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ABSTRACT:  Since the 1960s, the distinction between data and phenomena has fueled debates in the philosophy of sci-
ence, with scholars arguing that data must be modeled in order to serve as evidence for phenomena. We claim that the mod-
eling of data to obtain evidence for phenomena involves four levels: data, sample structure, population structure and phe-
nomena. Our analysis suggests that the notion of pattern is essential to fully grasp the inferential capacity of data models, 
where representation occurs through nested surrogative reasoning —typically in the form of an isomorphism that holds at 
different layers. We also explain how our taxonomy of pattern-based inferential steps could shed light on various aspects of 
nested data modeling, such as the risk of theoretical bias. To illustrate our proposal, we examine the Eddington experiment 
—which tested general relativity by observing the deflection of starlight near the Sun—, and show how patterns at differ-
ent levels of the data modeling provide the basis for nested surrogative reasoning in this case. Transforming the data points 
identified on photographic plates into a representation of light deflection requires a multi-layered search for patterns, where 
each pattern takes us one step further in data modeling and one step closer to the target phenomenon.
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RESUMEN:  Desde la década de 1960, la distinción entre datos y fenómenos ha dado lugar a amplios debates en la 
filosofía de la ciencia, habiendo un claro acuerdo en que los datos deben modelarse a fin de que sirvan de evidencia para 
determinar la ocurrencia de fenómenos. Sostenemos que la modelización de datos, con el fin de obtener evidencia sobre 
fenómenos, involucra cuatro niveles: datos, estructura de la muestra, estructura de la población y fenómenos. Nuestro 
análisis sugiere que la noción de patrón es esencial para entender la capacidad inferencial de los modelos de datos, donde 
la representación se produce mediante razonamientos subrogatorios anidados —habitualmente en forma de isomorfismo 
entre diferentes capas. También explicamos cómo nuestra taxonomía de pasos inferenciales basados en patrones podría 
arrojar luz sobre diversos aspectos de la modelización de datos anidada, como aquellos relativos al riesgo de sesgo teórico. 
Para ilustrar nuestra propuesta, examinamos el experimento de Eddington —que puso a prueba la relatividad general ob-
servando la desviación de la luz de las estrellas cerca del Sol—, y mostramos cómo los patrones en diferentes niveles del 
modelado de datos proporcionan la base para el razonamiento subrogatorio anidado en este caso. Transformar los pun-
tos/datos identificados en las placas fotográficas en una representación de la desviación de la luz requiere una búsqueda 
de patrones en varios niveles, en donde cada patrón constituye un paso adelante en el modelado de datos y nos acerca un 
paso más al fenómeno objetivo.
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1.  Introduction

Scientific representation encompasses a wide and diverse range of practices. This paper narrows its focus to a specific 
domain within that practice: one in which models of data play the key representational role, by enabling inference 
from data to phenomena.

Since at least the 1960s, the distinction between data and phenomena has given rise to important debates in the 
philosophy of science. Both Suppes (1962) and, later, Leonelli (2009, 2015, 2019) argue that data can only con-
stitute evidence for phenomena once they have been modeled, that is, assembled and arranged in a particular way. 
In a similar vein, Suárez (2024) has recently characterized the models of data, within certain domains of inquiry, as 
low-level mathematical models that represent those abstract features of the data that are relevant for the purposes at 
hand. His inferential conception of scientific representation emphasizes how mathematical models —such as statis-
tical models of data— involve nested surrogative reasoning between their different layers (Suárez, 2024, p. 167).

Our purpose is to show the importance of the notion of pattern for understanding the inferential capacity of data 
models. We contend that, despite the fact that patterns play a crucial a role in the inference from data to phenom-
ena, the notion of “pattern” has not been deeply investigated from an analytical point of view. This has often led 
to an ambiguous use of this notion, as noted by Bruce Glymour (2000), who proposes replacing the distinction be-
tween data and phenomenon with a classical distinction in statistics, namely, that between sample and population 
structure. We will suggest a revision of Glymour’s proposal, advocating the need to distinguish between four dis-
tinct levels, i.e., data, sample structure, population structure and phenomena, and will explain the character and na-
ture of each step necessary to move from one level to the next. We argue that the inferential, representational capac-
ity of data models can be better understood as a three-step inferential process involving the above four levels. Our 
claim is that this multilayered account of data models can be useful to account for the kind of nested surrogative 
reasoning invoked by Suárez (2024) in his characterization of models of data.

From what has been said, it is clear that our concept of pattern is statistical-mathematical. The present analysis 
of the notion of pattern is limited to cases where the term “pattern” is applied to something that can be derived 
from a set of data. We stress the importance of patterns in identifying regularities in mathematical representations. 
These regularities can be expressed numerically. We distinguish three different senses in which the term ‘pattern’ is 
be used: (a) mathematical, as a distinction between signal and noise;1 (b) statistical, which includes both descrip-
tive and inferential uses of statistics; and (c) geometric or informational, as found in DNA chains, the growth pat-
terns of shells and Brussels sprouts. The main sense in our proposal combines (a) and (b). Patterns that are neither 
mathematical nor statistical in nature —sense (c)—, such as those associated with the identification of the structure 
of DNA fall outside the scope of our article, since they determine an entity rather than a phenomenon. Consider 
X-ray crystallography, where evidence famously led Rosalind Franklin and her collaborators to attribute an antiheli-
cal structure to the ‘dry’ form of DNA. In this case, the properties of an entity are established based on the patterns 
seen in the photographs. However, no specific phenomenon is identified, unlike the melting point of lead, the de-
flection of light, or linear learning.2 

We will illustrate the pattern-based inferential steps from data to phenomenon by using a well-known example 
(Laymon, 1982; Mayo, 1996; Kennefick, 2009, 2019), namely, the so-called “Eddington experiment”, which was 
intended to empirically test the theory of general relativity by confirming the prediction about the deflection of 
light. In this case, the small sample size entails special difficulties that can only be overcome by introducing local 

1	 This is the prevailing sense in McAllister’s (1997) discussion of the inference from data to phenomena. While we share some of his con-
cerns about the indeterminacy of this process, we also believe that our approach can also help to address this issue. However, we will leave 
this for another paper.

2	 See Schindler (2008; 2013, pp. 95-96).
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checks and plausible assumptions about how the instruments function. This made it possible to determine a suffi-
ciently representative sample pattern, i.e., the deviation of the points of light captured in the photographs from the 
center of the Sun as it appears in them. Based on this, an inference can be made about the phenomenon of light’s 
path deviating when passing close to the Sun. This final step involves making a causal inference, since phenomena 
are conceived as the (often unobservable) cause of the observed data. Our example also shows how patterns, in the 
statistical-mathematical sense, play a crucial role in nested surrogative reasoning.

Our approach in this paper unfolds in three steps. First, we offer a concise overview of our perspective on the in-
ferential process from data to phenomena. The next step is to examine how our framework can be useful in un-
derstanding data models that involve nested surrogative reasonings between their different layers. Finally, we pro-
vide an example to show how, in models of data such as those at play in Eddington experiment, the surrogative 
reasoning characteristic of representation manifests as isomorphisms holding between different layers of those 
data models.

2.  Bridging the gap between data and phenomena

2.1.  The data/phenomenon distinction

To frame the problem of patterns, we first examine the debate over the distinction between data and phenomena, 
where the concept of “pattern” proves highly relevant. As Woodward (2010, p. 792) points out, the introduction of 
this distinction was motivated by its relevance in addressing the epistemic problem of using data as evidence. The 
discussion stems from a question that Antonis Antoniou has recently articulated very clearly:

How exactly are theoretical hypotheses eventually confronted and tested by experimental results 
given that the latter are often produced in the form of large datasets and in a language that is not 
accessible to the theory? (Antoniou, 2021, p. 2)

This question has been central in contemporary philosophy of science, where it is widely accepted that empirical 
phenomena emerge from a complex collection of data (Bogen & Woodward, 1988; Woodward, 1989, 2000, 2010; 
McAllister, 1997, 2011; Glymour, 2000; Massimi, 2007; Leonelli, 2015, 2019; Bokulich, 2018, 2020). Since the 
early characterization of the notion of data models by Patrick Suppes (1960, 1962), significant efforts over recent 
decades have explored how data models are applied in specific research contexts to infer phenomena from data (Leo-
nelli, 2009; Antoniou, 2021; Bokulich & Parker, 2021).

All of the aforementioned authors agree that raw, unprocessed data do not serve as evidence. This debate already has 
a long history, which we do not aim to examine in detail. Rather, we assume the widely accepted view that scientific 
observations and experiments rarely allow for the direct observation or detection of phenomena. Instead, they detect 
certain effects that are captured in the form of data, which can, in principle, be attributed to the target phenomena. 
The epistemic problem lies in determining the occurrence of stable phenomena from a heterogeneous and unstable 
set of data, which almost always occurs in combination with noise and whose understanding is also limited (Wood-
ward, 2010, p. 794).

Suppes addressed data models in the 1960s, conceptualizing them as statistical constructs that distill complex exper-
imental processes, whose purpose is to facilitate comparisons between empirical results and theoretical predictions. 
Although Suppes did not explicitly focus on patterns, his emphasis on homogeneity, stationarity, and order tests 
suggests an implicit recognition of their importance in data modeling. Under his view, it is the patterns, not the raw 
data set or unmodeled experimental results, what can be interpreted as phenomena, whether consistent with predic-
tions or not.
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Later, Bogen and Woodward reinforced the distinction between data and phenomena. Arguing against van Fraas-
sen’s (1980, 1989) view, they held that theories are primarily concerned with unobservable phenomena, rather than 
observed data (Bogen & Woodward, 1988; Woodward, 1989). According to Bogen and Woodward, data are un-
stable, observable reports from experiments, unlike phenomena, which are stable, theory-explained features of the 
world inferred from reliable data patterns. In contrast to data, phenomena are unobservable but serve as evidence for 
theories because they are the underlying cause of observed data.

More recently, discussions have been focused on how, within different fields, scientists generate and process data 
to identify empirical phenomena, as exemplified by Leonelli’s work in biology (2015, 2016, 2019) and Bokulich’s 
(2018, 2020) in paleontology. Leonelli (2019) views data models, unlike unmodeled data, as actual, ready-to-use ev-
idence, designed to systematically organize data for representing phenomena and supporting evidential claims. Simi-
larly, Bokulich (2020) contends that data models surpass “raw data” in accuracy and reliability, and thus are more 
appropriate tools to science’s epistemic goals. In this vein, Leonelli (2009, 2015, 2019), and Bokulich and Parker 
(2021) highlight the pragmatic nature of data models, as specifically designed tools to yield particular evidence to 
support a certain theory.

In McAllister’s 1997 and 2011 works, the notion of pattern is central to his analysis of reasoning from data to phe-
nomena, in an approach that is focused on the issue of the extreme underdetermination in this inference. As a re-
sult, he does not explicitly define patterns, beyond equating them with the notion of signal in a conception where 
data is split into signal and nose, and phenomena are identified with signals. In McAllister’s view, the identification 
of patterns —or signals— depends on how data are decomposed into signal and noise, which allows for multiple in-
terpretations of the same original data set. This leads to the concern that inference from data to patterns —and ulti-
mately to phenomena— is fundamentally undermined by the ambiguity of the data, since any data set can yield an 
indefinite number of patterns.

Particularly interesting for our proposal is Glymour’s (2000) critique of the vague use of the term in the data-to-
phenomena inference debate, and his suggestion of replacing the philosophical distinction between data and phe-
nomena with the statistical concepts of sample structure (that is, patterns recognized in the data sample) and pop-
ulation structure (that is, population model identified with the phenomenon). According to Glymour, the latter 
distinction offers greater precision, with sample structure consisting of statistical measures derived from the collected 
data, and population structure representing the generalization of these measures to the entire population. As a result, 
the inference from data to phenomena is seen as a two-step process: first, a pattern is identified within the sample, 
and second, the identified pattern is extrapolated to the entire population and used to define the phenomenon un-
der study.

However, while Glymour’s focus on statistical distinctions is valuable, his analysis conflates data with sample struc-
ture and population structure with phenomena, leaving the two senses of pattern present in the discussion unclear 
and mixed with other separate notions. In this regard, our analysis emphasizes the mediating role of patterns as es-
sential for inference from data to phenomena, and the transformation of raw data into interpretable structures that, 
once generalized, provide a basis for characterizing the underlying phenomenon.

2.2.  Patterns as mediators between data and phenomena

Patterns are essential to both statistics and contemporary scientific research. From a philosophical and statistical 
point of view, patterns are sets of properties in the form of regularities that characterize the members of a particular 
group. Recognizing patterns is the goal of several statistical methods, including cluster analysis, discriminant analy-
sis, decision trees, and artificial neural networks. These approaches help distinguish between categories and uncover 
relationships between indirect measures and the phenomenon under investigation. Examples include discharge pat-
terns in electronic particle detectors and reaction times in psychological studies (Bogen & Woodward, 1988).
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We will now show how to distinguish data from patterns and patterns from phenomena by defining specific mean-
ings of “pattern” and organizing the analysis into three sequential steps.

Step (a): From data to patterns in the data (sample statistics)

The initial step involves transforming raw empirical data into structured and interpretable sample statistics. This step 
involves processing raw empirical data collected in an experiment to identify statistical patterns, which includes com-
puting descriptive statistics such as means, medians, standard deviations, correlations, and visual representations (e.g., 
histograms), together with data cleaning, variable selection, and outlier removal are performed to refine the data set.

This process is both statistical-methodological and partly epistemological. The raw data, often messy and unstructured, 
is subjected to cleaning (e.g., removing outliers, handling anomalies) and summarization (e.g., means, medians, correla-
tions) to reveal trends or patterns. These patterns are not yet general claims about the world, nor claims about the tar-
get phenomenon; they are descriptive abstractions of the sample at hand. Techniques like histograms or preliminary 
clustering help distinguish signal from noise, making this a foundational act of pattern recognition. As a result, this step 
helps differentiate meaningful patterns from noise and provides a summarized representation of the sample behavior.

This first step has an interesting dual character. On the one hand, it is technical (relying on statistical-mathemati-
cal tools) but also it is interpretive, as decisions about which variables to prioritize or how to handle inconsistencies 
unavoidably shape the resulting patterns. This dual character is the norm in contemporary scientific practice, where 
data preprocessing is as critical as the analysis itself.

Step (b): From sample to population patterns (population statistics)

The second step generalizes the patterns found in the sample to the whole population. The transition from sample 
statistics to population statistics introduces a leap of generalization, which has a statistical-epistemological character. 
It requires assumptions about sample representativeness and usually involves techniques such as statistical inference, 
confidence intervals, and hypothesis testing. On this basis, this step hinges on inference —extrapolating patterns ob-
served in a limited sample to a broader population. Statistical tools such as confidence intervals and hypothesis test-
ing quantify the uncertainty of this jump, despite the fact that the inference is based on an assumption that cannot 
be conclusively proven, such as the representativeness of the sample. 

As a result, the transition from sample statistics to population statistics introduces an epistemological gap, since it 
relies on probability-based estimations and, more importantly, on extrapolations. Unlike sample statistics, which 
are directly derived from data, population statistics remain theoretical and require careful validation. This point 
is where the epistemological weight becomes evident. Unlike step (a), which is grounded in the concrete data col-
lected, step (b) moves into the realm of the unknown, estimating population parameters that cannot be directly ob-
served. Despite this or, precisely, because of it, this step is crucial for science’s aim to produce universal assertions 
and laws, and ultimately causal explanations that go beyond the limits of empirical knowledge.

Step (c): From population patterns to phenomena

The third step interprets population patterns as empirical representations of particular phenomena. Thus, this step moves 
from population statistics to the empirical characterization of the phenomenon itself, which entails a causal inference from 
data to phenomena (i.e., the phenomenon is conceived as the —often unobservable— cause of the observed data).

As a result, patterns attributed to the population are interpreted as manifestations of an underlying phenomenon. 
This is a distinctly epistemological move, as it involves hypothesizing a causal relationship between the observed pat-
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terns and the “hidden” reality they reflect. Researchers may use decision trees, cluster analysis, or dimensional re-
duction techniques —such as factor analysis or principal component analysis (PCA)— to identify key explanatory 
factors. However, the interpretive role of the researcher is critical —deciding which variables best capture the phe-
nomenon.

Two-step or three-step approach?

Finally, depending on the analytical method adopted, the transition from data to phenomenon can follow either a 
three-step approach —progressing through sample statistics, population statistics, and empirical characterization of 
the phenomenon— or a two-step approach, where dimensional reduction could allow a direct identification of the 
phenomenon at the sample level.

The two-step approach —using techniques such as factor analysis or principal component analysis (PCA) directly 
on the cleaned data— constitutes a significant alternative. By identifying underlying factors or components early on, 
this approach collapses the three-step process into two: (1) from the data to the sample-level phenomenon, via di-
mensional reduction, and (2) from the sample-level phenomenon to the population-level phenomenon, via statisti-
cal validation. This approach bypasses the explicit construction of sample statistics as an intermediate step, and in-
stead searches for the phenomenon in the underlying structure of the data.

3.  Inferential steps, patterns and nested modeling

In the following sections, we will examine how our approach can reveal the nested nature of data models and the 
crucial role of patterns in the inferences that lead to the representation of phenomena. To this end, we will rely on 
Suárez’s view of models of data, which explicitly incorporates the concept of nested reasoning —a notion that we 
also deem to be important.

3.1.  Nested modeling in Suarez’s view of data models 

Although Suárez’s inferential account of representation excludes isomorphism between source and target structures 
as an essential condition for representation, he nevertheless acknowledges its significant role as a means of scientific 
representation (Suárez, 2024, pp. 167-168). He emphasizes that surrogate reasoning, when based on theoretical and 
mathematical models, is often facilitated by isomorphisms between source and target. Among the various domains 
of modeling where isomorphism is most likely to play this role, Suárez draws attention to the domain of data mod-
els. Thus, despite his rejection of isomorphism as a constitutive element of representation, he regards data models as 
a type of model in which isomorphism is most plausibly the means of representation.

Suárez (2023, pp. 46-54; 2024, p. 167) characterizes models of data as low-level mathematical constructs that rep-
resent abstract and relevant features of the data, often through isomorphisms. In his view, mathematical models of 
data are multilayered and involve nested surrogate reasoning between their different layers. Consequently, he refers 
to both isomorphism and nested modeling as features of data modeling, which together help to enable surrogative 
reasoning from source to target. In this context, he states the following:

We saw that, while mathematical models —such as the Lotka-Volterra model or statistical mod-
els of data— are prima facie candidates for isomorphic relations, they turn out in more complex 
ways to involve nested surrogative reasonings between their different layers. These models are 
again no objection to [inf] since any means to promote surrogative reasoning from source to tar-
get is compatible with the source’s inferential capacities. (Suárez, 2024, p. 167)
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In an earlier paper, Suárez (2023) examined an example of nested modeling in the field of asteroseismology 
—also discussed by Castellani & Schettino (2023). In this case, data models involve the identification of fluc-
tuation patterns in the luminosity of stars which, supported by multiple modeling assumptions, allow for the 
inference of seismic oscillations within them. These seismic oscillations, in turn, provide highly valuable evi-
dence for models of stellar structure. The data models that enable the identification of seismic oscillations 
are nested in a complex background of models, which Suárez analyzes in detail (2023, pp. 120-123). The ex-
pression ‘nested models’ intuitively refers to the idea that, in some contexts of inquiry, “(...) all models con-
tain assumptions that involve or result from other models” (Suárez, 2023, p. 112). Suárez characterizes nested 
modeling not only as a presuppositional relationship between models, but also as one that involves the use of 
real (collected) data to enrich the empirical interpretation of theoretical models and to develop them further  
—thereby allowing the data to be inferred or estimated through these enriched, more sophisticated theoretical 
models. More specifically:

It concerns the nested nature of modelling; the fact that most models operate against a back-
ground that incorporates further models, and where data is routinely tested backwards, as it were 
—by deducing the values of theoretical parameters from the data given some background as-
sumptions, and where those parameters are then fed into new models that can appropriately gen-
erate the data. (Suárez, 2023, p. 112).

It is worth noting a peculiarity of the case of asteroseismology that is shared with other cases from geology 
and engineering, namely the use of forward or inverse modeling to explore how different modeling alterna-
tives yield different estimates of the data. Stellar structure models serve as theoretical building blocks that pro-
vide preliminary and partial guidance for interpreting brightness patterns in terms of seismic oscillations. This 
guidance is subject to revision if the data do not agree with the predictions of the theoretical stellar structure 
models (ibid., pp.  125-126). In the example analyzed by Suárez, the evidential —or “observational”— ba-
sis of stellar astrophysics is established by means of a complex combination of nested models required to ob-
tain and interpret data on stellar seismic oscillations. These data are derived from the fundamental phenom-
enon of regular pulsations in the brightness of a star, which are caused by gravitational or acoustic oscillations 
generated by rotational or convective forces. Further modeling assumptions are required to go from the data 
on seismic oscillations to the oscillation patterns of nodes (radial and non-radial) for both pressure and grav-
ity modes (ibid., p. 121). The overall oscillatory profile of a star provides highly valuable evidence for evaluat-
ing not only stellar structure models, but also traditional modeling assumptions in the form of idealizations. 
Suárez emphasizes the need to re-examine the nested models once the data modeling is complete, especially if 
the results suggest that certain assumptions should be reconsidered. In the case of asteroseismology, assump-
tions such as blackbody radioactive equilibrium, spherical symmetry and uniform composition may be chal-
lenged by the empirical evidence gathered.

Suárez’s description of nested models operating in the above case suggests a kind of circularity; however, he claims 
that this does not amount to an experimenter’s regress in the sense described by Collins (1992). The latter would in-
volve the assumption of theoretical models in data modeling, thereby (partly) determining the very evidence used to 
test those same theoretical models. As is well known, Collins’ classic example is the detection of gravitational waves. 
In his view, theoretical assumptions —such as those about stellar structure— may be useful for establishing some 
tentative constraints on how data should be derived or explained, but this would be part of a wider procedure aimed 
at comparing actual data, obtained by independent means, with data inferred under certain theoretical assumptions. 
In Collin’s example, theoretically predicted oscillation frequencies are compared with actual observed oscillations, 
and discrepancies lead to adjustments in the theoretical parameters or background models used to make the predic-
tions. As Suárez argues, rather than introducing a theoretical bias, the nested structure of data models allows for a 
more thorough assessment of how evidence is constructed and evaluated.
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3.2.  Nested modeling as a pattern-based inference

We believe that our approach, which is in line with Suárez’s view in several ways, can provide valuable insights into 
how data models are characterized. Although our approach is not committed to a particular theory of representa-
tion, it reinforces the idea that isomorphism plays a major role in how data models represent phenomena. In par-
ticular, we emphasize the importance of patterns in capturing regularities in mathematical representations, which 
makes them particularly well-suited for representing phenomena using isomorphisms. In our view, the notion of 
pattern is essential to understanding the inferential capacity of data models. Furthermore, we fully back the idea 
that, in typical cases of data modeling, surrogate reasoning —characteristic of scientific representation— relies on 
isomorphisms that hold across different layers of the model.

The Eddington experiment is also useful to see how, in principle, the nested modeling required for the develop-
ment of data models is not necessarily subject to the problem of experimenter’s regress. For the reasons set out by 
Kennefick (2019) and emphasized by Suárez (2025), we believe that the concerns raised by Earman and Glymour 
(1980) regarding Eddington’s experiment are misguided. As convincingly argued by Kennefick in a chapter entitled 
“Not only because of theory” (2019, pp. 181-225), the background models supporting the light deflection infer-
ence were independent of the theoretical models from general relativity that led to Einstein’s prediction. Although 
general relativity and Einstein’s predictions were taken into account in drawing conclusions from the data, the data 
themselves were generated independently and stood on their own. Neither the generation of the data nor their selec-
tion and modeling depended on theoretical assumptions from Einstein’s theory. Kennefick provides historical evi-
dence to show that even if both Eddington and Dyson admired the theory as a theoretical achievement, neither of 
them assumed its adequacy in advance. It is therefore inaccurate to attribute to them a confirmation bias in data se-
lection, as Earman and Glymour do, because neither of them assumed the adequacy of the theory. Other reasons 
given by Kennefick regarding the methodology used to select data further support the claim that the selection pro-
cess was unbiased. An analysis of the nested models involved in this case sheds light on the quality of the data se-
lected and the methodological soundness of their modeling. The discarded data —those more consistent with New-
tonian predictions— came from photographic plates where interfering factors, known to affect the operation of the 
instruments, had clearly degraded the image quality. If assumptions about confounding factors were critical for se-
lecting reliable data, assumptions about confounding factors were equally important for modeling the data to iden-
tify a pattern in the shift of starlight. As we will see in the next section, Einstein’s prediction was only confirmed 
when the effect of the main confounding factor —the scale shift— was calculated and subtracted from the original 
observed pattern.

In the next section, we show what this inferential practice involving different layers would look like if our character-
ization of data models were supplemented with some insights from Suárez’s approach. In applying our taxonomy of 
inferential steps, we show how the presuppositional relations between layers in nested modeling can be seen as cor-
responding to the presuppositional relations between layers in inference from data to phenomena via patterns. In 
both cases, models are built on a background of other models, and the quality of evidence can only be properly as-
sessed by tracing the lineage of modeling assumptions involved in the nested structure.

4.  Application Example: Eddington Experiment

4.1.  Experiment presentation

An important example of inference from data to phenomena is the “Eddington experiment”, designed to empirically 
test Einstein’s general relativity by confirming the predicted deflection of starlight near the Sun during the 1919 so-
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lar eclipse starlight (Laymon, 1982, pp. 108-113; Mayo, 1996, pp. 132-139, chapter 8; Kennefick, 2009, 2019; 
Suárez, 2025). Woodward (2000, p. 164; 2010, pp. 792-797) frequently mentions this case to illustrate how data 
from photographic plates mix the target variable (light deflection) with confounding factors such as telescope pecu-
liarities, thermal effects on instruments and chemical influences during plate development. As Woodward (2010, 
pp. 793, 797) argues, understanding these additional variables is essential to assess the reliability of inferences from 
data to phenomena. In our analysis, this knowledge aids in identifying patterns that serve as evidence for the phe-
nomenon under study, and applying the concept of “pattern” enhances the precision of such inferences.

As is well known, British astronomers Frank Watson Dyson and Arthur Stanley Eddington organized two expedi-
tions to gather evidence from the 1919 eclipse, in order to test Einstein’s prediction of light bending near a massive 
body (Laymon, 1982; Mayo, 1996). The method relied on discrete data, namely, star positions on photographic 
plates taken during the eclipse and compared with night-time plates of the same field, captured months later when 
the Sun had shifted from the Hyades. Three data sets were produced by the two expeditions, the first was to Sobral 
in Brazil and the second was to the island Príncipe off the West African coast. Data sets 1 and 2 were generated us-
ing the 4-inch Sobral telescope and the Sobral astrograph, respectively. Data set 3 was produced with the Príncipe 
astrographic telescope. The data were cleaned and selected, excluding data set 2, as well as light point positions from 
photographic plates with images considered defective due to astronomical or atmospheric effects.3

In this experiment, the inference process involves a key pattern: the sample pattern, that is, the observed displacement 
of star positions —i.e., light points— in the eclipse photographs relative to the Sun’s center. This pattern was used to 
infer the phenomenon of starlight deflection near the Sun. It took decades to expand the sample size to obtain a more 
robust, generalizable population pattern.4 However, thanks to the efforts made in controlling secondary factors and 
analyzing sources of error, the sample pattern was found to be a good representation of the phenomenon. Although 
the similarity between the Príncipe and Sobral observational patterns did not in itself justify their selection, they 
were chosen (on the basis of other factors) for the subsequent extrapolation of their results to a broader population 
—namely, all instances where starlight passes near a massive body. In this case, the epistemological factor had much 
more weight than the statistical one, since the sample size (i.e., the number of locations from which the eclipse ob-
servation was made) was small, making the statistical dimension less relevant than it would have been had there been 
more locations. Although the photographic plates were considered representative, the astronomers recognized the 
need for further validation and confirmed the pattern’s consistency through additional observations (Kennefick 2009: 
38). This is why there is a two-step pattern-based inference in this example instead of a three-step one.

The first step involved identifying the sample pattern by superimposing eclipse and comparison plates, cleaning de-
fective data (e.g., due to atmospheric effects), and isolating light deflection from confounding factors like scale shift 
—a radial displacement mimicking deflection. Unlike deflection, which peaks near the Sun’s limb and diminishes 
with distance, scale shift affects stars farther from the image center most strongly. Hence, a key distinction exists be-
tween the two effects. Light deflection is most pronounced for stars near the Sun’s limb and diminishes with distance, 
whereas scale shift has the greatest impact on stars far from the image center, with minimal effect near the center. 

To accurately isolate the pattern tied to light deflection and rule out scale shift as the cause, calculating the scale 
shift effect is essential. The Cambridge team addressed this by taking “check plates” of a different star field at night, 
both in the UK and Príncipe. These plates served to detect significant scale changes between the eclipse and com-
parison photographs, enabling Eddington to account for variations arising from differences in timing, location, or 

3	 As data sets 2 and 3 were both of poor quality, there has been a heated debate as to whether excluding only data set 2 —which was more 
in agreement with Newton’s prediction— was a biased decision. While some argue that it was (Earman & Glymour, 1980), others oppose 
this idea (Kennefick, 2009, 2019; Schindler 2013), albeit for different reasons. For a brief overview of our position on this matter, see our 
comments in Section 3.2 above.

4	 For a survey of light deflection measurements from 1919 to 1960 see von Kluber (1969, pp. 58-63).
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equipment setup. Using the positions on the check plates (white positions in the image), Eddington quantified the 
scale shift and subtracted its effect from the light point displacements observed when superimposing the eclipse and 
comparison plates. This subtraction isolated the light deflection effect, represented as the deviation α between the 
black and white positions of the same stars shown in Figure 1. Thus, in this experiment selecting the appropriate 
data and controlling the primary confounding factor (i.e., scale shift) are pivotal in identifying the sample pattern 
associated with light deflection.

Figure 1

Position of the stars closest to the Sun during the 1919 eclipse. 
[Diagram adapted from Kennefick (2019, p. 191)]

The second step entails inferring the phenomenon from the established population pattern via causal inference. This 
step confirmed Einstein’s prediction of light bending by interpreting the generalized pattern in step two as evidence 
of the phenomenon. Using standard astronomical statistical methods, the light point displacements were analyzed 
as deviations. The results revealed Sobral’s deviation angle as 1.98 ± 0.12 arcsec and Príncipe’s as 1.61 ± 0.30 arcsec. 
Given the Newtonian prediction of 0.87 arcsec for light grazing the Sun’s surface, these findings aligned with Ein-
stein’s predicted value of 1.75 arcsec, confirming the phenomenon of light deflection.

4.2.  Interpretation in terms of nested modeling and isomorphisms

Let us now examine how Eddington’s experiment can be interpreted in terms of nested modeling and isomor-
phisms. Eddington’s experiment exhibits the typical presuppositional relationships between models that characterize 
nested modeling. Rather than focusing on the theoretical model as the final result, we concentrate on the empirical 
model that underpins the observation of light deflection. This empirical phenomenon is established on the basis of 
other models, with the model representing the former being nested within those supporting the latter. In what fol-
lows, we will schematically outline the source-target relation at each level of modeling, along with the relation that 
enables the representation of the target by the source. To fully account for the role of isomorphism, we introduce an 
initial step that was ignored in our previous analysis.
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The starting point of data handling in the experiment is the selection of photographic plates, from which the sample 
data are selected. In this case, the source(0) is the relative positions of light points in selected photographic plates, the 
target(0) is the relative positions of stars in Hyades clusters, and the isomorphism(0) taking place between source(0) 
and target(0) is the means to infer that points in the plates correspond to light coming from the stars (see Figure 2).

Figure 2

Isomorphism in the selection of sample data. [Initial step]

Then, researchers identified a statistical pattern in a sample of photographic plates. In this initial step, the sam-
ple(1) are the photographic plates (i.e., the relative positions of light points in selected plates, which was source(0)), 
the source(1) is the statistical patterns of displacement of the light points in the photographic plates relative to the 
center of the Sun —as depicted in Figure 1—, and the target(1) is the light’s behaviour displacement in the sam-
ple depending on whether it passes or not close to the Sun. isomorphism(1) takes places between the source(1) (i.e., 
sample statistics from the places) and the target(1) (i.e., trajectory of light in the observational scene), enabling the 
inference from source to target (see Figure 3). However, no isomorphism takes place between the source(1) (i.e., 
sample pattern) and the sample(1) (i.e., the photographic plates).

Figure 3

Isomorphism in the identification of statistical patterns. [Step 1]
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Steps b) and c) in our characterization of the inference from data to phenomenon (see Section 2.2) have no di-
rect equivalents in the case of Eddington’s experiment, since no additional instances of light behavior during 
eclipses were available at the time. In this historical example, population patterns do not come into play to in-
fer the phenomenon —namely, the deflection of light by the Sun. However, the extrapolation of the result is 
indeed pursued. In this case, the full generalizability of the detected phenomenon requires steps (b) and (c) to 
be carried out subsequently, once new samples become available.5 This would allow the inference of a popu-
lation pattern generalizable across cases of the same type, by extending the statistical patterns of displacement 
observed in the photographic plates to patterns of displacement expected in the entire population. In this sec-
ond step, an isomorphism holds between the population patterns and the general phenomenon of light deflec-
tion beyond Eddington’s specific observational context. Moreover, a homomorphism6 is present between the 
statistical patterns and the population patterns, and it is this homomorphic relation that licenses the inference 
from source to target.

Returning to the actual development of the inference in our example, the next step involves inferring the cause 
of the sample pattern —namely, the phenomenon of light deflection as it travels near the Sun. In this case, the 
source(2) is a particular value of starlight deviation inferred from the statistical pattern (see Figure 4), while the tar-
get(2) remains the same as target(1)— namely, the deflection of starlight as it travels near the Sun.

Figure 4

Isomorphism in the inference of starlight deflection when travelling near the Sun. [Step 2]

5	 The frequency of this type of case depends largely on the extent to which sample collection is constrained (i.e., on whether there are re-
strictions on extending the sample). When samples are readily available and affordable, the steps involving population patterns proceed as 
outlined in Section 2.2, that is, population patterns are inferred from sample patterns and serve as the basis for inferring the phenomenon. 
But even in the present case, the inferred particular phenomenon is considered as an instance of a general phenomenon that could be ex-
plained by general relativity.

6	 A homomorphism of systems is a weaker mapping relationship between two systems that preserves the structure of the source system 
in the target system. More formally, there is a homomorphism between two systems S and T, if f: S→T is a function that respects the re-
lationships and operations defining the behavior and structure of system S within system T. On the other hand, an isomorphism is a 
homomorphism f that is injective (each component in S maps to a unique component in T), and surjective (each component in T has a 
preimage in S).
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5.  Conclusions

The preceding discussion emphasized the role of patterns as mediating in the inference from data to phenomenon. 
Our analysis reinforces the idea that data models are nested within background models that significantly influence 
data selection and processing —from assumptions about boundary conditions and control of hidden variables, to 
the statistical treatment required for pattern identification. We conclude that patterns play a crucial role in bridging 
data and the identification of phenomena, enabling surrogative inference through isomorphic relationships between 
source and target at each level of modeling.
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