

Universidad de Valladolid Grado en Enfermería Facultad de Enfermería de Valladolid

Curso 2024-2025 **Trabajo** de **Fin** de **Grado**

Cómo influye la alimentación de la mujer lactante en la calidad de la leche materna

Elena Pascual Santa Escolástica

Tutor/a: Irene Albertos Muñoz

RESUMEN

Introducción: La lactancia materna (LM) es el alimento ideal para los recién nacidos durante los primeros seis meses de vida, tal y como recomienda la OMS. La leche materna ofrece una combinación única de nutrientes y factores beneficiosos tanto para el lactante como para la madre y se caracteriza por su especificidad y dinamismo. Sin embargo, a pesar de estas características, su calidad puede verse influida por factores como la alimentación materna, aunque aún existe cierta controversia en este aspecto. Por esta razón, la relación entre la nutrición materna y la calidad de la leche constituye un área de estudio relevante.

Objetivos: Analizar el impacto de la nutrición de la madre lactante en la calidad de la leche materna.

Material y métodos: Se ha llevado a cabo una revisión sistemática donde se han incluido 30 artículos de tres bases de datos diferentes (Pubmed, SciElo y Scopus), de máximo 10 años de antigüedad y en inglés o español.

Resultados y discusión: Diversos estudios han estudiado cómo la dieta materna influye, en distinta medida, en la composición nutricional de la leche materna. Mientras que en los lípidos y algunas vitaminas y minerales ejerce una mayor influencia, los niveles de proteínas y lactosa se mantienen relativamente estables. En este contexto, los hábitos dietéticos específicos maternos como las dietas vegetarianas, pueden alterar los niveles de vitamina B12, DHA y ciertos minerales de la leche materna.

Conclusión: Se ha podido determinar que el tipo de alimentación de la mujer lactante puede afectar de manera variable a la calidad y composición de la leche materna, dependiendo del tipo de nutriente y el patrón alimentario seguido. Por ello, es aconsejable que las madres lactantes mantengan una dieta equilibrada y adecuada a sus necesidades con el fin de garantizar una calidad nutricional óptima en su leche materna.

Palabras clave: Leche materna, lactancia materna, alimentación, nutrientes.

ABSTRACT

Introduction: Breastfeeding (BF) is the ideal food for newborns for the first six

months of life, as recommended by the WHO. Breastmilk offers a unique

combination of nutrients and beneficial factors for both the infant and the mother

and is characterised by its specificity and dynamism. However, despite these

characteristics, its quality may be influenced by factors such as maternal nutrition,

although there is still controversy in this regard. For this reason, the relationship

between maternal nutrition and milk quality is a relevant area of study.

Objectives: To analyse the impact of breastfeeding mother's nutrition on the

quality of breast milk.

Material and methods: A systematic review was carried out including 31 articles

from three different databases (Pubmed, SciElo and Scopus), no more than 10

years old and in English or Spanish.

Results and discussion: Several studies have studied how maternal diet

influences, to different extents, the nutritional composition of breast milk. While

lipids and some vitamins and minerals are more influential, protein and lactose

levels remain relatively stable. In this context, specific maternal dietary habits,

such as vegetarian diets, may alter the levels of vitamin B12, DHA and certain

minerals in breast milk.

Conclusion: It has been determined that the type of diet of lactating woman can

have a variable effect on the quality and composition of breast milk, depending

on the type of nutrient and the dietary pattern followed. It is therefore advisable

for breastfeeding mothers to maintain a balanced diet appropiate to their needs

in order to ensure optimal nutritional quality in their breast milk.

Key words: Breast milk, breastfeeding, nutrition, nutrients.

ÍNDICE DE CONTENIDOS

1. IN	TRODUCCIÓN	1
1.1.	COMPOSICIÓN Y CARACTERÍSTICAS DE LA LECHE MATERNA	1
1.2.	EPIDEMIOLOGÍA	2
1.3.	LACTANCIA MATERNA Y SUS BENEFICIOS	3
2. JU	STIFICACIÓN	4
3. OE	BJETIVOS	5
4. MA	ATERIAL Y MÉTODOS	5
4.1.	DISEÑO	5
4.2.	ESTRATEGIA DE BÚSQUEDA	6
4.3.	ESTRATEGIA DE SELECCIÓN	7
4.4.	HERRAMIENTAS DE EVALUACIÓN DE LA EVIDENCIA	7
5. RE	SULTADOS	8
5.1.	Macronutrientes	8
5.2.	MICRONUTRIENTES	11
5.3.	DIETAS VEGANAS, VEGETARIANAS Y OTROS TIPOS DE DIETAS	15
6. DI	SCUSIÓN	18
6.1.	LIMITACIONES	21
6.2.	FORTALEZAS	22
6.3.	IMPLICACIONES PARA LA PRÁCTICA CLÍNICA	24
6.4.	FUTURAS LÍNEAS DE INVESTIGACIÓN	24
7. CC	ONCLUSIÓN	25
8. BII	BLIOGRAFÍA	26
9. AN	IEXOS	31
9.1.	Niveles de evidencia Joanna Briggs Institute (JBI)	31
9.2.	RESUMEN DE RESULTADOS	33

ÍNDICE DE TABLAS Y FIGURAS

TABLA 1: Esquema PICO6
TABLA 2: Criterios de inclusión y exclusión para la selección de artículos7
FIGURA 1: Diagrama de flujo para la selección de los artículos8
TABLA 3: Recomendación de la suplementación de B12 en el embarazo y la
lactancia16
TABLA 4: Esquema DAFO23
TABLA 5: Clasificación de los niveles de evidencia JBI por efectividad31
TABLA 6: Tabla de resultados33

1. INTRODUCCIÓN

1.1. Composición y características de la leche materna

La lactancia materna (LM) es el alimento idóneo para los recién nacidos durante los primeros meses de vida, por ser la forma ideal de aportar los nutrientes que necesitan para un crecimiento y desarrollo saludable. La Organización Mundial de la Salud recomienda la lactancia materna exclusiva (LME) durante los primeros 6 meses de vida del lactante, lo que significa que el bebé debe recibir únicamente leche materna sin incluir ningún otro tipo de líquido ni alimento sólido (1).

Tal y como indica la Asociación Española de Pediatría, una vez pasados los seis meses de LME, se iniciará la introducción de alimentos de forma complementaria a la lactancia materna hasta los dos años de vida. No obstante, en aquellos bebés alimentados con leche de fórmula, se podrá iniciar la alimentación complementaria entre el cuarto y el sexto mes. En ambos casos es preciso percibir signos adecuados de desarrollo neurológico para proceder a este paso (2).

Son dos las principales características que diferencian a la leche materna de otros tipos de leche. En primer lugar, destaca por su especificidad, ya que se adapta a las necesidades y características específicas del lactante, tales como las limitaciones fisiológicas del tubo digestivo o del metabolismo intermediario. En segundo lugar, se caracteriza por su dinamismo, es decir, tiene una composición cambiante a lo largo de la lactancia, según la edad gestacional, a lo largo del día y a lo largo de la tetada (3).

A nivel fisiológico, se distinguen dos periodos diferentes dentro de la lactogénesis o producción de leche materna. El primer periodo abarca desde los seis meses de embarazo hasta el tercer día posparto, donde la leche tiene mayores niveles de prolactina, progesterona, estrógenos y lactógeno placentario humano. El segundo periodo abarca desde el tercer día posparto hasta el fin de la lactancia, caracterizado por una mayor secreción de prolactina y oxitocina. Además, este proceso de lactogénesis puede ser alterado por diversas causas, tales como la mastitis mamaria o el parto prematuro, lo que puede influir a su vez en la

composición láctea (4).

En cuanto a la variabilidad de su composición, la lactancia materna comprende tres etapas diferentes en relación al tiempo transcurrido tras el parto. Desde el momento del nacimiento hasta los cinco días posparto se produce el denominado calostro, caracterizado por su bajo contenido en grasas y alto contenido en proteínas y nutrientes inmunomoduladores, así como mayores concentraciones de vitamina A, vitamina B-12 y vitamina K. Posteriormente, hasta aproximadamente 14 días después del nacimiento, el calostro pasa a denominarse leche de transición y contiene menores cantidades de grasas y mayores concentraciones de proteínas y lactosa. Finalmente, la leche de transición pasa a ser leche madura desde el 15º día hasta el destete (5).

La alimentación exclusiva con LM en comparación con otros tipos de leche artificial está relacionada con un patrón de crecimiento más saludable y una menor proporción de infecciones respiratorias en las primeras etapas de desarrollo vital. Sin embargo, en los casos donde no sea posible dar el pecho o la lactancia sea insuficiente, la opción recomendable será recurrir a la leche de fórmula que se adecúe a la función bioactiva de la lactancia materna (2).

No obstante, a pesar de estos beneficios, la leche de fórmula cuenta con varias limitaciones. Las tres principales a destacar son su incapacidad de proporcionar la misma cantidad de componentes inmunomoduladores, la baja variabilidad de su composición en función de la etapa evolutiva del lactante y que su bioactividad se puede ver modificada por los procesos de pasteurización y homogeneización de la leche de vaca (5).

1.2. Epidemiología

Se han determinado distintos factores que pueden influir en el mantenimiento de la LM a lo largo del tiempo en España. Algunos de ellos son el número de hijos previos, trabajo materno previo a la gestación, origen geográfico dentro de España, tiempo y tipo de relación de la pareja, uso o no de chupete y el colecho (4,6).

Otro hábito materno que destaca como influyente en la adherencia a la LM es el

tabaquismo materno. Se ha demostrado que entre el 50 y el 80% de las mujeres que abandonan el tabaco durante la gestación, retomarán este hábito durante los primeros seis meses posparto, constituyendo un factor de riesgo en cuanto a la disminución en la producción de leche (6).

En cuanto a las estadísticas internacionales, según el Informe de Lactancia Materna de 2020 en Estados Unidos y coincidiendo con datos de otros países occidentales, el 84,1% de los neonatos son nutridos con lactancia materna, el 58,3% continúan los siguientes seis meses y solamente el 35,3% prosiguen hasta el primer año de vida (4).

Según el estudio de Jones et al. (7), las madres con menores índices de lactancia materna suelen caracterizarse por ser jóvenes, solteras, con sobrepeso u obesidad previos, menor nivel de educación y de bajos ingresos. En el caso de este último grupo, se suele deber a causas como la falta de aceptación social y cultural, las barreras idiomáticas, hábitos como el tabaquismo y la inaccesibilidad materna a información sobre la lactancia materna. Además, también se indicó que las madres asiáticas constituyen el único grupo racial por delante de las madres hispanas que cumple con la meta de Gente Saludable 2020 con un 81,9% de cumplimiento de la lactancia materna. Sin embargo, las madres afroamericanas constituyeron los índices de cumplimentación más bajos.

1.3. Lactancia materna y sus beneficios

La lactancia materna tiene una elevada variedad de beneficios para el lactante. Esta se encarga de proporcionar protección inmunológica a través de factores de protección (inmunoglobulina A, lactoferrina, lisozima, etc.). Además, mejora la función cognitiva del bebé, fomenta un adecuado neurodesarrollo, mejora el vínculo madre-hijo y ofrece un efecto protector contra enfermedades crónicas (enterocolitis necrotizante, retinopatía del prematuro, displasia broncopulmonar, etc.) (8).

Son varios los motivos que respaldan esta forma de alimentación para el lactante con respecto a otros tipos de fórmulas infantiles. La lactancia materna proporciona un equilibrio adecuado entre los nutrientes esenciales requeridos, aporta una cantidad adecuada de minerales y oligoelementos e incluye

prebióticos y probióticos beneficiosos. Cabe añadir que, como principal aspecto psicológico, se encarga de fomentar la conexión madre-hijo (9).

Además de estos múltiples beneficios, la leche materna es el alimento que mejor se adapta a las limitaciones fisiológicas del tubo digestivo, a sus requerimientos nutricionales y a la función renal. Esta forma de alimentación también guarda relación con la microbiota intestinal durante los primeros meses de vida del lactante, ayudando a prevenir la colonización intestinal patógena y amortiguando las respuestas inflamatorias intestinales (5).

Sin embargo, los beneficios que proporciona la LM no solo son para el neonato, sino también para la madre. Así se puede reflejar en algunos aspectos como la reducción en el tiempo de recuperación postparto, una menor incidencia de hemorragias postparto y la disminución del riesgo de padecer enfermedades como la diabetes y el cáncer de mama (10).

2. JUSTIFICACIÓN

La lactancia materna se considera el alimento más completo para los recién nacidos, ya que cubre todas sus necesidades nutricionales para asegurar un desarrollo y crecimiento adecuados.

A pesar de que la composición de la leche materna se adapta a las necesidades del lactante, esta también puede variar según diversos factores, siendo la nutrición materna uno de los aspectos que influyen directamente en su calidad. Por esta razón, el riesgo de que pueda existir cualquier posible alteración en la ingesta nutritiva de la madre lactante puede suponer un impacto negativo tanto en la producción óptima de leche como en el contenido nutritivo de la misma.

Sin embargo, la relación entre la dieta materna y la calidad de la leche materna todavía es un tema de gran controversia en la actualidad. A pesar de la relevancia de la lactancia materna en la salud neonatal, no siempre se tiene en cuenta cómo los hábitos alimenticios de la madre pueden influir en su composición, sobre todo en cuanto a la cantidad de nutrientes esenciales.

En referencia a esto, la ingesta materna alterada ha sido y continúa siendo un

tema de estudio. No sólo se analiza su impacto en el correcto desarrollo del lactante, sino también su influencia en la incidencia de enfermedades metabólicas en la descendencia, como la obesidad y la diabetes mellitus tipo II (11).

Además, los hábitos alimentarios de la mayor parte de las madres lactantes pueden verse fácilmente alterados por diversos aspectos. Algunos de ellos son el estilo de vida, la tendencia materna a querer recuperar el peso previo a la gestación, el bajo grado de conocimiento acerca de la influencia de una nutrición materna adecuada, aspectos socioeconómicos y culturales, etc.

Por lo tanto, en la presente revisión sistemática se recopiló y analizó la evidencia científica presente sobre cómo puede influir la alimentación de la mujer lactante en la calidad de la leche materna.

3. OBJETIVOS

Objetivo general:

- Analizar el impacto de la nutrición de la madre lactante en la calidad de la leche materna

Objetivos específicos:

- Estudiar las modificaciones de macronutrientes en la composición de la leche materna (lípidos, hidratos de carbono y proteínas) en función de la alimentación de la madre.
- Estudiar las modificaciones de micronutrientes en la composición de la leche materna (vitaminas y minerales) según la alimentación de la madre.
- Analizar cómo pueden influir la dieta vegetariana, vegana y otro tipo de dietas de la madre lactante en la calidad y composición de la leche.

4. MATERIAL Y MÉTODOS

4.1. Diseño

Se ha llevado a cabo una revisión sistemática sobre la manera en la que la ingesta dietética de la mujer lactante puede influir en la calidad de su leche materna.

4.2. Estrategia de búsqueda

Para llevar a cabo la búsqueda de planteó la siguiente pregunta de investigación:

¿Cómo influye la alimentación de la mujer lactante en la calidad de la leche materna?

Tabla 1: Esquema PICO

P (población/paciente)	Mujeres en periodo de lactancia.
I (intervención)	Alimentación específica y hábitos dietéticos de las mujeres lactantes.
C (comparador)	No procede.
O (outcome, resultado)	Impacto de la ingesta alimenticia de la madre lactante en la composición y calidad de la leche materna.

Se utilizaron las siguientes bases de datos para llevar a cabo la búsqueda bibliográfica: Pubmed, SciElo y Scopus.

Como términos de búsqueda, se utilizaron varios descriptores DeCs (Descriptores en Ciencias de la Salud) y MeSH (Medical Subject Headings) en combinación con el operador booleano AND:

- <u>MeSH</u>: breast feeding, breast milk, maternal intake, macronutrients, micronutrients. vegetarian diet, poliphenols.
- <u>DeCs</u>: lactancia materna, leche materna, ingesta materna, macronutrientes, micronutrientes, dieta vegetariana, polifenoles.

Para la selección de artículos se han utilizado los siguientes filtros:

- Publicaciones en inglés y en español.
- Fuentes publicadas en los últimos 10 años, desde 2015 hasta 2025.

4.3. Estrategia de selección

Los artículos de esta revisión han sido seleccionados en función de los criterios y exclusión expuestos en la Tabla 2:

Tabla 2: Criterios de inclusión y exclusión para la selección de artículos.

CRITERIOS DE INCLUSIÓN	CRITERIOS DE EXCLUSIÓN
Estudios publicados en los últimos 10 años.	Artículos no incluidos en bases de datos de evidencia científica (Pubmed, Scopus, etc.).
Estudios en inglés o en español.	Estudios que estén centrados en el impacto de la dieta materna en mujeres embarazadas.
Estudios que analicen el impacto de la dieta materna en la composición nutricional de la leche materna en mujeres lactantes.	Artículos sin acceso gratuito al texto completo o sin información suficiente.
Estudios observacionales, estudios de caso y revisiones sistemáticas previas.	

4.4. Herramientas de evaluación de la evidencia

La evaluación del grado de evidencia de los artículos seleccionados se ha llevado a cabo siguiendo los criterios para la evaluación de la evidencia establecidos por el Instituto de Joanna Briggs (JBI). Esta entidad se encarga de proporcionar la evidencia más sólida a través de escalas de evaluación de la evidencia, en función del tipo de artículo correspondiente y sus características.

En la búsqueda inicial se obtuvieron un total de 654 artículos. Siguiendo los criterios para la evaluación de la evidencia establecidos por JBI y los criterios de inclusión y exclusión mencionados anteriormente, se excluyeron 491 artículos y se seleccionaron 163. Dentro de este grupo, se identificaron 9 artículos duplicados, se descartaron 74 tras la lectura inicial del título y 29 tras la revisión del resumen. Finalmente, de estos 51 artículos restantes, se descartaron 21 tras la lectura completa del artículo, por no adecuarse al tema a tratar. Finalmente, se incluyeron 30 artículos en los resultados de la revisión.

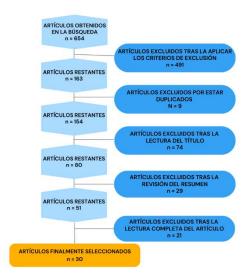


Figura 1: Diagrama de flujo para la selección de los artículos

5. RESULTADOS

A partir de los criterios de selección anteriormente mencionados, se ha recopilado la evidencia científica sobre la manera en la que puede influir cada componente nutritivo de la dieta materna en su composición láctea, mostrando resultados diversos dependiendo del tipo de compuesto analizado.

5.1. Macronutrientes

5.1.1. Lípidos

Los lípidos son el principal suministro de energía para los lactantes. Estos se encargan, entre otras funciones, de aportar ácidos grasos poliinsaturados esenciales para el correcto desarrollo cerebral y retiniano (12).

Los ácidos grasos poliinsaturados tienen gran importancia en la leche materna, destacando el ácido docosahexaenoico (DHA) y el ácido eicosapentaenoico (EPA). Según una revisión sistemática de Petersohn et al. (3), los niveles de DHA en la leche están influenciados con la ingesta de DHA y pescado en la dieta materna. Sin embargo, se observó poca correlación entre la dieta materna y la concentración de EPA en la leche.

Por otra parte, según los resultados de un estudio prospectivo comparativo llevado a cabo en Venezuela (12), las madres desnutridas poseían valores

inferiores de lípidos en su leche en comparación con las madres con una alimentación adecuada. Sin embargo, en relación con la referencia nacional (4gr/dl), no hubo una alteración significativa.

Otro aspecto a destacar sobre la revisión sistemática anteriormente mencionada (12) es que existe una relación directa entre una dieta baja en carbohidratos y alta en grasas con un mayor contenido energético en la leche materna, en comparación con una dieta alta en carbohidratos y baja en grasas. Además, se ha encontrado una asociación positiva entre la ingesta de grasa, colesterol y ácidos grasos monoinsaturados con el contenido energético de la leche. No obstante, no se observa relación significativa entre el consumo materno de carbohidratos, energía, proteínas y ácidos grasos poliinsaturados con este contenido energético (3).

Por otra parte, se ha demostrado que la introducción de mayores cantidades de lácteos y azúcares en la dieta materna resulta en un mayor contenido de grasas en la leche materna de estas madres. A pesar de ello, sigue habiendo controversia en cuanto a la relación entre la ingesta de grasas y sus niveles en la leche (3,13).

Asimismo, se ha visto que el impacto microbiano de la leche materna también se ve afectado en cierta manera por su dieta, en concreto por los niveles de ácidos grasos. Esto se debe a que se encontraron correlaciones positivas entre los ácidos grasos y los géneros *Proteobacteria* y *Bifidobacterum* y correlaciones negativas entre estos y los géneros *Lactobacillus* y *Streptococcus* (14).

5.1.2. Hidratos de carbono

Los hidratos de carbono, al igual que los lípidos, tienen una función esencial en el aporte energético del organismo y no se pueden sustituir por otro tipo de nutrientes. La lactosa es el carbohidrato predominante sintetizado por la glándula mamaria de los mamíferos a partir de la glucosa y proporciona la energía necesaria para el crecimiento y desarrollo del neonato.

Asimismo, la lactosa es el macronutriente menos variable en la composición de la leche materna. Según un estudio observacional longitudinal de Polonia (15),

no existe influencia significativa entre los niveles de lactosa en leche y una ingesta materna con cantidades variables de grasas y carbohidratos. Al igual que tampoco se observó ninguna relación entre los niveles de lactosa y una dieta rica en proteínas o basada en productos vegetales.

Sin embargo, según el estudio llevado a cabo por Berger et al. (16), se identificaron correlaciones significativas entre los niveles de fructosa en la leche materna y la ingesta materna de una bebida de jarabe de maíz de alto contenido en fructosa. No obstante, no se vieron alterados los niveles de lactosa y glucosa.

Sumado a esto, algunos estudios demuestran que la concentración de carbohidratos sigue un patrón dinámico hasta el cuarto mes de lactancia y guarda relación con la dieta materna. Además, se demostró que las madres catalogadas como desnutridas presentaban una mayor concentración de carbohidratos en la leche materna con respecto a las madres con un estado nutricional adecuado, lo que correspondería con una mayor ingesta de carbohidratos por parte de las madres desnutridas (12).

En cuanto a los niveles de oligosacáridos, un estudio analizó la influencia de la ingesta de glucosa y galactosa como fuente única de carbohidratos en mujeres lactantes después del parto (17). Los resultados indicaron un incremento del 50% en los niveles de oligosacáridos individuales tras la ingesta de galactosa y un aumento del 30% con una dieta rica en grasas.

5.1.3. Proteínas

Los dos tipos de proteínas predominantes en la leche materna son la lactoalbúmina y la caseína. En el calostro y durante los primeros días de lactancia, los niveles de lactoalbúmina son mayores, mientras que en la leche madura estos niveles disminuyen (12).

Según la revisión de Petersohn et al. (3), no se observó ninguna relación significativa entre la ingesta de proteínas en la dieta materna y los niveles totales de proteínas en la leche. Tampoco se relacionó la ingesta de proteínas, energía, hidratos de carbono, grasas, minerales, vitaminas y colesterol con este contenido proteico.

Otros estudios también han demostrado una débil asociación entre el contenido proteico total de la leche materna y características como la ingesta de carbohidratos y grasas, la dieta vegetariana o la ingesta materna de proteínas de origen animal y vegetal (13).

5.2. Micronutrientes

5.2.1. Vitaminas A y E

La vitamina A es responsable principalmente de regular la recepción retiniana de estímulos luminiscentes y de la biosíntesis de melanina y colágeno en la piel, cabello y uñas. Por otra parte, la vitamina E actúa como antioxidante corporal y se encuentra en el tejido adiposo (18).

Según un estudio observacional realizado por Costa et al. (19), la concentración de vitamina A en la leche materna no se vio alterada durante el periodo de lactancia, incluso con una baja ingesta de esta por parte de las madres lactantes. Sin embargo, se demostró que las mujeres lactantes que padecían una deficiencia dietética generalizada podrían ser susceptibles de tener menores concentraciones de retinol en suero y leche materna. Por otra parte, no se encontró ninguna relación entre la vitamina E, la leche materna y la ingesta dietética materna de esta vitamina.

Estos resultados contrastan con el estudio observacional de Machado et al. (20), donde se obtuvo como principal resultado una disminución gradual del contenido de ambas vitaminas en la leche materna de mujeres brasileñas con ingestas dietéticas insuficientes.

En cuanto a la suplementación de vitamina A, en un estudio llevado a cabo por Gannon et al. (21), se demostró que sus niveles en la leche materna aumentaban con su correspondiente suplementación. Aunque no se encontró evidencia entre esta suplementación y la reducción de riesgo de mortalidad y morbilidad infantil.

5.2.2. Vitamina D

La vitamina D se encarga de la regulación de la absorción de calcio en el organismo, y, por tanto, su déficit puede conducir a alteraciones en la mineralización ósea y mayor incidencia de raquitismo fetal (18).

La deficiencia de vitamina D es común, sobre todo en aquellas madres que siguen dietas restringentes y en aquellas que, por motivos raciales, geográficos o culturales, tienen poca exposición al sol (22).

Tal y como se demostró en la revisión realizada por Falize et al. (23), la suplementación materna diaria de vitamina D no modifica de forma significativa los niveles de esta vitamina en la leche. A diferencia de la ingesta de una única dosis grande de suplemento, que sí aumenta levemente esta concentración en la leche. De esta forma, se administró una suplementación diaria media de 50 mcg y se alcanzaron los 3750 mcg de suplemento único, obteniéndose niveles significativamente más altos de esta vitamina en la leche en los casos de dosis única de mayor concentración.

5.2.2. Calcio, fósforo y hierro

El calcio es el principal componente de huesos y dientes y su deficiencia en la infancia está asociada a un mayor riesgo de raquitismo infantil y osteomalacia. En cuanto al fósforo, comparte con el calcio su función en la formación de dientes y huesos y está altamente relacionado con la producción proteica y energética (18).

Las concentraciones de calcio y fósforo en la leche materna, a diferencia de otros micronutrientes, sí que se ven influenciadas por su ingesta materna y están correlacionados entre sí. En un estudio realizado en Polonia (24), se observó que los bebés alimentados exclusivamente con lactancia materna obtuvieron unos niveles de calcio insuficientes para cubrir los requerimientos diarios. Además, se indicó que los niveles de fósforo guardaban relación también con la ingesta materna de alimentos ricos en energía, proteínas, calcio, fósforo, niacina y piridoxina.

Por su parte, el hierro es un micronutriente fundamental en el proceso de respiración celular y en la producción de hemoglobina. Según las recomendaciones, las mujeres durante el periodo de lactancia deben consumir al menos 20 mg/día de hierro, considerando que está ingesta debe ser mayor en el caso de las madres con dietas basadas en productos vegetales o con patologías gastrointestinales (18).

La mayoría de los estudios no encuentran relación entre la ingesta materna de minerales y los niveles de hierro en la leche (23). A pesar de ello, sí se han encontrado correlaciones entre los niveles de hierro en la leche humana y la ingesta materna diaria de grasa, colesterol y magnesio, según un estudio observacional transversal llevado a cabo en madres lactantes coreanas (25).

5.2.3. Yodo y selenio

Según un estudio de Stråvik et al. (26), a parte de la inclusión de sal yodada en la dieta como principal fuente de yodo, la ingesta de alimentos como huevos, frutas, bayas y tubérculos y suplementos multivitamínicos se encuentra relacionada con un mayor contenido de yodo en la leche materna. Además, se ha estudiado que existe una correlación positiva entre el consumo de al menos tres productos lácteos al día durante la lactancia y el contenido de yodo en la leche materna de las madres lactantes. Según las recomendaciones, la mujer lactante debe consumir al menos 200 mcg/día de este componente, ya sea a través de suplementación o incluido en la dieta (23).

Otro estudio realizado en Islandia (27) sugiere que el pescado y los lácteos suponen las dos fuentes principales de yodo en la dieta. Las pautas dietéticas recomendadas para la ingesta de ambos alimentos son dos veces por semana en el caso del pescado y dos porciones de lácteos diarias. En consecuencia, se determinó que, aunque estos patrones no se basan en los requisitos estimados de yodo en la población general, el cumplimiento de estas pautas durante la lactancia probablemente suponga un incremento de los niveles de yodo en los bebés lactantes.

Siguiendo los resultados de la revisión de He et al. (28), se observó una clara influencia del consumo de pescado graso, mariscos, frutos secos, verduras y aves con los niveles de selenio en sangre materna. Sin embargo, según el trabajo de Stråvik et al. (26), no se encontró relación suficiente entre la ingesta de selenio en la dieta materna y sus concentraciones en la leche materna; a excepción del caso de consumir pescado graso. Por otra parte, el aporte de suplementos de selenio en la dieta de la madre lactante está correlacionado con el aumento de sus niveles en la leche materna, previniendo así su disminución a

medida que va avanzando el periodo de lactancia (23).

5.2.4. Zinc

Según la revisión de Rios-Leyvraz y Yao (29), los niveles de zinc en la leche materna fueron más elevados en aquellas madres adultas, con lactancia materna exclusiva y pertenecientes a países con altos ingresos. Sin embargo, no se encontraron diferencias significativas en los niveles lácticos de este mineral entre mujeres con diferente consumo de zinc en la dieta.

En contraste con la revisión mencionada previamente, tal y como se indica en el trabajo publicado por Choi et al. (25), sí podría existir una influencia del consumo de carne y productos cárnicos por parte de la madre lactante sobre la concentración de zinc en la leche materna, a diferencia del resto de grupos de alimentos.

Además, según el estudio de Carretero-Krug et al. (30), se ha observado que la suplementación vitamínica y mineral está positivamente relacionada con la concentración de estos nutrientes en la leche materna, destacando el selenio, yodo, magnesio y zinc como aquellos que tienen mayor efecto.

5.2.5. Fitoquímicos

La presencia de fitoquímicos en la LM es un factor que ha sido estudiado en los últimos años, sobre todo en relación con la dieta materna. Esto se debe a que son productos orgánicos del metabolismo secundario de las plantas que no están presentes en los depósitos maternos y son aportados a través de la ingesta de frutas, verduras, legumbres, cereales y bebidas de origen vegetal (31).

En un estudio realizado por Lu et al. (32) se demostró que la ingesta materna de una dieta equilibrada con ingestas elevadas de frutas y verduras influía de manera positiva en el contenido fenólico y, por tanto, en las propiedades antioxidantes de la leche materna. En concreto, se observó que la ingesta de determinados alimentos se asocia con la presencia de compuestos fenólicos específicos en la leche materna. Algunos ejemplos son la ingesta de vegetales con los niveles de quercetina, el consumo de frutas con los niveles de ácido ferúlico y la ingesta de legumbres con los niveles de daidzeína.

Según los resultados obtenidos en el estudio de laboratorio realizado por Herawati et al. (33), el extracto de etanol de las hojas de papaya puede contribuir a un aumento de los niveles de beta-caseína en las madres lactantes. Además, esta fruta contiene polifenoles y aminoácidos que potencian la producción proteica y flavonoides y saponinas que aumentan la prolactina. De esta forma, se determinó que tanto el incremento de beta-caseína como los componentes polifenólicos de esta fruta, contribuyen indirectamente con el aumento del contenido proteico en la leche materna de las ratas lactantes estudiadas.

5.3. Dietas veganas, vegetarianas y otros tipos de dietas

Durante los últimos años, la tasa de incidencia de las dietas basadas en plantas (vegetarianas y veganas) ha aumentado de manera significativa en la población. Además, este tipo de dietas están relacionadas con diversos aspectos beneficiosos para la salud, tales como una menor incidencia de cardiopatía isquémica, obesidad, hipertensión y diabetes tipo II (34).

Según la revisión de Estay et al. (35), una dieta vegetariana o vegana equilibrada y bien planificada puede cubrir de forma satisfactoria las necesidades nutritivas en las distintas etapas vitales. Sin embargo, una dieta desequilibrada de este tipo o sin el asesoramiento dietético adecuado puede no aportar los niveles recomendados de determinadas vitaminas y minerales como la vitamina B-12, vitamina D, yodo, hierro, calcio, selenio y los ácidos grasos DHA y EPA.

5.3.1. Vitamina B-12

Según un estudio transversal realizado por Pawlak et al. (34), los niveles generales de vitamina B12 en la leche materna se encontraron por debajo de los niveles recomendados. Sin embargo, estos resultados no guardan relación con el tipo de dieta seguida por la madre lactante. Incluso se demostró que los suplementos de vitamina B12 consumidos por las madres con dietas vegetarianas y veganas garantizaron unos mayores niveles de B12 en su leche materna. Esta relación positiva entre la suplementación y la concentración de vitamina B12 también es respaldada por otros estudios, como el llevado a cabo por Leiva et al. (35).

Tabla 3: Recomendación de la suplementación de B12 en el embarazo y la lactancia (modificado a partir de la tabla correspondiente al artículo 35).

GRUPO ETARIO	EN MANTENCIÓN			EN DÉFICIT			
	Dosis única diaria	Dosis diaria simple	Dosis semanal	Vit. B12 sérica (<101 pg/ml)	Vit. B12 sérica (101- 203 pg/ml)	Vit.B12 <u>sérica</u> (203-298 <u>pg/ml)</u>	Vit.B12 sérica (298-406 pg/ml)
Embarazadas y mujeres lactantes	50 mcg x	2 mcg x	1000 mcg x 2	1000 mcg/d en 4 meses	10000 mcg/d en 3 meses	1000 mcg/d en 2 meses	1000 mcg/d en 1 mes

En relación con esta evidencia, se ha demostrado que la suplementación materna con vitamina B12 en las dietas veganas y vegetarianas es mayor y está relacionada positivamente en los niveles de B12 en la leche materna (35).

5.3.2 <u>Ácidos grasos</u>

En cuanto a la concentración de ácidos grasos, se han obtenido resultados sobre la diferencia en su aporte entre las dietas basadas en plantas y las dietas omnívoras, lo que influye en determinada manera en la composición de estos componentes de la leche materna. En el estudio de Perrin et al. (36), se hizo una distinción entre el contenido lipídico de la leche materna de las madres veganas y el contenido lipídico de las madres lactantes vegetarianas y omnívoras. Como resultado se obtuvo que el primer grupo presentaba unos niveles mayores de ácidos grasos insaturados y omega-3 y unos niveles inferiores de grasas saturadas y grasas trans.

Según el estudio de Ureta-Velasco et al. (37), los niveles de DHA en la leche materna fueron inferiores en madres vegetarianas o veganas con respecto a las

madres donantes omnívoras. Esto se debió a la ingesta inferior de este ácido por parte del primer grupo de madres. Además, se ha demostrado que, al igual que la vitamina B12, el aporte de suplementación de DHA está directamente relacionado con el aumento de este ácido en la LM. A diferencia del ALA, que no varía en función de su aporte exógeno (36).

5.3.3 Minerales

Con respecto a la variación de minerales, se han encontrado diferencias en cuanto a los niveles de yodo, fósforo y selenio en la composición de la leche de mujeres veganas. En relación, los niveles de yodo y selenio resultaron ser menores en la LM de este grupo de madres con respecto a las madres donantes con dieta convencional. En cuanto a los niveles de yodo y calcio, ambas concentraciones resultan ser ligeramente inferiores a lo recomendado en las madres veganas, siendo este aspecto significativo para alcanzar la alta demanda de estos minerales en los bebés prematuros (38).

En contraste con lo respaldado anteriormente, según los datos obtenidos en otro estudio transversal (39), los niveles de selenio en la leche materna de mujeres con dietas veganas o vegetarianas resultó ser mayor que en la leche de mujeres con dieta omnívora. No obstante, se determinó que el porcentaje de suplementación que contenía dicho mineral fue alto, lo que posiblemente influyó en este resultado.

5.3.4 Dieta mediterránea

La dieta mediterránea está caracterizada por la ingesta de alimentos de origen vegetal combinados con un consumo moderado de aves, huevos, mariscos y lácteos y un bajo consumo de carnes rojas y procesadas. Entre los alimentos incluidos en este tipo de dieta destacan frutas, verduras, cereales, frutos secos, legumbres, y, en especial, aceite de oliva (40).

Según el artículo publicado por Karbasi et al. (40) donde se analizó el estado antioxidante de la leche materna de madres con dieta mediterránea a través de sustancias reactivas, se obtuvieron unos niveles más altos de DPPH (1,1-difenil-2-picrilhidrazilo) y de FRAP (reductor/antioxidante férrico) en la leche materna y

en la orina de los bebés. Por lo tanto, se demostró una mayor capacidad antioxidante en la leche materna de este grupo de madres estudiadas.

Además, en el estudio de Moubareck (14), se determinó que este tipo de dieta puede influir hasta diez veces más en la incidencia de bacterias como *Lactobacillus* en la glándula mamaria con respecto a aquellos individuos alimentados con otro tipo de dietas occidentales.

6. <u>DISCUSIÓN</u>

La composición nutricional de la leche materna es un tema que genera gran controversia, ya que esta no es constante y puede verse modificada por diversos factores, tales como la hora del día, la duración de la lactancia y el tiempo transcurrido desde la última toma. Además, existen diversos factores externos que influyen en esta composición, destacando la edad materna, el peso de bebé al nacer, el tabaquismo y la dieta de la madre (12).

En referencia a este último factor, se han obtenido resultados muy variables en función del tipo de nutrientes estudiados, del tipo de estudios y de características como los periodos de referencia de la dieta materna o el momento de recolección de las muestras de leche con respecto al parto.

Por esta razón, algunos estudios no han encontrado una relación significativa entre la ingesta materna de ningún nutriente con la composición de la leche humana. De esta manera, afirman que esta es independiente del valor nutricional de la alimentación de la madre y que la adecuada composición de la leche es contrarrestada a través de mecanismos fisiológicos compensatorios maternos (12). Además, tal y como indican otras fuentes, como la revisión sistemática llevada a cabo por Bravi et al. (13), la asociación entre un nutriente y su concentración en la leche materna solo puede analizarse en el caso de existir un equilibrio proteico-energético adecuado, excluyendo así la participación de los procesos catabólicos del organismo.

A pesar de este factor, son diversos los estudios que demuestran la relación entre el consumo de determinados alimentos y sus repercusiones en la

composición de la leche materna. Por tanto, a la hora de analizar cada macronutriente por separado, se ha podido percibir de forma clara que el más influenciado por la ingesta dietética materna son los lípidos. Esto es debido a que la cantidad de lípidos está relacionada con el estado nutricional materno, con el contenido energético de la leche y con la ingesta de determinados alimentos (3,12,13). El DHA destaca como el más alterado, al tratarse del más predominante en la leche materna (3).

Se ha podido comprobar que la ingesta de ácidos grasos insaturados guarda relación con la microbiota de la leche materna. Esto se debe a que algunos de los ácidos grasos de este grupo poseen propiedades antimicrobianas, lo que causa la inhibición en el crecimiento de algunas bacterias como las del género *Lactobacillus* y *Streptococcus*, que son sensibles a estos efectos. Sin embargo, estas interacciones continúan siendo inciertas, ya que existen otros factores externos que influyen a su vez en esta variación. Sin embargo, sí que existe evidencia concluyente sobre la gran incidencia de la dieta mediterránea sobre la microbiota de la glándula mamaria, llegando a ser diez veces más influyente sobre ciertas bacterias como *Lactobacillus* que otro tipo de dietas (14).

En cuanto a la ingesta de carbohidratos, algunos estudios no han encontrado una relación significativa entre la ingesta materna de carbohidratos y el contenido de lactosa en la leche materna (3), ni con dietas altas en proteínas (13). Sin embargo, los oligosacáridos presentes en la leche sí muestran una correlación con la microbiota láctica. Este grupo de carbohidratos, gracias a sus propiedades prebióticas, pueden influir positivamente en la microbiota intestinal del bebé al favorecer el crecimiento de microorganismos beneficiosos (14).

Centrándonos en el tercer grupo de macronutrientes, se ha demostrado que los niveles proteicos de la leche, junto con la lactosa, apenas se ven alterados por la dieta materna. Por tanto, no se ha encontrado relación entre la ingesta proteica y la producción de lactoalbúmina y caseína en las glándulas mamarias. Sin embargo, una mayor ingesta de proteínas en la dieta materna sí podría aumentar la producción de nitrógeno no proteico y de aminoácidos libres, aunque no se ha determinado su relevancia clínica (13).

La composición de micronutrientes en la leche materna también puede variar según el tipo de nutriente y su relación con la dieta materna. Mientras que las vitaminas liposolubles e hidrosolubles muestran correlaciones significativas con la ingesta de la madre, los minerales presentan menor relación. Micronutrientes como el yodo, selenio y las vitaminas A, E y B-12 son especialmente importantes para el desarrollo del lactante por sus propiedades metabólicas y se ven influidos por la dieta de la madre (21).

Con respecto a la relación entre la ingesta dietética materna y los niveles vitamínicos, se ha encontrado controversia entre dos de los estudios observacionales seleccionados. Por una parte, el trabajo de Machado et al. (20) muestra cómo la deficiencia dietética en madres lactantes se asocia con menores concentraciones de vitaminas A y E en la leche materna. No obstante, según afirma Costa et al. en su estudio (19), ninguna de estas dos vitaminas se ven afectadas durante el periodo de lactancia. Esto es debido a que la falta de vitamina A es compensada gracias a las reservas hepáticas y la vitamina E se controla de manera efectiva a través de las reservas del organismo o de la absorción de otros tejidos (19). En cuanto a la vitamina D, su concentración en la leche materna depende más de la exposición solar que de la ingesta dietética, lo que hace recomendable su suplementación en casos de aporte endógeno insuficiente (22,23).

A pesar de que ciertos tipos de alimentos y suplementos pueden provocar ligeras variaciones, la mayoría de los estudios obtenidos indican que los niveles de hierro, cobre y zinc en la leche materna no dependen directamente de la ingesta materna, ya que la glándula mamaria regula su transporte de forma autónoma (23,25,29,30). Sin embargo, sí se han obtenido evidencias sobre la relación del calcio y fósforo de la leche materna y la ingesta dietética, especialmente al consumir alimentos ricos en estos minerales (24). En cuanto al yodo, su aporte resulta crucial debido a su capacidad de producción de hormonas tiroideas en la infancia y por la relación entre su ingesta materna y la reducción de la incidencia de asma infantil durante el primer año de vida (26). No obstante, este posible déficit en la leche puede ser compensado a través del consumo de alimentos ricos en yodo (22,26,27). La concentración láctea de selenio, por su parte, puede

estar influenciada por determinados tipos de suplementos, aunque no tanto por la alimentación en sí (23,26). En el caso de los lactantes, la deficiencia de este elemento en la leche materna puede ser relevante, ya que puede ocasionar retraso en el crecimiento y enfermedades agudas en la infancia (28).

Por otro lado, es necesario tener en cuenta las madres que siguen dietas vegetarianas a la hora de estudiar la posible influencia sobre la calidad de la leche. Bien es cierto que, mientras se siga una planificación adecuada, este tipo de dietas pueden cubrir las necesidades nutricionales. Sin embargo, pueden desencadenar ciertos déficits en nutrientes clave como la vitamina B12 y el DHA, aunque en el caso de la vitamina B12 su suplementación garantiza sus niveles adecuados en leche (35). En cuanto a los lípidos, se han observado niveles mayores de ácidos grasos insaturados y omega-3 en madres veganas, aunque el DHA tiende a ser inferior cuando no se lleva a cabo la suplementación adecuada (36). Por su parte, el ácido alfa-linoleico y el ácido linoleico no se verían afectados por este tipo de dietas, debido a encontrarse fundamentalmente en los productos vegetales.

En definitiva, a pesar de la actual controversia y de las ligeras variaciones (38,39), diversos estudios han demostrado que es posible la producción de leche de alto valor nutricional por parte de las madres veganas y vegetarianas siempre que cumplan con los patrones de suplementación adecuados, especialmente de vitamina B12, DHA, hierro, yodo y selenio (34,35,36,37).

6.1. Limitaciones

La principal limitación encontrada a la hora de realizar la búsqueda ha sido la alta incidencia de artículos centrados exclusivamente en la alimentación de mujeres durante el periodo de embarazo y no durante el periodo de lactancia, teniendo que descartar gran parte de los artículos encontrados sobre este tema.

Otra limitación relacionada con la información obtenida ha sido la reducida cantidad de bibliografía obtenida acerca de los diferentes tipos de dietas seguidas por las madres lactantes, ya que sí que se ha encontrado información útil sobre las dietas veganas y vegetarianas, pero muy escasa información sobre otros tipos de dietas, como la mediterránea o las dietas hipocalóricas. Además,

también cabe destacar las discrepancias encontradas en cuanto a los resultados de muchos de los artículos analizados.

Por otra parte, aunque en menor medida, también ha supuesto una cierta restricción el tener que aplicar un filtro de tiempo, reduciendo el número de artículos disponibles y eliminando aquella información útil procedente de estos artículos. Además, se encontró la limitación del idioma, ya que se tuvieron que reducir los artículos estudiados a los escritos únicamente en los idiomas castellano e inglés, pudiendo así haberse omitido estudios relevantes para el tema debido a que estaban en otra lengua diferente.

Por último, se ha podido destacar también la necesidad de prescindir de muchos artículos que, aunque parecían relevantes en base a su título y resumen, no pudieron ser utilizados por no encontrarse disponible el texto en su totalidad de manera gratuita: "free full text".

6.2. Fortalezas

Asimismo, también se han encontrado muchos puntos positivos en la realización de esta revisión.

En primer lugar, cabe destacar la gran variabilidad de artículos sobre la influencia de los distintos tipos de nutrientes de la dieta materna (destacando los lípidos) sobre sus concentraciones en la leche, siendo muy claros los resultados obtenidos al no haber encontrado ningún artículo que demuestre lo contrario. Además, muchos de los artículos obtenidos se centran en diversos temas de interés, tales como la influencia sobre la microbiota de la leche o los suministros de energía.

En relación con el punto anterior, también se ha percibido una gran facilidad a la hora de utilizar las distintas bases de datos online y los numerosos filtros que se pueden aplicar posibilitan hacer más sencillo el proceso de selección.

Finalmente, cabe destacar que la información contenida en los artículos buscados era diversa, por lo que se ha logrado obtener una visión del tema desde distintos puntos de vista, pudiendo enfocar el mismo tema hacia cada tipo de nutriente por separado.

Tabla 4: Esquema DAFO

	ORIGEN INTERNO	ORIGEN EXTERNO
NEGATIVOS	Alta incidencia de artículos sobre la alimentación en mujeres embarazadas Escasa información sobre distintos tipos de dietas Antigüedad de publicación de los artículos: 10 años Idioma castellano e inglés No disponibilidad de texto completo de ciertos artículos gratuitamente	Falta de relación con el tema a tratar y riesgo de información incoherente Ausencia de información sobre puntos concretos del tema Posibles avances rápidos sobre el tema que podrían reducir la evidencia de la presente revisión
POSITIVOS	Información variada sobre la influencia de los distintos tipos de nutrientes Capacidad de búsqueda y disponibilidad de diversas bases de datos	OPORTUNIDADES Artículos procedentes de gran variedad investigadores que permiten aportar una visión global Potencial para desarrollar futuras investigaciones y políticas de salud Posibilidad de diseñar guías de recomendaciones nutricionales para madres en periodo de lactancia

6.3. Implicaciones para la práctica clínica

La relación entre la alimentación de las mujeres lactantes y sus consecuencias en la calidad de su leche resulta un tema muy desconocido en la actualidad y del cual no se toma la importancia necesaria. Es por esto por lo que se considera necesario dar más información a la población a través de charlas informativas y talleres de educación sanitaria que estén a disposición de las mujeres que se encuentren en periodo de lactancia, para evitar malos hábitos dietéticos y concienciar sobre sus posibles consecuencias.

En consecuencia, será preciso realizar un seguimiento a largo plazo para comprobar si la eficacia de dichas medidas ha sido la esperada, teniendo en cuenta el tipo de alimentos o posibles suplementos consumidos semanalmente por estas madres, el tipo de lactancia seguida y el óptimo de desarrollo del niño a lo largo de este proceso.

6.4. Futuras líneas de investigación

Como futuras líneas de investigación a destacar, resulta importante profundizar en la realización de más estudios de este tipo, ya que actualmente la evidencia disponible es limitada en algunos aspectos. Esto justifica la necesidad de llevar a cabo investigaciones más amplias y exhaustivas que permitan establecer una relación clara entre los hábitos alimenticios maternos y la calidad de la leche.

Además, también se plantea desarrollar proyectos donde se estudie la influencia de la alimentación materna durante la lactancia en situaciones especiales, tales como madres con obesidad, diabetes, intolerancias o trastornos alimentarios.

Por otra parte, también sería de interés plantear nuevos diseños de intervenciones nutricionales personalizadas a través de dietas individualizadas promovidas tanto por parte de los profesionales dietéticos como por parte de enfermería comunitaria. De esta manera, a través de talleres nutricionales y consultas de asesoramiento nutricional individual podría ser posible evaluar el impacto de este seguimiento tanto en las madres como en los lactantes.

7. CONCLUSIÓN

Según los datos obtenidos en la presente revisión, se ha podido determinar que el tipo de alimentación de la mujer lactante tiene un impacto variable sobre la calidad y composición de su leche materna. Esto depende fundamentalmente del tipo de nutriente analizado y del tipo de dieta seguida por la madre.

En el caso de los macronutrientes, los ácidos grasos son el componente más influenciado por la dieta materna, destacando el DHA. Sin embargo, a pesar de las ligeras variaciones específicas, el contenido de lactosa y proteínas muestran una gran estabilidad en cuanto a su concentración frente a las posibles variaciones en la alimentación materna.

Con respecto a los micronutrientes de la leche materna, las vitaminas A y E y algunos minerales como el calcio, fósforo, yodo y selenio pueden verse afectados por la ingesta dietética y el estado nutricional materno. Por otro lado, otros micronutrientes como la vitamina D, hierro o zinc, presentan una menor relación con las variaciones nutricionales maternas, aunque en ocasiones sí que pueden requerir suplementación. El grupo de fitoquímicos de la leche materna, por su parte, muestra una estrecha correlación con el consumo de alimentos de origen vegetal, contribuyendo así a sus propiedades antioxidantes.

En referencia a los patrones dietéticos específicos, se han observado disminuciones en ciertos niveles de micronutrientes y ácidos grasos esenciales en la leche materna de madres con dietas veganas y vegetarianas. No obstante, se ha demostrado que aquellas madres que siguen este tipo de dietas con una buena planificación y cumpliendo con la suplementación adecuada, pueden producir leche materna nutricionalmente óptima. Por otro lado, la dieta mediterránea ha mostrado efectos beneficiosos, tanto antioxidantes como en la microbiota de la leche materna.

En definitiva, a pesar de que la leche materna tiene una composición relativamente constante, la ingesta dietética materna puede influir en ciertos nutrientes. Por lo tanto, es recomendable para las madres lactantes seguir una alimentación equilibrada y adaptada a cada situación con el fin de garantizar una óptima calidad nutricional en su leche materna.

8. BIBLIOGRAFÍA

- 1. Organización mundial de la Salud. Lactancia materna. Ginebra: OMS; 2025. Disponible en: https://www.who.int/es/health-topics/breastfeeding#tab=tab 1_
- Delgado Ojeda J, Santamaría Orleans A. Nutrición e inmunidad en las primeras etapas de la vida. Nutr Hosp. 22 de noviembre de 2023;40(2):16–9. Disponible en: https://pubmed.ncbi.nlm.nih.gov/37929892/
- Petersohn I, Hellinga AH, van Lee L, Keukens N, Bont L, Hettinga KA, et al. Maternal diet and human milk composition: an updated systematic review. Vol. 10, Frontiers in Nutrition. Frontiers Media SA; 2023. Disponible en: https://pubmed.ncbi.nlm.nih.gov/38352250/
- Martín-Ramos S, Domínguez-Aurrecoechea B, García Vera C, Lorente García Mauriño AM, Sánchez Almeida E, Solís-Sánchez G. La lactancia materna en España y los factores relacionados con su instauración y mantenimiento: Estudio LAyDI (PAPenRed). Aten Primaria. 1 de enero de 2024;56(1). Disponible en: https://pubmed.ncbi.nlm.nih.gov/37741187/
- Ames SR, Lotoski LC, Azad MB. Comparing early life nutritional sources and human milk feeding practices: personalized and dynamic nutrition supports infant gut microbiome development and immune system maturation. Vol. 15, Gut Microbes. Taylor and Francis Ltd.; 2023. Disponible en: https://pubmed.ncbi.nlm.nih.gov/37055920/
- 7. Jones KM, Power ML, Queenan JT, Schulkin J. Racial and ethnic disparities in breastfeeding. Vol. 10, Breastfeeding Medicine. Mary Ann Liebert Inc.; 2015. p. 186–96. Disponible en: https://pubmed.ncbi.nlm.nih.gov/25831234/
- Cernadas JMC. Colostrum and breast milk in the neonatal period: The benefits keep adding up. Vol. 116, Archivos Argentinos de Pediatría. Sociedad Argentina de Pediatría; 2018. p. 234–5. Disponible en: https://pubmed.ncbi.nlm.nih.gov/30016015/
- García RMM, Ortega AlJ, Peral-Suárez Á, Bermejo LM, Rodríguez-Rodríguez E. Importancia de la nutrición durante el embarazo. Impacto en la composición de la leche materna. Nutr Hosp. 1 de septiembre de 2020;37(Ext2):38–42. Disponible en: https://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S0212-16112020000600009

- Lázaro Almarza A y Marín-Lázaro JF. Alimentación del lactante sano. Recomendaciones desde el nacimiento hasta los 24 meses. Asociación Española de Pediatría; 2023.
 Disponible en: https://www.aeped.es/sites/default/files/documentos/2-alimentacion lactante.pdf
- 11. Martínez-Oca P, Alba C, Sánchez-Roncero A, Fernández-Marcelo T, Martín MÁ, Escrivá F, et al. Maternal Diet Determines Milk Microbiome Composition and Offspring Gut Colonization in Wistar Rats. Nutrients. 1 de octubre de 2023;15(20). Disponible en: https://pubmed.ncbi.nlm.nih.gov/37892398/
- Sánchez P, González V, Gómez A. Macronutrientes en leche de madres desnutridas.
 Arch Venez Pueric Pediatr; 2009; 72(2):70-6. Disponible en:
 https://ve.scielo.org/scielo.php?script=sci arttext&pid=S0004-06222009000200007&lang=es
- 13. Bravi F, Wiens F, Decarli A, Dal Pont A, Agostoni C, Ferraroni M. Impact of maternal nutrition on breast-milk composition: A systematic review. Vol. 104, American Journal of Clinical Nutrition. American Society for Nutrition; 2016. p. 646–62. Disponible en: https://www.sciencedirect.com/science/article/pii/S0002916522045877?via%3Dihub
- Moubareck CA. Human milk microbiota and oligosaccharides: A glimpse into benefits, diversity and correlations. Nutrients. 2021;13(4). Disponible en: https://pubmed.ncbi.nlm.nih.gov/33805503/
- 15. Bzikowska-Jura A, Czerwonogrodzka-Senczyna A, Olędzka G, Szostak-Węgierek D, Weker H, Wesołowska A. Maternal nutrition and body composition during breastfeeding: Association with human milk composition. Nutrients. 1 de octubre de 2018;10(10). Disponible en: https://pubmed.ncbi.nlm.nih.gov/30262786/
- 16. Berger PK, Fields DA, Demerath EW, Fujiwara H, Goran MI. High-fructose corn-syrup-sweetened beverage intake increases 5-hour breast milk fructose concentrations in lactating women. Nutrients. 1 de junio de 2018;10(6). Disponible en: https://www.mdpi.com/2072-6643/10/6/669
- 17. Okburan G, Kızıler S. Human milk oligosaccharides as prebiotics. Vol. 64, Pediatrics and Neonatology. Elsevier (Singapore) Pte Ltd; 2023. p. 231–8. Disponible en: https://pubmed.ncbi.nlm.nih.gov/36642576/
- 18. Mejía-Montilla J, Reyna-Villasmil N, Reyna-Villasmil E.Consumo de micronutrientes durante el embarazo y la lactancia. Revista Peruana de Ginecología y Obstetricia. 27 de septiembre de 2021;67(4). Disponible en: http://www.scielo.org.pe/scielo.php?script=sci arttext&pid=S2304-51322021000400004

- 19. da Silva AGCL, de Sousa Rebouças A, Mendonça BMA, Silva DCN e., Dimenstein R, Ribeiro KD da S. Relationship between the dietary intake, serum, and breast milk concentrations of vitamin A and vitamin E in a cohort of women over the course of lactation. Matern Child Nutr. 1 de julio de 2019;15(3). Disponible en: https://pubmed.ncbi.nlm.nih.gov/30578660/
- 20. Machado MR, Kamp F, Nunes JC, El-Bacha T, Torres AG. Breast milk content of vitamin A and e from early-to mid-lactation is affected by inadequate dietary intake in brazilian adult women. Nutrients. 1 de septiembre de 2019;11(9). Disponible en: https://pubmed.ncbi.nlm.nih.gov/31470574/
- Gannon BM, Jones C, Mehta S. Vitamin A requirements in pregnancy and lactation. Vol.
 4, Current Developments in Nutrition. Oxford University Press; 2020. Disponible en: https://pubmed.ncbi.nlm.nih.gov/32999954/
- 22. Segura SA, Ansótegui JA, Marta Díaz-Gómez N. La importancia de la nutrición materna durante la lactancia: ¿Las madres que amamantan necesitan suplementos nutricionales? An Pediatr (Engl Ed). 1 de junio de 2016;84(6):347.e1-347.e7. Disponible en: https://pubmed.ncbi.nlm.nih.gov/26383056/
- 23. Falize C, Savage M, Jeanes YM, Dyall SC. Evaluating the relationship between the nutrient intake of lactating women and their breast milk nutritional profile: A systematic review and narrative synthesis. Vol. 131, British Journal of Nutrition. Cambridge University Press; 2024. p. 1196–224. Disponible en: https://pubmed.ncbi.nlm.nih.gov/38053371/
- 24. Bzikowska-Jura A, Wesołowska A, Sobieraj P, Michalska-Kacymirow M, Bulska E, Starcevic I. Maternal diet during breastfeeding in correlation to calcium and phosphorus concentrations in human milk. J Hum Nutr Diet; 2023;36(3):567-574. Disponible en: https://pubmed.ncbi.nlm.nih.gov/36221320/
- 25. Choi YK, Kim JM, Lee JE, Cho MS, Kang BS, Choi H, et al. Association of Maternal Diet With Zinc, Copper, and Iron Concentrations in Transitional Human Milk Produced by Korean Mothers. Clin Nutr Res. 2016;5(1):15. Disponible en: https://pubmed.ncbi.nlm.nih.gov/26839873/
- 26. Stråvik M, Gustin K, Barman M, Skröder H, Sandin A, Wold AE, et al. Infant Iodine and Selenium Status in Relation to Maternal Status and Diet During Pregnancy and Lactation. Front Nutr. 17 de diciembre de 2021;8. Disponible en: https://pubmed.ncbi.nlm.nih.gov/34988107/
- 27. Petersen E, Thorisdottir B, Thorsdottir I, Gunnlaugsson G, Arohonka P, Erlund I, et al. lodine status of breastfed infants and their mothers' breast milk iodine concentration.

- Matern Child Nutr. 1 de julio de 2020;16(3). Disponible en: https://pubmed.ncbi.nlm.nih.gov/32162412/
- 28. He MJ, Zhang SQ, Mu W, Huang ZW. Selenium in infant formula milk. Vol. 27, Asia Pacific Journal of Clinical Nutrition. HEC Press; 2018. p. 284–92. Disponible en: https://pubmed.ncbi.nlm.nih.gov/29384312/
- 29. Rios-Leyvraz M, Yao Q. Calcium, zinc, and vitamin D in breast milk: a systematic review and meta-analysis. Vol. 18, International Breastfeeding Journal. BioMed Central Ltd; 2023. Disponible en: https://pubmed.ncbi.nlm.nih.gov/37264448/
- 30. Carretero-Krug A, Montero-Bravo A, Morais-Moreno C, Puga AM, Samaniego-Vaesken M de L, Partearroyo T, et al. Nutritional Status of Breastfeeding Mothers and Impact of Diet and Dietary Supplementation: A Narrative Review. Vol. 16, Nutrients. Multidisciplinary Digital Publishing Institute (MDPI); 2024. Disponible en: https://pubmed.ncbi.nlm.nih.gov/38276540/
- 31. Ríos J, Valero-Jara V, Thomas-Valdés S. Phytochemicals in breast milk and their benefits for infants. Vol. 62, Critical Reviews in Food Science and Nutrition. Taylor and Francis Ltd.; 2022. p. 6821–36. Disponible en: https://pubmed.ncbi.nlm.nih.gov/33792429/
- 32. Lu Z, Chan Y, Lo KK-H, Wong VW-S, NG Y-F, Li S-y, Ho W-W, Wong M-S, Zhao D. Levels of polyphenols and phenolic metabolites in breast milk and their association with plant.based food intake in Hong Kong lactating women. Food and Function. 13 de diciembre de 2021;12(12):4005-4014. Disponible en: https://pubmed.ncbi.nlm.nih.gov/34825914/
- 33. Herawati Y, Kalsum U, Arsana IW, Yuniarti L, Sardjono TW. Carica papaya leaf ethanol extract effect on milk volume, β-casein gene (Csn2) expression, β-casein levels, and milk total protein levels. Pharmaceutical Sciences Asia. 2022;49(2):193–201. Disponible en: <a href="https://www-scopus-com.ponton.uva.es/record/display.uri?eid=2-s2.0-85126084332&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28breastmilk+AND+phytochemicals%29&sessionSearchId=82773124a8dc8bd204e2baf6a45e7bd9&relpos=1
- 34. Pawlak R, Vos P, Shahab-Ferdows S, Hampel D, Allen LH, Perrin MT. Vitamin B-12 content in breast milk of vegan, vegetarian, and nonvegetarian lactating women in the United States. American Journal of Clinical Nutrition. 1 de septiembre de 2018;108(3):525–31. Disponible en: https://pubmed.ncbi.nlm.nih.gov/29931273/
- 35. Estay Castillo P, Tabilo Aguirre L, Muñoz Y, Sandoval Leiva T. Vitamina B12, ácidos grasos EPA y DHA durante el embarazo y la lactancia en mujeres con dieta basada en plantas. Nutr Hosp. 2024. Disponible en: https://pubmed.ncbi.nlm.nih.gov/38896115/

- 36. Perrin MT, Pawlak R, Dean LL, Christis A, Friend L. A cross-sectional study of fatty acids and brain-derived neurotrophic factor (BDNF) in human milk from lactating women following vegan, vegetarian, and omnivore diets. Eur J Nutr. 1 de septiembre de 2019;58(6):2401–10. Disponible en: https://pubmed.ncbi.nlm.nih.gov/30051170/
- 37. Ureta-Velasco N, Montealegre-Pomar A, Keller K, Escuder-Vieco D, Fontecha J, Calvo M V., et al. Associations of Dietary Intake and Nutrient Status with Micronutrient and Lipid Composition in Breast Milk of Donor Women. Nutrients. 1 de agosto de 2023;15(15). Disponible en: https://pubmed.ncbi.nlm.nih.gov/37571421/
- 38. Ureta-Velasco N, Keller K, Escuder-Vieco D, Fontecha J, Calvo M V., Megino-Tello J, et al.Composición de la leche materna y estado nutricional de donantes de leche materna omnívoras en comparación con madres lactantes vegetarianas/veganas. Nutrients. 1 de abril de 2023;15(8). Disponible en: https://pubmed.ncbi.nlm.nih.gov/37111074/
- 39. Perrin MT, Pawlak R, Judd N, Cooper J, Donati GL. Major and trace mineral composition of milk from lactating women following vegan, vegetarian and omnivore diets. British Journal of Nutrition. 28 de septiembre de 2023;130(6):1005–12. Disponible en: https://pubmed.ncbi.nlm.nih.gov/36562211/
- 40. Karbasi S, Mohamadian M, Naseri M, Khorasanchi Z, Zarban A, Bahrami A, et al. A Mediterranean diet is associated with improved total antioxidant content of human breast milk and infant urine. Nutr J. 1 de diciembre de 2023;22(1). Disponible en: https://pubmed.ncbi.nlm.nih.gov/36823634/

9. ANEXOS

9.1. Niveles de evidencia Joanna Briggs Institute (JBI)

Tabla 5: Clasificación de los niveles de evidencia JBI por efectividad

	Nivel 1.a - Revisión sistemática de ensayos controlados aleatorizados (ECA)		
NIVEL 1 - Diseños experimentales	Nivel 1.b - Revisión sistemática de ECA y otros diseños de estudio		
	Nivel 1.c - ECA		
	Nivel 1.d - Pseudo ECA		
	Nivel 2.a - Revisión sistemática de estudios cuasiexperimentales		
NIVEL 2 - Diseños	Nivel 2.b - Revisión sistemática de estudios cuasiexperimentales y otros diseños de estudios inferiores		
cuasiexperimentales	Nivel 2.c - Estudio cuasi-experimental controlado prospectivamente		
	Nivel 2.d - Estudio de grupo pretest-postest o de control histórico/retrospectivo		
NIVEL 3 - Diseños analítico-	Nivel 3.a - Revisión sistemática de estudios de cohortes comparables		
observacionales	Nivel 3.b - Revisión sistemática de cohortes comparables y otros diseños de estudios inferiores		

	Nivel 3.c - Estudio de cohortes con grupo de control
	Nivel 3.d - Estudio de casos controlados
	Nivel 3.e - Estudio observacional sin grupo de control
	Nivel 4.a - Revisión sistemática de estudios descriptivos
NIVEL 4 - Estudios	Nivel 4.b - Estudio transversal
observacionales-descriptivos	Nivel 4.c - Serie de casos
	Nivel 4.d - Estudio de casos
	Nivel 5.a - Revisión sistemática de la opinión de expertos
NIVEL 5 - Opinión de expertos e investigación de banco	Nivel 5.b - Consenso de expertos
	Nivel 5.c - Investigación de banco/opinión de un solo experto

9.2. Resumen de resultados

Tabla 6: Tabla de resultados

AÑO	PAÍS Y AUTORES	TÍTULO	TIPO DE ESTUDIO	RESULTADOS	HERRAMIENTAS DE EVALUACIÓN DE LA EVIDENCIA
(3)	Países Bajos Inga Petersohn, Anneke H Hellinga, Linde van Lee, Nicole Keukens, Louis Bont, Kasper A Hettinga, Edith JM Feskens y Elske M Brouwer-Brolsma	Maternal diet and human milk composition: an updated systematic review	Revisión sistemática	La ingesta de proteínas, vitaminas y carbohidratos no guarda relación significativa con sus niveles en la leche materna, a diferencia de determinados ácidos grasos como el DHA.	Nivel 1. b
2019 (12)	Venezuela Thaís Álvarez de Acosta, María Rossell-Pineda, Isabel Cluet de Rodríguez, Emiro Valbuena y Edgar Fuenmayor	Macronutrientes en leche de madres desnutridas	Estudio prospectivo comparativo	Existe menor contenido de grasas y proteínas en la leche materna de madres desnutridas con respecto a las madres eutróficas.	Nivel 3. e

2016 (13)	Estados Unidos Francesca Bravi, Frank Wiens, Adriano Decarli, Alessia del Puente, Carlo Agostoni y Mónica Ferrari	Impact of maternal nutrition on breast-milk composition: a systematic review		Los resultados con mayor evidencia mostraron una relación positiva entre el consumo de pescado y los niveles de DHA y entre los niveles de vitamina C en la dieta materna y su concentración en la leche.	Nivel 1. b
(14)	Emiratos Árabes Unidos Carole Ayoub Moubareck	Human Milk Microbiota and Oligosaccharides: A Glimpse into Benefits, Diversity and Correlations	sistemática	La ingesta de determinados ácidos grasos en la dieta materna contribuye indirectamente en la composición bacteriana de la leche.	Nivel 5.a
2018 (15)	Polonia Agnieszka Bzikowska-Jura, Aneta Czerwonogrodzka- Senczyna, Dorota Szostak- Wegierek, Gabriela Oledzka, Halina Weker y Aleksandra Wesołowska	Maternal Nutrition and Body Composition During Breastfeeding: Association with Human Milk Composition	observacional	No se encuentra relación entre la ingesta nutritiva materna y la composición de la leche, sino que la estabilidad de la composición de esta leche depende de mecanismos fisiológicos compensatorios.	Nivel 4. b

2018 (16)	Estados Unidos Paige K. Berger, David A. Fields, Ellen W. Demerath, Hideji Fujiwara y Michael I. Goran	High-Fructose Corn-Syrup- Sweetened Beverage Intake Increases 5-Hour Breast Milk Fructose Concentrations in Lactating Women	Estudio experimental controlado	El consumo materno de una bebida endulzada con jarabe de maíz de alta fructosa resultó en un aumento de la concentración de fructosa en la leche materna, pero no alteró los niveles de lactosa y glucosa.	Nivel 1.c
2023 (17)	Taiwán Gozde Okburan y Serap Kızıler	Human milk oligosaccharides as prebiotics	Revisión sistemática	Los resultados sobre la relación entre la nutrición materna y los niveles de oligosacáridos son diversos en función del tipo de oligosacárido estudiado.	Nivel 1. b
2021 (18)	Perú Jorly Mejía-Montilla, Nadia Reyna-Villasmil y Eduardo Reyna-Villasmil	Consumo de micronutrientes durante el embarazo y la lactancia	Revisión sistemática	Existen requerimientos específicos de los distintos micronutrientes durante el embarazo y la lactancia y deben estar relacionados con las características individuales de la madre.	Nivel 1. b

2019 (19)	Brasil Ana Gabriella Costa Lemos da Silva, Amanda de Sousa Rebouças, Beatriz Maria Alves Mendonça, Danna Calina Nogueira e Silva, Roberto Dimenstein, Karla Danielly da Silva Ribeiro	Relationship between the dietary intake, serum, and breast milk concentrations of vitamin A and vitamin E in a cohort of women over the course of lactation		Se demuestra que existe una relación positiva entre la ingesta dietética materna y los niveles de retinol en el suero materno, a diferencia de los niveles de alfatocoferol, que no se vieron alterados.	Nivel 3.c
2019 (20)	Brasil Michele R Machado, Fernanda Kamp, Juliana C Nunes, Tatiana El-Bacha y Alexandre G Torres	Breast Milk Content of Vitamin A and E from Early- to Mid- Lactation Is Affected by Inadequate Dietary Intake in Brazilian Adult Women	Estudio observacional longitudinal	A pesar de los niveles séricos constantes de vitamina A y E, el contenido de ambas vitaminas disminuyó a lo largo de la lactancia.	Nivel 3. e
2020 (21)	Estados Unidos Bryan M Gannon, Camille Jones y Saurabh Mehta	Vitamin A Requirements in Pregnancy and Lactation	Revisión sistemática	La ingesta materna de Vitamina A puede influir en los niveles de esta vitamina en la madre, en la leche materna y en el niño.	Nivel 1. b

2015 (22)	España Susana Ares Segura, José Arena Ansótegui y Marta Díaz- Gómez	La importancia de la nutrición materna durante la lactancia, ¿necesitan las madres lactantes suplementos nutricionales?	Revisión sistemática	Se recomienda el consumo de determinados suplementos en las mujeres lactantes para satisfacer las necesidades de producción láctea.	Nivel 5.a
2023 (23)	Reino Unido Coralie Falize, M. Savage, Yvonne M. Jeanes y Simon C. Dyall	Evaluating the relationship between the nutrient intake of lactating women and their breast milk nutritional profile: a systematic review and narrative synthesis	Revisión sistemática	La ingesta materna de DHA, EPA, vitaminas A, E y K, yodo y selenio está relacionada con la composición de la leche materna.	Nivel 1. b
2022 (24)	Polonia Agnieszka Bzikowska-Jura, Aleksandra Wesołowska, Piotr Sobieraj, Magdalena Michalska-Kacymirow, Ewa Bulska e Isidora Starcevic	Maternal diet during breastfeeding in correlation to calcium and phosphorus concentrations in human milk.	Estudio observacional longitudinal	La concentración de calcio y fósforo en la leche materna está influenciada por la ingesta dietética y ambas concentraciones están también correlacionadas entre sí.	Nivel 3. e
2016 (25)	Corea del Sur Yun Kyung Choi, Ji-Myung Kim, Ji-Eun Lee, Mi Sook Cho, Bong Soo Kang,Hyeon Choi y Yuri	Association of Maternal Diet With Zinc, Copper, and Iron Concentrations in Transitional Human Milk Produced by Korean Mothers	Estudio observacional transversal	La concentración de hierro, cobre y zinc en la leche materna no está relacionada con la ingesta de estos minerales, pero sí con la ingesta de determinados alimentos.	Nivel 3. e

	Kim				
2021 (26)	Suecia Mia Stråvik, Klara Gustin, Malin Barman, Helena Skröder, Anna Sandin, Agnes E. Wold, Ann- Sofie Sandberg, Maria Kippler y Marie Vahter	Infant Iodine and Selenium Status in Relation to Maternal Status and Diet During Pregnancy and Lactation	Estudio observacional longitudinal	Los niveles de yodo y selenio en la leche materna están relacionados con la ingesta materna de determinados alimentos.	Nivel 3. e
2020 (27)	Islandia Erna Petersen, Birna Thorisdottir, IngaThorsdottir, GeirGunnlaugsson, PetraArohonka, IrisErlund e Ingibjörg Gunnarsdottir	lodine status of breastfed infants and their mother's breast milk iodine concentration.	Estudio prospectivo de cohortes	Los bebés lactantes dependen exclusivamente de la leche materna para obtener yodo y no se determinó con claridad los niveles de yodo en los lactantes estudiados.	Nivel 3.c
2018 (28)	China Meng-Jie He, Shuang-Qing Zhang, Weipeng Mu y Zhen- Wu Huang	Selenium in infant formula milk	Revisión sistemática	La leche materna humana es más beneficiosa en cuanto al aporte de selenio que la leche de fórmula.	Nivel 1. b

2023	Reino Unido	Calcium, zinc and vitamin D in	Revisión	La edad materna, la edad	Nivel 1.a
(29)	Magali Rios-Leyvraz y Qisi Yao	breast milk: a systematic review and meta-analysis	sistemática	gestacional y la alimentación materna pueden alterar los niveles de determinados minerales en la leche materna.	
2024 (30)	España Alejandra Carretero-Krug, Ana Montero-Bravo, Carmen Morais-Moreno, Ana M. Puga. Mª de Lourdes Samaniego- Vaesken, Teresa Partearroyo y Gregorio Varela-Moreiras	Nutritional Status of Breastfeeding Mothers and Impact of Diet and Dietary Supplementation: A Narrative Review	Revisión sistemática	Se observa una relación positiva entre la suplementación nutricional en madres lactantes y su concentración nutritiva en la leche materna.	Nivel 1. b
2021 (31)	Chile Jimena Ríos, Viviana Valero- Jara y Samantha Thomas- Valdés	Phytochemicals in breast milk and their benefits for infants	Revisión sistemática	La dieta materna es una fuente importante para el aporte suficiente de polifenoles y carotenoides, con el fin de compensar la disminución de sus niveles en la leche materna durante el periodo de lactancia	Nivel 1. b

2021 (32)	Hong Kong Zhou Lu, Yat-Tin Chan, Kenneth Ka-Hei Lo, Vincy Wing-Si Wong, Yuk-Fan Ng, Shi-Ying Li, Wing-Wa Ho, Man- Sau Wong y Danyue Zhao	Levels of polyphenols and phenolic metabolites in breast milk and their association with plant-based food intake in Hong Kong lactating women	observacional	La inclusión de alimentos de origen vegetal con polifenoles en la dieta materna se relaciona de forma positiva con niveles superiores de compuestos fenólicos en la leche materna.	Nivel 3. e
2022 (33)	Indonesia Yanti Herawati, Umi Kalsum, Wayan Arsana, Lelly Yuniarti y Teguh Wahju Sardjono	Carica papaya leaf ethanol extract effect on milk volume, β -casein gene (Csn2) expression, β -casein levels, and milk total protein levels	Estudio experimental de laboratorio	El extracto de etanol de hojas de papaya está relacionado con un aumento del volumen de leche, los niveles de beta-caseína y los niveles proteicos totales.	Nivel 1.c
2018 (34)	Estados Unidos Roman Pawlak, Paul Vos, Setareh Shahab-Ferdows, Daniela Hampel, Lindsay H. Allen y Maryanne Tigchelaar Perrin	Vitamin B-12 content in breast milk of vegan, vegetarian, and nonvegetarian lactating women in the United States	observacional	La concentración de vitamina B-12 en muestras de leche de mujeres que seguían una dieta vegetariana, vegana y no vegetariana no varía en función del patrón alimentario materno y las madres lactantes vegetarianas pueden alcanzar concentraciones óptimas de vitamina B-12 con suplementos individuales.	Nivel 3. b

2024 (35)	Chile Tomás Sandoval Leiva, Yasna Muñoz, Luis Tabilo Aguirre y Pamela Estay Castillo	Vitamina B-12, ácidos grasos EPA y DHA durante el embarazo y la lactancia en mujeres con alimentación basada en plantas	Revisión sistemática	Una alimentación materna basada en plantas puede llevarse a cabo de forma equilibrada y con la suplementación adecuada de vitamina B12, EPA y DHA para cumplir los niveles recomendados.	Nivel 1. b
2018 (36)	Estados Unidos Maryanne T. Perrin, Romano Pawlak, Lisa L. Dean y Ámbar Christis.	A cross-sectional study of fatty acids and brain-derived neurotrophic factor (BDNF) in human milk from lactating women following vegan, vegetarian and omnivore diets.	Estudio observacional transversal	La LM de las madres lactantes con dietas veganas contenía más grasas insaturadas y omega-3 que las madres vegetarianas y omnívoras	Nivel 3. b
2023 (37)	España Noelia Ureta-Velasco, Adriana Montealegre-Pomar, Javier Fontecha, María V. Calvo, Kristin Keller, Diana Escuder- Vieco, Javier Megino-Tello, José C. E. Serrano y Carmen R. Pallás-Alonso	Associations of Dietary Intake and Nutrient Status with Micronutrient and Lipid Composition in Breast Milk of Donor Women	Estudio observacional transversal	El contenido de DHA en la leche materna donada guarda relación con la ingesta materna de DHA y los niveles plasmáticos del mismo en las madres.	Nivel 3. e

(38)	España Noelia Ureta-Velasco, Kristin Keller, Diana Escuder-Vieco, Javier Fontecha, María V Calvo, Javier Megino-Tello, José CE Serrano, Carmen Romero Ferreiro, Nadia Raquel García-Lara y Carmen R Pallás-Alonso	Composición de la leche materna y estado nutricional de donantes de leche materna omnívoras en comparación con madres lactantes vegetarianas/veganas	Estudio observacional transversal	La leche de las madres vegetarianas y veganas presenta diferencias en la concentración de micronutrientes y lípidos, con respecto a la de las madres donantes omnívoras.	Nivel 3. b
2022 (39)	Estados Unidos Maryanne T Perrin, Roman Pawlak, Nicholas Judd, Jessica Cooper y George L Donati	Major and trace mineral composition of milk from lactating women following vegan, vegetarian and omnivore diets	Estudio observacional transversal	Las personas que siguieron una dieta basada en plantas tuvieron un IMC más bajo, mayores niveles de Selenio en la leche materna y menores niveles de yodo y hierro en la misma, en comparación con aquellas con dietas omnívoras.	Nivel 3. b

2023	Irán	A Mediterranean diet is	Estudio	La leche materna de madres que	Nivel 3. b
(40)	Samira Karbasi, Malihe Mohamadian, Mohsen Naseri, Zahra Khorasanchi, Asghar Zarban, Afsane Bahrami y Gordon A Ferns	associated with improved total antioxidant content of human breast milk and infant urine.	observacional transversal	siguen una dieta mediterránea tiene mayor poder antioxidante, más proteínas y menos triglicéridos.	