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Resumen

Este trabajo estudia el uso de métodos de perturbación para la resolución aproxima-
da de ecuaciones diferenciales dependientes de un pequeño parámetro ϵ. Distinguiremos
los casos de perturbación regular y singular, ilustrados mediante ejemplos clásicos de la
f́ısica como las oscilaciones no lineales, y de la qúımica como la cinética de las enzimas.
En particular, se analiza el método WKB como herramienta para tratar perturbacio-
nes en ecuaciones diferenciales lineales, su aplicación en problemas de valores propios,
el estudio del error de dicho método y su comportamiento en regiones cercanas a los
puntos de inflexión.

Palabras clave: métodos de perturbación, perturbación regular, método de Poincaré-
Lindstedt, perturbación singular, método WKB, ecuaciones diferenciales, capas ĺımite,
aproximación asintótica, puntos de inflexión.
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Abstract

This work examines the use of perturbation methods for the approximate solution of
differential equations depending on a small parameter ϵ. We distinguish between regular
and singular perturbation cases, illustrated with classical examples from physics, such
as nonlinear oscillations, and from chemistry, such as enzyme kinetics. In particular,
the WKB method is analyzed as a tool for handling perturbations in linear differential
equations, with emphasis on its application to eigenvalue problems, the study of its
associated error, and its behavior in regions near turning points.

Keywords: perturbation methods, regular perturbation, Poincaré-Lindstedt method,
singular perturbation, WKB method, differential equations, boundary layers, asymp-
totic approximation, turning points.
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Caṕıtulo 1

Introducción

Existen numerosos problemas en las ciencias aplicadas que constan de ecuaciones
diferenciales que no pueden resolverse exactamente de forma anaĺıtica. Para obtener
una solución, es habitual recurrir a métodos de aproximación y métodos numéricos.
Entre las herramientas más destacadas se encuentran los métodos de perturbación y
el análisis asintótico, especialmente útiles cuando el modelo involucra un parámetro
pequeño, que denotamos por ϵ.

Los métodos de perturbación, utilizados inicialmente por astrónomos para prede-
cir los efectos de pequeñas perturbaciones sobre los movimientos de cuerpos celestes,
se han convertido hoy en d́ıa en herramientas anaĺıticas ampliamente empleadas en
prácticamente todas las ramas de la ciencia. Un problema es adecuado para el análisis
por perturbación si se aproxima a otro más simple que puede resolverse exactamente.
Generalmente, esta cercańıa se cuantifica mediante la presencia del parámetro ϵ, de
forma que, para ϵ = 0, se tiene un sistema resoluble.

La idea general de estos métodos es construir soluciones en forma de series de po-
tencias en torno a este parámetro. Podemos utilizar los métodos de perturbación para
resolver ecuaciones algebraicas, integrales y ecuaciones diferenciales, en las que centra-
remos este estudio. Estudiaremos dos tipos de perturbaciones: la perturbación regular
y la perturbación singular [4, 3].

En un problema de perturbación regular, un procedimiento directo conduce a un
sistema de ecuaciones diferenciales y condiciones de contorno para cada término de la
serie de potencias. Este sistema puede resolverse de forma recursiva, y la precisión del
resultado mejora conforme el valor de ϵ disminuye, manteniéndose válida la solución
en todo el dominio de interés. Para ilustrar un ejemplo de problema de perturbación
regular, se ha obtenido una solución aproximada para el movimiento de un cuerpo en un
medio con resistencia. También se ha analizado el método Poincaré-Lindstedt, utilizado
para los casos en los que el método de perturbación regular no se puede aplicar en todo
el intervalo.

Por otro lado, en un problema de perturbación singular existen una o varias regiones,
ya sea en la frontera o en el interior del dominio, donde el procedimiento anterior falla.
Esto se debe a menudo a que el parámetro ϵ multiplica a la derivada de mayor orden
en la ecuación diferencial; por ello, la aproximación principal satisface una ecuación de
orden inferior que no puede cumplir con todas las condiciones de contorno impuestas
[6].
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A lo largo de este trabajo se presentarán ejemplos clásicos de perturbación singular,
aplicados tanto a problemas de valor inicial como a problemas con condiciones de con-
torno, detallando el procedimiento general para obtener soluciones aproximadas. Entre
los casos analizados destacan el sistema masa-resorte con amortiguamiento y la cinética
de las enzimas. Además, se han abordado ejemplos que presentan múltiples capas ĺımite
y casos donde la ecuación es no lineal.

La teoŕıa de perturbaciones singulares es un área amplia y en constante desarrollo.
Existen diversos métodos que se utilizan para abordar problemas en este campo. Los
más básicos incluyen desarrollos asintóticos y la aproximación WKB. La teoŕıa WKB
se utiliza para obtener una aproximación global a la solución de una ecuación dife-
rencial lineal perturbada singularmente de cualquier orden. Se aplica en problemas de
autovalores, problemas con condiciones iniciales y problemas de contorno [7].

En este trabajo nos centraremos en la aplicación del método WKB a través de ejem-
plos concretos, diferenciando los dos reǵımenes principales en los que puede aplicarse: el
caso oscilatorio y el caso no oscilatorio. Analizaremos la utilidad del método para obte-
ner aproximaciones de autovalores grandes en problemas de valores propios. Asimismo,
se estudiará el error asociado a la aproximación WKB en función de los parámetros
del problema. Finalmente, abordaremos el comportamiento de la solución aproximada
en presencia de puntos de inflexión, analizando cómo afecta su aparición dentro del
intervalo de estudio.

En este trabajo hemos utilizado conocimientos adquiridos en diversas asignaturas
del grado de matemáticas: ecuaciones diferenciales, cálculo y análisis numérico. La bi-
bliograf́ıa más utilizada ha sido Applied Mathematics [8], Introduction to Perturbation
Methods [5] y Singular Perturbation Methods for Ordinary Differential Equations [10],
textos de referencia fundamentales para el estudio y aplicación de los métodos tratados.
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Caṕıtulo 2

Perturbación regular

Consideramos una ecuación diferencial

F (t, y, y′, y′′, ϵ) = 0, t ∈ I,

donde t es la variable independiente, I es el intervalo de tiempo, e y es la variable
dependiente. La aparición de un parámetro ϵ se muestra expĺıcitamente. En general
tendremos condiciones iniciales o condiciones de frontera junto a la ecuación diferencial.
En este caso, el parámetro ϵ es pequeño, es decir, ϵ << 1.

Por una serie de perturbación entendemos una serie de potencias en ϵ de la forma

y0(t) + ϵy1(t) + ϵ2y2(t) + ...

La base del método de perturbación regular consiste en asumir que la solución
de la ecuación diferencial será de la forma descrita, donde las funciones y0, y1, y2... se
encuentran sustituyendo en la ecuación diferencial. Los primeros términos de esta serie
constituyen una solución aproximada, llamada solución perturbada o aproximación.

De forma general, el método tendrá éxito si la aproximación es uniforme en I. En
muchos problemas, es de especial interés estudiar el comportamiento de las soluciones
cuando ϵ tiende a cero. El término y0 de la serie de perturbación se denomina término
de orden principal. Los términos ϵy1, ϵ

2y2 son términos de corrección de mayor orden.
Si el método funciona, y0 será la solución del problema sin perturbar

F (t, y, y′, y′′, 0) = 0, t ∈ I.

Por tanto, cuando en la ecuación de un modelo aparecen parámetros que son pe-
queños, podemos entender la misma como una ecuación perturbada donde los paráme-
tros pequeños representan perturbaciones o cambios sobre un problema sin perturbar.
La ecuación sin perturbar debe ser siempre resoluble para poder encontrar el compor-
tamiento del término principal.

Ilustraremos la idea básica del método de perturbación con un ejemplo algebraico
simple.

Ejemplo 2.1. Consideramos la ecuación cuadrática

x2 + 2ϵx− 3 = 0, (2.1)

donde ϵ es un parámetro pequeño positivo. Vamos a asumir que la solución del problema
tiene la forma de una serie de perturbación x = x0 + x1ϵ+ x2ϵ

2 + ... Sustituyendo en la
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ecuación tendremos

(x0 + x1ϵ+ x2ϵ
2 + ...)2 + 2ϵ(x0 + x1ϵ+ x2ϵ

2 + ...)− 3 = 0.

Desarrollando los paréntesis y ordenándolos se obtiene

x20 − 3 + 2x0(x1 + 1)ϵ+ (x21 + 2x0x2 + 2x1)ϵ
2 + ... = 0,

e igualando los coeficientes a cero debe cumplirse que

x20 = 3, x1 = −1, x21 + 2x0x2 + 2x1 = 0, ...

Resolviendo, se tiene que

x0 = ±
√
3, x1 = −1, x2 = ± 1

2
√
3
, ...

Por tanto, obtenemos dos soluciones

x =
√
3− ϵ+

1

2
√
3
ϵ2 + ...

x = −
√
3− ϵ− 1

2
√
3
ϵ2 + ...

que son dos aproximaciones perturbadas de tres términos. Podemos comparar la solu-
ción aproximada con la solución exacta de (2.1), que sabemos calcular,

x =
1

2
(−2ϵ±

√
4ϵ2 + 12) = −ϵ±

√
3 + ϵ2.

Desarrollando el radical con la fórmula del binomio,

√
3 + ϵ2 =

√
3(1 +

ϵ2

3
)
1
2 =

√
3(1 +

ϵ2

6
+ ...)

con lo que la solución exacta se puede escribir como

x = ±
√
3− ϵ± 1

2
√
3
ϵ2 + ...

que corresponde a la expresión de la aproximación perturbada de tres términos.
Lo interesante es que podamos llevar a cabo este procedimiento para obtener una

solución aproximada incluso cuando no podamos resolver el problema de forma exacta.
Ejemplo 2.2. En el siguiente ejemplo obtendremos una solución perturbada de dos

términos para la ecuación diferencial

u′ + u =
1

1 + ϵu
,

u(0) = 0, 0 < ϵ << 1.

Partimos de que la solución tiene la forma

u(t) = u0(t) + ϵu1(t) +O(ϵ2),

8



donde u0(t) es la solución sin perturbar y u1(t) la corrección de primer orden.
Para obtener la solución principal debemos resolver la siguiente ecuación

u′0 + u0 = 1,

cuya solución es conocida
u0(t) = 1 + Ce−t.

Aplicando la condición inicial llegamos a que C = −1. Por tanto,

u0(t) = 1− e−t.

Para obtener la corrección de primer orden u1(t) suponemos que la solución tiene la
forma u(t) = u0(t) + ϵu1(t) +O(ϵ2) y sustituimos en la ecuación inicial

u′0 + ϵu′1 + u0 + ϵu1 +O(ϵ2) =
1

1 + ϵu0 +O(ϵ2)
≈ 1− ϵu0 +O(ϵ2).

Dado que u0(t) = 1− e−t, se tiene que debe cumplirse

e−t + ϵu′1 + 1− et + ϵu1 = 1− ϵ(1− e−t).

Por tanto,
u′1 + u1 = −(1− e−t).

Luego u1(t) = −1 + te−t + Ce−t. La solución aproximada de dos términos será

u(t) = u0(t) + ϵu1(t) = 1− e−t + ϵ(−1 + te−t + Ce−t).

Finalmente obtendremos C aplicando la condición inicial u(0) = 0, que implica C = 1,
con lo que

u(t) = u0(t) + ϵu1(t) = 1− e−t + ϵ(−1 + te−t + e−t) (2.2)

En la siguiente figura mostramos la solución exacta y la solución aproximada por el
método de perturbación para dos valores de ϵ distintos, donde se puede ver cómo la
solución aproximada es más cercana a la solución exacta cuanto menor sea ϵ. Para
representar la solución exacta en matlab hemos utilizado la función ode45 con tolerancia
10−6 que utiliza métodos de tipo Runge-Kutta.

Veamos ahora dos ejemplos de aplicación del método de perturbación regular a
problemas diferenciales. En el primero veremos que la aproximación es buena para todo
t > 0, pero no ocurre aśı en el segundo.
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Figura 2.1: Solución aproximada y la solución exacta

2.1. Movimiento en un medio con resistencia

Suponemos un cuerpo de masa m, con velocidad inicial V0, que se mueve linealmente
en un medio que ofrece una fuerza de resistencia de magnitud av− bv2, donde v = v(τ)
es la velocidad del objeto en función del tiempo τ , y a y b son constantes positivas con
b << a. Por tanto, la parte no lineal de la fuerza se supone pequeña en comparación con
el término lineal. Las constantes a y b tienen unidades de fuerza por velocidad y fuerza
por velocidad al cuadrado, respectivamente. Aplicando la segunda ley de Newton, el
problema viene descrito por

m
dv

dτ
= −av + bv2, v(0) = V0.

Primero convertiremos el problema en un problema adimensional. Una posible escala
de la velocidad es V0. Si no apareciera el término no lineal, la velocidad decaeŕıa de la
forma e−

aτ
m , por lo que tendremos como tiempo caracteŕıstico m/a. De esta manera, en

las variables adimensionales
y =

v

V0
, t =

τ
m
a

,

la ecuación del movimiento y la condición inicial quedan escritas como

dy

dt
= −y + ϵy2, t > 0 (2.3)

y(0) = 1, (2.4)

siendo ϵ ≡ bV0/a << 1.
La ecuación (2.3) es una ecuación de Bernoulli. Según se vio en la asignatura ’Ecua-

ciones Diferenciales’ de segundo curso del grado de matemáticas, la forma general de
estas ecuaciones es

a(t)
dy

dt
+ b(t)y = c(t)yn.

Estudiamos que dividiendo la ecuación entre a(t), se tiene

dy

dt
+ P (t)y = Q(t)yn,
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y que dividiendo a continuación entre yn y haciendo el cambio de variable w = y1−n se
obtiene una ecuación diferencial de primer orden. En nuestro caso, n = 2, w = y−1, y
como la ecuación puede escribirse como

1

y2
dy

dt
+

1

y
= ϵ,

tras el cambio de variable se tiene

−dw
dt

+ w = ϵ.

Puesto que la solución es w = ϵ+Cet, y = 1/(ϵ+Cet). Imponiendo entonces la condición
inicial se tiene que

y(0) = 1 =
1

ϵ+ C
,

lo que implica que
C = 1− ϵ.

Sustituyendo el valor de C, tendremos la solución exacta de la ecuación de Bernoulli

yex(t) =
1

ϵ+ (1− ϵ)et
=

e−t

1 + ϵ(e−t − 1)
.

Notemos que (2.3)-(2.4) es una perturbación del problema

dy

dt
= −y, y(0) = 1,

cuya solución es y(t) = e−t. Como ϵ << 1, la función e−t parece una buena aproximación
del problema. La solución exacta puede desarrollarse en una serie de Taylor en potencias
de ϵ como

yex = e−t + ϵ(e−t − e−2t) + ϵ2(e−t − 2e−2t + ϵ−3t) + ...

Para aplicar el método de perturbación en este caso, asumiremos que la solución a
la ecuación del modelo tiene la forma

y = y0(t) + ϵy1(t) + ϵ2y2(t) + ...

Las funciones y0, y1, y2... se pueden determinar sustituyendo en la ecuación diferencial
y la condición inicial, e igualando coeficientes

y′0 + ϵy′1 + ϵ2y′2 + ... = −(y0 + ϵy1 + ϵ2y2 + ...) + ϵ(y0 + ϵy1 + ϵ2y2 + ...)2.

Agrupando coeficientes se obtiene una sucesión de ecuaciones diferenciales lineales

y′0 = −y0,
y′1 = −y1 + y20,

y′2 = −y2 + 2y0y1, ...
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con condiciones iniciales

y0(0) = 1, y1(0) = y2(0) = ... = 0.

Por tanto, tenemos un conjunto recursivo de problemas de valores iniciales lineal para
y0, y1, y2.... Resolvemos recursivamente y obtenemos que

y0(t) = e−t,

y1(t) = e−t − e−2t,

y2(t) = e−t − 2e−t + e−3t, ...

Notemos que y1 y y2 son las correcciones de primer y segundo orden de la aproxi-
mación de primer orden y0(t) = e−t. Por tanto la solución perturbada de tres términos
será

ya(t) = e−t + ϵ(e−t − e−2t) + ϵ2(e−t − 2e−2t + e−3t),

que es una aproximación de yex e incluye los efectos no lineales debidos al término ϵy2

en la ecuación diferencial inicial. En este caso podemos comparar la solución exacta con
la solución aproximada. Para ello, el error cometido en la aproximación vendrá dado
por la diferencia

yex − ya = m1(t)ϵ
3 +m2(t)ϵ

4 + ..., t > 0,

para funciones acotadas m1, m2, ....
Notemos que, para un valor positivo de t dado, el error tiende a cero cuando ϵ→ 0.

Es más, por la forma que tienen las funciones mj(t) (j ≤ 1), se puede probar que la
convergencia es uniforme para 0 ≤ t <∞.

2.2. Oscilaciones no lineales

Consideremos ahora el sistema de masa-resorte donde la masa m se conecta a un
resorte con fuerza de recuperación ky+ay3, donde y es el desplazamiento de la masa, y
k y a son constantes positivas que caracterizan la rigidez del resorte. Supondremos que
la parte no lineal correspondiente a la fuerza de recuperación es pequeña comparada
con la parte lineal, a << k. En este ejemplo la aproximación perturbada solo será válida
si se plantean ciertas restricciones en el intervalo de tiempos del problema a estudiar,
mostrando la necesidad de modificar el método de perturbación regular y desarrollar
un método de perturbación singular.

Supondremos que inicialmente la masa se suelta desde un desplazamiento positivo
A, luego el movimiento vendrá dado por la función y = y(τ) de tiempo τ , que satisface
la segunda ley de Newton

m
d2y

dτ 2
= −ky − ay3, τ > 0,

junto con las condiciones iniciales

y(0) = A,
dy

dτ
(0) = 0.
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Debido al término ay3, el problema no puede resolverse de forma exacta. Como a << k
parece razonable aplicar el método de perturbación. Para analizar el problema correc-
tamente buscamos una escala apropiada de tiempos y longitud que reduzca el problema
a una forma adimensional. Las constantes k, a, m y A tienen dimensiones

[k] =
masa

tiempo2
, [a] =

masa

longitud2tiempo2
, [m] = masa, [A] = longitud.

Para hacer adimensional la variable y utilizaremos la amplitud A del desplazamien-
to inicial. El razonamiento para escalar τ es el siguiente. Si despreciamos el término
ay3, la ecuación diferencial es my′′ = −ky, que tiene soluciones periódicas de la forma
cos(

√
k/mτ) cuyo periodo es 2π

√
m/k. Por lo tanto, elegiremos como tiempo carac-

teŕıstico
√
m/k e introduciremos las variables t y u como

t =
τ√
m/k

, u =
y

A
.

Tras el cambio de variable, la ecuación diferencial y las condiciones iniciales pasan a ser

ü+ u+ ϵu3 = 0, t > 0, (2.5)

u(0) = 1, u̇(0) = 0,

donde ϵ ≡ aA2/k es un parámetro adimensional, muy pequeño si se asume aA2 << k.
La ecuación (2.5) corresponde a la ecuación de Duffing, una ecuación diferencial de
segundo orden no lineal que se utiliza para modelar ciertos osciladores amortiguados y
controlados. Suponemos que la solución tiene la forma u(t) = u0(t) + ϵu1(t) + ϵ2u2(t) +
... donde u0, u1, ... se deben determinar. Sustituyendo en la ecuación diferencial y la
condición inicial, e igualando coeficientes por potencias de ϵ, tendremos la sucesión de
problemas lineales con condiciones iniciales.

ü0 + u0 = 0, u0(0) = 1, u̇0(0) = 0, ...

ü1 + u1 = −u30, u1(0) = 0, u̇1(0) = 0, ...

La solución para el primer problema es u0(t) = cos(t), con lo que el segundo problema
se reescribe de la siguiente forma

ü1 + u1 = − cos3(t), u1(0) = u̇1(0) = 0.

Teniendo en cuenta que cos(3t) = 4 cos3(t) − 3 cos(t), la ecuación diferencial queda de
la siguiente forma

ü1 + u1 = −1

4
(3 cos(t) + cos(3t)),

que puede resolverse por métodos estándar. Es bien conocido que la solución general de
la ecuación homogénea es c1 cos(t)+c2 sin(t) y una solución particular puede encontrarse
por el método de coeficientes indeterminados y es de la forma

up = C cos(3t) +Dt cos(t) + Et sin(t).
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Sustituyendo up en la ecuación diferencial e igualando términos encontramos que C =
1/32, D = 0, E = −3/8 con lo que la solución general es

u1 = c1 cos(t) + c2 sin(t) +
1

32
cos(3t)− 3

8
t sin(t),

e imponiendo la condición inicial a u1 obtenemos

u1 =
1

32
(cos(3t)− cos(t))− 3

8
t sin(t).

Por tanto, la solución aproximada de dos términos toma la forma

ua = cos(t) + ϵ[
1

32
(cos(3t)− cos(t))− 3

8
t sin(t)]. (2.6)

El comportamiento de la solución aproximada de primer orden es cos(t). El segundo
término, sin embargo, no es necesariamente pequeño. Para un valor fijo de t, el término
tenderá a cero según ϵ→ 0, pero si t es del orden de 1/ϵ o mayor según ϵ→ 0, entonces
el término (3/8)t sin t será grande. Llamaremos a este término término secular.

La amplitud de la solución aproximada no puede crecer con el tiempo, puesto que no
seŕıa consistente con la situación f́ısica ni con la solución exacta, que se conoce acotada
para t > 0, según veremos ahora. Si multiplicamos (2.5) por u̇ en ambos lados de la
ecuación tendremos que, para todo t > 0,

u̇ü+ u̇u+ ϵu̇u3 = 0,

que puede reescribirse como

d

dt
(
1

2
u̇2 +

1

2
u2 + ϵ

1

4
u4) = 0.

Integrando la expresión anterior se tiene que

1

2
u̇2 +

1

2
u2 + ϵ

1

4
u4 = C, (2.7)

siendo C una constante independiente del tiempo, y que en t = 0 debe tomar el valor
1/2 + ϵ/4 = (2 + ϵ)/4. De (2.7) se deduce la siguiente desigualdad

1

2
u(t)2 ≤ 2 + ϵ

4
, t > 0

con lo que

u(t) ≤
√

2 + ϵ

2
, t > 0

y por tanto, la solución de (2.6) estará acotada para todo t > 0.
En la aproximación, la corrección no puede ser arbitrariamente pequeña para t ∈

(0,∞) escogiendo ϵ suficientemente pequeño. Tampoco es posible mejorar la solución
calculando términos adicionales de mayor orden ya que estos tendrán también términos
seculares que no cancelarán los efectos de los términos de orden inferior. Por tanto, esta
aproximación es solo válida en un intervalo finito [0, T ], donde el término de corrección
se puede hacer arbitrariamente pequeño escogiendo un ϵ suficientemente pequeño.
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2.3. El método de Poincaré-Lindstedt

En situaciones como la anterior, en las que el método de perturbación regular no
es aplicable para todos los intervalos de tiempo, se recurre al método de Poincaré-
Lindstedt, una técnica para aproximar uniformemente principalmente soluciones casi
periódicas a ecuaciones diferenciales ordinarias, cuando fallan los enfoques de perturba-
ción regulares. La clave está en darse cuenta de que el método de perturbación regular
no solo estropea la amplitud de la oscilación a tiempos largos sino también el propio
periodo de oscilación.

El método se basa en redefinir la escala de tiempos para la serie de perturbación.
En particular, se considera entonces

u(τ) = u0(τ) + ϵu1(τ) + ϵ2u2(τ) + ... , (2.8)

donde
τ = wt

con

w = 1 + ϵw1 + ϵ2w2 + ... . (2.9)

Escogemos que w0 sea la unidad, la frecuencia de la solución del problema sin perturbar.
Podemos entonces reescribir el problema de valor inicial del ejemplo anterior (2.5) como

w2u′′ + u+ ϵu3 = 0, τ > 0, (2.10)

u(0) = 1, u′(0) = 0.

donde u = u(τ) y la derivada es respecto a τ . Sustituyendo (2.8) y (2.9) en (2.10),
obtenemos

(1 + 2ϵw1 + ...)(u′′0 + ϵu′′1 + ...) + (u0 + ϵu1 + ...) + ϵ(u30 + 3ϵu20u1 + ...) = 0,

y
u0(0) + ϵu1(0) + ... = 1, u′0(0) + ϵu′1(0) + ... = 0.

Agrupando entonces coeficientes en potencias de ϵ, resulta

u′′0 + u0 = 0, u0(0) = 1, u′0(0) = 0, ... (2.11)

u′′1 + u1 = −2w1u
′′
0 − u30, u1(0) = u′1(0) = 0, ... (2.12)

La solución de (2.11) es
u0(τ) = cos(τ),

luego la ecuación diferencial en (2.12) se convierte en

u′′1 + u1 = 2w1 cos(τ)− cos3(τ) = (2w1 −
3

4
) cos(τ)− 1

4
cos(3τ). (2.13)

Como cos(τ) es solución de la ecuación homogénea, el término cos(τ) en la parte derecha
de la ecuación nos lleva a una solución particular con un término τcos(τ), que es un
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término secular. La clave es que podemos evitar el término secular escogiendo w1 = 3/8.
De esta manera, la ecuación (2.13) queda reducida a

u′′1 + u1 = −1

4
cos(3τ),

que tiene como solución general

u1(τ) = c1 cos(τ) + c2 sin(τ) +
1

32
cos(3τ).

La condición inicial en u1 conduce a

u1(τ) =
1

32
(cos(3τ)− cos(τ)),

luego, una solución perturbada de primer orden uniformemente válida para (2.5) será

u(τ) = cos(τ) +
1

32
ϵ(cos(3τ)− cos(τ)) + ...

donde τ = t+ 3
8
ϵt+ ...

En general, el método de Poincaré-Lindstedt funciona con éxito cuando tratamos
con ecuaciones de la forma

u′′ + w2
0u = ϵF (t, u, u′), 0 < ϵ << 1.

Estos son problemas cuyo término principal es oscilatorio con frecuencia w0. Básica-
mente, la técnica consiste en cambiar las variables a unas con diferente frecuencia
τ = (w0 + w1ϵ + ...)t y suponer que u = u(τ) es una serie de perturbaciones en ϵ.
Las constantes w0, w1, .... se escogen en cada paso para evitar términos seculares en el
desarrollo.

Ejemplo 2.3.1 En este ejemplo utilizaremos el método de Poincaré-Lindstedt para
obtener una aproximación perturbada de 2 términos del siguiente problema:

y′′ + y = ϵyy′2, y(0) = 1, y′(0) = 0.

Asumimos que la solución podŕıa escribirse de la forma

u(τ) = u0(τ) + ϵu1(τ) + ϵ2u2(τ) + ...

y definimos la frecuencia como w = w0 + ϵw1 + ϵ2w2 + ... donde w0 es la frecuencia del
sistema sin perturbar (w0 = 1). Haremos un cambio de variable, τ = wt, de manera
que al derivar respecto de t

d

dt
= w

d

dτ
,

d2

dt2
= w2 d

2

dτ 2
.

Y por tanto nuestra ecuación diferencial inicial pasa a ser

w2u′′ + u = ϵu(w2u′2).
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Desarrollando u(τ) y agrupando en potencias de ϵ obtendremos las siguientes ex-
presiones de u0, u1, ....

(1 + ϵw1 + ϵ2w2 + ...)2(u′′0 + ϵu′′1 + ϵ2u′′2 + ....) + (u0 + ϵu1 + ϵ2u2 + ...)

= ϵ(u0 + ϵu1 + ϵ2u2 + ...)(1 + ϵw1 + ϵ2w2 + ...)2(u′0 + ϵu′1 + ϵ2u′2 + ...)2,

lo que implica que u0 y u1 deben cumplir

u′′0 + u0 = 0,

u′′1 + u1 = u0u
′2
0 − 2w1u

′′
0.

Teniendo en cuenta que u0(t) = cos(t), la ecuación para u1 queda

u′′1+u1 = 2w1 cos(τ)+cos(τ) sin2(τ) = (2w1+1) cos(τ)−cos3(τ) = (2w1+
1

4
) cos(τ)−1

4
cos(3τ).

Notemos que el valor de w1 que nos permite eliminar el término secular es w1 = −1/8
y para obtener u1 tenemos que resolver

u′′1 + u1 = −1

4
cos(3τ).

La solución homogénea para este problema tiene la forma

u1h(τ) = A cos(τ) +B sin(τ),

y buscaremos una solución particular que tenga la forma

u1,p(τ) = C sin(3τ) +D cos(3τ).

Derivando esta expresión y sustituyendo

(−9C + C) sin(3τ) + (−9D +D) cos(3τ)) = −1

4
cos(3τ),

y agrupando términos se tiene que D = 1/32 y C = 0. Por tanto, la solución particular
tendrá la forma

u1p(τ) =
1

32
cos(3τ).

La solución general para u1 será la suma de la solución homogénea y la solución parti-
cular

u1(t) = A cos(τ) +B sin(τ) +
1

32
cos(3τ).

Imponiendo las condiciones iniciales, resulta que A = −1/32 y B = 0, luego la solución
aproximada de primer orden será

ua(τ) = cos(τ) + ϵ(
1

32
cos(3τ)− 1

32
cos(τ))

con τ = t− ϵt/8 + ....
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Caṕıtulo 3

Perturbación singular

Un problema de perturbación regular Pϵ(yϵ) = 0 depende del parámetro ϵ de tal
manera que su solución yϵ(t) converge cuando ϵ→ 0 (uniformemente con respecto a la
variable independiente t en el dominio relevante) a la solución y0(t) del problema ĺımi-
te P0(y0) = 0. Un ejemplo de este tipo de problema es el sistema masa-resorte en un
intervalo de tiempo finito visto anteriormente. El parámetro ϵ generalmente representa
la influencia de muchos factores f́ısicos casi despreciables. Por lo general, prestamos
especial atención a los problemas de valor en la frontera donde Pϵ está definido por
operadores diferenciales y condiciones de frontera, aunque también se pueden estudiar
ecuaciones integrales, operadores de otro tipo o condiciones auxiliares más globales.
Bajo la suposición de suficiente regularidad, la solución de un problema de perturba-
ción regular puede aproximarse mediante un desarrollo en potencias de ϵ, cuyo término
principal (o ĺımite asintótico) es y0.

Una perturbación singular se dice que ocurre siempre que el ĺımite de la perturba-
ción regular yϵ(t) → y0(t) falla. T́ıpicamente esto ocurre en intervalos cortos de tiempo
o espacio (dependiendo de lo que represente la variable independiente) [10], aunque
también son comunes los problemas seculares con comportamiento no uniforme en el
infinito, como vimos en el caso del oscilador armónico.

Una posible definición de este tipo de problemas es la siguiente [9]:

Definición 3.1. En términos generales, un sistema en el que la supresión de pe-
queños parámetros es responsable de la degeneración de la dimensión se denomina un
sistema de perturbación singular. Es decir, un problema descrito por una ecuación di-
ferencial que involucra un pequeño parámetro ϵ se llama un problema de perturbación
singular si el orden de la ecuación diferencial se vuelve menor para ϵ = 0 que para ϵ ̸= 0.

Para comprender mejor el concepto de perturbación singular consideraremos un pro-
blema algebraico simple.

Ejemplo 3.1 Consideremos la ecuación cuadrática

ϵx2 + 2x+ 1 = 0, 0 < ϵ << 1. (3.1)

Esta ecuación podŕıa resolverse de forma exacta, pero nuestro objetivo es ilustrar cuándo
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el método de perturbación regular falla. La ecuación sin perturbar será

2x+ 1 = 0,

que tiene como solución x = −1/2. Vemos que el problema sin perturbar, lineal, es
distinto del problema original, que es cuadrático. Aplicamos el método de perturbación
regular sustituyendo la serie

x = x0 + x1ϵ+ x2ϵ
2 + ...,

agrupando por potencias de ϵ tenemos las siguientes ecuaciones

2x0 + 1 = 0,

x20 + 2x1 = 0,

2x1x0 + 2x2 = 0...

luego x0 = −1/2, x1 = −1/8, x2 = −1/16... Por tanto, la solución perturbada es

x = −1

2
− 1

8
ϵ− 1

16
ϵ2 − ...

Notemos que solo hemos obtenido una de las dos soluciones de la ecuación cuadrática.
La perturbación regular supone que el término principal es del orden de la unidad, luego
cabe esperar que solo obtenga una ráız, también del orden de la unidad. La otra ráız
podŕıa ser de un orden diferente, ya sea grande o pequeño. Para encontrar la segunda
ráız debemos examinar los tres términos de la ecuación más detalladamente. Cuando
eliminamos el término ϵx2 se tiene una ráız cercana a x = −1/2, y en este caso, el
término ϵx2 es pequeño comparado con 2x y 1. Para conseguir la segunda ráız, ϵx2

puede no ser pequeño, por ejemplo si x es muy grande. Para despreciar algún término
de la ecuación y hacer una simplificación existen dos opciones:

ϵx2 y 1 son del mismo orden, luego 2x >> 1.

En este caso tenemos que x ≈ 1/
√
ϵ. Por tanto, tomando el cambio de variable

y =
√
ϵx, obtendŕıamos la siguiente ecuación

y2 +
2√
ϵ
y + 1 = 0. (3.2)

Luego, si ϵ→ 0 se tiene que y = 0, por lo que no podŕıamos obtener una posible
solución.

ϵx2 y 2x son del mismo orden, grandes comparados con la unidad.

Consideremos la nueva variable y que definiremos como

y =
x

1/ϵ
= ϵx,

y con este cambio de variable en (3.1) se tiene

y2 + 2y + ϵ = 0. (3.3)
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De nuevo, consideremos la serie

y = y0 + y1ϵ+ y2ϵ
2 + ...

y sustituyendo en (3.3) se obtiene

y20 + 2y0 = 0,

2y0y1 + 2y1 + 1 = 0, ...

luego y0 = −2, y1 = 1/2, y por tanto

y = −2 +
1

2
ϵ+ ... ,

o en términos de x

x = −2

ϵ
+

1

2
+ ... ,

como segunda ráız de la ecuación. En resumen, las dos ráıces son de órdenes distintos y
con un solo desarrollo no podemos obtener ambas. El razonamiento que usamos en este
ejemplo se llama balance dominante, donde examinamos cada término y determinamos
el balance de las posibles combinaciones. En las siguientes secciones veremos que este
tipo de argumentos podemos aplicarlos también a ecuaciones diferenciales.

3.1. Problema de contorno

El problema que estudiaremos es

ϵy′′ + 2y′ + 2y = 0, 0 < x < 1, (3.4)

y(0) = 0, y(1) = 1.

Vemos de nuevo en este caso que si ϵ = 0, el problema ya no es de segundo orden. Esto
conduce a un problema de perturbación singular, aunque la singularidad puede ocurrir
por otras razones. Para construir una aproximación de primer orden de la solución para
un ϵ pequeño, procederemos en cuatro pasos.

3.1.1. Aproximación exterior y análisis de condiciones de con-
torno

Comenzaremos calculando la aproximación externa para el problema (3.4). Asumi-
remos que la solución se puede expresar como una serie de potencias de ϵ, es decir

y(x) ≈ y0(x) + ϵy1(x) + ... (3.5)

Sustituyendo en (3.4) se obtiene

ϵ(y′′0 + ϵy′′1 + ...) + 2(y′0 + ϵy′1 + ...) + 2(y0 + ϵy1 + ...) = 0.

Por tanto, la solución de orden principal debe cumplir

y′0 + y0 = 0,
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con lo que y0 tendrá la siguiente expresión

y0(x) = ae−x, (3.6)

donde a es una constante arbitraria. Notemos que en la solución (3.6) solo hay una
constante arbitraria pero dos condiciones que cumplir correspondientes a x = 0 y x = 1,
lo que significa que la solución (3.6) y el desarrollo (3.5) son incapaces de describir la
solución en todo el intervalo 0 ≤ x ≤ 1. En este momento, no sabemos qué condición de
contorno, si es que hay alguna, debe satisfacer y0(x), y la determinación de esto tendrá
que hacerse más adelante.

Es razonable asumir como hipótesis que la ecuación (3.6) describe la solución en la
mayor parte del intervalo, pero existe una capa ĺımite en x = 0 o x = 1, donde debe
utilizarse una aproximación diferente. Dado que vamos a determinar aproximaciones
de la solución en diferentes regiones, nos referiremos a la ecuación (3.6) como el primer
término en el desarrollo de la solución externa.

3.1.2. Aproximación interior

Para analizar el comportamiento de la solución en la aproximación interior, supon-
gamos que existen cambios significativos en y para intervalos de x muy pequeños, lo
que sugiere cambiar la escala de la longitud en un orden en función de ϵ. El cambio de
variable que utilizaremos es

x̄ =
x

ϵα
, (3.7)

donde α > 0. A partir de este cambio de variable y aplicando la regla de la cadena
tendremos

d

dx
=
dx̄

dx

d

dx̄
=

1

ϵα
d

dx̄
.

Consideramos Y (x̄), que denota la solución del problema usando el cambio de variable
para la capa ĺımite. Por tanto, (3.4) se escribirá como

ϵ1−2αd
2Y

dx̄2
+ 2ϵ−αdY

dx̄
+ 2Y = 0, (3.8)

donde
Y (0) = 0.

Hemos incluido la condición inicial de y(0) = 0 porque la capa ĺımite está en extremo
izquierdo del intervalo.

El desarrollo de la solución aproximada de la capa ĺımite será entonces

Y (x̄) ≈ Y0(x̄) + ϵγY1(x̄)...

donde γ > 0. Ahora tendremos que encontrar el balance correcto entre los términos
de la expresión anterior para encontrar cuánto vale α. Supongamos que el primer y el
segundo término de (3.8) son aproximadamente del mismo orden mientras que el tercer
término es de un orden superior. Esto implica que 1− 2α = −α, luego α = 1. En este
caso tendŕıamos que el primer y segundo término son O(1/ϵ) mientras que el tercero es
O(1).
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Tenemos el siguiente problema a resolver

Y ′′
0 + 2Y ′

0 = 0, 0 < x̄ <∞,

Y0(0) = 0.

La solución general para este problema es

Y0(x̄) = A(1− e−2x̄), (3.9)

donde A es una constante. El desarrollo de la capa ĺımite en la ecuación (3.8) está
destinada a describir la solución en un entorno de x = 0. Por lo tanto, podemos esperar
que la solución externa (3.6) se aplique en el resto del intervalo. Esto significa que
la solución externa debe satisfacer la condición de contorno en x = 1. Al imponer la
condición de contorno derecha para la solución externa se obtiene

y0(x) = e1−x.

Si suponemos que el primer y tercer término de (3.8) son del mismo orden entonces
α = 1/2, y la ecuación quedaŕıa como

dY0
dx̄

= 0, Y0 = 0.

por tanto, la solución general para este problema seŕıa Y0 = 0.

3.1.3. Matching

La clave ahora es que tanto la capa interna como la externa son aproximaciones
de la misma función. Por lo tanto, en la región de transición entre las capas interna
y externa, debeŕıamos esperar que ambos desarrollos den el mismo resultado. Esto se
logra al exigir que el valor de Y0 cuando se sale de la capa ĺımite (es decir, cuando
x̄ → ∞) sea igual al valor de y0 al entrar en la capa ĺımite (es decir, cuando x → 0).
En otras palabras, requerimos que:

ĺım
x̄→∞

Y0(x̄) = ĺım
x→0

y0(x). (3.10)

De esta condición, considerando la aproximación (3.9), obtenemos que A = e. Sustitu-
yendo en (3.9) se tiene que

Y0(x̄) = e− e1−2x̄.

En el caso de suponer que el primer y tercer término son del mismo orden vemos que
no es posible hacer cumplir la condición de matching, ya que la solución en la capa
externa no será nula cuando x→ 0. Por tanto, el balance correcto es el considerado en
la primera opción. Aśı quedan descritas las capas interna y externa. El último paso con-
sistirá en combinar ambas en una sola expresión. A menudo utilizaremos la condición
(3.10), aunque es importante notar que su aplicabilidad es limitada y, para problemas
más complejos se requiere un procedimiento más sofisticado.
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Figura 3.1: Esquema de las regiones interna y externa y sus aproximaciones

3.1.4. Aproximación uniforme

Nuestra descripción de la solución consta de dos partes: una que se aplica cerca de
x = 0 y otra que funciona en el resto del intervalo. Debido a que ninguna de estas
soluciones puede usarse en todo el intervalo, no son válidas de forma uniforme para
0 ≤ x ≤ 1. Ahora nos preguntamos si es posible combinarlas para producir una aproxi-
mación uniforme, es decir, una que funcione en todo el intervalo. Superponiendo ambas
soluciones y restando la constante común en la zona de solapamiento, que tendrá el
valor ĺım

x̄→∞
Y0(x̄) o ĺım

x→0
y0(x), construimos una solución aproximada válida para todo el

intervalo. El hecho de que sean iguales es una consecuencia de la condición (3.10).

El resultado de la aproximación uniforme, que representará el comportamiento de
la solución en las dos regiones definidas, será

y0(x) + Y0(x/ϵ)− y0(0) = e1−x − e1−2x/ϵ.

Notemos que satisface exactamente la condición de contorno en x = 0, pero la de x = 1
solo se cumple de forma asintótica. Esto no es particularmente preocupante, ya que el
desarrollo también satisface la ecuación diferencial en un sentido asintótico.

A continuación describiremos un procedimiento general para abordar un problema
de perturbación singular como es el caso del ejemplo anterior.

3.2. Procedimientos generales

Hemos visto en el ejemplo anterior que la capa ĺımite teńıa lugar en x = 0. En
general, las capas ĺımite pueden ocurrir en cualquier punto del intervalo; de hecho,
pueden darse múltiples capas ĺımite en el mismo problema.

Al resolver un problema, se debe asumir inicialmente una capa ĺımite en x = 0 (o en
el extremo izquierdo) y luego proceder. Si la hipótesis es incorrecta, el procedimiento
fallará al intentar igualar las aproximaciones internas y externas. En este caso supon-
dremos que una capa ĺımite está en el extremo derecho. El análisis es exactamente el
mismo, pero la transformación de escala para definir la variable interna en la capa ĺımite
del extremo derecho se convierte en
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ξ =
x0 − x

δ(ϵ)
,

donde x = x0 es el extremo derecho del intervalo, e Y (ξ) = y(x0−δ(ϵ)ξ). Según la regla
de la cadena, las derivadas podrán escribirse como sigue

dy

dx
= − 1

δ(ϵ)

dY

dξ
,

d2y

dx2
=

1

δ(ϵ)2
d2Y

dξ2
.

La condición que impondremos entre las capas ĺımites es

ĺım
ξ→∞

Y0(ξ) = ĺım
x→x0

y0(x). (3.11)

Es decir, el ĺımite de la solución interna (a medida que la variable interna sale de la
capa ĺımite) es igual al ĺımite de la solución externa (a medida que la variable externa
entra en la capa ĺımite).

Además, aunque los ejemplos anteriores muestran una anchura de capa ĺımite de
δ(ϵ) = ϵ, este no es siempre el caso. Solo hemos igualado las aproximaciones de orden
principal de las soluciones interna y externa. Los procedimientos de igualación refinados
pueden incluir igualar los términos de mayor orden en los desarrollos. La existencia de
un dominio de solapamiento implica que el desarrollo interno de la solución externa de-
be, hasta órdenes apropiados, coincidir con el desarrollo externo de la solución interna
[12].

Finalmente, señalamos que este método no es una técnica universal. Para ciertos
problemas este procedimiento funciona, pero en otros casos se deben hacer cambios sig-
nificativos. La perturbación singular es un campo de investigación actual en Matemática
Aplicada y solo existe una teoŕıa rigurosa para cierto tipo de ecuaciones diferenciales.
Nos centraremos por el momento en este resultado relativo a ecuaciones lineales con
coeficientes variables [8].

Teorema 4.4.1 Consideramos el problema de contorno

ϵy′′ + p(x)y′ + q(x)y = 0, 0 < x < 1, 0 < ϵ << 1, (3.12)

y(0) = a, y(1) = b, (3.13)

donde p(x) y q(x) son funciones continuas en 0 ≤ x < 1 con p(x) > 0. Entonces existen
capas ĺımite en x = 0 con aproximaciones interna y externa que vienen dadas por

Y0(
x

ϵ
) = C1 + (a− C1)e

−p(0)x/ϵ, (3.14)

y0(x) = b exp

(∫ 1

x

q(s)

p(s)
ds

)
. (3.15)

donde

C1 = b exp

(∫ 1

0

q(s)

p(s)
ds

)
. (3.16)

Demostración
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Demostraremos que la hipótesis sobre una capa ĺımite en x = 0 es consistente y que
da lugar a las aproximaciones descritas anteriormente. Si la capa ĺımite se encuentra en
x = 0, entonces la solución externa y0(x) satisface que

p(x)y′0 + q(x)y0 = 0

y la condición y0(1) = b. Dado que p(x) > 0 para 0 ≤ x < 1 podemos dividir ambos
lados de la ecuación y obtendremos

y′0(x) +
q(x)

p(x)
y0(x) = 0.

Por tanto,

y′0(x)

y0(x)
= −q(x)

p(x)
.

Integrando ambos lados de la igualdad y tomando exponenciales se tiene

ln (y0(x)) = −
∫ x

0

q(s)

p(s)
ds+ C

luego la solución tendrá la siguiente expresión

y0(x) = K exp

(
−
∫ x

0

q(s)

p(s)
ds

)
. (3.17)

Aplicando la condición de contorno y0(1) = b, tenemos que

b = K exp

(
−
∫ 1

0

q(s)

p(s)
ds

)
,

lo cual implica que

K = b exp

(∫ 1

0

q(s)

p(s)
ds

)
y sustituyendo la expresión de K en (3.17) se tiene

y0(x) = b exp

(∫ 1

x

q(s)

p(s)
ds

)
,

que coincide con la expresión de (3.15). En la capa ĺımite introduciremos la variable ξ
definida por ξ = x/δ(ϵ), donde δ(ϵ) se debe determinar. Si Y (ξ) = y(δ(ϵ)ξ), la ecuación
diferencial pasa a ser

ϵ

δ(ϵ)2
Y ′′ +

p(δ(ϵ)ξ)

δ(ϵ)
Y ′ + q(δ(ϵ)ξ)Y = 0. (3.18)

Cuando ξ → 0+, los coeficientes se comportan como

ϵ

δ(ϵ)2
,

p(0)

δ(ϵ)
, q(0).
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Haciendo balance entre los coeficientes de los dos primeros términos, ϵ/δ(ϵ)2 ∼ p(0)/δ(ϵ),
y por tanto la capa ĺımite tendrá un espesor de δ(ϵ) = O(ϵ). Tomando δ(ϵ) = ϵ, (3.18)
puede reescribirse como

Y ′′ + p(ϵξ)Y ′ + ϵq(ϵξ)Y = 0,

cuyo término de orden principal es

Y ′′
0 + p(0)Y ′

0 = 0,

y su solución general es
Y0(ξ) = C1 + C2e

−p(0)ξ.

Aplicando la primera condición de contorno, se tiene que C2 = a−C1 y la aproximación
interna es

Y0(
x

ϵ
) = C1 + (a− C1)e

−p(0)x/ϵ.

Para unir las dos aproximaciones, introduciremos la variable intermedia η = x/
√
ϵ. El

matching (3.10) implica entonces

ĺım
ϵ→0+

Y0(
η√
ϵ
) = ĺım

ϵ→0+
y0(

√
ϵη), (3.19)

o lo que es lo mismo

ĺım
ϵ→0+

(
C1 + (a− C1)e

−p(0)η/
√
ϵ
)
= ĺım

ϵ→0+

(
b exp

(∫ 1

√
ϵη

q(s)

p(s)
ds

))
,

con lo que

C1 = b exp

(∫ 1

0

q(s)

p(s)
ds

)
,

y por tanto la aproximación interna viene dada por (3.14) y (3.16), como queŕıamos
demostrar.

Una aproximación compuesta uniforme vendrá dada por

yu(x) = y0(x) + Y0(
x

ϵ
)− C1 = y0(x) + (a− C1)e

− p(0)x
ϵ .

3.3. Capas múltiples

En esta sección, aplicaremos las ideas anteriores y las ampliaremos a problemas
más complicados. A continuación estudiaremos qué sucede cuando hay múltiples capas
ĺımite. Para ello vamos a considerar el siguiente problema donde tendremos una capa
ĺımite en cada uno de los extremos del intervalo [5]

ϵ2y′′ + ϵxy′ − y = −ex para 0 < x < 1, (3.20)

donde
y(0) = 2, e y(1) = 1.

Vemos que en este caso los coeficientes de la ecuación dependen de x. Las múltiples
capas ĺımites no son debidas a esto, pero como veremos, esto resulta en diferentes
ecuaciones para cada capa.
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3.3.1. Solución de orden principal

Supongamos que la solución de este problema tiene la forma

y(x) ≈ y0(x) + ϵy1(x) + ϵ2y2(x).

Al sustituir esta expresión en la ecuación (3.20), se tiene que la solución de orden
principal es

y0(x) = ex. (3.21)

Es evidente que esta función es incapaz de satisfacer ninguna de las condiciones de
contorno del problema, lo cual indica que tenemos una capa ĺımite en cada uno de los
extremos del intervalo.

3.3.2. Capas ĺımite y matching

Comenzaremos estudiando la capa ĺımite en el extremo izquierdo. Considerando la
coordenada x̄ = x/ϵα, podemos reescribir la ecuación (3.20) de la siguiente forma

ϵ2−2αd
2Y

dx̄2
+ ϵx̄

dY

dx̄
− Y = −eϵαx̄. (3.22)

Notemos que podemos escribir

eϵ
αx̄ ≈ 1 + ϵαx̄+ ... .

De nuevo, utilizaremos Y (x̄) para designar la solución en la región de la capa ĺımite.
Tomando α = 1 y utilizando el desarrollo en serie de Y ≈ Y0(x̄) + ..., obtenemos el
siguiente problema de primer orden

Y ′′
0 − Y0 = −1, 0 < x̄ <∞, (3.23)

donde
Y0(0) = 2. (3.24)

Esta ecuación es una ecuación diferencial de coeficientes constantes no homogénea cuya
solución será la suma de una solución homogénea y una solución particular. Dado que
las ráıces de su polinomio caracteŕıstico son r1 = 1 y r2 = −1 la solución tendrá la
forma

Y0(x̄) ≈ 1 + A1e
−x̄ + A2e

x̄.

Aplicando la condición Y (0) = 2, tendremos que 2 = 1 +A1 +A2, luego la solución en
la capa ĺımite tendrá la forma

Y0(x̄) ≈ 1 + A1e
−x̄ + (1− A1)e

x̄.

Esta solución debe de cumplir la condición Y0(∞) = y0(0) = 1 para poder combinarla
con la solución de orden principal. De esta forma se tiene que A1 = 1. Es decir,

Y0(x/ϵ) = 1 + e−x/ϵ. (3.25)
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Para determinar la solución en la capa ĺımite del extremo derecho, vamos a consi-
derar la siguiente coordenada

x̃ =
x− 1

ϵβ
.

La solución en esta región la escribiremos como Ỹ (x̃). Introduciendo esta variable en
(3.20) y teniendo en cuenta que

dy

dx
=

1

ϵβ
dỸ

dx̃
,

d2y

dx2
=

1

ϵ2β
d2Ỹ

dx̃2
,

podemos reescribir la ecuación (3.20) como

ϵ2−2β d
2Ỹ

dx̃2
+ ϵ1−β(1 + ϵβx̃)

dỸ

dx̃
− Ỹ = −e1+ϵβ x̃.

Para el caso donde β = 1, sustituyendo el desarrollo Ỹ ≈ Ỹ 0 + ϵỸ 1 + ... en la ecuación
y agrupando en potencias de ϵ obtendremos el siguiente problema

Ỹ ′′
0 + Ỹ ′

0 − Ỹ 0 = −e, −∞ < x̃ < 0, (3.26)

donde
Ỹ 0(0) = 1.

La ecuación (3.26) tiene al menos un término en común, Ỹ 0, con la ecuación del proble-
ma principal (3.20). De nuevo tenemos una ecuación lineal con coeficientes constantes
no homogénea, cuyas ráıces de su polinomio caracteŕıstico son r1 = (−1 +

√
5)/2 y

r2 = (−1−
√
5)/2. La solución general a este problema es

Ỹ 0(x̃) = e+Bex̃(−1+
√
5)/2 + (1− e−B)ex̃(−1−

√
5)/2. (3.27)

La condición para poder combinar la solución de la capa ĺımite y la región de orden
principal es la misma que anteriormente, pero al estar estudiando la región del extremo
derecho podremos expresarla como Ỹ 0(−∞) = y0(1). Por tanto, de (3.27) se tiene que
B = 1− e. Es decir,

Ỹ 0((x− 1)/ϵ) = e+ (1− e)e
x−1
ϵ

−1+
√
5

2 . (3.28)

3.3.3. Aproximación uniforme

Como vimos en la sección anterior, el último paso consiste en combinar los tres
desarrollos en una sola expresión. La forma de hacerlo es sumar los tres desarrollos y
eliminar las partes comunes. De (3.21), (3.25) y (3.28), el desarrollo de primer orden de
la solución para el intervalo de estudio es

y ≈ y0(x) + Y0(x̄)− Y0(∞) + Ỹ 0(x̃)− Ỹ 0(−∞) ≈ ex + e−x/ϵ + (1− e)e
(−1+

√
5)(x−1)
2ϵ

En la figura 3.2 podemos ver las capas ĺımites en los extremos del intervalo, la aproxi-
mación de orden principal y cómo se ajustan ambas funciones según decrece el valor de
ϵ. Para representar la solución exacta hemos utilizado un código en Matlab basado en
la función bvp4c, con tolerancia 10−10 utilizado para resolver problemas de contorno.
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Figura 3.2: Solución aproximada por el método de perturbación singular y la solución
exacta

3.3.4. Ecuaciones no lineales

A continuación veremos algunas complicaciones que surgen al usar el método de
perturbación singular en ecuaciones no lineales. En el caso siguiente la solución de la
ecuación no lineal se define de manera impĺıcita

ϵy′′ + ϵy′ − ey = −2− x, 0 < x < 1, (3.29)

donde y(0) = 0 e y(1) = 1. La expresión del término de orden principal podemos
obtenerla asumiendo que ϵ = 0

ey0 = 2 + x.

Por tanto, la solución en esta región es

y0(x) ≈ ln(x+ 2).

Notemos que esta función no cumple ninguna de las dos condiciones de contorno, luego
tenemos una capa ĺımite en cada uno de los extremos del intervalo.

Figura 3.3: Solución en la región de orden principal

Para estudiar la capa ĺımite en el extremo izquierdo vamos a considerar la coordena-
da x̄ = x/

√
ϵ. Sustituyendo esta coordenada en (3.29) y aplicando la regla de la cadena
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podemos reescribir el problema como

dY 2

dx̄2
+ ϵ

1√
ϵ

dY

dx̄
− eY = −2− x̄

√
ϵ,

y tomando Y ≈ Y0 obtenemos la ecuación no lineal

Y ′′
0 − eY0 = −2,

donde Y0(0) = 0. Multiplicando por Y ′
0 a ambos lados de la ecuación e integrando se

tiene, para cierta constante B,

1

2
(Y ′

0)
2 = B − 2Y0 + eY0 .

Luego la expresión para Y ′
0 es

Y ′
0 = ±

√
2(B − 2Y0 + eY0). (3.30)

Asumiremos que Y ′(x̄) → 0 cuando x̄ → ∞ y que Y (x̄) → y0(0) = ln(2) cuando
x̄→ ∞. Con estas hipótesis, se tiene que B = 2(1− ln(2)).

Notemos que la solución en la capa ĺımite aumentará de Y0(0) = 0 a Y0(∞) =
y0(0) = ln(2), luego tomaremos el signo positivo de la derivada. Separando variables en
(3.30) e integrando obtenemos que∫ Y0

0

ds√
2(B − 2s+ es)

= x̄. (3.31)

Luego la solución de orden O(1) para la capa ĺımite Y0 viene definida de forma impĺıcita
en función de x̄. Para estudiar la capa ĺımite en el extremo derecho del intervalo, x = 1,
utilizaremos la coordenada x̃ = (x− 1)/

√
ϵ para reescribir (3.29) como

dỸ 2

dx̃2
+ ϵ

1√
ϵ

dỸ

dx̃
− eỸ = −3− x̃

√
ϵ.

Tomando Y ≈ Y0 obtenemos la ecuación no lineal

Ỹ ′′
0 − eỸ 0 = −3.

Análogamente, suponiendo que Ỹ ′(−∞) = 0 tendremos que la solución en la capa ĺımite
del extremo derecho viene descrita de la siguiente forma impĺıcita∫ Ỹ 0

0

ds√
2(A− 3s+ es)

= −x̃.

siendo A = 3(−1 + ln(3)) y donde se ha elegido el signo − porque Ỹ 0(−∞) = y0(1) =
ln(3) e Ỹ 0(0) = 1

Para obtener una solución uniforme en todo el intervalo, sumaremos las tres expre-
siones y eliminaremos la parte común. Luego la solución descrita de forma impĺıcita
es

y ≈ y0(x) + Y0(x̄)− y0(0) + Ỹ 0(x̃)− y0(1) ≈ ln(
1

6
(x+ 2)) + Y0(x̄) + Ỹ 0(x̃).
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3.4. Problemas de valor inicial

3.4.1. Problema lineal de valor inicial de primer orden

Consideramos el problema
ϵẋ+ x = 1,

con x(0) fijo, donde ϵ es un parámetro pequeño positivo. Podemos anticipar dificultades
a la hora de resolver el problema para cualquier intervalo (0, t) con t > 0 debido a la
constante de Lipschitz 1/ϵ, que debe estar acotada para la validez de la mayoŕıa de
las teoŕıas de existencia y unicidad, y que en este caso no está acotada cuando ϵ → 0.
Notemos que la presencia del parámetro ϵ antes de la derivada más alta en la ecuación
diferencial, aunque no tiene por qué llevarnos a un problema de perturbación singular,
es un indicio de la posibilidad de este. Esta ecuación tiene como solución

x(t, ϵ) = 1 + (x(0)− 1)e−t/ϵ.

Para ϵ < 0 y x(0) ̸= 1 la solución no está acotada para ϵ → 0 para cualquier t > 0.
Para ϵ > 0, sin embargo, la solución tiende a 1 para cualquier t > 0 cuando ϵ → 0. Si
x(0) ̸= 1, entonces x(t, ϵ) tendrá una discontinuidad en t = 0 cuando ϵ→ 0 ya que

x(t, ϵ) →

{
x(0), t = 0

1, t > 0.

Esto muestra que la convergencia no es uniforme cerca de t = 0. La región de conver-
gencia no uniforme se dice que tiene un grosor de O(ϵ). A este intervalo de convergencia
no uniforme lo llamaremos una capa ĺımite.

Es importante observar que la solución exacta de este problema de perturbación
singular es la suma de (i) una función de la variable independiente t y (ii) una función
del tiempo ”estirado”

τ =
t

ϵ

que decae a cero cuando τ → ∞. La solución exterior será

X(t, ϵ) = 1, (3.32)

que es una solución regular de la ecuación diferencial que nos proporciona una solución
asintótica para t > 0, y la corrección de la capa inicial

ξ(τ, ϵ) = e−τ (x(0)− 1)

proporciona la convergencia no uniforme en la capa ĺımite cerca de t = 0.
Una técnica alternativa para encontrar una solución aproximada al problema seŕıa

buscar de forma separada una solución para la región interna, τ ≥ 0, y otra para la
región externa en t > 0, e igualarlas en el ĺımite de ambas zonas. Buscaremos primero
la solución interna x̄(τ, ϵ) = x(t/ϵ, ϵ) con τ ≥ 0. El problema en la región interior toma
la siguiente forma

dx̄

dτ
= −(x̄− 1), x̄(0) = x(0), (3.33)
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que para todos los valores de ϵ, tiene como solución

x̄(τ, ϵ) = 1 + (x(0)− 1)e−τ

para τ ≥ 0. En particular notemos que x̄(∞, ϵ) = 1. Busquemos una solución exterior
como solución regular a

ϵẊ +X = 1

haciendo uso del desarrollo en serie de potencias

X(t, ϵ) =
∞∑
j=0

Xj(t)ϵ
j. (3.34)

Igualando coeficientes de potencias de ϵ en ambos lados de la ecuación obtenemos que

X0 = 1,

y para j > 0
Xj = −Ẋj−1.

Luego Xj(t) = 0 para cada j > 0, y por tanto la solución externa será

X(t, ϵ) = X0(t) = 1, (3.35)

que es constante para t y ϵ.

3.4.2. Sistema masa-resorte amortiguado

El modelo que describe el movimiento de un sistema masa-resorte con amortigua-
miento lineal es

mÿ + aẏ + ky = 0 (3.36)

donde m es la masa, k la constante correspondiente al muelle y a la constante de
amortiguamiento. Suponemos que el desplazamiento en el momento inicial es nulo y
que la masa se pone en movimiento a través de un impulso inicial positivo, I. De esta
forma, las condiciones iniciales son

y(0) = 0, mẏ(0) = I.

Por ser esta una ecuación lineal con coeficientes constantes homogénea de segundo
orden, sus soluciones dependerán de las ráıces de su polinomio caracteŕıstico

p(λ) = mλ2 + aλ+ k = 0,

es decir, de los valores

λ =
−a±

√
a2 − 4mk

2m
.

Dependiendo del valor del discriminante a2−4mk, tendremos tres tipos de oscilaciones:

Modelo subamortiguado: 4km > a2

Modelo sobreamortiguado: a2 > 4km
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Modelo cŕıticamente amortiguado: a2 = 4km

Consideraremos en este trabajo el caso en el que se tiene una masa de magnitud muy
pequeña, con lo que estaŕıamos en el segundo caso de los expuestos anteriormente.
El impulso positivo dado a la masa causará un desplazamiento rápido hasta un valor
máximo, momento en el cual la fuerza del resorte intentará restaurarla a su posición de
equilibrio. Dado que la masa es pequeña, habrá muy poca inercia, y por lo tanto, no
oscilará alrededor del equilibrio; el sistema está fuertemente sobreamortiguado [11].

Figura 3.4: Sistema masa-resorte amortiguado [2].

Comenzaremos por redefinir el problema con el objetivo de hacerlo adimensional.
Las variables independiente y dependiente son t e y respectivamente, cuyas dimensiones
son tiempo T y longitud L. Las constantes m, a, k e I tienen las dimensiones

[m] =M, [a] =MT−1, [k] =MT−2, [I] =MLT−1

donde M es la dimensión de la masa. Al hacer el balance entre la masa y el amortigua-
miento, la inercia y el término correspondiente al muelle y entre el amortiguamiento y
el muelle, respectivamente, obtenemos tres escalas posibles para el tiempo

m

a
,

√
m

k
,

a

k
.

Las posibles escalas de longitud son

I

a
,

I√
km

,
aI

km
. (3.37)

Suponemos que m << 1, y por tanto m/a << 1,
√
m/k << 1, I/

√
km >> 1, y

aI
km

>> 1. Estas relaciones serán importantes para determinar las escalas apropiadas de
tiempo y longitud, de forma que las variables sean de orden 1.

En la región cercana a t = 0, donde hay un cambio abrupto, esperamos utilizar una
escala de tiempo corta, que definiremos como fase inicial. En general, el problema tiene
las caracteŕısticas de un problema de perturbación singular, es decir, múltiples escalas
de tiempo y un parámetro pequeño multiplicando el término de la derivada de mayor
orden. De las escalas de longitud dadas en (3.37), utilizaremos I/a.
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De las escalas de tiempo, solo a/k es del orden de la unidad. Las otras dos son
pequeñas, y por tanto una puede ser adecuada en la capa inicial cerca de t = 0. Dado
que m/a depende de la masa y el amortiguamiento, y m/k depende de la masa y el
resorte, supondremos que m/a será dominante. Esta suposición se debe a los procesos
dominantes durante las primeras etapas del movimiento: la alta velocidad inicial debeŕıa
influir más en la fuerza de amortiguamiento que en la fuerza debida al muelle. Por tanto
los términos mÿ y aẏ debeŕıan dominar en la fase inicial, mientras que mÿ deberá ser
de un orden pequeño para una fase más avanzada.

Por tanto, las nuevas variables para el problema adimensional serán

t̄ =
t

a/k
, ȳ =

y

I/a
.

Esta escala será la apropiada para estudiar la fase externa, lejos de la fase inicial alre-
dedor de t = 0. Sustituyendo estas variables en (3.36) se tiene

ϵȳ′′ + ȳ′ + ȳ = 0, ȳ(0) = 0 y ϵȳ′(0) = 1, (3.38)

donde estamos considerando la derivada respecto t̄, y la constante adimensional ϵ =
mk/a2 << 1. Tomando ϵ = 0, la solución de orden principal debe de cumplir

ȳ′ + ȳ = 0,

cuya solución es
ȳ0(t̄) = Ce−t̄,

la cual no puede cumplir la condición inicial. Por tanto, para obtener la solución en la
fase inicial, vamos a reescalar el problema utilizando las variables

τ =
t̄

δ(ϵ)
, Y = ȳ.

Sustituyendo en (3.38) se tiene

ϵ

δ(ϵ)2
Y ′′ +

1

δ(ϵ)
Y ′ + Y = 0, Y (0) = 0,

ϵ

δ(ϵ)
Y ′(0) = 1.

Tomando δ(ϵ) = ϵ podemos reescribir el problema diferencial como

Y ′′ + Y ′ + ϵY = 0, Y (0) = 0, Y ′(0) = 1.

Suponiendo de nuevo que ϵ = 0, la aproximación de la fase inicial será Y0(τ) = A+Be−τ .
De la condición inicial Y (0) = 0 se obtiene que B = −A, y como Y ′(0) = 1, A = 1. Por
tanto, la aproximación interna es

Ȳ0(τ) = 1− e−τ .

Ambas soluciones deben cumplir la condición de matching para conseguir una solución
uniforme en todo el dominio, es decir,

ĺım
t̄→0

ȳ0(t̄) = ĺım
τ→∞

Y0(τ),
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luego C = 1. De esta forma tomemos como aproximación a una solución uniforme en
todo el intervalo de estudio

ȳu(t̄) = ȳ0(t̄) + Y0(t̄/ϵ)− ĺım
ϵ→0+

y0(t̄) = e−t̄ − e−t̄/ϵ,

que en términos de las variables originales, es

yu(t) =
I

a
(e−kt/a − e−at/m).

En la figura 3.5, se muestra la evolución del desplazamiento de la masa en función
del tiempo. Se observa un cambio abrupto en la capa ĺımite alrededor de t = 0, donde
el desplazamiento alcanza un máximo. Posteriormente, la masa regresa a su posición
de equilibrio sin oscilaciones, debido a la baja inercia del sistema. En este caso se ha
utilizado la función ode45 para obtener la solución numérica de la ecuación diferencial,
donde se ha representado el problema adimensional con un ϵ = 0,01.

Figura 3.5: Desplazamiento y frente al tiempo t

El diagrama de fases del sistema masa-resorte muestra la relación entre el despla-
zamiento y(t) (posición de la masa en el sistema) y la velocidad y′(t) (derivada del
desplazamiento). En la figura 3.6 vemos que, para un sistema sobreamortiguado, la
trayectoria es una curva que converge suavemente hacia el punto de equilibrio sin os-
cilaciones. En el caso de un sistema subamortiguado, la trayectoria oscilaŕıa alrededor
del equilibrio antes de estabilizarse.

3.4.3. Problema no lineal de la cinética de las enzimas

En las ecuaciones diferenciales de la cinética qúımica es común que aparezcan
fenómenos de perturbación singular, ya que las reacciones en cadena a menudo ocu-
rren en escalas de tiempo diferentes. Por ejemplo, puede suceder que algunas sustancias
qúımicas intermedias permanezcan durante un breve espacio de tiempo, y las reacciones
que las generan pueden ser ignoradas, lo que conduce a una simplificación del sistema.
Muchas reacciones en procesos metabólicos son catalizadas por enzimas. Las enzimas
son protéınas que pueden reaccionar con sustratos moleculares para descomponerlos;
aceleran significativamente la reacción y reducen la enerǵıa de activación.
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Figura 3.6: Diagrama de fases de un sistema sobreamortiguado

Una reacción enzimática que sirve como modelo para muchos otros procesos biológi-
cos es la siguiente

S + E
k1
⇄
−k1

C
k2→ P + E

donde S es un sustrato que es convertido de manera irreversible por una enzima E en un
producto P, y también existe un complejo intermedio sustrato-enzima, C. La formación
del complejo C es una reacción rápida, y generalmente la concentración inicial de la
enzima es pequeña en comparación con la del sustrato. Usando la ley de acción de
masas, tomaremos las tasas de reacción como proporcionales a las concentraciones de
los reactivos.

Introduciendo s, e, c y p para denotar las concentraciones respectivas de S, E, C y
P, obtenemos el sistema de ecuaciones diferenciales no lineal

ds
dt

= −k1se+ k−1c,

de
dt

= −k1se+ (k−1 + k2)c,

dc
dt

= k1se− (k−1 + k2)c,

dp
dt

= k2c,

donde suponemos que s(0) = s0 > 0, e(0) = e0 > 0, p(0) = 0 y c(0) = 0. Como
d(e+ c)/dt = 0 y d(s+ c+ p)/dt = 0,

e(t) = e0 − c(t)

y
p(t) = s0 − s(t)− c(t),

luego seguimos teniendo un problema de valor inicial para las concentraciones s y c
ds
dt

= −k1e0s+ (k1s+ k−1)c, s(0) = s0,

dc
dt

= k1e0s− (k1s+ k−1 + k2)c, c(0) = 0.
(3.40)
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Suponemos que dc/dt ≈ 0, luego c ≈ k1e0s/(k1s+ k−1 + k2). Sustituyendo la expresión
de c se tiene

ds

dt
≈ −k1e0s+ (k1s+ k−1)

k1e0s

(k1s+ k−1 + k2)
≈ −k2k1e0s

(k1s+ k−1 + k2)
.

Este enfoque de estado cuasi-estacionario fija una de las derivadas del sistema a
cero, pero conserva la otra. Para comprender mejor el comportamiento de la solución
vamos a reescalar las variables

x(τ) =
s(t)

s0
, y(τ) =

c(t)

e0
y τ =

t

T
,

Sustituyendo las nuevas variables en (3.40) se tiene
dx
dτ

= −k1e0Tx+ (k1s0x+ k−1)T
e0
s0
y, x(0) = 1,

dy
dτ

= k1s0Tx− (k1s0x+ k2 + k−1)Ty, y(0) = 0.

De estas ecuaciones podemos ver que hay dos posibles formas de escalar el tiempo

Tl =
1

k1e0
, Tr =

1

k1s0
,

cuyos sub́ındices denotan una escala de tiempos lenta y otra rápida. En este tipo de
reacciones el valor de e0 suele ser mucho más pequeño que s0, habitualmente ϵ = e0/s0 ≈
10−6. Empezaremos escogiendo la escala de tiempos más lenta, Tl, y simplificaremos las
ecuaciones definiendo las siguientes constantes

µ =
k−1

k1s0
, λ =

k−1 + k2
k1s0

.

Sustituyéndolas en las ecuaciones obtenemos
dx
dτ

= −x+ (x+ µ)y, x(0) = 1

ϵdy
dτ

= x− (x+ λ)y y(0) = 0.

Suele ocurrir que µ y λ son constantes positivas del orden de la unidad.
El problema de valor inicial para la aproximación de primer orden será

dx0

dτ
= −x0 + (x0 + µ)y0, x0(0) = 1,

0 = x0 − (x0 + λ)y0.

Por tanto,

y0 =
x0

x0 + λ
,
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y obtenemos el problema de valor inicial para x0

dx0
dτ

=
(µ− λ)x0
x0 + λ

, x0(0) = 1.

Estas ecuaciones juntas corresponden a la hipótesis de estado cuasiestacionario de Mi-
chaelis y Menten.

La solución al resolver la ecuación viene definida de forma impĺıcita como

x0 + λ lnx0 = (µ− λ)τ + A.

La función y0 tendrá un comportamiento similar a x0. Además el hecho de que y0(0) =
1/(1 + λ) ̸= y(0) = 0 muestra que la aproximación de primer orden no puede describir
la rápida variación de y alrededor de t = 0. Esto nos sugiere que existe una capa ĺımite
alrededor de t = 0. Consideremos ahora t̄ = τ/ϵ. Notemos que, por la definición de ϵ y
τ se tiene que

t̄ =
τ

ϵ
=

t

Tl
e0
s0

=
t

1
k1e0

e0
s0

=
t
1

k1s0

=
t

Tr
,

es decir, que este cambio equivale a elegir la escala de tiempos rápida. Las ecuaciones
diferenciales de las nuevas variables que denotaremos por X(t̄) e Y (t̄) son entonces

dX
dt̄

= ϵ(−X + (X + µ)Y ), X(0) = 1,

dY
dt̄

= X − (X + λ)Y, Y (0) = 0.

Por tanto, se tiene que la aproximación de primer orden es
dX0

dt̄
= 0,

dY0

dt̄
= X0 − (X0 + λ)Y0,

luego X0 es una constante, en concreto X0 = 1, mientras que

dY0
dt̄

= 1− (λ+ 1)Y0, Y0(0) = 0.

La solución general para esta ecuación diferencial es

Y0(t̄) =Me−(λ+1)t̄ +
1

λ+ 1
.

Aplicando la condición inicial tenemos que M = −1/(λ + 1) luego la solución general
en la capa ĺımite es

Y0(t̄) =
1

λ+ 1
(1− e−(λ+1)t̄).

De forma similar a los ejemplos anteriores, para obtener una aproximación válida en
todo el intervalo debemos verificar que las soluciones en ambas regiones cumplen las
siguientes condiciones

ĺım
t→0

x0(t) = ĺım
t̄→∞

X0(t̄), ĺım
t→0

y0(t) = ĺım
t̄→∞

Y0(t̄)

38



o

ĺım
t→0

x0(t) = 1, ĺım
t→0

x0
λ+ x0

=
1

λ+ 1
,

y por tanto
ĺım
t→0

(x0 + lnx0 + (µ− λ)t− A) = 1− A = 0,

de lo que A=1. La aproximación uniforme en todo el intervalo será la suma de la
solución en la capa ĺımite y la solución exterior, menos la parte común en el ĺımite. De
esta forma tendremos

xuniforme(t) = x0 + 1− 1 = x0

yuniforme(t) =
x0

λ+ x0
+

1

λ+ 1
(1− e−(λ+1)t/ϵ)− 1

λ+ 1
=

x0
λ+ x0

− 1

λ+ 1
e−(λ+1)t/ϵ

En la figura 3.7 hemos representado la evolución de la concentración de sustrato y
complejo a lo largo del tiempo, donde podemos ver que la concentración del comple-
jo vaŕıa rápidamente para valores de tiempo cercanos a cero. En la región de orden
principal podemos ver que decrece exponencialmente según crece el tiempo.

Figura 3.7: Concentración de sustrato y complejo a lo largo del tiempo
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Caṕıtulo 4

Aproximación WKB

4.1. Introducción

En el método WKB se parte de una dependencia exponencial como hipótesis. Esta
es una suposición razonable, ya que muchos de los problemas estudiados terminaron
teniendo una dependencia exponencial en la coordenada de la capa ĺımite. Además, con
esta suposición el trabajo necesario para encontrar una aproximación asintótica de la
solución se reduce significativamente.

La popularidad del método WKB se remonta a la década de 1920, con el desarrollo
de la mecánica cuántica. En particular, se utilizó para encontrar soluciones aproximadas
de la ecuación de Schrödinger. El nombre del método viene de los investigadores que
participaron en su desarrollo: Wentzel, Kramers y Brillouin. Algunos lo llaman el méto-
do de Liouville y Green, dado que ambos publicaron art́ıculos sobre el procedimiento
en 1837.

Ejemplo 4.1.1 Ilustraremos las ideas en las que se basa el método WKB con un
ejemplo ilustrativo [5]. Consideremos el siguiente problema

ϵ2y′′ − q(x)y = 0. (4.1)

La única restricción que haremos a la función q(x) es que sea regular. El objetivo
es construir una aproximación de la solución general de esta ecuación. Si q(x) fuera
constante se tendŕıa que la solución general del problema es

y(x) = a0e
−x

√
q/ϵ + b0e

x
√
q/ϵ. (4.2)

La hipótesis planteada en el método WKB es que la solución exponencial en (4.2) se
puede generalizar para dar una solución aproximada de (4.1). Para que esto sea posible
es necesario asegurar que el desarrollo sea lo suficientemente general como para controlar
el coeficiente variable en la ecuación. La hipótesis que aplicaremos en este método es
que el desarrollo aproximado de la solución tenga la siguiente forma

y ≈ eθ(x)/ϵ
α

(y0(x) + ϵαy1(x) + ϵ2αy2...). (4.3)

La caracteŕıstica principal del método WKB es que es bastante espećıfico en cuanto
a cómo depende la solución en la capa ĺımite, es decir, se supone que la dependencia
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es exponencial. Esto puede limitar el método pero también lo hace más sencillo que
los métodos estudiados anteriormente. De (4.3) se tiene la siguiente expresión para la
primera derivada

y′ ≈ (ϵ−αθ′y0 + y′0 + θ′y1 + ϵα(y′1 + θ′y2) + ...)eθ/ϵ
α

,

y la correspondiente ecuación para la segunda derivada

y′′ ≈ (ϵ−2α(θ′)2y0+ϵ
−α(θ′′y0+2θ′y′0+(θ′)2y1)+y

′′
0 +θ

′′y1+2θ′y′1+θ
′2y2+ ...)e

θ/ϵα . (4.4)

A continuación sustituimos (4.3) y (4.4) en (4.1) y se tiene

ϵ2(
1

ϵ2α
(θ′)2y0 +

1

ϵα
(θ′′y0 + 2θ′y′0 + (θ′)2y1) + ...)− q(x)(y0 + ϵαy1 + ...) = 0. (4.5)

En este paso la exponencial se simplifica. Esto no ocurriŕıa si la ecuación fuera no
lineal. Ahora, agrupando los términos por potencias de ϵ en (4.5) y considerando α = 1
tenemos las siguientes ecuaciones:

La ecuación eikonal (θ′)2 = q(x), cuyas soluciones son

θ(x) = ±
∫ x√

q(s)ds. (4.6)

La ecuación de transporte θ′′y0 + 2θ′y′0 + (θ′)2y1 = q(x)y1. Como θ(x) cumple la
ecuación eikonal, podemos escribir la ecuación anterior como

θ′′y0 + 2θ′y′0 = 0. (4.7)

Dividiendo ambos lados de la ecuación entre y0 y θ
′, en el caso de ser no nulos, se

tiene
θ′′

θ′
+ 2

y′0
y0

= 0 ⇒ d

dx
(ln(|θ′|)) + 2

d

dx
ln |y0| = 0.

Integrando y tomando exponenciales

ln |θ′|+ 2 ln |y0| = C1 ⇒ |θ′|y20 = C,

tendremos que la solución de y0 es

y0(x) =
c√
|θ′|

,

donde c es una constante arbitraria.

De esta forma tenemos una aproximación a primer orden de la solución general de
(4.1)

y(x) ≈ |q(x)|−1/4(a0 exp(−
1

ϵ

∫ x√
q(s)ds) + b0 exp(

1

ϵ

∫ x√
q(s)ds)), (4.8)

donde a0 y b0 son dos constantes arbitrarias que pueden ser complejas. A partir de (4.8)
vemos que q(x) debe ser distinta de cero. Los valores de x donde q(x) es cero se llaman
puntos de inflexión, y los discutiremos más adelante. A partir de esta expresión vemos
que se tienen dos posibles situaciones, dependiendo de si q(x) es estrictamente positiva
o negativa.
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4.1.1. El caso oscilatorio

En el caso en el que q(x) sea estrictamente negativo, la solución tendrá forma osci-
latoria. Consideramos la ecuación

ϵ2y′′ + k(x)2y = 0, (4.9)

donde k(x) > 0 y q(x) = −k(x)2. Para aplicar el método WKB supondremos que la
solución y(x) puede expresarse de la siguiente forma

y ≈ eθ(x)/ϵ(y0(x) + ϵy1(x) + ...).

Como es un caso particular del ejemplo (4.1), obtendremos la ecuación eikonal (θ′)2 =
−k(x)2 cuyas soluciones son

θ(x) = ±
∫ x

ik(s)ds.

Sustituyendo θ(x) y q(x) en (4.8), obtenemos la aproximación WKB a primer orden
de la ecuación de Schrödinger

yWKB(x) =
c1√
k(x)

exp

(
i

ϵ

∫ x

a

k(s)ds

)
+

c2√
k(x)

exp

(
− i
ϵ

∫ x

a

k(s)ds

)
.

Como eiθ = cos(θ) + i sin(θ), podemos reescribirla en términos de senos y cosenos

yWKB(x) =
c1√
k(x)

sin

(
1

ϵ

∫ x

a

k(s)ds

)
+

c2√
k(x)

cos

(
1

ϵ

∫ x

a

k(s)ds

)
. (4.10)

Ejemplo 4.1.2

Para verificar la precisión de el método WKB compararemos la aproximación con
la solución exacta suponiendo que q(x) = −e2x. En este caso,

y ≈ e−x/2(a0e
−iex/ϵ + b0e

iex/ϵ) = e−x/2(α0 cos(λe
x) + β0 sin(λe

x)), (4.11)

donde λ = ϵ−1. Aplicando las condiciones iniciales y(0) = a e y(1) = b tenemos el
siguiente sistema de ecuaciones

y(0) = α0 cos(λ) + β0 sin(λ) = a

y(1) = e−1/2(α0 cos(eλ) + β0 sin(eλ)) = b.

Resolviendo este sistema obtenemos que α0 y β0 son

α0 =
a sin(eλ)− be1/2 sin(λ)

sin(λ(e− 1))
y β0 =

be1/2 cos(λ)− a cos(eλ)

sin(λ(e− 1))
, (4.12)

donde hemos tenido en cuenta que sin(x − y) = sin(x) cos(y) − cos(x) sin(y), luego
sin(eλ) cos(λ)− cos(eλ) sin(λ) = sin(λ(e− 1)).
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Sustituyendo (4.12) en (4.11) se tiene que

y ≈ e−x/2

[(
a sin(eλ)− be1/2 sin(λ)

sin(λ(e− 1))

)
cos(λex) +

(
be1/2 cos(λ)− a cos(eλ)

sin(λ(e− 1))

)
sin(λex)

]
,

y agrupando términos concluimos que la solución aproximada puede expresarse como

y ≈ e−x/2

(
be1/2 sinλ(ex − 1)− a sinλ(ex − e)

sin(λ(e− 1))

)
. (4.13)

Además, la ecuación que estamos estudiando

ϵ2y′′ + e2xy = 0

puede reescribirse, utilizando el cambio de variable z = ex/ϵ = exλ, como

z2
d2y

dz2
+ z

dy

dz
+ z2y = 0,

donde hemos tenido cuenta que e2x = ϵ2z2 y que

y′ =
dy

dx
=
dy

dz

dz

dx
=
dy

dz

ex

ϵ
= z

dy

dz

y′′ =
d

dx
(z
dy

dz
) = z2

d2y

dz2
+ z

dy

dz
.

Por tanto, se tiene una ecuación de la forma

z2y′′ + zy′ + (z2 − n2)y = 0,

es decir, una ecuación de Bessel con n = 0 cuya solución exacta es

y(z) = AJ0(z) +BY0(z),

donde J0 e Y0 son las funciones de Bessel [1, 13] que vienen definidas por

Jn(z) =
∞∑
k=0

(−1)k(z/2)n+2k

k!(n+ k)!
y Yn(z) =

Jn(z)cos(nπ)− J−n(z)

sin(nπ)
.

En particular, para n = 0, tendremos

J0(z) =
∞∑
k=0

(−1)k(z/2)2k

(k!)2
e Y0(z) = − 2

π

∫ ∞

0

cos(z cosh(θ))dθ

y las constantes A y B serán

A =
bY0(λ)− aY0(λe)

J0(λe)Y0(λ)− Y0(λe)J0(λ)
B =

aJ0(λe)− bJ0(λ)

J0(λe)Y0(λ)− Y0(λe)J0(λ)
.

En la figura 4.2 hemos representado en Matlab la solución exacta, que viene descrita
por las funciones de Bessel, y la solución aproximada calculada por el método WKB.
Para ello hemos fijado los valores a = 1, b = 0 y ϵ = 0,1. En ella podemos ver que ambas
gráficas son indistinguibles, por lo que la solución aproximada se ajusta correctamente
a la solución exacta.
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Figura 4.1: Solución exacta descrita con funciones de Bessel y solución aproximada
calculada con el método WKB

4.1.2. El caso no oscilatorio

Ahora consideraremos el caso en el que q(x) es estrictamente positivo en (4.1). Más
concretamente, q(x) = k(x)2 con k(x) > 0.

Aplicando el método WKB, sustituyendo en la ecuación (4.6) se tiene

θ(x) = ±
∫ x

k(s)ds.

Por tanto, sustituyendo en (4.8),

yWKB(x) =
c1√
k(x)

exp

(
1

ϵ

∫ x

a

k(s)ds

)
+

c2√
k(x)

exp

(
−1

ϵ

∫ x

a

k(s)ds

)
. (4.14)

4.2. El método WKB para la aproximación de au-

tovalores grandes y sus autofunciones

Podemos aplicar el método WKB para determinar autovalores grandes para opera-
dores diferenciales simples. Consideramos el siguiente problema de condiciones frontera

y′′ + λq(x)y = 0, 0 < x < π; y(0) = y(π) = 0. (4.15)

siendo q(x) > 0. A un número λ lo llamaremos autovalor del problema de condiciones
frontera (4.15) si existe una solución no trivial de (4.15) para ese valor particular de
λ. Además, las correspondientes soluciones no triviales se llaman autofunciones. Para
obtener todos los autovalores definiremos ϵ como ϵ = 1/

√
λ y k(x) =

√
q(x), luego

podemos reescribir la ecuación (4.15) como

ϵ2y′′ + k(x)2y = 0. (4.16)

De esta forma podemos aplicar el método WKB para un ϵ pequeño, o lo que es lo
mismo, para valores de λ grandes. La solución de la aproximación WKB es la dada por
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(4.10), que en nuestro caso se escribe como

yWKB(x) =
1

q(x)1/4

(
c1 sin

(√
λ

∫ x

0

√
q(ξ)dξ

)
+ c2 cos

(√
λ

∫ x

0

√
q(ξ)dξ

))
.

Aplicando las conciones frontera, de y(0) = 0 se tiene que c2 = 0, y de y(π) = 0 se tiene
que

c1
q(π)1/4

sin

(√
λ

∫ π

0

√
q(ξ)dξ

)
= 0.

Como estamos buscando la solución no trivial, llegamos a la siguiente condición

sin

(√
λ

∫ π

0

√
q(ξ)dξ

)
= 0,

que se cumple cuando
√
λ

∫ π

0

√
q(ξ)dξ = nπ,

donde n es un número entero. Por tanto los autovalores grandes del problema (4.15)
serán aproximadamente

λn =

(
nπ∫ π

0

√
q(ξ)dξ

)2

(4.17)

para n grande. Las correspondientes autofunciones serán

yWKB =
c1

q(x)1/4
sin

(
nπ
∫ x

0

√
q(ξ)dξ∫ π

0

√
q(ξ)dξ

)
.

En el siguiente ejemplo ilustraremos el procedimiento anterior para obtener autova-
lores grandes de un problema concreto.

Ejemplo 4.2.1 Consideremos el problema de autovalores

y′′ + λ(x+ π)4y = 0, y(0) = y(π) = 0. (4.18)

Notemos que esta ecuación es un caso particular de la expresión (4.15) donde

q(x) = (x+ π)4

donde se cumple que q(x) > 0. Sabemos que sus autovalores grandes vendrán definidos
por (4.17) y que ∫ π

0

√
q(ξ)dξ =

∫ π

0

(ξ + π)2dξ =
7π3

3
.

Por tanto, los autovalores grandes para este problema son aproximadamente

λn =
9n2

49π4
,

y sus correspondientes autofunciones serán

yWKB =
c1

q(x)1/4
sin

(
nπ(x3 + 3x2π + 3xπ2)

7π3

)
.
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4.3. Segundo término del desarrollo WKB

Para realizar una estimación del error cometido al usar (4.8) para aproximar la so-
lución al problema, calcularemos el término y1 del desarrollo (4.3). Agrupando términos
por potencias de ϵ en (4.5), la ecuación correspondiente a O(ϵ2) es

θ′′y1 + 2θ′y′1 + (θ′)2y2 + y′′0 = q(x)y2.

Sustituyendo la ecuación eikonal (4.6), la ecuación queda reducida a

2θ′y′1 + θ′′y1 = −y′′0 .

Suponiendo que y1(x) = y0(x)w(x), y como θ′ = ±√
q, se tiene que

2θ′y0w
′ = (−2θ′y′0 − θ′′y0)w − y′′0 .

Podemos ver que esta ecuación tiene la forma de

dw(x)

dx
= a(x)w(x) + b(x)

cuya solución será una solución homogénea más una solución particular. Puesto que la
ecuación homogénea es

w′ =

(
−2θ′y′0 − θ′′y0

2θ′y0

)
w,

se tiene que

w(x) = C exp

∫ x [
−y

′
0(s)

y0(s)
− θ′′(s)

2θ′(s)

]
ds

= C exp(− ln(|y0|)−
1

2
ln |θ′|) = C|y0|−1(|θ′|)−1/2 = C1.

Para determinar la solución particular, necesitaremos la expresión de y′′0 , que es

y′′0 = − c
2

(
−3

2
(θ′)−5/2(θ′′)2 + (θ′)−3/2θ′′′

)
,

luego

− y′′0
2θ′y0

=
1
2

(
−3

2
(θ′)−5/2(θ′′)2 + (θ′)−3/2θ′′′

)
2(θ′)1/2

=

(
−3

8
(θ′)−3(θ′′)2 +

1

4
(θ′)−2θ′′′

)
.

Por tanto se tiene que

w(x) = C1 +

∫ x 1

4

θ′′′

(θ′)2
−
∫ x 3

8

(θ′′)2

(θ′)3
.

Integrando por partes el segundo término obtenemos que

w(x) = d+
1

4

θ′′

(θ′)2
+

1

4

∫ x

2
(θ′′)2

(θ′)3
− 3

8

∫ x (θ′′)2

(θ′)3
,
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por lo que, finalmente

w(x) = d+
1

4

θ′′

(θ′)2
+

1

8

∫ x (θ′′)2

(θ′)3
dx. (4.19)

Teniendo en cuenta la ecuación eikonal y que θ′′ = ±(1/2)(q′/
√
q(x)) podemos escribir

(4.19) en términos de q

w(x) = d± 1

4

q′

2q(x)1/2q(x)
± 1

8

∫ x 1

4

(q′)2

q(x)q(x)3/2
dx = d± 1

8

q′

q(x)3/2
± 1

32

∫ x (q′)2

q(x)5/2
dx.

Se espera que la aproximación de primer orden sea una buena aproximación a la
solución si ϵy1(x) << y0. Dado que y1(x) = y0(x)w(x), esto ocurrirá si |ϵw(x)| << 1.
De la fórmula para w(x) dada por (4.19), podemos expresar esta condición en términos
de q(x) y su primera derivada. En particular, en un intervalo x0 ≤ x ≤ x1, tendremos
una buena aproximación si

ϵ

(
|d|+ 1

32

∣∣∣∣ q′q3/2

∣∣∣∣
∞

(
4 +

∫ x1

x0

∣∣∣∣q′q
∣∣∣∣ dx)) << 1

donde |h(x)|∞ = máxx0≤x≤x1 |h(x)|. Esto se mantiene si el intervalo de estudio no tiene
puntos de retorno, esto es, puntos donde q(x) = 0. La fórmula anterior también se
puede usar para determinar cuánto podemos aproximarnos a un punto de retorno antes
de que el desarrollo se vuelva no uniforme.

La solución general dada en (4.8) y (4.19) contiene constantes que deben deter-
minarse con las condiciones de contorno. El problema principal que surge al usar la
aproximación WKB es que estas constantes pueden depender de ϵ. Entonces es necesa-
rio asegurar que esta dependencia no interfiere con la acotación supuesta en el desarrollo
de (4.3). Para ilustrar esta situación, consideramos el siguiente problema de contorno

ϵ2y′′ + e2κxy = 0 para 0 < x < 1, κ ∈ R. (4.20)

Para este caso, como θ′ = ±ieκx, de (4.19) se tiene que

w(x) = d± iκ

8
e−κx.

Notemos que w(x) no depende de ϵ y está acotado para x ∈ (0, 1), luego es seguro
podemos obtener una buena aproximación.

El desarrollo de la aproximación WKB tomando el segundo término será de la forma

y ≈ eθ/ϵ(y0 + ϵy1) ≈ eθ/ϵy0(1 + ϵw),

donde y1 = (d± (ike−kx)/8)y0. Sustituyendo

y ≈ 1

(q(x))1/4

(
a0e

− ieκx

ϵκ

(
1 + ϵ

(
a1 −

iκ

8
e−κx

))
+ b0e

ieκx

ϵκ

(
1 + ϵ

(
b1 +

iκ

8
e−κx

)))
.

Un desarrollo de dos términos para la solución general de (4.20) es por tanto

y ≈ e−κx/2

(
a0e

−χ

(
1 + ϵ

(
a1 −

iκ

8
e−κx

))
+ b0e

χ

(
1 + ϵ

(
b1 +

iκ

8
e−κx

)))
, (4.21)
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donde

χ =
i

κϵ
eκx

y a0 y b0 son constantes a determinar con las condiciones iniciales.
La caracteŕıstica más importante de la aproximación WKB es la suposición de una

dependencia exponencial para una variación rápida. Al hacer esta suposición, podemos
calcular la aproximación del primer término de la solución resolviendo dos ecuaciones
diferenciales de primer orden. La primera, la ecuación eikonal, es no lineal y determina
la variación rápida en la solución. En este caso no fue dif́ıcil resolver la ecuación eikonal
pero puede ser uno de los pasos más dif́ıciles al utilizar el método WKB. La segunda
ecuación es la ecuación de transporte, que determina la variación lenta. La ecuación de
transporte es lineal, al igual que las ecuaciones para determinar los términos de orden
superior en el desarrollo.

4.4. Ecuación de Schrödinger

Veamos ahora cómo aparecieron en Mecánica Cuántica ecuaciones del tipo (4.1).
Consideramos una part́ıcula de masa m que se mueve en el eje x bajo la influencia

de un potencial V(x). Utilizando el principio de conservación de la enerǵıa

1

2
mx′2 + V (x) = E,

de donde se obtiene que las órbitas que describe la part́ıcula pueden expresarse como

x′ = ±
√

2

m
(E − V (x)).

Estas órbitas serán válidas para el dominio de E > V (x), que llamaremos la región
clásica.

En 1900 se descubrió que el modelo clásico fallaba a escala atómica. La teoŕıa
cuántica establece que la part́ıcula no tiene una posición o velocidad definida; postula
una interpretación estad́ıstica del estado de la part́ıcula en términos de una función
de onda ψ(x, t) que es compleja. El módulo al cuadrado de la función de onda es la
densidad de probabilidad para la posición, que es una variable aleatoria X. Por lo tanto,

Pr(a < X ≤ b) =

∫ b

a

|ψ(x, t)|2dx

es la probabilidad de que una part́ıcula esté en el intervalo a < x ≤ b en un tiempo t.
Además ∫ ∞

−∞
|ψ(x, t)|2dx = 1,

porque la part́ıcula esta localizada en algún lugar del eje x. La ecuación que modela la
evolución de un sistema mecánico cuántico es la ecuación de Schrödinger, que tiene la
forma

iℏψt = − ℏ2

2m
ψxx + V (x)ψ, (4.22)
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donde V es la enerǵıa potencial, m es la masa y ℏ = h/(2π), donde h = 6, 625 ·
10−34kg m2/s es la constante de Plank.

Asumiendo que la solución tiene la forma ψ(x, t) = y(x)ϕ(t), sustituyendo en (4.22)
y dividiendo por ψ siempre y cuando se pueda, obtenemos

iℏdϕ
dt

ϕ
=

− ℏ2
2m
y′′ + V (x)y

y
.

El lado izquierdo de la ecuación solo depende de t, mientras que el lado derecho solo
depende de x. La única forma en la que esta igualdad puede ocurrir para todo x y
para todo t es que los dos lados de la ecuación sean igual a la misma constante, que
llamaremos E. De esta forma obtenemos las siguientes dos ecuaciones, una para ϕ

dϕ

dt
= (−iE/ℏ)ϕ,

y la segunda para y(x)

− ℏ2

2m
y′′ + (V (x)− E)y = 0. (4.23)

La ecuación para el tiempo es la ecuación periódica de ϕ = Ce−iEt/ℏ, donde C es una
constante. La ecuación (4.23), cuya solución será la parte espacial de la función de onda,
la definiremos como la ecuación de Schrödinger independiente del tiempo. Además se
debe cumplir ∫ ∞

−∞
|y(x)|2dx = 1

para que la solución este normalizada, es decir, C = 1. Definimos el parámetro ϵ =
ℏ/

√
2m << 1, dado que ℏ es muy pequeño. Aśı, obtenemos un problema de la forma

(4.1) donde 0 < ϵ << 1, y q(x) = V (x) − E. Para q(x) < 0 la solución variará
rápidamente de forma oscilatoria, mientras que si q(x) > 0 esperamos soluciones que
crezcan y decaigan exponencialmente. Esa región no puede darse en la f́ısica clásica,
aunque en mecánica cuántica existe una probabilidad no nula de que la part́ıcula exista
en esta región.
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4.5. Puntos de inflexión

Como vimos en la sección 4.1, es necesario evitar los puntos donde q(x) se anula.
Para estudiar el comportamiento en estos puntos, supondremos que q(x) es una función
suave y posee un único cero simple en x = xi. Es decir, asumimos que q(xi) = 0 y que
su derivada q′(xi) ̸= 0. Primero, analizaremos el caso en el que solo hay un punto de
inflexión.

4.5.1. Caso donde q′(xi) > 0

En este caso asumiremos que solo existe un punto de inflexión xi, con q(x) > 0 si
x > xi y q(x) < 0 si x < xi. Esto significa que la solución de (4.1) será oscilatoria si
x < xi y exponencial para x > xi.

Podemos usar la aproximación WKB a ambos lados del punto de inflexión. De esta
forma tendremos la siguiente solución general

y ≈
{
yI(x) si x < xi,
yD(x) si xi < x.

donde

yD(x) ≈
1

|q(x)|1/4

(
aD exp(−1

ϵ

∫ x

xi

√
q(s)ds) + bD exp(

1

ϵ

∫ x

xi

√
q(s)ds)

)
, (4.24)

y

yI(x) ≈
1

|q(x)|1/4

(
aI exp(−

i

ϵ

∫ x

xi

√
−q(s)ds) + bI exp(

i

ϵ

∫ x

xi

√
−q(s)ds)

)
. (4.25)

Estas expresiones provienen de (4.8) donde hemos fijado uno de los extremos en las
integrales en el punto de inflexión. Notemos que los coeficientes en (4.24) y (4.25) no
son independientes, por lo que debemos determinar cómo están relacionados. Para ello,
analizaremos lo que ocurre en una capa de transición centrada en x = xi. Después del
análisis, la aproximación de la solución general contendrá solo dos constantes arbitrarias
en lugar de las cuatro.

4.5.2. Solución en la capa de transición

Para determinar la solución cerca del punto de inflexión introduciremos la variable

x̄ =
x− xi
ϵβ

o lo que es lo mismo
x = xi + ϵβx̄.

Dado que conocemos el punto xi, solo debemos determinar el valor de β. Utilizando el
desarrollo de Taylor

q(xi + ϵβx̄) ≈ q(xi) + ϵβx̄q′(xi) + ... = ϵβx̄q′(xi) + ...

50



supondremos que q(x) tiene un cero simple en xi, luego q
′(xi) ̸= 0. Si definimos Y (x̄)

como la solución en esta capa, tenemos

ϵ2−2βY ′′ − (ϵβx̄q′(xi) + ...)Y = 0. (4.26)

luego si 2− 2β = β, entonces β = 2
3
. El desarrollo para la solución en esta capa es

Y ≈ ϵγY0 + ... . (4.27)

Sustituyendo en (4.26) obtenemos la siguiente ecuación

Y ′′
0 − x̄q′(xi)Y0 = 0 para−∞ < x̄ <∞. (4.28)

Podemos transformar esta ecuación en una cuyas soluciones conocemos. Considerando
s = (q′(xi))

1/3x̄ obtendremos una ecuación de Airy, que es

d2

ds2
Y0 − sY0 = 0, para−∞ < s <∞.

Esta ecuación se puede resolver utilizando desarrollos en series de potencias o la trans-
formada de Fourier. La solución general puede escribirse como

Y0 = aAi(s) + bBi(s), (4.29)

donde a y b son constantes arbitrarias y Ai(·) y Bi(·) son funciones de Airy de primer
y segundo tipo, respectivamente, dadas por [5]

Ai(x) ≡ 1

32/3π

∞∑
k=0

1

k!
Γ

(
k + 1

3

)
sin

[
2π

3
(k + 1)

]
(31/3x)k

y
Bi(x) ≡ eπi/6Ai(xe2πi/3) + e−πi/6Ai(xe−2πi/3).

En la figura 4.2 hemos representado las funciones de Airy de primer y segundo tipo.
Las funciones Ai(x) y Bi(x) y sus derivadas al evaluarlas en x = 0 toman el valor

Figura 4.2: Funciones de Airy

51



Ai(0) =
Γ (1

3
)

2π31/6
, Ai′(0) = −

31/6Γ (2
3
)

2π
,

Bi(0) =
√
3Ai(0), Bi′(0) = −

√
3Ai′(0).

Además, al integrar estas funciones se cumple que∫ ∞

0

Ai(x)dx =
1

3
,

∫ 0

−∞
Ai(x)dx =

2

3
,

∫ 0

−∞
Bi(x)dx = 0.

Con esto, podemos reescribir la ecuación (4.28) como

Y0(x̄) = aAi[(q′(xi)
1/3x̄)] + bBi[(q′(xi)

1/3x̄)]. (4.30)

De (4.24), (4.25) y (4.30) tenemos 6 constantes que determinar. Sin embargo, dado
que (4.30) debe cumplir la condición de matching con las soluciones externas de (4.24)
y (4.25), existirán relaciones entre las constantes, lo que nos lleva finalmente a dos
constantes en la solución general.

4.5.3. Matching

La solución en la capa de transición debe cumplir la condición de matching con la
solución externa de (4.24) y (4.25). Utilizaremos la siguiente variable intermedia

xη =
x− xi
ϵη

donde 0 < η < 2/3. Notemos que las 2 soluciones externas para x > xi contienen los
términos∫ x

xi

√
q(s)ds =

∫ xi+ϵηxη

xi

√
q(s)ds ≈

∫ xi+ϵηxη

xi

√
(s− xi)q′(xi)ds = (q′(xi))

1/2(ϵηxη)
3/22

3
.

Si definimos el parámetro r = (q′(xi))
1/3ϵη−2/3xη podemos reescribir la integral anterior

como ∫ x

xi

√
q(s)ds =

2

3
ϵr3/2.

Además

|q(x)|−1/4 ≈ |q(xi) + (x− xi)q
′(xi)|−1/4 = ϵ−1/6(q′(xi))

−1/6r−1/4.

Para hacer el matching entre la capa de transición utilizaremos el desarrollo asintóti-
co de las funciones de Airy [5]

Ai(x) ≈

{
1√

π|x|1/4
(
cos
(
ζ − π

4

)
+ η(x) sin

(
ζ − π

4

))
si x→ −∞,

1
2
√
πx1/4 e

−ζ(1− η(x)) si x→ ∞.

y

Bi(x) ≈

{
1√

π|x|1/4
(
cos
(
ζ + π

4

)
+ η(x) sin

(
ζ + π

4

))
si x→ −∞,

1√
πx1/4 e

ζ(1 + η(x)) si x→ ∞.
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donde ζ = 2
3
|r|3/2 y η = 5/(72ζ).

Para verificar que cumple la condición de matching en ambos lados del punto de
inflexión, comenzaremos con xi < x. Sustituyendo estos desarrollos en la expresión
(4.29) y considerando que s = (q′(xxi

))1/3x̄ y que xη = x̄/(ϵη−2/3) se tiene que

Y ≈ ϵγY0(ϵ
η−2/3xη) + ... ≈ ϵγ

[
aAi((q′(xxi

))1/3x̄) + bBi((q′(xxi
))1/3x̄)

]
= ϵγ

[
a

2
√
π((q′(xi))1/3x̄)1/4

e−
2
3
(q′(xi)

1/3x̄)3/2

(
1− 5

72 · 2
3
|(q′(xi)1/3x̄|3/2

)

+
b√

π((q′(xi))1/3x̄)1/4
e

2
3
(q′(xi)

1/3x̄)3/2

(
1− 5

72 · 2
3
|(q′(xi)1/3x̄|3/2

)

≈ aϵγ

2
√
πr1/4

e−
2
3
r3/2 +

bϵγ√
πr1/4

e
2
3
r3/2 ,

donde se ha tenido en cuenta que

1− 5

72 · 2
3
|(q′(xi)1/3x̄|3/2

→ 1 si x̄→ ∞.

Para la solución WKB en (4.24)

yD ≈ ϵ−1/6

(q′(xi))1/6r1/4

(
aDe

− 2
3
r3/2 + bDe

2
3
r3/2
)
.

Para que estas expresiones cumplan la condición de matching debe suceder que γ = −1
6
,

aD =
a

2
√
π
(q′(xi)

1/6) y bD =
b√
π
(q′(xi))

1/6.

Al hacer cumplir la condición de matching en x < xi, en este caso xη < 0, lo cual
introduce números complejos en (4.25). De nuevo, utilizando el desarrollo asintótico de
las funciones de Airy y que cos(θ) = 1

2
(eiθ + e−iθ), se tiene que

Y ≈ ϵγY0(q
′(xi)

1/3ϵη−2/3xη) + ...

≈ aϵγ√
π|r|1/4

cos
(
ζ − π

4

)
+

bϵγ√
π|r|1/4

cos
(
ζ +

π

4

)
=

aϵγ√
π|r|1/4

ei(ζ−π/4) + e−i(ζ−π/4)

2
+

bϵγ√
π|r|1/4

ei(ζ+π/4) + e−i(ζ+π/4)

2

=
ϵγ

2
√
π|r|1/4

(
(ae−iπ/4 + beiπ/4)eiζ + (aeiπ/4 + be−iπ/4)e−iζ

)
. (4.31)

Por otro lado, en la aproximación WKB tendremos

yI ≈
ϵ−1/6

(q′(xi))1/6|r|1/4
(aIe

−iζ + bIe
iζ)). (4.32)
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Haciendo el matching para (4.31) y (4.32) nos lleva a

aI =
(q′(xi))

1/6

2
√
π

(aeiπ/4 + be−iπ/4) y bI =
(q′(xi))

1/6

2
√
π

(ae−iπ/4 + beiπ/4).

Sustituyendo las constantes en (4.25) y siendo θ(x) =
∫ xi

x

√
|q(s)|ds se tiene

yI(x) =
1

|q(x)|1/4

(
(q′(xi))

1/6

2
√
π

(
aeiπ/4 + be−iπ/4

)
exp

(
−iθ(x)

ϵ

)
+

(q′(xi))
1/6

2
√
π

(
ae−iπ/4 + beiπ/4

)
exp

(
i
θ(x)

ϵ

))
=

1

|q(x)|1/4

(
(q′(xi))

1/6

2
√
π

(
aeiπ/4 + be−iπ/4

)(
cos

(
θ(x)

ϵ

)
− i sin

(
θ(x)

ϵ

))
+

(q′(xi))
1/6

2
√
π

(
ae−iπ/4 + beiπ/4

)(
cos

(
θ(x)

ϵ

)
+ i sin

(
θ(x)

ϵ

)))
.

Como cos(θ) = 1
2
(eiθ + e−iθ), se puede escribir como

yI(x) =
1

|q(x)|1/4
(q′(xi))

1/6

2
√
π

(
a cos

(
θ(x)

ϵ

)
2 cos

(π
4

)
+ b cos

(
θ(x)

ϵ

)
2 cos

(π
4

)
+ a sin

(
θ(x)

ϵ

)
2 sin

(π
4

)
− b sin

(
θ(x)

ϵ

)
2 sin

(π
4

))
y como 2 sin(x) sin(y) = cos(x−y)−cos(x+y) y 2 cos(x) cos(y) = cos(x−y)+cos(x+y)

se tiene

yI(x) =
1

|q(x)|1/4
q′(xi)

1/6

2
√
π

(
2a cos

(
θ

ϵ
− π

4

)
+ 2b cos

(
θ

ϵ
+
π

4

))
.

Finalmente, la aproximación WKB uniforme para todo el intervalo podremos escribirla
como

y ≈


1

|q(x)|1/4

(
(2aD cos

(
1

ϵ
θ(x)− π

4

)
+ bD cos

(
1

ϵ
θ(x) +

π

4

))
si x < xi,

1

|q(x)|1/4
(aDe

−κ(x)/ϵ + bDe
κ(x)/ϵ) si xi < x.

donde

θ(x) =

∫ xi

x

√
|q(s)|ds (4.33)

y

κ(x) =

∫ x

xi

√
|q(s)|ds (4.34)

A continuación ilustraremos los puntos de inflexión con un ejemplo.

Ejemplo 4.4.1 Consideremos el problema

ϵ2y′′ − x(2− x)y = 0 para− 1 < x < 1, (4.35)
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donde y(−1) = y(1) = 1. En este caso, q(x) = x(2 − x), luego hay un único punto de
inflexión simple en x = 0 con q′(0) = 2. Al resolver las respectivas integrales de (4.33)
y (4.34) obtenemos

θ(x) =
1

2
(1− x)

√
x(x− 2)− 1

2
ln(1− x+

√
x(x− 2))

y

κ(x) =
1

2
(x− 1)

√
x(2− x)− 1

2
arcsin(x− 1) +

π

4

En las figuras 4.3 y 4.4 se muestra la solución numérica y la solución aproximada
por el método WKB del problema (4.35). Para representar la solución numérica hemos
utilizado un código en Matlab basado en la función bvp4c, con tolerancia 10−10 utilizado
para resolver problemas de contorno.

Podemos ver que la solución calculada por el método WKB se aproxima bien a la
solución numérica tanto para el caso oscilatorio como para el no oscilatorio. En este
caso se tiene que el punto de inflexión se encuentra en xi = 0, donde se tiene la capa
de transición definida por las funciones de Airy. En esta región podemos comprobar de
nuevo que el método WKB se ajusta a la solución numérica.

Figura 4.3: Solución numérica de (4.35)
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Figura 4.4: Solución aproximada por el método WKB de (4.35)

56



Bibliograf́ıa

[1] G. B. Arfken, Mathematical methods for physicists, Elsevier Academic Press, 6th
edition, 2005.

[2] L. H. Cortés, Control robusto de un sistema mecánico simple mediante una herra-
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