Lipids: de novo synthesis, oxidation, and hormonal regulation

Metabolismo y Enfermedades Metabólicas Máster en Investigación Biomédica Universidad de Valladolid

Dr. David Balgoma

Instituto de Biomedicina y Genética Molecular (IBGM)
Universidad de Valladolid

Creative Commons License: CC BY-NC-SA 4.0. Attribution should be made to David Balgoma. Modified from material from Prof. Jesús Balsinde, www.balsinde.org.

"Lipids may be broadly defined as hydrophobic or amphiphilic small molecules; the amphiphilic nature of some lipids allows them to form structures such as vesicles, multilamellar/unilamellar liposomes, or membranes in an aqueous environment."

Albert Lehninger

Lipid Categories

Fatty acyls

Fatty acids and conjugates

Eicosanoids

Docosanoids

Fatty Alcohols

Sterols

Cholesterol and its esters Steroid hormones

Polyketides

Linear Polyketides Aflatoxins

Glycerolipids

Monoradyglycerols Diradylglycerols Triradylglycerols

Sphingolipids

Sphingoid bases Ceramides Phosphosphingolipids Glycosphingolipids

Saccharolipids

Acylaminosugars

Glycerophospholipids

Glycerophosphocolines Glycerophosphoethanolamines Glycerophosphoinositols

Abundance Variability

Balgoma et al. Mol. Nutr. Food Res. 2013, 57, 1359–1377

Lipids are hydrophobic or amphipathic small molecules that may originate entirely or in part by carbanion-based condensations of thioesters and/or by carbocation-based condensations of isoprene units

Lipids are fatty acids and their derivatives, and substances related biosynthetically or functionally to these compounds

What Is a "Fatty Acid"?

<u>Fatty acid</u>: a carboxylic acid with a long hydrocarbon chain. Usually it has an even number of carbons.

<u>Fatty acid ester</u>: a fatty acid in which the carboxylic acid group has reacted with the alcohol group of another molecule (often glycerol)

What Is a "Triglyceride"?

Glycerol: common name for 1,2,3-trihydroxy-propane.

Glycerol

Triglyceride: a glycerol molecule with three esterfied fatty acid side chains. Also known more correctly as a "triacylglycerol". Stable, non-polar, hydrophobic.

Stereospecific Numbering

$$^{1}\text{CH}_{2}\text{OH}$$
OH ^{-2}C ^{-2}C H
 $^{3}\text{CH}_{2}\text{OH}$

L-Glycerol

Common Saturated Fatty Acids

Saturated FA's have <u>no</u> double bonds

Common **Unsaturated Fatty Acids**

Unsaturated FA's have at least one double bond, usually in the Z (cis) conformation

18 Carbons, 1 double bond at c9 = **Oleic** Acid (Oleate)

18 Carbons, 2 double bonds at c9 and c12 = **Linoleic** Acid (Linoleate)

More Unsaturated Fatty Acids

18 Carbons, 3 cis double bonds at 9, 12 & 15 = α -Linolenic Acid (α -Linolenate)

20 Carbons, 4 cis double bonds at 5,8,11 & 14 Arachidonic Acid (Arachidonate)

(5Z,8Z,11Z,14Z-Eicosatetraenoic Acid)

What Are Essential Fatty Acids?

- Two "Essential" FA's cannot be synthesized by humans
 - Linoleic acid (ω-6)
 - α-Linolenic acid (ω-3)
- Used in the biosynthesis of polyunsaturated fatty acid
- Must come from diet

Common Unsaturated Fatty Acids

Fatty Acid Biosynthesis

Metabolism and Energy Overview

Key Enzyme: Acetyl-CoA Carboxylase

"E" above is the enzyme acetyl-CoA carboxylase, which is conjugated to biotin.

- Acetyl-CoA Carboxylase is a key enzyme
- Converts acetyl-CoA into malonyl-CoA
 - The CO₂ is released later
 - Biotin is a cofactor
- It is the "committed step" in FA synthesis
- It is the regulated, ratelimiting enzyme in FA synthesis

Key Enzyme Complex: FA Synthase

8 Acetyl CoA Falmitic Acid + 8 CoASH

In animals, single large, multifunctional polypeptide.

The active form is a dimer

Key Enzyme Complex: FA Synthase

8 Acetyl CoA Falmitic Acid + 8 CoASH

ACP stands for Acyl Carrier Protein. (10,000 kDa, Ser 36)

Cytosolic complex of enzymes.

Steps 1 - 6 happen iteratively in a colocated complex of enzymes.

ACP** is the carrier protein that holds the carbon backbone. Contains 4'phosphopantetheine.

FA Synthesis

Palmitate

REPEAT: From step 2 using the new 4-carbon butyryl-ACP in place of acetyl-ACP in step 3

Step 6: Use another NADPH to reduce the double bond

Step 5: Remove the hydroxyl group as H₂O leaving a double bond

Regulation of FA Synthesis

Regulation occurs primarily at acetyl-CoA carboxylase, the rate limiting step

Feedback Mechanisms

- Citrate, which builds up when acetyl-CoA is plentiful, accelerates FA synthesis.
- Palmitoyl-CoA weakly inhibits FA synthesis.

Hormonal Mechanisms

- Insulin, which signals a resting, energy rich state, dephosphorylates and accelerates the enzyme.
- Glucagon, epinephrine and norepinephrine, which signal immediate energy needs, phosphorylate and slow the enzyme [via AMP -dependent protein kinase and also via cAMP-dependent PKA].

Fatty Acid Oxidation

Metabolism and Energy Overview

Naming Conventions: Palmitic Acid

Carbonyl carbon

- omega, always the last alkyl carbon
- epsilon, fifth carbon after the carbonyl
- delta, fourth carbon after the carbonyl
- y gamma, third carbon after the carbonyl
- beta, second carbon after the carbonyl
- alpha, first carbon after the carbonyl

Activate the Fatty Acid: Make Acyl-CoA

- ATGL + HSL + MGL
 - decomposes triglycerides
 - removes FA groups
 - free FA's diffuse through membrane
- Albumin
 - carries FA's to target tissue
 - FA's diffuse into tissue cells
- Fatty acyl-CoA synthetase
- adds CoA to the free FA
- Carnitine Shuttle
 - moves fatty acyl CoA into the mitochondria

Regulation of FA Oxidation

- Hormone Sensitive Lipase is activated by cAMP
- Cyclic AMP also turns off acetyl CoA carboxylase, stopping FA synthesis
- Hormones like glucagon and epinephrine increase cAMP
 - FA synthesis slows
 - Triglycerides are broken down
 - FA's enter β -oxidation faster

Location, Location, Location

- Fatty Acyl CoA is oxidized inside the mitochondrial matrix
- The carnitine shuttle moves it into the matrix
 - Free carnitine is exchanged for acyl carnitine

- Carnitine acyl transferases catalyze reactions on both sides of membrane
 - driven by concentration gradient
- CAT-1 is inhibited by high levels of malonyl CoA generated by acetyl CoA carboxylase in the pathway to Fatty Acid Synthesis.

Figure: Voet, D, Voet JG, Pratt CW (2006), Fundamentals of Biochemistry: Life at the Molecular Level, 2nd ed. Reprinted with permission of John Wiley & Sons, Inc.

β-Oxidation in a Nutshell...

One iteration of β -Oxidation:

Make fatty acyl CoA.

Step 1: Oxidize the β -carbon (C3)

Step 2: Hydrate the β -carbon

Step 3: Oxidize the β -carbon, again!

Step 4: Thiolyze α - β bond, releasing acetyl CoA

REPEAT from step 1, w/ 2 fewer carbons

Step 1: Oxidize the β-carbon

Fatty acyl CoA

∆²-trans-enoyl CoA

- Acyl CoA dehydrogenase oxidizes the β-carbon
 - 3 versions of the enzyme exist
 - Specific to short, medium and long chain substrates
- One FADH₂ is generated
 - makes 2 ATP's
- A trans double bond is created at the 2-carbon
- Product is an Enoyl CoA

Medium-chain Dehydrogenase Deficiency

- Incidence: 1 in 10,000 live births
 - More common than phenylketonuria!

Symptoms:

- severe hypoglycemia >> lethargy, coma
 - little energy from FA's
 - glucose reserves are immediately burned
- contributes to sudden infant death syndrome (10% of cases)

Mechanism:

- Normally, there are 3 separate fatty acyl CoA dehydrogenase enzymes for STEP 1 of β-oxidation
 - Specific for short, <u>medium</u> and long acyl chains, respectively
- Autosomal recessive lack of medium chain enzyme
- Treatment: Special diet and supportive care

Step 2: Hydrate the β-carbon

 Δ^2 -trans-enoyl CoA

β-hydroxyacyl CoA (S-configuration)

- Enoyl CoA hydratase adds a water molecule across the double bond
- Product is β-hydroxyacyl
 CoA
 - S- stereoisomer

Step 3: Oxidize the β-Carbon, Again!

β-ketoacyl CoA

- Beta-hydroxyacyl CoA dehydrogenase oxidizes the β-carbon again
- One NADH is created
 - makes 3 ATP's
- A ketoacyl CoA is produced

Step 4: Thiolize off Acetyl-CoA

- Thiolase splits the ketoacyl
- A new CoASH is consumed
- Acetyl CoA is released
- A new, shorter Acyl CoA remains and reenters the cycle

REPEAT with a Shorter Acyl-CoA

 Palmitoyl CoA (16 carbons) becomes myristoyl CoA (14 carbons).

Each iteration releases another acetyl CoA.

Net equation:

Palmitoyl CoA + 7CoASH + 7FAD⁺ + 7NAD⁺ + 7H₂0 yields: 8 Acetyl CoA + 7 FADH₂ + 7NADH + 7H⁺

How Much Energy?

Each palmitoyl CoA group released from a triglyceride:

- -directly produces 7 NADH & 7 FADH₂
 - which generate 21 and 14 ATP's, respectively
- -releases 8 acetyl CoA molecules for TCA Cycle
 - which each generate 12 ATP

** Recently, some have calculated energetically less ATP equivalents per NADH/FADH2 [2.5 and 1.5 instead of 3 and 2] which lowers the numbers somewhat (Berg).

Efficiency of Fat Storage

Fat has 9 kcal/gram = 9 kcal/cc

Both Carbohydrate and Protein have 4 kcal/gram = 4 kcal/3cc or 1.33 kcal/cc

Fat/(Carbohydrate or Protein) = 6x/cc!!!

Oxidizing Unsaturated FAs

Case 1: Odd Unsaturation

The GOOD News:

- Enzyme enoyl-CoA isomerase moves the double bond over 1 position.
- Oxidation process resumes

The BAD News:

- The first oxidation step is skipped
- One less FADH₂ is made
 - 2 fewer ATPs

Case 2: Even Unsaturation

The GOOD News:

- Enzymes 2,4 dienoyl-CoA reductase and 3,2 dienoyl-CoA isomerase convert the γ - δ and α - β double bonds into a single α - β unsaturation.
- Oxidation process resumes

The BAD News:

- The conversion costs one NADPH directly.
- Net effect is the loss of one NADH
 - 3 fewer ATPs

Oxidizing Odd FAs

L-Methylmalonyl-CoA

Succinyl-CoA

FA Synthesis vs FA Oxidation

Cell Location

Acyl carrier

2-Carbon Piece

β-hydroxyl acyl step

Electron carriers

Primary tissue site

<u>Synthesis</u>

Cytosol

ACP

Malonyl CoA

R-config

NAD<u>P</u>H

Liver

Oxidation

Mitochondria

CoA

Acetyl CoA

S-config

NADH, FADH

Muscle, liver

FA Synthesis vs FA Oxidation

- 1. They are **not** the reverse of one another.
 - Different subcellular locations
 - R and S isomers of β -hydroxyacyl intermediates cannot easily jump to the other pathway
 - Electrons donated from oxidation (NADH, FADH₂)
 cannot directly enter synthesis, which uses NADPH.
- 2. Separate, semi-independent pathways allow more sophisticated regulation.
 - Accelerating one pathway does not mean slowing the other.