  68.85%  0.23
 3  3.15 s  83.45%  79.46%  0.62
 4  4.20 s  88.80%  86.87%  0.88
 5  5.25 s  92.57%  89.55%  0.14
 6  6.30 s  93.18%  90.63%  0.26
 7  7.36 s  95.13%  92.70%  0.20
 8  8.40 s  95.01%  94.27%  0.97
 9  9.46 s  96.11%  95.62%  0.85
 10  10.50 s  96.71%  95.98%  0.67

details the average accuracies and ITRs of each user for each type of 
condition, based on 10 cycles. The average accuracies for MR and con-
ventional screen were 96.71% and 95.98%, respectively. In terms of 
ITR, the MR condition achieved a maximum value of 27.55 bits/min, 
whereas the screen condition recorded 27.10 bits/min. The number of 
selections per minute was determined to be 5.7. This selection time was 
calculated excluding pause times, considering that 10 cycles were used, 
with each cycle lasting 10.50s. Fig. 3 also displays the accuracy for each 
user for each cycle in both conditions. We can observe that some users 
achieved their highest accuracy with fewer cycles, which could trans-
late into a shorter selection time. For MR condition, an average accu-
racy of 92.57% was observed with just 5 cycles, whereas for the con-
ventional screen condition, the average accuracy was 89.55% with the 
same number of cycles, as shown in Table 2. A Wilcoxon signed-rank 
test was employed for the statistical analysis. The results revealed no 
significant differences in accuracy between conditions (p-value > 0.05) 
for any number of cycle. For the ITR, no significant differences were 
found between the two conditions for each cycle (p-value > 0.05). Un-
folded accuracies and ITR for each user and cycle are detailed in the 
supplementary material.

In Fig. 4, the grand-averaged VEPs of the users for the two conditions 
at channel Oz can be observed over a cycle duration (1.05 s). Moreover, 
a topographic plot was generated weighting the contribution of each 
electrode in the spatial filter. This is depicted in Fig. 5 for all users across 
both conditions.

Regarding subjective items, the statements were evaluated on a scale 
from 1 (strongly disagree) to 5 (strongly agree). Table 3 presents the 
statements and their numerical values collected from all users in the SUS 
questionnaire. On the other hand, Table 4 presents the mean values ob-
tained from the eyestrain questionnaire for the different statements. The 
odd statements referred to positive aspects while the even address neg-
ative ones. In addition, two questions were included, assessing overall 
visual fatigue for each condition from 1 to 10. The average visual fatigue 
score was 4.60 for the conventional screen condition, compared to 3.45 
for the MR condition. No statistically significant differences (p-value >
0.05) were observed between conditions. To facilitate future compar-
isons with similar studies, all individual responses and per-subject av-
erages for both questionnaires have been made available in the supple-
mentary material.

4.  Discussion

4.1.  Performance

The first objective was to determine whether the integration of MR 
with c-VEPs enables the development of a reliable BCI system. To ad-
dress this, metrics such as the overall accuracy across all tasks and 
ITR have been calculated. The results confirm the feasibility of this 
integration, as a high overall accuracy of 96.71% was achieved, well 
above the 70% threshold for a controllable BCI system [3]. Moreover, as
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Table 3 
Results of questionnaire SUS for all users. Each statement was rated on a 5-point Likert scale, where 
1 means strongly disagree and 5 strongly agree.

 Statements  Mean score ± SD
 1.  I found it interesting to learn about and use this BCI system.  4.95 ± 0.22
 2.  The design of the user interface is unattractive and non-functional.  1.60 ± 0.73
 3.  The visual quality and experience are satisfactory.  4.60 ± 0.58
 4.  The system requires too much concentration.  2.40 ± 1.06
 5.  The process of configuring and calibrating the system was clear and efficient.  4.95 ± 0.22
 6.  I have experienced visual fatigue or dizziness related to any of the conditions.  2.15 ± 0.91
 7.  The application responds quickly and smoothly.  4.70 ± 0.46
 8.  I have had difficulties with command selection.  1.60 ± 0.86
 9.  I would be willing to participate in a study of this nature.  4.90 ± 0.30
 10.  The duration of the session seemed too long.  1.60 ± 0.86

SD: Standard deviation.

Fig. 3. Performance of each user in function of the number of cycles for (A) conventional screen and (B) MR condition.

Fig. 4. Grand-averaged and individual visual evoked potentials (VEPs) of all users for 2 conditions.

mentioned above, high accuracy rates exceeding 95.0% were achieved 
for both conditions, with 95.98% for the conventional screen and 
96.71% for the MR condition, further demonstrating the system’s ef-
fective performance. No significant differences were found between the 
two conditions, suggesting that a c-VEP-based BCI system can be reliably 
used in MR environments.

Furthermore, it is noteworthy that a trend of slightly lower accuracy 
for tasks involving conventional screens compared to those performed 
in MR was observed, although this difference is not statistically signif-
icant for any number of cycles (p-value > 0.05), as shown in Table 2. 
This discrepancy may be attributed to the fact that the HMD narrows 
the field of vision and that the larger size of the commands displayed 

in MR could have affected both concentration and precision in task ex-
ecution. Additionally, some studies support that XR can enhance user 
engagement and immersion and thereby improve the accuracy of BCI 
[39].

Regarding the evolution of accuracy based on the number of cycles, 
Fig. 3 shows that, in the case of the MR condition, some users required 
a minimum number of cycles to reach maximum accuracy. As presented 
in Table 2, the average accuracy for all users reached 92.57% after 5 
cycles. These findings suggest that the average number of cycles could 
be reduced to five while still maintaining a high level of accuracy. This 
reduction would drastically decrease the selection time from 10.50s (10 
cycles) to 5.25s (5 cycles).
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Fig. 5. (A) Topographic plot for all users in MR condition. (B)Topographic plot for all users in conventional screen condition. 𝒘𝒃 is the spatial filter that represents 
the importance of each electrode.

It is also noteworthy that some users achieved low accuracy with 
few cycles. In the case of the conventional screen condition, particular 
attention should be given to the low accuracies observed in participant 
U12, who indicated in the questionnaires a preference for using MR and 
reported greater ease in selection with these systems. For the MR condi-
tion, low accuracy was observed in a few cycles for users U06 and U16. 
Both participants were not familiar with the use of XR and participant 
U16 had no prior experience with BCI systems, which could have influ-
enced their results. In particular, user U06 reported experiencing some 
dizziness while using the HMD. This symptom is indicative of a common 
side effect known as motion sickness among XR users [40]. This discom-
fort might have impaired their ability to maintain concentration and, 
consequently, affected their precision in selecting commands. The lack 
of familiarity with these technologies, coupled with side effects such as 
dizziness, likely could contributed to the need for more cycles to achieve 
greater accuracy.

Regarding the ITR, maximum values of 27.55 bits/min were 
recorded for the MR condition and 27.10 bits/min for the conventional 
screen condition. The absence of significant differences indicates that 
the type of presentation, whether MR or conventional screen, does not 
have a substantial impact on the ITR.

4.2.  Brain responses

Analyses of brain responses have yielded interesting results. Firstly, 
despite using the same m-sequence for stimulus presentation in both 
conditions, the VEPs associated with each condition exhibited some dif-
ferences, although they share a similar morphology (Fig. 4). Addition-
ally, it is observed that the signal appears to be of delay from one condi-
tion to another. This phenomenon may be attributed to the fact that MR 
requires more graphical and computational processing than a conven-
tional screen, which can overload the system and affect the synchroniza-
tion of EEG signals. Additionally, real-time rendering in MR to create an 
immersive experience consumes more resources, potentially increasing 
the delay in tagging stimuli onsets.

Moreover, as illustrated in Fig. 5, the topographic plot reveals that 
the most discriminative channel was Oz. Specifically, the occipital chan-
nel exhibited the highest activity, corresponding to the primary visual 
cortex (V1), where the c-VEP response is most intensely received. How-
ever, VEPs are also observable over the parietal cortex [41], as can be 
seen for conventional screen condition. The difference in parietal acti-
vation between using a traditional screen and MR could be attributed 
to the distinct ways each medium presents visual information. Conven-

tional screens might engage the parietal cortex more due to the need 
to process and locate objects within a flat, static visual space, given 
that the parietal cortex is a component of the dorsal visual pathway re-
sponsible for encoding spatial location [42]. In contrast, MR provides a 
more immersive three-dimensional experience, potentially simplifying 
visual processing and thereby reducing activation in the parietal cor-
tex. Individual topographic plots for both conditions are included in the 
supplementary material.

4.3.  Usability metrics

The results of the SUS questionnaire, obtained after applying the SUS 
scale, indicate a high usability of the system, with an average score of 
85.87 ± 8.34 points. This suggests that users generally found the system 
easy to use and effective in both conditions. Moreover, a score exceeding 
68 would be considered above average [43]. The lowest total score in 
a user was 67.5 points, indicating a generally positive reception among 
users and affirming that the overall quality and user experience were sat-
isfactory. The highest-rated aspects were the interest in learning about 
and using the system, as well as the clarity and efficiency of the configu-
ration and calibration process. Conversely, the aspect that received the 
lowest rating was the system’s requirement for a high level of concen-
tration, which some users reported could lead to fatigue with prolonged 
use and complicate command selection. This suggests that the interface 
should be adapted to individual user characteristics. For instance, users 
could have the option to adjust the distance of the virtual keyboard, 
either bringing it closer or moving it farther away as needed. Such ad-
justments could help reduce cognitive load, making the system more 
comfortable to use and less tiring overall. Additionally, with regard to 
visual fatigue, a few users reported experiencing mild dizziness related 
to MR [40], while others experienced dryness of the eyes when using 
the conventional screen.

Overall, these findings have significant implications for the future 
design of the system. Enhancing ergonomics and reducing cognitive 
load could further improve usability and user satisfaction. Addressing 
issues of motion sickness and making the interface more intuitive and 
customizable could increase system adoption and effectiveness across 
various use contexts.

4.4.  Eyestrain test

Eight statements from the eyestrain test were presented to assess 
visual fatigue in Table 4. The first statement addressed whether the
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Table 4 
Results of questionnaire of eyestrain for all users. Each statement was rated on a 5-point Likert scale, where 1 
means strongly disagree and 5 strongly agree.

 Statements  Mean Score ± SD
 1.  The immersion provided by MR enhances my overall experience with the application.  4.00 ± 1.02
 2.  I have experienced visual fatigue or dizziness related to MR use.  2.90 ± 1.11
 3.  I felt comfortable using the application with the MR device.  4.10 ± 1.10
 4.  The use of passthrough seems more distracting than helpful to me.  3.60 ± 1.29
 5.  I prefer using the application with MR rather than viewing it on a screen.  3.80 ± 1.36
 6.  I find the stimuli very annoying.  2.40 ± 1.35
 7.  I found it easier to select commands using MR, which also helped my eyes feel less fatigued.  3.10 ± 1.24
 8.  Gradually, I had to put in a lot of effort to see better.  2.20 ± 1.18

SD: Standard deviation.

immersion provided by MR enhanced the overall experience, where 
most participants responding positively. It is important to note that a 
MR system was utilized, incorporating passthrough technology that al-
lowed users to see their physical environment along with the speller and 
selection commands.

The second statement addressed visual fatigue or dizziness associ-
ated with MR [40]. Although this issue occurred for a few users, it was 
not widespread in this study. Participants who experienced dizziness 
might have been more affected by MR due to differences in their vestibu-
lar systems or limited experience with these systems [44]. These factors 
could have heightened their discomfort during the session. Even so, the 
experiment had a short duration (< 1 h), which likely minimized the 
possibility of developing such symptoms.

The third statement evaluated the comfort of using the speller with 
the MR device. Despite the HMDs being adjustable via straps and having 
a certain weight, users reported no discomfort.

Statement 4 focused on the impact of using a real background in MR 
(passthrough) on the user experience. In the study by Riechmann et al. 
[45], it was observed that incorporating a real background significantly 
reduced classification accuracy in a BCI system based on c-VEPs. Al-
though their study did not involve XR, it reported a notable decrease in 
performance: without a background, the system achieved 65% accuracy 
while with a background, accuracy dropped to 50%. In our study, al-
though some users reported distraction from seeing the real background 
of the environment (passthrough) while selecting different characters, 
no significant differences in performance were observed. In fact, there 
was a trend toward higher accuracies with MR compared to conven-
tional screen, which could be attributed to greater user engagement and 
immersion with the MR environment.

Regarding the preference for using MR over a conventional screen, 
as addressed in statement 5, only 4 users preferred the conventional 
screen, while 5 users had no strong preference and 11 users favored 
the MR experience. Statements about annoying stimuli, such as flick-
ering and the need to make more visual effort to see better over time 
were also made (statements 6 and 8). Although this is more evident in 
longer-term evaluations, it could be a relevant effect that directly im-
pacts accuracy. However, in this case, low values were obtained. Sub-
jective opinions about the lesser difficulty of selection using MR (state-
ment 7) were consistent with the obtained accuracy, showing a slight
tendency.

The last two additional statements focused on assessing visual fa-
tigue produced by each condition. While no significant differences were 
found (p-value > 0.05), there was a slight indication of higher levels of 
eyestrain among participants for the screen condition (3.45 compared to 
4.60). This suggests that a BCI based on c-VEPs with MR would be fea-
sible since the MR condition did not produce significantly more visual 
fatigue compared to the conventional screen condition. Furthermore, 
the slightly lower eyestrain in MR highlights its potential for providing 
a more comfortable user experience over extended periods, making it a 
promising platform for BCI applications.

4.5.  Comparison with other studies

No studies have focused specifically on communication with spellers 
using BCI-MR for any control signals. Therefore, a comparative analysis 
was conducted between spellers implemented using VR and different 
control signals (P300 and SSVEPs) (Table 5). No studies using XR with 
c-VEPs have been found.

Firstly, Kathner et al. [20] investigated a speller system based on 
visual P300 ERP to determine if comparable accuracy levels could be 
achieved with HMD devices versus conventional screens. For their vir-
tual keyboard, a 5×5 matrix was displayed, consisting of all the letters 
of the alphabet except for the letter Z. They evaluated 18 healthy users, 
achieving an accuracy of 94.00% and an ITR of 16.20 bits/min with 
only three flash sequences during online spelling across a total of 8 ses-
sions. Additionally, a person with locked-in syndrome (LIS) successfully 
controlled the system, achieving 100% accuracy in one session. Regard-
ing potential improvements, it is evident that the ITR was notably low. 
Furthermore, usability issues were identified, including concerns about 
HMD’s quality and resolution. In addition, the device’s weight may cause 
discomfort during extended use, as highlighted in our study.

On the other hand, the study conducted by Grichnik et al. [46] eval-
uated a VR-based hybrid BCI utilizing SSVEPs and gesture input, achiev-
ing an accuracy of 91.11% and an ITR of 23.56 bits/min. The proposed 
interface consisted of three flickering boxes arranged horizontally, each 
containing 9 letters or symbols. In total, all 27 letters of the alphabet and 
one symbol were displayed. When a user focused on a box, its contents 
split among the three boxes, narrowing down the choices. After select-
ing on the third screen, the chosen letter was typed and the interface 
reset. Users could also use head gestures to delete or go back.

Table 5 
Summary of comparison with other spellers using VR and different control signals.
 Study  Year  Control Signal  No. Healthy Users  Accuracy  ITR  No. Classes
 Kathner et al. [20]  2015  P300  18  94.00% 16.20 bits/min  25
 Grichnik et al. [46]  2019  SSVEPs + gesture input  18  91.11% 23.56 bits/min  4
 Yao et al. [47]  2018  SSVEPs 3  82.40% 287.00 bits/min  4
 Present study  2025  c-VEPs  20  96.71% 27.55 bits/min  36

ITR: information transfer rate, SSVEPs: steady-state visual evoked potentials, c-VEPs: code-modulated visual evoked po-
tentials.
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Also, Yao et al. [47] proposed a 40-class BCI speller in VR based on 
hybrid gaze controls using eye tracking and SSVEPs. The virtual key-
board consisted of 40 targets, including the 26 letters of the English 
alphabet, 10 numeric digits (0–9) and 4 additional symbols. This key-
board was organized in a 4×10 matrix and the character selection was 
carried out in two distinct stages: first, eye tracking was used to select 
a block of 4 characters from the 40 available; then, within the selected 
block, a 4-class SSVEP system was employed to identify the specific tar-
get. Their online experiments with three users achieved an average ITR 
of 360.7 bits/min with an average accuracy of 95.20%. Additionally, an 
offline analysis was performed using only SSVEPs, achieving an average 
accuracy of 82.40% and an ITR of 287 bits/min.

In contrast to these findings, participants in our study reported high 
usability and low levels of visual fatigue in both conditions, highlighting 
a notable distinction in user comfort compared to the discomfort iden-
tified in previous research. Furthermore, our study achieved high accu-
racy using only the c-VEP signal, whereas two of the mentioned studies 
relied on hybrid BCI systems to achieve similar accuracy levels. Regard-
ing keyboard design, our study featured 36 commands, enabling users to 
select effectively type any word, number or symbol. It also differentiated 
between uppercase and lowercase letters and included a larger number 
of symbols. Additionally, a delete command button was provided and 
users could also return to the previous interface without needing ges-
ture input, which could introduce noise into the signal during move-
ment. The design also included autocomplete and suggestions features, 
enhancing communication and command selection. Overall, these fea-
tures demonstrate that our study provides a more effective and comfort-
able solution for BCI communication than those previously reported.

Nevertheless, direct comparisons should be interpreted with caution 
due to the substantial differences in experimental setups, including con-
trol paradigms, interface designs, and evaluation protocols. Each control 
signal (e.g., P300, SSVEP, c-VEP) imposes distinct constraints and pro-
cessing requirements, which can significantly impact reported metrics 
such as accuracy and ITR. As a result, the variability across studies lim-
its the extent to which performance figures can be directly contrasted. 
Still, these studies collectively provide useful context for situating our 
work within the broader landscape of BCI research in immersive envi-
ronments.

To the best of our knowledge, no other studies evaluate the accuracy 
and ITR of spellers in VR. Other research combining BCI and VR has 
focused on different applications, such as rehabilitation for neurological 
diseases [48] or entertainment [49].

4.6.  Contributions

This study introduces a BCI system that, for the first time, integrates 
c-VEPs with MR, demonstrating the feasibility of using cVEPs in immer-
sive environments. Our findings reveal that the MR condition achieved 
an accuracy of 96.71%, performing on par with the traditional screen-
based condition (95.98%), without significant differences. Furthermore, 
the MR condition exhibited robust performance metrics, including accu-
racy and ITR, alongside high usability scores, validating the suitability of 
cVEP-driven systems for MR applications. Importantly, both conditions 
reported low levels of visual fatigue, as assessed by an eyestrain test, en-
suring a comfortable and user-friendly experience. These contributions 
position our system as a significant step forward in the integration of 
BCI technologies with MR environments.

4.7.  Limitations and future work

After this discussion, we consider that the feasibility of integrating 
c-VEPs into MR has been demonstrated. However, there are aspects that 
can be improved in future studies.

Notably, despite demonstrating effectiveness among healthy users, it 
is crucial to assess its application among individuals with severe motor 
disabilities. This demographic has historically been the principal focus 

of BCI systems designed for communication and control purposes. Thus, 
further studies with this target group are recommended to comprehen-
sively assess the usability and impact of the technology.

While the current study was conducted under controlled conditions, 
with participants seated to ensure consistent EEG signal acquisition and 
reduce motion-related artifacts, future work should evaluate system per-
formance in more dynamic, real-world scenarios. Investigating BCI op-
eration during user movement, shifting gaze, and varying levels of phys-
ical activity will be crucial for the practical deployment of MR systems 
based on c-VEPs.

Furthermore, it has been observed that prolonged use of HMDs can 
cause the devices to overheat, potentially resulting in physical dis-
comfort such as headaches and neck strain. Nevertheless, continuous 
progress in XR technologies is helping to mitigate these issues. Effec-
tively addressing these challenges will be key to enhancing both the 
usability and user comfort of MR-based c-VEP systems. Notably, XR sys-
tems with integrated electrodes are beginning to enter the market, of-
fering a potential solution to enhance user comfort and streamline BCI 
setups. Additionally, it would be interesting to test dry or semi-dry EEG 
systems, since offers a practical alternative to traditional gel-based sys-
tems, facilitating quicker setup and improving comfort for extended use 
[50,51].

Additionally, an objective and interesting approach to evaluating the 
comfort of different systems would be to monitor the progression of 
fatigue biomarkers, such as eye blinking frequency and the alpha-to-
beta band ratio, before, during and after use [52].

The use of deep learning (DL) models for EEG processing, such as 
convolutional neural networks (CNNs), offers promising opportunities 
to enhance decoding performance and robustness to variability. These 
models can potentially replace traditional methods like CCA, provid-
ing faster and more accurate classification. Beyond the choice of decod-
ing model, future work should explore the integration of asynchronous 
paradigms (i.e., detection without control), so that commands are issued 
only when the user is attentive to visual stimuli [53,54]. Additionally, 
implementing ‘early stopping’ techniques would be advisable. These al-
gorithms dynamically determine the number of cycles needed to make 
a selection, eliminating the need to wait for all 10 predetermined cy-
cles before making a decision. Offline analysis has demonstrated that 
high precision can be achieved with fewer cycles, which would signif-
icantly increase the ITR. Speed is a crucial factor in spellers, making 
this approach particularly important. On the other hand, it is impor-
tant to note that direct performance comparisons between c-VEP and 
other BCI paradigms (e.g., P300, SSVEP) are inherently limited by fun-
damental methodological differences. These include variations in con-
trol paradigms, interface design, user interaction demands, and signal 
processing strategies, all of which can significantly affect performance 
metrics such as accuracy and ITR. Consequently, results from different 
paradigms should be interpreted in context.

Lastly, to improve user experience and address the potential for vi-
sual fatigue associated with high-contrast flickers, future work could 
explore several strategies supported by recent research. These include 
amplitude depth reduction (e.g., using gray instead of binary black-and-
white flickers) [54], the use of non-binary m-sequences for greater visual 
comfort without sacrificing accuracy [11,35], and the implementation 
of barely visible textured stimuli along with burst c-VEP [50]. Addition-
ally, practical adjustments such as moderating the speed of movement 
in MR environments, using lower-brightness stimuli [26]), and incor-
porating more regular breaks could further help mitigate fatigue and 
enhance the overall user experience.

5.  Conclusion

To our knowledge, this is the first study to evaluate the integra-
tion of MR in a c-VEP-based BCI speller. The application was tested 
on 20 healthy participants in a single session under two conditions: MR 
and conventional screen. An average accuracy of 96.71% ± 5.63% was 
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achieved in MR, indicating that c-VEPs are suitable for developing MR 
applications. On the other hand, the average accuracy obtained for con-
ventional screen was 95.98% ± 6.08%. The accuracy achieved in the 
MR condition was consistently high across all 10 cycles, with no signifi-
cant differences compared to the conventional screen condition (p-value 
> 0.05). Additionally, the maximum achieved ITR was 27.55 bits/min 
for the MR condition and 27.10 bits/min for the conventional screen, 
with no significant differences observed (p-value > 0.05). This suggests 
that MR performs at least as well as traditional screens and may even 
offer potential advantages, such as enhanced user engagement and a 
more immersive experience, reinforcing the viability of MR for similar 
applications.

The SUS questionnaire results from the participants indicated high 
usability ratings, with the majority finding the system easy to use and 
expressing interest in participating in the study. Furthermore, the eye-
strain test revealed low levels of visual fatigue in both conditions. Based 
on the results of this study, the findings can provide valuable insight for 
the design, development and evaluation of more applications with MR-
BCI based on c-VEPs.
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