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Resumen

Este trabajo estudia el uso de métodos de perturbacién para la resolucién aproxima-
da de ecuaciones diferenciales dependientes de un pequeno parametro e. Distinguiremos
los casos de perturbacion regular y singular, ilustrados mediante ejemplos clasicos de la
fisica como las oscilaciones no lineales, y de la quimica como la cinética de las enzimas.
En particular, se analiza el método WKB como herramienta para tratar perturbacio-
nes en ecuaciones diferenciales lineales, su aplicacién en problemas de valores propios,
el estudio del error de dicho método y su comportamiento en regiones cercanas a los
puntos de inflexién.

Palabras clave: métodos de perturbacién, perturbacion regular, método de Poincaré-
Lindstedt, perturbacién singular, método WKB, ecuaciones diferenciales, capas limite,
aproximacion asintética, puntos de inflexién.



Abstract

This work examines the use of perturbation methods for the approximate solution of
differential equations depending on a small parameter e. We distinguish between regular
and singular perturbation cases, illustrated with classical examples from physics, such
as nonlinear oscillations, and from chemistry, such as enzyme kinetics. In particular,
the WKB method is analyzed as a tool for handling perturbations in linear differential
equations, with emphasis on its application to eigenvalue problems, the study of its
associated error, and its behavior in regions near turning points.

Keywords: perturbation methods, regular perturbation, Poincaré-Lindstedt method,
singular perturbation, WKB method, differential equations, boundary layers, asymp-
totic approximation, turning points.



Capitulo 1

Introduccion

Existen numerosos problemas en las ciencias aplicadas que constan de ecuaciones
diferenciales que no pueden resolverse exactamente de forma analitica. Para obtener
una solucién, es habitual recurrir a métodos de aproximacion y métodos numéricos.
Entre las herramientas mas destacadas se encuentran los métodos de perturbacion y
el andlisis asintético, especialmente ttiles cuando el modelo involucra un parametro
pequeno, que denotamos por e.

Los métodos de perturbacién, utilizados inicialmente por astrénomos para prede-
cir los efectos de pequenas perturbaciones sobre los movimientos de cuerpos celestes,
se han convertido hoy en dia en herramientas analiticas ampliamente empleadas en
practicamente todas las ramas de la ciencia. Un problema es adecuado para el andlisis
por perturbacion si se aproxima a otro mas simple que puede resolverse exactamente.
Generalmente, esta cercania se cuantifica mediante la presencia del parametro €, de
forma que, para ¢ = 0, se tiene un sistema resoluble.

La idea general de estos métodos es construir soluciones en forma de series de po-
tencias en torno a este parametro. Podemos utilizar los métodos de perturbacién para
resolver ecuaciones algebraicas, integrales y ecuaciones diferenciales, en las que centra-
remos este estudio. Estudiaremos dos tipos de perturbaciones: la perturbacién regular
y la perturbacién singular [4, 3].

En un problema de perturbacion regular, un procedimiento directo conduce a un
sistema de ecuaciones diferenciales y condiciones de contorno para cada término de la
serie de potencias. Este sistema puede resolverse de forma recursiva, y la precision del
resultado mejora conforme el valor de e disminuye, manteniéndose vélida la soluciéon
en todo el dominio de interés. Para ilustrar un ejemplo de problema de perturbacion
regular, se ha obtenido una solucién aproximada para el movimiento de un cuerpo en un
medio con resistencia. También se ha analizado el método Poincaré-Lindstedt, utilizado
para los casos en los que el método de perturbacion regular no se puede aplicar en todo
el intervalo.

Por otro lado, en un problema de perturbacién singular existen una o varias regiones,
ya sea en la frontera o en el interior del dominio, donde el procedimiento anterior falla.
Esto se debe a menudo a que el parametro € multiplica a la derivada de mayor orden
en la ecuacion diferencial; por ello, la aproximacion principal satisface una ecuacién de
orden inferior que no puede cumplir con todas las condiciones de contorno impuestas

6].



A lo largo de este trabajo se presentaran ejemplos clasicos de perturbacion singular,
aplicados tanto a problemas de valor inicial como a problemas con condiciones de con-
torno, detallando el procedimiento general para obtener soluciones aproximadas. Entre
los casos analizados destacan el sistema masa-resorte con amortiguamiento y la cinética
de las enzimas. Ademas, se han abordado ejemplos que presentan multiples capas limite
y casos donde la ecuacion es no lineal.

La teoria de perturbaciones singulares es un area amplia y en constante desarrollo.
Existen diversos métodos que se utilizan para abordar problemas en este campo. Los
mas basicos incluyen desarrollos asintéticos y la aproximacion WKB. La teoria WKB
se utiliza para obtener una aproximaciéon global a la soluciéon de una ecuacion dife-
rencial lineal perturbada singularmente de cualquier orden. Se aplica en problemas de
autovalores, problemas con condiciones iniciales y problemas de contorno [7].

En este trabajo nos centraremos en la aplicacion del método WKB a través de ejem-
plos concretos, diferenciando los dos regimenes principales en los que puede aplicarse: el
caso oscilatorio y el caso no oscilatorio. Analizaremos la utilidad del método para obte-
ner aproximaciones de autovalores grandes en problemas de valores propios. Asimismo,
se estudiara el error asociado a la aproximacion WKB en funcién de los parametros
del problema. Finalmente, abordaremos el comportamiento de la solucién aproximada
en presencia de puntos de inflexion, analizando cémo afecta su aparicion dentro del
intervalo de estudio.

En este trabajo hemos utilizado conocimientos adquiridos en diversas asignaturas
del grado de matemadticas: ecuaciones diferenciales, calculo y andlisis numérico. La bi-
bliografia més utilizada ha sido Applied Mathematics [8], Introduction to Perturbation
Methods [5] y Singular Perturbation Methods for Ordinary Differential Equations [10],
textos de referencia fundamentales para el estudio y aplicacion de los métodos tratados.



Capitulo 2

Perturbacion regular

Consideramos una ecuacién diferencial

F(t,y,v',y",e)=0, tel,

donde t es la variable independiente, I es el intervalo de tiempo, e y es la variable
dependiente. La aparicion de un parametro e se muestra explicitamente. En general
tendremos condiciones iniciales o condiciones de frontera junto a la ecuacién diferencial.
En este caso, el parametro € es pequeno, es decir, € << 1.

Por una serie de perturbacién entendemos una serie de potencias en € de la forma

yo(t) + ey (t) + € ya(t) + ...

La base del método de perturbacién regular consiste en asumir que la solucién
de la ecuacién diferencial sera de la forma descrita, donde las funciones yq, 1, y2... se
encuentran sustituyendo en la ecuacién diferencial. Los primeros términos de esta serie
constituyen una solucién aproximada, llamada solucién perturbada o aproximacion.

De forma general, el método tendra éxito si la aproximacién es uniforme en 1. En
muchos problemas, es de especial interés estudiar el comportamiento de las soluciones
cuando € tiende a cero. El término g, de la serie de perturbacion se denomina término
de orden principal. Los términos ey, €2y» son términos de correccién de mayor orden.
Si el método funciona, gy sera la solucion del problema sin perturbar

F(t7y7y/7y//70> :O, tel.

Por tanto, cuando en la ecuacién de un modelo aparecen parametros que son pe-
quenos, podemos entender la misma como una ecuaciéon perturbada donde los parame-
tros pequenos representan perturbaciones o cambios sobre un problema sin perturbar.
La ecuacién sin perturbar debe ser siempre resoluble para poder encontrar el compor-
tamiento del término principal.

[lustraremos la idea basica del método de perturbacién con un ejemplo algebraico
simple.

Ejemplo 2.1. Consideramos la ecuacién cuadrética

2+ 2ex — 3 =0, (2.1)

donde € es un parametro pequeno positivo. Vamos a asumir que la solucién del problema
tiene la forma de una serie de perturbaciéon x = x¢ + x1€ + z2€? + ... Sustituyendo en la



ecuacion tendremos
(w0 + 216 + Toe® +...)2 + 2e(xg + 216 + To® +...) — 3 = 0.
Desarrollando los paréntesis y ordenandolos se obtiene
22 — 3+ 2xo(w1 + 1)e + (2] + 2x070 + 271 )* + ... = 0,
e igualando los coeficientes a cero debe cumplirse que
:L’g =3, =-1, xf + 22029 + 221 =0, ...

Resolviendo, se tiene que

1
x :j:\/g,:c =—1l, zo=+——7,...
0 1 2 23

Por tanto, obtenemos dos soluciones

1
r=V3—e+ e+ ...
2v/3
1
r=—-V3—e— 1 .

2V/3

que son dos aproximaciones perturbadas de tres términos. Podemos comparar la solu-
cién aproximada con la solucién exacta de (2.1), que sabemos calcular,

1
T = 5(—2€:|: Vae? +12) = —e £ V3 + €2

Desarrollando el radical con la formula del binomio,

2 2

VB = VB(1+ 5 = VB4 S+ )

[N

con lo que la solucion exacta se puede escribir como

x::t\/g—ezl:ig—i—...
2V/3
que corresponde a la expresion de la aproximacion perturbada de tres términos.
Lo interesante es que podamos llevar a cabo este procedimiento para obtener una
solucién aproximada incluso cuando no podamos resolver el problema de forma exacta.
Ejemplo 2.2. En el siguiente ejemplo obtendremos una solucion perturbada de dos
términos para la ecuacién diferencial

1

Tt eu
u(0) =0, 0<e<<l.

u +u

Partimos de que la solucién tiene la forma
u(t) = ug(t) + eur (t) + O(€?),

8



donde wug(t) es la solucién sin perturbar y u;(t) la correccién de primer orden.
Para obtener la solucion principal debemos resolver la siguiente ecuacion

!/
Uy +up = 1,

cuya solucion es conocida
up(t) =1+ Ce™".

Aplicando la condicién inicial llegamos a que C' = —1. Por tanto,
ug(t) =1—e™",

Para obtener la correccién de primer orden u4(¢) suponemos que la solucién tiene la
forma u(t) = ug(t) + eus(t) + O(€?) y sustituimos en la ecuacién inicial

1
1+ eug + O(e2)

upy + euy + ug + euy + O(€) ~ 1 —eug + O(e?).

Dado que ug(t) =1—e™*

, se tiene que debe cumplirse
el teu) +1—e+eup=1—¢€(l—e).

Por tanto,
u’l +u = —(1 — €7t).

Luego uy(t) = —1 +te™" + Ce™". La solucién aproximada de dos términos serd
u(t) = up(t) + eus(t) =1 — et 4 e(—1+ tet o C’e’t),

Finalmente obtendremos C aplicando la condicién inicial ©(0) = 0, que implica C' = 1,
con lo que

u(t) = up(t) +eus(t) =1 —e " +e(=1+te " +e") (2.2)

En la siguiente figura mostramos la solucion exacta y la soluciéon aproximada por el
método de perturbacion para dos valores de e distintos, donde se puede ver como la
solucién aproximada es mas cercana a la solucion exacta cuanto menor sea €. Para
representar la solucién exacta en matlab hemos utilizado la funcién ode45 con tolerancia
1075 que utiliza métodos de tipo Runge-Kutta.

Veamos ahora dos ejemplos de aplicacion del método de perturbacion regular a
problemas diferenciales. En el primero veremos que la aproximacién es buena para todo
t > 0, pero no ocurre asi en el segundo.
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Figura 2.1: Solucién aproximada y la solucién exacta

2.1. Movimiento en un medio con resistencia

Suponemos un cuerpo de masa m, con velocidad inicial V{), que se mueve linealmente
en un medio que ofrece una fuerza de resistencia de magnitud av — bv?, donde v = v(7)
es la velocidad del objeto en funcién del tiempo 7, y a y b son constantes positivas con
b << a. Por tanto, la parte no lineal de la fuerza se supone pequena en comparacién con
el término lineal. Las constantes a y b tienen unidades de fuerza por velocidad y fuerza
por velocidad al cuadrado, respectivamente. Aplicando la segunda ley de Newton, el
problema viene descrito por

m@ = —av+b? v(0) =V,
dr
Primero convertiremos el problema en un problema adimensional. Una posible escala
de la velocidad es V4. Si no apareciera el término no lineal, la velocidad decaeria de la
forma e’%, por lo que tendremos como tiempo caracteristico m/a. De esta manera, en
las variables adimensionales

I
y - %7 - %7
la ecuacién del movimiento y la condicion inicial quedan escritas como
dy 2
— =— t>0 2.3
o= YTy (2.3)
y(0) =1, (2.4)

siendo € = bV /a << 1.

La ecuacion (2.3) es una ecuacién de Bernoulli. Segin se vio en la asignatura "Ecua-
ciones Diferenciales’ de segundo curso del grado de matematicas, la forma general de
estas ecuaciones es

a(t)% +b(t)y = c(t)y".

Estudiamos que dividiendo la ecuacién entre a(t), se tiene

dy

pris P(t)y = Q(t)y",

10



y que dividiendo a continuacién entre y" y haciendo el cambio de variable w = y*~" se
obtiene una ecuacién diferencial de primer orden. En nuestro caso, n = 2, w =y}, y
como la ecuacion puede escribirse como

ldy 1
—_—— _— = 6
y2dt oy
tras el cambio de variable se tiene
dw .
——— 4t w==Cc
dt

Puesto que la solucién es w = e+Ce', y = 1/(e+Ce"). Imponiendo entonces la condicién
inicial se tiene que

lo que implica que
C=1-c¢

Sustituyendo el valor de C, tendremos la solucién exacta de la ecuacion de Bernoulli

1 et

Yeult) = — (1—eel 1+elet—1)

Notemos que (2.3)-(2.4) es una perturbacién del problema

dy _

= — 0) =1
o y, y(0)=1,

cuya solucién es y(t) = e~*. Como € << 1, la funcién e* parece una buena aproximacién
del problema. La solucién exacta puede desarrollarse en una serie de Taylor en potencias
de € como

Yoo =€ " ele —e ) f et =207 4 ) 4

Para aplicar el método de perturbacion en este caso, asumiremos que la solucion a
la ecuacién del modelo tiene la forma

y=yot) + ey (t) + ya(t) + ...

Las funciones g, ¥1, ¥2... se pueden determinar sustituyendo en la ecuacion diferencial
y la condicién inicial, e igualando coeficientes

yh ey + Yy + .= —(yo +eyr + Eyp + ) +e(yo +eyr + o + )2

Agrupando coeficientes se obtiene una sucesién de ecuaciones diferenciales lineales

y(/] = —Yo,
/ 2
yl =N + ?/07
Yo = —Y2 + 2yoy1, ...

11



con condiciones iniciales

Y0(0) = 1, y1(0) = y2(0) = ... = 0.

Por tanto, tenemos un conjunto recursivo de problemas de valores iniciales lineal para
Yo, Y1, Ya.... Resolvemos recursivamente y obtenemos que

Notemos que y; y ¥ son las correcciones de primer y segundo orden de la aproxi-
macién de primer orden y,(t) = e~*. Por tanto la solucién perturbada de tres términos
seréd

Ya(t) =e " Fe(e ™ —e ) (et —2e7H £,

que es una aproximacion de y., e incluye los efectos no lineales debidos al término ey?
en la ecuacion diferencial inicial. En este caso podemos comparar la solucién exacta con
la solucién aproximada. Para ello, el error cometido en la aproximacion vendra dado
por la diferencia

Yow — Yo = My ()€ +mao(t)e* + ..., >0,

para funciones acotadas my, mao, ....

Notemos que, para un valor positivo de t dado, el error tiende a cero cuando ¢ — 0.
Es mds, por la forma que tienen las funciones m;(t) (j < 1), se puede probar que la
convergencia es uniforme para 0 <t < oo.

2.2. Oscilaciones no lineales

Consideremos ahora el sistema de masa-resorte donde la masa m se conecta a un
resorte con fuerza de recuperacién ky + ay®, donde y es el desplazamiento de la masa, y
k y a son constantes positivas que caracterizan la rigidez del resorte. Supondremos que
la parte no lineal correspondiente a la fuerza de recuperacion es pequena comparada
con la parte lineal, a << k. En este ejemplo la aproximacién perturbada solo sera valida
si se plantean ciertas restricciones en el intervalo de tiempos del problema a estudiar,
mostrando la necesidad de modificar el método de perturbacién regular y desarrollar
un método de perturbacion singular.

Supondremos que inicialmente la masa se suelta desde un desplazamiento positivo
A, luego el movimiento vendra dado por la funcién y = y(7) de tiempo 7, que satisface
la segunda ley de Newton

2
m% = —ky —ay®, 7>0,

junto con las condiciones iniciales

dy

y0) =4, ZLo)=o

12



Debido al término ay?, el problema no puede resolverse de forma exacta. Como a << k
parece razonable aplicar el método de perturbacién. Para analizar el problema correc-
tamente buscamos una escala apropiada de tiempos y longitud que reduzca el problema
a una forma adimensional. Las constantes k, a, m y A tienen dimensiones

masa masa

K=, ld]

tiempo?’

B longitud?tiempo?’ [m] = masa, [A] = longitud.

Para hacer adimensional la variable y utilizaremos la amplitud A del desplazamien-
to inicial. El razonamiento para escalar 7 es el siguiente. Si despreciamos el término
ay?, la ecuacién diferencial es my” = —ky, que tiene soluciones periédicas de la forma
cos(y/k/mt) cuyo periodo es 2my/m/k. Por lo tanto, elegiremos como tiempo carac-

teristico /m/k e introduciremos las variables t y u como

)
)

m/k A

Tras el cambio de variable, la ecuacion diferencial y las condiciones iniciales pasan a ser

ii+u+teud=0t>0, (2.5)
u(0) =1, u(0) =0,

donde € = aA?/k es un parametro adimensional, muy pequeio si se asume aA? << k.
La ecuacién (2.5) corresponde a la ecuacién de Duffing, una ecuacién diferencial de
segundo orden no lineal que se utiliza para modelar ciertos osciladores amortiguados y
controlados. Suponemos que la solucién tiene la forma u(t) = ug(t) + euy (t) + e us(t) +
... donde wug, uy, ... se deben determinar. Sustituyendo en la ecuacion diferencial y la
condicion inicial, e igualando coeficientes por potencias de €, tendremos la sucesion de
problemas lineales con condiciones iniciales.

”[LO —f-U,[) = O, UO(O) = 1, Uo(O) = O,
iy +up = —uy, u(0) =0, ,(0)=0,..

La solucién para el primer problema es ug(t) = cos(t), con lo que el segundo problema
se reescribe de la siguiente forma

’dl +up = — COSg(t), Ul(O) = ul(O) = 0.

Teniendo en cuenta que cos(3t) = 4 cos®(t) — 3cos(t), la ecuacién diferencial queda de
la siguiente forma

1
g +uy = —1(3 cos(t) + cos(3t)),

que puede resolverse por métodos estandar. Es bien conocido que la solucién general de
la ecuacion homogénea es ¢; cos(t)+co sin(t) y una solucién particular puede encontrarse
por el método de coeficientes indeterminados y es de la forma

u, = C cos(3t) + Dt cos(t) + Etsin(t).

13



Sustituyendo u, en la ecuacién diferencial e igualando términos encontramos que C' =
1/32, D =0, E = —3/8 con lo que la solucién general es

1 3
uy = ¢1 cos(t) + cosin(t) + 3 cos(3t) — gt sin(t),

e imponiendo la condicién inicial a u; obtenemos

Uy cos(3t) — cos(t)) — gtsin(t).

:3_2(

Por tanto, la solucion aproximada de dos términos toma la forma
1 3 .
u, = cos(t) + 6[3—2(008(375) — cos(t)) — gt sin(t)]. (2.6)

El comportamiento de la solucién aproximada de primer orden es cos(t). El segundo
término, sin embargo, no es necesariamente pequeno. Para un valor fijo de ¢, el término
tenderd a cero segin € — 0, pero si t es del orden de 1/e o mayor segtin € — 0, entonces
el término (3/8)tsint serd grande. Llamaremos a este término término secular.

La amplitud de la solucién aproximada no puede crecer con el tiempo, puesto que no
seria consistente con la situacién fisica ni con la solucién exacta, que se conoce acotada
para t > 0, segin veremos ahora. Si multiplicamos (2.5) por @ en ambos lados de la
ecuacion tendremos que, para todo t > 0,

wii + tu + euu® = 0,
que puede reescribirse como

d1, 1, 1.,

Integrando la expresién anterior se tiene que

1 1 1
5@2 + 5%2 + 61u4 = C, (27)

siendo C una constante independiente del tiempo, y que en ¢t = 0 debe tomar el valor
1/2+¢/4=(2+¢€)/4. De (2.7) se deduce la siguiente desigualdad

1 2+e¢
—u(t)? < t>0
Sl < 22
con lo que
2
u(t) < ;ﬂ t>0

y por tanto, la solucién de (2.6) estard acotada para todo t > 0.

En la aproximacién, la correccién no puede ser arbitrariamente pequena para t €
(0, 00) escogiendo € suficientemente pequenio. Tampoco es posible mejorar la solucién
calculando términos adicionales de mayor orden ya que estos tendran también términos
seculares que no cancelaran los efectos de los términos de orden inferior. Por tanto, esta
aproximacién es solo vélida en un intervalo finito [0, 7], donde el término de correccién
se puede hacer arbitrariamente pequeno escogiendo un e suficientemente pequeno.

14



2.3. El método de Poincaré-Lindstedt

En situaciones como la anterior, en las que el método de perturbacién regular no
es aplicable para todos los intervalos de tiempo, se recurre al método de Poincaré-
Lindstedt, una técnica para aproximar uniformemente principalmente soluciones casi
periddicas a ecuaciones diferenciales ordinarias, cuando fallan los enfoques de perturba-
cion regulares. La clave esta en darse cuenta de que el método de perturbacion regular
no solo estropea la amplitud de la oscilacién a tiempos largos sino también el propio
periodo de oscilacién.

El método se basa en redefinir la escala de tiempos para la serie de perturbacion.
En particular, se considera entonces

u(T) = up(7) + eur (1) + Eug(t) + ..., (2.8)
donde
T =wt
con
w=1+ew; + wy + ... . (2.9)

Escogemos que wy sea la unidad, la frecuencia de la solucion del problema sin perturbar.
Podemos entonces reescribir el problema de valor inicial del ejemplo anterior (2.5) como

wu +u+eud =0, 7>0, (2.10)
u(0) =1, '(0)=0.

donde u = u(71) y la derivada es respecto a 7. Sustituyendo (2.8) y (2.9) en (2.10),
obtenemos

(1 + 2ewy + ...)(ug + euf +...) + (up + euy +...) + €(uf + 3euguy +...) =0,

up(0) + eup (0) + ... = 1, uy(0) + euy (0) + ... = 0.
Agrupando entonces coeficientes en potencias de €, resulta

/
0
u +uy = —2wyuy —uy,  ui(0) =4} (0) =0, ... (2.12)

La solucion de (2.11) es
up(7) = cos(T),

luego la ecuacion diferencial en (2.12) se convierte en

1
u +uy = 2w, cos(7) — cos®(7) = (2w, — Z) cos(T) — 1003(37). (2.13)

Como cos(7) es solucién de la ecuacién homogénea, el término cos(7) en la parte derecha
de la ecuacién nos lleva a una solucién particular con un término Tcos(7), que es un
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término secular. La clave es que podemos evitar el término secular escogiendo w; = 3/8.
De esta manera, la ecuacién (2.13) queda reducida a

1
uf +up = —= cos(37),
4
que tiene como solucién general

1
u1(T) = ¢1 co8(T) + ¢ sin(7) + D) cos(37).

La condicién inicial en u; conduce a

uy(7) cos(37) — cos(7)),

:3_2(

luego, una solucién perturbada de primer orden uniformemente vélida para (2.5) serd
1
u(7) = cos(T) + EE(COS(BT) —cos(T)) + ...

donde 7 =t + get + ..
En general, el método de Poincaré-Lindstedt funciona con éxito cuando tratamos
con ecuaciones de la forma

u” +wiu = eF(t,u,u'), 0<e<<l1.

Estos son problemas cuyo término principal es oscilatorio con frecuencia wy. Bésica-
mente, la técnica consiste en cambiar las variables a unas con diferente frecuencia
7 = (wo + wie + ...)t y suponer que u = u(7) es una serie de perturbaciones en e.
Las constantes wg, wy, .... se escogen en cada paso para evitar términos seculares en el
desarrollo.

Ejemplo 2.3.1 En este ejemplo utilizaremos el método de Poincaré-Lindstedt para
obtener una aproximacion perturbada de 2 términos del siguiente problema:

y'+y=eyy? y(0)=1, y(0)=0.
Asumimos que la solucién podria escribirse de la forma
u(T) = ug(7) + eur (1) + Eug(r) + ...

y definimos la frecuencia como w = wq + ew; + €2wy + ... donde wy es la frecuencia del
sistema sin perturbar (wy = 1). Haremos un cambio de variable, 7 = wt, de manera
que al derivar respecto de t

4a_.,9

dt  dr’
2 , d?
az~ Vare

Y por tanto nuestra ecuacion diferencial inicial pasa a ser
w?u” +u = eu(w?u’?).
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Desarrollando u(7) y agrupando en potencias de € obtendremos las siguientes ex-
presiones de ug, U1, ....

(14 ewy + Ewq + ...)* (ug + euf + Eul + ....) + (ug + euy + ug + ...)
= e(up + euy + Euy + .. ) (14 ewy + Ewy + ... () + euy + Euly + ...)%,

lo que implica que ugy y u; deben cumplir
"
Uy +up =0,
" . 2 "
Uy + U = Uply — 2w y.
Teniendo en cuenta que ug(t) = cos(t), la ecuacién para u; queda

1 1
u+u; = 2wy cos(7)+cos(7) sin?(7) = (2w, +1) cos(7)—cos (1) = (2w1—|—4—1) (:05(7')—4—1 cos(37).

Notemos que el valor de wy que nos permite eliminar el término secular es w; = —1/8
y para obtener u; tenemos que resolver

uf +up = _411 cos(37).
La solucion homogénea para este problema tiene la forma
u1p (1) = Acos(t) + Bsin(1),
y buscaremos una solucién particular que tenga la forma
uy,(7) = C'sin(37) + D cos(37).

Derivando esta expresion y sustituyendo

(=9C + C)sin(37) + (=9D + D) cos(371)) = —i cos(37),

y agrupando términos se tiene que D = 1/32 y C' = 0. Por tanto, la solucién particular
tendra la forma

1
Uy (7) = 3 cos(37).

La solucion general para u; sera la suma de la solucién homogénea y la solucién parti-
cular

uy(t) = Acos(t) + Bsin(7) + 3% cos(37).

Imponiendo las condiciones iniciales, resulta que A = —1/32 y B = 0, luego la solucién
aproximada de primer orden sera

uq(T) = cos(T) + 6(3—2 cos(371) — 3 cos(T))
conT=1t—€t/8+...
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Capitulo 3

Perturbacion singular

Un problema de perturbacién regular P.(y.) = 0 depende del pardmetro € de tal
manera que su solucién y.(t) converge cuando € — 0 (uniformemente con respecto a la
variable independiente t en el dominio relevante) a la solucién yo(t) del problema limi-
te Po(yo) = 0. Un ejemplo de este tipo de problema es el sistema masa-resorte en un
intervalo de tiempo finito visto anteriormente. El pardmetro ¢ generalmente representa
la influencia de muchos factores fisicos casi despreciables. Por lo general, prestamos
especial atencién a los problemas de valor en la frontera donde P, esta definido por
operadores diferenciales y condiciones de frontera, aunque también se pueden estudiar
ecuaciones integrales, operadores de otro tipo o condiciones auxiliares mas globales.
Bajo la suposicién de suficiente regularidad, la solucion de un problema de perturba-
cion regular puede aproximarse mediante un desarrollo en potencias de €, cuyo término
principal (o limite asintético) es yo.

Una perturbacién singular se dice que ocurre siempre que el limite de la perturba-
cién regular y.(t) — yo(t) falla. Tipicamente esto ocurre en intervalos cortos de tiempo
o espacio (dependiendo de lo que represente la variable independiente) [10], aunque
también son comunes los problemas seculares con comportamiento no uniforme en el
infinito, como vimos en el caso del oscilador arménico.

Una posible definicién de este tipo de problemas es la siguiente [9]:

Definicién 3.1. En términos generales, un sistema en el que la supresiéon de pe-
quenos parametros es responsable de la degeneracion de la dimension se denomina un
sistema de perturbacién singular. Es decir, un problema descrito por una ecuacién di-
ferencial que involucra un pequeno parametro € se llama un problema de perturbacion
singular si el orden de la ecuacién diferencial se vuelve menor para e = 0 que para € # 0.

Para comprender mejor el concepto de perturbacion singular consideraremos un pro-
blema algebraico simple.

Ejemplo 3.1 Consideremos la ecuacién cuadratica
e’ +2r+1=0, 0<e<<l. (3.1)

Esta ecuacién podria resolverse de forma exacta, pero nuestro objetivo es ilustrar cuando

18



el método de perturbacion regular falla. La ecuacién sin perturbar sera
20 +1=0,

que tiene como soluciéon z = —1/2. Vemos que el problema sin perturbar, lineal, es
distinto del problema original, que es cuadratico. Aplicamos el método de perturbacion
regular sustituyendo la serie

2
T =g+ T1€+ To€™ + ...,

agrupando por potencias de € tenemos las siguientes ecuaciones

2$0 +1= 0,
22+ 2z, =0,
2.%'1[1/’0 + 2[)’22 =0...
luego xp = —1/2, x; = —1/8, 5 = —1/16... Por tanto, la solucién perturbada es
11 1,
T=—=——€— —€ — ...
2 8 16

Notemos que solo hemos obtenido una de las dos soluciones de la ecuacion cuadratica.
La perturbacion regular supone que el término principal es del orden de la unidad, luego
cabe esperar que solo obtenga una raiz, también del orden de la unidad. La otra raiz
podria ser de un orden diferente, ya sea grande o pequeno. Para encontrar la segunda
raiz debemos examinar los tres términos de la ecuacién mas detalladamente. Cuando
eliminamos el término ez? se tiene una raiz cercana a * = —1/2, y en este caso, el
término ex? es pequeilo comparado con 2z y 1. Para conseguir la segunda rafz, ex?
puede no ser pequeno, por ejemplo si x es muy grande. Para despreciar algin término
de la ecuacion y hacer una simplificacion existen dos opciones:

» ez? y 1 son del mismo orden, luego 2z >> 1.

En este caso tenemos que z =~ 1/y/e. Por tanto, tomando el cambio de variable
y = y/ex, obtendriamos la siguiente ecuacién

2
y:+ ey +1=0. (3.2)

Ve

Luego, si € — 0 se tiene que y = 0, por lo que no podriamos obtener una posible
solucién.

» ez? y 22 son del mismo orden, grandes comparados con la unidad.

Consideremos la nueva variable y que definiremos como

x
= — =ex,

Y7 /e

y con este cambio de variable en (3.1) se tiene

Y +2y+e=0. (3.3)
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De nuevo, consideremos la serie
Yy = Yo+ i€+ Yo’ + ..
y sustituyendo en (3.3) se obtiene

Yo + 20 = 0,
2Yoy1 + 21 +1 =0, ...

luego yo = —2, y1 = 1/2, y por tanto

1
= -2+ —
Y + 2€—|— ,
o en términos de x 5 1

como segunda raiz de la ecuacion. En resumen, las dos raices son de érdenes distintos y
con un solo desarrollo no podemos obtener ambas. El razonamiento que usamos en este
ejemplo se llama balance dominante, donde examinamos cada término y determinamos
el balance de las posibles combinaciones. En las siguientes secciones veremos que este
tipo de argumentos podemos aplicarlos también a ecuaciones diferenciales.

3.1. Problema de contorno

El problema que estudiaremos es

ef/ +2y +2y=0, 0<z<l, (3.4)
y(0)=0, y(1)=1.

Vemos de nuevo en este caso que si € = 0, el problema ya no es de segundo orden. Esto
conduce a un problema de perturbacién singular, aunque la singularidad puede ocurrir
por otras razones. Para construir una aproximacién de primer orden de la solucién para
un € pequeno, procederemos en cuatro pasos.

3.1.1. Aproximacion exterior y analisis de condiciones de con-
torno

Comenzaremos calculando la aproximacién externa para el problema (3.4). Asumi-
remos que la solucién se puede expresar como una serie de potencias de €, es decir

y(x) = yo(z) + eyr (z) + ... (3.5)
Sustituyendo en (3.4) se obtiene
e(yo +eyi +...) +2(yo teyr +...) +2(yo teyr +...) = 0.
Por tanto, la solucion de orden principal debe cumplir

y6+y0:0a
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con lo que ¥, tendra la siguiente expresion
yo(x) = ae™™, (3.6)

donde a es una constante arbitraria. Notemos que en la solucién (3.6) solo hay una
constante arbitraria pero dos condiciones que cumplir correspondientes ax =0y z = 1,
lo que significa que la solucién (3.6) y el desarrollo (3.5) son incapaces de describir la
solucion en todo el intervalo 0 < x < 1. En este momento, no sabemos qué condicion de
contorno, si es que hay alguna, debe satisfacer yo(x), y la determinacién de esto tendra
que hacerse mas adelante.

Es razonable asumir como hip6tesis que la ecuacion (3.6) describe la solucién en la
mayor parte del intervalo, pero existe una capa limite en x = 0 o x = 1, donde debe
utilizarse una aproximacién diferente. Dado que vamos a determinar aproximaciones
de la solucién en diferentes regiones, nos referiremos a la ecuacién (3.6) como el primer
término en el desarrollo de la solucion externa.

3.1.2. Aproximacion interior

Para analizar el comportamiento de la solucién en la aproximacién interior, supon-
gamos que existen cambios significativos en y para intervalos de x muy pequenos, lo
que sugiere cambiar la escala de la longitud en un orden en funcién de e. El cambio de
variable que utilizaremos es

x
r = 6_047 (37)

donde o > 0. A partir de este cambio de variable y aplicando la regla de la cadena
tendremos

d drd 1d

dr — dedt e dz
Consideramos Y (Z), que denota la solucién del problema usando el cambio de variable
para la capa limite. Por tanto, (3.4) se escribird como

d*y ay
1-2a ~ 2 —a " 2V = 0 3.8
‘ dz? e dz * ’ (38)
donde
Y (0) = 0.
Hemos incluido la condicién inicial de y(0) = 0 porque la capa limite estd en extremo

izquierdo del intervalo.
El desarrollo de la solucién aproximada de la capa limite sera entonces

Y(Z) = Yo(Z) 4+ €Y1(Z)...

donde v > 0. Ahora tendremos que encontrar el balance correcto entre los términos
de la expresién anterior para encontrar cuanto vale . Supongamos que el primer y el
segundo término de (3.8) son aproximadamente del mismo orden mientras que el tercer
término es de un orden superior. Esto implica que 1 — 2a = —a, luego a@ = 1. En este
caso tendriamos que el primer y segundo término son O(1/¢) mientras que el tercero es

0(1).
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Tenemos el siguiente problema a resolver

Yy +2Y, =0, 0<Z< o0,
¥5(0) = 0.

La solucion general para este problema es
Yo(7) = A(1 — ), (3.9)

donde A es una constante. El desarrollo de la capa limite en la ecuacién (3.8) estd
destinada a describir la solucién en un entorno de z = 0. Por lo tanto, podemos esperar
que la solucién externa (3.6) se aplique en el resto del intervalo. Esto significa que
la solucion externa debe satisfacer la condicién de contorno en x = 1. Al imponer la
condiciéon de contorno derecha para la soluciéon externa se obtiene

yo(x) =e

Si suponemos que el primer y tercer término de (3.8) son del mismo orden entonces
a =1/2, y la ecuacién quedaria como

dYy
— =0, Yy,=0.
dz r 0

por tanto, la solucién general para este problema seria Yy = 0.

3.1.3. Matching

La clave ahora es que tanto la capa interna como la externa son aproximaciones
de la misma funcion. Por lo tanto, en la regiéon de transicion entre las capas interna
y externa, deberiamos esperar que ambos desarrollos den el mismo resultado. Esto se
logra al exigir que el valor de Yy cuando se sale de la capa limite (es decir, cuando
T — 00) sea igual al valor de y, al entrar en la capa limite (es decir, cuando z — 0).
En otras palabras, requerimos que:

lim Yy (Z) = lim yo(z). (3.10)
T—00 z—0
De esta condicion, considerando la aproximacién (3.9), obtenemos que A = e. Sustitu-

yendo en (3.9) se tiene que
Yo(7) = e — e 7.

En el caso de suponer que el primer y tercer término son del mismo orden vemos que
no es posible hacer cumplir la condicién de matching, ya que la solucién en la capa
externa no serd nula cuando z — 0. Por tanto, el balance correcto es el considerado en
la primera opcién. Asi quedan descritas las capas interna y externa. El tltimo paso con-
sistird en combinar ambas en una sola expresiéon. A menudo utilizaremos la condicion
(3.10), aunque es importante notar que su aplicabilidad es limitada y, para problemas
mas complejos se requiere un procedimiento mas sofisticado.
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Figura 3.1: Esquema de las regiones interna y externa y sus aproximaciones

3.1.4. Aproximacion uniforme

Nuestra descripcion de la solucion consta de dos partes: una que se aplica cerca de
x = 0 y otra que funciona en el resto del intervalo. Debido a que ninguna de estas
soluciones puede usarse en todo el intervalo, no son validas de forma uniforme para
0 <z < 1. Ahora nos preguntamos si es posible combinarlas para producir una aproxi-
macién uniforme, es decir, una que funcione en todo el intervalo. Superponiendo ambas
soluciones y restando la constante comtun en la zona de solapamiento, que tendra el
valor 5}1—>IIC>10 Yo(Z) o 91613(1) yo(x), construimos una solucién aproximada vélida para todo el

intervalo. El hecho de que sean iguales es una consecuencia de la condicién (3.10).

El resultado de la aproximacion uniforme, que representara el comportamiento de
la solucién en las dos regiones definidas, sera

yo(z) + Yo(z/€) — yo(0) = ' — ol—2u/c

Notemos que satisface exactamente la condicién de contorno en x = 0, pero lade x = 1
solo se cumple de forma asintética. Esto no es particularmente preocupante, ya que el
desarrollo también satisface la ecuacion diferencial en un sentido asintético.

A continuacion describiremos un procedimiento general para abordar un problema
de perturbacién singular como es el caso del ejemplo anterior.

3.2. Procedimientos generales

Hemos visto en el ejemplo anterior que la capa limite tenia lugar en z = 0. En
general, las capas limite pueden ocurrir en cualquier punto del intervalo; de hecho,
pueden darse muiltiples capas limite en el mismo problema.

Al resolver un problema, se debe asumir inicialmente una capa limite en z = 0 (o en
el extremo izquierdo) y luego proceder. Si la hipdtesis es incorrecta, el procedimiento
fallara al intentar igualar las aproximaciones internas y externas. En este caso supon-
dremos que una capa limite estd en el extremo derecho. El andlisis es exactamente el
mismo, pero la transformacién de escala para definir la variable interna en la capa limite
del extremo derecho se convierte en
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. To— X
g - 5(6) )
donde x = zq es el extremo derecho del intervalo, e Y (£) = y(zo —d(€)€). Segun la regla
de la cadena, las derivadas podran escribirse como sigue
dy 1 dYy  d?* 1 A’y

dr~ GO dE A SR de
La condicién que impondremos entre las capas limites es

lim Y5(¢) = lim yo(x). (3.11)
£—00 T—T0
Es decir, el limite de la solucién interna (a medida que la variable interna sale de la
capa limite) es igual al limite de la solucién externa (a medida que la variable externa
entra en la capa limite).

Ademas, aunque los ejemplos anteriores muestran una anchura de capa limite de
d(€) = €, este no es siempre el caso. Solo hemos igualado las aproximaciones de orden
principal de las soluciones interna y externa. Los procedimientos de igualacién refinados
pueden incluir igualar los términos de mayor orden en los desarrollos. La existencia de
un dominio de solapamiento implica que el desarrollo interno de la solucién externa de-

be, hasta érdenes apropiados, coincidir con el desarrollo externo de la solucién interna
[12].

Finalmente, senalamos que este método no es una técnica universal. Para ciertos
problemas este procedimiento funciona, pero en otros casos se deben hacer cambios sig-
nificativos. La perturbacion singular es un campo de investigacion actual en Matematica
Aplicada y solo existe una teoria rigurosa para cierto tipo de ecuaciones diferenciales.
Nos centraremos por el momento en este resultado relativo a ecuaciones lineales con
coeficientes variables [8].

Teorema 4.4.1 Consideramos el problema de contorno

e/ +px)y +qz)y=0, 0<z<1l, 0<e<<lI, (3.12)
y(0) =a, y(1)=1, (3.13)

donde p(x) y g(x) son funciones continuas en 0 < z < 1 con p(x) > 0. Entonces existen
capas limite en x = 0 con aproximaciones interna y externa que vienen dadas por

Yo%) = G+ (a = Cr)e O (3.14)

Yo(z) = bexp (/x1 %ds) : (3.15)

Cy = bexp </01 %ds) . (3.16)
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Demostraremos que la hipétesis sobre una capa limite en z = 0 es consistente y que
da lugar a las aproximaciones descritas anteriormente. Si la capa limite se encuentra en
x = 0, entonces la solucién externa yo(x) satisface que

p(@)yo + q(x)yo =0

y la condicién yo(1) = b. Dado que p(x) > 0 para 0 < x < 1 podemos dividir ambos
lados de la ecuacién y obtendremos

Por tanto,

yo(r)  qlz)

yo(z)  plx)

Integrando ambos lados de la igualdad y tomando exponenciales se tiene

“q(s)
In (yo(x :—/ ——ds+C
W) == J, )
luego la solucion tendré la siguiente expresion
_ “q(s)
yo(z) =Kexp|— [ —=ds]. (3.17)
0

p(s)

Aplicando la condicién de contorno yy(1) = b, tenemos que

b:Kexp(—/Olz%ds),
K:bexp(/;]%ds)

y sustituyendo la expresiéon de K en (3.17) se tiene

) oo [ 2a5)

que coincide con la expresién de (3.15). En la capa limite introduciremos la variable &
definida por £ = x/d(¢€), donde d(€) se debe determinar. Si Y (§) = y(d(¢)€), la ecuacién
diferencial pasa a ser

lo cual implica que

€ v PO(E) _
5(6)21/ + 5e) Y '+ q(6(e))Y = 0. (3.18)

Cuando £ — 07, los coeficientes se comportan como

~—

0
e o 1O




Haciendo balance entre los coeficientes de los dos primeros términos, €/5(e)? ~ p(0)/d(e),
y por tanto la capa limite tendra un espesor de 6(¢) = O(¢). Tomando §(e) = ¢, (3.18)
puede reescribirse como

Y" 4+ p(e€)Y' + eq(e€)Y =0,

cuyo término de orden principal es
Yy +p(0)Yy =0,

y su solucion general es

Yo(€) = Cy + Coe P8,

Aplicando la primera condiciéon de contorno, se tiene que Cy = a— C y la aproximacion

interna es "
Yo(2) = C1 + (a — Cy)e PO/e,
€

Para unir las dos aproximaciones, introduciremos la variable intermedia n = z/+/e. El
matching (3.10) implica entonces

lfm Yy

o
lim %)—g&ya(\/@n), (3.19)

o lo que es lo mismo

1
) o e—POVE) _ a(s)
615& ((jl + (a — CY)e > elg& (b exp (/\/€77 p(s)ds )

Cy = bexp (/Olz%ds),

y por tanto la aproximacién interna viene dada por (3.14) y (3.16), como queriamos
demostrar. O

con lo que

Una aproximacion compuesta uniforme vendra dada por

p(0)z

Yu(z) = yo(x) + Yo(%) —Cy =yolz) + (a—Cye™

3.3. Capas multiples

En esta seccion, aplicaremos las ideas anteriores y las ampliaremos a problemas
mas complicados. A continuacion estudiaremos qué sucede cuando hay multiples capas
limite. Para ello vamos a considerar el siguiente problema donde tendremos una capa
limite en cada uno de los extremos del intervalo [5]

&y +ery —y=—e" para 0<ux<]I, (3.20)

donde
y(0)=2, e y(1)=1.
Vemos que en este caso los coeficientes de la ecuacion dependen de x. Las multiples

capas limites no son debidas a esto, pero como veremos, esto resulta en diferentes
ecuaciones para cada capa.
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3.3.1. Solucién de orden principal

Supongamos que la soluciéon de este problema tiene la forma

y(@) = yo(@) + eyi(@) + *ya(2).

Al sustituir esta expresion en la ecuacion (3.20), se tiene que la solucién de orden
principal es
yo(z) = €”. (3.21)

Es evidente que esta funcién es incapaz de satisfacer ninguna de las condiciones de
contorno del problema, lo cual indica que tenemos una capa limite en cada uno de los
extremos del intervalo.

3.3.2. Capas limite y matching

Comenzaremos estudiando la capa limite en el extremo izquierdo. Considerando la
coordenada T = /€%, podemos reescribir la ecuacién (3.20) de la siguiente forma

+eT——Y = —e ", (3.22)

Notemos que podemos escribir

e =14+ ...

De nuevo, utilizaremos Y (Z) para designar la solucién en la regién de la capa limite.
Tomando o = 1 y utilizando el desarrollo en serie de Y ~ Y3(Z) + ..., obtenemos el
siguiente problema de primer orden

Y -Yo=-1, 0<Z < oo, (3.23)

donde
Yo(0) = 2. (3.24)

Esta ecuacion es una ecuacion diferencial de coeficientes constantes no homogénea cuya
solucion sera la suma de una solucion homogénea y una solucion particular. Dado que
las raices de su polinomio caracteristico son 1, = 1 y r, = —1 la solucion tendra la
forma

}/O(f) ~1+ Alefi + Agei.

Aplicando la condicién Y (0) = 2, tendremos que 2 = 1 + A; + Ay, luego la solucién en
la capa limite tendra la forma

}/()(j) ~1 + Ale_’i + (1 — Al)ei.

Esta solucién debe de cumplir la condicién Yy(oo) = y9(0) = 1 para poder combinarla
con la solucién de orden principal. De esta forma se tiene que A; = 1. Es decir,

Yo(z/e) =1+ e /e, (3.25)
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Para determinar la solucién en la capa limite del extremo derecho, vamos a consi-
derar la siguiente coordenada
r—1
eB

T =

La solucién en esta regién la escribiremos como Y (#). Introduciendo esta variable en
(3.20) y teniendo en cuenta que

dy 1dY &y 14

de  fdi’ dx? €28 di?’

podemos reescribir la ecuacién (3.20) como

d*Y - .
W 4 (14 PR — ¥ = —e T

dz?

oL &
%31|"'<z

Para el caso donde 8 = 1, sustituyendo el desarrollo Y & Y + €Y + ... en la ecuacién
y agrupando en potencias de € obtendremos el siguiente problema

Yi+Y)—Yy=—e, —00<Z<0, (3.26)

donde .

La ecuacién (3.26) tiene al menos un término en comtn, Yo, con la ecuacién del proble-
ma principal (3.20). De nuevo tenemos una ecuacién lineal con coeficientes constantes
no homogénea, cuyas raices de su polinomio caracteristico son 1 = (—1 + \/5) /2y
ry = (=1 —+/5)/2. La solucién general a este problema es

Yo(i) = e + Be"C1HVI/2 L (1 — ¢ — B)P-17VD)/2, (3.27)

La condicién para poder combinar la solucion de la capa limite y la regién de orden
principal es la misma que anteriormente, pero al estar estudiando la region del extremo
derecho podremos expresarla como Y o(—00) = yo(1). Por tanto, de (3.27) se tiene que
B =1 —e. Es decir,

~ z—1 —14+/5

Yo((z—1)/e) =e+ (1 —e)e = = . (3.28)

3.3.3. Aproximacion uniforme

Como vimos en la seccién anterior, el ultimo paso consiste en combinar los tres
desarrollos en una sola expresiéon. La forma de hacerlo es sumar los tres desarrollos y
eliminar las partes comunes. De (3.21), (3.25) y (3.28), el desarrollo de primer orden de
la solucién para el intervalo de estudio es

~ ~ —145)(z—1
Y 2 yo() + Yo(T) — Yo(00) + Yo(F) — Yo(—00) ~ e® + e/ 4 (1 —e)e

En la figura 3.2 podemos ver las capas limites en los extremos del intervalo, la aproxi-
macion de orden principal y como se ajustan ambas funciones segin decrece el valor de
. Para representar la solucién exacta hemos utilizado un cédigo en Matlab basado en
la funcién buvp4e, con tolerancia 10710 utilizado para resolver problemas de contorno.
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2 Comparacién de soluciones, ¢ = 0.1 - Comparacion de soluciones, ¢ = 0.01

Solucién exacta
19 — — -Solucién aproximada

Solucién exacta
12 — — -Solucién aproximada

Figura 3.2: Solucién aproximada por el método de perturbacién singular y la solucién
exacta
3.3.4. Ecuaciones no lineales

A continuacién veremos algunas complicaciones que surgen al usar el método de
perturbacion singular en ecuaciones no lineales. En el caso siguiente la solucion de la
ecuacion no lineal se define de manera implicita

eff +eyf —e¥=—-2—12, 0<uz<l, (3.29)

donde y(0) = 0 e y(1) = 1. La expresién del término de orden principal podemos
obtenerla asumiendo que € =0
e =2+ .

Por tanto, la solucion en esta region es
yo(r) = In(z + 2).

Notemos que esta funcién no cumple ninguna de las dos condiciones de contorno, luego
tenemos una capa limite en cada uno de los extremos del intervalo.

Gréfica de In(x + 2)

In(x +2)

0.5

Figura 3.3: Solucion en la region de orden principal

Para estudiar la capa limite en el extremo izquierdo vamos a considerar la coordena-
da T = x/4/€. Sustituyendo esta coordenada en (3.29) y aplicando la regla de la cadena
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podemos reescribir el problema como

ay? | 1dy .
e ¢ T e

y tomando Y & Yj obtenemos la ecuacién no lineal
" Yo
Yy —e'? = =2,

donde Y;(0) = 0. Multiplicando por Y a ambos lados de la ecuacién e integrando se
tiene, para cierta constante B,

1
5 (Y0)? = B —2Yy + ™.

Luego la expresion para Y es

= +/2(B - 2Y, + e¥0). (3.30)

Asumiremos que Y'(zZ) — 0 cuando Z — oo y que Y (Z) — 4(0) = In(2) cuando
T — o0o. Con estas hipétesis, se tiene que B = 2(1 — In(2)).

Notemos que la solucién en la capa limite aumentard de Yy(0) = 0 a Yy(oo) =
Y0(0) = In(2), luego tomaremos el signo positivo de la derivada. Separando variables en
(3.30) e integrando obtenemos que

Yo ds

0 \/2(B—2s+e%)

= 7. (3.31)

Luego la solucién de orden O(1) para la capa limite Yj viene definida de forma implicita
en funcion de z. Para estudiar la capa limite en el extremo derecho del intervalo, x = 1,
utilizaremos la coordenada & = (x — 1)/4/€ para reescribir (3.29) como

dY/Q 1 dY v -
T2 7?—6 = -3 — /e
Tomando Y = Y, obtenemos la ecuacién no lineal
Yy — Vo — _3.

Anélogamente, suponiendo que Y” (—o0) = 0 tendremos que la solucién en la capa limite
del extremo derecho viene descrita de la siguiente forma implicita

Yo ds

0 2(A—3s+e) -

siendo A = 3(—1 + In(3)) y donde se ha elegido el signo — porque Y o(—o0) = yo(1) =
In(3) e Yo(0) =1

Para obtener una solucion uniforme en todo el intervalo, sumaremos las tres expre-
siones y eliminaremos la parte comun. Luego la solucion descrita de forma implicita
es

y =~ yo(x) + Yo(Z) — 10(0) +Yo(Z) —yo(1) = 111(6@ +2)) + Yo(Z) + Yo(2).
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3.4. Problemas de valor inicial

3.4.1. Problema lineal de valor inicial de primer orden

Consideramos el problema
€ex+x =1,

con x(0) fijo, donde € es un pardmetro pequeno positivo. Podemos anticipar dificultades
a la hora de resolver el problema para cualquier intervalo (0,¢) con ¢ > 0 debido a la
constante de Lipschitz 1/¢, que debe estar acotada para la validez de la mayoria de
las teorias de existencia y unicidad, y que en este caso no estd acotada cuando ¢ — 0.
Notemos que la presencia del parametro ¢ antes de la derivada mas alta en la ecuacion
diferencial, aunque no tiene por qué llevarnos a un problema de perturbacién singular,
es un indicio de la posibilidad de este. Esta ecuacion tiene como solucion

z(t,€) = 1+ (2(0) — 1)e e

Para e < 0y 2(0) # 1 la solucién no estd acotada para e — 0 para cualquier ¢ > 0.
Para € > 0, sin embargo, la solucién tiende a 1 para cualquier ¢ > 0 cuando € — 0. Si
x(0) # 1, entonces z(t, €) tendrd una discontinuidad en ¢t = 0 cuando € — 0 ya que

x(t, €) — {:E(O)’ t=0

1, t>0.

Esto muestra que la convergencia no es uniforme cerca de ¢ = 0. La regién de conver-
gencia no uniforme se dice que tiene un grosor de O(¢). A este intervalo de convergencia
no uniforme lo llamaremos una capa limite.

Es importante observar que la solucién exacta de este problema de perturbacion
singular es la suma de (i) una funcién de la variable independiente t y (ii) una funcién
del tiempo " estirado”

T=-
€

que decae a cero cuando 7 — oco. La solucion exterior sera
X(t,e) =1, (3.32)

que es una solucion regular de la ecuacion diferencial que nos proporciona una solucion
asintética para t > 0, y la correccién de la capa inicial

§(r,e) = e 7(x(0) - 1)

proporciona la convergencia no uniforme en la capa limite cerca de t = 0.

Una técnica alternativa para encontrar una soluciéon aproximada al problema seria
buscar de forma separada una soluciéon para la regién interna, 7 > 0, y otra para la
region externa en t > 0, e igualarlas en el limite de ambas zonas. Buscaremos primero
la solucién interna Z(7,€) = z(t/e, €) con 7 > 0. El problema en la regién interior toma
la siguiente forma

L@, 2(0)=(0), (3.33)
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que para todos los valores de ¢, tiene como solucién
z(r,e) =14 (x(0) — 1)e "

para 7 > 0. En particular notemos que Z(c0, €) = 1. Busquemos una solucién exterior
como solucién regular a
eX+X=1

haciendo uso del desarrollo en serie de potencias
X(te)=> X;(t)e. (3.34)
j=0

Igualando coeficientes de potencias de € en ambos lados de la ecuacion obtenemos que
Xo =1,

y para j > 0 '
X]:_ j71~

Luego X (t) = 0 para cada j > 0, y por tanto la solucién externa serd
X(t,e) = Xo(t) =1, (3.35)

que es constante para t y e.

3.4.2. Sistema masa-resorte amortiguado

El modelo que describe el movimiento de un sistema masa-resorte con amortigua-
miento lineal es
my+ay+ky=0 (3.36)

donde m es la masa, k la constante correspondiente al muelle y a la constante de
amortiguamiento. Suponemos que el desplazamiento en el momento inicial es nulo y
que la masa se pone en movimiento a través de un impulso inicial positivo, I. De esta
forma, las condiciones iniciales son

y(0) =0, my(0) = 1.

Por ser esta una ecuacién lineal con coeficientes constantes homogénea de segundo
orden, sus soluciones dependeran de las raices de su polinomio caracteristico

p(A) =mA +a\+ k=0,

es decir, de los valores

—a++va? —4dmk

2m

\ =
Dependiendo del valor del discriminante a? — 4mk, tendremos tres tipos de oscilaciones:
» Modelo subamortiguado: 4km > a?

» Modelo sobreamortiguado: a? > 4km
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» Modelo criticamente amortiguado: a? = 4km

Consideraremos en este trabajo el caso en el que se tiene una masa de magnitud muy
pequena, con lo que estariamos en el segundo caso de los expuestos anteriormente.
El impulso positivo dado a la masa causard un desplazamiento rapido hasta un valor
maximo, momento en el cual la fuerza del resorte intentara restaurarla a su posicién de
equilibrio. Dado que la masa es pequena, habra muy poca inercia, y por lo tanto, no
oscilard alrededor del equilibrio; el sistema estéd fuertemente sobreamortiguado [11].

_}.x

Y

Figura 3.4: Sistema masa-resorte amortiguado [2].

Comenzaremos por redefinir el problema con el objetivo de hacerlo adimensional.
Las variables independiente y dependiente son t e y respectivamente, cuyas dimensiones
son tiempo 7'y longitud L. Las constantes m, a, k e I tienen las dimensiones

m] =M, [a)=MT", [k=MT? [I|]=MLT

donde M es la dimensién de la masa. Al hacer el balance entre la masa y el amortigua-
miento, la inercia y el término correspondiente al muelle y entre el amortiguamiento y
el muelle, respectivamente, obtenemos tres escalas posibles para el tiempo

m m a
a’ k' k'

Las posibles escalas de longitud son
I I al

o m, T (3.37)

Suponemos que m << 1, y por tanto m/a << 1, \/m/k << 1, I/vVkm >> 1,y
% >> 1. Estas relaciones seran importantes para determinar las escalas apropiadas de
tiempo y longitud, de forma que las variables sean de orden 1.

En la regiéon cercana a t = 0, donde hay un cambio abrupto, esperamos utilizar una
escala de tiempo corta, que definiremos como fase inicial. En general, el problema tiene
las caracteristicas de un problema de perturbaciéon singular, es decir, multiples escalas
de tiempo y un parametro pequeno multiplicando el término de la derivada de mayor
orden. De las escalas de longitud dadas en (3.37), utilizaremos I/a.
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De las escalas de tiempo, solo a/k es del orden de la unidad. Las otras dos son
pequenas, y por tanto una puede ser adecuada en la capa inicial cerca de t = 0. Dado
que m/a depende de la masa y el amortiguamiento, y m/k depende de la masa y el
resorte, supondremos que m/a serda dominante. Esta suposicién se debe a los procesos
dominantes durante las primeras etapas del movimiento: la alta velocidad inicial deberia
influir més en la fuerza de amortiguamiento que en la fuerza debida al muelle. Por tanto
los términos my y ay deberian dominar en la fase inicial, mientras que my debera ser
de un orden pequeno para una fase mas avanzada.

Por tanto, las nuevas variables para el problema adimensional seran

— t

a/k’

Esta escala sera la apropiada para estudiar la fase externa, lejos de la fase inicial alre-
dedor de t = 0. Sustituyendo estas variables en (3.36) se tiene

'+ +y=0, g(0)=0 y €y(0)=1, (3.38)

donde estamos considerando la derivada respecto ¢, y la constante adimensional ¢ =
mk/a? << 1. Tomando € = 0, la solucién de orden principal debe de cumplir
y+y=0,
cuya solucién es .
g() (a = C’6_157

la cual no puede cumplir la condicién inicial. Por tanto, para obtener la solucion en la
fase inicial, vamos a reescalar el problema utilizando las variables

t
= —_— Y — 7'
Sustituyendo en (3.38) se tiene

€ y 1, _ B e B
s gl HY =0 YO =0 V0=t

Tomando 6(€) = € podemos reescribir el problema diferencial como

Y'+Y'+e¥ =0, Y(0)=0, Y'(0)=1.
Suponiendo de nuevo que € = 0, la aproximacién de la fase inicial serd Yy(7) = A+ Be ™.
De la condicién inicial Y (0) = 0 se obtiene que B = —A, y como Y’(0) =1, A= 1. Por
tanto, la aproximacion interna es

Yo(r)=1—¢e".

Ambas soluciones deben cumplir la condicién de matching para conseguir una solucion
uniforme en todo el dominio, es decir,

lim go(f) = lim Yo(7),

34



luego C' = 1. De esta forma tomemos como aproximaciéon a una solucién uniforme en
todo el intervalo de estudio

ﬂu@ = Z?o(f) + YE)(f/G) — eli)%}r y()(t_) — 675— 675/67

que en términos de las variables originales, es

alt) = (e e,
a

En la figura 3.5, se muestra la evolucién del desplazamiento de la masa en funcién
del tiempo. Se observa un cambio abrupto en la capa limite alrededor de ¢ = 0, donde
el desplazamiento alcanza un méaximo. Posteriormente, la masa regresa a su posicion
de equilibrio sin oscilaciones, debido a la baja inercia del sistema. En este caso se ha
utilizado la funcién ode45 para obtener la solucion numérica de la ecuaciéon diferencial,
donde se ha representado el problema adimensional con un € = 0,01.

Comparacion de soluci de la EDO con ¢=0.01

Solucion Exacta
0.9 — — -Solucién Aproximada

Desplazamiento y(t)

0 0.5 1 1.5 2 25 3 35 4 4.5 5
Tiempo t

Figura 3.5: Desplazamiento y frente al tiempo ¢

El diagrama de fases del sistema masa-resorte muestra la relacion entre el despla-
zamiento y(t) (posicién de la masa en el sistema) y la velocidad 3/(¢) (derivada del
desplazamiento). En la figura 3.6 vemos que, para un sistema sobreamortiguado, la
trayectoria es una curva que converge suavemente hacia el punto de equilibrio sin os-
cilaciones. En el caso de un sistema subamortiguado, la trayectoria oscilaria alrededor
del equilibrio antes de estabilizarse.

3.4.3. Problema no lineal de la cinética de las enzimas

En las ecuaciones diferenciales de la cinética quimica es comun que aparezcan
fenomenos de perturbacion singular, ya que las reacciones en cadena a menudo ocu-
rren en escalas de tiempo diferentes. Por ejemplo, puede suceder que algunas sustancias
quimicas intermedias permanezcan durante un breve espacio de tiempo, y las reacciones
que las generan pueden ser ignoradas, lo que conduce a una simplificacion del sistema.
Muchas reacciones en procesos metabodlicos son catalizadas por enzimas. Las enzimas
son proteinas que pueden reaccionar con sustratos moleculares para descomponerlos;
aceleran significativamente la reaccion y reducen la energia de activacion.
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mDDiagrama de Fases del Sistema Masa-Resorte Sobreamortiguado

80
60

40

Velocidad y'(t)

20

-20
0 0.1 02 03 04 05 06 07 08 0.9 1

Desplazamiento y(t)

Figura 3.6: Diagrama de fases de un sistema sobreamortiguado

Una reaccién enzimatica que sirve como modelo para muchos otros procesos biolégi-
cos es la siguiente

k
S+EccRBpyp
—ky

donde S es un sustrato que es convertido de manera irreversible por una enzima E en un
producto P, y también existe un complejo intermedio sustrato-enzima, C. La formacién
del complejo C es una reaccion rapida, y generalmente la concentracion inicial de la
enzima es pequena en comparacion con la del sustrato. Usando la ley de accion de
masas, tomaremos las tasas de reacciéon como proporcionales a las concentraciones de
los reactivos.

Introduciendo s, e, ¢ y p para denotar las concentraciones respectivas de S, E, C y
P, obtenemos el sistema de ecuaciones diferenciales no lineal

( ds

o = —kise +k_ic,

% = —]{?186 + (l{?_l + kg)C,

% = kise — (k_1 + k2)c,

dp
\ dt

= kQCv

donde suponemos que s(0) = sop > 0, e(0) = eg > 0, p(0) = 0y ¢(0) = 0. Como
dle+c)/dt =0y d(s+c+p)/dt =0,

e(t) = eq — c(t)
y
p(t) = s0 — s(t) — c(t),
luego seguimos teniendo un problema de valor inicial para las concentraciones s y ¢

b — —rcos + (hus K-, 5(0) = o

(3.40)
de _ kzlegs - (l{?18 + 1{5_1 + ICQ)C, C(O) =0.

dt
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Suponemos que de/dt = 0, luego ¢ =~ kiegs/(kis + k_1 + ko). Sustituyendo la expresién
de ¢ se tiene

ds ]{?1608 _ —kgkleos

— & —kiegs + (ks + k- - .
i~ ~heos + (s o) S~ e R

Este enfoque de estado cuasi-estacionario fija una de las derivadas del sistema a
cero, pero conserva la otra. Para comprender mejor el comportamiento de la solucion
vamos a reescalar las variables

Sustituyendo las nuevas variables en (3.40) se tiene

Z—f = —kiegTx + (kisor + k)T 2y, 2(0) =1,

Z—f = kysoTx — (k‘150$ + ko + k_l)Ty, y(O) =0.

De estas ecuaciones podemos ver que hay dos posibles formas de escalar el tiempo

1 1
T = — Tr = 7
: k’160’ k1so

cuyos subindices denotan una escala de tiempos lenta y otra rdapida. En este tipo de
reacciones el valor de ej suele ser mucho méas pequeno que sg, habitualmente € = ey/sg ~
10~%. Empezaremos escogiendo la escala de tiempos més lenta, T}, y simplificaremos las
ecuaciones definiendo las siguientes constantes

k_q \ = kf—1+k2.

/1/ = — =
kiso’ k150
Sustituyéndolas en las ecuaciones obtenemos

L — s+ (x+py, =(0)=1

eW=yz—(z+ Ny y(0)=0.

Suele ocurrir que i y A son constantes positivas del orden de la unidad.
El problema de valor inicial para la aproximacién de primer orden sera

Cil—mf = —Iy+ (.’150 + M)yo, .To(()) = 1,

0= Ty — (l’o + /\)yo

Por tanto,
Ty

.2130—|—)\’

Yo
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y obtenemos el problema de valor inicial para x

dx — ANz
=0 u’ 20(0) = 1.
dr To + A
Estas ecuaciones juntas corresponden a la hipotesis de estado cuasiestacionario de Mi-
chaelis y Menten.
La solucién al resolver la ecuacion viene definida de forma implicita como

zo+ Alnxyg = (p— N7+ A.

La funcién g tendrd un comportamiento similar a xy. Ademas el hecho de que yo(0) =
1/(1+ X) # y(0) = 0 muestra que la aproximacién de primer orden no puede describir
la rapida variacién de y alrededor de ¢t = 0. Esto nos sugiere que existe una capa limite
alrededor de t = 0. Consideremos ahora ¢ = 7/e. Notemos que, por la definicién de € y
T se tiene que

7 T t t t t
= - = o e T o — I = —,
€ L S0 kieo so kisg T,

es decir, que este cambio equivale a elegir la escala de tiempos rapida. Las ecuaciones
diferenciales de las nuevas variables que denotaremos por X (f) e Y () son entonces

L —e(— X+ (X+pY), X(0)=1,

L =X—-(X+NY, Y(0)=0.

Por tanto, se tiene que la aproximacion de primer orden es

dXo __
. 0,

0o = Xo — (Xo+ M)Y0,

luego Xy es una constante, en concreto Xy = 1, mientras que

dY:
35:1_Q+n%,3ﬁm:0
La solucion general para esta ecuacién diferencial es
- 1
Yo(f) = Mem 04—
o(®) ‘ AT
Aplicando la condicién inicial tenemos que M = —1/(A + 1) luego la solucién general
en la capa limite es
1 _
o) = 371~ )

De forma similar a los ejemplos anteriores, para obtener una aproximacion valida en
todo el intervalo debemos verificar que las soluciones en ambas regiones cumplen las
siguientes condiciones

lim xo(t) = lim Xo(t), limye(t) = lim Yy(t)
t—0 t—o0

t—0 t—o0
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, o ; zo 1
BT =L N T AT

y por tanto
%irré(xo—l-lnxo%—(u—/\)t—A) =1-A=0,
—

de lo que A=1. La aproximacién uniforme en todo el intervalo serd la suma de la
solucion en la capa limite y la solucion exterior, menos la parte comtun en el limite. De
esta forma tendremos

Ium‘forme@) =x9+ 1-1= )

_ o 1 (1 — e~ OHt/ey _ L @ 1 o~ D)t/e
Atzo A+1 A1 A+z0 A+1
En la figura 3.7 hemos representado la evolucién de la concentracién de sustrato y
complejo a lo largo del tiempo, donde podemos ver que la concentracién del comple-
jo varia rapidamente para valores de tiempo cercanos a cero. En la region de orden
principal podemos ver que decrece exponencialmente segiin crece el tiempo.

Yuniforme (t)

Evolucion del sustrato y el complejo en el tiempo

Sustrato x_(1)
0.9 s
: Complejo yu(t]
0.8
0.7

o
@

o
=

Concentracion
o
(2]

o
w

<
[S]

o

o
(=]

0.5 1 1.5 2 2.5 3 3.5
Tiempo t

Figura 3.7: Concentracién de sustrato y complejo a lo largo del tiempo
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Capitulo 4

Aproximacion WKB

4.1. Introduccion

En el método WKB se parte de una dependencia exponencial como hipdtesis. Esta
es una suposicion razonable, ya que muchos de los problemas estudiados terminaron
teniendo una dependencia exponencial en la coordenada de la capa limite. Ademas, con
esta suposicion el trabajo necesario para encontrar una aproximacién asintética de la
solucién se reduce significativamente.

La popularidad del método WKB se remonta a la década de 1920, con el desarrollo
de la mecénica cuantica. En particular, se utilizé para encontrar soluciones aproximadas
de la ecuacién de Schrodinger. El nombre del método viene de los investigadores que
participaron en su desarrollo: Wentzel, Kramers y Brillouin. Algunos lo llaman el méto-
do de Liouville y Green, dado que ambos publicaron articulos sobre el procedimiento
en 1837.

Ejemplo 4.1.1 Tlustraremos las ideas en las que se basa el método WKB con un
ejemplo ilustrativo [5]. Consideremos el siguiente problema

e’y" — q(x)y = 0. (4.1)

La tnica restriccién que haremos a la funcién ¢(z) es que sea regular. El objetivo
es construir una aproximacién de la solucién general de esta ecuacién. Si ¢(z) fuera
constante se tendria que la solucion general del problema es

y(l’) = aoefx\/a/e + boﬁx\/a/e. (42)

La hipétesis planteada en el método WKB es que la solucién exponencial en (4.2) se
puede generalizar para dar una solucién aproximada de (4.1). Para que esto sea posible
es necesario asegurar que el desarrollo sea lo suficientemente general como para controlar
el coeficiente variable en la ecuacién. La hipdtesis que aplicaremos en este método es
que el desarrollo aproximado de la solucién tenga la siguiente forma

y ~ PO/ (yo(2) + yi () + 2y...). (4.3)

La caracteristica principal del método WKB es que es bastante especifico en cuanto
a como depende la solucion en la capa limite, es decir, se supone que la dependencia
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es exponencial. Esto puede limitar el método pero también lo hace mas sencillo que
los métodos estudiados anteriormente. De (4.3) se tiene la siguiente expresién para la
primera derivada

Yy~ (€7 0yo + yh + 0y + € (YL + 0yo) + .. )",
y la correspondiente ecuacién para la segunda derivada
y// ~ (6720‘(0’)23/0+67°‘(0”y0+20’y6+(9’)2y1)—i—y{{—i—@”yl+29'y’1+9’2y2+...)69/6“, (4.4)

A continuacién sustituimos (4.3) y (4.4) en (4.1) y se tiene

1 / 1 i /! / o
62(627(9 )*yo + e_a(e Yo+ 20'yg + (6')°y1) + ) — q(=)(yo + *pn + ...) = 0. (4.5)

En este paso la exponencial se simplifica. Esto no ocurrirfa si la ecuacion fuera no
lineal. Ahora, agrupando los términos por potencias de € en (4.5) y considerando a = 1
tenemos las siguientes ecuaciones:

» La ecuacién eikonal (0')* = ¢(x), cuyas soluciones son
O(x) = i/ Vq(s)ds. (4.6)

» La ecuacién de transporte 0"yy + 20"y, + (0')%*y1 = q(x)y;. Como 6(x) cumple la
ecuacion eikonal, podemos escribir la ecuacién anterior como

0"yo + 260"y = 0. (4.7)
Dividiendo ambos lados de la ecuacion entre yo y €', en el caso de ser no nulos, se
tiene o . J p
Yo !
—+2==0 = —(In(|6 2—1 =0.
52 = (n(|9')) + 2 Inyol

Integrando y tomando exponenciales
In|0'| + 2yl =C = |0']ys = C,

tendremos que la solucién de yq es
c
Yo\T) = —/—,
(z) T
donde ¢ es una constante arbitraria.

De esta forma tenemos una aproximacion a primer orden de la solucién general de

(4.1)

o) = lata)| Mavexpl—; [ Vi) +hoesn(s [ VaBias), (49

donde ag y by son dos constantes arbitrarias que pueden ser complejas. A partir de (4.8)
vemos que ¢(z) debe ser distinta de cero. Los valores de x donde ¢(z) es cero se llaman
puntos de inflexion, y los discutiremos mas adelante. A partir de esta expresion vemos
que se tienen dos posibles situaciones, dependiendo de si g(z) es estrictamente positiva
0 negativa.

41



4.1.1. El caso oscilatorio

En el caso en el que ¢(z) sea estrictamente negativo, la solucién tendra forma osci-
latoria. Consideramos la ecuaciéon

'y’ + k(x)’y =0, (4.9)

donde k(x) > 0y g(z) = —k(z)?. Para aplicar el método WKB supondremos que la
solucién y(z) puede expresarse de la siguiente forma

y ~ O (yo(x) + eyi () + ...

Como es un caso particular del ejemplo (4.1), obtendremos la ecuacién eikonal (6')? =
—k(z)? cuyas soluciones son

0(z) = + / " ik(s)ds.

Sustituyendo §(z) y g(z) en (4.8), obtenemos la aproximacién WKB a primer orden
de la ecuacion de Schrodinger

ywip(r) = Z}@ exp (z /: k(s)ds) + ;2(37) exp (_z /: k(s)ds) :

Como e = cos() + isin(#), podemos reescribirla en términos de senos y cosenos

ywis(t) = \/%sin (% / xk(s)ds) —i—%cos (% / xk(s)ds). (4.10)

Ejemplo 4.1.2

Para verificar la precisién de el método WKB compararemos la aproximacién con
la solucién exacta suponiendo que ¢(x) = —e**. En este caso,

y e "2 (age " 4 bye™ /) = e (ag cos(Ae®) + fy sin(Ae®)), (4.11)

donde A = e '. Aplicando las condiciones iniciales y(0) = a e y(1) = b tenemos el
siguiente sistema de ecuaciones

y(0) = ag cos(A) + fosin(A) = a
y(1) = e %(ag cos(eX) 4 Bysin(eN)) = b.
Resolviendo este sistema obtenemos que oy y Sy son

asin(eX) — be'/?sin(\) _ be’? cos(A) — acos(eX)
sin(Me — 1)) Y =T ae =)

ap = (4.12)

donde hemos tenido en cuenta que sin(x — y) = sin(z) cos(y) — cos(z) sin(y), luego
sin(eX) cos(A) — cos(eN) sin(\) = sin(A(e — 1)).
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Sustituyendo (4.12) en (4.11) se tiene que

Y~ e [(a Sin(siiz)\_(:e_l/f)s)in()\)) cos(e?) + (b61/2 ;05((;\\26—_&1(;(;8(6/\)) sin()\e””)} :

y agrupando términos concluimos que la soluciéon aproximada puede expresarse como

be'/2sin A(e® — 1) — asin A(e® — e)
~ et/ : 4.1
vm e ( s (e — 1)) ) 413)

Ademas, la ecuacion que estamos estudiando

ey +e*y =0

puede reescribirse, utilizando el cambio de variable z = e* /e = e®\, como

22y dy
@+zd—+zy 0,

donde hemos tenido cuenta que e** = ¢22% y que

,_dy _dyds _dyet _ dy
dr dzdx dz e dz
d  dy o, d?y dy

! s

dx( dz) dz? T

dz’
Por tanto, se tiene una ecuacién de la forma

2y 2y + (22 =0y =0,

es decir, una ecuacion de Bessel con n = 0 cuya solucién exacta es
y(z) = Ado(2) + BYo(2),

donde Jy e Yj son las funciones de Bessel [1, 13] que vienen definidas por

Z )k (z/2)mt v Ya(e) = Jn(z)cos(nm) — J_n(z)'

k' (n+k)! sin(nm)

k=0
En particular, para n = 0, tendremos

— Z 2/2) e Yo(z) = 2 /000 cos(z cosh(6))df

™

y las constantes A y B seran

B bYo(A) — aYp(Xe) B aJo(Ae) — bJy(N)
~ Do(Ae)Yo(A) = Yo(Ae) o(A) T Jo(Ae)Yo(A) — Yo(Ae)Jo(A)

En la figura 4.2 hemos representado en Matlab la solucién exacta, que viene descrita
por las funciones de Bessel, y la solucion aproximada calculada por el método WKB.
Para ello hemos fijado los valores a = 1, b = 0 y ¢ = 0,1. En ella podemos ver que ambas
graficas son indistinguibles, por lo que la soluciéon aproximada se ajusta correctamente
a la solucion exacta.
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4 Comparacién entre solucién exacta y aproximada para ¢=0.1

Solucion exacta

0.8 = = :Solucion WKB

0.6

0.4

0.2

(4]

y(x)

-02

-04

-086

-08

-1

0 0.1 02 03 04 05 06 07 08 09 1
X

Figura 4.1: Solucion exacta descrita con funciones de Bessel y solucién aproximada
calculada con el método WKB

4.1.2. El caso no oscilatorio

Ahora consideraremos el caso en el que g(x) es estrictamente positivo en (4.1). Més
concretamente, q(x) = k(x)? con k(x) > 0.
Aplicando el método WKB, sustituyendo en la ecuacién (4.6) se tiene

0(z) = i/mk(s)ds.

Por tanto, sustituyendo en (4.8),

ywin(w) = \/%exp (% / $k:(s)ds) + Z“(x) exp (—% / zk:(s)ds). (4.14)

4.2. El método WKB para la aproximacién de au-
tovalores grandes y sus autofunciones

Podemos aplicar el método WKB para determinar autovalores grandes para opera-
dores diferenciales simples. Consideramos el siguiente problema de condiciones frontera

v+ M@)y=0, 0<zxz<m y(0)=y(r)=0. (4.15)

siendo ¢(x) > 0. A un nimero A lo llamaremos autovalor del problema de condiciones
frontera (4.15) si existe una solucién no trivial de (4.15) para ese valor particular de
A. Ademas, las correspondientes soluciones no triviales se llaman autofunciones. Para
obtener todos los autovalores definiremos € como € = 1/v/X y k(z) = \/q(z), luego
podemos reescribir la ecuacién (4.15) como

&y’ + k(z)?y = 0. (4.16)

De esta forma podemos aplicar el método WKB para un e pequeno, o lo que es lo
mismo, para valores de A grandes. La solucion de la aproximacion WKB es la dada por
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(4.10), que en nuestro caso se escribe como

ywis(z) = ﬁ ( sin <\/X / ’ mdg) + ¢y c08 (\a / ’ @dg» |

Aplicando las conciones frontera, de y(0) = 0 se tiene que ¢, = 0, y de y(m) = 0 se tiene

- W sin <¢X/Oﬂ \/@dg) = 0.

Como estamos buscando la solucién no trivial, llegamos a la siguiente condicién

sin (ﬁ/oﬂ \/@dg) =0,

que se cumple cuando
VA [ al@de =
0

donde n es un nimero entero. Por tanto los autovalores grandes del problema (4.15)
seran aproximadamente

2
nm
M= (4.17)
(fo Y, C](f)df)
para n grande. Las correspondientes autofunciones seran
y _ a7 Iy Va(&)dé
WKB =
q(x)!* Jo Va(€)dg

En el siguiente ejemplo ilustraremos el procedimiento anterior para obtener autova-
lores grandes de un problema concreto.

Ejemplo 4.2.1 Consideremos el problema de autovalores
y' + Mz +m)y =0, y0)=y(r)=0. (4.18)
Notemos que esta ecuacién es un caso particular de la expresion (4.15) donde
a(z) = (@ + m)*

donde se cumple que g(x) > 0. Sabemos que sus autovalores grandes vendrén definidos

por (4.17) y que
[ vaigas = [[e+npac =T

Por tanto, los autovalores grandes para este problema son aproximadamente

B On?
VTP

y sus correspondientes autofunciones seran

_ (mr(x3 + 32T + 3x7r2)>
sin :

(8]
YWKB = ()11 73
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4.3. Segundo término del desarrollo WKB

Para realizar una estimacién del error cometido al usar (4.8) para aproximar la so-
lucién al problema, calcularemos el término y; del desarrollo (4.3). Agrupando términos
por potencias de € en (4.5), la ecuacién correspondiente a O(e?) es

0"y1 +20'y; + (0)y2 + yg = a()ye.
Sustituyendo la ecuacion eikonal (4.6), la ecuaciéon queda reducida a
20y, + 0"y =~y
Suponiendo que y;(x) = yo(x)w(x), y como " = £,/g, se tiene que
20"yow' = (—26"y) — 0" yo)w — y; .
Podemos ver que esta ecuacion tiene la forma de

dw(x)
dz

= a(z)w(z) + b(x)
cuya solucién sera una solucion homogénea mas una solucién particular. Puesto que la

ecuacion homogénea es
, _29/y6 . 9”310
w=|——p— Y w,
0

o) =cew [ |05 - 5]

1 / — 1\ —
= Cexp(=In(lyol) — 5 W |8']) = Clyo|~ ()2 = C1.

se tiene que

Para determinar la solucién particular, necesitaremos la expresion de y, que es

/! c 3 AN /! AN "
== (-5 @),

luego

_29/y0 2(9/)1/2

B rq 9/// T 3 (9//)2
w(x)—C’1+/ 1(9/)2—/ §<9/>3

Integrando por partes el segundo término obtenemos que

1 0// 1 T ((9”)2 3 T (0//)2
w(z) =d+ 1(9/)2 + Z/ 2 (0)3 - g/ (03"

y(/)/ B %(_%(9/)—5/2(9//)2 + (9/)—3/26///> <_3

Por tanto se tiene que
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por lo que, finalmente

w(z) =d+ i (90,/;2 + é /I ((69/:))3 dx. (4.19)

Teniendo en cuenta la ecuacién eikonal y que 6" = +(1/2)(¢'/+/q(x)) podemos escribir
(4.19) en términos de q

1 q 1 ("1 (¢)? L ¢ 1 [ (¢)
w(z) =d+ 2¢(x)2q(x) ~ 8 / 1@ T S T2 ) g™

Se espera que la aproximacion de primer orden sea una buena aproximacién a la
solucién si ey (r) << yo. Dado que yi(x) = yo(z)w(z), esto ocurrird si |ew(x)| << 1.
De la férmula para w(z) dada por (4.19), podemos expresar esta condicién en términos
de ¢(x) y su primera derivada. En particular, en un intervalo zo < x < x;, tendremos

una buena aproximacién si
1 e
elld+ = 4+/ —ldzr ) | <<1
32 ~ 20 |4

donde |h(x)|s = MaXyy<z<z, |h(2)]. Esto se mantiene si el intervalo de estudio no tiene
puntos de retorno, esto es, puntos donde ¢(x) = 0. La férmula anterior también se
puede usar para determinar cuanto podemos aproximarnos a un punto de retorno antes
de que el desarrollo se vuelva no uniforme.

La solucién general dada en (4.8) y (4.19) contiene constantes que deben deter-
minarse con las condiciones de contorno. El problema principal que surge al usar la
aproximaciéon WKB es que estas constantes pueden depender de €. Entonces es necesa-
rio asegurar que esta dependencia no interfiere con la acotacién supuesta en el desarrollo
de (4.3). Para ilustrar esta situacién, consideramos el siguiente problema de contorno

/

g
R

/

q

2.1 2Kx

ey’ +e™y=0 para 0<z<l1l, reR. (4.20)

Para este caso, como 0" = +ie"*, de (4.19) se tiene que

w(r)=d=+ %e"’“.

Notemos que w(x) no depende de € y estd acotado para z € (0, 1), luego es seguro
podemos obtener una buena aproximacion.
El desarrollo de la aproximacién WKB tomando el segundo término serd de la forma

y = e’ (yo + eyn) = e yo(1 + ew),

donde y; = (d & (ike™**)/8)yo. Sustituyendo

N; ae’ﬂ 1+ a—i—ﬂe”‘“" —i—beﬂ 1+ b—i—i—ﬁe’m
T G\ "B 0 TR |

Un desarrollo de dos términos para la solucién general de (4.20) es por tanto

Y~ e /2 (aOeX (1 + € <a1 — %em)) + byeX (1 +€ (b1 + %e’“))) . (4.21)
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donde ,
X — iemv
K€
y ag ¥ by son constantes a determinar con las condiciones iniciales.

La caracteristica mas importante de la aproximacion WKB es la suposicién de una
dependencia exponencial para una variacion rapida. Al hacer esta suposicién, podemos
calcular la aproximaciéon del primer término de la solucién resolviendo dos ecuaciones
diferenciales de primer orden. La primera, la ecuacién eikonal, es no lineal y determina
la variacién réapida en la solucion. En este caso no fue dificil resolver la ecuacion eikonal
pero puede ser uno de los pasos mas dificiles al utilizar el método WKB. La segunda
ecuacion es la ecuacion de transporte, que determina la variacion lenta. La ecuacion de
transporte es lineal, al igual que las ecuaciones para determinar los términos de orden

superior en el desarrollo.

4.4. Ecuacion de Schrodinger

Veamos ahora cémo aparecieron en Mecanica Cudntica ecuaciones del tipo (4.1).
Consideramos una particula de masa m que se mueve en el eje x bajo la influencia
de un potencial V(x). Utilizando el principio de conservacién de la energia

1
mea +V(z)=F,

de donde se obtiene que las érbitas que describe la particula pueden expresarse como

2
/
==+ m(E V(z)).
Estas drbitas seran validas para el dominio de £ > V(z), que llamaremos la regién
clasica.

En 1900 se descubrié que el modelo clasico fallaba a escala atéomica. La teoria
cuantica establece que la particula no tiene una posicién o velocidad definida; postula
una interpretacién estadistica del estado de la particula en términos de una funcién
de onda ¥ (z,t) que es compleja. El médulo al cuadrado de la funcién de onda es la
densidad de probabilidad para la posicién, que es una variable aleatoria X. Por lo tanto,

b
Pria <X <b) = / (. 1) 2da

es la probabilidad de que una particula esté en el intervalo a < x < b en un tiempo t.
Ademas

/OO [Y(z,t)|dx =1,

(e 9]

porque la particula esta localizada en algin lugar del eje x. La ecuacién que modela la
evolucién de un sistema mecanico cuantico es la ecuacion de Schrodinger, que tiene la
forma

h2
ity = =5 —thow + V (), (4.22)
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donde V es la energia potencial, m es la masa y h = h/(27), donde h = 6,625 -
1073%kgm? /s es la constante de Plank.

Asumiendo que la solucién tiene la forma i(x,t) = y(x)é(t), sustituyendo en (4.22)
y dividiendo por ¢ siempre y cuando se pueda, obtenemos

ih%e _ —%y” + V(z)y

¢ Yy

El lado izquierdo de la ecuacién solo depende de t, mientras que el lado derecho solo
depende de x. La tunica forma en la que esta igualdad puede ocurrir para todo x y
para todo t es que los dos lados de la ecuacién sean igual a la misma constante, que
llamaremos E. De esta forma obtenemos las siguientes dos ecuaciones, una para ¢

do .
@ _(LiE
y la segunda para y(x)
hZ
——y"+ (V(z) — E)y = 0. 4.2
o+ (V) ~ By =0 (4.23)

La ecuacién para el tiempo es la ecuacién periddica de ¢ = Ce *#¥" donde C es una
constante. La ecuacién (4.23), cuya solucién serd la parte espacial de la funcién de onda,
la definiremos como la ecuacion de Schrodinger independiente del tiempo. Ademas se

debe cumplir
| w@pds =1

(e}

para que la solucion este normalizada, es decir, C' = 1. Definimos el parametro ¢ =
h/ V2m << 1, dado que A es muy pequefio. Asi, obtenemos un problema de la forma
(4.1) donde 0 <€ << 1,y ¢q(z) = V(z) — E. Para ¢(x) < 0 la solucién variard
rapidamente de forma oscilatoria, mientras que si ¢(z) > 0 esperamos soluciones que
crezcan y decaigan exponencialmente. Esa region no puede darse en la fisica clésica,
aunque en mecanica cuantica existe una probabilidad no nula de que la particula exista
en esta region.
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4.5. Puntos de inflexion

Como vimos en la seccién 4.1, es necesario evitar los puntos donde ¢(x) se anula.
Para estudiar el comportamiento en estos puntos, supondremos que ¢(z) es una funcién
suave y posee un dnico cero simple en x = z;. Es decir, asumimos que ¢(z;) = 0 y que
su derivada ¢'(z;) # 0. Primero, analizaremos el caso en el que solo hay un punto de
inflexion.

4.5.1. Caso donde ¢'(z;) >0

En este caso asumiremos que solo existe un punto de inflexién z;, con ¢(x) > 0 si
x> x;y q(r) < 0sixz < x;. Esto significa que la solucién de (4.1) serd oscilatoria si
x < x; y exponencial para x > x;.

Podemos usar la aproximacion WKB a ambos lados del punto de inflexién. De esta
forma tendremos la siguiente solucion general

{ yr(x) siz<a,
y~ -
yp(x) six; <.

donde

(o) ~ o (apen(- | Vs + e [ Vi) (a2

yi(z) ~ W <a]exp(—£/; \/T(s)ds)—kb[exp(é / \/T(s)ds)). (4.25)

Estas expresiones provienen de (4.8) donde hemos fijado uno de los extremos en las
integrales en el punto de inflexién. Notemos que los coeficientes en (4.24) y (4.25) no
son independientes, por lo que debemos determinar como estan relacionados. Para ello,
analizaremos lo que ocurre en una capa de transicién centrada en x = x;. Después del
analisis, la aproximacién de la solucion general contendra solo dos constantes arbitrarias
en lugar de las cuatro.

4.5.2. Solucién en la capa de transicion
Para determinar la solucién cerca del punto de inflexién introduciremos la variable

r — T
eb

T =

o lo que es lo mismo
r=x; + Az

Dado que conocemos el punto z;, solo debemos determinar el valor de 8. Utilizando el
desarrollo de Taylor

q(z; + €°7) = q(z;) + 2 (x;) + ... = Lxq (x;) + ...
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supondremos que ¢(x) tiene un cero simple en z;, luego ¢'(z;) # 0. Si definimos Y (z)
como la solucion en esta capa, tenemos

&2y — (Prg () +...)Y = 0. (4.26)
luego si 2 — 23 = 3, entonces [ = % El desarrollo para la solucién en esta capa es

Y =Y+ ... (4.27)

Sustituyendo en (4.26) obtenemos la siguiente ecuacién
Yy, —z¢'(x;)Yo =0 para—oo < T < 00. (4.28)

Podemos transformar esta ecuacién en una cuyas soluciones conocemos. Considerando
s = (¢'(x;))"/3% obtendremos una ecuacion de Airy, que es

d2
@YE)—SK)—O para — oo < s < 00.

Esta ecuacién se puede resolver utilizando desarrollos en series de potencias o la trans-
formada de Fourier. La solucién general puede escribirse como

Yy = aAi(s) + bBi(s), (4.29)

donde a y b son constantes arbitrarias y Ai(-) y Bi(-) son funciones de Airy de primer
y segundo tipo, respectivamente, dadas por [5]

k+1\ . |27 /3, \k
Ai(z) 32/37TZ/€' ( )sm{?(/ﬂ—l—l)] (3°x)

Bi(x) = ™/ Ai(xe®>™/3) 4 /0 Aj(xe=2m/3),

En la figura 4.2 hemos representado las funciones de Airy de primer y segundo tipo.
Las funciones Ai(z) y Bi(z) y sus derivadas al evaluarlas en = 0 toman el valor

Funciones de Airy Ai(x) y Bi(x)

1
1
1
1
1
3 I
1
1
I
1
]

Valor de la funcion
(52
<

Figura 4.2: Funciones de Airy
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=

. _) -7 31/6F<2)
Ai(0) = W?{/ﬁ, Ai'(0) = —Tg,

Bi(0) = V/34i(0), Bi'(0) = —V/3A(0).

Ademas, al integrar estas funciones se cumple que

oo 1 0 9 0
/ Ai(x)dx = 3 / Ai(z)dr = 3 / Bi(z)dx = 0.
0 —00 — 00

Con esto, podemos reescribir la ecuacién (4.28) como
Yo(#) = adil(¢'(x,)/*7)] + bBi[(¢'(x:)'/°T)]. (4.30)

De (4.24), (4.25) y (4.30) tenemos 6 constantes que determinar. Sin embargo, dado
que (4.30) debe cumplir la condicién de matching con las soluciones externas de (4.24)
y (4.25), existirdn relaciones entre las constantes, lo que nos lleva finalmente a dos
constantes en la solucién general.

4.5.3. Matching

La solucién en la capa de transicion debe cumplir la condicion de matching con la
solucién externa de (4.24) y (4.25). Utilizaremos la siguiente variable intermedia

r — T

T, =

donde 0 < 1 < 2/3. Notemos que las 2 soluciones externas para x > x; contienen los
términos

x ;€ i€y )
e 3/2
/ Vq(s)ds = Vq(s)ds ~ V(s — )¢ (x;)ds = (g, 3
Si definimos el pardmetro r = (¢'(z;))'/3€¢"~%/3x, podemos reescribir la integral anterior
como N )
/ Va(s)ds = Zer®/?
zi 3
Ademsés

(@)™ = Ja(ai) + (2 — 23)q ()| V" = €0/ () /0N,

Para hacer el matching entre la capa de transicién utilizaremos el desarrollo asintéti-
co de las funciones de Airy [5]

)) si x — —o0,

NE

Ai(z) =~ { ez (cos (¢ = §) +m(w)sin (€ —

W@‘C(l —n(x)) si x — oo.

f|m|1/4 (cos (C+ %) +n(z)sin (C+ 7)) siz— —oo,
e (1+ () iz oo
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donde ¢ = 2|r[¥% y n =5/(72().

Para verificar que cumple la condicién de matching en ambos lados del punto de
inflexién, comenzaremos con z; < x. Sustituyendo estos desarrollos en la expresién
(4.29) y considerando que s = (¢'(z,,))*Z y que x, = 7/(e7"2/3) se tiene que

Y & Yo", + . € [adi((q (22,))2T) + bBi((q (x4,))/*7)]

— E'Y a e_%(q/(xi)l/Si)S/Q 1— 5
2/ ((¢'(:)) o) /A 72 2 |(q/ () 2]

RN b 137 1/46%([/(%)1/3@3/2 (1 7.2 : ; 3/2)
q'(x:))?z) 72 3|(¢ ()7
N ae” _2,3/2 be” 2,32
PNV, S

donde se ha tenido en cuenta que

5
1— 5 _3/2—>1 si x — oo.
72 5 (¢ ()37

Para la solucién WKB en (4.24)

c—1/6

yp~ ——— (a e 3" 4 bpes™?).
D (¢ (z;))/6r1/4 D D

Para que estas expresiones cumplan la condiciéon de matching debe suceder que v = —%,

a / 1/6 b, 1/6
2z @)y bo = —=(d (@)

Al hacer cumplir la condicién de matching en < x;, en este caso x,, < 0, lo cual
introduce nimeros complejos en (4.25). De nuevo, utilizando el desarrollo asintético de
las funciones de Airy y que cos(d) = 3(e + e7), se tiene que

ap =

Y~ Yo(q (2:) 23, + ..

ae” s be” s
~~ —\/ﬂTPM cos (C — Z> + —\/ﬂ?"\l/‘l cos (C + Z)
gt /) | i) bt i) | omilCn/a)
G 2 VAT 2
&7

((ae™™* + be™ ") + (ae™* + be ™/ *)e™) (4.31)

BENGEEE
Por otro lado, en la aproximaciéon WKB tendremos

—1/6

yr = (q,<x1>)1/6|r|1/4(a16 + bre). (4.32)
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Haciendo el matching para (4.31) y (4.32) nos lleva a

"NV , (o)) 1/6 A A
a; = (q (xl)) (aem/4 + be—mr/él) y by = (q (xl)) <a6—z7r/4 + bemr/él).

2\/m 2\/m
Sustituyendo las constantes en (4.25) y siendo 6(z) = [ \/|q(s)|ds se tiene

r) — 1 (q'(2:))"/° ae™ 1 he— /4 ax —i@
o) = e (Vg e e e (52

(@)™ ;”321/6 (a4 ey e (12

_ |q($12|1/4 g(GQ’(;&)%” " (a6 4 peinl) (cos <@> _isin <@))
+ (@) <2:i/>f> / (ae™™* + bei™/4) (Cos (@) + isin (@)) )
Como cos(f) = 1(e + e7), se puede escribir como
yr(z) = |q(x1)|1/4 (q/(;ii/)g)l/ﬁ (acos (@) 2 cos (%) + bcos (@) 2 cos <%>

+ asin (@) 2sin ()~ bsin (&:")) 2sin (7 )

y como 2sin(z) sin(y) = cos(x—y)—cos(z+y) y 2 cos(z) cos(y) = cos(x—y)+cos(z+y)

= g e () e (04).

Finalmente, la aproximacion WKB uniforme para todo el intervalo podremos escribirla
como

_|_

se tiene

W ((2% cos <%0(I) . %) + by cos (%e(x) + Z)) si z <

—k(x)/e K(z)/e 1.
W(ape + bDe ) S1x; <.

donde

o)~ | " Vs (4.33)
) = [ Vs (4.34)

A continuacién ilustraremos los puntos de inflexiéon con un ejemplo.
Ejemplo 4.4.1 Consideremos el problema
ey —x(2—1)y=0 para—1<z<I, (4.35)
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donde y(—1) = y(1) = 1. En este caso, q(z) = z(2 — z), luego hay un tnico punto de
inflexién simple en = 0 con ¢'(0) = 2. Al resolver las respectivas integrales de (4.33)
y (4.34) obtenemos

0(z) — %(1 N ey %111(1 e+ /2(z =)

k(z) = %(:E —Dvz(2—2)— %arcsin(:c —1)+ %

En las figuras 4.3 y 4.4 se muestra la soluciéon numérica y la solucién aproximada
por el método WKB del problema (4.35). Para representar la solucién numérica hemos
utilizado un cédigo en Matlab basado en la funcién bup4c, con tolerancia 1019 utilizado
para resolver problemas de contorno.

Podemos ver que la solucién calculada por el método WKB se aproxima bien a la
solucién numérica tanto para el caso oscilatorio como para el no oscilatorio. En este
caso se tiene que el punto de inflexién se encuentra en x; = 0, donde se tiene la capa
de transicion definida por las funciones de Airy. En esta regién podemos comprobar de
nuevo que el método WKB se ajusta a la solucién numérica.

Solucion numeérica

y(x)
\_

Figura 4.3: Solucién numérica de (4.35)
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Solucion aproximada del método WKB

x < 0.1
x =01

Capa de transicion |

Figura 4.4: Solucién aproximada por el método WKB de (4.35)
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