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Resumen: El teorema del médulo maximo establece que una funcién holomorfa y no cons-
tante definida en un dominio conexo del plano complejo no puede alcanzar un maximo local del
modulo en el interior. Este resultado, fundamental en analisis complejo, admite multiples gene-
ralizaciones y extensiones que han dado lugar a un amplio conjunto de consecuencias tedricas.
En este trabajo se presenta una seleccion de dichas consecuencias, incluyendo su adaptacién al
marco de funciones armonicas y subarmonicas, los teoremas de Phragmén-Lindel6f en dominios
no acotados como sectores y bandas, asi como una serie de resultados sobre el comportamiento
del modulo maximo en regiones circulares o sectoriales. Estas herramientas permiten estudiar
de forma precisa tanto el crecimiento de funciones analiticas como su estructura geométrica.

Palabras clave: Funciones subarménicas, funciones armonicas, principio del médulo méxi-
mo generalizado, Teoremas de Phragmén-Lindelof, constante de Bloch, teoremas de Landau,
transformaciones de Mobius, teorema de Ahlfors, desarrollos asintéticos, transformada de Borel-
Laplace.



Abstract: The maximum modulus theorem states that a holomorphic and non-constant
function defined on a connected domain of the complex plane cannot reach a local maximum
of the modulus in the interior. This result, fundamental in complex analysis, admits multiple
generalisations and extensions that have given rise to a wide range of theoretical consequen-
ces. This document exposes a selection of these consequences, including their adaptation to
the framework of harmonic and subharmonic functions, the Phragmén-Lindelof theorems in
unbounded domains such as sectors and strips, as well as a series of results on the behaviour of
the maximum modulus in circular or sectoral regions. These tools allow for the precise study
of both the growth of analytic functions and their geometric structure.

Keywords: Subharmonic functions, harmonic functions, generalised maximum modulus
principle, Phragmén-Lindelof theorems, Bloch’s constant, Landau theorems, Mébius transfor-
mations, Ahlfors’ theorem, asymptotic expansions, Borel-Laplace transform.
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Introduccion

El presente Trabajo de Fin de Grado tiene como objetivo estudiar diversas consecuencias
y generalizaciones del Teorema del Médulo Maximo en el marco del Analisis Complejo. Se
encuadra dentro de la asignatura “Variable Compleja”, correspondiente al plan de estudios del
Grado en Matematicas, y tiene como finalidad profundizar en algunos de los resultados maés
relevantes que se derivan o relacionan con este teorema fundamental, tanto desde un punto de
vista tedrico como aplicado.

En el capitulo 1 se introduce el concepto de funciones subarménicas, que generalizan a las
funciones armonicas, y se establecen sus propiedades fundamentales. Se comienza con un repaso
de los resultados clédsicos sobre funciones arménicas, incluyendo la resolucién del Problema de
Dirichlet en un disco mediante herramientas de Variable Compleja, tal como se expone en el
libro de Robert B. Ash [3]. A continuacién, se presenta la definicién de funciones subarménicas
siguiendo a M. Heins [6] y A. I. Markushevich [7], destacando ejemplos importantes como el
logaritmo del médulo de una funcién holomorfa. Este capitulo culmina con la demostraciéon del
principio generalizado del médulo méaximo, aplicable a funciones subarmonicas, y sus conse-
cuencias: el teorema de los tres circulos de Hadamard, el teorema de las dos constantes para un
disco y otras estimaciones de crecimiento. Para esta parte se ha consultado también el texto de
John B. Conway [4].

El capitulo 2 se centra en los teoremas de Phragmén-Lindelof, que extienden el principio
del moédulo maximo a dominios no acotados como sectores o bandas. Se demuestra que si una
funcién holomorfa estd acotada en el borde de un dominio y su crecimiento en el interior es su-
ficientemente controlado, entonces dicha acotacion se mantiene en todo el dominio. Se estudian
casos especificos para angulos y bandas horizontales. Esta parte se ha elaborado fundamental-
mente a partir del material de A. I. Markushevich [7] y Walter Rudin [§].

En el capitulo 3 se aborda el estudio de la constante de Bloch, un resultado de tipo geométri-
co que asegura la existencia de discos en los que una funciéon holomorfa se comporta de forma
controlada. Para llegar a este resultado se introducen herramientas previas como las transforma-
ciones de Mobius y los teoremas de Landau, que establecen cotas para el radio de inyectividad
de funciones holomorfas. También se incluye el teorema de Ahlfors, que mejora los resultados
anteriores en términos cuantitativos. El desarrollo de este capitulo se ha basado principalmente
en los textos clasicos de M. Heins [6], John B.Conway [4], L. Ahlfors [1] y [2] y en resultados
clasicos que se han visto a lo largo de los estudios de Grado.

Finalmente, en el capitulo 4 se estudian aplicaciones del principio del médulo maximo al
campo de los desarrollos asintéticos, tanto reales como complejos. Se introducen los desarrollos
asintéticos nulos y se analiza la transformada de Borel-Laplace como herramienta fundamental
para la reconstruccién de funciones analiticas a partir de series divergentes que representan a
aquellas en sentido asintdtico. Se establece ademés una conexién entre la teoria asintoética real
y compleja, mostrando cémo conceptos de la teoria de funciones holomorfas pueden aplicarse
al analisis de funciones reales. Esta parte del trabajo se ha basado principalmente en el articulo
de Augustin Fruchard [5].

A través de todos estos capitulos, se busca mostrar la riqueza de consecuencias que se derivan
de un teorema tan central como el del médulo méximo, y cémo sus generalizaciones permiten
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abordar problemas mas complejos en Analisis y Teoria de Funciones. Lo que comienza como un
principio elemental de acotacion para funciones holomorfas en dominios acotados, se transforma,
mediante herramientas mas avanzadas como las funciones subarmonicas o los teoremas de
Phragmén-Lindelof, en una potente maquinaria tedrica con aplicaciones en geometria compleja,
analisis asintético e incluso en estimaciones cuantitativas del comportamiento local y global de
funciones. Este trabajo pretende no solo recopilar resultados clésicos, sino también ofrecer una
visién cohesionada de como estos conceptos se interrelacionan y se apoyan entre si para formar
un cuerpo teodrico robusto y versatil, con proyecciones hacia otros campos de las matematicas.
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Capitulo 1

Funciones subarmonicas

En este capitulo se introduce el concepto de funcién subarmonica, fundamental para la
generalizacién del teorema del mdédulo maximo. Para ello, se comienza con un recordatorio
de las funciones armonicas, repasando sus propiedades bésicas y la resolucion del problema
de Dirichlet en un disco mediante técnicas de Variable Compleja. A continuacion, se define
formalmente qué es una funciéon subarménica, se presentan ejemplos relevantes y se analizan
sus propiedades clave. Finalmente, se demuestra el principio generalizado del médulo maximo
para funciones subarmonicas, a partir del cual se deducen resultados como el teorema de los
tres circulos de Hadamard o el teorema de las dos constantes para un disco. Las referencias
principales utilizadas en este capitulo son los textos de Robert B. Ash [3], M. Heins [6], A. L.
Markushevich [7] y John B. Conway [4].

1.1. Recordatorio de funciones armonicas

En esta seccion se repasan brevemente las nociones fundamentales sobre funciones armonicas
necesarias para el desarrollo posterior del trabajo, al igual que la demostracion del Problema
de Dirichlet para un disco con técnicas de Variable Compleja.

El contenido de este apartado se basa en la exposicion tedrica desarrollada en el libro de
Robert B. Ash [3].

Nota. De aqui en adelante trabajaremos constantemente con el concepto de dominio, que sera
un conjunto abierto y conexo del plano complejo.

Definicién 1.1. Una funcién u(z,y) real se dice armonica en un dominio G si las derivadas
parciales

ou Ou *u 0*u *u

ox’ dy’ 0x%" 0y?’ 0xdy
existen y son continuas en G, y ademds en todo punto de G, u(z,y) satisface la Ecuacion de
Laplace

0%u N 0%u
ox?  Oy?
Ademas de la definicién, cabe destacar que si una funciéon u es armoénica en un dominio G,

entonces u satisface la propiedad de la media, es decir, si A(zy) es la distancia entre zyg =
(x0,y0) € G y la frontera de G (que podria ser infinita), entonces

0.

1

2 27

1 .

u(xo,Yo) = %/ u(p, ) dp = G u(xo + pcos p, Yo + psinp) dp (1.1)
0 0

para cada 0 < p < A(zp).
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CAPITULO 1. FUNCIONES SUBARMONICAS

Nota. En la igualdad anterior se ha abusado de la notacion, escribiendo u(p, ¢) para el valor
de la funcién u en el punto (xg + pcosy,yo + psing). Se seguird este mismo criterio en los
enunciados siguientes cuando se utilicen coordenadas polares con centro en un punto prefijado,
dado por el contexto.

Una vez recordada la definicién de funcién armoénica, vamos a pasar a otro resultado que
usaremos posteriormente, la resolucién del Problema de Dirichlet para un disco. Este problema
se ha resuelto en el Grado con técnicas de Variable Real, aqui vamos a dar una solucién
alternativa con herramientas de la Variable Compleja.

Recordemos que el problema en cuestion, en un dominio G con frontera I' y para una funcién
real pu(z) = pu(x,y) definida en I', busca encontrar una funcién u(x,y) que satisfaga que:

= u(7,7y) es arménica en G y continua en G.
» u(x,y) = p(x,y) para todo punto (z,y) € I
Se tiene el siguiente resultado cuando el dominio G es un disco

Teorema 1.2 (Problema de Dirichlet para un disco). Sea G el disco |z — 2| < p con frontera
I': |z — 2] = p, y sea u(p) una funcién real continua en el intervalo [0,27] de forma que
1(0) = p(27), entonces la funcién

0 1 2 p2 _,r,2 p
U(T, ) - %/0 M(cp)pQ + 7"2 _ QpT COS(Q — SO) 2

definida para todo punto (r,6) en G y con u(p, ) = u(p) para todo punto (p, ¢) en I, resuelve
el problema de Dirichlet para el dominio G.

Haremos la demostracién de este teorema para el disco abierto unidad B(0,1), de centro
0 y radio 1, y después generalizaremos para un disco arbitario. La circunferencia unidad se
denotara por C'(0,1).

Teorema 1.3 (Problema de Dirichlet en el disco unidad). Supongamos que ug es una funcién
real continua en C'(0,1). Definimos una funcién u en el disco cerrado B(0, 1) por

ul(z) = {ug(z) si|z] =1,

% o27r P.(t)ug(e™)dt si|z| <1,

donde

1— |z
Pz(t) = |€it _ 2‘2'

Entonces u es continua en B(0,1) y arménica en B(0,1). Ademds, como P, es la parte real
de ‘
et + z

et — z

Q2<t> =

para z € B(0,1), se tiene que

u(2) = Re {% /0 " 0. (Duo(e) dt} |

En particular, la funcién continua ug en C'(0, 1) tiene una extensién continua a B(0, 1) que
es armonica en B(0,1), y esta extensién es unica.
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CAPITULO 1. FUNCIONES SUBARMONICAS

Demostracion.
Tenemos que ¢(z,t) = Q. (t)ug(e”) es continua en B(0,1) x [0, 27| ya que es composicién de
funciones continuas en este conjunto, y para cada t fijo ¢(z,t) es analitica en B(0,1). Entonces,

1 2w )
Z %/0 Q. (t)ug(e™) dt

es, por el teorema de holomorfia bajo el signo integral, analitica en B(0,1). Por tanto, como u
es la parte real de esta funcién, u es arménica y continua en B(0,1).

Entonces lo tinico que nos faltaria por ver es que u es continua en los puntos de la frontera
C(0,1).

Vamos a ver que

h'ni u(re®®) = ug(e”) uniformemente en 6.
r—

Vamos a tomar para esto dos nidmeros reales 6 y r con r € (0,1) y vamos a ver algunas
propiedades de P,.
Primero tenemos que

1= 1—1?
- ’eit —rei9| - ’ei(tfe) —7“]2

Prew (t) = Pr(t - 9)

27
/ P.(t)dt = 2.
0

Y también usaremos la propiedad de que P, es una funcién par, propiedad facil de ver
simplemente desarrollando el denominador,

1—1r? 11—

- etz — 7|2 1 — 2rcos(x) +r2’

P (x)

Podemos ahora escribir la siguiente igualdad

1

u(re) — ug(e?) = by
T

2
/ P, (t — 0)[uo(e™) — ug(e™)] dt. (1.2)
0
Ahora para centrar la integral en # hacemos el cambio de variable x =t — 6. La integral de
(1.2) por tanto, pasa entonces a ser

1 27 —0

2 ), D@ — o) do (13)

y como el integrando es 2m-peridédico, podemos cambiar los limites de integracion a —m y 7.
Ahora fijamos un 0 con 0 < 0 < 7 y ponemos (|1.3) como la suma de tres integrales como
sigue

1 [ ‘ ‘
=5 [ Pl ) — uo(e) o

+ % - Pr(x)[uo(ei(gﬂ)) — up(e)] dx (1.4)
+ % ' Py (@) uo (")) — u(e”)] da.
5

Podemos ahora estimar cada una de estas integrales:
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CAPITULO 1. FUNCIONES SUBARMONICAS

» La segunda y la tercera integral las estudiaremos juntas ya que P.(—z) = P,(x).
Ademas, como P,(z) es positiva y decreciente en [0, 7], tenemos que

1
27

/; P, (x)[ug (') — ug(e)] dz| < sup{|up(e®)| : =7 <t < 7} - Po(0)

por tanto, podemos acotar la suma de la primera y la tercera integral por

2P,(68) - sup{|ug(e™)] : —m <t < 7).

= En cuanto a la primera integral, esta podemos acotarla en valor absoluto por
sup{|uo (") — ug(e?)] : =6 < x < I}

ya que si |z| < 1, entonces 5= Ozﬂ P.(t)dt = 1.

Para un ¢ > 0 fijo, P.(§) — 0 cuando r tiende a 1, mientras que

(lsl'r% (sup{|uo(e™®™™) — ugp(e)] : =5 < x < 6}) =0 uniformemente en ¢
—

ya que ug es uniformemente continua en el compacto C(0,1).
Finalmente, si juntamos todo, tenemos que para un € > 0 dado, existe un ro con 0 < rg < 1,
tal que para ro < r <1y todo #

lu(re®) — ug(e?)| < e.

Esto unido a la continuidad de uy en C(0,1) nos da que u es continua en todo punto de
C(0,1).

Para ver la unicidad de la solucién basta con considerar 2 soluciones uy, us en B(0,1) con
funcién ug en la frontera. Tenemos entonces que u; — uy es continua en E(O, 1), y se anula en
C(0,1). Como ademds tanto u; como uy son la parte real de una funcién semejante a la definida
en el enunciado del teorema, y estas dos funciones son holomorfas en B(0, 1), entonces u; — ugy
es la parte real de una funcién holomorfa en B(0,1).

Podemos en estas condiciones afirmar (debido al primer resultado del apéndice) que uy — us
alcanza su méximo y su minimo en la frontera de B(0, 1), es decir, en C(0,1), y como u; — ugy
es nula en C(0, 1), tenemos que

0Ly —w<0=u —uy =0
en B(0,1). Lo que implica que u; = usy, por lo que la solucién al problema de Dirichlet es tinica.
0

Nota. Se deduce entonces de este teorema que si G es el disco |z — zy| < p con frontera
[':|z— 2| = p, y dada p(p), una funcién real continua en el intervalo [0,27] de forma que
1(0) = p(2m), entonces la funcién

oo L[ o d

definida para todo punto (r,0) en Gy con u(p, ) = u(p) para todo punto (p, ¢) en I', resuelve
el problema de Dirichlet para el dominio GG, con lo que tendriamos demostrado el teorema ((1.2)),
veamos esto.
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CAPITULO 1. FUNCIONES SUBARMONICAS

Tenemos que en B(0, 1) la solucién del problema de Dirichlet es

1

"2

1|z
et — 2]

27
u(2) / P, (t)ug(e™)dt con P,(t) ,
0
y queremos generalizar esto a G = {z € C : |z—z| < p} con frontera ' = {2z € C : |z—2z| =

p}. Size Gy eTl, podemos escribirlos como

0

z=z2+re? r<p y €= 29+ pe'®.

Si escribimos ahora @), (t) para este caso

it
pe’ + z
L) =5
Q:(t) P
y calculando su parte real
o2 — 1?2
P.(t) = ——.
€ — =27

Vamos a desarrollar el denominador de la expresién anterior
€ — 2| = |20 + pe'? — 29 — pe’|?

= |pe™? — re'|

= (pe'? — re)(pe™ — re” )

=p*+r’— pr(ei(we) + ei(e’“o))

y teniendo en cuenta que

cos(p —0) +cos(0 —p) =2cos(p—0) v sen(p—0)+sen(d —p)=0
concluimos que

€ — 2|2 = p* + 7% — 2prcos(p — 0).
Por tanto, en G, la funcién P, () es

B 02— 2
C p2 412 —2prcos(p —0)’

P.(t)

y sustituyendo entonces en la funcién u(z) tendremos demostrada la nota.

Es sencillo comprobar, como consecuencia de la férmula integral de Cauchy, que una funcién
armoénica en un disco satisface la propiedad de la media indicada en el siguiente resultado.
Probaremos que, de hecho, ambos asertos son equivalentes para una funcion continua.

Teorema 1.4. Sea ¢ una funcién real y continua en Q de modo que, para todo B(z, R) C €,

se cumple que

1

2m
P = 5= | elo+ Ry

Entonces ¢ es armonica en (2.

Demostracion.

Sea B(z, R) un disco con B(z, R) C Q. Sea uq la restriccién de ¢ a C(zg, R), usamos el
problema de Dirichlet en el disco B(zo, R) para obtener una funcién u continua en B(z, R) tal
que u = ug = ¢ en C(zg, R).
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CAPITULO 1. FUNCIONES SUBARMONICAS

La funcién ¢ —u es continua en B(zy, R), entonces tiene que tener un méximo y un minimo,
que se alcanzaran respectivamente en puntos z; y 2. Si ambos pertenecen a C'(zg, R), entonces,
como ¢ = u en C(zg, R), tenemos que dichos maximo y minimo son nulos y entonces ¢ —u =0
en B(zp, R) con lo que concluirfamos que ¢ = u en B(z, R).

En caso contrario, supongamos que el maximo z; € B(zg, R), en este caso definimos el
siguiente conjunto

A:={z€B(z20,R) : (¢ —u)(z) = (p—u)(z21)}.

Como z; € A, A no es vacio. Tenemos que A es cerrado en B(zp, R), ya que ¢ —u es continua
en B(zp, R). Si conseguimos ver que A es abierto, entonces, como B(zg, R) es conexo, se daria
que A = B(zo, R).

Tomamos para ello un a € A y un r > 0 de forma que B(a,r) C B(zy, R), entonces, para
0 < p <r como u es arménica en B(zy, R),

1
o

¢(a) — u(a) /0 ’ (¢a+ pe) — u(a+ pe')) dt.

Por cémo hemos elegido a, tenemos que (¢ — u)(a + pe™) < (p — u)(a), entonces

0< /0 W(SO —u)(a) — (¢ —u)(a+ peit>dt =2m(p —u)(a) _/0 W(gp _ u)(a+peit) dt =0,

y como (@ —u) es continua en B(a, ), concluimos que (¢ —u) es constante e igual a (¢ —u)(a)
en C(a, p) y, por ser p arbitrario, en todo B(a,r) C A.

Con esto concluimos que A es abierto, por tanto A = B(zp, R) y (¢ — u) es constante en
B(z9, R). Como (p —u) =0 en C(zo, R), ¢ es idéntica a u en B(z, R).

Por tanto, si el maximo esta en B(zy, R), y andlogamente si el minimo estd en B(zg, R),
tenemos que ¢ = u en B(zg, R).

Como hemos visto que ¢ = u en cualquier disco arbitrario de €2 y u es armonica, entonces
@ es arménica en €.

O

Como el cardcter armoénico es una propiedad local, se puede dar la siguiente version del
resultado anterior.

Teorema 1.5. Sea u(x,y) una funcién real continua en un dominio G, y supongamos que
u(z,y) satisface la condicién

1 2T .
w(xo, Yo) = — / u(xg + pcos,yo + psing) dy
0

2
para cada punto zy = (zo,%0) € G y para todo p suficientemente pequeno. Entonces, u(x,y) es
armoénica en G.

1.2. Funciones subarmonicas

En esta seccion se va a introducir la definicién de funcion subarmonica y se presentaran
algunas de sus propiedades fundamentales, junto con algunos ejemplos. Ademas, se presentaran
algunos resultados clave que nos serviran como herramientas en los siguientes capitulos.

La informacién de este apartado ha sido recopilada a partir de los libros de M. Heins [6] y
A. 1. Markushevich [7].
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CAPITULO 1. FUNCIONES SUBARMONICAS

Definicién 1.6. Siendo G un dominio, se dice que una funcién h : G — R, h(z) = h(z,y) es
subarmonica en G si tiene las siguientes propiedades:

1. h(z) esta bien definida y es continua en G\ A donde A C G no tiene puntos de acumulacion,
es decir, A’ NG = (). Para los puntos zy € A se cumple que

5, M) = —oo, (15)
y, por convencion, definimos
h(ZQ) = —0OQ.

2. Siendo zp un punto de G, entonces definimos A(zp) > 0 como la distancia entre zy y la
frontera de G. Entonces para cada zgp € G y cada 0 < p < A(zp) suficientemente pequeno

existe la integral
1 2m )
— h “©\d
o ), (20 + pe™?)dyp

y se cumple la desigualdad

1

<
h(Zo) NS o

2
/ h(zo + pe'?)dep. (1.6)
0

Si consideramos d(zp, A), la distancia desde z; al conjunto A, entonces para los puntos
2p que no pertenecen a A, el valor que puede tomar p estd limitado por d(zp, A). Y en el
caso de que zp € A, entonces p serd menor que d (29, A\ {20})-

Nota. Esta no es la definicién mas general de una funcién subarmonica, pero es suficiente para
el propésito de este trabajo.

Ejemplo 1.7. Para cada funcién u(z) = u(z,y) arménica en un dominio G la desigualdad
(1.6)) se convierte en una igualdad

1

u(zg) = -

2m

0
Por tanto, de acuerdo con nuestra definicién, toda funciéon arménica es subarménica, veamos
esto.

Sea u(z) = wu(z,y) una funcién arménica en G, consideramos dos radios r y R de forma
que 7 < R < A(zp). Sabemos que entonces B(zp, R) es un dominio estrellado y que estd
contenido en G, por lo que podemos en este caso afirmar que u(z) es la parte real de una
funcién f € H(B(zo, R)).

Como r < R entonces B(zy,r) C B(zy, R), por tanto, podemos podemos aplicar la propiedad
de la media a f y deducir que

2
feo) = 5= [ S+ e

y tomando partes reales llegamos a que

1

2m
u(zo) = ﬁ/o u(zo + pe'?)de.
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CAPITULO 1. FUNCIONES SUBARMONICAS

Ejemplo 1.8. Si f(z) es analitica en un dominio G conexo, entonces |f(z)| es subarménica en

G. De hecho

1

el < 5 [ 1ot el (17)

para cada zg € G y todo p suficientemente pequeno. Ademas, se da la igualdad en siy
solo si f(z) es constante, veamos esto.

Primero supongamos que f es constante, entonces se tiene que f(z9) = f(z) para todo
2z € G, ya que G es conexo, en particular f(z9) = f(z9 + pe'?), por tanto

1 27

1 2m
_ + dop = — )|d — dp = .
e | ot pelae = o [ Istaldp =1tz [ do= 17

Ahora suponemos que se cumple la igualdad ((1.7]) para todo zy € G y todo p suficientemente
pequeno. En el caso de que |f(z)| = 0, para algin z,, entonces como |f(z)| es continua en G,

()] >0y )
ALWWWWW—Q

tenemos que |f| = 0, lo que implica que f = 0 en G. En el caso de que |f(z)| # 0 entonces
tenemos que como |f| es continua en B(zy,p), alcanza un maximo en B(zy,p). Sea 2z ese
mdximo y p1 > 0 de forma que se cumpla la igualdad en (1.7), entonces |f(z1)| = |f(z1 + pe'?)|
para todo ¢, o escrito de otra forma

|f (21 + pe’?)]
|f(21)|

o _ ’f(21+P€w)‘) o — T f (21 + pe'?)]
O<A (1 Fa) ) ® =2 LA ey S0

Por lo que |f(2z1 + pe*?)| = | f(z1)] para todo , pero como esto se cumple para todo p < p1,
entonces |f(z)| = |f(21)] en B(z1,p1), y como f es continua, f(z1) # 0y B(z1, p1) es conexo,
tenemos que f(z) = f(z1) en B(z1,p1). Por el principio de identidad y como G es conexo
concluimos que f es constante en G.

Por tanto |f(z)| es subarménica pero no arménica en G a menos que f(z) sea constante.

<1

entonces

Ejemplo 1.9. Sea f una funcién analitica no idénticamente nula en un dominio G, llamemos A
al conjunto de ceros de f, entonces In|f(2)| es subarmoénica en G, de hecho In | f(z)| es arménica
en G\ A. Veamos esto.

Como f es analitica en G y GG es conexo, entonces por el principio de los ceros aislados
podemos afirmar que A no tiene puntos de acumulacién en G, es decir, A’ N G = (.

Tenemos ahora que In | f| es continua en G'\ A, ya que es composicién de funciones continuas,
y tenemos que si a € A,

limIn|f(z)| = —o0
zZ—a
por tanto podemos definir In |f(a)| := —oo para todo a € A.

Si ahora zg no es un cero de f, entonces, tomando un p > 0 suficientemente pequeno (con p <
d(z9,A)) y dado que f es continua en G, f no se anulard en B(zy, p), que es simplemente conexo.
Entonces, f admite un logaritmo analitico g en dicho disco, cuya parte real serd necesariamente
In|f(2)| y es naturalmente arménica. Podemos aplicar la propiedad del valor medio y deducir
que

1 2 )
Il (o)l = 5= [ Wl o+ pe)ld
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CAPITULO 1. FUNCIONES SUBARMONICAS

En cambio, si 2y es un punto de A, en este caso p solo podrd tomar valores menores a
d(z0, A\ {20}), y como por definicién In |f(zy)| = —o0, entonces se da que

1 [ A
Inlf(aa)| < 5 [ InlfGa+ pe)lde.
T Jo

Por lo que concluimos que In|f(z)| es subarménica en G\ A.
Una vez vistos estos ejemplos, vamos a pasar a ver algunos resultados.

Lema 1.10. Sea h(z) una funcién real definida en un dominio acotado G, y sea

Slelg h(z) =M (1.8)

pudiendo M ser infinito. Entonces existe al menos un punto ¢ € G con

sup h(z)=M (1.9)
zeN (NG

para cada entorno .4 (&) de &.

Demostracion.
Razonaremos por reduccion al absurdo suponiendo que el lema es falso. En este caso, todo
punto £ € G tiene un entorno .4 (§) tal que

M(&):= sup h(z) <M.
zeN (E)NG

De acuerdo con el teorema de Heine-Borel tenemos que G es compacto (es cerrado y es
acotado), por tanto existe un nimero finito de puntos zy,...2, € G tal que, si A (z;) es el
entorno anterior de z;, entonces

GCAN(n)U---UAN(z,).

Ahora si tomamos
MO = mé,X{M(Zl)a o M(Zn)}

siendo
M(z):= sup h(z)
2€N (2;))NG
entonces
suph(z) = My < M
2€G
en contra de (|1.8). Esta contradiccién prueba el lema.

O

A continuacion vamos a ver un resultado que nos servira como herramienta basica en nuestra
investigacion sobre las funciones subarmonicas, pero antes vamos a recordar la definicion de
limite superior y algunas de sus propiedades.

Definicién 1.11. Sea G C C un conjunto, y sea f : G — R una funcién. Sea ¢ € C un punto
de acumulacién de G. Entonces, el limite superior de f cuando z tiende a & se define como:

limsup f(z) := sup { lim f(z,) : 2z, €G,z, — f} :
z2—E n—oo
donde el superior se toma sobre todos los limites reales posibles de sucesiones {z,} en G tales
que z, tiende a & cuando n — oo.

El limite superior, cuando es finito, satisface las siguientes dos propiedades:
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CAPITULO 1. FUNCIONES SUBARMONICAS

» Para todo € > 0, existe un entorno .4 () de & tal que

f(20) <limsup f(z) + ¢

z—€

para todo zg € A (£) NG.

» Para todo € > 0 se puede encontrar una sucesién {z,} con z, — £ de forma que

f(zn) > limsup f(z) —e, neN.

z—¢&

Una vez recordada la definicién y las propiedades del limite superior, vamos a ver el siguiente
resultado.

Lema 1.12. Sea h(z) subarmoénica en un dominio acotado G con frontera I'. Suponemos que

limsup h(z) <0 (1.10)

z—E

para todo £ € I'. En este caso se cumple que
h(z) <0

para todo z € GG. Ademas, si h(zp) = 0 para algiin punto zy € G entonces

h(z)=0
Demostracién.
Sea
suph(z) = M
ze@G

y sea E el conjunto de todos los puntos ¢ € G tal que se cumple (1.9)), es decir,

E={¢c€G/ sup h(z)= M, siendo 4 (£) un entorno arbitrario de ¢}
zeN (NG

De acuerdo con el lema|l.10[ E no es vacio.

= Suponemos primero que ningin punto interior de G pertenece a E. Entonces F contiene al
menos un punto & € I'. Si tenemos en cuenta la primera propiedad vista para los limites
superiores y debido a (1.10]), podemos afirmar que para todo € > 0, hay un entorno A4 (&)
de & en el que h(z) < e para todo punto z € A (&).

Por una parte entonces
sup  h(z) <e
zeN (£0)NG

mientras que por otra parte, por cémo hemos tomado F,

sup  h(z) =M (1.11)
zeN (£0)NG

debido a que & € E.

Por tanto de esto deducimos que M < ¢, para todo € > 0, lo que implica que M < 0, y
como h(z) < M en todo punto de G por hipétesis, queda probado el lema en el caso de que
FE no tenga puntos interiores a G. (Nétese que en este caso no tiene sentido contemplar
el caso en el que h(z) = 0 para algin z € G).
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= Ahora supongamos que E contiene puntos de G y consideramos Eg = E' N G. Entonces
como la funcién subarmonica h(z) es (en sentido amplio) continua en G, h(z) debe ser
igual a M en todos los puntos de E¢. De hecho, todo punto zy € G para el cual se cumpla
que h(zy) < M, tiene un entorno .4 (zy) para el que h(z) < M — ¢ para algin § > 0, y
por tanto no se puede cumplir en ese punto. En particular, como M es un valor que
toma la funcién subarménica h(z) en algin punto de G, se sigue que M < oo.

Por otra parte, ya que una funciéon subarmoénica solo toma el valor —oo por definicién en
los puntos de un conjunto A discreto en G, podemos afirmar razonando por continuidad
que M > —oo0.

Ahora veremos que Eg es un conjunto abierto. Sea zy € Eg, sea py > 0 tal que la
desigualdad

1 [ .
M = h(z) < —/ h(zo + pe*?)dp (1.12)
2 Jo

se cumpla para todo 0 < p < py (la existencia de este py viene garantizada ya que h(z) es
subarmonica). Entonces el disco |z — zy| < pp no contiene puntos en los que h(z) < M.
De hecho, si z; fuera un punto en el que h(z;) < M, entonces, tendria un entorno en el
que h(z) < M — ¢ para algin § > 0, y por lo tanto para p = |23 — zo| la integral
seria menor que M, lo que seria imposible.

Nota. Para ver que la integral seria menor que M basta considerar la circunferencia
T =A{z ¢ [z =2l = p}
por la definicién de p, tenemos que z; € 7,. Dividimos ahora [0, 27] en

va ={0€[0,2n] : h(zo+ pew) <M} y vp={0€[0,2n] : h(z+ pew) = M}.

Sabemos que 74 tiene interior no vacio. En este caso,

1 2T ) 1 . .
L[ e+ e - < [ 1ot peae+ | h(zO+peW>dso)
0

21 \Ja VB

1
< —( Mdg0+/ Mdgp)
27T YA B
1
:—M(/ dg0+/ dgo)
2 YA B
27

1

=—M de = M.
2 0

Por tanto todo punto zy € Eg tiene un entorno .4'(zp) en el que h(z) = M, es decir,
N (20) C Eg, con lo que podemos afirmar que Eg es abierto. Ademds, supongamos que
z' € G es un punto de acumulacién de Eg, como h(z) = M para todo punto z € Eg, y
como h(z) es continua en Eg C G, entonces h(z’) debe ser igual a M, por lo que 2’ € E.

Como G es conexo, y Eg es un subconjunto abierto no vacio de G con la propiedad de que
todo punto de acumulacién de Eg que pertenece a G también pertenece a Eg, entonces
E¢ = G, por lo que h(z) = M. Pero entonces

limsup A(z) =1limh(z) = M

2—€ z=¢

para todo punto de la frontera £ € T', donde M < 0 debido a (1.10)). Con lo que queda
probado el lema para el caso en el que E contenga algiin punto interior de G.
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CAPITULO 1. FUNCIONES SUBARMONICAS

Ademés, si h(zp) = 0 en algtin punto zg € G, entonces M = 0 y se da que h(z) = 0. Esto
completa la prueba del lema.

O

Una consecuencia del lema es el Principio generalizado del médulo maximo, que se vera
en la siguiente seccién.

1.3. Generalizacion del principio del médulo maximo y
sus aplicaciones

En esta seccion se va a presentar una extension del Principio del médulo méximo para
funciones subarmonicas. A partir de este resultado podremos deducir diversas aplicaciones,
como el Teorema de los tres circulos de Hadamard y el Teorema de las dos constantes para un
disco. Estos resultados nos permitiran estimar el crecimiento de funciones analiticas en distintos
dominios. A parte de los libros utilizados en secciones anteriores, también se usara como fuente
de informacién el libro de John B. Conway [4].

Hablando en términos generales, el teorema siguiente afirma que una funcién arménica u(z)
que mayoriza una funcién subarménica h(z) (es decir, es mayor que h(z)) en todos los puntos
excepto un ndmero finito de puntos de la frontera de un dominio G, también mayoriza h(z) en
todos los puntos de GG en si.

Teorema 1.13 (Principio generalizado del médulo méximo). Sea h(z) = h(z,y) una funcién
subarmonica en un dominio G con frontera I', y sea u(z) = u(x,y) una funcién arménica en G.
Suponemos que

limsup [h(z) — u(2)] <0 (1.13)
z—¢&
para todo £ € I" excepto posiblemente para un nimero finito de puntos &, ..., &, donde
lim sup [h(2) — u(z)] < +o0. (1.14)
z—Eg

Entonces u(z) es un mayorante armdnico de h(z) en G, es decir

Demostracién.
Counsideremos las funciones

v(z)=ln|z—&| (k=1,...,n).

Cada funcion vg(z) es localmente la parte real de un logaritmo analitico de (z — &), que no
se anula en G, por lo que vi(2) es armonica en G. Ademds, como es estandar, definiremos

(&) = -0 (k=1,...,n).
Si ahora tomamos R = diam(G), entonces

w(z) KInR (2 €G)
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para cada funcién v (z). Por lo tanto, las funciones
up(z) =wvp(z) —ImR (k=1,...,n)

no pueden tomar valores positivos en G, pero, por lo demas, tienen las mismas propiedades que
las funciones vy (z).

Ahora sea ¢ un parametro positivo, el cual serd hecho tender a cero, y consideremos la
funcion

de(2) = h(z) —u(z) + ¢ Z u;(z).

Dado cualquier punto zy € G, como h(z) es subarmonica entonces para cualquier p suficien-
temente pequeno se tiene que

1 27 )
h(zp) < / h(zo + pe'?)de,
0

S or

mientras que, como tanto u(z) como cada ug(z) son arménicas, se da para estas funciones que
para cualquier p suficientemente pequeno

1

27

1

u(zp) = oy

o 27
| utorrede v wta) = o [ o+ e
0 0

Por lo tanto, podemos afirmar que para cualquier p suficientemente pequeno

1 2 )
d.(z0) < / d.(z0 + pe'?)dy,
0

S or

por lo que d.(z) es subarménica en G. Ademads, para cada punto de acumulacion £ de la frontera
que sea distinto de cualquier &, con k = 1,...n, d.(z) satisface la relacién

z—¢& z—¢&

limsup d.(z) = lim sup [h(z) —u(z) + 521@(2) <0, (1.15)
j=1

mientras que para cada punto de acumulacion £ = &, k= 1,...n se cumple que

limsup d.(z) = —00 <0

Z%fk

ya que las funciones h(z) — u(2) y w;(2), j # k, estan acotadas superiormente en un entorno
de &, mientras que ug(z) — —oo cuando z — &.

Podemos entonces en estas condiciones aplicar el lema a la funcién d.(z), y asi podemos
afirmar que

d(2) <0 (2€G) = h(z)gu(z)—gzuj(z).

Y dejando que ¢ tienda a cero, obtenemos
h(z) <u(z) (z€@q),

de modo que u(z) es un mayorante arménico de h(z) en G, como se afirmé.
Finalmente, observemos que

limsup [h(z) —u(z)] <0

z—¢
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para cada & € I', incluidos los puntos excepcionales &, ..., &,. Ademas, por el lema [1.12] si se
da que
h(zo) — u(z0) =0

para cualquier punto zy € G, entonces h(z) — u(z) = 0 para todo z € G, es decir,
h(z) = u(z)
y el teorema esta demostrado.

O

Nota. Al permitir puntos excepcionales donde la condicion no se sostenga, anticipamos
aplicaciones subsecuentes del Teorema [1.13] El hecho de que los puntos excepcionales deban
cumplir la condicién (|1.14]) para que el teorema sea cierto se muestra mediante el ejemplo del
nicleo de Poisson

p? — 12

P frnd
(7‘, 9) r2 4+ p2 _ 2rp 008(9 - 90)7

que es arménica y por lo tanto subarménica en el disco |z| < p, y satisface la condicién

lim  P(r,0) =0

(,0)=(p,¢)

en cada punto de la circunferencia v, : |z| = p, excepto en el punto z = pe’. Por lo tanto,
P(r,0) es mayorizada por la funcién arménica u(r,#) = 0 en todos los puntos de 7, excepto en
2 = pe?® . Sin embargo,

P(r,0) > 0=u(r,0)

para todo z € B(0, p). La explicacién radica en el hecho de que P(r,6) toma valores arbitra-
riamente grandes cerca del punto z = pe’, y por lo tanto ni la funcién que es idénticamente
cero ni ninguna otra funcién acotada pueden mayorizar P(r,0) en ,.

Veamos ahora un resultado que se deduce como consecuencia inmediata del teorema [1.13]

Corolario 1.14. Sea f(z) analitica en un dominio acotado G' con frontera I, y supongamos
que
limsup |f(2)] < M < o0

z—¢&

para todo £ € I' excepto para un numero finito de puntos &, ..., &, donde

limsup |f(2)] < oc.

z2—Eg

Entonces |f(z)] < M para todo z € G. Ademés, si |f(z9)] = M para un punto cualquiera
zo € G, entonces

Demostracion.

Para la demostracién basta tomar h(z) = |f(z)| (funcién que ya habfamos visto que es
subarménica en un ejemplo anterior) y u(z) = M y aplicar el principio del médulo méximo
generalizado.

O

Pedro Cidoncha Molina 22



CAPITULO 1. FUNCIONES SUBARMONICAS

A continuacién vamos a demostrar un resultado que nos va a servir como nucleo técnico
para la demostracién del Teorema de los tres circulos de Hadamard.

Teorema 1.15 (Teorema de convexidad logaritmica en bandas verticales). Sea f una funcién

analitica y acotada en una banda vertical infinita

G={r+iyeC : a<z<b} dondea,beR,

y ademas continua en (. Definimos entonces

M (x) = sup | f(z + iy)|.
yeR

En este caso, la funcién In M(x) es convexa en x € [a, b], es decir, para todo z € [a, b] se cumple

que

b—=x T —a

In M(z) < InM(a)

In M(b
T, T ImM()

Demostracién.

b—a’

Para empezar la demostracion construiremos la funciéon auxiliar

Si calculamos su médulo

19(2)] = |M(a) 5= - M) 5 | = M(a)re -

deducimos que el médulo de g(z + iy) solo depende de x = Re(z).

Consideremos ahora la funcién cociente

que esta bien definida y es analitica en G.
Fijamos € > 0, y definimos la funcién

H.=h(z)-g.(2)

donde
1

9:(2) = m'

Esta funcién H.(z) tiene las mismas propiedades que h(z), y ademads, el médulo de H.(z)
decae cuando |Im(z)| = |y| — oo. Vamos ahora a ver que |H.(z)| < 1 para todo z € G, lo
haremos mediante el principio del médulo maximo. Para ello fijamos 7" > 0, y consideramos el

rectangulo

Rr={z+iyeC : a<z<b |y <T}

Estudiemos ahora el comportamiento de la funcién H.(z) en los bordes de Ry:

» En z = a se tiene que |g(a + iy)| = M(a) por lo que se cumple que |f(2)/g(z)| < 1,y

consecuentemente |H.(z)| <1

» En 2 = b se cumple que |g(b + iy)| = M (b) por lo que se cumple que |f(2)/g(z)] < 1,y

nuevamente |H.(z)| < 1.

Pedro Cidoncha Molina
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» En los bordes horizontales (y = £T), como f es acotada y continua en Rz, también lo
es H.(z). Ademds, como |g.(z)| — 0 cuando y — oo, y h(z) estd acotada, se cumple que
cuando T' — oo entonces |H.(z)| — 0. Es por esto que para un T suficientemente grande,
podemos asegurar que |H.(z)| < 1 en la frontera de Rr.

Podemos entonces en estas condiciones aplicar el teorema del médulo méximo sobre H.(z)
y afirmar que
|H.(2)] <1 para todo z € Ry.

Como esto se cumple para todo T € R suficientemente grande, tenemos que
|He(2)| <1 paratodo z € G

y haciendo tender € a 0 tenemos que
h(z)] <1 (1.16)

para todo z € G, lo que implica que
|f(2)] <g(2)] paratodo z € G.

Si ahora recordamos la definicién de M (z), y tomando superiores en ambos lados tenemos
que
b—x x—
M(z) < M(a)v=e - M (D)=,

y tomando logaritmos finalmente obtenemos que

h— _
mMmgmM@bx+mM@xa

—a b—a’

que es lo que queriamos probar.

0

Nota. En la demostracién anterior, si ademas se da la igualdad en (1.16]) para algin z € G, el
teorema [I.13| nos garantiza que

hz) =1= f(2) = g(2),

por tanto

Una vez demostrado el resultado anterior, vamos ahora a demostrar el Teorema de los tres
circulos de Hadamard.

Teorema 1.16. Sea f(z) analitica y no idénticamente nula en una corona
D:={z€C : r <|z| <r},

definimos
M(p) := mé 0y
(p) = méx |f(pe”)]

Entonces para r; < p1 < p < pa < 1o se tiene que

In(p2) — In(p)
In(p2) — In(p1)

In(p) — In(p1)
In(ps) —In(p1)

In M(p) < InM(p1) +1n M(ps) (1.17)
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Demostracion.
Para empezar, vamos a transformar la corona D en una banda vertical en el plano, esto lo
haremos con el cambio de variable z = ¢“. La banda resultante seria

G={w=z+iy : Inry <z <lnry}

D={ze€C:r <|z <1y} G={w=xz+iy : Inry <z <lInry}
Y
2 -
D
—) T+
x
0 Inr Inry
(a) Corona circular (b) Banda horizontal

Figura 1.1: Transformacién de la corona a la banda horizontal

Como w +— e" es entera y envia G en D,y f es analitica en D, tenemos que su composicion
es analitica en (G, definimos entonces

en este caso |h(z)| = |f(e")|, y definimos

M (z) :=sup |h(x + iy)| = sup |f(e”ew)|.
yeR 0€l0,27)

En estas condiciones podemos aplicar el teorema ala funcién h(w) y afirmar que In M (x)
satisface la desigualdad enunciada en aquel resultado. Basta poner x = In(p), de acuerdo con
el cambio de variable realizado, para deducir que

In(p2) — In(p)
In(p2) — In(p1)

In(p) — In(p1)

In M(p) <InM(p1) In(p2) —In(pn)’

+1n M(p,)

que es lo que queriamos demostrar.
O

Nota. El teorema tiene una interpretacién geométrica muy simple, la cual se muestra
cuando consideramos 17 = In M (p) como una funcién de & = In p,

n=¢(&) (1.18)

Tomando & = Inpy, & =1lnps y m = InM(py), o = In M(py), podemos escribir (1.17)) de la
forma 6 ¢ -
2 — —&

< N 1.19

1S e g T g (1.19)
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donde & < £ < &. En coordenadas cartesianas £ y 7,

Q-6 £-6
&6 g g

n=m (1.20)

es la ecuacién de la linea recta que une los puntos (£1,71) y (£2,72). Comparando (1.19)) y
(1.20]), podemos ver que ningin arco que una dos puntos de la curva con ecuacién @ puede
estar mas alto que la cuerda con los mismos extremos. Ambos, la curva con esta propiedad y la
correspondiente funcién p(§) se dicen convezas. Asi el Teorema de los tres circulos de Hadamard
tiene la siguiente formulacion mas concisa. “El logaritmo del mdximo modulo de una funcion
analitica en una corona D : {z € C : ry < |z| < ra} es una funcion convexa del logaritmo del
radio del circulo en el que se alcanza el mdzrimo”.

Otra aplicacion importante del principio del médulo maximo generalizado es el siguiente
enunciado.

Teorema 1.17 ( Teorema de las dos constantes para un disco). Sea f(z) analitica en el disco
K={ze€C : |z| < R}, ysean & y & dos puntos de la circunferenciaI' = {z € C : |z] = R}.
Sea o el arco entre & y & y X el arco entre & y &, ambos recorridos en sentido positivo, y
ambos sin sus puntos finales. Suponemos que

limsup In|f(2)| <lnm, limsup In|f(2)] < In M, (1.21)
e i
€o

mientras que

limsup In|f(2)] < +o0, k=1,2.

Z%fk

Ademas, sean 2« y 23 los angulos abarcados en el punto z = 0 por los arcos o y %,
respectivamentes (« > 0, >0y a+ = m), y sea U(z) la rama arménica de valor tinico de
la funcién
§1—2
§o—2

que cumple que U(0) = 2[5 (gréficamente este valor corresponderia con el dngulo formado entre
& — 2y & — z). Entonces

Arg

()] < Mt (1.22)

para todo z € K, donde

y en particular

[F(0)] < MPmme/T. (1.23)

Antes de comenzar con la demostracion se van a dar unas aclaraciones sobre el significado
geométrico de la funcién U(z). Primero vamos a comenzar viendo graficamente los dngulos que
hemos llamado 23 y 2a, esto se muestra en la siguiente figura.
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Figura 1.2: Representacion de a 'y 3

Podemos ver aqui que 20 es el angulo formado por el radio que va desde el centro a & y
el radio que va desde el centro a &. Vemos también que 2a es su complementario. Ademas, en
esta figura se puede observar que en cualquier punto 29 que esté en el arco o, el angulo formado
por las cuerdas que van desde z5 a & y desde z5 a & va a ser 5.

Esto se cumple debido al teorema del angulo inscrito, que dice lo siguiente: “En toda cir-
cunferencia, la medida de un dngulo inscrito equivale a la mitad de la medida del dngulo en el
centro que subtiende al mismo arco”.

Por esto también podemos ver que el angulo formado en cualquier punto z; de X, por las
cuerdas que van desde z; a & y desde z; a & es igual a 27 — «, que por cémo hemos definido
ay [ esigual am+ 5.

Una vez aclarado el significado geométrico de los angulos 2a y 23, vamos a ver el significado
grafico de la funcién U(z) con la siguiente figura.

Figura 1.3: Significado gréfico de la funcién U(z)

En esta representacion podemos ver que la funcién U(z) es la funcién que va tomando los
angulos que forman los segmentos & — z y & — 2. Es por esto que U(0) = 24, y podemos ver
que los valores que toma U(z) estan en el rango de valores [3, 7 + ], llegandose a tomar los
valores extremos en los arcos o y Y, respectivamente.

Una vez aclarada la representacién gréfica de esta funcién U(z) vamos con la demostracion.
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Demostracion.
Como z varia en el disco K, comenzando por el centro z = 0, la funcién U(z) varia en el
intervalo (0, 27), comenzando por el valor U(0) = 23. Estd claro por el valor geométrico de

U(z) visto anteriormente, que
if z € o,
U(z) = {5

T+ 0 ifzeX

y por tanto
0 ifz €o,
1 ifzex

La funcién U(z) es la parte imaginaria de la funcién

log (61 — Z)
lo—z)
donde se toma la rama del logaritmo cuya parte imaginaria toma valores en el intervalo (0, 27).
Esta funcién es holomorfa en el disco K, por tanto U(z) es subarménica en K, por lo que u(z)
es una funciéon subarmonica en K.
Ademas, tanto U(z) como u(z) estan acotadas en un entorno de & o &. Aplicando el
Principio del médulo maximo generalizado (teorema [1.13)), podemos ver que la funcién u(z)

estd mayorizada por 1 en I' y por tanto en K. Similarmente, la funcién —u(z) esta mayorizada
por 0 en I' y por tanto en K. Por lo tanto

O<u(z)<1l VzeK, (1.24)

y en particular, u(0) = g

Consideremos ahora la funcién
In(m) 4+ (In(M) — In(m)) - u(z)

que se reduce a In(m) en ¢ y a In(M) en X, mientras que permanece acotada en un entorno
de & o &. De acuerdo con ([L.21]), esta funcién es un mayorante arménico de In|f(z)| (que
ya hemos visto en el ejemplo (1.9) que es una funcién subarménica) en I', y por tanto en K
nuevamente por el teorema [1.13] es decir,

In|f(2)| <Inm+ (In M —Inm)u(z)
o0, escrito de otra forma
In|f(2)] < InMu(z) +Inm(l —u(z))

para todo z € K, que es solo otra forma de escribir ((1.22). En particular, como u(0) = g,
tenemos que

|f(0) < MB/mp1=8/m — Mﬁ/ﬁm% — MB/mme/T
O

Nota. Supongamos que m < M y que en vez de explotar toda la informacion disponible sobre
los valores acotados de f(z), remplazamos las condiciones ((1.21]) por la siguiente desigualdad
limsup |f(2)] < M.

z—E
£ € oUD

Entonces, de acuerdo con el Principio del médulo maximo generalizado (teorema (1.13)
[f(R)l <M
para todo z € K. Sin embargo, ([1.22)) es una mejor estimacién de |f(z)] ya que

Mu(z)ml_u(z) m l—u(z)
M =(37) <1

i (0 <u(z) <1).
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Capitulo 2

Teoremas de Phragmén-Lindelof

En este capitulo se van a desarrollar los Teoremas de Phragmén-Lindelof, que son refina-
mientos del Principio del médulo méximo, en situaciones donde una funcién analitica indicada
puede crecer de manera controlada.

La informacién ha sido extraida mayormente del libro de A. I. Markushevich [7], donde se
analizan los casos generales y sus implicaciones en la teoria de funciones analiticas, con apoyo
en el contenido del libro de W. Rudin [§].

Se presentaran distintas versiones del teorema, aplicadas a dominios como sectores y bandas,
proporcionando asi herramientas esenciales para el estudio del comportamiento asintético de
funciones holomorfas.

2.1. Teorema de Phragmén-Lindelof para un angulo

De acuerdo con el corolario del teorema [L.13] si f(z) es analitica en un dominio G con
frontera I', y si
limsup [f(2)] < C < o0

z—€
er

excepto en un punto &, donde
limsup |f(2)]| < oo, (2.1)

Z%EQ

entonces |f(z)| < C para todo z € G; ademds, si | f(zp)| = C en un punto z, € G, entonces esto
implica que f(z) = C. Sin embargo, si tenemos informacién sobre el cardcter de I' cerca del
punto excepcional &y, la condicién puede a menudo relajarse. Por ejemplo, supongamos que
en el punto &, I' forma un dngulo de ar radianes (0 < a < 2). Entonces podemos deshacernos
de la condicién (2.1]), siempre que |f(z)| no crezca demasiado rdpido cuando z — &. Para
simplificar, vamos a considerar el caso en el que {x = oo y G es el interior de un angulo o una
banda.

Pero antes de comenzar con los resultados de esta seccién, vamos a recordar brevemente
la definicién de limite inferior y algunas de sus propiedades al igual que hicimos con el limite
superior.

Definicién 2.1. Sea G C C un conjunto, y sea f : G — R una funcion. Sea ¢ € C un punto
de acumulacién de G. Entonces el limite inferior de f cuando z tiende a & se define como:
liminf f(z) := inf{ lim f(z,) : 2, €G,z, — f},
z—E n—00
donde el inferior se toma sobre todos los limites reales posibles de sucesiones {z,} en G tales

que z, tiende a £ cuando n — oo.
El limite inferior, cuando es finito, satisface las siguientes dos propiedades:
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» Para todo € > 0, existe un entorno .4 () de & tal que
f(z0) > liminf f(z) — ¢
z—¢&

para todo zgp € A (£) N G.

» Para todo € > 0 se puede encontrar una sucesién {z,} con z, — £ de forma que
f(z,) < liminf f(2) +¢, neN.
z—E
Una vez recordada esta definiciéon y las propiedades del limite inferior, comencemos a ver
los resultados de esta seccion.

Teorema 2.2 ( Teorema de Phragmén-Lindel6f para un dngulo). Sea G el interior de un angulo
de ar radianes (0 < a < 2), con frontera I'; y sea f(z) una funcién analitica en G. Supongamos
que f(z) satisface las siguientes condiciones:

1. Para cada punto finito £ € I,

limsup |f(2)] < C < 0. (2.2)
z—E
> Inln M 1
lim inf 2M ) 1 (2.3)
r—00 Inr Q
donde
M(r) = sup | f(2)]. (2.4)
s
Entonces,
f(2)l<C (2.5)
para todo z € G. Ademas, si |f(z)| = C para algin punto zy € G, entonces f es constante
en G.
Demostracion.

Vamos primero a ver que la condicién (2.3]) implica la siguiente restriccién en el crecimiento
de |f(z)| cuando z — oo: Dado un p; con
1 Inln M (r
— > p1 > h’minf—“,
« r—00 Inr
existe una sucesién {r,}, donde v, < r,11 (n =1,2...) y r, — 0o cuando n — oo de modo
que
1£(2)] < el si |zl=r, (n=1,2,..). (2.6)

Para ver esto, basta tener en cuenta los comentarios tras la definicién del limite inferior y
aplicar el segundo de ellos para € = i — p1: existe una sucesiéon creciente {r,} de radios de
forma que para todo n se cumple

Inln M(r,)
—) <
Inr,

Entonces
Inln M(r,) < Inln |f(2)]

Inr, = Inlz]

p1 > si|lzl|=r (n=1,2,...),
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que es simplemente otra forma de escribir ([2.6)).

No hay pérdida de generalidad al suponer que el vértice finito de GG cae en el origen y que
la bisectriz del angulo coincide con el eje real positivo, pues el caso general se puede reducir a
este haciendo una transformacion lineal preliminar consistente en una rotacion, una traslacién
o ambas, sin afectar a las hipotesis del teorema.

G

T =

\/\/ Transformacion lineal &
—

=N

Figura 2.1: Situacién tras hacer las transformaciones lineales correspondientes

Ahora consideremos la funcién

F.(z) = f(z)e" (2.7)

donde € > 0, p1 < p2 < % y p1 es el mismo que en ([2.6]).

Aqui 2”2 denota la rama de valor tinico de la funcién e”2™#, donde In z es la rama principal
del logaritmo, es decir, aquella que toma valores del argumento en el intervalo [—7, 7). Esta
rama es analitica en GG, y ademas z”? toma valores positivos para valores de z reales positivos.
Sean G, el sector |arg z| < &, [z| < ry, acotado por dos segmentos y un arco circular abierto
An- De acuerdo con ([2.2)), para cada punto £ perteneciente a estos segmentos

limsup |F.(2)| < Clim e~ = C'lim =" <20 L ©
z—¢& z—=E

z—E

0

donde z = ¢ (en el dominio G, tenemos que

1 ar
0 < —— =
|p20] o 2

ol

y entonces cos(p26) > 0).
Ademéds, de acuerdo con ([2.6)), en el arco A,

|F5(Z)| < eTﬁl —erf2 cos(pnb) < erfll —erP2 Cos(pQ%)

donde la expresion de la derecha tiende a 0 cuando n — 0o, ya que

am 1
coS <p27) >0 v pp<p2< o

Tomando un n suficientemente grande para que |F.(z)| < C en )\, tenemos que

limsup |F.(z)| < C

z—E

para todo & en la forntera de G,,. Entonces, por el Principio del médulo méximo generalizado

(teorema [1.13)
[F(2)| < C
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para todo z € G,,.
Sustituyendo en (2.7)) v haciendo tender € a 0, encontramos que

lim |f(z)e”="| = [f(z)| <C V2€Gy

si n es suficientemente grande. Esto prueba , ya que n puede siempre ser elegida de forma
que G, contenga cualquier punto preasignado de G.

Finalmente, notemos que si |f(z9)] = C para algin punto zy € G, entonces f ha de ser
constante en GG por la forma usual del Principio del médulo maximo generalizado.

O

Vamos a probar ahora una versién mas fuerte del teorema anterior donde la condicion ([2.3)),
es reemplazada por la condicién

In M
limint M0 (2.8)
r—00 ra

que implica la siguiente restriccién en el crecimiento de | f(z)| cuando z — oo: Dado un € > 0
cualquiera, existe una sucesién {r,} con r, < r,.1 (n =1,2,...) y r, = 0o cuando n — oo de
forma que

F() < e szl =r (n=1,2,..). (2.9)

De hecho, a partir de la condicién (2.8]) y las propiedades del limite inferior, se deduce que
existe una sucesiéon creciente de radios que tiende a oo de modo que

In|f(z)] _ In M([2])

|Z|1/a = |Z|1/a =

N

e cuando |z| =71, (n=1,2,...),

que es simplemente otra forma de escribir ([2.9)).
Es fécil ver la implicacién de la condicién (2.9) a la condicién ([2.6)), que es mas restrictiva,
dado que, si tenemos un € > 0 y un p; < + cualesquiera, tenemos que
(e

21 elz]a
e < e

para un |z| suficientemente grande. Sin embargo, la implicacién inversa no es verdad, como

muestra el ejemplo

22

f(z) = errinar

tomando o = %.

De hecho, el grupo de funciones que satisface (2.9) o (2.8)), es mas grande que el grupo de
funciones que satisface (2.6 o (2.3).

Una vez vista la nueva condicién que vamos a usar y su significado sobre el crecimiento de
la funcién, vamos a ver el siguiente resultado, que es una ampliacién del teorema

Teorema 2.3. El Teorema de Phragmén-Lindel6f para un dngulo (teorema [2.2) sigue vélido si
la condicién ([2.3) se sustituye por la condicién ([2.8])

Demostracion.
Vamos a empezar esta demostracion suponiendo que sabemos que

f(2)| < C (2.10)

en todo punto z = x del eje real positivo. En este caso, podemos aplicar el Teorema de Ph-
ragmén-Lindelof para un angulo, a cada uno de los dos dominios en los que el eje real positivo
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divide a GG. Cada uno de estos dominios es el interior de un dngulo de %" radianes, y enton-

ces, para poder aplicar el teorema anterior, solo necesitariamos verificar que (2.6 se cumple
para todo p; menor que % y suficientemente cerca de % Ahora bien, los comentarios previos al
enunciado han justificado esta afirmacion.

Entonces, la prueba se reduce a establecer la desigualdad para un punto x > 0 real
fijo, pero arbitrario. Dado un € > 0, sea {r,} una sucesién que cumple (2.9). Como en la
demostracién del teorema enterior, sea G, el sector en el que se cumple que |arg(z)| < <,
|z| < 7,y cogiendo un n suficientemente grande para que = € G,,. La frontera de G,, consiste
en dos segmentos lineales y en un arco circular abierto \,, donde

1

()] < e
en \,, por construccién, mientras que

limsup |f(2)| < C

z—¢&

para todo punto & perteneciente a los segmentos, por hipotesis.

Nuestra estrategia para la demostracion sera transformar (G, de manera conforme en el
interior del disco unidad, con el punto = en el origen, y aplicar a continuacién la desigualdad
(1.23), demostrada en relacién con el Teorema de las dos constantes para un disco (teorema

117).

Empezaremos haciendo las siguientes transformaciones consecutivas

A= =i(2))

2= folzy) = (1—|—zl>2

1—21

La primera transformacién lleva GG,, a la mitad del disco unidad que llamamos
D, ={z€C: |z <1, Im(z)>0}

con el arco A\, siendo transformado en el semicirculo |z1| = 1, Im(z;) > 0 y con el punto z

1/a
yendo al punto fi(z) =1 (%) )

T'n

Figura 2.2: Transformacion por f;

La segunda transformacion lleva D,, a la mitad superior del plano complejo, transformando
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1/a
A, en el eje real negativo, y el punto x1 = ¢ (ﬁ) en el punto
1/a
1+i(2)

1/«
1—@(%)

La funcién fy es una homografia, que manda el 1 al punto del infinito, el 0 al 1 y el —1 al
0. Eso quiere decir que manda la frontera de la imagen de G,, por f; (que contiene a los puntos
—1,0 y 1) a la dnica circunferencia que contiene el co, 1y 0, que es el eje real.

Aparte de esto, las componentes conexas del complementario de la frontera de D, estan
en biyeccion con las componentes conexas del complementario de la imagen por f, de dicha
frontera, ya que las homografias son homeomorfismos en la esfera de Riemann. Esto implica
que el interior de D,, tendré como imagen por f, una de las componentes conexas de la imagen,
es decir, o el semiplano superior, o el inferior, y el exterior de D,, ird a parar a la otra.

Para determinar qué semiplano corresponde con cada componente conexa, basta con tomar
un punto del interior de D, y ver dénde cae la imagen. Tomamos por ejemplo el punto z =
0,5 € D,, es facil ver que la imagen de este punto por f,, estda contenida en el semiplano
superior. Por lo tanto la imagen de D,, por fs es el semiplano superior.

2

n = (2.11)

f2(Dn)

Figura 2.3: Transformacion por f,

Ahora hacemos una tercera transformacion

Ry — fn
z3 = f3(22) = —
Z2 — Sn
que transforma la mitad superior del plano en el interior del circulo unidad « : |z3] = 1, con

el eje real negativo transformado en un arco abierto ¥, con un punto inicial 1 y final E:" (v
recorrido en sentido positivo).

Xn
fQ(Dn)
. f3(2)
T _ z=1
on

Figura 2.4: Transformacion por f3
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Por tanto, el deseo de transformar GG, en el interior del circulo unidad viene dado por

23 = f30 fr0 fi(2)

Como resultado, f(z) se transforma en la funcién
fr(za) = f(fil o fy' o f5(2))
de forma que f*(0) = f(z), y

1

f*(z5)] < e

para todo z3 € ¥, y también
limsup |f*(z5)] < C
z3—¢
para todo & en el arco complementario cerrado o, = v \ 3.
Si ahora tenemos en cuenta el teorema [1.17], se sigue de la desigualdad (1.23]) que

F4(0)] = | f(z)] < ()7 CF

donde 2a,, y 2, son los angulos formados en el punto z3 = 0 por los arcos o,, y >, respectiva-
mente (a, >0, 8, >0y a, + [, =m).
Ahora, de acuerdo con ([2.11))
lim &, =1

n—oo
lo que implica que
lim arg(&,) =0

n—o0

y entonces, para un n suficientemente grande

1 1
141 (ﬁ) ] = 4 arctan (ﬁ)
Tn Tn

arg(§,) = 4arg

y
1
€n z e
arg E_ = 2arg(§,) = 8arctan | — | > 0.
TTL
Ademas, 1 es el punto inicial Ve & e el punto final del arco 3, por lo que
1 1
l’ . a’/‘ «@
2, = 8arctan <—> , es decir, 3, = 4arctan (—)
T?’L TTL
y

1
m a
o, =7 — 4arctan | — .
/r'fl

|f( )| < 6757"71/ arctan( z )1/a01—%arctan(%)1/a

Pero entonces

Y

y pasando al limite cuando n — co obtenemos que

f(@)] < Cer=""

Dado que € > 0 es arbitrario, esto implica que |f(x)| < C, y la prueba queda terminada
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Nota. El Teorema anterior no puede ser mas reforzado, en el sentido de que el teorema no es
cierto si sustituimos la condicién

r—00 Inr «
por la condicién de que
, . InM(r)
117¥I_1>lo£1f o 0. (2.12)

Para ver esto, consideremos la funcion
fz) =" (¢>0)

que obviamente satisface (2.12)). En la frontera del dominio G, tenemos que

T

Jarg(s)] = 5

y entonces

erl/agtis o eerl/a(cos(ﬂ:g)—i-isen(:tg)) :egréws(%) -1

[f (re™ )] = e

Por otra parte, |f(z)| — oo a lo largo de cada recta

arg(z) =0, 0] < Og.

Nota. Como nota de cierre de seccion, merece la pena indicar que a este teorema también se
le denota como Teorema de Phragmén-Lindelof para un sector.

2.2. Teorema de Phragmén-Lindelof para una banda

Habiendo visto y demostrado el resultado del teorema de Phragmén-Lindelof para un sector,
vamos a ver este mismo resultado pero cambiando el dominio en forma de sector por un dominio
con forma de banda horizontal.

Teorema 2.4 (Teorema de Phragmén-Lindeléf para una banda). Sea D la banda horizontal

de altura h, con frontera I', y sea f(z) una funcién analitica en D. Supongamos que f(z)
satisface las siguientes condiciones:

1. Para cada punto finito £ € T,
h’rré 1f(2)] < C < 0.
2=

2.
limsup |f(z +iy)| < C.
T—r00
3. |
lim inf n () <0 donde p(x)= sup |f(x+iy)l|

Totoo € —hm oy
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Entonces, |f(z)| < C para todo z € D. Ademés, si |f(z9)| = C para algtin punto zy € D,
entonces f es constante en D.

Demostracion.

La funcién 2z’ = e*/" transforma la banda D en el semiplano derecho G (que es el interior de
un dngulo de 7 radianes), con los puntos finales de la banda, x = —o0 y & = +00, yendo a los
puntos z' = 0y 2’ = oo respectivamente, y los segmentos en los que la parte real x es constante
siendo transformados en semicirculos con el centro comin 2" = 0.

Escribiendo

z/h

f(hinz) = F(2),

donde In denota la rama principal del logaritmo, vemos que F(2’) es analitica en G y satisface
la desigualdad
limsup |F(2')]| < C

2!
en cada punto finito ¢ de la frontera de G. Ademas, si ' = |2/| y © = Re(z), donde ' = e*/",
entonces
M) = s P = s 17(:)] = (o
y por tanto
InM(r')  Inp(r)
r! - ez/h
Se sigue entonces que
M(r' 1
ttmint 2D g g )
r’'—00 r! T—00 el‘/h

Aplicando en este caso el Teorema de Phragmén-Lindelof para un dngulo en su version
reforzada, es decir, el teorema [2,3] al dominio G, para el que o = 1, obtenemos que

|[F(z)<C

para todo 2z’ € GG, lo que implica que

fl<C

para todo z € D.
De forma similar, si |f(z)] = C para algtin 2y € D, entonces |F(z})| = C para 2, = e*/",
y entonces F' es constante en G, lo que implica que f también lo es en D.

O
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Capitulo 3

La constante de Bloch

Este capitulo estda dedicado al estudio de la constante de Bloch, un valor de interés en
el Analisis Complejo que describe un comportamiento universal de las funciones holomorfas
acotadas en el disco unidad. Para llegar a su formulacién y estimacion, exploraremos una
cadena de resultados clasicos que incluyen transformaciones de Mobius, los teoremas de Landau
y técnicas basadas en funciones subarmonicas y estimaciones extremales.

La presentacion sigue de cerca las exposiciones de M. Heins [6] v J. B. Conway [4], cuyas
obras proporcionan tanto la base tedrica como las herramientas técnicas necesarias para com-
prender el resultado. En particular, se enfatiza el uso de transformaciones conformes, métodos
del andlisis potencial y el lema de Schwarz-Pick para establecer cotas inferiores explicitas pa-
ra la constante de Bloch. El capitulo culmina con el teorema de Ahlfors, donde se demuestra
que dicha constante excede un valor positivo explicito, conectando elegantemente técnicas de
analisis funcional, geometria conforme y teoria de funciones.

3.1. Transformaciones de Mobius

Como preliminar para este capitulo vamos a introducir un cierto tipo de transformacio-
nes de Mobius, que desempenan un papel fundamental al preservar estructuras geométricas
importantes.

En particular, a nosotros nos interesan las que actiian sobre el disco unidad

D={zeC:|z|] <1}

y tienen el aspecto siguiente: dada una constante a € D, se define la funciéon L, como

zZ—a

La(2) = 1—az

Esta transformacién racional es una biyeccién conforme del disco unidad sobre si mismo, y
cumple las siguientes propiedades fundamentales:

» Preserva el disco unidad: L,(D) = D.
» Preserva la frontera: Para todo z € C tal que |z| = 1, se tiene que |L,(z)| = 1.

» Su inversa estd dada por L_,(z), es decir,

Estas transformaciones permiten 'mover’ puntos dentro del disco unidad de forma contro-
lada, y son frecuentemente utilizadas en la formulacién de problemas de valor en la frontera,
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como el problema de Dirichlet, y en la construccién de nicleos como el de Poisson mediante
cambios de variable adecuados.

El estudio de estas funciones no solo facilita el andlisis de funciones arménicas y analiticas
en el disco, sino que también proporciona herramientas elegantes y potentes para resolver
problemas clasicos mediante simetrias y transformaciones conformes.

3.2. Teoremas de Landau

Antes de entrar de lleno con el enunciado y demostracion del teorema de Bloch, vamos
a mencionar unos resultados clasicos denominados teoremas de Landau. Estos teoremas nos
ofrecen una cota inferior explicita para el tamano de discos donde ciertas funciones analiticas
en el disco unidad, y que estan normalizadas de una forma especifica, son inyectivas. Para cada
0 < a < 1, esta familia de funciones la denotaremos como ®,, y se define como las funciones
analiticas en el disco unidad que satisfacen que:

= f(0) =0,
- F1(0) = a,
» [f(2)] <1 para |z] < 1.
Dada una funcién f, definimos
r(f) =sup{r > 0: : f es inyectiva en B(0,7)}.

Este valor representa el maximo radio de un disco centrado en 0 para el cual la funcion
f conserva el cardcter inyectivo (también llamado univalente). A partir de esta definicidn,
consideramos el valor

p="if{r(f): f € d,}.

donde el inferior se toma sobre la familia de funciones holomorfas introducida anteriormente.
Este valor representa el minimo radio tal que toda funcién de la familia considerada es inyectiva
en el disco de radio p centrado en el origen. Este tipo de cantidades tiene un papel central en
el analisis de propiedades geométricas de funciones holomorfas y en particular en la estimacién
de la constante de Bloch.

Una vez vistos estos conceptos, en el siguiente resultado determinaremos el valor de p en
funcién de a.

Teorema 3.1. Sea a € (0,1).

1. Se tiene que

2. Existe f € ®, para la cual r(f) = p.

3. Las funciones extremales donde se alcanza el valor de r(f) = p son las de la forma
eta ' F(nz), donde 7 es un niimero complejo de médulo 1y
a—z

F = .
(Z> 21 —az
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Demostracion.
Antes de empezar con la demostracién vamos a ver que se cumple la siguiente cadena de
desigualdades
Ly ([2D] < [Los(2)] < Log(l2]) - para |z], o] < 1. (3.1)

Para ver la primera desigualdad recordemos que

2] — 10|
1 —[bf]2|

RERNY
11+ bz|’

Lp(J2]) = |L_s(2)]

ahora elevando al cuadrado ambos miembros de la desigualdad y desarrollando

[l2] = [ol] |z + 0] 121 = [ol|” o 2P
TR T 2 e T L ET T T

|2+ [o1* = 2[(B] _ |2 + [bl* + 2Re(b2)
L+ [bP2l2[> = 2[z]lo] = 1+ [bl*[2]* + 2Re(b2)

—2|2|[bl(1 + [2[*[b*) + 2Re(bZ)(|[* + [b*) < —2|z[[b[(|2]* + [b]*) + 2Re(b2)(1 + | 2[*[b]*)
2(Re(b2) + |2Ib)) (|21 + [b) < 2(Re(b7) + |2][b) (1 + [2[*[b]*)
2+ b1 < 1+ 220" = [2*(1 = [bI*) < 1= B = |2] < 1,

desigualdad que es cierta ya que |z| < 1. Para ver la otra desigualdad recordemos que

_ lz[ £ ol

observamos que L_p(|2]) v Liy(]2]) tienen la misma expresion cambiando los signos, es por
eso que no hace falta hacer el desarrollo como antes, simplemente basta con cambiar los signos
pertinentes y reordenar. Elevando al cuadrado ambos miembros de la desigualdad

[Lo(2)] < Loy (12])
llegamos a que
2(Re(b2) — [2[[b]) (|27 + [b]*) = 2(Re(bZ) — [2][b])(1 + |2[*[b]*),
observemos ahora que
2116l = [Z1[b] = [2b] = |Re(bz)| = Re(bZ) = (Re(b2) — |2[[b]) < 0,
por lo que llegamos nuevamente a la desigualdad
2+ B < 1+ 220" = |2*(1 = [bI*) < 1= b = |2] < 1.

Visto ahora que se cumple (3.1)), vamos a ver también que si b € (—1,1), entonces la
aplicacion « — L_,(x) es mondtona creciente en = € [—1, 1], esto sale directamente teniendo
en cuenta que la derivada es

11—

m}() para r € [—1,1]

Vamos ahora con la demostracién, supongamos que f € &, y que r(f) < 1. Entonces, o
bien existe & con médulo r(f) para el cual n(¢, f) > 1 (donde n(¢, f) es el orden de £ como cero
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de la funcién z — f(z) — f(£)), o bien existen &, & distintos, ambos con médulo r(f), para los
cuales f(&1) = f(&2). Vamos a denotar por « a f(§) o al valor comin f(&) = f(&).

Por el lema de Schwarz tenemos que |f(z)| < |z|, y como ambas transformaciones, L, y L,
son continuas en B(0, 1) y mandan la circunferencia unidad en sf misma, podemos afirmar que

‘ (Lo © f)(2)
(Le(2))?

y por el principio generalizado del médulo maximo m, podemos afirmar que en B(0,1) se
cumple que

lim sup
|z|]—1

< 1L

|La o fI < |Lel*. (3.2)

y de forma analoga
‘La © fl < |L€1HL£2"

Tomando z = 0, en ambos casos obtenemos que
ol <r(f)% (3.3)

Por otra parte, tenemos que como f(0) = 0, podemos escribir f(z) como zg(z) donde g(z)
es una funcién analitica en B(0, 1), ademds, ya hemos visto antes que |f(z)| < |z, es por esto
que g(z) tiene médulo menor que 1, y si derivamos f y evaluamos en z = 0, obtenemos que
g(0) = a, ya que por definicién f'(0) = a.

De la misma forma tenemos que L, o g(z) puede escribirse como zh(z), donde h es analitica
en B(0,1), y con médulo menor o igual que 1. Podemos entonces escribir que

f(z) = zL_u(zh(2)). (3.4)
Si ahora tenemos en cuenta (3.1))

ol =l
1 —alzh(z)| ~

£ (2)] = |7] para [z] <1, (3.5)

1—alz|’

donde la segunda desigualdad viene de que x — L_(z) es mondtona creciente en z € [—1, 1].
Si ahora evaluamos z = £ (respectivamente en & y &)

a—r(f)
af > T(f)m (3.6)
y teniendo en cuenta (3.3)) y que r(f) > 0 concluimos que
a—r(f)
r(f) = Tr(f)'

Es por esto que para toda f € ®,, r(f) no puede ser menor que la menor raiz o de la
ecuacion

a—x
Tr =
1—ax’
) 1—+1—a? )
que es justamente el valor ———— del enunciado del teorema. Esto demuestra que p > o.

a
Tenemos ahora que si derivamos la funcién F'(z) del enunciado,

a—2z+az? 1 a—z
F/ e e J—
() (1—az)? 1—az (1—az Z)’
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es facil ver que F’(o) = 0, por lo que r(F) = o, y solo puede ser ya que p = o, la primera
afirmacién del teorema.

Supongamos ahora que f es de la forma F(nz)n~
20 = pn~ ! y comprobar que

! con n € C de médulo 1. Basta tomar

f'(20) = F'(nz) = F'(p) =0
para deducir que r(f) = p.

Tomamos ahora una funcién f € ®,, que satisfaga que r(f) = p. Por y , tenemos
que |a| = r(f)? Por tanto, para z = 0, se da la igualdad en (3.2). Como a # 0, entonces
deducimos que L, o f es una rotacién de L?, es decir, que existe un n € C de médulo 1 de forma
que

Lyof = nLg
y respectivamente con & y &, con lo que concluimos que f es de grado 2, es decir, es una
fraccion racional cuyos numerador y denominador tienen grado a lo sumo 2. La tnica forma
de que esto ocurra es que la funcién h(z) de sea una constante, y como las igualdades
se alcanzan en , y , es de modulo 1. Con esto entonces queda demostrada la
segunda afirmacién del teorema.

0

Antes de mencionar el segundo teorema vamos a establecer la siguiente notacion. Dada
f € ®,, sea E(f) el conjunto de niimeros r positivos para los cuales existe una region €., con
0€Q, C B(0,1), tal que f transforma €2, de manera inyectiva en B(0, 7).
También consideraremos
R(fy=swpE(f) vy  P= if R(f).
Ahora podemos enunciar el segundo teorema de esta seccion, que sera el resultado que nos
permitira acotar inferiormente en la demostracion del Teorema de Bloch.

Teorema 3.2. Podemos asegurar que P = p? siendo p el definido en el teorema . Ademas,
R(f) = P, siy solo si, f es una de las funciones extremales de la forma F(nz)n~! del teorema

B.1

Demostracion.
Por la desigualdad (3.5]) vista en el teorema anterior, tenemos que

a—rT

i >
g‘nzr;|f(2)| >y

, 0<r<l. (3.7)

También tenemos que

o) ==l = ) = = (5D ).

1—ar :l—ar 1—ar

que solo se anula en los puntos V= ”al_az, y como r € (0,1), entonces solo se anula en r = p,
ademds tenemos que ¢’(0) > 0y ¢'(1) < 0, por tanto concluimos que el valor méximo de g(r)
cuando r € (0,1) se alcanza en r = p, y ademas, este valor es p?>. Como a < 1, entonces
l1-a?><1y
1—+v1—a?
Vi-a2>1-d*=p=—""—<a
a
Si ahora tomamos r € (0, p|, entonces

.
> 0,
—ar

a
r<p<a=a—r>0=r
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y por la desigualdad tenemos que f(z) # 0 para 0 < |z] < p

Denotemos por €2 a la componente conexa de f~'(B(0, p?)) que contiene z = 0, entonces
Q C B(0, p). Por lo tanto, la restriccién de f a €2 es una funcién que transforma la frontera de 2
en la frontera de B(0, p?). Y el tinico punto de 2 en el que f se anula es z = 0, con n(0, f) = 1.

Es por esto, que f transforma de forma inyectiva Q en B(0, p?). Como esto se cumple para
toda f € ®,, deducimos que p? < P.

Observemos que F'(p) = 0, F' es una fraccién racional de grado 2 y F'(z) solo alcanza el valor
p* en z = p, todo esto unido al razonamiento del teorema anterior nos indica que R(F) = p?,
ya que, en el teorema dedujimos que 7(F) = p?. Por tanto como p? < P,y R(F) = p?,
concluimos que

P = p2.

Por el mismo razonamiento usado en la demostraciéon del teorema tenemos que para
toda funcién f de la forma F(nz)n~!, donde n € C y tiene médulo 1, se cumple que R(f) = P.

Para ver el contrarreciproco, vamos a suponer en que h(z) no es constante de médulo
1, entonces se daria que

a—p
po=min | f(2)] > pr—
Por lo que la componente conexa de f~(B(0, 1)) que contiene a z = 0 estarfa en B(0, p),
y por el mismo razonamiento seguido anteriormente tendriamos que R(f) > p y a su vez
w> P Queda entonces demostrado que si R(f) = P, entonces f tiene que ser de la forma
f= ( 2)n~! con n € C de médulo 1, con lo que completamos la prueba del teorema.

3.3. El teorema de Bloch

Supongamos que f es una funcién analitica no constante en el dominio 2. Sea el numero
de Bloch b(f) de f el supremo del conjunto de nimeros positivos r que satisfacen la siguiente
condicion: existe un subdominio 2; C 2 que f transforma de manera inyectiva sobre un disco
de radio 7.

Sea el numero de Landau de f, denotado por [(f), el supremo del conjunto de nimeros
positivos r tales que f(€2) contiene un disco de radio r.

Sea ® la familia de funciones f que son analiticas en B(0, 1) y que estdn normalizadas por
la condicion

1(0)=1. (3.8)
La constante de Bloch 3 se define como
= inf
B = fnf b(f)

y la constante de Landau X\ se define como

A= if I(f).

fed

Claramente, se cumple que b(f) <I(f) y < A
Una vez vistas estas definiciones, vamos a demostrar una mejora del Lema de Schwarz.
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Lema 3.3 (Lema Schwarz—Pick). Sea f analitica en B(0,1) de forma que |f| < 1y sea a €
B(0,1), entonces
f@l 1
L= |f(a) = 1—laf*’

y se da la igualdad si y solo si f es un automorfismo (es decir, una aplicacién holomorfa y
biyectiva, luego de inversa holomorfa) del disco unidad en si mismo.

Nota. Queremos con este resultado comparar la derivada de f en un punto a con los valores
de f y a mismos, mediante una desigualdad que tiene un sabor geométrico: esta controlando
cudnto puede estirarse f en términos de su comportamiento en el disco.

Demostracion.
Para comenzar vamos a denotar b := f(a), y vamos a considerar las funciones

z—b z+4a
Ly(z) = . y L_q(z) = Tras

ahora construimos la funcién F(z) = Ly o f o L_,(z). Si evaluamos F en z = 0 entonces
F(0) = Lyo foL_o(0) = Lyo f(a) = Ly(b) = 0.

Tenemos ahora que como |f| < 1, y las funciones L_, y L, son transformaciones de Mébius,
entonces F' : B(0,1) — B(0,1). Ademas, F' es analitica en B(0,1) por ser composicién de
funciones analiticas. En estas condiciones podemos, por tanto, aplicar el Lema de Schwarz
clasico y deducir que

FEI<l v IFO)]<1.

Vamos ahora a relacionar F’(0) con f’(a), para ello vamos a calcular

F'(0) = Ly(f(a)) - f'(a) - L7 ,(0),

derivando tenemos que

z—b 1—|b)? 1
Ly(z) = = L(z)=———— =L, (b) =
z+a 1— |a|?
L o(z) = o) = 1 )= 1— |af
()= frs = Tal®) = (s = L@ = 1=
y si lo juntamos todo
1
F'(0) = ———— - f'(a) - (1 — |a]?).
(0) =) (a) - (1 —1al")
Tomando médulos y aplicando lo deducido por el Lema de Schwarz,
/ /
1
o) =—LD g ey <q o WL , 3.9
PO g D <12 R S T (39

que es lo que queriamos ver.
De la aplicacion del Lema de Schwarz clasico también deducimos que si se da la igualdad
en (B.9), entonces F(z) = ¢z, denotaremos por Ry(z) a esta rotacién. Por tanto,

LyofoL_4(2)=Ry(z) = foL_,(2) =L_yoRy(z) = f=L_poRgo Ly(2),

donde L_, 0 Ry o L,(z) es un automorfismo de B(0, 1), por ser composicién de automorfismos
en B(0,1). Con esto queda concluida la demostracion.
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U

Una vez visto este resultado podemos enunciar el Teorema de Bloch, que establece que, a
pesar de la gran amplitud de la clase ®, la constante de Bloch no es nula.

Teorema 3.4 (Teorema de Bloch). La constante de Bloch [ es estrictamente positiva.

Demostracién.

Sea ®; la subfamilia de ® consistente en aquellas funciones pertenecientes a ® cuyo desarrollo
en potencias en torno a z = 0 tiene un radio de convergencia mayor que 1. Podemos afirmar
que

B < ff b(f).

fEP
Por otro lado, dada f € @, sea g definida por g(z) = f(rz)r~!, con 0 < r < 1. Entonces g
es analitica en B(0,1) por lo que g € @y, y se tiene claramente que b(g) < b(f)r~'. Por tanto,
inf b(f) < Brt,

fed,

y, en consecuencia, por ser r € (0, 1) arbitrario,

inf b = [. 3.10

[nf b(f) =5 (3.10)

Supongamos ahora que f € ®;. Observamos que cada una de las funciones g, = fo L_,,

con |a| < 1, satisface que b(g,) = b(f), ya que cada L_, es una biyeccién del circulo unidad en
si mismo, y que

() = F (Loa(2)) - ( L 'a'22) S g(0) = F/(@)(1 — [a]).

(1+az)

Como f’ es continua en el compacto B(0, 1) (ya que el radio de convergencia de f es mayor
que 1), el maximo de |g/,(0)| al variar a en B(0, 1) es finito y se alcanza en un punto ag € B(0,1)
(obsérvese que la expresion se anula en la frontera). Este valor maximo tiene que ser al menos
1, ya que si tomamos a = 0 entonces g;(0) = 1.

Sea
YGag

192, 0))

entonces se tiene que b(g) < b(f), ya que b(gq,) = b(f) ¥ [94,(0)| > 1; y que, por el lema (3.3, g
satisface la desigualdad

9

(L =1[=)lg' ()] <1 (3.11)

Gracias a esta desigualdad, podemos obtener una cota inferior para b(f) que es independiente
de f. De hecho, sea h = g — ¢(0), de forma que b(h) = b(g). Entonces

1 1+ 7|
|h(2)| < élog (1 — |Z’) : (3.12)

Para justificar esta desigualdad, observamos que, como g es holomorfa, se puede expresar
como

y parametrizando el segmento que une 0 con z mediante ¢ — ¢z con ¢ € [0, 1], obtenemos

h(z) = Z/O g'(tz)dt.
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Tomando médulos y usando la desigualdad (3.11] m deducimos que

< Z'/ t2| B

Esta integral se puede calcular explicitamente mediante el cambio de variable z = t|z|, y da

como resultado . oy
+ |z

h < =1 ,

el < 1o (1)

lo cual justifica la desigualdad ((3.12)).
Aplicando el Teorema a

b7) > ) > g1og (14 ) o (bg?{ﬂ)) , (313

donde )
o0 = (=)
)= —rr— .
e
Fijando r = % en la parte derecha de (3.13)), obtenemos que
b(f) = 0,21,

Por tanto 8 > 0,21 y el teorema queda probado.

3.4. El teorema de Ahlfors

En esta subseccion desarrollamos una serie de resultados interconectados cuyo objetivo final
es demostrar que la constante de Bloch satisface la desigualdad
V3

> X2
b2

Este resultado, cldsico en Anélisis Complejo, tiene una gran relevancia tanto por su valor
tedrico como por ilustrar el uso de técnicas métricas y subarmonicas en el estudio de funciones
holomorfas.

La estrategia sigue el enfoque del matematico L. Ahlfors, quien mejord el Lema de Schwarz,
resultado que limita como pueden deformarse las funciones dentro del disco unidad.

Lo que hacemos es construir una funcién auxiliar, A(z), que mide localmente hasta qué punto
puede crecer una funcién sin perder ciertas propiedades. Luego analizamos cémo cambia esa
A(z) usando herramientas de teoria del potencial, y comprobamos que se comporta de forma
controlada, es decir, que su logaritmo es subarmonico. Esta idea nos permitird imponer un
limite a A(z), y a partir de ahi, deduciremos la cota deseada para la constante de Bloch.

Este método combina geometria, analisis complejo y propiedades métricas de las funciones,
y representa una de las formas mas elegantes y potentes de abordar este tipo de problemas
en matemédticas modernas. Para la elaboracién de esta seccién se han usado como fuentes los
libros de J. B. Conway [4], L. Ahlfors |2] y un articulo también de L. Ahlfors [1].

Antes de empezar, enunciemos el teorema que da nombre a esta seccion y que serd nuestro
objetivo durante el desarrollo de la misma.
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S

Teorema 3.5 (Teorema de Ahlfors). La constante de Bloch es mayor o igual que 73.
Comenzamos con los resultados auxiliares.

Lema 3.6. Sea f una funcién holomorfa en un dominio € C C. Supongamos que |f(z)| < A <
+oo y que f'(a) # 0 para un a € 2. Sean

Aoy — A

= QP y u(z) = log A(2).

Entonces
Au(a) = 4[\(a))>.

Demostracion. Para empezar, tenemos que \ esta bien definida. Y ahora tenemos que

Alf'(2)] — 1o oo | F (N — loo( A2 — | £(2)[2
) = tow A+ log ()]~ og(A2 - |72 ).

Sabemos que el logaritmo del valor absoluto de una funcién analitica es armoénico excepto
en los ceros de dicha funcién analitica. Vamos entonces a estudiar cada término:

ute) =g

s Si f es analitica y f'(a) # 0 entonces sabemos que log|f’(z)| es arménica en a, y por
tanto

Alog]|f(a)] = 0.

= El término log A es constante por lo que tiene

Alog A =0.

Por tanto concluimos que el tnico término que puede contribuir al laplaciano en el punto a
es

—log(A” — |f(2)*),

por lo que

Au(a) = —Alog(A* — [ f(a)[).

Vamos ahora a calcular el laplaciano de forma explicita, para ello vamos a tener en cuenta
que

62
A =g
entonces o 2
—4 log(A2 — | f(2)|?) = 4|f'(2)]? :
5292 08— P = U1 O Ty
Por tanto AQ\f( )|2
Aula) = a - 2
=t rpp ~ M

U

Lema 3.7. Supongamos que f es analitica en un dominio Q C C, que |f| < A?, siendo
0 < A < +00 y que para un punto a € 2 se tiene que f(a) # 0y f'(a) # 0. Si consideramos

AR
AFEI(A 7))

A(2) u(z) = log A(2),

entonces se cumple que
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Demostracion.
Como f es analiticay f(a) # 0, entonces existe una funcién g analitica en un entorno de a,
tal que

es decir, 1
g=e2 In f(2)

localmente, eligiendo una rama adecuada del logaritmo. Ademas como f es analitica, entonces

F'(2) =29(2)d'(2) = |f'(2)| = 2lg(2)] - |g' ()] = 21 f ()] - g (2)].

Si ahora sustituimos esto en la expresién de A(z) tenemos que

2Alf()IM2 g ()l Alg()l _ Alg(2)]

Az) = = :
20f()V2(A = [f(R)])  (A2=[f()]) (A% —|g(=)])
Tenemos entonces que g es una funcién analitica en un entorno de a, que |g(z)| < A, y que
g'(a) # 0 ya que g(a) # 0. Estamos entonces en condiciones de aplicar el lema anterior a la
funcién ¢ y afirmar que

Antes de seguir con el siguiente resultado vamos a dar una definicién que usaremos.

Definicién 3.8. Consideramos una funcién continua no negativa A en B(0,1). Supongamos
que A(a) # 0 para un punto a € B(0, 1). Entonces, una funcién positiva A, que posee derivadas
parciales continuas de segundo orden en algin entorno de a se dice que soporta a A\ en a si se
cumple que

1. Aa(a) = A a),
2. Ao(z) < A(z) en algtin entorno de a,

3. Con u,(x) = log Aa(x),

Aug (1) = 4[N (7)]? (3.14)
en algin entorno de a.

A continuacién vamos a dar una versiéon ligeramente generalizada de la extensién del Lema
de Schwarz dada por Ahlfors. Este teorema difiere de la versién de Ahlfors en que se permite un
conjunto excepcional, donde no se imponen requisitos sobre funciones de soporte. De hecho, se
podrian permitir incluso conjuntos cerrados de capacidad cero como conjuntos excepcionales.
La demostracion seria esencialmente la misma salvo por el uso de herramientas mas sofisticadas
de la teoria del potencial, como el teorema de Evans. Para establecer la estimacién inferior de

Ahlfors para la constante de Bloch, se puede operar con esta extension del Lema de Schwarz
de Ahlfors.

Teorema 3.9. Sea A una funcién continua no negativa en B(0,1). Supongamos que para cada
z € B(0,1) para el cual A(z) # 0, salvo posiblemente en un conjunto de puntos £ que no tiene
puntos de acumulacién en B(0, 1), existe una funcién A, que soporta a A en z.
Entonces
Mz) < (1= 1297, 2| < 1. (3.15)
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Nota. Cabe observar que el lema|3.3| puede ser incluido dentro de este teorema, como se deduce
del lema [3.6] de esta seccién. La funcién A definida en el lema [3.6] se soporta a sf misma en cada
x para el cual A(z) # 0.

Demostracion.
Tomemos el conjunto E descrito en el enunciado del teorema, ahora, sea 0 < r < 1, demos-

tremos que
r

A(z) < R =: u(z) si|z| <, (3.16)
que es lo mismo que
A
Az) <1 si |z <, (3.17)
p(2)

de donde obtendremos la desigualdad ([3.15)) para cada z € B(0,1) haciendo que |z| < r — 1.
Sean >0y sea

N(2) = A@) [ ] Lo (2)]" (3.18)

donde ag, para k = 1,...n son los distintos puntos de E en B(0,r), siendo n posiblemente 0
(serdan necesariamente finitos por ser E discreto en B(0, 1)).

Veamos que se cumple reemplazando A por \* y después haciendo tender n — 0 y
usando la continuidad de A\ concluiremos que se cumple .

Si (3.16) no se cumple con A* reemplazando a A, la continuidad de z — A*(2)/u(z) en el

compacto B(0,r) garantiza que existe b € B(0,) tal que

. A (b)
A*(b) > p(b) = 0) > 1,
y de modo que
M) > Az si|z| <. (3.19)

pd) = ulz)
Sea A\, que soporta a A en b, entonces

A= M 1L (2)
k=1

soporta A* en b. Esto es facil de ver ya que, como por definicién A\y(b) = A(b), entonces:
= A\ (D) = A\*(D).
» A (z) < A (2) en un entorno de b.

» Vamos a ver ahora que Alog \;(z) > 4[\;(2)]?, para ello vamos a aplicar el laplaciano a
log \j(2) y vamos a ir calculdndolo poco a poco. Primero tenemos que

log A;(2) = log Ay(2) + 1) _log|Le, (2)]
k=1
por tanto aplicando el laplaciano

Alog A\ (z) = Alog \p(2) + nz Alog |L,, (2)|.

k=1
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Recordemos ahora que log|L,, (2)| es arménica en los puntos en los que no se anula L, ,
por lo que para puntos cercanos a b alejados de los a; tenemos que

Alog|L,, (2)] =0 para todo k =1,...n.

Tenemos entonces que

Alog Nj(2) = Alog My(2) = 4[M(2)]%.

Finalmente basta observar que como para todo k = 1,...n se tiene que |L,, (2)] < 1 en
B(0,r), entonces

A (2) = X(2) [T 1La ()7 < No(2),

por lo que
Alog Aj(2) = 4[hw(2)]* = 4[N (2)]*
para z cercano a b.
De (3.19) concluimos que
X(B) _ X()
pb) — p(z)
en un entorno de b. Por lo tanto, si ponemos u(z) = log A\j(z) vy v(z) = logu(z), vemos que

u — v tiene un maximo relativo en b, asi que el laplaciano de v — v en b es menor o igual que
0. Vamos entonces a calcular el laplaciano de u — v:

Au(z) = Alog Aj(2) = 4[N (2)]* = Au(b) > 4[N (D))" = 4[N (D)),

4|z|? 4r? B JRe
(r2 — |2]2)2 < (r2 — [2]2)?2 = 4[u(2)]7,

Av(z) = Alog u(z) = A(~ log(r — |2]?)) =

entonces
Alu = v)(b) = 4N (0)° — 4u(0)]* = 4{ [N ()] — [1(b)]*}
y este valor es mayor que 0 por hipdtesis, por lo que llegamos a contradiccion. Finalmente

concluimos que la desigualdad (3.16)) se cumple con A* reeplazando a A, con lo que queda
demostrado el teorema.

0

Una vez vista esta version ligeramente generalizada de la extensién del Lema de Schwarz de
Ahlfors, vamos a continuar viendo resultados que nos ayudaran a concluir con la demostracién

del Teorema de Ahlfors.

Lema 3.10. Sea A(z) una funcién que cumple las condiciones del teorema [3.9] entonces u(z) =
log A(z) es subarmoénica en B(0,1).

Demostracion.

Tenemos que A(z) es positiva y continua en B(0, 1), lo que implica que u(z) estd bien definida
y es continua en B(0,1). Tomamos ahora un punto zy € B(0,1) \ E, y por hipdtesis tenemos
una funcién A, (z) de clase C* que soporta a A(z) en 2y, es decir,

L] )\ZO(ZO> = )\(Zo)

= A\, (2) < A(2) en un entrono de z.
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= Alog Ay (20) = 4[N (20)]°

Si definimos ahora u,,(z) = log A, (=), entonces observamos que
w u,,(20) = u(z0).

» u,,(2) < u(z) en un entrono de z.

w Aug,(20) = 4\ (20)] = 4[N\ (20)]? = 0.

Por lo que concluimos que u, es una funcién de clase C* que soporta a u(z) en z, y verifica
que Au,,(z9) = 0, lo cual nos permite aplicar el criterio de subarmonicidad por funciones
soporte, que dice lo siguiente:

”Si una funcién continua u tiene en cada punto z € Q una funcion u, € C? definida en un
entorno de z, tal que u.(z) = u(z), u,(2) < u(z) en un entorno de z y Au.(z) = 0, entonces u
es subarmonica en 2.7

Por tanto concluimos que u(z) es subarménica en cada punto de B(0,1) \ E. Y debido a
que E es un conjunto que no tiene puntos de acumulaciéon en B(0, 1), es decir E' N B(0,1) = 0,
concluimos que u(z) es subarménica en B(0,1).

O

Para aplicar ahora el teorema [3.9] a un problema especifico, queremos disenar, en términos
de los datos del problema, una funcién A(z) que satisfaga la condicién de soporte y proporcione
informacién ttil mediante el teorema [3.9] Consideremos la funcién A(z) construida por Ahlfors
en relaciéon con el teorema de Bloch.

Comenzamos con f analitica en B(0, 1), satisfaciendo f'(0) = 1. Para cada z € B(0,1),
definimos p(z) de la siguiente manera:

= Si f/(2) =0, ponemos p(z) = 0.

» Si f'(2) # 0, entonces p(z) es el supremo del conjunto de los r > 0 para los cuales la
restriccién de f a la componente conexa de f~'(B(f(z),r)) que contiene a z, transforma
esta componente de forma inyectiva sobre B(f(z),r).

Denotamos por 2, la componente conexa de f~1(B(f(z), p(z))) que contiene a z. Por defi-
nicién de p(z), tiene que haber un punto en la frontera de €2, donde falle la inyectividad de la
funcion f, esto puede darse por dos causas:

= La primera causa es que lleguemos al borde del dominio de definicion de f, es decir, que
lleguemos a 9B(0,1) = C(0,1).

= En el caso de que no lleguemos al borde de definicion de f, entonces el punto en cuestién,
al que llamaremos &, tiene que ser un punto critico, es decir, un cero de f’(z), ya que si no
lo fuera, como f sigue siendo holomorfa en un entorno de &, y f'(£) # 0, por el teorema
de la inversa local f seria localmente inyectiva en un entorno de &, lo cual nos permitiria
extender €2, lo que entra en contradiccién con su definicién.

Veamos ahora que la funcién p(z) es continua, para ello vamos a distinguir dos casos.
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» Si f’(a) # 0 entonces por el teorema de la inversa local, sabemos que f es inyectiva en
un entorno de a, por lo que p(a) > 0, y podemos tomar un €2,. Sea z € €,, como f es
inyectiva en €),, también lo es en algiin entorno de z, y como f es continua, tenemos que

|f(z) = f(a)] — 0 cuando z — a,

por lo que para z € §2, suficientemente cercano a a

pla) = 1f(2) = fla)] < p(2) < pla) +[f(2) = fla)l,

es decir,
p(2) = pla)] < [f(2) = f(a)l,

y como f es continua, el segundo miembro tiende a 0 cuando z — a, asi que

p(z) = pla),
lo que implica que p(z) es continua en los puntos donde f(z) # 0.

» Si f’(a) = 0, usando el teorema de representacién local para funciones meromorfas (ver
apéndice para mas detalles), vemos que para z suficientemente cercano a a,

p(z) = 1f(2) = fla). (3.20)

En conclusién, la funcién p(z) es continua en todo el disco unidad. Ademads, se cumple que
p(z) < b(f) para todo z € B(0,1). A partir de ahora, trabajaremos tinicamente con funciones
f tales que b(f) < +o0.

Ahora, sea A > /3b(f) y n(z, f) la multiplicidad de f en a, es decir, el orden de a como
cero de la funcién z — f(z) — f(a). Definimos X\ por:

Alf ()] cuando f'(z) #0
Az) = 4 2VOGTA? = p(2) rezo (3.21)
1 J]f"(z)]
TV cuando n(z; f) > 2.

La condicién implica que A es continua, veamos esto: en los puntos donde f'(z) # 0,
la expresion de A(z) depende de f'(z) y p(z), y ambas funciones son continuas. El problema
viene en los puntos donde f’(z) = 0. Supongamos entonces que f’(a) = 0y que la multiplicidad
de f en a es 2, en este caso

f(z)=fla)+ fTw(z — a)? + términos de orden superior

por lo que cerca de a
= f'(2) = ["(a)(z — a).
w f(2) = fla) = @(z — a)?, y entonces por ([3.20)

o(2) = 172) — f(@) = L2 —ape

Ahora si sustituimos el desarrollo asintético de la expresiéon de A(z) cuando z — a tenemos

Alf(a)llz—al 1 [1f"(a)]

Az) ~ = /=
20/, — ) A2 AV 2
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que como podemos observar es el valor de A(z) para los puntos donde f/(z) = 0, por tanto A(z)
es continua.

Soporte para A. Supongamos que f'(a) # 0. Sea b un punto de C(f(a), p(a)) que no sea
la imagen mediante f de un punto frontera de €2, en B(0,1), donde f tiene multiplicidad 1.
Definamos p,(z) simplemente como |f(z) — b| para z € €,, obsérvese que

pa(2) = p(2), z € (.
A continuacién definimos A, (z) como

AL
2 pa(z> [A2 - pa(z)]

(3.22)

Observamos que p,(a) = |f(a) — b| = p(a), y que por la desigualdad triangular

pa(2) = [f(2) = b < |f(2) = fa)| + | f(a) = b] < b(f) + b(f) = 2b(f),

es decir,
pa(z) < 2b(f).

Dado que la funcién t — t1/2(A?—t) es creciente en {0 < t < 4"}, se deduce que A, (z) < A(2)
para z cercanos a a. Aplicando el lema de esta seccién, obtenemos que u,(z) = log Ay(2)
verifica Aug(a) = 4[\.(a)]®. Dado que también se cumple que \,(a) = A(a) y que A\,(z) < A(2)
en un entorno de a, concluimos que A\, soporta a A en a.

En consecuencia, se verifica que la funcién A cumple las hipdtesis del teorema es decir,
que en cada punto z € B(0,1) con A\(z) # 0, existe una funcién A, que la soporta. Por tanto,
podemos aplicar dicho teorema a A.

Del hecho de que A\(0) < 1, y dado que f/(0) =1y p(0) < b(f), tenemos que

A< 2v/p(0) [42 — p(0)] < 2v/B(F) [4* — ()]

Asi, dejando que A — /3b(f), obtenemos

3b(f) < 4[b(f))*?

y por lo tanto,

Lema 3.11. Se puede establecer la conclusién de que > V3 /4 con la extensién de Ahlfors
del Lema de Schwarz sin tener que preocuparse de los puntos excepcionales. Es suficiente con
estudiar los puntos donde la multiplicidad es 2.

Demostracion.

Para establecer que 3 > /3 /4, basta con aplicar el teorema a la funcién A\(z) en ,
sin necesidad de preocuparse por los puntos donde no se puede construir explicitamente una
funcion de soporte.
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Recordemos que la funcién A(z) esta definida de la siguiente forma:

Alf'(2)]

Az) = 2v/p(2) [A2 — p(2)]
1 /1)

cuando f'(z) # 0,

_— cuando f'(z) =0y n(z; f) > 2,
A 2

por lo que el problema viene en los puntos donde f’(z) = 0 y la multiplicidad de f en z es
mayor o igual que 3, ya que para estos puntos no se ha definido explicitamente una funcién
de soporte A,. Sin embargo, por el principio de los ceros aislados tenemos que estos puntos de
multiplicidad mayor o igual que 3 forman un conjunto sin puntos de acumulacién en B(0, 1).

Es por esto que el conjunto de puntos donde A(z) no esta soportada cumple la hipétesis del
teorema [3.9] que permite excepciones en un conjunto sin puntos de acumulacién.

Por otra parte, en todos los demés puntos de B(0, 1) donde A(z) # 0, se ha construido una
funcién A\, que verifica:

- )‘a(a) = )‘(a)v
= A\, (2) < A(z) en un entorno de z,

)
» Alog A\y(2) = 4[\e(2)]? en un entorno de z,

es decir, una funcién \,(z) que soporta a A\(z) en a.
En consecuencia, se cumplen todas las condiciones necesarias para aplicar el teorema [3.9]
lo que nos permite obtener la desigualdad

Az) < L

STo R
y con ella, podemos concluir que
R ——
1—[of?
con lo que unido al hecho de que f'(0) =1y p(0) < b(f), podemos razonar de la misma forma

que en (3.4), y concluir que

gz

=%
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Capitulo 4

Aplicaciones en los desarrollos
asintoticos

Con este capitulo se pretende mostrar la aplicacién de los Teoremas de Phragmén-Lindelof
en el estudio de resultados relacionados con los desarrollos asintéticos. La dindmica que se
seguird serda como en los anteriores; primero se demostraran una serie de resultados tutiles para
poder finalizar con el resultado principal de este capitulo. Como mayor fuente de informacién
para la realizacién de este capitulo se ha usado el articulo de A. Fruchard y Ch. Zhang [5].

Comenzamos este capitulo con una serie de definiciones y nociones bésicas, y algunas he-
rramientas que vamos a usar.

Una superfcicie de Riemann es una variedad compleja unidimensional, y es natural consi-
derarlas en diversas situaciones, entre las que destaca la posibilidad de extender el dominio de
funciones complejas multivaluadas (como el logaritmo o la raiz cuadrada) para que se vuelvan
funciones monovaluadas sobre esa nueva superficie. Localmente se comporta como un abierto
del plano complejo, pero globalmente puede tener una estructura mucho mas complicada. Para
nuestros intereses no necesitamos toda la maquinaria clésica, sino inicamente manejar la de-
nominada superficie de Riemann del logaritmo. Como es sabido, la funcién logaritmo complejo
se define como

log z = In|z| +iarg(z)

y esta funcién es multivaluada ya que el argumento arg(z) estd definido como
arg(z) =60 +2mn, neZ.

Para la construccién de la superficie de Riemann del logaritmo, vamos a imaginar copias
de C, sin el punto 0 (el origen) y a las que se las realiza un corte por el eje real negativo, una
vez para cada entero n € Z. A cada una de estas copias vamos a llamarla hoja de la superficie.
Estas hojas se pegan de la siguiente manera:

» La rama principal del logaritmo corresponde al intervalo 6 € (—m, 7).
= Cuando cruzas el eje real negativo, se pasa de una hoja a la siguiente.

Esto crea una especie de hélice infinita o espiral logaritmica infinita: al dar una vuelta completa
alrededor del origen en sentido positivo, subes una hoja en la hélice.

La superficie de Riemann del logaritmo es, por tanto, una cubierta helicoidal infinita del
plano complejo sin el origen.
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Figura 4.1: Superficie de Riemann de log(z)

Los puntos de dicha superficie son pares (p,f0) € (0,00) x R, que representan al nimero
complejo z = pe? € C\ {0}. La funcién logaritmo definida como antes es una funcién ahora
univaluada, pues cada punto de la superficie, que vamos a denotar como C*, lleva asociado un
unico “argumento”.

A continuacién vamos a ver qué es un sector.

Definicién 4.1. Dado p, «, f como ntmeros reales que cumplen que
p>0 v O0<a<p,
definimos el sector abierto S(«, 8; p) como:
S(e, Bip) ={z € C" : 0<|z| <p, arg(z) € (a, B},
y el sector cerrado S(a, 3; p) como:
S(avBip) = {2 €T+ 0< |2 <p, arg(2) € [o, A}

En el caso de que p = 1, simplemente usaremos la notacién de S(«, ). Y llamaremos
direccion de S(a, B;p) a un elemento 6 del intervalo (a, f3).
4.1. Desarrollos asintéticos

Dada la serie de potencias formal con coeficientes complejos

f= Zanz" e C[[#]]

n=0

y un numero natural N € N, denotamos por f;v la suma parcial de orden (N —1) de f , es decir:
N-1
v = Z an2".
n=0
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Definicién 4.2. Sea ahora S := S(a, 8;p) un sector, € («, ) una direccién de S y f una
funcién analitica en S. Diremos que f posee un desarrollo asintdtico en la direccion 6 si, para
todo N € Ny todo z € S con arg(z) = 6, se cumple que

f(z) = fn(2)| < CylzlY

donde Cl es una constante mayor que 0 dependiente de N.

Definicién 4.3. Si f posee f como desarrollo asintético no solo en una direccion fija, sino
uniformemente en todo el sector S(«, 5; p), se dice que f posee f como desarrollo asintdtico en
el sector S(a, B;p).

Definicién 4.4. Si ademas las constantes C'y pueden elegirse de la forma
Cy = CAVN!

con constantes C'y A mayores que 0 e independientes de IV, entonces diremos que f admite un
desarrollo asintotico Gevrey de orden 1.

Definicién 4.5. Si estamos en el caso de un desarrollo asintético Gevrey de orden 1 en la
direccion 6, entonces dado un numero R > 0, si para todo § > 0 la constante A anterior puede
elegirse de la forma

1
A=—+6
R-i—

diremos que la funcién f posee un desarrollo asintotico Gevrey de orden 1 y de tipo R en la
direccion 6.

Estas definiciones se han adaptado al caso complejo desde el caso real. En la teoria asintética
compleja, usualmente se consideran desarrollos asintéticos en sectores abiertos. El objetivo de
esta seccidn es establecer un vinculo entre los desarrollos asintoticos en una direccién o en todo
un sector utilizando el Teorema de Phragmén-Lindeldf para un sector (teorema [2.3).

4.1.1. Desarrollos asintdticos nulos

El siguiente lema sera 1til para extender la existencia de desarrollo asintético nulo en una
sola direccién a todo un sector.

Lema 4.6. Sea f analitica en el sector abierto S(a, 3) y continua en el sector cerrado S(a, 3)
(ambos de radio 1). Supongamos que para todo z € S(«, [3), se cumple que

f(2) <1, (4.1)

y que existen C' > 1y A > 0 tales que para todo z € S(«, 8) con arg(z) = a, se tiene que
f(2)] < Ol (4.2)

Entonces para todo z € S(a, 3), denotando 6 = arg(z), se cumple que

()] < CFe ] 7R

Demostracion.
Consideramos la funciéon g dada por

g(z) =exp (ia% + (b —ic) ln(z)) f(z)
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donde
A A3 In(C)
a:=— , bi=———, ci=——t,
p—a f—a f—a
Tenemos que g(z) estd bien definida y es continua en el sector cerrado S(a, B), y es analitica
sobre S(a, ), ya que es composicion de funciones continuas en S(a, §) y analiticas en S(a, ().

Si ahora tomamos médulos en g(z),

. (In(2))2 .
_ ia—=— (b+ic)In(z
l9(2)] = |2 eCHIRE | £(2)],
desarrollamos cada parte por separado
- n(ey? i } ) iaf 2@ _arg’(2)
ele—r— | = 67(ln|z\-i—zaurg(z)) _ e—a(ln|z|arg(z))€ 2 2 _ |Z|—aarg(z)7
‘e(b+ic) ln(z)} _ |e(b+ic)(ln\z|+i arg(z))l _ ‘Z’befcarg(z)

Y

y finalmente lo juntamos, tenemos que
|9(2)| = |2 B e £ ()],
Teniendo ahora en cuenta las definiciones de a, b y ¢ y llamando 6 = arg(z),
O=BX o
lg(2)] = [z] 7= CF==]f(z)]. (4.3)

Con esta igualdad vemos que g tiene un crecimiento sub-exponencial cuando z tiende a cero
en S(a, B). Esta condicién es equivalente a la condicién considerando que en vez de tender
T — 00, en este caso % — 00.

Vamos a ver ahora la acotacién de |g(z)| en 0S(a, B):

» Si arg(z) = a sabemos que se cumple (4.2)), entonces
9(2)] < |2 ACFEC)e| = CFF = 0,
» Siarg(z) = 3, entonces, como f es continua en S(a, 3) y se cumple (&.1)),

9(2)] < C7=| f(2)| < CF°s.

. 6
» Finalmente, si |z| = 1, como f es continua en S(«, ), se cumple (4.1)), y como 0 — C7-=
es una funcion creciente, tenemos que

9(2)] < CFs.

8
Por tanto podemos afirmar que en 9S(«, ) se cumple que |g(z)| < CF-=.
Estamos entonces en condiciones de aplicar el teorema de Phragmén-Lindel6f para un angulo
(teorema y deducir que para todo z € S(a, 8) se cumple que

9(2)| < C7a,

y si ahora aplicamos la definicién de g(z),

(6—8)A -0 (B=6)A

BN o B 80
9(2)| = [2] 7= CF==|f(2)] < CF= = [f(2)] < OF=az] 5o,

que es lo que queriamos demostrar.
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U

Ahora, en lo que respecta a los desarrollos asintéticos en el sentido en el que los hemos
descrito en este capitulo, obtenemos inmediatamente del lema anterior, el siguiente resultado.

Proposicién 4.7. Sea f una funcién analitica y acotada en un sector abierto S(«, 3;p) con
a < fByp>0.Sif admite un desarrollo asint6tico nulo en una direccién 0y € (o, 3), entonces
también admite un desarrollo asintético nulo en todo el sector S(«, 5; p).

Tradicionalmente se ha denominado funcion plana a aquella que admite un desarrollo
asintético nulo. Y se denomina funcidn exponencialmente plana (de orden 1) de tipo R en
la direccién 0y, o simplemente funcion exponencialmente plana en la direccion 6y, si cuando z
tiende a cero en la direccién 6y, para todo d > 0, se cumple que

fE=0 ().

o lo que es lo mismo, si existe una C' > 0 de forma que cuando z tienda a cero en la direccién
0, se tenga que

F(z)] < Cem

Nota. El valor R dependera de la direccién 6, por eso normalmente se le denotard R(6), e
indica la velocidad de decaimiento exponencial, es decir, cuanto mayor es R(f), méas rapido
decrece | f(z)| cuando z — 0.

El siguiente resultado que vamos a ver se considera a menudo como una variante del Teorema
de Phragmén-Lindelo6f.

Lema 4.8. Sea f continua y acotada en el sector cerrado S(a, 3). Supongamos que 8 —a < 7
y que f es exponencialmente plana de tipo R(«) > 0 en la direccién « (respectivamente de tipo
R(5) > 0 en la direccién ). Entonces, para toda direccién 0 € («, 3), f es exponencialmente
plana de tipo R(6) dado por

R(B)sin(fd — o) — R(a) sin(0 — B)

R(6) = sin(f — «) '

Demostracion.
Para comenzar la demostraciéon vamos a definir C' como la circunferencia del plano complejo
que:

» Si R(B) > 0, pasa por los puntos 0, R(a)e’, vy R(3)e'.

(e

» Si R(B) =0, es tangente a la direccién § en el origen y pasa por R(a)e™.

Im(2)

R(a)e™
Re(z)

(a) C cuando R(5) > 0. (b) C cuando R(B) = 0.

Figura 4.2: Definicién de C' en funcién de R(f).
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Sea a € C de forma que el segmento que tiene por extremos a y el origen, sea un didmetro
de dicho circulo C. Observemos que este punto a depende tnicamente de R(«), R(S), o'y [.
Vamos a definir ahora una funciéon auxiliar

fa(2) = f(2)e”,

la cual estd definida y es analitica en el sector abierto S(a, 3), y es continua en S(«, ), debido a
que es composicién de funciones que estan definidas y son analiticas en S(«, 3) y son continuas

en S(a, ).
Por hipdtesis sabemos que:

= Si z tiende a cero en la direccién «, se tiene que

—R(a)

[f(2)] < Ce

= Si z tiende a cero en la direccién [, se tiene que

—R(B)

F(2)] < CeF

Queremos por tanto estimar el valor de |f,(z)| en estas direcciones. Sea z = re®, entonces
—10

[fa(2)] = |f(2)le™

y si sustituimos ahora 6 por «, por construccién geométrica podemos garantizar que |a| cos(arg(a)—
«) es mayor o igual que R(«) + ¢ para un £ > 0, por lo que tenemos que

lal o5 (arg(a)—
|:‘f(z)‘.er (g()9)7

la] R(a) R()+ e
e

|fa(2)| — |f(z)| . BTCOs(arg(a)_e) < Oe_Te

El mismo argumento se aplicaria en la direccién de 3, por lo que concluimos que f, estd acotada
en el borde del sector S(a, 3).

Como 8 — a < m, el sector tiene apertura estrictamente menor que 7, esto unido a que f,
es analitica en el interior del sector, continua y acotada en el borde, y su crecimiento es sub-
exponencial, nos permite aplicar el teorema de Phragmén-Lindelof para un sector y deducir que
fa esta acotada en todo el sector.

Para concluir con esta demostracion vamos a calcular mas exactamente la cota, para ello
recordemos que

la]

[fa(2)] = |f(2)] - e contersl@=0),

entonces

la]

() = [falz)] e eostorsr=e),

Pero por construcciéon geométrica, tenemos que el valor de |a| cos(arg(a) — 0) es

R(B)sin(f — o) — R(«) sin(f — 5)
sin(f — «) ’

con lo que concluimos la demostracién.
O

A continuacién, se va a enunciar una versién mejorada del Lema de Watson, que esta presente
en el articulo de A. Fruchard y Ch. Zhang [5] y cuya demostracién excede los propésitos técnicos
de este trabajo. Esta version es la que sigue.

Pedro Cidoncha Molina 62



CAPITULO 4. APLICACIONES EN LOS DESARROLLOS ASINTOTICOS

Lema 4.9 (Lema de Watson). Sea f una funcién analitica y acotada en un sector suficien-
temente grande (de apertura mayor a 7), y exponencialmente plana sobre las direcciones de
ambos bordes. Entonces f es idénticamente nula.

Este resultado es una herramienta crucial en al andlisis asintético complejo ya que permite
concluir que una funcién es idénticamente cero usando solo informacién en el borde del dominio.
A continuacién vamos a enunciar y demostrar otro resultado obtenido gracias al lema [1.8]

Lema 4.10. Sea f continua y acotada en el sector cerrado S(a, 3). Supongamos que 3 —a > 7
y que f es exponencialmente plana de tipo R > 0 en la direccién «. Entonces f es idénticamente
nula.

Demostracion.

Para simplificar, vamos a considerar el caso mas sencillo en el que la apertura del sector es
exactamente 7, y centramos el sector alrededor del semieje real positivo mediante una rotacién.
Asi, sin pérdida de generalidad podemos suponer que

s
a=—  B=7,

es decir, que estamos trabajando en el sector S(5*, 7).

Por hipdtesis, f es continua y acotada en el sector cerrado ?(_7”, ), y ademas es exponen-
cialmente plana de tipo R > 0 en la direcciéon o = 5*.

Nuestro objetivo es aplicar el Lema de Watson (lema 7 que requiere que la funcién sea
exponencialmente plana en ambas direcciones del borde del sector. Pero en nuestro caso, solo
conocemos el comportamiento de f en una de las dos direcciones.

Para poder avanzar, nos restringimos al subsector S(5,0), contenido dentro del sector
original. Nos encontramos que no tenemos informaciéon sobre el comportamiento de f en la
direccién 0, pero como f es acotada en el sector cerrado por hipotesis, podemos tomar por
convenio que R(0) = 0, esto no significa que f sea exponencialmente plana de tipo 0 en esa
direccién, simplemente establecemos este valor para poder aplicar el lema [4.§|

De la aplicacién del lema deducimos que f es exponencialmente plana en todas las
direcciones entre —m/2 y 0, en particular, deducimos que en la direcciéon —7 /4, f es plana de

T a(R) -t et () 8

4 V2

4

Con esta informacién definimos ahora la funcién auxiliar

_ (1+)R

9(z) = f(z)e” =

Esta eleccion estd motivada por la necesidad de construir una funcién que sea plana en
ambas direcciones del borde, lo que permitird aplicar el Lema de Watson. El factor exponencial
estd disenado para cumplir exactamente esta funcion:

= El exponente DR ene parte real positiva en todo el sector S(

2z
_(+HhR . . .
que e 2= decrece fuertemente a lo largo de todas las direcciones del sector, en particular

en /2, donde no controlamos el comportamiento de f.

—T T

=, %), lo cual garantiza

= Al mismo tiempo, este factor no destruye el decaimiento que ya tiene f en —m/2 ni en
—m/4, gracias a que también decrece en esas direcciones y a que el propio f ya decrece
suficientemente alli.
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T T
- 272
cerrado S(5, ), y plana en las dos direcciones de los bordes. En estas condiciones podemos

aplicar el Lema de Watson a g(z) y concluir que g es idénticamente nula en el sector. Como el
. 4 _Q+0)R .,
factor exponencial e 2= no se anula en ningin punto, se deduce que

En resumen, la funcién g(z) es analitica en el sector S( ), continua y acotada en el sector

Combinando los lemas y deducimos la siguiente proposiciéon

Proposicién 4.11. Sea f una funcién analitica y acotada sobre un sector abierto S(«, 3; p)
con o < By p>0.Se supone que f admite un desarrollo asintético nulo de Gevrey de orden
1 y de tipo R > 0 en una direccién 0y € («, 5). Entonces:

= Sif—a>m f esidénticamente nula.

» Si f—a < 7, en cada direccién 0 € («, 0] (respectivamente 0 € [y, 5)), la funcién f
admite un desarrollo asintético nulo de Gevrey de orden 1y de tipo R(6), dado por

RM respectivamente R s'1n(9 —0)

k(9) = sin(6p — a)’ sin(6y — B)

4.2. Transformada de Borel-Laplace

Sea R > 0, consideremos una serie de potencias formal

f(z) = Z 2"

n=>0

y supongamos que es Gevrey de orden 1y de tipo R, es decir, que para todo ¢ > 0 existe una
constante Cs > 0 tal que

1 n
la,| < Cs (R——M) n! para todo n € NU {0}.

Sea
R

T 140R

Rs

La serie entera

Bi(t) =Y (%)

nz

a la que llamamos transformada de Borel formal de f, converge en todo disco B(0, Rs) de
centro 0 y radio Ry < R, por lo que coverge en el disco de Borel B(0, R). A la suma de esta
serie la denotaremos por ¢.

Definicién 4.12. Sea z € B(0, R) arbitrariamente fijado. Para todo z € C*, definimos la
transformada de Laplace truncada en z de ¢ como

L.o(x) = /OZ o(t)e /" dt.
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Lema 4.13 (Teorema de Borel-Ritt-Gevrey). Sean R > 0, z € B(0,R) y f(:v) serie de potencias
Gevrey de orden 1 y tipo R,
flz) = Z apr" .
n=0

La funciéon f = L,y definida anteriormente admite a f como desarrollo asintotico Gevrey de
orden 1 sobre el sector S de apertura 7 y centrado en la direccién de z,

S:=8 (arg(z) - g, arg(z) + g) :

Ademas, en toda direccién 6 de S, el tipo R(f) de ese desarrollo es de la forma
R(0) = |z| cos(0 — arg(z)).

Demostracién.
Sin pérdida de generalidad vamos a suponer que arg(z) = 0, es decir, que z = r > 0
(aplicando una rotacién a x si es necesario). Para todo N € N fijo, definimos

como la N-ésima suma parcial de ¢. Vamos a ver la relacién de esta suma parcial con la suma
parcial N-ésima de f(z).

o o N—1 N-1 o
/ (t) —t/x dt / Z an m —t/x dt Z an m —t/x dt
e = —t"e = — e
0 . 0 p=0 n! n=0 n! 0

Hacemos ahora el cambio de variable u = ﬁ
/ the T dt = / u"z"e "x du = 2" / u"e " du = 2" T(n +1).
0 0 0

Es bien sabido que I'(n + 1) = n!, por lo que

N-1 a oo N-1
S [Crea= S et = jvia
n=0 = “0 n=0

entonces

fr(z) = / pn(t)e™ " dt.
0
Vamos ahora a dividir la funcién f(x) en tres partes,
fla) = [ etwe it = [ (olt) — en(pe s [ pxtetear
0 0 0
— [0 - exttne = at+ fula) - [ exte e at
0 T

y llamaremos
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Como f (z) es Gevrey de orden 1 y tipo R, entonces

N
a t
o) —en(D] < 01 |2 1¥ < ¢ (—) . parate 0]

siendo C; y C independientes de N. Debido a esto y a que r € (0, R) obtenemos que para todo

res
o)l = [ lott) —ewtolle i ar < ¢ [ Lofeea
teniendo ahora en cuenta que si § = arg(x) entonces Re (| ‘> | T €O8 0,
" tN —t/z " tN cosG‘
C [ —le"ldt=C Ne\ dt
o T o T
y haciendo ahora el cambio de variable u = £2¢ t = M, dt = 2L du, tenemos que
|z| cosf cosf

cos 0

r 4N N+1 r
t t eosf Clx ] -~
C | —ell " dt = —| | uNe " du
0

g ™ N (cos @)N+1

C|I|N+1 00 N C|I|N+1
< —— Ydu = ————T(N+1
T’N(COS @)N-}—l /O u-e u T’N(COS 9)N+1 ( + )

Claf ¥ 2] o]\
rN(cos §)N+1 C’cos 7 rcosf

Por otra parte, para t > r, tenemos que

- Sl B () ¢ (B57) €)" <o)

con la constante D independiente de N pero pudiendo depender de R. Un célculo idéntico al
anterior para la estimacién de |0y (z)| demuestra que para todo z € S

lon(z)| < rD(N — 1)! (ﬂ)N

rcosf

Por lo tanto , para todo x € S, siendo 6 = arg(z), se tiene que
£ (@) = fu(@)| = [on(x) = on(@)] < on ()] + [ow(@)]
el (el YD (el
cos& rcosf N rcosf

(o2 (2 T gm (LY
N rcosf N “\rcosf ) '’

donde K > 0 es independiente de z y de N, aunque puede depender de R. En otras palabras,
f admite a f como desarrollo asintético Gevrey de orden 1 y tipo rcos() en cada direccién
0 € (5,%) de S, que es lo que se queria probar.
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4.3. Vinculo entre la teoria asintética real y compleja

Finalmente, con todos los resultados anteriores, en esta seccién llegaremos a la demostracion
del teorema objetivo de este capitulo.

Teorema 4.14. Sea f una funcién analitica y acotada en un sector abierto S := S(«, 3; p) con
0<a<pf,ysea

fi= Zanx” € Cl[z]]

n=0

una serie de potencias formal.

1. Si existe una direcciéon de S en la cual la funcién f admite f como desarrollo asintético,
entonces f es un desarrollo asintotico de f en el sector S en su totalidad.

2. Se tiene el mismo enunciado en el caso de un desarrollo asintético de Gevrey de orden 1.

Mas precisamente, si f admite a f como desarrollo asintético de Gevrey de orden 1 y de
tipo R(6p) en una direccién 6y € (a, 3), entonces en toda direccién  de S, f admite f como
desarrollo asintético de Gevrey de orden 1y de tipo R(f), donde R(#) se define de la siguiente
manera. Siendo

a’zmiﬂ(@o,a+g> y 5’:méx<90,ﬁ—g>,

se tiene:

R(0p) 20— i e (o, o],

sin(a/ —a)?
R(0) = { R(6,), sife o, ],
R(00) Sty si0 € (8.9

Nota. Se puede reemplazar la hipdtesis de acotacién por la de acotacion asintotica en el
siguiente sentido. Una funcién analitica en un sector S = S(«, 5;p) se dice asintéticamente
acotada en S si es acotada en todo sub-sector propio de S, S" = S(«/, 5’5 p'), con

a<d <pf<p y 0<p<p

El teorema muestra que el hecho de poseer un desarrollo asintético (respectivamente Gevery
de orden 1) en una direccién y ser asintéticamente acotada en el sector implica poseer un
desarrollo asintético (resp. Gevrey de orden 1) en todo el sector.

Nota. Graficamente, la aplicacién (a, 3) — C, 0 — R(6)e? tiene como curva representativa la
reunion de tres arcos de circunferencia: uno centrado en 0 con radio R(6p), el segundo pasando
por los puntos 0 y R(6y)e’ y tangente en la direccién a, y el tercero definido de la misma
manera reemplazando « por Sy o por 3.
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Figura 4.3: Representacion grafica de la curva de R(6)

Demostracion.
Tomamos para empezar un w € (0, ) fijo, por el Teorema de Borel-Ritt-Gevrey (lema 4.13)

existe una funcién fj analitica en S(a —w, f — w; p) que admite a f como desarrollo asintético
en la direccién 6.

La funcién diferencia g := f — fo, que es analitica y acotada en S = S(«, 3; p) por ser resta
de funciones analiticas y acotadas en S, admite entonces un desarrollo asintético nulo en la
direccion 6.

Podemos en estas condiciones aplicar la proposicién 4.7, a la funciéon g y deducir que g
admite un desarrollo asintético nulo en todo el sector S, lo que implica que f admite a f como
desarrollo asintético en todo el sector S.

Supongamos ahora que la funcién f posee a f por desarrollo asintético Gevrey de orden 1
y de tipo R(f) en la direccién 6y, en este caso la serie formal f es Gevrey de orden 1 y de tipo
R(0y). Al igual que antes, denotaremos como ¢ la suma de la transformada de Borel de f en
B(0, R(0)). Se distinguen aqui dos casos diferentes, un caso en el que la transformada de Borel,
B f , se puede extender en un sector suficientemente amplio, y otro donde no, y se requiere una
justificacién indirecta:

= Caso de los sectores pequenos. En este caso se cumple

™ T
O — =< a<by<pB<by+ =
2 2
y por tanto sea r € (0, R(6p)) arbitrariamente fijado. Segtin el lema [4.13} si z = re®, la
funcion £,¢ posee la funcion f como desarrollo asintético de Gevrey de orden 1y de tipo
rcos(f — 0p) en las direcciones 6 de S, ya que S estd incluido en
T ™
S<0 Ty —;+oo>
0T
La funcién diferencia g = f — fy posee por hipdtesis el desarrollo asintético Gevrey nulo
de orden 1 y de tipo r en la direccién 6y, por lo que también lo es en cada direccion
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0 € (o, ) (respectivamente con 6 € [0y, 5)) de S, y de acuerdo con la segunda parte de
la proposicién 4.11

e 5if € (o, b, entonces

~sin(f — «)
k() = sin(6p — )
e Sif € [y, ), entonces
~sin(0 — j)
0= i)

Debido a que
R(0) < rcos(6 — b))

se obtiene que f posee a f como desarrollo asintético de Gevrey de orden 1y de tipo R(6)
en cada direccién de S. Dado que el niimero r puede elegirse arbitrariamente cercano a
R(6p), la segunda afirmacién del teorema queda demostrada en este caso.

™

= Caso general. Sea ¢ € 0,5

dadas por

|, se consideran las direcciones (0;)_i<j<m (I,m € NU {0})

9]' = 00 + j€
y tales que

H_l—g<a<0_l y 9m<6<0m+g.

Procediendo de la misma manera que antes, se obtiene sucesivamente que f posee f por
desarrollo asintético Gervery de orden 1 en cada una de las direcciones (0;)_j<j<m ¥y, por
lo tanto, en todo el sector S.

Solo quedaria demostrar que, para toda direccion 6 € [a+ 7, 0] U [0y, 8 — 5], el tipo R(6)
del desarrollo es superior o igual a R(6).

Supongamos que 0 € [0y, 3 — 7], ya que en el caso contrario es similar. A cada N € N, se
le asocian las N direcciones

(0 —00)k

QN,kI:QO—F N COHI{?:L...N.
Si tomamos N > @ tenemos que
_ (0 —6o)(k+1) (6 — o)k (6 —6o) T
9N,k+1 —90—|— N —90+ N + N < 9]\[7].;—1' 9

por tanto Oy i1 € (Ong, Ong + 5), paratodo k =1,...,N — L.

Por un razonamiento idéntico al que se hizo en el caso de los sectores pequenos, se obtiene
sucesivamente que el tipo R(Ay ) del desarrollo f para la funcién f en cada direccién
On 1 satisface

R(Onj+1) = R(On ) cos(Onpr1 — On )

6—06¢
N

y como Oy i1 — Ongp = , esto nos da que

6—6
R(Onj41) = R(On ) cos ( ~ 0) ,

y aplicando esta misma desigualdad N veces concluimos que

R(0) = R(On.n) = R(6)) (cos (9 ;VQO))N .
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CAPITULO 4. APLICACIONES EN LOS DESARROLLOS ASINTOTICOS

Y haciendo tender N hacia infinito, se obtiene que
R(0) = R(6h)

lo que termina la prueba del teorema.
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Apéndice A
Algunos resutados clasicos

Este apéndice incluye ciertos resultados que han sido ttiles en un momento u otro en nuestros
razonamientos, cuya demostracién es conocida (por haberse presentado en la asignatura de
Variable Compleja del Grado en Matematicas), y cuyo enunciado nos ha parecido conveniente
recordar para facilitar la lectura del trabajo.

El primer resultado es una consecuencia directa del teorema del médulo méximo, y dice lo
siguiente.

Lema. Sea U un abierto conexo de C y f = u + 2v una funcién holomorfa en U. Entonces:

= Si la parte real u, o la parte imaginaria v, de f presentan un extremo local (maximo o
minimo) en un punto de U, entonces f es constante en U.

= Supongamos que ademas que U es acotado y f continua en U. Entonces, u y v alcanzan
sus extremos (maximo y minimo) absolutos en la frontera de U.

El segundo de estos resultados es el Lema de Schwarz, resultado que al igual que el primero,
también es consecuencia del teorema del médulo maximo.

Lema (Lema de Schwarz). Sea f : B(0,1) — C holomorfa tal que f(0) =0y |f(2)| < 1 para
todo z € B(0,1). Entonces:

1. Para todo z € B(0,1) se tiene que |f(z)| < |z|, y |f(0)| <1

2. Si para algin z € B(0,1) \ {0} se tiene que |f(z)| = |z|, o si | f'(0)] = 1, entonces existe
c € Ccon |c|] =1y tal que f(z) = cz para todo z € B(0, 1).

El siguiente resultado es el teorema de representacion local para funciones meromorfas, que
se enuncia de la siguiente manera.

Teorema (Teorema de representacién local de funciones meromorfas). Si f es una funcién
meromorfa en B(a, R) y no constante, entonces existe una funcién g definida en un dominio €2,
con a € Qy Q C B(a, R), que satisface las condiciones siguientes:

1. g es analitica en €2 y es inyectiva.
2. g transforma 2 en un disco centrado en 0, con g(a) = 0.

3.
F2) = {f(a) +[g(2)"@D], zeQ, cuando f(a) # oo,
[9(2)]7™@H 2 € Q\{a}, cuando f(a) = oo,

donde n(a, f) (respectivamente, m(a, f)) representa el orden de a como cero de f(z)— f(a)
(resp. el orden de a como polo de f).
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APENDICE A. ALCUNOS RESUTADOS CLASICOS

A continuacién se muestra un resultado bien conocido, pero que cabe recordar para el
desarrollo de este trabajo, el Teorema de la funcién inversa.

Teorema. Sean U un abierto de C y f una funcién holomorfa en U. Entonces, si zg € U y
f'(z0) # 0, existen un entorno abierto V' de zy y un entorno abierto W de f(z), tales que:

» f'(2) # 0 para cada z € V.
= f aplica biyectivamente V en W.

» La funcién inversa f=!: W — V es holomorfa en W y su derivada viene dada por

(FY(f(z) = f’%z) para cada z € V,
o lo que es lo mismo,
(f Y (w) = f’(f—ll(w)) para cada w € W.
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