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Resumen: El teorema del módulo máximo establece que una función holomorfa y no cons-
tante definida en un dominio conexo del plano complejo no puede alcanzar un máximo local del
módulo en el interior. Este resultado, fundamental en análisis complejo, admite múltiples gene-
ralizaciones y extensiones que han dado lugar a un amplio conjunto de consecuencias teóricas.
En este trabajo se presenta una selección de dichas consecuencias, incluyendo su adaptación al
marco de funciones armónicas y subarmónicas, los teoremas de Phragmén-Lindelöf en dominios
no acotados como sectores y bandas, aśı como una serie de resultados sobre el comportamiento
del módulo máximo en regiones circulares o sectoriales. Estas herramientas permiten estudiar
de forma precisa tanto el crecimiento de funciones anaĺıticas como su estructura geométrica.

Palabras clave: Funciones subarmónicas, funciones armónicas, principio del módulo máxi-
mo generalizado, Teoremas de Phragmén-Lindelöf, constante de Bloch, teoremas de Landau,
transformaciones de Möbius, teorema de Ahlfors, desarrollos asintóticos, transformada de Borel-
Laplace.



Abstract: The maximum modulus theorem states that a holomorphic and non-constant
function defined on a connected domain of the complex plane cannot reach a local maximum
of the modulus in the interior. This result, fundamental in complex analysis, admits multiple
generalisations and extensions that have given rise to a wide range of theoretical consequen-
ces. This document exposes a selection of these consequences, including their adaptation to
the framework of harmonic and subharmonic functions, the Phragmén-Lindelöf theorems in
unbounded domains such as sectors and strips, as well as a series of results on the behaviour of
the maximum modulus in circular or sectoral regions. These tools allow for the precise study
of both the growth of analytic functions and their geometric structure.

Keywords: Subharmonic functions, harmonic functions, generalised maximum modulus
principle, Phragmén-Lindelöf theorems, Bloch’s constant, Landau theorems, Möbius transfor-
mations, Ahlfors’ theorem, asymptotic expansions, Borel-Laplace transform.
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Introducción

El presente Trabajo de Fin de Grado tiene como objetivo estudiar diversas consecuencias
y generalizaciones del Teorema del Módulo Máximo en el marco del Análisis Complejo. Se
encuadra dentro de la asignatura “Variable Compleja”, correspondiente al plan de estudios del
Grado en Matemáticas, y tiene como finalidad profundizar en algunos de los resultados más
relevantes que se derivan o relacionan con este teorema fundamental, tanto desde un punto de
vista teórico como aplicado.

En el caṕıtulo 1 se introduce el concepto de funciones subarmónicas, que generalizan a las
funciones armónicas, y se establecen sus propiedades fundamentales. Se comienza con un repaso
de los resultados clásicos sobre funciones armónicas, incluyendo la resolución del Problema de
Dirichlet en un disco mediante herramientas de Variable Compleja, tal como se expone en el
libro de Robert B. Ash [3]. A continuación, se presenta la definición de funciones subarmónicas
siguiendo a M. Heins [6] y A. I. Markushevich [7], destacando ejemplos importantes como el
logaritmo del módulo de una función holomorfa. Este caṕıtulo culmina con la demostración del
principio generalizado del módulo máximo, aplicable a funciones subarmónicas, y sus conse-
cuencias: el teorema de los tres ćırculos de Hadamard, el teorema de las dos constantes para un
disco y otras estimaciones de crecimiento. Para esta parte se ha consultado también el texto de
John B. Conway [4].

El caṕıtulo 2 se centra en los teoremas de Phragmén-Lindelöf, que extienden el principio
del módulo máximo a dominios no acotados como sectores o bandas. Se demuestra que si una
función holomorfa está acotada en el borde de un dominio y su crecimiento en el interior es su-
ficientemente controlado, entonces dicha acotación se mantiene en todo el dominio. Se estudian
casos espećıficos para ángulos y bandas horizontales. Esta parte se ha elaborado fundamental-
mente a partir del material de A. I. Markushevich [7] y Walter Rudin [8].

En el caṕıtulo 3 se aborda el estudio de la constante de Bloch, un resultado de tipo geométri-
co que asegura la existencia de discos en los que una función holomorfa se comporta de forma
controlada. Para llegar a este resultado se introducen herramientas previas como las transforma-
ciones de Möbius y los teoremas de Landau, que establecen cotas para el radio de inyectividad
de funciones holomorfas. También se incluye el teorema de Ahlfors, que mejora los resultados
anteriores en términos cuantitativos. El desarrollo de este caṕıtulo se ha basado principalmente
en los textos clásicos de M. Heins [6], John B.Conway [4], L. Ahlfors [1] y [2] y en resultados
clásicos que se han visto a lo largo de los estudios de Grado.

Finalmente, en el caṕıtulo 4 se estudian aplicaciones del principio del módulo máximo al
campo de los desarrollos asintóticos, tanto reales como complejos. Se introducen los desarrollos
asintóticos nulos y se analiza la transformada de Borel-Laplace como herramienta fundamental
para la reconstrucción de funciones anaĺıticas a partir de series divergentes que representan a
aquellas en sentido asintótico. Se establece además una conexión entre la teoŕıa asintótica real
y compleja, mostrando cómo conceptos de la teoŕıa de funciones holomorfas pueden aplicarse
al análisis de funciones reales. Esta parte del trabajo se ha basado principalmente en el art́ıculo
de Augustin Fruchard [5].

A través de todos estos caṕıtulos, se busca mostrar la riqueza de consecuencias que se derivan
de un teorema tan central como el del módulo máximo, y cómo sus generalizaciones permiten
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abordar problemas más complejos en Análisis y Teoŕıa de Funciones. Lo que comienza como un
principio elemental de acotación para funciones holomorfas en dominios acotados, se transforma,
mediante herramientas más avanzadas como las funciones subarmónicas o los teoremas de
Phragmén-Lindelöf, en una potente maquinaria teórica con aplicaciones en geometŕıa compleja,
análisis asintótico e incluso en estimaciones cuantitativas del comportamiento local y global de
funciones. Este trabajo pretende no solo recopilar resultados clásicos, sino también ofrecer una
visión cohesionada de cómo estos conceptos se interrelacionan y se apoyan entre śı para formar
un cuerpo teórico robusto y versátil, con proyecciones hacia otros campos de las matemáticas.
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Caṕıtulo 1

Funciones subarmónicas

En este caṕıtulo se introduce el concepto de función subarmónica, fundamental para la
generalización del teorema del módulo máximo. Para ello, se comienza con un recordatorio
de las funciones armónicas, repasando sus propiedades básicas y la resolución del problema
de Dirichlet en un disco mediante técnicas de Variable Compleja. A continuación, se define
formalmente qué es una función subarmónica, se presentan ejemplos relevantes y se analizan
sus propiedades clave. Finalmente, se demuestra el principio generalizado del módulo máximo
para funciones subarmónicas, a partir del cual se deducen resultados como el teorema de los
tres ćırculos de Hadamard o el teorema de las dos constantes para un disco. Las referencias
principales utilizadas en este caṕıtulo son los textos de Robert B. Ash [3], M. Heins [6], A. I.
Markushevich [7] y John B. Conway [4].

1.1. Recordatorio de funciones armónicas

En esta sección se repasan brevemente las nociones fundamentales sobre funciones armónicas
necesarias para el desarrollo posterior del trabajo, al igual que la demostración del Problema
de Dirichlet para un disco con técnicas de Variable Compleja.

El contenido de este apartado se basa en la exposición teórica desarrollada en el libro de
Robert B. Ash [3].

Nota. De aqúı en adelante trabajaremos constantemente con el concepto de dominio, que será
un conjunto abierto y conexo del plano complejo.

Definición 1.1. Una función u(x, y) real se dice armónica en un dominio G si las derivadas
parciales

∂u

∂x
,
∂u

∂y
,
∂2u

∂x2
,
∂2u

∂y2
,

∂2u

∂x∂y

existen y son continuas en G, y además en todo punto de G, u(x, y) satisface la Ecuación de
Laplace

∂2u

∂x2
+

∂2u

∂y2
= 0.

Además de la definición, cabe destacar que si una función u es armónica en un dominio G,
entonces u satisface la propiedad de la media, es decir, si ∆(z0) es la distancia entre z0 =
(x0, y0) ∈ G y la frontera de G (que podŕıa ser infinita), entonces

u(x0, y0) =
1

2π

∫ 2π

0

u(ρ, φ) dφ =
1

2π

∫ 2π

0

u(x0 + ρ cosφ, y0 + ρ sinφ) dφ (1.1)

para cada 0 < ρ < ∆(z0).
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CAPÍTULO 1. FUNCIONES SUBARMÓNICAS

Nota. En la igualdad anterior se ha abusado de la notación, escribiendo u(ρ, φ) para el valor
de la función u en el punto (x0 + ρ cosφ, y0 + ρ sinφ). Se seguirá este mismo criterio en los
enunciados siguientes cuando se utilicen coordenadas polares con centro en un punto prefijado,
dado por el contexto.

Una vez recordada la definición de función armónica, vamos a pasar a otro resultado que
usaremos posteriormente, la resolución del Problema de Dirichlet para un disco. Este problema
se ha resuelto en el Grado con técnicas de Variable Real, aqúı vamos a dar una solución
alternativa con herramientas de la Variable Compleja.

Recordemos que el problema en cuestión, en un dominio G con frontera Γ y para una función
real µ(z) = µ(x, y) definida en Γ, busca encontrar una función u(x, y) que satisfaga que:

u(x, y) es armónica en G y continua en G.

u(x, y) = µ(x, y) para todo punto (x, y) ∈ Γ.

Se tiene el siguiente resultado cuando el dominio G es un disco

Teorema 1.2 (Problema de Dirichlet para un disco). Sea G el disco |z − z0| < ρ con frontera
Γ : |z − z0| = ρ, y sea µ(φ) una función real continua en el intervalo [0, 2π] de forma que
µ(0) = µ(2π), entonces la función

u(r, θ) =
1

2π

∫ 2π

0

µ(φ)
ρ2 − r2

ρ2 + r2 − 2ρr cos(θ − φ)
dφ

definida para todo punto (r, θ) en G y con u(ρ, φ) = µ(φ) para todo punto (ρ, φ) en Γ, resuelve
el problema de Dirichlet para el dominio G.

Haremos la demostración de este teorema para el disco abierto unidad B(0, 1), de centro
0 y radio 1, y después generalizaremos para un disco arbitario. La circunferencia unidad se
denotará por C(0, 1).

Teorema 1.3 (Problema de Dirichlet en el disco unidad). Supongamos que u0 es una función
real continua en C(0, 1). Definimos una función u en el disco cerrado B(0, 1) por

u(z) =

{
u0(z) si |z| = 1,
1
2π

∫ 2π

0
Pz(t)u0(e

it)dt si |z| < 1,

donde

Pz(t) =
1− |z|2

|eit − z|2
.

Entonces u es continua en B(0, 1) y armónica en B(0, 1). Además, como Pz es la parte real
de

Qz(t) =
eit + z

eit − z

para z ∈ B(0, 1), se tiene que

u(z) = Re

[
1

2π

∫ 2π

0

Qz(t)u0(e
it) dt

]
.

En particular, la función continua u0 en C(0, 1) tiene una extensión continua a B(0, 1) que
es armónica en B(0, 1), y esta extensión es única.
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CAPÍTULO 1. FUNCIONES SUBARMÓNICAS

Demostración.
Tenemos que φ(z, t) = Qz(t)u0(e

it) es continua en B(0, 1)× [0, 2π] ya que es composición de
funciones continuas en este conjunto, y para cada t fijo φ(z, t) es anaĺıtica en B(0, 1). Entonces,

z 7→ 1

2π

∫ 2π

0

Qz(t)u0(e
it) dt

es, por el teorema de holomorf́ıa bajo el signo integral, anaĺıtica en B(0, 1). Por tanto, como u
es la parte real de esta función, u es armónica y continua en B(0, 1).

Entonces lo único que nos faltaŕıa por ver es que u es continua en los puntos de la frontera
C(0, 1).

Vamos a ver que

ĺım
r→1

u(reiθ) = u0(e
iθ) uniformemente en θ.

Vamos a tomar para esto dos números reales θ y r con r ∈ (0, 1) y vamos a ver algunas
propiedades de Pz.

Primero tenemos que

Preiθ(t) =
1− r2

|eit − reiθ|
=

1− r2

|ei(t−θ) − r|2
= Pr(t− θ)

y ∫ 2π

0

Pz(t) dt = 2π.

Y también usaremos la propiedad de que Pr es una función par, propiedad fácil de ver
simplemente desarrollando el denominador,

Pr(x) =
1− r2

|eix − r|2
=

1− r2

1− 2r cos(x) + r2
.

Podemos ahora escribir la siguiente igualdad

u(reiθ)− u0(e
iθ) =

1

2π

∫ 2π

0

Pr(t− θ)[u0(e
it)− u0(e

iθ)] dt. (1.2)

Ahora para centrar la integral en θ hacemos el cambio de variable x = t− θ. La integral de
(1.2) por tanto, pasa entonces a ser

1

2π

∫ 2π−θ

−θ

Pr(x)[u0(e
i(θ+x))− u0(e

iθ)] dx (1.3)

y como el integrando es 2π-periódico, podemos cambiar los ĺımites de integración a −π y π.
Ahora fijamos un δ con 0 < δ < π y ponemos (1.3) como la suma de tres integrales como

sigue

(1.3) =
1

2π

∫ δ

−δ

Pr(x)[u0(e
i(θ+x))− u0(e

iθ)] dx

+
1

2π

∫ −δ

−π

Pr(x)[u0(e
i(θ+x))− u0(e

iθ)] dx

+
1

2π

∫ π

δ

Pr(x)[u0(e
i(θ+x))− u0(e

iθ)] dx.

(1.4)

Podemos ahora estimar cada una de estas integrales:
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CAPÍTULO 1. FUNCIONES SUBARMÓNICAS

La segunda y la tercera integral las estudiaremos juntas ya que Pr(−x) = Pr(x).
Además, como Pr(x) es positiva y decreciente en [0, π], tenemos que∣∣∣∣ 12π

∫ π

δ

Pr(x)[u0(e
i(θ+x))− u0(e

iθ)] dx

∣∣∣∣ ⩽ sup{|u0(e
it)| : −π ⩽ t ⩽ π} · Pr(δ)

por tanto, podemos acotar la suma de la primera y la tercera integral por

2Pr(δ) · sup{|u0(e
it)| : −π ⩽ t ⩽ π}.

En cuanto a la primera integral, esta podemos acotarla en valor absoluto por

sup{|u0(e
i(θ+x))− u0(e

iθ)| : −δ ⩽ x ⩽ δ}

ya que si |z| < 1, entonces 1
2π

∫ 2π

0
Pz(t)dt = 1.

Para un δ > 0 fijo, Pr(δ) → 0 cuando r tiende a 1, mientras que

ĺım
δ→0

(
sup{|u0(e

i(θ+x))− u0(e
iθ)| : −δ ⩽ x ⩽ δ}

)
= 0 uniformemente en θ

ya que u0 es uniformemente continua en el compacto C(0, 1).
Finalmente, si juntamos todo, tenemos que para un ε > 0 dado, existe un r0 con 0 < r0 < 1,

tal que para r0 < r < 1 y todo θ

|u(reiθ)− u0(e
iθ)| < ε.

Esto unido a la continuidad de u0 en C(0, 1) nos da que u es continua en todo punto de
C(0, 1).

Para ver la unicidad de la solución basta con considerar 2 soluciones u1, u2 en B(0, 1) con
función u0 en la frontera. Tenemos entonces que u1 − u2 es continua en B(0, 1), y se anula en
C(0, 1). Como además tanto u1 como u2 son la parte real de una función semejante a la definida
en el enunciado del teorema, y estas dos funciones son holomorfas en B(0, 1), entonces u1 − u2

es la parte real de una función holomorfa en B(0, 1).
Podemos en estas condiciones afirmar (debido al primer resultado del apéndice) que u1−u2

alcanza su máximo y su mı́nimo en la frontera de B(0, 1), es decir, en C(0, 1), y como u1 − u2

es nula en C(0, 1), tenemos que

0 ⩽ u1 − u2 ⩽ 0 ⇒ u1 − u2 ≡ 0

en B(0, 1). Lo que implica que u1 ≡ u2, por lo que la solución al problema de Dirichlet es única.

□

Nota. Se deduce entonces de este teorema que si G es el disco |z − z0| < ρ con frontera
Γ : |z − z0| = ρ, y dada µ(φ), una función real continua en el intervalo [0, 2π] de forma que
µ(0) = µ(2π), entonces la función

u(r, θ) =
1

2π

∫ 2π

0

µ(φ)
ρ2 − r2

ρ2 + r2 − 2ρr cos(θ − φ)
dφ

definida para todo punto (r, θ) en G y con u(ρ, φ) = µ(φ) para todo punto (ρ, φ) en Γ, resuelve
el problema de Dirichlet para el dominio G, con lo que tendŕıamos demostrado el teorema (1.2),
veamos esto.
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CAPÍTULO 1. FUNCIONES SUBARMÓNICAS

Tenemos que en B(0, 1) la solución del problema de Dirichlet es

u(z) =
1

2π

∫ 2π

0

Pz(t)u0(e
it)dt con Pz(t) =

1− |z|
|eit − z|

,

y queremos generalizar esto a G = {z ∈ C : |z−z0| < ρ} con frontera Γ = {z ∈ C : |z−z0| =
ρ}. Si z ∈ G y ξ ∈ Γ, podemos escribirlos como

z = z0 + reiθ , r < ρ y ξ = z0 + ρeiφ.

Si escribimos ahora Qz(t) para este caso

Qz(t) =
ρeit + z

ρeit − z
,

y calculando su parte real

Pz(t) =
ρ2 − r2

|ξ − z|2
.

Vamos a desarrollar el denominador de la expresión anterior

|ξ − z|2 = |z0 + ρeiφ − z0 − ρeiθ|2

= |ρeiφ − reiθ|
= (ρeiφ − reiθ)(ρe−iφ − re−iθ)

= ρ2 + r2 − ρr(ei(φ−θ) + ei(θ−φ))

y teniendo en cuenta que

cos(φ− θ) + cos(θ − φ) = 2 cos(φ− θ) y sen(φ− θ) + sen(θ − φ) = 0

concluimos que
|ξ − z|2 = ρ2 + r2 − 2ρr cos(φ− θ).

Por tanto, en G, la función Pz(t) es

Pz(t) =
ρ2 − r2

ρ2 + r2 − 2ρr cos(φ− θ)
,

y sustituyendo entonces en la función u(z) tendremos demostrada la nota.

Es sencillo comprobar, como consecuencia de la fórmula integral de Cauchy, que una función
armónica en un disco satisface la propiedad de la media indicada en el siguiente resultado.
Probaremos que, de hecho, ambos asertos son equivalentes para una función continua.

Teorema 1.4. Sea φ una función real y continua en Ω de modo que, para todo B(z0, R) ⊆ Ω,
se cumple que

φ(z0) =
1

2π

∫ 2π

0

φ(z0 +Reit) dt.

Entonces φ es armónica en Ω.

Demostración.
Sea B(z0, R) un disco con B(z0, R) ⊆ Ω. Sea u0 la restricción de φ a C(z0, R), usamos el

problema de Dirichlet en el disco B(z0, R) para obtener una función u continua en B(z0, R) tal
que u = u0 = φ en C(z0, R).
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CAPÍTULO 1. FUNCIONES SUBARMÓNICAS

La función φ−u es continua en B(z0, R), entonces tiene que tener un máximo y un mı́nimo,
que se alcanzarán respectivamente en puntos z1 y z2. Si ambos pertenecen a C(z0, R), entonces,
como φ = u en C(z0, R), tenemos que dichos máximo y mı́nimo son nulos y entonces φ−u ≡ 0
en B(z0, R) con lo que concluiŕıamos que φ = u en B(z0, R).

En caso contrario, supongamos que el máximo z1 ∈ B(z0, R), en este caso definimos el
siguiente conjunto

A := {z ∈ B(z0, R) : (φ− u)(z) = (φ− u)(z1)}.

Como z1 ∈ A, A no es vaćıo. Tenemos que A es cerrado en B(z0, R), ya que φ−u es continua
en B(z0, R). Si conseguimos ver que A es abierto, entonces, como B(z0, R) es conexo, se daŕıa
que A = B(z0, R).

Tomamos para ello un a ∈ A y un r > 0 de forma que B(a, r) ⊆ B(z0, R), entonces, para
0 < ρ < r como u es armónica en B(z0, R),

φ(a)− u(a) =
1

2π

∫ 2π

0

(
φ(a+ ρeit)− u(a+ ρeit)

)
dt.

Por cómo hemos elegido a, tenemos que (φ− u)(a+ ρeit) ⩽ (φ− u)(a), entonces

0 ⩽
∫ 2π

0

(φ− u)(a)− (φ− u)(a+ ρeit) dt = 2π(φ− u)(a)−
∫ 2π

0

(φ− u)(a+ ρeit) dt = 0,

y como (φ−u) es continua en B(a, r), concluimos que (φ−u) es constante e igual a (φ−u)(a)
en C(a, ρ) y, por ser ρ arbitrario, en todo B(a, r) ⊆ A.

Con esto concluimos que A es abierto, por tanto A = B(z0, R) y (φ − u) es constante en
B(z0, R). Como (φ− u) = 0 en C(z0, R), φ es idéntica a u en B(z0, R).

Por tanto, si el máximo está en B(z0, R), y análogamente si el mı́nimo está en B(z0, R),
tenemos que φ ≡ u en B(z0, R).

Como hemos visto que φ = u en cualquier disco arbitrario de Ω y u es armónica, entonces
φ es armónica en Ω.

□

Como el carácter armónico es una propiedad local, se puede dar la siguiente versión del
resultado anterior.

Teorema 1.5. Sea u(x, y) una función real continua en un dominio G, y supongamos que
u(x, y) satisface la condición

u(x0, y0) =
1

2π

∫ 2π

0

u(x0 + ρ cosφ, y0 + ρ sinφ) dφ

para cada punto z0 = (x0, y0) ∈ G y para todo ρ suficientemente pequeño. Entonces, u(x, y) es
armónica en G.

1.2. Funciones subarmónicas

En esta sección se va a introducir la definición de función subarmónica y se presentarán
algunas de sus propiedades fundamentales, junto con algunos ejemplos. Además, se presentarán
algunos resultados clave que nos servirán como herramientas en los siguientes caṕıtulos.

La información de este apartado ha sido recopilada a partir de los libros de M. Heins [6] y
A. I. Markushevich [7].
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CAPÍTULO 1. FUNCIONES SUBARMÓNICAS

Definición 1.6. Siendo G un dominio, se dice que una función h : G → R, h(z) = h(x, y) es
subarmónica en G si tiene las siguientes propiedades:

1. h(z) está bien definida y es continua enG\A dondeA ⊂ G no tiene puntos de acumulación,
es decir, A′ ∩G = ∅. Para los puntos z0 ∈ A se cumple que

ĺım
z→z0

h(z) = −∞, (1.5)

y, por convención, definimos

h(z0) := −∞.

2. Siendo z0 un punto de G, entonces definimos ∆(z0) > 0 como la distancia entre z0 y la
frontera de G. Entonces para cada z0 ∈ G y cada 0 < ρ < ∆(z0) suficientemente pequeño
existe la integral

1

2π

∫ 2π

0

h(z0 + ρeiφ)dφ

y se cumple la desigualdad

h(z0) ⩽
1

2π

∫ 2π

0

h(z0 + ρeiφ)dφ. (1.6)

Si consideramos d(z0, A), la distancia desde z0 al conjunto A, entonces para los puntos
z0 que no pertenecen a A, el valor que puede tomar ρ está limitado por d(z0, A). Y en el
caso de que z0 ∈ A, entonces ρ será menor que d (z0, A \ {z0}).

Nota. Esta no es la definición más general de una función subarmónica, pero es suficiente para
el propósito de este trabajo.

Ejemplo 1.7. Para cada función u(z) = u(x, y) armónica en un dominio G la desigualdad
(1.6) se convierte en una igualdad

u(z0) =
1

2π

∫ 2π

0

u(z0 + ρeiφ)dφ.

Por tanto, de acuerdo con nuestra definición, toda función armónica es subarmónica, veámos
esto.

Sea u(z) = u(x, y) una función armónica en G, consideramos dos radios r y R de forma
que r < R < ∆(z0). Sabemos que entonces B(z0, R) es un dominio estrellado y que está
contenido en G, por lo que podemos en este caso afirmar que u(z) es la parte real de una
función f ∈ H(B(z0, R)).

Como r < R entonces B(z0, r) ⊂ B(z0, R), por tanto, podemos podemos aplicar la propiedad
de la media a f y deducir que

f(z0) =
1

2π

∫ 2π

0

f(z0 + ρeiφ)dφ

y tomando partes reales llegamos a que

u(z0) =
1

2π

∫ 2π

0

u(z0 + ρeiφ)dφ.
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CAPÍTULO 1. FUNCIONES SUBARMÓNICAS

Ejemplo 1.8. Si f(z) es anaĺıtica en un dominio G conexo, entonces |f(z)| es subarmónica en
G. De hecho

|f(z0)| ⩽
1

2π

∫ 2π

0

|f(z0 + ρeiφ)|dφ (1.7)

para cada z0 ∈ G y todo ρ suficientemente pequeño. Además, se da la igualdad en (1.7) si y
solo si f(z) es constante, veamos esto.

Primero supongamos que f es constante, entonces se tiene que f(z0) = f(z) para todo
z ∈ G, ya que G es conexo, en particular f(z0) = f(z0 + ρeiφ), por tanto

1

2π

∫ 2π

0

|f(z0 + ρeiφ)|dφ =
1

2π

∫ 2π

0

|f(z0)|dφ = |f(z0)|
1

2π

∫ 2π

0

dφ = |f(z0)|.

Ahora suponemos que se cumple la igualdad (1.7) para todo z0 ∈ G y todo ρ suficientemente
pequeño. En el caso de que |f(z0)| = 0, para algún z0, entonces como |f(z)| es continua en G,
|f(z)| ⩾ 0 y ∫ 2π

0

|f(z0 + ρeiφ)|dφ = 0,

tenemos que |f | ≡ 0, lo que implica que f ≡ 0 en G. En el caso de que |f(z0)| ̸= 0 entonces
tenemos que como |f | es continua en B(z0, ρ), alcanza un máximo en B(z0, ρ). Sea z1 ese
máximo y ρ1 > 0 de forma que se cumpla la igualdad en (1.7), entonces |f(z1)| ⩾ |f(z1+ ρeiφ)|
para todo φ, o escrito de otra forma

|f(z1 + ρeiφ)|
|f(z1)|

⩽ 1,

entonces

0 ⩽
∫ 2π

0

(
1− |f(z1 + ρeiφ)|

|f(z1)|

)
dφ = 2π −

∫ 2π

0

|f(z1 + ρeiφ)|
|f(z1)|

dφ ⩽ 0.

Por lo que |f(z1+ ρeiφ)| = |f(z1)| para todo φ, pero como esto se cumple para todo ρ ⩽ ρ1,
entonces |f(z)| = |f(z1)| en B(z1, ρ1), y como f es cont́ınua, f(z1) ̸= 0 y B(z1, ρ1) es conexo,
tenemos que f(z) = f(z1) en B(z1, ρ1). Por el principio de identidad y como G es conexo
concluimos que f es constante en G.

Por tanto |f(z)| es subarmónica pero no armónica en G a menos que f(z) sea constante.

Ejemplo 1.9. Sea f una función anaĺıtica no idénticamente nula en un dominio G, llamemos A
al conjunto de ceros de f , entonces ln |f(z)| es subarmónica en G, de hecho ln |f(z)| es armónica
en G \ A. Veamos esto.

Como f es anaĺıtica en G y G es conexo, entonces por el principio de los ceros aislados
podemos afirmar que A no tiene puntos de acumulación en G, es decir, A′ ∩G = ∅.

Tenemos ahora que ln |f | es continua en G\A, ya que es composición de funciones continuas,
y tenemos que si a ∈ A,

ĺım
z→a

ln |f(z)| = −∞

por tanto podemos definir ln |f(a)| := −∞ para todo a ∈ A.
Si ahora z0 no es un cero de f , entonces, tomando un ρ > 0 suficientemente pequeño (con ρ <

d(z0, A)) y dado que f es continua en G, f no se anulará en B(z0, ρ), que es simplemente conexo.
Entonces, f admite un logaritmo anaĺıtico g en dicho disco, cuya parte real será necesariamente
ln |f(z)| y es naturalmente armónica. Podemos aplicar la propiedad del valor medio y deducir
que

ln |f(z0)| =
1

2π

∫ 2π

0

ln |f(z0 + ρeiφ)|dφ.
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En cambio, si z0 es un punto de A, en este caso ρ solo podrá tomar valores menores a
d(z0, A \ {z0}), y como por definición ln |f(z0)| = −∞, entonces se da que

ln |f(z0)| <
1

2π

∫ 2π

0

ln |f(z0 + ρeiφ)|dφ.

Por lo que concluimos que ln |f(z)| es subarmónica en G \ A.

Una vez vistos estos ejemplos, vamos a pasar a ver algunos resultados.

Lema 1.10. Sea h(z) una función real definida en un dominio acotado G, y sea

sup
z∈G

h(z) = M (1.8)

pudiendo M ser infinito. Entonces existe al menos un punto ξ ∈ G con

sup
z∈N (ξ)∩G

h(z) = M (1.9)

para cada entorno N (ξ) de ξ.

Demostración.
Razonaremos por reducción al absurdo suponiendo que el lema es falso. En este caso, todo

punto ξ ∈ G tiene un entorno N (ξ) tal que

M(ξ) := sup
z∈N (ξ)∩G

h(z) < M.

De acuerdo con el teorema de Heine-Borel tenemos que G es compacto (es cerrado y es
acotado), por tanto existe un número finito de puntos z1, . . . zn ∈ G tal que, si N (zi) es el
entorno anterior de zi, entonces

G ⊂ N (z1) ∪ · · · ∪ N (zn).

Ahora si tomamos
M0 = máx{M(z1), . . . ,M(zn)}

siendo
M(zi) := sup

z∈N (zi)∩G
h(z)

entonces
sup
z∈G

h(z) = M0 < M

en contra de (1.8). Esta contradicción prueba el lema.

□

A continuación vamos a ver un resultado que nos servirá como herramienta básica en nuestra
investigación sobre las funciones subarmónicas, pero antes vamos a recordar la definición de
ĺımite superior y algunas de sus propiedades.

Definición 1.11. Sea G ⊆ C un conjunto, y sea f : G → R una función. Sea ξ ∈ C un punto
de acumulación de G. Entonces, el ĺımite superior de f cuando z tiende a ξ se define como:

ĺım sup
z→ξ

f(z) := sup
{
ĺım
n→∞

f(zn) : zn ∈ G, zn → ξ
}
,

donde el superior se toma sobre todos los ĺımites reales posibles de sucesiones {zn} en G tales
que zn tiende a ξ cuando n → ∞.

El ĺımite superior, cuando es finito, satisface las siguientes dos propiedades:
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Para todo ε > 0, existe un entorno N (ξ) de ξ tal que

f(z0) < ĺım sup
z→ξ

f(z) + ε

para todo z0 ∈ N (ξ) ∩G.

Para todo ε > 0 se puede encontrar una sucesión {zn} con zn → ξ de forma que

f(zn) > ĺım sup
z→ξ

f(z)− ε, n ∈ N.

Una vez recordada la definición y las propiedades del ĺımite superior, vamos a ver el siguiente
resultado.

Lema 1.12. Sea h(z) subarmónica en un dominio acotado G con frontera Γ. Suponemos que

ĺım sup
z→ξ

h(z) ⩽ 0 (1.10)

para todo ξ ∈ Γ. En este caso se cumple que

h(z) ⩽ 0

para todo z ∈ G. Además, si h(z0) = 0 para algún punto z0 ∈ G entonces

h(z) ≡ 0

Demostración.
Sea

sup
z∈G

h(z) = M

y sea E el conjunto de todos los puntos ξ ∈ G tal que se cumple (1.9), es decir,

E = {ξ ∈ G / sup
z∈N (ξ)∩G

h(z) = M , siendo N (ξ) un entorno arbitrario de ξ}

De acuerdo con el lema 1.10, E no es vaćıo.

Suponemos primero que ningún punto interior de G pertenece a E. Entonces E contiene al
menos un punto ξ0 ∈ Γ. Si tenemos en cuenta la primera propiedad vista para los ĺımites
superiores y debido a (1.10), podemos afirmar que para todo ε > 0, hay un entorno N (ξ0)
de ξ0 en el que h(z) < ε para todo punto z ∈ N (ξ0).

Por una parte entonces
sup

z∈N (ξ0)∩G
h(z) ⩽ ε

mientras que por otra parte, por cómo hemos tomado E,

sup
z∈N (ξ0)∩G

h(z) = M (1.11)

debido a que ξ0 ∈ E.

Por tanto de esto deducimos que M ⩽ ε, para todo ε > 0, lo que implica que M ⩽ 0, y
como h(z) < M en todo punto de G por hipótesis, queda probado el lema en el caso de que
E no tenga puntos interiores a G. (Nótese que en este caso no tiene sentido contemplar
el caso en el que h(z0) = 0 para algún z ∈ G).
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Ahora supongamos que E contiene puntos de G y consideramos EG = E ∩ G. Entonces
como la función subarmónica h(z) es (en sentido amplio) continua en G, h(z) debe ser
igual a M en todos los puntos de EG. De hecho, todo punto z0 ∈ G para el cual se cumpla
que h(z0) < M , tiene un entorno N (z0) para el que h(z) < M − δ para algún δ > 0, y
por tanto no se puede cumplir (1.9) en ese punto. En particular, como M es un valor que
toma la función subarmónica h(z) en algún punto de G, se sigue que M < ∞.

Por otra parte, ya que una función subarmónica solo toma el valor −∞ por definición en
los puntos de un conjunto A discreto en G, podemos afirmar razonando por continuidad
que M > −∞.

Ahora veremos que EG es un conjunto abierto. Sea z0 ∈ EG, sea ρ0 > 0 tal que la
desigualdad

M = h(z0) ⩽
1

2π

∫ 2π

0

h(z0 + ρeiφ)dφ (1.12)

se cumpla para todo 0 < ρ < ρ0 (la existencia de este ρ0 viene garantizada ya que h(z) es
subarmónica). Entonces el disco |z − z0| < ρ0 no contiene puntos en los que h(z) < M .
De hecho, si z1 fuera un punto en el que h(z1) < M , entonces, tendŕıa un entorno en el
que h(z) < M − δ para algún δ > 0, y por lo tanto para ρ = |z1 − z0| la integral (1.12)
seŕıa menor que M , lo que seŕıa imposible.

Nota. Para ver que la integral seŕıa menor que M basta considerar la circunferencia

γρ = {z : |z − z0| = ρ}

por la definición de ρ, tenemos que z1 ∈ γρ. Dividimos ahora [0, 2π] en

γA = {θ ∈ [0, 2π] : h(z0 + ρeiθ) < M} y γB = {θ ∈ [0, 2π] : h(z0 + ρeiθ) = M}.

Sabemos que γA tiene interior no vaćıo. En este caso,

1

2π

∫ 2π

0

h(z0 + ρeiφ)dφ =
1

2π

(∫
γA

h(z0 + ρeiφ)dφ+

∫
γB

h(z0 + ρeiφ)dφ

)
<

1

2π

(∫
γA

Mdφ+

∫
γB

Mdφ

)
=

1

2π
M

(∫
γA

dφ+

∫
γB

dφ

)
=

1

2π
M

∫ 2π

0

dφ = M.

Por tanto todo punto z0 ∈ EG tiene un entorno N (z0) en el que h(z) = M , es decir,
N (z0) ⊂ EG, con lo que podemos afirmar que EG es abierto. Además, supongamos que
z′ ∈ G es un punto de acumulación de EG, como h(z) = M para todo punto z ∈ EG, y
como h(z) es continua en EG ⊂ G, entonces h(z′) debe ser igual a M , por lo que z′ ∈ EG.

Como G es conexo, y EG es un subconjunto abierto no vaćıo de G con la propiedad de que
todo punto de acumulación de EG que pertenece a G también pertenece a EG, entonces
EG = G, por lo que h(z) ≡ M . Pero entonces

ĺım sup
z→ξ

h(z) = ĺım
z→ξ

h(z) = M

para todo punto de la frontera ξ ∈ Γ, donde M ⩽ 0 debido a (1.10). Con lo que queda
probado el lema para el caso en el que E contenga algún punto interior de G.
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Además, si h(z0) = 0 en algún punto z0 ∈ G, entonces M = 0 y se da que h(z) ≡ 0. Esto
completa la prueba del lema.

□

Una consecuencia del lema 1.12 es el Principio generalizado del módulo máximo, que se verá
en la siguiente sección.

1.3. Generalización del principio del módulo máximo y

sus aplicaciones

En esta sección se va a presentar una extensión del Principio del módulo máximo para
funciones subarmónicas. A partir de este resultado podremos deducir diversas aplicaciones,
como el Teorema de los tres ćırculos de Hadamard y el Teorema de las dos constantes para un
disco. Estos resultados nos permitirán estimar el crecimiento de funciones anaĺıticas en distintos
dominios. A parte de los libros utilizados en secciones anteriores, también se usará como fuente
de información el libro de John B. Conway [4].

Hablando en términos generales, el teorema siguiente afirma que una función armónica u(z)
que mayoriza una función subarmónica h(z) (es decir, es mayor que h(z)) en todos los puntos
excepto un número finito de puntos de la frontera de un dominio G, también mayoriza h(z) en
todos los puntos de G en śı.

Teorema 1.13 (Principio generalizado del módulo máximo). Sea h(z) = h(x, y) una función
subarmónica en un dominio G con frontera Γ, y sea u(z) = u(x, y) una función armónica en G.
Suponemos que

ĺım sup
z→ξ

[h(z)− u(z)] ⩽ 0 (1.13)

para todo ξ ∈ Γ excepto posiblemente para un número finito de puntos ξ1, . . . , ξn donde

ĺım sup
z→ξk

[h(z)− u(z)] < +∞. (1.14)

Entonces u(z) es un mayorante armónico de h(z) en G, es decir

h(z) ⩽ u(z)

para todo z ∈ G. Además, si h(z0) = u(z0) para cualquier punto z0 ∈ G, entonces

h(z) ≡ u(z).

Demostración.
Consideremos las funciones

vk(z) = ln |z − ξk| (k = 1, . . . , n).

Cada función vk(z) es localmente la parte real de un logaritmo anaĺıtico de (z− ξk), que no
se anula en G, por lo que vk(z) es armónica en G. Además, como es estándar, definiremos

vk(ξk) := −∞ (k = 1, . . . , n).

Si ahora tomamos R = diam(G), entonces

vk(z) ⩽ lnR (z ∈ G)
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para cada función vk(z). Por lo tanto, las funciones

uk(z) = vk(z)− lnR (k = 1, . . . , n)

no pueden tomar valores positivos en G, pero, por lo demás, tienen las mismas propiedades que
las funciones vk(z).

Ahora sea ε un parámetro positivo, el cual será hecho tender a cero, y consideremos la
función

dε(z) = h(z)− u(z) + ε
n∑

j=1

uj(z).

Dado cualquier punto z0 ∈ G, como h(z) es subarmónica entonces para cualquier ρ suficien-
temente pequeño se tiene que

h(z0) ⩽
1

2π

∫ 2π

0

h(z0 + ρeiφ)dφ,

mientras que, como tanto u(z) como cada uk(z) son armónicas, se da para estas funciones que
para cualquier ρ suficientemente pequeño

u(z0) =
1

2π

∫ 2π

0

u(z0 + ρeiφ)dφ y uk(z0) =
1

2π

∫ 2π

0

uk(z0 + ρeiφ)dφ.

Por lo tanto, podemos afirmar que para cualquier ρ suficientemente pequeño

dε(z0) ⩽
1

2π

∫ 2π

0

dε(z0 + ρeiφ)dφ,

por lo que dε(z) es subarmónica en G. Además, para cada punto de acumulación ξ de la frontera
que sea distinto de cualquier ξk con k = 1, . . . n, dε(z) satisface la relación

ĺım sup
z→ξ

dε(z) = ĺım sup
z→ξ

[
h(z)− u(z) + ε

n∑
j=1

uj(z)

]
⩽ 0, (1.15)

mientras que para cada punto de acumulación ξ = ξk, k = 1, . . . n se cumple que

ĺım sup
z→ξk

dε(z) = −∞ ⩽ 0

ya que las funciones h(z) − u(z) y uj(z), j ̸= k, están acotadas superiormente en un entorno
de ξk, mientras que uk(z) → −∞ cuando z → ξk.

Podemos entonces en estas condiciones aplicar el lema 1.12 a la función dε(z), y aśı podemos
afirmar que

dε(z) ⩽ 0 (z ∈ G) ⇒ h(z) ⩽ u(z)− ε

n∑
j=1

uj(z).

Y dejando que ε tienda a cero, obtenemos

h(z) ⩽ u(z) (z ∈ G),

de modo que u(z) es un mayorante armónico de h(z) en G, como se afirmó.
Finalmente, observemos que

ĺım sup
z→ξ

[h(z)− u(z)] ⩽ 0
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CAPÍTULO 1. FUNCIONES SUBARMÓNICAS

para cada ξ ∈ Γ, incluidos los puntos excepcionales ξ1, . . . , ξn. Además, por el lema 1.12, si se
da que

h(z0)− u(z0) = 0

para cualquier punto z0 ∈ G, entonces h(z)− u(z) = 0 para todo z ∈ G, es decir,

h(z) ≡ u(z)

y el teorema está demostrado.

□

Nota. Al permitir puntos excepcionales donde la condición (1.13) no se sostenga, anticipamos
aplicaciones subsecuentes del Teorema 1.13. El hecho de que los puntos excepcionales deban
cumplir la condición (1.14) para que el teorema sea cierto se muestra mediante el ejemplo del
núcleo de Poisson

P (r, θ) =
ρ2 − r2

r2 + ρ2 − 2rρ cos(θ − θ0)
,

que es armónica y por lo tanto subarmónica en el disco |z| < ρ, y satisface la condición

ĺım
(r,θ)→(ρ,φ)

P (r, θ) = 0

en cada punto de la circunferencia γρ : |z| = ρ, excepto en el punto z = ρeiθ0 . Por lo tanto,
P (r, θ) es mayorizada por la función armónica u(r, θ) = 0 en todos los puntos de γρ excepto en
z = ρeiθ0 . Sin embargo,

P (r, θ) > 0 = u(r, θ)

para todo z ∈ B(0, ρ). La explicación radica en el hecho de que P (r, θ) toma valores arbitra-
riamente grandes cerca del punto z = ρeiθ0 , y por lo tanto ni la función que es idénticamente
cero ni ninguna otra función acotada pueden mayorizar P (r, θ) en γρ.

Veamos ahora un resultado que se deduce como consecuencia inmediata del teorema 1.13.

Corolario 1.14. Sea f(z) anaĺıtica en un dominio acotado G con frontera Γ, y supongamos
que

ĺım sup
z→ξ

|f(z)| ⩽ M < ∞

para todo ξ ∈ Γ excepto para un número finito de puntos ξ1, . . . , ξn donde

ĺım sup
z→ξk

|f(z)| < ∞.

Entonces |f(z)| ⩽ M para todo z ∈ G. Además, si |f(z0)| = M para un punto cualquiera
z0 ∈ G, entonces

f(z) ≡ M.

Demostración.
Para la demostración basta tomar h(z) = |f(z)| (función que ya hab́ıamos visto que es

subarmónica en un ejemplo anterior) y u(z) ≡ M y aplicar el principio del módulo máximo
generalizado.

□
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A continuación vamos a demostrar un resultado que nos va a servir como núcleo técnico
para la demostración del Teorema de los tres ćırculos de Hadamard.

Teorema 1.15 (Teorema de convexidad logaŕıtmica en bandas verticales). Sea f una función
anaĺıtica y acotada en una banda vertical infinita

G = {x+ iy ∈ C : a < x < b} donde a, b ∈ R,

y además continua en G. Definimos entonces

M(x) = sup
y∈R

|f(x+ iy)|.

En este caso, la función lnM(x) es convexa en x ∈ [a, b], es decir, para todo x ∈ [a, b] se cumple
que

lnM(x) ⩽ lnM(a)
b− x

b− a
+ lnM(b)

x− a

b− a
.

Demostración.
Para empezar la demostración construiremos la función auxiliar

g(z) = M(a)
b−z
b−a ·M(b)

z−a
b−a .

Si calculamos su módulo

|g(z)| =
∣∣∣M(a)

b−x−iy
b−a ·M(b)

x+iy−a
b−a

∣∣∣ = M(a)
b−x
b−a ·M(b)

x−a
b−a

deducimos que el módulo de g(x+ iy) solo depende de x = Re(z).
Consideremos ahora la función cociente

h(z) =
f(z)

g(z)
,

que está bien definida y es anaĺıtica en G.
Fijamos ε > 0, y definimos la función

Hε = h(z) · gε(z)

donde

gε(z) =
1

1 + ε(z − a)
.

Esta función Hε(z) tiene las mismas propiedades que h(z), y además, el módulo de Hε(z)
decae cuando |Im(z)| = |y| → ∞. Vamos ahora a ver que |Hε(z)| ⩽ 1 para todo z ∈ G, lo
haremos mediante el principio del módulo máximo. Para ello fijamos T > 0, y consideramos el
rectángulo

RT = {x+ iy ∈ C : a ⩽ x ⩽ b, |y| ⩽ T}.

Estudiemos ahora el comportamiento de la función Hε(z) en los bordes de RT :

En x = a se tiene que |g(a + iy)| = M(a) por lo que se cumple que |f(z)/g(z)| ⩽ 1, y
consecuentemente |Hε(z)| ⩽ 1

En x = b se cumple que |g(b + iy)| = M(b) por lo que se cumple que |f(z)/g(z)| ⩽ 1, y
nuevamente |Hε(z)| ⩽ 1.
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En los bordes horizontales (y = ±T ), como f es acotada y continua en RT , también lo
es Hε(z). Además, como |gε(z)| → 0 cuando y → ∞, y h(z) está acotada, se cumple que
cuando T → ∞ entonces |Hε(z)| → 0. Es por esto que para un T suficientemente grande,
podemos asegurar que |Hε(z)| ⩽ 1 en la frontera de RT .

Podemos entonces en estas condiciones aplicar el teorema del módulo máximo sobre Hε(z)
y afirmar que

|Hε(z)| ⩽ 1 para todo z ∈ RT .

Como esto se cumple para todo T ∈ R suficientemente grande, tenemos que

|Hε(z)| ⩽ 1 para todo z ∈ G

y haciendo tender ε a 0 tenemos que
|h(z)| ⩽ 1 (1.16)

para todo z ∈ G, lo que implica que

|f(z)| ⩽ |g(z)| para todo z ∈ G.

Si ahora recordamos la definición de M(x), y tomando superiores en ambos lados tenemos
que

M(x) ⩽ M(a)
b−x
b−a ·M(b)

x−a
b−a ,

y tomando logaritmos finalmente obtenemos que

lnM(x) ⩽ lnM(a)
b− x

b− a
+ lnM(b)

x− a

b− a
,

que es lo que queŕıamos probar.

□

Nota. En la demostración anterior, si además se da la igualdad en (1.16) para algún z ∈ G, el
teorema 1.13 nos garantiza que

h(z) ≡ 1 ⇒ f(z) ≡ g(z),

por tanto

f(z) ≡ M(a)
b−z
b−a ·M(b)

z−a
b−a .

Una vez demostrado el resultado anterior, vamos ahora a demostrar el Teorema de los tres
ćırculos de Hadamard.

Teorema 1.16. Sea f(z) anaĺıtica y no idénticamente nula en una corona

D := {z ∈ C : r1 < |z| < r2},

definimos
M(ρ) := máx

θ∈[0,2π)

∣∣f(ρeiθ)∣∣ .
Entonces para r1 < ρ1 < ρ < ρ2 < r2 se tiene que

lnM(ρ) ⩽ lnM(ρ1)
ln(ρ2)− ln(ρ)

ln(ρ2)− ln(ρ1)
+ lnM(ρ2)

ln(ρ)− ln(ρ1)

ln(ρ2)− ln(ρ1)
. (1.17)
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Demostración.
Para empezar, vamos a transformar la corona D en una banda vertical en el plano, esto lo

haremos con el cambio de variable z = ew. La banda resultante seŕıa

G = {w = x+ iy : ln r1 < x < ln r2}

r1

r2

D = {z ∈ C : r1 < |z| < r2}

z = ew

(a) Corona circular

w = ln(z)

x

y

ln r1 ln r20

2π

G = {w = x+ iy : ln r1 < x < ln r2}

x+ iy

(b) Banda horizontal

Figura 1.1: Transformación de la corona a la banda horizontal

Como w 7→ ew es entera y env́ıa G en D, y f es anaĺıtica en D, tenemos que su composición
es anaĺıtica en G, definimos entonces

h(w) = f(ew),

en este caso |h(z)| = |f(ew)|, y definimos

M(x) := sup
y∈R

|h(x+ iy)| = sup
θ∈[0,2π)

|f(exeiθ)|.

En estas condiciones podemos aplicar el teorema 1.15 a la función h(w) y afirmar que lnM(x)
satisface la desigualdad enunciada en aquel resultado. Basta poner x = ln(ρ), de acuerdo con
el cambio de variable realizado, para deducir que

lnM(ρ) ⩽ lnM(ρ1)
ln(ρ2)− ln(ρ)

ln(ρ2)− ln(ρ1)
+ lnM(ρ2)

ln(ρ)− ln(ρ1)

ln(ρ2)− ln(ρ1)
,

que es lo que queŕıamos demostrar.

□

Nota. El teorema 1.16 tiene una interpretación geométrica muy simple, la cual se muestra
cuando consideramos η = lnM(ρ) como una función de ξ = ln ρ,

η = φ(ξ). (1.18)

Tomando ξ1 = ln ρ1, ξ2 = ln ρ2 y η1 = lnM(ρ1), η2 = lnM(ρ2), podemos escribir (1.17) de la
forma

η ⩽ η1
ξ2 − ξ

ξ2 − ξ1
+ η2

ξ − ξ1
ξ2 − ξ1

(1.19)
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donde ξ1 < ξ < ξ2. En coordenadas cartesianas ξ y η,

η = η1
ξ2 − ξ

ξ2 − ξ1
+ η2

ξ − ξ1
ξ2 − ξ1

(1.20)

es la ecuación de la ĺınea recta que une los puntos (ξ1, η1) y (ξ2, η2). Comparando (1.19) y
(1.20), podemos ver que ningún arco que una dos puntos de la curva con ecuación (1.18) puede
estar más alto que la cuerda con los mismos extremos. Ambos, la curva con esta propiedad y la
correspondiente función φ(ξ) se dicen convexas. Aśı el Teorema de los tres ćırculos de Hadamard
tiene la siguiente formulación más concisa. “El logaritmo del máximo módulo de una función
anaĺıtica en una corona D : {z ∈ C : r1 < |z| < r2} es una función convexa del logaritmo del
radio del ćırculo en el que se alcanza el máximo”.

Otra aplicación importante del principio del módulo máximo generalizado es el siguiente
enunciado.

Teorema 1.17 ( Teorema de las dos constantes para un disco). Sea f(z) anaĺıtica en el disco
K = {z ∈ C : |z| < R}, y sean ξ1 y ξ2 dos puntos de la circunferencia Γ = {z ∈ C : |z| = R}.
Sea σ el arco entre ξ1 y ξ2 y Σ el arco entre ξ2 y ξ1, ambos recorridos en sentido positivo, y
ambos sin sus puntos finales. Suponemos que

ĺım sup
z→ξ
ξ∈σ

ln |f(z)| ⩽ lnm, ĺım sup
z→ξ
ξ∈Σ

ln |f(z)| ⩽ lnM, (1.21)

mientras que

ĺım sup
z→ξk

ln |f(z)| < +∞, k = 1, 2.

Además, sean 2α y 2β los ángulos abarcados en el punto z = 0 por los arcos σ y Σ,
respectivamentes (α > 0, β > 0 y α + β = π), y sea U(z) la rama armónica de valor único de
la función

Arg
ξ1 − z

ξ2 − z

que cumple que U(0) = 2β (gráficamente este valor correspondeŕıa con el ángulo formado entre
ξ1 − z y ξ2 − z). Entonces

|f(z)| ⩽ Mu(z)m1−u(z) (1.22)

para todo z ∈ K, donde

u(z) =
1

π
[U(z)− β],

y en particular

|f(0)| ⩽ Mβ/πmα/π. (1.23)

Antes de comenzar con la demostración se van a dar unas aclaraciones sobre el significado
geométrico de la función U(z). Primero vamos a comenzar viendo gráficamente los ángulos que
hemos llamado 2β y 2α, esto se muestra en la siguiente figura.
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ξ1

ξ2 z2

z1

2α

2β

π + β = 2π − α

β

σ

Σ

Figura 1.2: Representación de α y β

Podemos ver aqúı que 2β es el ángulo formado por el radio que va desde el centro a ξ1 y
el radio que va desde el centro a ξ2. Vemos también que 2α es su complementario. Además, en
esta figura se puede observar que en cualquier punto z2 que esté en el arco σ, el ángulo formado
por las cuerdas que van desde z2 a ξ1 y desde z2 a ξ2 va a ser β.

Esto se cumple debido al teorema del ángulo inscrito, que dice lo siguiente: “En toda cir-
cunferencia, la medida de un ángulo inscrito equivale a la mitad de la medida del ángulo en el
centro que subtiende al mismo arco”.

Por esto también podemos ver que el ángulo formado en cualquier punto z1 de Σ, por las
cuerdas que van desde z1 a ξ1 y desde z1 a ξ2 es igual a 2π − α, que por cómo hemos definido
α y β es igual a π + β.

Una vez aclarado el significado geométrico de los ángulos 2α y 2β, vamos a ver el significado
gráfico de la función U(z) con la siguiente figura.

ξ1

ξ2
z

C
ξ2 − z

ξ1 − z

U(z)

U(z)

σ

Σ

Figura 1.3: Significado gráfico de la función U(z)

En esta representación podemos ver que la función U(z) es la función que va tomando los
ángulos que forman los segmentos ξ1 − z y ξ2 − z. Es por esto que U(0) = 2β, y podemos ver
que los valores que toma U(z) están en el rango de valores [β, π + β], llegándose a tomar los
valores extremos en los arcos σ y Σ, respectivamente.

Una vez aclarada la representación gráfica de esta función U(z) vamos con la demostración.
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Demostración.
Como z vaŕıa en el disco K, comenzando por el centro z = 0, la función U(z) vaŕıa en el

intervalo (0, 2π), comenzando por el valor U(0) = 2β. Está claro por el valor geométrico de
U(z) visto anteriormente, que

U(z) =

{
β if z ∈ σ,

π + β if z ∈ Σ

y por tanto

u(z) =
1

π
[U(z)− β] =

{
0 if z ∈ σ,

1 if z ∈ Σ
.

La función U(z) es la parte imaginaria de la función

log

(
ξ1 − z

ξ2 − z

)
,

donde se toma la rama del logaritmo cuya parte imaginaria toma valores en el intervalo (0, 2π).
Esta función es holomorfa en el disco K, por tanto U(z) es subarmónica en K, por lo que u(z)
es una función subarmónica en K.

Además, tanto U(z) como u(z) están acotadas en un entorno de ξ1 o ξ2. Aplicando el
Principio del módulo máximo generalizado (teorema 1.13), podemos ver que la función u(z)
está mayorizada por 1 en Γ y por tanto en K. Similarmente, la función −u(z) está mayorizada
por 0 en Γ y por tanto en K. Por lo tanto

0 < u(z) < 1 ∀z ∈ K, (1.24)

y en particular, u(0) = β
π
.

Consideremos ahora la función

ln(m) + (ln(M)− ln(m)) · u(z)
que se reduce a ln(m) en σ y a ln(M) en Σ, mientras que permanece acotada en un entorno
de ξ1 o ξ2. De acuerdo con (1.21), esta función es un mayorante armónico de ln |f(z)| (que
ya hemos visto en el ejemplo (1.9) que es una función subarmónica) en Γ, y por tanto en K
nuevamente por el teorema 1.13, es decir,

ln |f(z)| ⩽ lnm+ (lnM − lnm)u(z)

o, escrito de otra forma
ln |f(z)| ⩽ lnMu(z) + lnm(1− u(z))

para todo z ∈ K, que es solo otra forma de escribir (1.22). En particular, como u(0) = β
π
,

tenemos que

|f(0) ⩽ Mβ/πm1−β/π = Mβ/πm
π−β
π = Mβ/πmα/π.

□

Nota. Supongamos que m < M y que en vez de explotar toda la información disponible sobre
los valores acotados de f(z), remplazamos las condiciones (1.21) por la siguiente desigualdad

ĺım sup
z→ξ

ξ ∈ σ∪Σ

|f(z)| ⩽ M.

Entonces, de acuerdo con el Principio del módulo máximo generalizado (teorema 1.13)

|f(z)| ⩽ M

para todo z ∈ K. Sin embargo, (1.22) es una mejor estimación de |f(z)| ya que

Mu(z)m1−u(z)

M
=
(m
M

)1−u(z)

< 1 (0 < u(z) < 1).
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Caṕıtulo 2

Teoremas de Phragmén-Lindelöf

En este caṕıtulo se van a desarrollar los Teoremas de Phragmén-Lindelöf, que son refina-
mientos del Principio del módulo máximo, en situaciones donde una función anaĺıtica indicada
puede crecer de manera controlada.

La información ha sido extráıda mayormente del libro de A. I. Markushevich [7], donde se
analizan los casos generales y sus implicaciones en la teoŕıa de funciones anaĺıticas, con apoyo
en el contenido del libro de W. Rudin [8].

Se presentarán distintas versiones del teorema, aplicadas a dominios como sectores y bandas,
proporcionando aśı herramientas esenciales para el estudio del comportamiento asintótico de
funciones holomorfas.

2.1. Teorema de Phragmén-Lindelöf para un ángulo

De acuerdo con el corolario del teorema 1.13, si f(z) es anaĺıtica en un dominio G con
frontera Γ, y si

ĺım sup
z→ξ
ξ∈Γ

|f(z)| ⩽ C < ∞

excepto en un punto ξ0 donde
ĺım sup
z→ξ0

|f(z)| < ∞, (2.1)

entonces |f(z)| ⩽ C para todo z ∈ G; además, si |f(z0)| = C en un punto z0 ∈ G, entonces esto
implica que f(z) ≡ C. Sin embargo, si tenemos información sobre el carácter de Γ cerca del
punto excepcional ξ0, la condición (2.1) puede a menudo relajarse. Por ejemplo, supongamos que
en el punto ξ0, Γ forma un ángulo de απ radianes (0 < α ⩽ 2). Entonces podemos deshacernos
de la condición (2.1), siempre que |f(z)| no crezca demasiado rápido cuando z → ξ0. Para
simplificar, vamos a considerar el caso en el que ξ0 = ∞ y G es el interior de un ángulo o una
banda.

Pero antes de comenzar con los resultados de esta sección, vamos a recordar brevemente
la definición de ĺımite inferior y algunas de sus propiedades al igual que hicimos con el ĺımite
superior.

Definición 2.1. Sea G ⊆ C un conjunto, y sea f : G → R una función. Sea ξ ∈ C un punto
de acumulación de G. Entonces el ĺımite inferior de f cuando z tiende a ξ se define como:

ĺım inf
z→ξ

f(z) := ı́nf
{
ĺım
n→∞

f(zn) : zn ∈ G, zn → ξ
}
,

donde el inferior se toma sobre todos los ĺımites reales posibles de sucesiones {zn} en G tales
que zn tiende a ξ cuando n → ∞.

El ĺımite inferior, cuando es finito, satisface las siguientes dos propiedades:
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Para todo ε > 0, existe un entorno N (ξ) de ξ tal que

f(z0) > ĺım inf
z→ξ

f(z)− ε

para todo z0 ∈ N (ξ) ∩G.

Para todo ε > 0 se puede encontrar una sucesión {zn} con zn → ξ de forma que

f(zn) < ĺım inf
z→ξ

f(z) + ε, n ∈ N.

Una vez recordada esta definición y las propiedades del ĺımite inferior, comencemos a ver
los resultados de esta sección.

Teorema 2.2 ( Teorema de Phragmén-Lindelöf para un ángulo). Sea G el interior de un ángulo
de απ radianes (0 < α ⩽ 2), con frontera Γ, y sea f(z) una función anaĺıtica en G. Supongamos
que f(z) satisface las siguientes condiciones:

1. Para cada punto finito ξ ∈ Γ,

ĺım sup
z→ξ

|f(z)| ⩽ C < ∞. (2.2)

2.

ĺım inf
r→∞

ln lnM(r)

ln r
<

1

α
(2.3)

donde
M(r) = sup

|z|=r
z∈G

|f(z)|. (2.4)

Entonces,
|f(z)| ⩽ C (2.5)

para todo z ∈ G. Además, si |f(z0)| = C para algún punto z0 ∈ G, entonces f es constante
en G.

Demostración.
Vamos primero a ver que la condición (2.3) implica la siguiente restricción en el crecimiento

de |f(z)| cuando z → ∞: Dado un ρ1 con

1

α
> ρ1 > ĺım inf

r→∞

ln lnM(r)

ln r
,

existe una sucesión {rn}, donde rn < rn+1 (n = 1, 2 . . . ) y rn → ∞ cuando n → ∞ de modo
que

|f(z)| < e|z|
ρ1 si |z| = rn (n = 1, 2, ...). (2.6)

Para ver esto, basta tener en cuenta los comentarios tras la definición del ĺımite inferior y
aplicar el segundo de ellos para ε = 1

α
− ρ1: existe una sucesión creciente {rn} de radios de

forma que para todo n se cumple

ln lnM(rn)

ln rn
< ρ1.

Entonces

ρ1 >
ln lnM(rn)

ln rn
⩾

ln ln |f(z)|
ln |z|

si |z| = rn (n = 1, 2, . . . ),
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que es simplemente otra forma de escribir (2.6).
No hay pérdida de generalidad al suponer que el vértice finito de G cae en el origen y que

la bisectriz del ángulo coincide con el eje real positivo, pues el caso general se puede reducir a
este haciendo una transformación lineal preliminar consistente en una rotación, una traslación
o ambas, sin afectar a las hipótesis del teorema.

απ
G

Transformación lineal

απ

G

Figura 2.1: Situación tras hacer las transformaciones lineales correspondientes

Ahora consideremos la función

Fε(z) = f(z)e−εzρ2 (2.7)

donde ε > 0, ρ1 < ρ2 <
1
α
y ρ1 es el mismo que en (2.6).

Aqúı zρ2 denota la rama de valor único de la función eρ2 ln z, donde ln z es la rama principal
del logaritmo, es decir, aquella que toma valores del argumento en el intervalo [−π, π). Esta
rama es anaĺıtica en G, y además zρ2 toma valores positivos para valores de z reales positivos.
Sean Gn el sector | arg z| < απ

2
, |z| < rn, acotado por dos segmentos y un arco circular abierto

λn. De acuerdo con (2.2), para cada punto ξ perteneciente a estos segmentos

ĺım sup
z→ξ

|Fε(z)| ⩽ C ĺım
z→ξ

|e−εzρ2 | = C ĺım
z→ξ

e−εrρ2 cos(ρ2θ) ⩽ C

donde z = eiθ (en el dominio G, tenemos que

|ρ2θ| <
1

α

απ

2
=

π

2

y entonces cos(ρ2θ) > 0).
Además, de acuerdo con (2.6), en el arco λn

|Fε(z)| < er
ρ1
n −εr

ρ2
n cos(ρnθ) ⩽ er

ρ1
n −εr

ρ2
n cos(ρ2 απ

2 )

donde la expresión de la derecha tiende a 0 cuando n → ∞, ya que

cos
(
ρ2

απ

2

)
> 0 y ρ1 < ρ2 <

1

α
.

Tomando un n suficientemente grande para que |Fε(z)| ⩽ C en λn, tenemos que

ĺım sup
z→ξ

|Fε(z)| ⩽ C

para todo ξ en la forntera de Gn. Entonces, por el Principio del módulo máximo generalizado
(teorema 1.13)

|Fε(z)| ⩽ C
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para todo z ∈ Gn.
Sustituyendo en (2.7) y haciendo tender ε a 0, encontramos que

ĺım
ε→0

|f(z)e−εzρ2 | = |f(z)| ⩽ C ∀z ∈ Gn

si n es suficientemente grande. Esto prueba (2.5), ya que n puede siempre ser elegida de forma
que Gn contenga cualquier punto preasignado de G.

Finalmente, notemos que si |f(z0)| = C para algún punto z0 ∈ G, entonces f ha de ser
constante en G por la forma usual del Principio del módulo máximo generalizado.

□

Vamos a probar ahora una versión más fuerte del teorema anterior donde la condición (2.3),
es reemplazada por la condición

ĺım inf
r→∞

lnM(r)

r
1
α

⩽ 0, (2.8)

que implica la siguiente restricción en el crecimiento de |f(z)| cuando z → ∞: Dado un ε > 0
cualquiera, existe una sucesión {rn} con rn < rn+1 (n = 1, 2, ...) y rn → ∞ cuando n → ∞ de
forma que

|f(z)| < eε|z|
1/α

si |z| = rn (n = 1, 2, ...). (2.9)

De hecho, a partir de la condición (2.8) y las propiedades del ĺımite inferior, se deduce que
existe una sucesión creciente de radios que tiende a ∞ de modo que

ln |f(z)|
|z|1/α

⩽
lnM(|z|)
|z|1/α

⩽ ε cuando |z| = rn (n = 1, 2, . . . ),

que es simplemente otra forma de escribir (2.9).
Es fácil ver la implicación de la condición (2.9) a la condición (2.6), que es más restrictiva,

dado que, si tenemos un ε > 0 y un ρ1 <
1
α
cualesquiera, tenemos que

e|z|
ρ1 < eε|z|

1
α

para un |z| suficientemente grande. Sin embargo, la implicación inversa no es verdad, como
muestra el ejemplo

f(z) = e
z2

1+(ln z)2

tomando α = π
4
.

De hecho, el grupo de funciones que satisface (2.9) o (2.8), es más grande que el grupo de
funciones que satisface (2.6) o (2.3).

Una vez vista la nueva condición que vamos a usar y su significado sobre el crecimiento de
la función, vamos a ver el siguiente resultado, que es una ampliación del teorema 2.2.

Teorema 2.3. El Teorema de Phragmén-Lindelöf para un ángulo (teorema 2.2) sigue válido si
la condición (2.3) se sustituye por la condición (2.8)

Demostración.
Vamos a empezar esta demostración suponiendo que sabemos que

|f(z)| ⩽ C (2.10)

en todo punto z = x del eje real positivo. En este caso, podemos aplicar el Teorema de Ph-
ragmén-Lindelöf para un ángulo, a cada uno de los dos dominios en los que el eje real positivo
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divide a G. Cada uno de estos dominios es el interior de un ángulo de απ
2

radianes, y enton-
ces, para poder aplicar el teorema anterior, solo necesitaŕıamos verificar que (2.6) se cumple
para todo ρ1 menor que 2

α
y suficientemente cerca de 2

α
. Ahora bien, los comentarios previos al

enunciado han justificado esta afirmación.
Entonces, la prueba se reduce a establecer la desigualdad (2.10) para un punto x > 0 real

fijo, pero arbitrario. Dado un ε > 0, sea {rn} una sucesión que cumple (2.9). Como en la
demostración del teorema enterior, sea Gn el sector en el que se cumple que | arg(z)| < απ

2
,

|z| < rn y cogiendo un n suficientemente grande para que x ∈ Gn. La frontera de Gn consiste
en dos segmentos lineales y en un arco circular abierto λn, donde

|f(z)| < eεr
1
α
n

en λn, por construcción, mientras que

ĺım sup
z→ξ

|f(z)| ⩽ C

para todo punto ξ perteneciente a los segmentos, por hipótesis.
Nuestra estrategia para la demostración será transformar Gn de manera conforme en el

interior del disco unidad, con el punto x en el origen, y aplicar a continuación la desigualdad
(1.23), demostrada en relación con el Teorema de las dos constantes para un disco (teorema
1.17).

Empezaremos haciendo las siguientes transformaciones consecutivas

z1 = f1(z) = i

(
z

rn

) 1
α

,

z2 = f2(z1) =

(
1 + z1
1− z1

)2

La primera transformación lleva Gn a la mitad del disco unidad que llamamos

Dn = {z1 ∈ C : |z1| < 1, Im(z1) > 0}

con el arco λn siendo transformado en el semićırculo |z1| = 1, Im(z1) > 0 y con el punto x

yendo al punto f1(x) = i
(

x
rn

)1/α
.

απ

rn

x

Gn

λn

f1(z)

r = 1

x
Dn

Figura 2.2: Transformación por f1

La segunda transformación lleva Dn a la mitad superior del plano complejo, transformando
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λn en el eje real negativo, y el punto x1 = i
(

x
rn

)1/α
en el punto

ξn =

1 + i
(

x
rn

)1/α
1− i

(
x
rn

)1/α


2

. (2.11)

La función f2 es una homograf́ıa, que manda el 1 al punto del infinito, el 0 al 1 y el −1 al
0. Eso quiere decir que manda la frontera de la imagen de Gn por f1 (que contiene a los puntos
−1, 0 y 1) a la única circunferencia que contiene el ∞, 1 y 0, que es el eje real.

Aparte de esto, las componentes conexas del complementario de la frontera de Dn están
en biyección con las componentes conexas del complementario de la imagen por f2 de dicha
frontera, ya que las homograf́ıas son homeomorfismos en la esfera de Riemann. Esto implica
que el interior de Dn tendrá como imagen por f2 una de las componentes conexas de la imagen,
es decir, o el semiplano superior, o el inferior, y el exterior de Dn irá a parar a la otra.

Para determinar qué semiplano corresponde con cada componente conexa, basta con tomar
un punto del interior de Dn y ver dónde cae la imagen. Tomamos por ejemplo el punto z =
0, 5i ∈ Dn, es fácil ver que la imagen de este punto por f2, está contenida en el semiplano
superior. Por lo tanto la imagen de Dn por f2 es el semiplano superior.

r = 1

x
Dn

f2(z)
x

f2(Dn)

Figura 2.3: Transformación por f2

Ahora hacemos una tercera transformación

z3 = f3(z2) =
z2 − ξn

z2 − ξn
,

que transforma la mitad superior del plano en el interior del ćırculo unidad γ : |z3| = 1, con
el eje real negativo transformado en un arco abierto Σn con un punto inicial 1 y final ξn

ξn
(γ

recorrido en sentido positivo).

x

f2(Dn)

f3(z)

x
z = 1

z = ξn
ξn

Σn

σn

Figura 2.4: Transformación por f3
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Por tanto, el deseo de transformar Gn en el interior del ćırculo unidad viene dado por

z3 = f3 ◦ f2 ◦ f1(z)

Como resultado, f(z) se transforma en la función

f ∗(z3) = f
(
f−1
1 ◦ f−1

2 ◦ f−1
3 (z3)

)
de forma que f ∗(0) = f(x), y

|f ∗(z3)| < eεr
1
α
n

para todo z3 ∈ Σn, y también
ĺım sup
z3→ξ

|f ∗(z3)| ⩽ C

para todo ξ en el arco complementario cerrado σn = γ \ Σn.
Si ahora tenemos en cuenta el teorema 1.17, se sigue de la desigualdad (1.23) que

|f ∗(0)| = |f(x)| ⩽ (eεr
1
α
n )

βn
π C

an
π

donde 2an y 2βn son los ángulos formados en el punto z3 = 0 por los arcos σn y Σn respectiva-
mente (an > 0, βn > 0 y an + βn = π).

Ahora, de acuerdo con (2.11)
ĺım
n→∞

ξn = 1

lo que implica que
ĺım
n→∞

arg(ξn) = 0

y entonces, para un n suficientemente grande

arg(ξn) = 4 arg

[
1 + i

(
x

rn

) 1
α

]
= 4arctan

(
x

rn

) 1
α

y

arg

(
ξn

ξn

)
= 2arg(ξn) = 8 arctan

(
x

rn

) 1
α

> 0.

Además, 1 es el punto inicial y ξn
ξn

es el punto final del arco Σn, por lo que

2βn = 8arctan

(
x

rn

) 1
α

, es decir, βn = 4arctan

(
x

rn

) 1
α

y

αn = π − 4 arctan

(
x

rn

) 1
α

.

Pero entonces
|f(x)| ⩽ e

4
π
εr

1/α
n arctan( x

rn
)1/αC1− 4

π
arctan( x

rn
)1/α ,

y pasando al ĺımite cuando n → ∞ obtenemos que

|f(x)| ⩽ Ce
4
π
εx1/α

.

Dado que ε > 0 es arbitrario, esto implica que |f(x)| ⩽ C, y la prueba queda terminada

□
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Nota. El Teorema anterior no puede ser más reforzado, en el sentido de que el teorema no es
cierto si sustituimos la condición

ĺım inf
r→∞

ln lnM(r)

ln r
<

1

α

por la condición de que

ĺım inf
r→∞

lnM(r)

r1/α
> 0. (2.12)

Para ver esto, consideremos la función

f(z) = eεz
1/α

(ε > 0)

que obviamente satisface (2.12). En la frontera del dominio G, tenemos que

| arg(z)| = απ

2

y entonces ∣∣f (re±iαπ
2

)∣∣ = ∣∣∣eεr1/αe±i π2

∣∣∣ = ∣∣∣eεr1/α(cos(±π
2 )+isen(±π

2 ))
∣∣∣ = eεr

1
α cos(π2 ) = 1.

Por otra parte, |f(z)| → ∞ a lo largo de cada recta

arg(z) = θ, |θ| < απ

2
.

Nota. Como nota de cierre de sección, merece la pena indicar que a este teorema también se
le denota como Teorema de Phragmén-Lindelöf para un sector.

2.2. Teorema de Phragmén-Lindelöf para una banda

Habiendo visto y demostrado el resultado del teorema de Phragmén-Lindelöf para un sector,
vamos a ver este mismo resultado pero cambiando el dominio en forma de sector por un dominio
con forma de banda horizontal.

Teorema 2.4 (Teorema de Phragmén-Lindelöf para una banda). Sea D la banda horizontal

−hπ

2
< y <

hπ

2

de altura h, con frontera Γ, y sea f(z) una función anaĺıtica en D. Supongamos que f(z)
satisface las siguientes condiciones:

1. Para cada punto finito ξ ∈ Γ,
ĺım
z→ξ

|f(z)| ⩽ C < ∞.

2.
ĺım sup
x→∞

|f(x+ iy)| ⩽ C.

3.

ĺım inf
x→+∞

lnµ(x)

ex/h
⩽ 0 donde µ(x) = sup

−hπ
2
<y<hπ

2

|f(x+ iy)|.

Pedro Cidoncha Molina 36
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Entonces, |f(z)| ⩽ C para todo z ∈ D. Además, si |f(z0)| = C para algún punto z0 ∈ D,
entonces f es constante en D.

Demostración.
La función z′ = ez/h transforma la banda D en el semiplano derecho G (que es el interior de

un ángulo de π radianes), con los puntos finales de la banda, x = −∞ y x = +∞, yendo a los
puntos z′ = 0 y z′ = ∞ respectivamente, y los segmentos en los que la parte real x es constante
siendo transformados en semićırculos con el centro común z′ = 0.

Escribiendo
f(h ln z′) = F (z′),

donde ln denota la rama principal del logaritmo, vemos que F (z′) es anaĺıtica en G y satisface
la desigualdad

ĺım sup
z′→ξ′

|F (z′)| ⩽ C

en cada punto finito ξ′ de la frontera de G. Además, si r′ = |z′| y x = Re(z), donde r′ = ex/h,
entonces

M(r′) = sup
|z′|=r′

|F (z′)| = sup
Re(z)=x

|f(z)| = µ(x)

y por tanto
lnM(r′)

r′
=

lnµ(x)

ex/h
.

Se sigue entonces que

ĺım inf
r′→∞

lnM(r′)

r′
= ĺım inf

x→∞

lnµ(x)

ex/h
⩽ 0.

Aplicando en este caso el Teorema de Phragmén-Lindelöf para un ángulo en su versión
reforzada, es decir, el teorema 2,3, al dominio G, para el que α = 1, obtenemos que

|F (z′)| ⩽ C

para todo z′ ∈ G, lo que implica que
|f(z)| ⩽ C

para todo z ∈ D.
De forma similar, si |f(z0)| = C para algún z0 ∈ D, entonces |F (z′0)| = C para z′0 = ez0/h,

y entonces F es constante en G, lo que implica que f también lo es en D.

□
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Caṕıtulo 3

La constante de Bloch

Este caṕıtulo está dedicado al estudio de la constante de Bloch, un valor de interés en
el Análisis Complejo que describe un comportamiento universal de las funciones holomorfas
acotadas en el disco unidad. Para llegar a su formulación y estimación, exploraremos una
cadena de resultados clásicos que incluyen transformaciones de Möbius, los teoremas de Landau
y técnicas basadas en funciones subarmónicas y estimaciones extremales.

La presentación sigue de cerca las exposiciones de M. Heins [6] y J. B. Conway [4], cuyas
obras proporcionan tanto la base teórica como las herramientas técnicas necesarias para com-
prender el resultado. En particular, se enfatiza el uso de transformaciones conformes, métodos
del análisis potencial y el lema de Schwarz-Pick para establecer cotas inferiores expĺıcitas pa-
ra la constante de Bloch. El caṕıtulo culmina con el teorema de Ahlfors, donde se demuestra
que dicha constante excede un valor positivo expĺıcito, conectando elegantemente técnicas de
análisis funcional, geometŕıa conforme y teoŕıa de funciones.

3.1. Transformaciones de Möbius

Como preliminar para este caṕıtulo vamos a introducir un cierto tipo de transformacio-
nes de Möbius, que desempeñan un papel fundamental al preservar estructuras geométricas
importantes.

En particular, a nosotros nos interesan las que actúan sobre el disco unidad

D = {z ∈ C : |z| < 1}

y tienen el aspecto siguiente: dada una constante a ∈ D, se define la función La como

La(z) =
z − a

1− az
.

Esta transformación racional es una biyección conforme del disco unidad sobre śı mismo, y
cumple las siguientes propiedades fundamentales:

Preserva el disco unidad: La(D) = D.

Preserva la frontera: Para todo z ∈ C tal que |z| = 1, se tiene que |La(z)| = 1.

Su inversa está dada por L−a(z), es decir,

L−1
a (z) = L−a(z).

Estas transformaciones permiten ’mover’ puntos dentro del disco unidad de forma contro-
lada, y son frecuentemente utilizadas en la formulación de problemas de valor en la frontera,
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como el problema de Dirichlet, y en la construcción de núcleos como el de Poisson mediante
cambios de variable adecuados.

El estudio de estas funciones no solo facilita el análisis de funciones armónicas y anaĺıticas
en el disco, sino que también proporciona herramientas elegantes y potentes para resolver
problemas clásicos mediante simetŕıas y transformaciones conformes.

3.2. Teoremas de Landau

Antes de entrar de lleno con el enunciado y demostración del teorema de Bloch, vamos
a mencionar unos resultados clásicos denominados teoremas de Landau. Estos teoremas nos
ofrecen una cota inferior expĺıcita para el tamaño de discos donde ciertas funciones anaĺıticas
en el disco unidad, y que están normalizadas de una forma espećıfica, son inyectivas. Para cada
0 < a < 1, esta familia de funciones la denotaremos como Φa, y se define como las funciones
anaĺıticas en el disco unidad que satisfacen que:

f(0) = 0,

f ′(0) = a,

|f(z)| < 1 para |z| < 1.

Dada una función f , definimos

r(f) = sup{r > 0: : f es inyectiva en B(0, r)}.

Este valor representa el máximo radio de un disco centrado en 0 para el cual la función
f conserva el carácter inyectivo (también llamado univalente). A partir de esta definición,
consideramos el valor

ρ = ı́nf{r(f) : f ∈ Φa}.

donde el inferior se toma sobre la familia de funciones holomorfas introducida anteriormente.
Este valor representa el mı́nimo radio tal que toda función de la familia considerada es inyectiva
en el disco de radio ρ centrado en el origen. Este tipo de cantidades tiene un papel central en
el análisis de propiedades geométricas de funciones holomorfas y en particular en la estimación
de la constante de Bloch.

Una vez vistos estos conceptos, en el siguiente resultado determinaremos el valor de ρ en
función de a.

Teorema 3.1. Sea a ∈ (0, 1).

1. Se tiene que

ρ =
1−

√
1− a2

a
.

2. Existe f ∈ Φa para la cual r(f) = ρ.

3. Las funciones extremales donde se alcanza el valor de r(f) = ρ son las de la forma
eta−1F (ηz), donde η es un número complejo de módulo 1 y

F (z) = z
a− z

1− az
.
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Demostración.
Antes de empezar con la demostración vamos a ver que se cumple la siguiente cadena de

desigualdades
|L|b|(|z|)| ⩽ |L−b(z)| ⩽ L−|b|(|z|) para |z|, |b| < 1. (3.1)

Para ver la primera desigualdad recordemos que

L|b|(|z|) =
|z| − |b|
1− |b||z|

y |L−b(z)| =
|z + b|
|1 + bz|

,

ahora elevando al cuadrado ambos miembros de la desigualdad y desarrollando

||z| − |b||
|1− |b||z||

⩽
|z + b|
|1 + bz|

⇒ ||z| − |b||2

|1− |b||z||2
⩽

|z + b|2

|1 + bz|2

|z|2 + |b|2 − 2|z||b|
1 + |b|2|z|2 − 2|z||b|

⩽
|z|2 + |b|2 + 2Re(bz)

1 + |b|2|z|2 + 2Re(bz)

−2|z||b|(1 + |z|2|b|2) + 2Re(bz)(|z|2 + |b|2) ⩽ −2|z||b|(|z|2 + |b|2) + 2Re(bz)(1 + |z|2|b|2)

2(Re(bz) + |z||b|)(|z|2 + |b|2) ⩽ 2(Re(bz) + |z||b|)(1 + |z|2|b|2)

|z|2 + |b|2 ⩽ 1 + |z|2|b|2 ⇒ |z|2(1− |b|2) ⩽ 1− |b|2 ⇒ |z| ⩽ 1,

desigualdad que es cierta ya que |z| < 1. Para ver la otra desigualdad recordemos que

L−|b|(|z|) =
|z|+ |b|
1 + |b||z|

,

observamos que L−|b|(|z|) y L|b|(|z|) tienen la misma expresión cambiando los signos, es por
eso que no hace falta hacer el desarrollo como antes, simplemente basta con cambiar los signos
pertinentes y reordenar. Elevando al cuadrado ambos miembros de la desigualdad

|L−b(z)| ⩽ L−|b|(|z|)

llegamos a que

2(Re(bz)− |z||b|)(|z|2 + |b|2) ⩾ 2(Re(bz)− |z||b|)(1 + |z|2|b|2),

observemos ahora que

|z||b| = |z||b| = |zb| ⩾ |Re(bz)| ⩾ Re(bz) ⇒ (Re(bz)− |z||b|) ⩽ 0,

por lo que llegamos nuevamente a la desigualdad

|z|2 + |b|2 ⩽ 1 + |z|2|b|2 ⇒ |z|2(1− |b|2) ⩽ 1− |b|2 ⇒ |z| ⩽ 1.

Visto ahora que se cumple (3.1), vamos a ver también que si b ∈ (−1, 1), entonces la
aplicación x 7→ L−b(x) es monótona creciente en x ∈ [−1, 1], esto sale directamente teniendo
en cuenta que la derivada es

1− b2

(1− bx)2
⩾ 0 para x ∈ [−1, 1].

Vamos ahora con la demostración, supongamos que f ∈ Φa y que r(f) < 1. Entonces, o
bien existe ξ con módulo r(f) para el cual n(ξ, f) > 1 (donde n(ξ, f) es el orden de ξ como cero
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de la función z 7→ f(z)− f(ξ)), o bien existen ξ1, ξ2 distintos, ambos con módulo r(f), para los
cuales f(ξ1) = f(ξ2). Vamos a denotar por α a f(ξ) o al valor común f(ξ1) = f(ξ2).

Por el lema de Schwarz tenemos que |f(z)| ⩽ |z|, y como ambas transformaciones, Lα y Lξ,
son continuas en B(0, 1) y mandan la circunferencia unidad en śı misma, podemos afirmar que

ĺım sup
|z|→1

∣∣∣∣(Lα ◦ f)(z)
(Lξ(z))2

∣∣∣∣ ⩽ 1,

y por el principio generalizado del módulo máximo 1.13, podemos afirmar que en B(0, 1) se
cumple que

|Lα ◦ f | ⩽ |Lξ|2. (3.2)

y de forma análoga
|Lα ◦ f | ⩽ |Lξ1 ||Lξ2|.

Tomando z = 0, en ambos casos obtenemos que

|α| ⩽ r(f)2. (3.3)

Por otra parte, tenemos que como f(0) = 0, podemos escribir f(z) como zg(z) donde g(z)
es una función anaĺıtica en B(0, 1), además, ya hemos visto antes que |f(z)| ⩽ |z|, es por esto
que g(z) tiene módulo menor que 1, y si derivamos f y evaluamos en z = 0, obtenemos que
g(0) = a, ya que por definición f ′(0) = a.

De la misma forma tenemos que La ◦ g(z) puede escribirse como zh(z), donde h es anaĺıtica
en B(0, 1), y con módulo menor o igual que 1. Podemos entonces escribir que

f(z) = zL−a(zh(z)). (3.4)

Si ahora tenemos en cuenta (3.1)

|f(z)| ⩾ |z| a− |zh(z)|
1− a|zh(z)|

⩾ |z| a− |z|
1− a|z|

, para |z| < 1, (3.5)

donde la segunda desigualdad viene de que x → L−b(x) es monótona creciente en x ∈ [−1, 1].
Si ahora evaluamos z = ξ (respectivamente en ξ1 y ξ2)

|α| ⩾ r(f)
a− r(f)

1− ar(f)
(3.6)

y teniendo en cuenta (3.3) y que r(f) > 0 concluimos que

r(f) ⩾
a− r(f)

1− ar(f)
.

Es por esto que para toda f ∈ Φa, r(f) no puede ser menor que la menor ráız σ de la
ecuación

x =
a− x

1− ax
,

que es justamente el valor
1−

√
1− a2

a
del enunciado del teorema. Esto demuestra que ρ ≥ σ.

Tenemos ahora que si derivamos la función F (z) del enunciado,

F ′(z) =
a− 2z + az2

(1− az)2
=

1

1− az

(
a− z

1− az
− z

)
,
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es fácil ver que F ′(σ) = 0, por lo que r(F ) = σ, y solo puede ser ya que ρ = σ, la primera
afirmación del teorema.

Supongamos ahora que f es de la forma F (ηz)η−1, con η ∈ C de módulo 1. Basta tomar
z0 = ρη−1 y comprobar que

f ′(z0) = F ′(ηz0) = F ′(ρ) = 0

para deducir que r(f) = ρ.
Tomamos ahora una función f ∈ Φa, que satisfaga que r(f) = ρ. Por (3.3) y (3.6), tenemos

que |α| = r(f)2. Por tanto, para z = 0, se da la igualdad en (3.2). Como α ̸= 0, entonces
deducimos que Lα ◦f es una rotación de L2

ξ , es decir, que existe un η ∈ C de módulo 1 de forma
que

Lα ◦ f = ηL2
ξ

y respectivamente con ξ1 y ξ2, con lo que concluimos que f es de grado 2, es decir, es una
fracción racional cuyos numerador y denominador tienen grado a lo sumo 2. La única forma
de que esto ocurra es que la función h(z) de (3.4) sea una constante, y como las igualdades
se alcanzan en (3.2), (3.3) y (3.6), es de módulo 1. Con esto entonces queda demostrada la
segunda afirmación del teorema.

□

Antes de mencionar el segundo teorema vamos a establecer la siguiente notación. Dada
f ∈ Φa, sea E(f) el conjunto de números r positivos para los cuales existe una región Ωr, con
0 ∈ Ωr ⊂ B(0, 1), tal que f transforma Ωr de manera inyectiva en B(0, r).

También consideraremos

R(f) = supE(f) y P = ı́nf
f∈Φa

R(f).

Ahora podemos enunciar el segundo teorema de esta sección, que será el resultado que nos
permitirá acotar inferiormente en la demostración del Teorema de Bloch.

Teorema 3.2. Podemos asegurar que P = ρ2 siendo ρ el definido en el teorema 3.1. Además,
R(f) = P , si y solo si, f es una de las funciones extremales de la forma F (ηz)η−1 del teorema
3.1.

Demostración.
Por la desigualdad (3.5) vista en el teorema anterior, tenemos que

mı́n
|z|=r

|f(z)| ⩾ r
a− r

1− ar
, 0 < r < 1. (3.7)

También tenemos que

g(r) = r
a− r

1− ar
⇒ g′(r) =

1

1− ar

(
a− r

1− ar
− r

)
,

que solo se anula en los puntos 1±
√
1−a2

a
, y como r ∈ (0, 1), entonces solo se anula en r = ρ,

además tenemos que g′(0) > 0 y g′(1) < 0, por tanto concluimos que el valor máximo de g(r)
cuando r ∈ (0, 1) se alcanza en r = ρ, y además, este valor es ρ2. Como a < 1, entonces
1− a2 < 1 y

√
1− a2 > 1− a2 ⇒ ρ =

1−
√
1− a2

a
< a.

Si ahora tomamos r ∈ (0, ρ], entonces

r ⩽ ρ < a ⇒ a− r > 0 ⇒ r
a− r

1− ar
> 0,
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y por la desigualdad (3.7) tenemos que f(z) ̸= 0 para 0 < |z| ⩽ ρ.

Denotemos por Ω a la componente conexa de f−1(B(0, ρ2)) que contiene z = 0, entonces
Ω ⊂ B(0, ρ). Por lo tanto, la restricción de f a Ω es una función que transforma la frontera de Ω
en la frontera de B(0, ρ2). Y el único punto de Ω en el que f se anula es z = 0, con n(0, f) = 1.

Es por esto, que f transforma de forma inyectiva Ω en B(0, ρ2). Como esto se cumple para
toda f ∈ Φa, deducimos que ρ2 ⩽ P .

Observemos que F ′(ρ) = 0, F es una fracción racional de grado 2 y F (z) solo alcanza el valor
ρ2 en z = ρ, todo esto unido al razonamiento del teorema anterior nos indica que R(F ) = ρ2,
ya que, en el teorema 3.1 dedujimos que r(F ) = ρ2. Por tanto como ρ2 ⩽ P , y R(F ) = ρ2,
concluimos que

P = ρ2.

Por el mismo razonamiento usado en la demostración del teorema 3.1, tenemos que para
toda función f de la forma F (ηz)η−1, donde η ∈ C y tiene módulo 1, se cumple que R(f) = P .

Para ver el contrarrećıproco, vamos a suponer en (3.5) que h(z) no es constante de módulo
1, entonces se daŕıa que

µ = mı́n
|z|=ρ

|f(z)| > ρ
a− ρ

1− aρ
.

Por lo que la componente conexa de f−1(B(0, µ)) que contiene a z = 0 estaŕıa en B(0, ρ),
y por el mismo razonamiento seguido anteriormente tendŕıamos que R(f) ⩾ µ y a su vez
µ > P . Queda entonces demostrado que si R(f) = P , entonces f tiene que ser de la forma
f = F (ηz)η−1 con η ∈ C de módulo 1, con lo que completamos la prueba del teorema.

□

3.3. El teorema de Bloch

Supongamos que f es una función anaĺıtica no constante en el dominio Ω. Sea el número
de Bloch b(f) de f el supremo del conjunto de números positivos r que satisfacen la siguiente
condición: existe un subdominio Ω1 ⊂ Ω que f transforma de manera inyectiva sobre un disco
de radio r.

Sea el número de Landau de f , denotado por l(f), el supremo del conjunto de números
positivos r tales que f(Ω) contiene un disco de radio r.

Sea Φ la familia de funciones f que son anaĺıticas en B(0, 1) y que están normalizadas por
la condición

f ′(0) = 1. (3.8)

La constante de Bloch β se define como

β = ı́nf
f∈Φ

b(f)

y la constante de Landau λ se define como

λ = ı́nf
f∈Φ

l(f).

Claramente, se cumple que b(f) ⩽ l(f) y β ⩽ λ.

Una vez vistas estas definiciones, vamos a demostrar una mejora del Lema de Schwarz.
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Lema 3.3 (Lema Schwarz–Pick). Sea f anaĺıtica en B(0, 1) de forma que |f | < 1 y sea a ∈
B(0, 1), entonces

|f ′(a)|
1− |f(a)|2

⩽
1

1− |a|2
,

y se da la igualdad si y solo si f es un automorfismo (es decir, una aplicación holomorfa y
biyectiva, luego de inversa holomorfa) del disco unidad en si mismo.

Nota. Queremos con este resultado comparar la derivada de f en un punto a con los valores
de f y a mismos, mediante una desigualdad que tiene un sabor geométrico: está controlando
cuánto puede estirarse f en términos de su comportamiento en el disco.

Demostración.
Para comenzar vamos a denotar b := f(a), y vamos a considerar las funciones

Lb(z) =
z − b

1− bz
y L−a(z) =

z + a

1 + az
,

ahora construimos la función F (z) = Lb ◦ f ◦ L−a(z). Si evaluamos F en z = 0 entonces

F (0) = Lb ◦ f ◦ L−a(0) = Lb ◦ f(a) = Lb(b) = 0.

Tenemos ahora que como |f | < 1, y las funciones L−a y Lb son transformaciones de Möbius,
entonces F : B(0, 1) → B(0, 1). Además, F es anaĺıtica en B(0, 1) por ser composición de
funciones anaĺıticas. En estas condiciones podemos, por tanto, aplicar el Lema de Schwarz
clásico y deducir que

|F (z)| ⩽ |z| y |F ′(0)| ⩽ 1.

Vamos ahora a relacionar F ′(0) con f ′(a), para ello vamos a calcular

F ′(0) = L′
b(f(a)) · f ′(a) · L′

−a(0),

derivando tenemos que

Lb(z) =
z − b

1− bz
⇒ L′

b(z) =
1− |b|2

(1− bz)2
⇒ L′

b(b) =
1

1− |b|2

L−a(z) =
z + a

1 + az
⇒ L′

−a(z) =
1− |a|2

(1 + az)2
⇒ L′

−a(0) = 1− |a|2

y si lo juntamos todo

F ′(0) =
1

1− |f(a)|2
· f ′(a) · (1− |a|2).

Tomando módulos y aplicando lo deducido por el Lema de Schwarz,

|F ′(0)| = |f ′(a)|
1− |f(a)|2

· (1− |a|2) ⩽ 1 ⇒ |f ′(a)|
1− |f(a)|2

⩽
1

1− |a|2
, (3.9)

que es lo que queŕıamos ver.
De la aplicación del Lema de Schwarz clásico también deducimos que si se da la igualdad

en (3.9), entonces F (z) = eiθz, denotaremos por Rθ(z) a esta rotación. Por tanto,

Lb ◦ f ◦ L−a(z) = Rθ(z) ⇒ f ◦ L−a(z) = L−b ◦Rθ(z) ⇒ f = L−b ◦Rθ ◦ La(z),

donde L−b ◦ Rθ ◦ La(z) es un automorfismo de B(0, 1), por ser composición de automorfismos
en B(0, 1). Con esto queda concluida la demostración.
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□

Una vez visto este resultado podemos enunciar el Teorema de Bloch, que establece que, a
pesar de la gran amplitud de la clase Φ, la constante de Bloch no es nula.

Teorema 3.4 (Teorema de Bloch). La constante de Bloch β es estrictamente positiva.

Demostración.
Sea Φ1 la subfamilia de Φ consistente en aquellas funciones pertenecientes a Φ cuyo desarrollo

en potencias en torno a z = 0 tiene un radio de convergencia mayor que 1. Podemos afirmar
que

β ⩽ ı́nf
f∈Φ1

b(f).

Por otro lado, dada f ∈ Φ, sea g definida por g(x) = f(rx)r−1, con 0 < r < 1. Entonces g
es anaĺıtica en B(0, 1

r
) por lo que g ∈ Φ1, y se tiene claramente que b(g) ⩽ b(f)r−1. Por tanto,

ı́nf
f∈Φ1

b(f) ⩽ βr−1,

y, en consecuencia, por ser r ∈ (0, 1) arbitrario,

ı́nf
f∈Φ1

b(f) = β. (3.10)

Supongamos ahora que f ∈ Φ1. Observamos que cada una de las funciones ga = f ◦ L−a,
con |a| < 1, satisface que b(ga) = b(f), ya que cada L−a es una biyección del circulo unidad en
si mismo, y que

g′a(z) = f ′ (L−a(z)) ·
(

1− |a|2

(1 + az)2

)
⇒ g′a(0) = f ′(a)(1− |a|2).

Como f ′ es cont́ınua en el compacto B(0, 1) (ya que el radio de convergencia de f es mayor
que 1), el máximo de |g′a(0)| al variar a en B(0, 1) es finito y se alcanza en un punto a0 ∈ B(0, 1)
(obsérvese que la expresión se anula en la frontera). Este valor máximo tiene que ser al menos
1, ya que si tomamos a = 0 entonces g′0(0) = 1.

Sea
g =

ga0
|g′a0(0)|

,

entonces se tiene que b(g) ⩽ b(f), ya que b(ga0) = b(f) y |g′a0(0)| ≥ 1; y que, por el lema 3.3, g
satisface la desigualdad

(1− |z|2)|g′(z)| ⩽ 1 (3.11)

Gracias a esta desigualdad, podemos obtener una cota inferior para b(f) que es independiente
de f . De hecho, sea h = g − g(0), de forma que b(h) = b(g). Entonces

|h(z)| ⩽ 1

2
log

(
1 + |z|
1− |z|

)
. (3.12)

Para justificar esta desigualdad, observamos que, como g es holomorfa, se puede expresar
como

h(z) =

∫ z

0

g′(w) dw,

y parametrizando el segmento que une 0 con z mediante t 7→ tz con t ∈ [0, 1], obtenemos

h(z) = z

∫ 1

0

g′(tz) dt.
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Tomando módulos y usando la desigualdad (3.11), deducimos que

|h(z)| ⩽ |z|
∫ 1

0

1

1− t2|z|2
dt.

Esta integral se puede calcular expĺıcitamente mediante el cambio de variable x = t|z|, y da
como resultado

|h(z)| ⩽ 1

2
log

(
1 + |z|
1− |z|

)
,

lo cual justifica la desigualdad (3.12).
Aplicando el Teorema 3.2 a

z 7→ h(rz)
1
2
log
(
1+r
1−r

) , |z| < 1

donde 0 < r < 1, se obtiene que:

b(f) ⩾ b(h) ⩾
1

2
log

(
1 + r

1− r

)
δ

(
2r

log
(
1+r
1−r

)) , (3.13)

donde

δ(x) =

(
x

1 +
√
1− x2

)2

.

Fijando r = 1
2
en la parte derecha de (3.13), obtenemos que

b(f) ⩾ 0, 21.

Por tanto β ⩾ 0, 21 y el teorema queda probado.

□

3.4. El teorema de Ahlfors

En esta subsección desarrollamos una serie de resultados interconectados cuyo objetivo final
es demostrar que la constante de Bloch satisface la desigualdad

β ⩾

√
3

4
.

Este resultado, clásico en Análisis Complejo, tiene una gran relevancia tanto por su valor
teórico como por ilustrar el uso de técnicas métricas y subarmónicas en el estudio de funciones
holomorfas.

La estrategia sigue el enfoque del matemático L. Ahlfors, quien mejoró el Lema de Schwarz,
resultado que limita cómo pueden deformarse las funciones dentro del disco unidad.

Lo que hacemos es construir una función auxiliar, λ(z), que mide localmente hasta qué punto
puede crecer una función sin perder ciertas propiedades. Luego analizamos cómo cambia esa
λ(z) usando herramientas de teoŕıa del potencial, y comprobamos que se comporta de forma
controlada, es decir, que su logaritmo es subarmónico. Esta idea nos permitirá imponer un
ĺımite a λ(z), y a partir de ah́ı, deduciremos la cota deseada para la constante de Bloch.

Este método combina geometŕıa, análisis complejo y propiedades métricas de las funciones,
y representa una de las formas más elegantes y potentes de abordar este tipo de problemas
en matemáticas modernas. Para la elaboración de esta sección se han usado como fuentes los
libros de J. B. Conway [4], L. Ahlfors [2] y un art́ıculo también de L. Ahlfors [1].

Antes de empezar, enunciemos el teorema que da nombre a esta sección y que será nuestro
objetivo durante el desarrollo de la misma.
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Teorema 3.5 (Teorema de Ahlfors). La constante de Bloch es mayor o igual que
√
3
4
.

Comenzamos con los resultados auxiliares.

Lema 3.6. Sea f una función holomorfa en un dominio Ω ⊂ C. Supongamos que |f(z)| < A <
+∞ y que f ′(a) ̸= 0 para un a ∈ Ω. Sean

λ(z) =
A|f ′(z)|

A2 − |f(z)|2
y u(z) = log λ(z).

Entonces
∆u(a) = 4[λ(a)]2.

Demostración. Para empezar, tenemos que λ está bien definida. Y ahora tenemos que

u(z) = log

(
A|f ′(z)|

A2 − |f(z)|2

)
= logA+ log |f ′(z)| − log(A2 − |f(z)|2).

Sabemos que el logaritmo del valor absoluto de una función anaĺıtica es armónico excepto
en los ceros de dicha función anaĺıtica. Vamos entonces a estudiar cada término:

Si f es anaĺıtica y f ′(a) ̸= 0 entonces sabemos que log |f ′(z)| es armónica en a, y por
tanto

∆ log |f ′(a)| = 0.

El término logA es constante por lo que tiene

∆ logA = 0.

Por tanto concluimos que el único término que puede contribuir al laplaciano en el punto a
es

− log(A2 − |f(z)|2),
por lo que

∆u(a) = −∆ log(A2 − |f(a)|2).
Vamos ahora a calcular el laplaciano de forma expĺıcita, para ello vamos a tener en cuenta

que

∆ = 4
∂2

∂z∂z
,

entonces

−4
∂2

∂z∂z
log(A2 − |f(z)|2) = 4|f ′(z)|2 A2

(A2 − |f(z)|2)2
.

Por tanto

∆u(a) = 4
A2|f(a)|2

(A2 − |f(a)|2)2
= 4λ(a)2.

□

Lema 3.7. Supongamos que f es anaĺıtica en un dominio Ω ⊂ C, que |f | < A2, siendo
0 < A < +∞ y que para un punto a ∈ Ω se tiene que f(a) ̸= 0 y f ′(a) ̸= 0. Si consideramos

λ(z) =
A|f ′(z)|

2|f(z)|1/2(A2 − |f(z)|)
y u(z) = log λ(z),

entonces se cumple que
∆u(a) = 4[λ(a)]2.
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Demostración.
Como f es anaĺıtica y f(a) ̸= 0, entonces existe una función g anaĺıtica en un entorno de a,

tal que
g(z)2 = f(z),

es decir,
g = e

1
2
ln f(z)

localmente, eligiendo una rama adecuada del logaritmo. Además como f es anaĺıtica, entonces

f ′(z) = 2g(z)g′(z) ⇒ |f ′(z)| = 2|g(z)| · |g′(z)| = 2|f(z)|1/2 · |g′(z)|.

Si ahora sustituimos esto en la expresión de λ(z) tenemos que

λ(z) =
2A|f(z)|1/2 · |g′(z)|

2|f(z)|1/2(A2 − |f(z)|)
=

A|g′(z)|
(A2 − |f(z)|)

=
A|g′(z)|

(A2 − |g(z)|2)
.

Tenemos entonces que g es una función anaĺıtica en un entorno de a, que |g(z)| < A, y que
g′(a) ̸= 0 ya que g(a) ̸= 0. Estamos entonces en condiciones de aplicar el lema anterior a la
función g y afirmar que

∆u(a) = 4[λ(a)]2.

□

Antes de seguir con el siguiente resultado vamos a dar una definición que usaremos.

Definición 3.8. Consideramos una función continua no negativa λ en B(0, 1). Supongamos
que λ(a) ̸= 0 para un punto a ∈ B(0, 1). Entonces, una función positiva λa que posee derivadas
parciales continuas de segundo orden en algún entorno de a se dice que soporta a λ en a si se
cumple que

1. λa(a) = λ(a),

2. λa(x) ⩽ λ(x) en algún entorno de a,

3. Con ua(x) = log λa(x),

∆ua(x) ⩾ 4[λa(x)]
2 (3.14)

en algún entorno de a.

A continuación vamos a dar una versión ligeramente generalizada de la extensión del Lema
de Schwarz dada por Ahlfors. Este teorema difiere de la versión de Ahlfors en que se permite un
conjunto excepcional, donde no se imponen requisitos sobre funciones de soporte. De hecho, se
podŕıan permitir incluso conjuntos cerrados de capacidad cero como conjuntos excepcionales.
La demostración seŕıa esencialmente la misma salvo por el uso de herramientas más sofisticadas
de la teoŕıa del potencial, como el teorema de Evans. Para establecer la estimación inferior de
Ahlfors para la constante de Bloch, se puede operar con esta extensión del Lema de Schwarz
de Ahlfors.

Teorema 3.9. Sea λ una función continua no negativa en B(0, 1). Supongamos que para cada
z ∈ B(0, 1) para el cual λ(z) ̸= 0, salvo posiblemente en un conjunto de puntos E que no tiene
puntos de acumulación en B(0, 1), existe una función λz que soporta a λ en z.

Entonces
λ(z) ⩽ (1− |z|2)−1, |z| < 1. (3.15)
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Nota. Cabe observar que el lema 3.3 puede ser incluido dentro de este teorema, como se deduce
del lema 3.6 de esta sección. La función λ definida en el lema 3.6 se soporta a śı misma en cada
x para el cual λ(x) ̸= 0.

Demostración.
Tomemos el conjunto E descrito en el enunciado del teorema, ahora, sea 0 < r < 1, demos-

tremos que

λ(z) ⩽
r

r2 − |z|2
=: µ(z) si |z| < r, (3.16)

que es lo mismo que
λ(z)

µ(z)
⩽ 1 si |z| < r, (3.17)

de donde obtendremos la desigualdad (3.15) para cada z ∈ B(0, 1) haciendo que |z| < r → 1.
Sea η > 0 y sea

λ∗(z) = λ(z)
n∏

k=1

|Lak(z)|η (3.18)

donde ak, para k = 1, . . . n son los distintos puntos de E en B(0, r), siendo n posiblemente 0
(serán necesariamente finitos por ser E discreto en B(0, 1)).

Veamos que (3.16) se cumple reemplazando λ por λ∗ y después haciendo tender η → 0 y
usando la continuidad de λ concluiremos que se cumple (3.16).

Si (3.16) no se cumple con λ∗ reemplazando a λ, la continuidad de z 7→ λ∗(z)/µ(z) en el
compacto B(0, r) garantiza que existe b ∈ B(0, r) tal que

λ∗(b) > µ(b) ⇒ λ∗(b)

µ(b)
> 1,

y de modo que
λ∗(b)

µ(b)
⩾

λ∗(z)

µ(z)
si |z| < r. (3.19)

Sea λb que soporta a λ en b, entonces

λ∗
b = λb

n∏
k=1

|Lak(z)|η

soporta λ∗ en b. Esto es fácil de ver ya que, como por definición λb(b) = λ(b), entonces:

λ∗
b(b) = λ∗(b).

λ∗
b(z) ⩽ λ∗(z) en un entorno de b.

Vamos a ver ahora que ∆ log λ∗
b(z) ⩾ 4[λ∗

b(z)]
2, para ello vamos a aplicar el laplaciano a

log λ∗
b(z) y vamos a ir calculándolo poco a poco. Primero tenemos que

log λ∗
b(z) = log λb(z) + η

n∑
k=1

log |Lak(z)|

por tanto aplicando el laplaciano

∆ log λ∗
b(z) = ∆ log λb(z) + η

n∑
k=1

∆ log |Lak(z)|.
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Recordemos ahora que log |Lak(z)| es armónica en los puntos en los que no se anula Lak ,
por lo que para puntos cercanos a b alejados de los ak tenemos que

∆ log |Lak(z)| = 0 para todo k = 1, . . . n.

Tenemos entonces que

∆ log λ∗
b(z) = ∆ log λb(z) ⩾ 4[λb(z)]

2.

Finalmente basta observar que como para todo k = 1, . . . n se tiene que |Lak(z)| < 1 en
B(0, r), entonces

λ∗
b(z) = λb(z)

n∏
k=1

|Lak(z)|η ⩽ λb(z),

por lo que
∆ log λ∗

b(z) ⩾ 4[λb(z)]
2 ⩾ 4[λ∗

b(z)]
2

para z cercano a b.

De (3.19) concluimos que
λ∗
b(b)

µ(b)
⩾

λ∗
b(z)

µ(z)

en un entorno de b. Por lo tanto, si ponemos u(z) = log λ∗
b(z) y v(z) = log µ(z), vemos que

u − v tiene un máximo relativo en b, aśı que el laplaciano de u − v en b es menor o igual que
0. Vamos entonces a calcular el laplaciano de u− v:

∆u(z) = ∆ log λ∗
b(z) ⩾ 4[λ∗

b(z)]
2 ⇒ ∆u(b) ⩾ 4[λ∗

b(b)]
2 = 4[λ∗(b)]2,

∆v(z) = ∆ log µ(z) = ∆(− log(r2 − |z|2)) = 4|z|2

(r2 − |z|2)2
⩽

4r2

(r2 − |z|2)2
= 4[µ(z)]2,

entonces
∆(u− v)(b) ⩾ 4[λ∗(b)]2 − 4[µ(b)]2 = 4

{
[λ∗(b)]2 − [µ(b)]2

}
y este valor es mayor que 0 por hipótesis, por lo que llegamos a contradicción. Finalmente
concluimos que la desigualdad (3.16) se cumple con λ∗ reeplazando a λ, con lo que queda
demostrado el teorema.

□

Una vez vista esta versión ligeramente generalizada de la extensión del Lema de Schwarz de
Ahlfors, vamos a continuar viendo resultados que nos ayudarán a concluir con la demostración
del Teorema de Ahlfors.

Lema 3.10. Sea λ(z) una función que cumple las condiciones del teorema 3.9, entonces u(z) =
log λ(z) es subarmónica en B(0, 1).

Demostración.
Tenemos que λ(z) es positiva y continua en B(0, 1), lo que implica que u(z) está bien definida

y es continua en B(0, 1). Tomamos ahora un punto z0 ∈ B(0, 1) \ E, y por hipótesis tenemos
una función λz0(z) de clase C2 que soporta a λ(z) en z0, es decir,

λz0(z0) = λ(z0).

λz0(z) ⩽ λ(z) en un entrono de z0.

Pedro Cidoncha Molina 51
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∆ log λz0(z0) ⩾ 4[λz0(z0)]
2.

Si definimos ahora uz0(z) = log λz0(z), entonces observamos que

uz0(z0) = u(z0).

uz0(z) ⩽ u(z) en un entrono de z0.

∆uz0(z0) ⩾ 4[λz0(z0)]
2 ⩾ 4[λ(z0)]

2 ⩾ 0.

Por lo que concluimos que uz0 es una función de clase C2 que soporta a u(z) en z0, y verifica
que ∆uz0(z0) ⩾ 0, lo cual nos permite aplicar el criterio de subarmonicidad por funciones
soporte, que dice lo siguiente:

”Si una función continua u tiene en cada punto z ∈ Ω una función uz ∈ C2 definida en un
entorno de z, tal que uz(z) = u(z), uz(z) ⩽ u(z) en un entorno de z y ∆uz(z) ⩾ 0, entonces u
es subarmónica en Ω.”

Por tanto concluimos que u(z) es subarmónica en cada punto de B(0, 1) \ E. Y debido a
que E es un conjunto que no tiene puntos de acumulación en B(0, 1), es decir E ′ ∩B(0, 1) = ∅,
concluimos que u(z) es subarmónica en B(0, 1).

□

Para aplicar ahora el teorema 3.9 a un problema espećıfico, queremos diseñar, en términos
de los datos del problema, una función λ(z) que satisfaga la condición de soporte y proporcione
información útil mediante el teorema 3.9. Consideremos la función λ(z) construida por Ahlfors
en relación con el teorema de Bloch.

Comenzamos con f anaĺıtica en B(0, 1), satisfaciendo f ′(0) = 1. Para cada z ∈ B(0, 1),
definimos ρ(z) de la siguiente manera:

Si f ′(z) = 0, ponemos ρ(z) = 0.

Si f ′(z) ̸= 0, entonces ρ(z) es el supremo del conjunto de los r > 0 para los cuales la
restricción de f a la componente conexa de f−1(B(f(z), r)) que contiene a z, transforma
esta componente de forma inyectiva sobre B(f(z), r).

Denotamos por Ωz la componente conexa de f−1(B(f(z), ρ(z))) que contiene a z. Por defi-
nición de ρ(z), tiene que haber un punto en la frontera de Ωz donde falle la inyectividad de la
función f , esto puede darse por dos causas:

La primera causa es que lleguemos al borde del dominio de definición de f , es decir, que
lleguemos a ∂B(0, 1) = C(0, 1).

En el caso de que no lleguemos al borde de definición de f , entonces el punto en cuestión,
al que llamaremos ξ, tiene que ser un punto cŕıtico, es decir, un cero de f ′(z), ya que si no
lo fuera, como f sigue siendo holomorfa en un entorno de ξ, y f ′(ξ) ̸= 0, por el teorema
de la inversa local f seŕıa localmente inyectiva en un entorno de ξ, lo cual nos permitiŕıa
extender Ωz, lo que entra en contradicción con su definición.

Veamos ahora que la función ρ(z) es continua, para ello vamos a distinguir dos casos.
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Si f ′(a) ̸= 0 entonces por el teorema de la inversa local, sabemos que f es inyectiva en
un entorno de a, por lo que ρ(a) > 0, y podemos tomar un Ωa. Sea z ∈ Ωa, como f es
inyectiva en Ωa, también lo es en algún entorno de z, y como f es continua, tenemos que

|f(z)− f(a)| → 0 cuando z → a,

por lo que para z ∈ Ωa suficientemente cercano a a

ρ(a)− |f(z)− f(a)| ⩽ ρ(z) ⩽ ρ(a) + |f(z)− f(a)|,

es decir,
|ρ(z)− ρ(a)| ⩽ |f(z)− f(a)|,

y como f es continua, el segundo miembro tiende a 0 cuando z → a, aśı que

ρ(z) → ρ(a),

lo que implica que ρ(z) es continua en los puntos donde f ′(z) ̸= 0.

Si f ′(a) = 0, usando el teorema de representación local para funciones meromorfas (ver
apéndice para más detalles), vemos que para z suficientemente cercano a a,

ρ(z) = |f(z)− f(a)|. (3.20)

En conclusión, la función ρ(z) es continua en todo el disco unidad. Además, se cumple que
ρ(z) ⩽ b(f) para todo z ∈ B(0, 1). A partir de ahora, trabajaremos únicamente con funciones
f tales que b(f) < +∞.

Ahora, sea A >
√

3b(f) y n(z, f) la multiplicidad de f en a, es decir, el orden de a como
cero de la función z 7→ f(z)− f(a). Definimos λ por:

λ(z) :=


A|f ′(z)|

2
√

ρ(z) [A2 − ρ(z)]
cuando f ′(z) ̸= 0,

1

A

√
|f ′′(z)|

2
cuando n(z; f) ⩾ 2.

(3.21)

La condición (3.20) implica que λ es continua, veamos esto: en los puntos donde f ′(z) ̸= 0,
la expresión de λ(z) depende de f ′(z) y ρ(z), y ambas funciones son continuas. El problema
viene en los puntos donde f ′(z) = 0. Supongamos entonces que f ′(a) = 0 y que la multiplicidad
de f en a es 2, en este caso

f(z) = f(a) +
f ′′(a)

2
(z − a)2 + términos de orden superior

por lo que cerca de a

f ′(z) ≈ f ′′(a)(z − a).

f(z)− f(a) ≈ f ′′(a)
2

(z − a)2, y entonces por (3.20)

ρ(z) = |f(z)− f(a)| ≈ |f ′′(a)|
2

|z − a|2.

Ahora si sustituimos el desarrollo asintótico de la expresión de λ(z) cuando z → a tenemos

λ(z) ≈ A|f ′′(a)||z − a|

2
√

|f ′′(a)|
2

|z − a|A2

=
1

A

√
|f ′′(a)|

2
,
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que como podemos observar es el valor de λ(z) para los puntos donde f ′(z) = 0, por tanto λ(z)
es continua.

Soporte para λ. Supongamos que f ′(a) ̸= 0. Sea b un punto de C(f(a), ρ(a)) que no sea
la imagen mediante f de un punto frontera de Ωa en B(0, 1), donde f tiene multiplicidad 1.
Definamos ρa(z) simplemente como |f(z)− b| para z ∈ Ωa, obsérvese que

ρa(z) ⩾ ρ(z), z ∈ Ωa.

A continuación definimos λa(z) como

λa(z) :=
A|f ′(z)|

2
√
ρa(z) [A2 − ρa(z)]

. (3.22)

Observamos que ρa(a) = |f(a)− b| = ρ(a), y que por la desigualdad triangular

ρa(z) = |f(z)− b| ⩽ |f(z)− f(a)|+ |f(a)− b| ⩽ b(f) + b(f) = 2b(f),

es decir,

ρa(z) ⩽ 2b(f).

Dado que la función t 7→ t1/2(A2−t) es creciente en {0 ⩽ t ⩽ A2

3
}, se deduce que λa(z) ⩽ λ(z)

para z cercanos a a. Aplicando el lema 3.7 de esta sección, obtenemos que ua(z) = log λa(z)
verifica ∆ua(a) = 4[λa(a)]

2. Dado que también se cumple que λa(a) = λ(a) y que λa(z) ⩽ λ(z)
en un entorno de a, concluimos que λa soporta a λ en a.

En consecuencia, se verifica que la función λ cumple las hipótesis del teorema 3.9, es decir,
que en cada punto z ∈ B(0, 1) con λ(z) ̸= 0, existe una función λz que la soporta. Por tanto,
podemos aplicar dicho teorema a λ.

Del hecho de que λ(0) ⩽ 1, y dado que f ′(0) = 1 y ρ(0) ⩽ b(f), tenemos que

A ⩽ 2
√

ρ(0)
[
A2 − ρ(0)

]
⩽ 2
√

b(f)
[
A2 − b(f)

]
.

Aśı, dejando que A →
√

3b(f), obtenemos√
3b(f) ⩽ 4[b(f)]3/2

y por lo tanto,

b(f) ⩾

√
3

4
.

Finalmente, como esto se cumple para toda función f con f ′(0) = 1, se concluye que

β ⩾

√
3

4
.

Lema 3.11. Se puede establecer la conclusión de que β ⩾
√
3/4 con la extensión de Ahlfors

del Lema de Schwarz sin tener que preocuparse de los puntos excepcionales. Es suficiente con
estudiar los puntos donde la multiplicidad es 2.

Demostración.
Para establecer que β ⩾

√
3/4, basta con aplicar el teorema 3.9 a la función λ(z) en (3.21),

sin necesidad de preocuparse por los puntos donde no se puede construir expĺıcitamente una
función de soporte.
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Recordemos que la función λ(z) está definida de la siguiente forma:

λ(z) :=


A|f ′(z)|

2
√

ρ(z) [A2 − ρ(z)]
cuando f ′(z) ̸= 0,

1

A

√
|f ′′(z)|

2
cuando f ′(z) = 0 y n(z; f) ⩾ 2,

por lo que el problema viene en los puntos donde f ′(z) = 0 y la multiplicidad de f en z es
mayor o igual que 3, ya que para estos puntos no se ha definido expĺıcitamente una función
de soporte λz. Sin embargo, por el principio de los ceros aislados tenemos que estos puntos de
multiplicidad mayor o igual que 3 forman un conjunto sin puntos de acumulación en B(0, 1).

Es por esto que el conjunto de puntos donde λ(z) no está soportada cumple la hipótesis del
teorema 3.9, que permite excepciones en un conjunto sin puntos de acumulación.

Por otra parte, en todos los demás puntos de B(0, 1) donde λ(z) ̸= 0, se ha construido una
función λa que verifica:

λa(a) = λ(a),

λa(z) ⩽ λ(z) en un entorno de z,

∆ log λa(z) ⩾ 4[λa(z)]
2 en un entorno de z,

es decir, una función λa(z) que soporta a λ(z) en a.
En consecuencia, se cumplen todas las condiciones necesarias para aplicar el teorema 3.9,

lo que nos permite obtener la desigualdad

λ(z) ⩽
1

1− |z|2
,

y con ella, podemos concluir que

λ(0) ⩽
1

1− |0|2
= 1,

con lo que unido al hecho de que f ′(0) = 1 y ρ(0) ⩽ b(f), podemos razonar de la misma forma
que en (3.4), y concluir que

β ⩾

√
3

4
.

□
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Caṕıtulo 4

Aplicaciones en los desarrollos
asintóticos

Con este caṕıtulo se pretende mostrar la aplicación de los Teoremas de Phragmén-Lindelöf
en el estudio de resultados relacionados con los desarrollos asintóticos. La dinámica que se
seguirá será como en los anteriores; primero se demostrarán una serie de resultados útiles para
poder finalizar con el resultado principal de este caṕıtulo. Como mayor fuente de información
para la realización de este caṕıtulo se ha usado el art́ıculo de A. Fruchard y Ch. Zhang [5].

Comenzamos este caṕıtulo con una serie de definiciones y nociones básicas, y algunas he-
rramientas que vamos a usar.

Una superfcicie de Riemann es una variedad compleja unidimensional, y es natural consi-
derarlas en diversas situaciones, entre las que destaca la posibilidad de extender el dominio de
funciones complejas multivaluadas (como el logaritmo o la ráız cuadrada) para que se vuelvan
funciones monovaluadas sobre esa nueva superficie. Localmente se comporta como un abierto
del plano complejo, pero globalmente puede tener una estructura mucho más complicada. Para
nuestros intereses no necesitamos toda la maquinaria clásica, sino únicamente manejar la de-
nominada superficie de Riemann del logaritmo. Como es sabido, la función logaritmo complejo
se define como

log z = ln |z|+ i arg(z)

y esta función es multivaluada ya que el argumento arg(z) está definido como

arg(z) = θ + 2πn, n ∈ Z.

Para la construcción de la superficie de Riemann del logaritmo, vamos a imaginar copias
de C, sin el punto 0 (el origen) y a las que se las realiza un corte por el eje real negativo, una
vez para cada entero n ∈ Z. A cada una de estas copias vamos a llamarla hoja de la superficie.
Estas hojas se pegan de la siguiente manera:

La rama principal del logaritmo corresponde al intervalo θ ∈ (−π, π).

Cuando cruzas el eje real negativo, se pasa de una hoja a la siguiente.

Esto crea una especie de hélice infinita o espiral logaŕıtmica infinita: al dar una vuelta completa
alrededor del origen en sentido positivo, subes una hoja en la hélice.

La superficie de Riemann del logaritmo es, por tanto, una cubierta helicoidal infinita del
plano complejo sin el origen.
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Figura 4.1: Superficie de Riemann de log(z)

Los puntos de dicha superficie son pares (ρ, θ) ∈ (0,∞) × R, que representan al número
complejo z = ρeiθ ∈ C \ {0}. La función logaritmo definida como antes es una función ahora
univaluada, pues cada punto de la superficie, que vamos a denotar como C∗, lleva asociado un
único “argumento”.

A continuación vamos a ver qué es un sector.

Definición 4.1. Dado ρ, α, β como números reales que cumplen que

ρ > 0 y 0 < α < β,

definimos el sector abierto S(α, β; ρ) como:

S(α, β; ρ) = {z ∈ C∗ : 0 < |z| < ρ, arg(z) ∈ (α, β)},

y el sector cerrado S(α, β; ρ) como:

S(α, β; ρ) = {z ∈ C∗ : 0 < |z| ⩽ ρ, arg(z) ∈ [α, β]}.

En el caso de que ρ = 1, simplemente usaremos la notación de S(α, β). Y llamaremos
dirección de S(α, β; ρ) a un elemento θ del intervalo (α, β).

4.1. Desarrollos asintóticos

Dada la serie de potencias formal con coeficientes complejos

f̂ :=
∑
n⩾0

anz
n ∈ C[[z]]

y un número natural N ∈ N, denotamos por f̂N la suma parcial de orden (N−1) de f̂ , es decir:

f̂N =
N−1∑
n=0

anz
n.
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Definición 4.2. Sea ahora S := S(α, β; ρ) un sector, θ ∈ (α, β) una dirección de S y f una
función anaĺıtica en S. Diremos que f posee un desarrollo asintótico en la dirección θ si, para
todo N ∈ N y todo z ∈ S con arg(z) = θ, se cumple que∣∣∣f(z)− f̂N(z)

∣∣∣ ⩽ CN |z|N

donde CN es una constante mayor que 0 dependiente de N .

Definición 4.3. Si f posee f̂ como desarrollo aśıntótico no solo en una dirección fija, sino
uniformemente en todo el sector S(α, β; ρ), se dice que f posee f̂ como desarrollo asintótico en
el sector S(α, β; ρ).

Definición 4.4. Si además las constantes CN pueden elegirse de la forma

CN = CANN !

con constantes C y A mayores que 0 e independientes de N , entonces diremos que f admite un
desarrollo asintótico Gevrey de orden 1.

Definición 4.5. Si estamos en el caso de un desarrollo asintótico Gevrey de orden 1 en la
dirección θ, entonces dado un número R > 0, si para todo δ > 0 la constante A anterior puede
elegirse de la forma

A =
1

R
+ δ

diremos que la función f posee un desarrollo asintótico Gevrey de orden 1 y de tipo R en la
dirección θ.

Estas definiciones se han adaptado al caso complejo desde el caso real. En la teoŕıa asintótica
compleja, usualmente se consideran desarrollos asintóticos en sectores abiertos. El objetivo de
esta sección es establecer un v́ınculo entre los desarrollos asintóticos en una dirección o en todo
un sector utilizando el Teorema de Phragmén-Lindelöf para un sector (teorema 2.3).

4.1.1. Desarrollos asintóticos nulos

El siguiente lema será útil para extender la existencia de desarrollo asintótico nulo en una
sola dirección a todo un sector.

Lema 4.6. Sea f anaĺıtica en el sector abierto S(α, β) y continua en el sector cerrado S(α, β)
(ambos de radio 1). Supongamos que para todo z ∈ S(α, β), se cumple que

|f(z)| ⩽ 1, (4.1)

y que existen C ⩾ 1 y λ ⩾ 0 tales que para todo z ∈ S(α, β) con arg(z) = α, se tiene que

|f(z)| ⩽ C|z|λ. (4.2)

Entonces para todo z ∈ S(α, β), denotando θ = arg(z), se cumple que

|f(z)| ⩽ C
β−θ
β−α |z|

(β−θ)λ
β−α .

Demostración.
Consideramos la función g dada por

g(z) = exp

(
ia
(ln(z))2

2
+ (b− ic) ln(z)

)
f(z)
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donde

a := − λ

β − α
, b := − λβ

β − α
, c := − ln(C)

β − α
.

Tenemos que g(z) está bien definida y es continua en el sector cerrado S(α, β), y es anaĺıtica
sobre S(α, β), ya que es composición de funciones continuas en S(α, β) y anaĺıticas en S(α, β).

Si ahora tomamos módulos en g(z),

|g(z)| =
∣∣∣∣eia (ln(z))2

2 e(b+ic) ln(z)

∣∣∣∣ |f(z)|,
desarrollamos cada parte por separado∣∣∣∣eia ln(z)2

2

∣∣∣∣ = ∣∣∣e ia
2
(ln |z|+i arg(z))2

∣∣∣ = ∣∣∣∣∣e−a(ln |z| arg(z))e
ia

(
ln2(z)

2
− arg2(z)

2

)∣∣∣∣∣ = |z|−a arg(z),∣∣e(b+ic) ln(z)
∣∣ = ∣∣e(b+ic)(ln |z|+i arg(z))

∣∣ = |z|be−c arg(z),

y finalmente lo juntamos, tenemos que

|g(z)| = |z|−a arg(z)+be−c arg(z)|f(z)|.

Teniendo ahora en cuenta las definiciones de a, b y c y llamando θ = arg(z),

|g(z)| = |z|
(θ−β)λ
β−α C

θ
β−α |f(z)|. (4.3)

Con esta igualdad vemos que g tiene un crecimiento sub-exponencial cuando z tiende a cero
en S(α, β). Esta condición es equivalente a la condición (2.9) considerando que en vez de tender
r → ∞, en este caso 1

r
→ ∞.

Vamos a ver ahora la acotación de |g(z)| en ∂S(α, β):

Si arg(z) = α sabemos que se cumple (4.2), entonces

|g(z)| ⩽ |z|−λC
α

β−αC|z|λ = C
1+α
β−α = C

β
β−α .

Si arg(z) = β, entonces, como f es continua en S(α, β) y se cumple (4.1),

|g(z)| ⩽ C
β

β−α |f(z)| ⩽ C
β

β−α .

Finalmente, si |z| = 1, como f es continua en S(α, β), se cumple (4.1), y como θ 7→ C
θ

β−α

es una función creciente, tenemos que

|g(z)| ⩽ C
β

β−α .

Por tanto podemos afirmar que en ∂S(α, β) se cumple que |g(z)| ⩽ C
β

β−α .
Estamos entonces en condiciones de aplicar el teorema de Phragmén-Lindelöf para un ángulo

(teorema 2.3) y deducir que para todo z ∈ S(α, β) se cumple que

|g(z)| ⩽ C
β

β−α ,

y si ahora aplicamos la definición de g(z),

|g(z)| = |z|
(θ−β)λ
β−α C

θ
β−α |f(z)| ⩽ C

β
β−α ⇒ |f(z)| ⩽ C

β−θ
β−α |z|

(β−θ)λ
β−α ,

que es lo que queŕıamos demostrar.
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□

Ahora, en lo que respecta a los desarrollos asintóticos en el sentido en el que los hemos
descrito en este caṕıtulo, obtenemos inmediatamente del lema anterior, el siguiente resultado.

Proposición 4.7. Sea f una función anaĺıtica y acotada en un sector abierto S(α, β; ρ) con
α < β y ρ > 0. Si f admite un desarrollo asintótico nulo en una dirección θ0 ∈ (α, β), entonces
también admite un desarrollo asintótico nulo en todo el sector S(α, β; ρ).

Tradicionalmente se ha denominado función plana a aquella que admite un desarrollo
asintótico nulo. Y se denomina función exponencialmente plana (de orden 1) de tipo R en
la dirección θ0, o simplemente función exponencialmente plana en la dirección θ0, si cuando z
tiende a cero en la dirección θ0, para todo δ > 0, se cumple que

|f(z)| = O
(
e−

(R−δ)
z

)
,

o lo que es lo mismo, si existe una C > 0 de forma que cuando z tienda a cero en la dirección
θ, se tenga que

|f(z)| ⩽ Ce−
R−δ
|z| .

Nota. El valor R dependerá de la dirección θ, por eso normalmente se le denotará R(θ), e
indica la velocidad de decaimiento exponencial, es decir, cuanto mayor es R(θ), más rápido
decrece |f(z)| cuando z → 0.

El siguiente resultado que vamos a ver se considera a menudo como una variante del Teorema
de Phragmén-Lindelöf.

Lema 4.8. Sea f continua y acotada en el sector cerrado S(α, β). Supongamos que β − α < π
y que f es exponencialmente plana de tipo R(α) > 0 en la dirección α (respectivamente de tipo
R(β) ⩾ 0 en la dirección β). Entonces, para toda dirección θ ∈ (α, β), f es exponencialmente
plana de tipo R(θ) dado por

R(θ) =
R(β) sin(θ − α)−R(α) sin(θ − β)

sin(β − α)
.

Demostración.
Para comenzar la demostración vamos a definir C como la circunferencia del plano complejo

que:

Si R(β) > 0, pasa por los puntos 0, R(α)eiα, y R(β)eiβ.

Si R(β) = 0, es tangente a la dirección β en el origen y pasa por R(α)eiα.

Re(z)

Im(z)

β R(α)eiα

R(β)eiβ

0

(a) C cuando R(β) > 0.

Re(z)

Im(z)

β
R(α)eiα

R(β)eiβ = 0

(b) C cuando R(β) = 0.

Figura 4.2: Definición de C en función de R(β).
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Sea a ∈ C de forma que el segmento que tiene por extremos a y el origen, sea un diámetro
de dicho ćırculo C. Observemos que este punto a depende únicamente de R(α), R(β), α y β.

Vamos a definir ahora una función auxiliar

fa(z) := f(z)ea/z,

la cual está definida y es anaĺıtica en el sector abierto S(α, β), y es continua en S(α, β), debido a
que es composición de funciones que están definidas y son anaĺıticas en S(α, β) y son continuas
en S(α, β).

Por hipótesis sabemos que:

Si z tiende a cero en la dirección α, se tiene que

|f(z)| ⩽ Ce
−R(α)

|z| .

Si z tiende a cero en la dirección β, se tiene que

|f(z)| ⩽ Ce
−R(β)

|z| .

Queremos por tanto estimar el valor de |fa(z)| en estas direcciones. Sea z = reiθ, entonces

|fa(z)| = |f(z)||e
ae−iθ

r | = |f(z)| · e
|a|
r
cos(arg(a)−θ),

y si sustituimos ahora θ por α, por construcción geométrica podemos garantizar que |a| cos(arg(a)−
α) es mayor o igual que R(α) + ε para un ε > 0, por lo que tenemos que

|fa(z)| = |f(z)| · e
|a|
r
cos(arg(a)−θ) ⩽ Ce−

R(α)
r e

R(α)+ε
r = Ce

ε
r .

El mismo argumento se aplicaŕıa en la dirección de β, por lo que concluimos que fa está acotada
en el borde del sector S(α, β).

Como β − α < π, el sector tiene apertura estrictamente menor que π, esto unido a que fa
es anaĺıtica en el interior del sector, continua y acotada en el borde, y su crecimiento es sub-
exponencial, nos permite aplicar el teorema de Phragmén-Lindelöf para un sector y deducir que
fa está acotada en todo el sector.

Para concluir con esta demostración vamos a calcular más exactamente la cota, para ello
recordemos que

|fa(z)| = |f(z)| · e
|a|
r

cos(arg(a)−θ),

entonces
|f(z)| = |fa(z)| · e−

|a|
r

cos(arg(a)−θ).

Pero por construcción geométrica, tenemos que el valor de |a| cos(arg(a)− θ) es

R(β) sin(θ − α)−R(α) sin(θ − β)

sin(β − α)
,

con lo que concluimos la demostración.

□

A continuación, se va a enunciar una versión mejorada del Lema deWatson, que está presente
en el art́ıculo de A. Fruchard y Ch. Zhang [5] y cuya demostración excede los propósitos técnicos
de este trabajo. Esta versión es la que sigue.
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Lema 4.9 (Lema de Watson). Sea f una función anaĺıtica y acotada en un sector suficien-
temente grande (de apertura mayor a π), y exponencialmente plana sobre las direcciones de
ambos bordes. Entonces f es idénticamente nula.

Este resultado es una herramienta crucial en al análisis asintótico complejo ya que permite
concluir que una función es idénticamente cero usando solo información en el borde del dominio.

A continuación vamos a enunciar y demostrar otro resultado obtenido gracias al lema 4.8.

Lema 4.10. Sea f continua y acotada en el sector cerrado S(α, β). Supongamos que β−α ⩾ π
y que f es exponencialmente plana de tipo R > 0 en la dirección α. Entonces f es idénticamente
nula.

Demostración.
Para simplificar, vamos a considerar el caso más sencillo en el que la apertura del sector es

exactamente π, y centramos el sector alrededor del semieje real positivo mediante una rotación.
Aśı, sin pérdida de generalidad podemos suponer que

α =
−π

2
β =

π

2
,

es decir, que estamos trabajando en el sector S(−π
2
, π
2
).

Por hipótesis, f es continua y acotada en el sector cerrado S(−π
2
, π
2
), y además es exponen-

cialmente plana de tipo R > 0 en la dirección α = −π
2
.

Nuestro objetivo es aplicar el Lema de Watson (lema 4.9), que requiere que la función sea
exponencialmente plana en ambas direcciones del borde del sector. Pero en nuestro caso, solo
conocemos el comportamiento de f en una de las dos direcciones.

Para poder avanzar, nos restringimos al subsector S(−π
2
, 0), contenido dentro del sector

original. Nos encontramos que no tenemos información sobre el comportamiento de f en la
dirección 0, pero como f es acotada en el sector cerrado por hipótesis, podemos tomar por
convenio que R(0) = 0, esto no significa que f sea exponencialmente plana de tipo 0 en esa
dirección, simplemente establecemos este valor para poder aplicar el lema 4.8.

De la aplicación del lema 4.8 deducimos que f es exponencialmente plana en todas las
direcciones entre −π/2 y 0, en particular, deducimos que en la dirección −π/4, f es plana de
tipo

R

(
−π

4

)
=

0 · sin(−π/4 + π/2)−R · sin(−π/4)

sin(π/2)
= −R · sin

(
−π

4

)
=

R√
2
.

Con esta información definimos ahora la función auxiliar

g(z) := f(z)e−
(1+i)R

2z .

Esta elección está motivada por la necesidad de construir una función que sea plana en
ambas direcciones del borde, lo que permitirá aplicar el Lema de Watson. El factor exponencial
está diseñado para cumplir exactamente esta función:

El exponente (1+i)R
2z

tiene parte real positiva en todo el sector S(−π
2
, π
2
), lo cual garantiza

que e−
(1+i)R

2z decrece fuertemente a lo largo de todas las direcciones del sector, en particular
en π/2, donde no controlamos el comportamiento de f .

Al mismo tiempo, este factor no destruye el decaimiento que ya tiene f en −π/2 ni en
−π/4, gracias a que también decrece en esas direcciones y a que el propio f ya decrece
suficientemente alĺı.
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En resumen, la función g(z) es anaĺıtica en el sector S(−π
2
, π
2
), continua y acotada en el sector

cerrado S(−π
2
, π
2
), y plana en las dos direcciones de los bordes. En estas condiciones podemos

aplicar el Lema de Watson a g(z) y concluir que g es idénticamente nula en el sector. Como el

factor exponencial e−
(1+i)R

2z no se anula en ningún punto, se deduce que

f(z) ≡ 0.

□

Combinando los lemas 4.8 y 4.10 deducimos la siguiente proposición

Proposición 4.11. Sea f una función anaĺıtica y acotada sobre un sector abierto S(α, β; ρ)
con α < β y ρ > 0. Se supone que f admite un desarrollo asintótico nulo de Gevrey de orden
1 y de tipo R > 0 en una dirección θ0 ∈ (α, β). Entonces:

Si β − α > π, f es idénticamente nula.

Si β − α ⩽ π, en cada dirección θ ∈ (α, θ0] (respectivamente θ ∈ [θ0, β)), la función f
admite un desarrollo asintótico nulo de Gevrey de orden 1 y de tipo R(θ), dado por

R(θ) = R
sin(θ − α)

sin(θ0 − α)
, respectivamente R

sin(θ − β)

sin(θ0 − β)
.

4.2. Transformada de Borel-Laplace

Sea R > 0, consideremos una serie de potencias formal

f̂(z) :=
∑
n⩾0

anz
n+1

y supongamos que es Gevrey de orden 1 y de tipo R, es decir, que para todo δ > 0 existe una
constante Cδ > 0 tal que

|an| < Cδ

(
1

R + δ

)n

n! para todo n ∈ N ∪ {0}.

Sea

Rδ =
R

1 + δR
.

La serie entera

B̂f̂(t) :=
∑
n⩾0

(an
n!

)
tn,

a la que llamamos transformada de Borel formal de f̂ , converge en todo disco B(0, Rδ) de
centro 0 y radio Rδ < R, por lo que coverge en el disco de Borel B(0, R). A la suma de esta
serie la denotaremos por φ.

Definición 4.12. Sea z ∈ B(0, R) arbitrariamente fijado. Para todo x ∈ C∗, definimos la
transformada de Laplace truncada en z de φ como

Lzφ(x) :=

∫ z

0

φ(t)e−t/x dt.
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Lema 4.13 (Teorema de Borel-Ritt-Gevrey). Sean R > 0, z ∈ B(0, R) y f̂(x) serie de potencias
Gevrey de orden 1 y tipo R,

f̂(x) :=
∑
n⩾0

anx
n+1.

La función f = Lzφ definida anteriormente admite a f̂ como desarrollo asintótico Gevrey de
orden 1 sobre el sector S de apertura π y centrado en la dirección de z,

S := S
(
arg(z)− π

2
, arg(z) +

π

2

)
.

Además, en toda dirección θ de S, el tipo R(θ) de ese desarrollo es de la forma

R(θ) = |z| cos(θ − arg(z)).

Demostración.
Sin pérdida de generalidad vamos a suponer que arg(z) = 0, es decir, que z = r > 0

(aplicando una rotación a x si es necesario). Para todo N ∈ N fijo, definimos

φN(t) :=
N−1∑
n=0

an
n!

tn,

como la N -ésima suma parcial de φ. Vamos a ver la relación de esta suma parcial con la suma
parcial N -ésima de f̂(z).∫ ∞

0

φN(t)e
−t/x dt =

∫ ∞

0

N−1∑
n=0

an
n!

tne−t/x dt =
N−1∑
n=0

an
n!

∫ ∞

0

tne−t/x dt

Hacemos ahora el cambio de variable u = t
x∫ ∞

0

tne−t/x dt =

∫ ∞

0

unxne−ux du = xn+1

∫ ∞

0

une−u du = xn+1Γ(n+ 1).

Es bien sabido que Γ(n+ 1) = n!, por lo que

N−1∑
n=0

an
n!

∫ ∞

0

tne−t/x dt =
N−1∑
n=0

anx
n+1 = f̂N(x),

entonces

f̂N(x) =

∫ ∞

0

φN(t)e
−t/x dt.

Vamos ahora a dividir la función f(x) en tres partes,

f(x) =

∫ r

0

φ(t)e−t/x dt =

∫ r

0

(φ(t)− φN(t))e
−t/x dt+

∫ r

0

φN(t)e
−t/x dt

=

∫ r

0

(φ(t)− φN(t))e
−t/x dt+ f̂N(x)−

∫ ∞

r

φN(t)e
−t/x dt

y llamaremos

δN(x) =

∫ r

0

(φ(t)− φN(t))e
−t/x dt y σN(x) =

∫ ∞

r

φ(t)e−t/x dt.
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Como f̂(x) es Gevrey de orden 1 y tipo R, entonces

|φ(t)− φN(t)| ⩽ C1

∣∣∣aN
N !

∣∣∣ tN ⩽ C

(
t

r

)N

, para t ∈ [0, r]

siendo C1 y C independientes de N . Debido a esto y a que r ∈ (0, R) obtenemos que para todo
x ∈ S

|δN(x)| =
∫ r

0

|φ(t)− φN(t)||e−t/x| dt ⩽ C

∫ r

0

tN

rN
|e−t/x| dt,

teniendo ahora en cuenta que si θ = arg(x) entonces Re
(

t
|x|

)
= t

|x| cos θ,

C

∫ r

0

tN

rN
|e−t/x| dt = C

∫ r

0

tN

rN
e

t
|x| cos θ dt

y haciendo ahora el cambio de variable u = t cos θ
|x| , t = u|x|

cos θ
, dt = |x|

cos θ
du, tenemos que

C

∫ r

0

tN

rN
e

t
|x| cos θ dt =

C|x|N+1

rN(cos θ)N+1

∫ r cos θ
|x|

0

uNe−u du

⩽
C|x|N+1

rN(cos θ)N+1

∫ ∞

0

uNe−u du =
C|x|N+1

rN(cos θ)N+1
Γ(N + 1)

=
C|x|N+1

rN(cos θ)N+1
N ! = C

|x|
cos θ

N !

(
|x|

r cos θ

)N

.

Por otra parte, para t ⩾ r, tenemos que

|φN(t)| =
N−1∑
n=0

∣∣∣an
n!

tn
∣∣∣ = N−1∑

n=0

|an|
n!

rn
(
t

r

)n

⩽

(
N−1∑
n=0

|an|
n!

rn

)(
t

r

)N−1

< D

(
t

r

)N−1

,

con la constante D independiente de N pero pudiendo depender de R. Un cálculo idéntico al
anterior para la estimación de |δN(x)| demuestra que para todo z ∈ S

|σN(x)| < rD(N − 1)!

(
|x|

r cos θ

)N

.

Por lo tanto , para todo x ∈ S, siendo θ = arg(x), se tiene que

|f(x)− f̂N(x)| = |δN(x)− σN(x)| ⩽ |δN(x)|+ |σN(x)|

< C
|x|
cos θ

N !

(
|x|

r cos θ

)N

+
rD

N
N !

(
|x|

r cos θ

)N

=

(
C +

rD

N

)
N !

(
|x|

r cos θ

)N

= KN !

(
|z|

r cos θ

)N

,

donde K > 0 es independiente de x y de N , aunque puede depender de R. En otras palabras,
f admite a f̂ como desarrollo asintótico Gevrey de orden 1 y tipo r cos(θ) en cada dirección
θ ∈ (−π

2
, π
2
) de S, que es lo que se queŕıa probar.

□
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4.3. Vı́nculo entre la teoŕıa asintótica real y compleja

Finalmente, con todos los resultados anteriores, en esta sección llegaremos a la demostración
del teorema objetivo de este caṕıtulo.

Teorema 4.14. Sea f una función anaĺıtica y acotada en un sector abierto S := S(α, β; ρ) con
0 < α < β, y sea

f̂ :=
∑
n⩾0

anx
n ∈ C[[x]]

una serie de potencias formal.

1. Si existe una dirección de S en la cual la función f admite f̂ como desarrollo asintótico,
entonces f̂ es un desarrollo asintótico de f en el sector S en su totalidad.

2. Se tiene el mismo enunciado en el caso de un desarrollo asintótico de Gevrey de orden 1.

Más precisamente, si f admite a f̂ como desarrollo asintótico de Gevrey de orden 1 y de
tipo R(θ0) en una dirección θ0 ∈ (α, β), entonces en toda dirección θ de S, f admite f̂ como
desarrollo asintótico de Gevrey de orden 1 y de tipo R(θ), donde R(θ) se define de la siguiente
manera. Siendo

α′ = mı́n
(
θ0, α+

π

2

)
y β′ = máx

(
θ0, β − π

2

)
,

se tiene:

R(θ) =


R(θ0)

sin(θ−α)
sin(α′−α)

, si θ ∈ (α, α′],

R(θ0), si θ ∈ [α′, β′],

R(θ0)
sin(θ−β)
sin(β′−β)

, si θ ∈ [β′, β).

Nota. Se puede reemplazar la hipótesis de acotación por la de acotación asintótica en el
siguiente sentido. Una función anaĺıtica en un sector S = S(α, β; ρ) se dice asintóticamente
acotada en S si es acotada en todo sub-sector propio de S, S ′ = S(α′, β′; ρ′), con

α < α′ < β′ < β y 0 < ρ′ < ρ.

El teorema muestra que el hecho de poseer un desarrollo asintótico (respectivamente Gevery
de orden 1) en una dirección y ser asintóticamente acotada en el sector implica poseer un
desarrollo asintótico (resp. Gevrey de orden 1) en todo el sector.

Nota. Gráficamente, la aplicación (α, β) → C, θ 7→ R(θ)eiθ tiene como curva representativa la
reunión de tres arcos de circunferencia: uno centrado en 0 con radio R(θ0), el segundo pasando
por los puntos 0 y R(θ0)e

iα′
y tangente en la dirección α, y el tercero definido de la misma

manera reemplazando α por β y α′ por β′.
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R(θ0)e
iα′

= R(θ0)e
iθ0

R(θ0)e
iβ′

O

α

β

Figura 4.3: Representación gráfica de la curva de R(θ)

Demostración.
Tomamos para empezar un w ∈ (0, π

2
) fijo, por el Teorema de Borel-Ritt-Gevrey (lema 4.13)

existe una función f0 anaĺıtica en S(α−w, β−w; ρ) que admite a f̂ como desarrollo asintótico
en la dirección θ0.

La función diferencia g := f − f0, que es anaĺıtica y acotada en S = S(α, β; ρ) por ser resta
de funciones anaĺıticas y acotadas en S, admite entonces un desarrollo asintótico nulo en la
dirección θ0.

Podemos en estas condiciones aplicar la proposición 4.7, a la función g y deducir que g
admite un desarrollo asintótico nulo en todo el sector S, lo que implica que f admite a f̂ como
desarrollo asintótico en todo el sector S.

Supongamos ahora que la función f posee a f̂ por desarrollo asintótico Gevrey de orden 1
y de tipo R(θ0) en la dirección θ0, en este caso la serie formal f̂ es Gevrey de orden 1 y de tipo
R(θ0). Al igual que antes, denotaremos como φ la suma de la transformada de Borel de f̂ en
B(0, R(θ)). Se distinguen aqúı dos casos diferentes, un caso en el que la transformada de Borel,
B̂f̂ , se puede extender en un sector suficientemente amplio, y otro donde no, y se requiere una
justificación indirecta:

Caso de los sectores pequeños. En este caso se cumple

θ0 −
π

2
< α < θ0 < β < θ0 +

π

2

y por tanto sea r ∈ (0, R(θ0)) arbitrariamente fijado. Según el lema 4.13, si z = reiθ0 , la
función Lzφ posee la función f̂ como desarrollo asintótico de Gevrey de orden 1 y de tipo
r cos(θ − θ0) en las direcciones θ de S, ya que S está incluido en

S
(
θ0 −

π

2
, θ0 +

π

2
;+∞

)
La función diferencia g = f − f0 posee por hipótesis el desarrollo asintótico Gevrey nulo
de orden 1 y de tipo r en la dirección θ0, por lo que también lo es en cada dirección
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θ ∈ (α, θ0] (respectivamente con θ ∈ [θ0, β)) de S, y de acuerdo con la segunda parte de
la proposición 4.11:

• Si θ ∈ (α, θ0], entonces

R(θ) = r
sin(θ − α)

sin(θ0 − α)
.

• Si θ ∈ [θ0, β), entonces

R(θ) = r
sin(θ − β)

sin(θ0 − β)
.

Debido a que
R(θ) ⩽ r cos(θ − θ0)

se obtiene que f posee a f̂ como desarrollo asintótico de Gevrey de orden 1 y de tipo R(θ)
en cada dirección de S. Dado que el número r puede elegirse arbitrariamente cercano a
R(θ0), la segunda afirmación del teorema queda demostrada en este caso.

Caso general. Sea ε ∈ [0, π
2
], se consideran las direcciones (θj)−l⩽j⩽m (l,m ∈ N ∪ {0})

dadas por
θj = θ0 + jε

y tales que

θ−l −
π

2
< α < θ−l y θm < β < θm +

π

2
.

Procediendo de la misma manera que antes, se obtiene sucesivamente que f posee f̂ por
desarrollo asintótico Gervery de orden 1 en cada una de las direcciones (θj)−l⩽j⩽m y, por
lo tanto, en todo el sector S.

Solo quedaŕıa demostrar que, para toda dirección θ ∈ [α+ π
2
, θ0]∪ [θ0, β− π

2
], el tipo R(θ)

del desarrollo es superior o igual a R(θ0).

Supongamos que θ ∈ [θ0, β − π
2
], ya que en el caso contrario es similar. A cada N ∈ N, se

le asocian las N direcciones

θN,k := θ0 +
(θ − θ0)k

N
con k = 1, . . . N.

Si tomamos N > 2(θ−θ0)
π

tenemos que

θN,k+1 = θ0 +
(θ − θ0)(k + 1)

N
= θ0 +

(θ − θ0)k

N
+

(θ − θ0)

N
< θN,k +

π

2
,

por tanto θN,k+1 ∈ (θN,k, θN,k +
π
2
), para todo k = 1, . . . , N − 1.

Por un razonamiento idéntico al que se hizo en el caso de los sectores pequeños, se obtiene
sucesivamente que el tipo R(θN,k) del desarrollo f̂ para la función f en cada dirección
θN,k satisface

R(θN,k+1) ⩾ R(θN,k) cos(θN,k+1 − θN,k)

y como θN,k+1 − θN,k =
θ−θ0
N

, esto nos da que

R(θN,k+1) ⩾ R(θN,k) cos

(
θ − θ0
N

)
,

y aplicando esta misma desigualdad N veces concluimos que

R(θ) = R(θN,N) ⩾ R(θ0)

(
cos

(
θ − θ0
N

))N

.
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Y haciendo tender N hacia infinito, se obtiene que

R(θ) ⩾ R(θ0)

lo que termina la prueba del teorema.

□
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Apéndice A

Algunos resutados clásicos

Este apéndice incluye ciertos resultados que han sido útiles en un momento u otro en nuestros
razonamientos, cuya demostración es conocida (por haberse presentado en la asignatura de
Variable Compleja del Grado en Matemáticas), y cuyo enunciado nos ha parecido conveniente
recordar para facilitar la lectura del trabajo.

El primer resultado es una consecuencia directa del teorema del módulo máximo, y dice lo
siguiente.

Lema. Sea U un abierto conexo de C y f = u+ iv una función holomorfa en U . Entonces:

Si la parte real u, o la parte imaginaria v, de f presentan un extremo local (máximo o
mı́nimo) en un punto de U , entonces f es constante en U .

Supongamos que además que U es acotado y f continua en U . Entonces, u y v alcanzan
sus extremos (máximo y mı́nimo) absolutos en la frontera de U .

El segundo de estos resultados es el Lema de Schwarz, resultado que al igual que el primero,
también es consecuencia del teorema del módulo máximo.

Lema (Lema de Schwarz). Sea f : B(0, 1) −→ C holomorfa tal que f(0) = 0 y |f(z)| < 1 para
todo z ∈ B(0, 1). Entonces:

1. Para todo z ∈ B(0, 1) se tiene que |f(z)| ⩽ |z|, y |f ′(0)| ⩽ 1

2. Si para algún z ∈ B(0, 1) \ {0} se tiene que |f(z)| = |z|, o si |f ′(0)| = 1, entonces existe
c ∈ C con |c| = 1 y tal que f(z) = cz para todo z ∈ B(0, 1).

El siguiente resultado es el teorema de representación local para funciones meromorfas, que
se enuncia de la siguiente manera.

Teorema (Teorema de representación local de funciones meromorfas). Si f es una función
meromorfa en B(a,R) y no constante, entonces existe una función g definida en un dominio Ω,
con a ∈ Ω y Ω ⊂ B(a,R), que satisface las condiciones siguientes:

1. g es anaĺıtica en Ω y es inyectiva.

2. g transforma Ω en un disco centrado en 0, con g(a) = 0.

3.

f(z) =

{
f(a) + [g(z)n(a,f)], z ∈ Ω, cuando f(a) ̸= ∞,

[g(z)]−m(a,f), z ∈ Ω \ {a}, cuando f(a) = ∞,

donde n(a, f) (respectivamente,m(a, f)) representa el orden de a como cero de f(z)−f(a)
(resp. el orden de a como polo de f).
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A continuación se muestra un resultado bien conocido, pero que cabe recordar para el
desarrollo de este trabajo, el Teorema de la función inversa.

Teorema. Sean U un abierto de C y f una función holomorfa en U . Entonces, si z0 ∈ U y
f ′(z0) ̸= 0, existen un entorno abierto V de z0 y un entorno abierto W de f(z0), tales que:

f ′(z) ̸= 0 para cada z ∈ V .

f aplica biyectivamente V en W .

La función inversa f−1 : W → V es holomorfa en W y su derivada viene dada por

(f−1)′(f(z)) =
1

f ′(z)
para cada z ∈ V,

o lo que es lo mismo,

(f−1)′(w) =
1

f ′(f−1(w))
para cada w ∈ W.
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