Glycerolipids

Metabolismo y Enfermedades Metabólicas Máster en Investigación Biomédica Universidad de Valladolid

Dr. David Balgoma

Instituto de Biomedicina y Genética Molecular (IBGM)
Universidad de Valladolid

Creative Commons License: CC BY-NC-SA 4.0. Attribution should be made to David Balgoma. Modified from material from Prof. Jesús Balsinde, www.balsinde.org.

Lipid Categories

Fatty acyls

Fatty acids and conjugates

Eicosanoids

Docosanoids

Fatty Alcohols

Sterols

Cholesterol and its esters Steroid hormones

Polyketides

Linear Polyketides Aflatoxins

Glycerolipids

Monoradyglycerols Diradylglycerols Triradylglycerols

Sphingolipids

Sphingoid bases Ceramides Phosphosphingolipids Glycosphingolipids

Saccharolipids

Acylaminosugars

Glycerophospholipids

Glycerophosphocolines Glycerophosphoethanolamines Glycerophosphoinositols

Definitions

<u>Triacylglycerol</u> = a lipid in which three fatty acids are esterified by a glycerol backbone.

It is the major form of energy storage in humans. Also called a triglyceride.

Phosphatidic acid = the simplest glycerophospholipid -the precursor to other phospholipids and to triacylglycerols. Also called diacylglycerol-3-phosphate.

$$R_1$$
 R_2
 R_3

Usually a saturated FA

Usually an unsaturated FA

Glycerophospholipid = an amphipathic lipid in which two fatty acyl groups are attached to a glycerol-3-phosphate whose phosphate group is linked to a polar group

Stereospecific Numbering

L-Glycerol-3-Phosphate or sn-Glycerol-3-Phosphate

Stereospecific Numbering

$$^{1}\text{CH}_{2}\text{OH}$$
 $^{1}\text{CH}_{2}\text{OH}$
 ^{2}C
 ^{-}H
 $^{3}\text{CH}_{2}$
 ^{-}O
 $^{-}$
 $^{-}$

L-Glycerol-3-Phosphate or sn-Glycerol-3-Phosphate

Naming Conventions

Naming Conventions

Naming Conventions

Glycerol-3-Phosphate Synthesis

Biosynthesis of Phosphatidic Acid

Precursors

- Fatty acids
- sn-glycerol-3-phosphate
- sn-glycerol-3-phosphate is produced from the
 - Reduction of DHAP by glycerol phosphate dehydrogenase OR
 - Phosphorylation of glycerol by glycerol kinase and ATP
- Acyl transferases perform two successive esterifications with fatty acyl Co A to generate phosphatidic acid

Biosynthesis of Triacylglycerol

- Phosphatidic acid phosphatase removes the phosphate producing 1,2-Diacylglycerol
- An acyl transferase transfers an acyl CoA to position 3.

triacylglycerol

Biosynthesis of Glycerophospholipids

- Glycerophospholipids (or phospholipids) can be made from
 - Phosphatidic acid OR
 - Diacylglycerol
- There are many different head groups which can be linked to the C3 of glycerol by a phosphodiester bond
- Cytidine triphosphate (CTP) provides the synthetic energy in the synthesis of all PLs

Strategies for Phospholipid Synthesis

Strategy 1: Headgroup activated with CDP

to the lipid Used during the synthesis of PE and PC 1,2-diacylglycerol CMP Glycerophospholipid CMP CDP-diacylglycerol

Strategy 2: Diacylglycerol activated with CDP

Strategy 2: The hydrophobic tail of diacylglycerol is activated rather than the polar head group

Strategy 1: The polar head group is activated before being attached

Used during the synthesis of PI and PG

De novo Synthesis of PC (Phosphatidylcholine)

- PC is the most abundant phospholipid in eukaryotic cells
- · PC is also known as lecithin

De Novo Synthesis

- · Choline is phosphorylated
- Cytidyltransferase makes CDPcholine
- C3 OH groups of DAG attacks the phosphoryl groups of the activated CDP-choline displacing CMP and yielding the glycerophospholipid

De novo Synthesis of PE (Phosphatidylethanolamine)

 PE is the second most abundant phospholipid in eukaryotic cells

De Novo Synthesis

- Ethanolamine is phosphorylated
- Cytidyltransferase makes CDP-ethanolamine
- C3 OH groups of DAG attacks the phosphoryl groups of the activated CDP-ethanolamine or displacing CMP and yielding the glycerophospholipid

De novo Synthesis of PS (Phosphatidylserine)

Phosphatidylserine (PS) is synthesized from PE by a head group exchange

Bacteria can make PS de novo because they have a PS synthase which adds serine to diacylglycerol-(Strategy 1 mechanism)

Mammals do not make PS de novo because they lack this type of PS synthase

Phosphatidylserine

Interconversions of PC, PE and PS

Phosphatidylethanolamine

Phosphatidylcholine

- PS decarboxylase in the mitochondria can convert PS to PE
 - Bacteria can do this too!
- A calcium-activated transferase can exchange ethanolamine for the serine of PS
 - This reaction occurs in the ER and Golgi
- In mammals, PE can undergo 3 successive methylations to yield PC
 - This reaction occurs in the ER of liver
 - S-adenosylmethionine is the methyl donor

De novo Synthesis of PI (Phosphatidylinositol)

PI Phosphorylation

These OH groups can also be esterified with PO₃²⁻

- PI can be phosphorylated to different degrees
- PIP₂ = phosphatidylinositol 4,5-bisphosphate is very important in signal transduction
 - When a receptor G protein is activated it can mediate the cleavage of PIP₂ to DG and IP₃
 - DG activates protein kinase C which adds phosphates to certain proteins
 - IP3 mobilizes intracellular Ca and activates certain cell processes

De novo Synthesis of PG (Phosphatidylglycerol)

Cardiolipin

Present in mitochondria only.

2x Phosphatidylglycerol (PG)

Many autoimmune disorders, such as lupus, are associated with anti-cardiolipin antibodies

$$R_1$$
 R_2 R_3 R_4 R_4 R_4 R_5 R_4 R_5 R_6 R_7 R_8 R_8

Cardiolipin (CL)

Bis(Monoacylglycero)Phosphate

- Also known as lyso bis-phosphatidic acid
- Highly enriched in lysosomes and 'late' endosomes
- Important for the degradation of sphingolipids

bis(monoacylglycero)phosphate

Note that both glycerol molecules are linked to the phosphate group via C1

Ether Phospholipids: The Plasmalogens

- About 20% of eukaryotic glycerophospholipids are <u>plasmalogens</u>. They are found in varying amounts in different tissues.
- Plasmalogens contain a hydrocarbon chain linked to glycerol C1 by a vinyl ether linkage.

Most frequently, the polar headgroup is choline (C) or ethanolamine (E)

Sphingolipids

Sphingolipid Definitions

Sphingosine: a family of compounds, with the most common found in mammals being this 18-carbon amino alcohol with a trans double bond; the starting point for ceramides.

<u>Ceramide</u>: a sphingosine molecule connected to a fatty acid by an amide bond. Ceramides are the starting point for sphingomyelin, cerebrosides and gangliosides.

<u>Sphingomyelin</u>: a ceramide that has a phosphorylcholine head group in place of its hydroxyl. Present in most mammalian cells, and rich in myelin sheaths around nerves.

Biosynthesis of Sphingosine

- OH Se
 - Serine
 - 1. Serine donates 2 carbons and an amino group
 - 2. Reduction of the carbonyl to a hydroxyl
 - 3. Acyl group added to convert to a dihydroceramide
 - 4. Then, oxidation to add a double bond

Sphingosine 1-Phosphate

- Sphingosine can be phosphorylated by sphingosine kinases, ubiquitous enzymes in the cytosol, ER and nucleus to make sphingosine-1-phosphate (S1P).
- Sphingosine-1-phosphate, a lysophospholipid, acts as a potent messenger molecule that operates both intra- and inter-cellularly.
- Within the cell, it promotes mitosis and inhibits apoptosis. It also regulates calcium mobilization and cell growth in response to a variety of extracellular stimuli.

- Outside the cell, S1P exerts many of its effects through interaction with five specific G protein-coupled receptors on cell surfaces. Different cells have different receptor profiles.
- S1P is vital to the function of several immune cells. It is a major regulator of T cell development, B and T cell recirculation, tissue homing patterns, and chemotactic responses to chemokines.

Comparison of S-1-P and LysoPA

(net negative charge)

Biosynthesis of Ceramide

Simple acyl transfer, but to an <u>amide</u> bond instead of the typical ester

Biosynthesis of Sphingomyelin

Comparison Sphingomyelin and PC

At least one fatty acid of PC is usually unsaturated or polyunsaturated, whereas, SM is usually saturated or mono-unsaturated; therefore, SM rich membranes are less "fluid" than typical PC-rich membranes.

More Definitions

Glycosidic bond

<u>Cerebrosides</u>: a ceramide that has a sugar added to the head group. Most commonly, the sugar is glucose (Glu) or galactose (Gal).

Ceramide (non-polar tail)

Gangliosides: a ceramide that has multiple sugars including at least 1 sialic acid residue added to the head group. Increased variety and complexity.

Degradation of Sphingolipids

- The amide bond of sphingolipids does not break down easily
 - which is why they make good membrane components
- Enzymatic degradation is used for turnover
 - LOTS of degradation enzymes exist
 - · it's a long, complicated bunch of pathways
- Genetic defects in these enzymes cause a long list of diseases
 - all involve unhealthy accumulation of some sphingolipid
 - most are rare, but more common in specific ethnicities
 - key diseases: Gaucher's, Tay-Sachs', Fabry's and Niemann-Pick
 - Resources: (Online Mendelian Inheritance in Man)
 - OMIM Web site: www.ncbi.nih.gov/OMIM/searchomim.html

Degradation of Sphingolipids

Niemann-Pick Disease Type A

Patient with Niemann Pick Disease

- Incidence: Type A is the most severe of the 5 subtypes of Niemann-Pick Disease
 - ~1:90 Ashkenazi Jews are carriers
- Symptoms: Neurodegenerative
 - Large abdomen within 3-6 mos. and jaundice
 - Progressive loss of early motor skills, progressive spasticity, developmental delay
 - Cherry red spot in the eye
 - (Generally) a very rapid decline leading to death by two to three years of age.
- Mechanism: Genetic
 - Lack of Sphingomyelinase
 - Auto recessive, OMIM #257200
 - Sphingomyelin
 - builds up in CNS, liver and lungs

Treatments:

- Supportive and symptomatic
- Patients die by age 3
- No effective therapy to date

What Are Glycerolipids and Phospholipids Good for?

- Build Biological Membranes
- Energy Sources
- Signaling Pathways

Lipid Bilayers

- In aqueous solution, amphiphilic molecules form micelles to eliminate the contact of the hydrophobic tails with water, but allow the polar heads to be in contact with it.
- The diameter of the micelle depends upon the length of the tail.
- A suspension of PLs can form liposomes, closed, self-sealing solvent-filled vesicles, that have only a single bilayer.
- Liposomes serve as models of biological membranes.

Movement in Bilayers

(a) Transverse diffusion (flip-flop)

(b) Lateral diffusion

Key Principle:

Things on one side tend to stay on that side...

...unless specifically moved by a carrier protein called a "flippase."

Some Implications:

- Lipid populations on each side can be different
- Receptors aim out
- Embedded/anchored enzymes localize reactions to only one side
- Ion pumps move the same ions the same direction
- Etc.

Lipid Rafts

Digestion of Fats

Bile Acids/Salts

- Bile salts act as detergents in the digestive tract to emulsify triacylglycerols and phospholipids into micelles.
- Bile salts are highly oxidized derivatives of cholesterol.

Mixed Micelles

- The hydrophobic surface of the bile salt associates with TAGs, and a number of these aggregate to form a micelle
- This allows the association of pancreatic lipase, which liberates free fatty acids in smaller micelles that are absorbed through the mucose

Lipases and Phospholipases

- Lipases and phospholipases are unique enzymes because their substrates are lipids, not small molecules.
- Lipases and phospholipases work best on surfaces: <u>Surface Activation</u>

- At low concentrations, DiC7PC forms monomers.
- At higher concentrations, it forms micelles.
- The concentration at which micelles form is called critical micellar concentration (CMC).

Definitions

- Lipases and phospholipases are esterases
 - Triacylglycerol Lipase the general term.
 - Lingual Lipase- found in saliva for pre-digestion.
 - Pancreatic Lipase- produced by the pancreas for digestion.
 - Lipoprotein lipase- found on capillary endothelial cells. It hydrolyzes TAG in chylomicrons and VLDLs.
 - Desnutrin (ATGL) Coupled to HSL generates FAs when energy is needed. Found in adipose tissue
 - The Phospholipases

Lipid Signaling

Phospholipase Sites of Action

1-Palmitoyl-2-oleoyl-sn-glycerol-3-phosphoinositol 4',5' bisphosphate (PIP₂)

Phospholipase Sites of Action

Sphingomyelinase is a sphingomyelin-specific

Phospholipids Are Key to Signaling

