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Resumen

Este TFG está motivado por un algoritmo propuesto por H. Inouzhe, cuyo ob-

jetivo es determinar cotas para la distancia en variación total y estimar la parte

común entre dos distribuciones, con vistas a construir algoritmos de clasificación

más justos. Se estudian las herramientas teóricas necesarias para su desarrollo, in-

cluyendo formulaciones equivalentes del modelo de mezcla de probabilidades, pro-

piedades topológicas de los conjuntos de recortes y el análisis de métricas como las

de Wasserstein y las basadas en la discrepancia media promedio.

Abstract

This work is motivated by an algorithm proposed by H. Inouzhe, aimed at de-

termining bounds for the total variation distance and estimating the common part

between two distributions, with a view toward constructing fairer classification al-

gorithms. The necessary theoretical tools for its development are studied, including

equivalent formulations of the probabilistic mixture model, topological properties

of trimming sets, and the analysis of metrics such as the Wasserstein distance and

those based on the maximum mean discrepancy.
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2. Métricas de máxima discrepancia media 23
2.1. Contexto y Motivación . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2. Espacio de Hilbert reproductor del núcleo . . . . . . . . . . . . . . . 25
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Introducción

El objetivo principal en Aprendizaje Automático es la obtención de reglas para
predecir una variable de interés, Y , denominada de forma genérica como “etiqueta”,
a partir de otras variables más fácilmente medibles, X, a las que se suele llamar
“atributos”. Desde un punto de vista formal, sea X el espacio de los atributos e Y
el espacio de las etiquetas. Se quiere determinar una función h : X → Y tal que
Ŷ = h(X) sea una predicción de la variable respuesta Y , para cada X ∈ X .

Un caso particular es el de la clasificación binaria, donde el conjunto de posibles
etiquetas es Y = {−1, 1}. Se trata de asignar a cada individuo de la población una
de estas dos clases, a partir de ciertas variables aleatorias conocidas (los atributos).
Para ello, se busca la regla de decisión Ŷ := h(x) que acierte la clase del individuo las
máximas veces posibles, es decir, que minimice la probabilidad de fallo P (Ŷ ̸= Y ).

Muchos de los algoritmos de predicción aprenden de un conjunto de datos de los
que se conocen tanto los atributos como la etiqueta:

{(x1, y1), (x2, y2), ..., (xn, yn)}, i ∈ {1, ..., n}.

A partir de esta información (datos de entrenamiento), el modelo ajusta una regla
que le permite predecir la clase {−1, 1} de nuevos individuos, para los cuales solo se
observan los atributos x, pero no se conoce la etiqueta y. Esto es lo que se denomina
Aprendizaje Supervisado.

El desarrollo de algoritmos de clasificación es uno de los problemas más actuales.
Se usan en medicina para diagnosticar enfermedades a partir de datos de otros pa-
cientes anteriores, en ciberseguridad para detectar correos electrónicos maliciosos, en
el sector automoviĺıstico para hacer coches más seguros a partir del reconocimiento
de imágenes, en finanzas para evaluar el riesgo de que una persona no devuelva un
préstamo bancario, etc. En un futuro, prácticamente se tomarán todas las decisio-
nes a partir de algoritmos. Por esta razón, surgen nuevos conflictos, principalmente,
relacionados con la ética.

Por ejemplo, se considera un algoritmo para predecir si un alumno de bachillerato
estudiará una carrera STEM o no. Si ahora hay menos mujeres que hombres con
puestos de trabajo STEM, y el algoritmo tiene como conjunto de entrenamiento
datos actuales, podŕıa relacionar a las mujeres con carreras que no sean de ciencias.
Seŕıa un algoritmo injusto, en el que la variable sexo tendŕıa bastante peso para
determinar la carrera de futuros estudiantes. Para que el algoritmo no carezca de
ética, el sexo de un estudiante no debe influir en la regla de decisión. Esto es solo un
ejemplo ilustrativo de un problema real en inteligencia artificial: detectar, corregir
y prevenir sesgos causados por el uso de algoritmos.
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Introducción

El aprendizaje “justo” se plantea en relación con situaciones en las que, además
de los atributos admisibles, hay otras variables involucradas, S, cuyo efecto sobre la
predicción se desea limitar o eliminar. A estas variables se las conoce como “atributos
protegidos”.

Para limitar la influencia de los atributos protegidos en la clasificación de los
individuos no es suficiente con determinar una regla de clasificación que no tenga
en cuenta esas variables, ya que probablemente los atributos protegidos S no sean
independientes de otros atributos X.

Formalizando el problema, se denota por S al espacio de los atributos protegidos.
Si se tiene un atributo protegido binario, entonces S = {0, 1}. La ley de probabilidad
a partir de la cual están generados los datos del grupo S = 0 es posiblemente
distinta a la ley de los datos del grupo S = 1. Se denota P1 := L(X|S = 0) y
P2 := L(X|S = 1). En el caso general, un atributo protegido va a dividir a la
población en varios subgrupos, y la ley de probabilidad que genera los datos de cada
subgrupo será, posiblemente, distinta para cada uno de ellos.

El cambio de marco de trabajo debido a la inclusión de atributos protegidos
en el problema produce cierto conflicto de intereses en el problema de Aprendizaje
Automático. Por un lado, se busca garantizar que las reglas obtenidas produzcan
resultados similares para individuos con caracteŕısticas similares. Por otro lado, las
decisiones no debeŕıan, globalmente, estar influenciadas por los atributos que se
tratan de proteger. Frecuentemente, el aprendizaje involucra casos con diferentes
atributos y también con diferentes atributos protegidos. En esta situación, el entre-
namiento de reglas resulta problemático.

Un primer paso necesario para entrenar reglas adecuadas seŕıa la búsqueda de
subgrupos comparables entre las poblaciones con diferente atributo protegido. Aśı,
se podrán entrenar reglas de clasificación sobre datos de estos subgrupos, que serán
éticas. Con esta idea en mente, se busca escribir la ley de probabilidad de cada grupo
con diferente atributo protegido como la mezcla de una probabilidad común a todos
ellos y de otra diferente para cada grupo:

Pi = (1− α)P0 + αRi, i = {1, 2, ..., n}, α ∈ [0, 1]. (1)

Además, el nivel al que dos poblaciones comparten una parte común se puede des-
cribir en términos de la distancia en variación total. Cuanto menor sea la distancia
en variación total entre dos probabilidades P1 y P2, más peso tendrá la probabilidad
común P0: las distribuciones de los datos de cada grupo serán similares.

Este TFG está motivado por la propuesta de H. Inouzhe de un algoritmo que
persigue obtener cotas probables para la distancia en variación total y una estimación
consistente de la parte común entre dos probabilidades. Las cotas se buscan dentro
de una partición fija P = {α0 = 0 < α1 < α2 < ... < αk = 1} del intervalo [0, 1]. Este
algoritmo consta de tres pasos, descritos en la sección 1.3.2. Se resumen brevemente:

1. Fijar αi ∈ P (se empieza fijando αi = α1).

2. Calcular los recortes óptimos para una métrica d entre probabilidades:

(Pαi
, Qαi

) := argmin
R∈Rαi (P1)
S∈Rαi (P2)

d(R, S),

8



Introducción

donde Rα(Pj) := {R probabillidad : R(A) ≤ 1
1−αPj(A), ∀A medible} es el

conjunto de recortes de nivel α de Pj, con j = 1, 2.

3. Realizar el test de hipótesis nula

H0 : Pαi
= Qαi

Si se rechaza la hipótesis nula, se cambia αi por αi+1 y se vuelve a repetir el algoritmo.
Si no se rechaza la hipótesis nula, entonces dTV (P1, P2) ≤ αi y es la mejor cota que
se ha podido encontrar para la distancia en variación total entre P1 y P2, dentro de
los valores de la partición P . Además, Pαi

= Qαi
es la estimación de la parte común

de ambas probabilidades.
Este TFG está relacionado con el trabajo que estoy desarrollando a través de la

beca de colaboración con el Departamento de Estad́ıstica e Investigación Operati-
va. Se ha dedicado al estudio de las herramientas matemáticas relacionadas con los
distintos aspectos involucrados en el algoritmo. No se aborda el desarrollo del algo-
ritmo (ni teórico, ni computacional); este tema queda como trabajo futuro, dentro
del proyecto, más grande, de la beca de colaboración.

Por eso, se dedica el caṕıtulo 1 a estudiar formulaciones equivalentes al modelo
de mezcla descrito en la ecuación 1. Ese caṕıtulo permitirá reescribir el problema
de mezcla en términos de otro problema de distancia entre conjuntos de recorte. La
métrica elegida debeŕıa hacer que los conjuntos de recorte tuvieran buenas propie-
dades topológicas, garantizando, por ejemplo, la existencia de minimizadores. Las
métricas de Wasserstein, asociadas al transporte óptimo, resultan adecuadas y por
ello se les dedica el caṕıtulo 3. Se estudia la existencia de minimizadores en las
versiones de Kantorovich y de Monge y las propiedades de la métrica de Wassers-
tein asociada. Se estudian también las propiedades topológicas de los conjuntos de
recortes respecto de esta métrica.

Los problemas computacionales asociados al problema de transporte óptimo
clásico se resuelven con el problema entrópico. Por eso, se ha dedicado un caṕıtulo
final al estudio de este problema entrópico.

Una vez estimados los recortes más próximos (respecto a la métrica de Wassers-
tein) se trata de comparar esos dos recortes. Para ello, resulta conveniente emplear
otra métrica. Las métricas basadas en la discrepancia media promedio parecen una
buena opción y por ello se dedica el caṕıtulo 2 del TFG a ellas. La estimación de
la distancia de Wasserstein se ve afectada por la maldición de la dimensionalidad
mientras que las métricas MMD parecen ser más resistentes a este problema, esta es
una razón por la que estas métricas parecen más adecuadas que la de Wasserstein.
En todo caso, estudiar este aspecto de forma más detallada se plantea como trabajo
futuro.
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Caṕıtulo 1

Modelos de mezcla: recortes y
métricas

1.1. Recortes de una probabilidad

Un método estad́ıstico para predecir resultados en función de ciertas variables
no puede ser sensible a pequeñas modificaciones de los datos. Ese es el principio
motivador de la “Estad́ıstica Robusta”, desarrollada por P. Huber. En este contexto
son interesantes los “recortes” de una probabilidad.

En un espacio finito X = {x1, x2, ..., xn}, un recorte de una probabilidad P de
nivel α ∈ [0, 1) es otra probabilidad Q cuya masa está concentrada en los mismos
puntos que la primera, pero con pesos ligeramente modificados. Es decir, si P =
n∑
i=1

βiδxi , entonces Q =
n∑
i=1

wiδxi , con 0 ≤ (1− α)wi ≤ βi, para cada i ∈ {1, ...n}.

Un ejemplo práctico en el que se ilustra la utilidad de los recortes es el siguiente:
Si {X1, X2, ..., Xn} son n variables aleatorias independientes de una determinada
distribución P , una aproximación a esa ley de probabilidad es la emṕırica asociada
a la muestra:

Pn =
1

n

n∑
i=1

δxi .

Para dar menos peso a las observaciones at́ıpicas, se puede recortar Pn de la siguiente
forma. Sea α ∈ [0, 1) tal que αn ∈ N,

P̃n =
1

n(1− α)

⌊n(1−α
2
)⌋∑

i=⌊nα
2
⌋+1

δx(i) .

Con este recorte, se ordenan las observaciones {X(1), X(2), ..., X(n)}. El parámetro α
indica el porcentaje de observaciones que se quieren eliminar (las más alejadas de
los valores centrales). El peso total que teńıan esas observaciones at́ıpicas se divide
entre las n(1− α) observaciones restantes.

En esta sección, se definen los entornos de contaminación de una probabilidad,
que fueron propuestos por P. Huber. También se generaliza la definición de proba-
bilidad recortada (que se ha definido únicamente para el caso discreto). Los recortes
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Caṕıtulo 1. Modelos de mezcla: recortes y métricas

de una probabilidad son una propuesta de Cuesta, Matrán y coautores. Más detalles
sobre estos aspectos se pueden encontrar en [3]. Ambos conceptos están relacionados
con los modelos de mezcla de probabilidades y la parte común entre diferentes leyes
de probabilidad. Por esta razón, su estudio es clave si se quieren encontrar subgrupos
comparables en las poblaciones con diferente atributo protegido.

Los resultados que se presentan a continuación están en su mayor parte en [3],
se han adaptado o completado las demostraciones.

Definición 1.1.1. Sea X un espacio con una σ-álgebra M y sea ε ∈ [0, 1). Sea P0

una probabilidad en este espacio. Se define el entorno de contaminación de nivel ε
de P0 como el conjunto de probabilidades:

νε(P0) := {(1− ε)P0 + εR : R probabilidad en (X ,M)}.

La definición es correcta: Si P1, P2 son probabilidades en (X ,M), entonces

(1− ε)P1 + εP2

es probabilidad en (X ,M) (es medida positiva por ser suma de medidas positivas y
el peso total es 1).

La idea de entorno de contaminación es clara: es el conjunto de probabilidades
que se definen a partir de pequeñas modificaciones de P0. Por eso, tiene sentido
pensar que “cuanto más se permita modificar P0, más grande será el conjunto de
probabilidades que forman el entorno de contaminación”. Esta idea se formaliza en
la siguiente proposición.

Proposición 1.1.2. Sea P0 una probabilidad en un espacio medible (X ,M). Los
entornos de contaminación, para cada ε ∈ [0, 1), son crecientes:

ν0(P0) = {P0}.

Sean ε1, ε2 ∈ (0, 1) tales que ε1 < ε2, entonces νε1(P0) ⊂ νε2(P0).

Demostración. Se supone Q ∈ νε1(P0), es decir, Q = (1− ε1)P0 + ε1R con R proba-
bilidad. Entonces,

Q = (1− ε2)P0 + [(ε2 − ε1)P0 + ε1R] = (1− ε2)P0 + ε2

[
(1− ε1

ε2
)P0 +

ε1
ε2
R

]
= (1− ε2)P0 + ε2R

′, R′ = (1− ε1
ε2
)P0 +

ε1
ε2
R es probabilidad en (X ,M).

Por lo tanto, Q ∈ νε2(P0).

Para la siguiente definición, se utilizan los conceptos de probabilidad absolu-
tamente continua y derivada de Radon-Nikodym, que se recuerdan en el apéndice
A.

Definición 1.1.3. Sean α ∈ [0, 1) y P una probabilidad en un espacio medible
(X ,M). El conjunto de recortes de P de nivel α (denotado por Rα(P )) es el conjunto
de probabilidades en (X ,M) absolutamente continuas respecto de P cuya derivada
de Radon-Nikodym es menor o igual que 1

1−α P -casi seguro, es decir,

Rα(P ) := {Q≪ P :
dQ

dP
≤ 1

1− α
P -c.s.}.
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1.1. Recortes de una probabilidad

Es fácil comprobar que la definición de recorte de una probabilidad coincide con
la dada previamente para el caso discreto. Al recortar una probabilidad se modifica
ligeramente la probabilidad, sin dar masa a conjuntos que antes no la teńıan y sin
aumentar excesivamente la probabilidad de cualquier conjunto. Se tiene una carac-
terización de los recortes de una probabilidad, dada por la siguiente proposición.

Proposición 1.1.4. Sean P y Q probabilidades en (X ,M) y α ∈ [0, 1). Son equi-
valentes:

1. Q ∈ Rα(P ).

2. Para todo conjunto A ∈ M,

Q(A) ≤ 1

1− α
P (A).

Además, si (X ,M) = (Rd, βd), las condiciones 1 y 2 son equivalentes también a

3. ∫
fdQ ≤ 1

1− α

∫
fdP, ∀f ≥ 0 continua y acotada.

Demostración. Si Q ∈ Rα(P ), entonces Q es absolutamente continua respecto de P
y se verifica:

Q(A) =

∫
A

dQ

dP
dP ≤

∫
A

1

1− α
dP =

1

1− α
P (A).

Rećıprocamente, si Q(A) ≤ 1
1−αP (A), para todo A ∈ M, Q es absolutamente con-

tinua respecto de P . Además, si el conjunto A = {dQ
dP

> 1
1−α} ∈ M tuviese probabi-

lidad P estrictamente positiva, entonces

1

1− α
P (A) ≥ Q(A) =

∫
A

dQ

dP
dP >

∫
A

1

1− α
dP =

1

1− α
P (A).

Se llega a un absurdo. Por lo tanto, P (A) = 0 y dQ
dP

≤ 1
1−α P -c.s.

Por último, si (X ,M) = (Rd, βd), entonces las probabilidades son regulares (ver
apéndice B). Se supone que se tiene 3. Sea U un abierto en X , se considera la
sucesión de funciones continuas y acotadas definidas de la siguiente forma:

fn(x) = mı́n{1, nd(x, U c)}, ∀n ∈ N.

Como U c es cerrado, d(x, U c) = 0 si y solo si x /∈ U . Es fácil ver que {fn}∞n=1 es una
sucesión creciente que converge puntualmente a la función indicadora de U . Por el
teorema de la convergencia monótona,

Q(U) =

∫
XUdQ = ĺım

n→∞

∫
fndQ = ĺım

n→∞

∫
fn
dQ

dP
dP

≤ ĺım
n→∞

1

1− α

∫
fndP =

1

1− α

∫
XUdP =

1

1− α
P (U).
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Caṕıtulo 1. Modelos de mezcla: recortes y métricas

Por la regularidad de las probabilidades en Rd, si A ∈ βd, se tiene que

Q(A) = ı́nf{Q(U) : E ⊆ U, U abierto}

≤ 1

1− α
ı́nf{P (U) : E ⊆ U, U abierto} =

1

1− α
P (A).

La implicación contraria es fácil usando la regla de la cadena (ver A.0.3). Si Q ∈
Rα(P ), para cualquier función f positiva, continua y acotada, se tiene que:∫

fdQ ≤
∫
f
dQ

dP
dP ≤ 1

1− α

∫
fdP.

A continuación, se relaciona el conjunto de recortes con el entorno de contami-
nación.

Proposición 1.1.5. Sea α ∈ [0, 1). Sean P, Q dos probabilidades en (X ,M). En-
tonces,

Q ∈ Rα(P ) ⇔ P ∈ να(Q).

Demostración. Sea Q ∈ Rα(P ), es decir, Q es una probabilidad tal que

(1− α)Q(A) ≤ P (A), ∀A ∈ M.

Se define

R :=
1

α
(P − (1− α)Q) .

R es medida, por ser suma de medidas, y positiva, por la hipótesis. Además,

R(X) =
1

α
(P (X)− (1− α)Q(X)) =

1

α
(1− (1− α)) = 1.

Entonces R es una probabilidad y se cumple P = (1 − α)Q + αR. Queda probado
que P ∈ να(Q).

Rećıprocamente, si P ∈ να(Q), existe una probabilidad R en (X ,M) tal que

P (A) = (1− α)Q(A) + αR(A), ∀A ∈ M.

Entonces P (A) ≥ (1 − α)Q(A). Por la caracterización de recortes vista en 1.1.4,
Q ∈ Rα(P ).

1.2. Distancia en variación total entre dos proba-

bilidades

Primero, se recuerda la definición de distancia en variación total.

Definición 1.2.1. Sean P1 y P2 probabilidades en (X ,M). Se define la distancia
en variación total entre P1 y P2 como:

dTV (P1, P2) := sup
A∈M

|P1(A)− P2(A)|.
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1.2. Distancia en variación total entre dos probabilidades

Si P1 y P2 son probabilidades en un espacio (X ,M), siempre existe otra medida
positiva µ en ese mismo espacio tal que P1 y P2 son absolutamente continuas respecto
de µ. Por ejemplo, µ = P1 + P2.

En el siguiente lema, se da una caracterización de la distancia en variación total
en términos de la derivada de Radon-Nikodym de P1 y P2 respecto de µ.

Si (X ,M) = (Rd, βd) y las probabilidades P1 y P2 tienen función de densidad,
se trata de un caso particular de lo que se acaba de explicar, tomando µ como la
medida de Lebesgue.

Lema 1.2.2. Sean P1 y P2 probabilidades en (X ,M) y µ una medida positiva en
ese espacio tal que P1 y P2 son absolutamente continuas respecto de µ. Para i = 1, 2
se denota por fi a la derivada de Radon-Nikodym de Pi respecto de µ. Entonces,

dTV (P1, P2) = 1−
∫

mı́n(f1, f2)dµ =
1

2

∫
|f1 − f2|dµ.

Demostración. Sea A0 = {x ∈ X : f1(x) > f2(x)}. Para cualquier conjunto A ∈ X ,

P1(A)− P2(A) =

∫
A

(f1 − f2)dµ =

∫
A∩A0

(f1 − f2)dµ+

∫
A∩AC

0

(f1 − f2)dµ.

Teniendo en cuenta que
∫
A∩Ac

0
(f1 − f2)dµ ≤ 0, se puede acotar esa diferencia de

probabilidades superiormente:

P1(A)− P2(A) ≤
∫
A∩A0

(f1 − f2)dµ ≤
∫
A0

(f1 − f2)dµ = P1(A0)− P2(A0).

Análogamente, se tiene que

−(P1(A0)− P2(A0)) = P1(A
C
0 )− P2(A

C
0 ) ≤ P1(A)− P2(A).

Como ambas desigualdades se verifican para cualquier conjunto A ∈ X , tomando
superiores, se deduce que

dTV (P1, P2) = P1(A0)− P2(A0) =

∫
A0

(f1 − f2)dµ =

∫
(f1 − f2)+dµ.

Usando la igualdad (f1 − f2)+ = f1 −mı́n(f1, f2), se concluye que

dTV (P1, P2) = 1−
∫

mı́n(f1, f2)dµ.

Por otro lado,

1 =

∫
f1dµ =

∫
f2dµ⇒ 0 =

∫
(f1 − f2)dµ =

∫
A0

(f1 − f2)dµ+

∫
AC

0

(f1 − f2)dµ.

Entonces,∫
(f1 − f2)−dµ = −

∫
AC

0

(f1 − f2)dµ =

∫
A0

(f1 − f2)dµ =

∫
(f1 − f2)+dµ.
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∫
|f1 − f2|dµ =

∫
(f1 − f2)+dµ+

∫
(f1 − f2)−dµ = 2

∫
(f1 − f2)+dµ.

Con esta igualdad, es claro que

dTV (P1, P2) =

∫
(f1 − f2)+dµ =

1

2

∫
|f1 − f2|dµ.

Volviendo al problema del aprendizaje justo, si un atributo protegido binario
divide a la población en dos subgrupos, cada uno de ellos tendrá una distribución
de probabilidad diferente (P1 y P2). La distancia en variación total mide cuánto se
parecen esas dos probabilidades.

Como ya se ha explicado, para entrenar reglas de clasificación justas, el primer
paso es buscar la parte común P0 entre esas dos probabilidades. Para ello, se busca
representar, para cierto α ∈ (0, 1), P1 y P2 de la siguiente forma:

Pi = (1− α)P0 + αRi, i = {1, 2}.

para ciertas probabilidades R1 y R2.
En otras palabras, se quiere determinar una probabilidad P0 tal que P1 y P2

pertenezcan al entorno de contaminación de P0, para cierto nivel α ∈ (0, 1). O, equi-
valentemente, encontrar una probabilidad P0 que pertenezca al conjunto de recortes
de P1 y de P2, del mismo nivel α ∈ (0, 1). Además, cuanto más pequeño sea α, más
se parecerán las probabilidades P1 y P2. Por lo tanto, el objetivo es encontrar el
menor α ∈ (0, 1) que verifique esa condición.

El último resultado de esta sección, que se puede encontrar en [2], relaciona
los recortes de una probabilidad con la distancia en variación total. La idea es la
siguiente: cuanto menor es la distancia en variación total entre las probabilidades
P1 y P2, más peso tiene la probabilidad común P0.

Proposición 1.2.3. Sean P1 y P2 dos probabilidades en (X ,M) y sea α ∈ [0, 1).
Los siguientes enunciados son equivalentes:

1. Existe una probabilidad P0 en X tal que P1 y P2 pertenecen al entorno de
contaminación de P0 de nivel α. Es decir,

P1 = (1− α)P0 + αR1,

P2 = (1− α)P0 + αR2,

con R1 y R2 probabilidades en X .

2. Los conjuntos de recortes de nivel α de P1 y de P2 tienen intersección no vaćıa.

3. La distancia en variación total entre P1 y P2 es menor o igual que α.

Demostración. Se ha probado en 1.1.5 que los dos primeros puntos son equivalentes,
hay que probar la equivalencia con el tercero.

Si P1, P2 ∈ να(P0), entonces |P1(A) − P2(A)| = |α(R1(A) − R2(A))| ≤ α, para
todo A ∈ M. Se concluye que dTV (P1, P2) ≤ α.
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Para probar el rećıproco, hay que probar que existe una probabilidad P0 tal que
P0 ∈ Rα(P1) ∩ Rα(P2). Sea µ una medida en (X ,M) con P1 ≪ µ, P2 ≪ µ. Por
ejemplo, µ = P1 + P2. Y sea

fi =
dPi
dµ

, i = 1, 2.

Por hipótesis (y usando la caracterización de la distancia en variación total dada en
el lema 1.2.2),

dTV (P1, P2) = 1−
∫

mı́n(f1, f2)dµ ≤ α ⇔
∫

mı́n(f1, f2)dµ ≥ 1− α.

Se considera la función f0 :=
mı́n(f1,f2)∫
mı́n(f1,f2)dµ

y sea dP0 := f0dµ. Es decir,

P0(A) =

∫
A

f0dµ, ∀A ∈ M.

Aśı definida, P0 es una medida positiva que cumple que P0(X) =
∫
mı́n(f1,f2)dµ∫
mı́n(f1,f2)dµ

= 1.

Es decir, es una probabilidad. Además, para i ∈ {1, 2}:

P0(A) =
1∫

mı́n(f1, f2)dµ

∫
A

mı́n(f1, f2)dµ ≤ 1

1− α

∫
A

fidµ =
1

1− α
Pi(A).

Se ha probado la existencia de una probabilidad P0 ∈ Rα(P1) ∩Rα(P2).

La proposición que se acaba de enunciar es de gran utilidad. Sirve para establecer
cotas para la distancia en variación total entre dos probabilidades P1 y P2. Si para
un nivel α ∈ [0, 1) se encuentra un elemento común a Rα(P1) y Rα(P2), entonces la
distancia en variación total entre P1 y P2 está acotada por α.

1.3. Estimación de la parte común de dos conjun-

tos de datos

1.3.1. Maldición de la dimensionalidad

La demostración de la proposición 1.2.3 es constructiva, es decir, da un método
para definir la parte común P0 entre dos probabilidades P1 y P2. De esta forma, se
tiene caracterizada la parte común de dos conjuntos de datos.

Si, por ejemplo, P1 y P2 son dos probabilidades en (Rd, βd) que tienen densidades
f1, f2, respectivamente, se ha visto en el lema 1.2.2 que

dTV (P1, P2) = 1−
∫

mı́n(f1, f2)dx.

También se ha visto, en 1.2.3, que la densidad de la parte común P0 es el mı́nimo
de ambas densidades normalizado. Es decir, si se define

P0(A) =
1∫

mı́n(f1, f2)dx

∫
A

mı́n(f1, f2)dx, ∀A ∈ X ,
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entonces P0 ∈ Rα(P1) ∩Rα(P2), con α = dTV (P1, P2) = 1−
∫
mı́n(f1, f2)dx.

Por lo tanto, estimando las densidades f1 y f2, se tiene una estimación de la
parte común entre esas dos distribuciones y de su distancia en variación total. Pero
esta estrategia no es la adecuada. El problema es que los estimadores de funciones
de densidad no son resistentes a lo que se conoce como “maldición de la dimensio-
nalidad”.

Al aumentar la dimensión en la que se trabaja, los datos se dispersan tanto que se
vuelven dif́ıciles de analizar. Los métodos que funcionan bien en pocas dimensiones
(como estimar densidades o distancias) se vuelven ineficaces. En esto consiste la
maldición de la dimensionalidad. Si se estima la función de densidad a partir de
una muestra de tamaño n, por ejemplo en los histogramas, estimadores kernel, etc.,
cuando la dimensión es muy alta, d ≫ n, los datos están muy separados entre śı,
no cubren prácticamente nada del espacio. Hay resultados teóricos que demuestran
que el mejor estimador posible de una densidad en Rd comete un error de orden
n−a/(d+b) para ciertas constantes a, b > 0, lo que demuestra que la precisión de los
estimadores se deteriora con d.

Por eso, hay que buscar otras alternativas para encontrar la parte común a
dos conjuntos de datos. Los procedimientos que se proponen en este trabajo están
basados en distancias entre probabilidades. En concreto, se estudia el problema del
transporte óptimo, con algunas variaciones, y la máxima discrepancia en media.

1.3.2. Estimación de cotas para la distancia en variación
total

Sea X ⊂ Rd el espacio en el que toman valores los atributos (variables alea-
torias fácilmente medibles que se usan para determinar una regla de clasificación).
Sea S un atributo protegido binario, es decir, S ∈ S = {0, 1}. Se consideran dos
probabilidades en X :

P := L(X|S = 0), Q := L(X|S = 1).

H. Inouzhe propuso un procedimiento, alternativo a la estimación de las funciones
de densidad, para estimar una cota α ∈ [0, 1] de la distancia en variación total
entre P y Q, y determinar la parte común P0 a ambas probabilidades. Se explica a
continuación:

Se considera una partición del intervalo [0, 1]:

P = {α0 = 0 < α1 < α2 < ... < αk = 1}.

Al comienzo, se fija α = α1. El algoritmo consta de tres etapas:

1. Para αi ∈ P fijo, la pregunta es si dTV (P,Q) ≤ αi. Se ha probado ya que
α es una cota para la distancia en variación total entre P y Q si, y solo si,
Rα(P ) ∩Rα(Q) ̸= ∅. Por eso, el siguiente paso consiste en buscar el elemento
común a los dos conjuntos de recortes. Esto es un problema de distancia óptima
recortada.
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1.3. Estimación de la parte común de dos conjuntos de datos

2. Se considera una métrica d en una clase de probabilidades en Rd. Se calculan
los recortes óptimos, definidos como:

(Pαi
, Qαi

) := argmin
R∈Rαi (P )
S∈Rαi (Q)

d(R, S).

3. El tercer paso consiste en contrastar si Pαi
= Qαi

. Se hace este contraste con
un test de hipótesis nula.

H0 : Pαi
= Qαi

Si se rechaza la hipótesis nula, entonces, dTV (P,Q) > αi. Se aumenta el valor
de la cota α, cambiando αi por αi+1 y se vuelve a repetir el algoritmo. Si no se
rechaza la hipótesis nula, entonces dTV (P,Q) ≤ αi y es la mejor cota que se ha
podido encontrar para la distancia en variación total entre P y Q, dentro de
los valores de la partición P . Además, Pαi

= Qαi
es la parte común de ambas

probabilidades.

Para concluir este caṕıtulo, se detallan los pasos 2 y 3 del algoritmo, en los que se
centrarán el resto de caṕıtulos del trabajo:

En el paso 2, hay que escoger una distancia adecuada entre probabilidades en
Rd. Una opción es trabajar con la distancia de Wasserstein W2, que se definirá en el
caṕıtulo 3, a partir del estudio del problema de transporte óptimo. Si P y Q tienen
momentos de orden 2 finitos, su distancia de Wasserstein viene dada por la siguiente
expresión:

W2(P,Q) = mı́n
π∈

∏
(P,Q)

(∫
Rd×Rd

∥x− y∥2dπ(x, y)
) 1

2
,

donde se ha denotado por
∏
(P,Q) al conjunto de probabilidades en Rd × Rd con

marginales P y Q. En el art́ıculo [1], se garantiza que existe un minimizador de
W2(R, S), donde R ∈ Rα(P ) y S ∈ Rα(Q). Es decir, existe (Pα, Qα) probabilidades
tales que

(Pα, Qα) := argmin
R∈Rα(P )
S∈Rα(Q)

W2(R, S).

Por lo tanto, si existe un recorte P0 común a P y Q, esa probabilidad minimiza la
distancia de Wasserstein entre ambos conjuntos de recortes (el mı́nimo es 0) y se
tiene, entonces, que

P = (1− α)P0 + αR1,

Q = (1− α)P0 + αR2,

con R1 y R2 probabilidades.
En la práctica, se calcula la distancia de Wasserstein entre R y S a partir de

aproximaciones emṕıricas. Para ello, se consideran aproximaciones discretas a esas
dos probabilidades y se calcula su respectiva distancia de Wasserstein. Formalizando
esta idea, sea n ∈ N, y sea {x1, ...xn} una muestra de la distribución R. Análoga-

mente, sea {y1, ...yn} una muestra de la distribución S. Se definen Rn = 1
n

n∑
i=1

δxi y
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Sn = 1
n

n∑
j=1

δyj . La distancia de Wasserstein entre Rn y Sn viene dada por la siguiente

fórmula:

W2(Rn, Sn) = mı́n
n∑
i=1

n∑
j=1

∥xi−yj∥2πi,j, sujeto a πi,j ≥ 0;
n∑
j=1

πi,j =
1

n
;

n∑
i=1

πi,j =
1

n
.

Este procedimiento (aproximar la distancia por su versión emṕırica) no es válido
para la distancia en variación total entre R y S, ya que si, por ejemplo, R y S tienen
densidad y no están concentradas en conjuntos disjuntos, entonces dTV (R, S) <
1; pero si se generan muestras de cualquier tamaño de ambas probabilidades, no
tendrán puntos en común, lo que implica que

dTV (Rn, Sn) = 1, ∀n ∈ N.

Por lo tanto, ĺım
n→∞

dTV (Rn, Sn) = 1 ̸= dTV (R, S). En este aspecto, la distancia de

Wasserstein presenta ventajas con respecto a la distancia en variación total ya que

ĺım
n→∞

Wp(Rn, Sn) = Wp(R, S).

Esto se demostrará en el caṕıtulo 3, en concreto, en la sección 3.3.1.
Sin embargo, el cálculo de la distancia de Wasserstein, con la fórmula emṕırica,

tiene un coste computacional muy alto, del orden de O(n3). Además, al calcularla
a partir de una muestra, se ve afectada por la maldición de la dimensionalidad. Por
estas razones, se propone modificar la distancia de Wasserstein, contaminándola con
la divergencia de Kullback-Leibler (mide cuánto de diferentes son dos probabilida-
des). Este tema se trata en el caṕıtulo 4, donde se estudia el coste de transporte
entrópico W2,ε.

Para cada ε > 0, si P y Q son probabilidades en Rd con momentos de orden 2
finitos, se define

W2
2,ε(P,Q) = ı́nf

π∈
∏

(P,Q)

[ ∫
∥x− y∥2

2
dπ(x, y) + εD(π|P ⊗Q)

]
,

donde D(π|P ⊗Q) es la divergencia de Kullback-Leibler de π respecto de la medida
producto P ⊗Q, que también se definirá en el caṕıtulo 4.

El coste de transporte entrópico W2,ε se calcula, gracias a una formulación dual,
a través de una iteración de punto fijo, que hace que sea menos costoso y que no se
vea afectado por la maldición de la dimensionalidad.

En cuanto al paso 3 del método, el test que se usa para contrastar si Pα = Qα está
basado en la máxima discrepancia en media MMD, que se estudia en el caṕıtulo 2.

MMD[F , p, q] := sup
f∈F

(

∫
fdp−

∫
fdq) = sup

f∈F
(Epf − Eqf),

donde p y q son probabilidades en Rd y F es una clase fija de funciones f : Rd → R.
Bajo ciertas condiciones, la máxima discrepancia en media entre dos probabilidades
es 0 si, y solo si, las probabilidades son iguales; esto se formaliza en la sección 2.3.
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Se plantea un test en el que se estima la máxima discrepancia en media entre los
recortes Pα y Qα por una versión muestral, calculable en la práctica. En esa sección
también se dan varias opciones de estimadores de esta métrica, que se calculan en
la práctica únicamente a partir de productos escalares de los datos de una muestra,
lo que resulta computacionalmente muy ventajoso.
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Caṕıtulo 2

Métricas de máxima discrepancia
media

2.1. Contexto y Motivación

En estad́ıstica, es importante representar los datos en un espacio en el que sea
fácil trabajar con ellos. Se ilustra esta idea con un ejemplo, en el contexto del Apren-
dizaje Automático (determinación de reglas para predecir respuestas en función de
variables conocidas). En concreto, en la clasificación binaria, la variable respuesta
Y , llamada etiqueta, solo puede tomar los valores 1 o −1, que determinan la clase
del individuo. El objetivo es predecir Y a partir de otras variables aleatorias X, los
atributos.

Para los datos dibujados en la gráfica, se puede encontrar un clasificador lineal
(recta) que divide a los individuos de la clase verde de los rojos perfectamente (al
menos para el conjunto de entrenamiento).
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Figura 2.1: Clasificación lineal

En este ejemplo, se han generado 100 observaciones de la siguiente forma. Para
i = 1, ..., 100:

Xi = (1− Zi)Ui + ZiVi,
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Yi = 2Zi − 1,

donde 
Zi ∼ B(1

2
) i.i.d.

Ui ∼ N((3, 10), Id) i.i.d.

Vi ∼ N((10, 3), Id) i.i.d.

Es decir, los datos del grupo Y = 1 siguen una distribución normal bivariante
centrada en el punto (3, 10) con matriz de covarianzas la identidad, mientras que los
individuos del grupo Y = −1 están generados a partir de una distribución normal
con media en (10, 3) y misma matriz de covarianzas.

No siempre es posible encontrar un hiperplano que separe los datos. Por ejemplo,
para i = 1, ..., 100, se generan observaciones de la siguiente forma:

Xi = (1− Zi)

[
Ui

10U2
i + Ei

]
+ Zi

[
Vi

100V 2
i + 3 + Ei

]
,

Yi = 2Zi − 1,

donde 
Zi ∼ B(1

2
) i.i.d.

Ui ∼ U(−1, 1) i.i.d.

Vi ∼ U(−0,3, 0− 3) i.i.d.

Ei ∼ N(0, 0,5) i.i.d.
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Figura 2.2: Clasificación mediante una regla cuadrática

Se puede ver en el gráfico de la izquierda que los datos no se pueden clasifi-
car con una regla lineal. Quedaŕıan bien clasificados mediante una regla cuadrática
(parábola). Sin embargo, al cambiar la representación de los datos, es decir, al repre-
sentarlos en otro espacio, śı quedan perfectamente divididos por una recta, como se
ve en la figura de la derecha. Entonces, en el nuevo espacio, se pueden usar técnicas
de clasificación lineal, como Support Vector Machine o el discriminante de Fisher.
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2.2. Espacio de Hilbert reproductor del núcleo

Para transformar el primer conjunto de puntos (gráfico de la izquierda) en el
segundo (gráfico de la derecha), se ha aplicado a los datos la transformación:

ϕ : R2 → R2, ϕ(x1, x2) = (x21, x2).

No siempre es tan fácil encontrar la función que representa los datos en un espacio
donde es más fácil operar con ellos. Habrá que probar diferentes transformaciones.
Una forma cómoda de trabajar con aplicaciones ϕ que representan los datos en otro
espacio es a partir de los núcleos.

En la siguiente sección, se definen los núcleos, y se explica una forma de represen-
tar los datos en un espacio de Hilbert, para trabajar únicamente con sus productos
internos.

2.2. Espacio de Hilbert reproductor del núcleo

Sea X el espacio donde toman valores las variables aleatorias. Se ha visto, en
el ejemplo anterior, que cambiar la representación de los datos puede simplificar su
tratamiento, como en el problema de clasificación. En este caṕıtulo, se estudiarán
técnicas para transformar los datos para que tomen valores en un espacio de Hilbert,
donde se puede trabajar con un producto interno. Por lo tanto, si H es un espacio
de Hilbert, una aplicación ϕ : X → H representa los datos de X en H. Además,
en muchos casos, no es necesario conocer expĺıcitamente la función ϕ, únicamente
hace falta conocer los productos internos entre los elementos del espacio H (que sean
imagen por ϕ de algún elemento de X ).

Esta técnica se va a aplicar, en particular, a la obtención de una caracterización
para la máxima discrepancia en media entre dos probabilidades. Se deducirá una
expresión en la que solo intervengan los productos internos de los datos representados
en el nuevo espacio (que es de Hilbert).

Con esta motivación, se define el núcleo, una aplicación de X × X en Rd que
recoge únicamente la información de los productos internos. Los resultados expuestos
en esta sección están basados en [9] y [18].

Definición 2.2.1. Se considera ϕ : X → H una aplicación con llegada a un espacio
de Hilbert. En este contexto, se denomina núcleo del espacio de Hilbert H a la función

κ : X × X → R

κ(x, z) = ⟨ϕ(x), ϕ(z)⟩.
Proposición 2.2.2. Si ϕ : X → H es una aplicación con llegada a un espacio de
Hilbert. El núcleo κ : X × X → R verifica dos propiedades:

1. κ es una función simétrica.

2. κ es finitamente semidefinida positiva. Esto quiere decir que para cualquier
subconjunto finito {x1, x2, . . . , xn} ⊂ X , la matriz

K =


κ(x1, x1) κ(x1, x2) · · · κ(x1, xn)
κ(x2, x1) κ(x2, x2) · · · κ(x2, xn)

...
...

. . .
...

κ(xn, x1) κ(xn, x2) · · · κ(xn, xn)


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es semidefinida positiva.

Demostración. Por las propiedades del producto interno, es claro que κ es una fun-
ción simétrica.

En cuanto a la segunda propiedad, sea {x1, x2, . . . , xn} ⊂ X . Para todo vector
v ∈ Rn, se tiene:

v⊤Kv =
n∑
i=1

n∑
j=1

vivjκ(xi, xj) =
n∑
i=1

n∑
j=1

vivj⟨ϕ(xi), ϕ(xj)⟩ =

〈
n∑
i=1

viϕ(xi),
n∑
j=1

vjϕ(xj)

〉
.

Entonces,

v⊤Kv =

∥∥∥∥∥
n∑
i=1

viϕ(xi)

∥∥∥∥∥
2

≥ 0.

Hasta ahora, se ha definido la función núcleo a partir de un espacio de Hilbert
H conocido y una aplicación ϕ : X → H que representa los datos en dicho espacio.
Pero, como ya se ha enfatizado antes, en muchos casos no es necesario conocer
expĺıcitamente el espacio H, solo los valores que toma el núcleo.

Por esta razón, el próximo objetivo es determinar cuándo una función es un
núcleo. Es decir, si, dada una función κ : X × X → R, existe un espacio de Hilbert
H y una función ϕ : X → H tal que κ(x, z) = ⟨ϕ(x), ϕ(z)⟩ para todo (x, z) ∈ X ×X .
El siguiente teorema da una caracterización de los núcleos: cualquier función κ :
X ×X → R simétrica y finitamente semidefinida positiva es un núcleo. Es decir, es
una especie de rećıproco de la proposición 2.2.2.

Aśı, se tiene una forma sencilla de trabajar con los datos en un espacio de Hilbert,
que no hace falta conocer expĺıcitamente. Se considera una función κ : X ×X → R
con las propiedades que se han mencionado (simétrica y finitamente semidefinida
positiva). Entonces, ya se conoceŕıan los productos internos de los datos trasladados
a cierto espacio de Hilbert.

Teorema 2.2.3 (Aronszajn). Sea X un espacio medible. Una función κ : X×X → R
es de la forma

κ(x, z) = ⟨ϕ(x), ϕ(z)⟩, ∀x, z ∈ X ,
donde ϕ : X → H es una aplicación con llegada en un espacio de Hilbert H y ⟨·, ·⟩
es el producto interno de H, si y solo si, κ es simétrica y finitamente semidefinida
positiva.

Demostración. Se va a construir un espacio de Hilbert H y una función ϕ : X → H
que tiene como núcleo la función κ. Primero, se considera el espacio de funciones de
X en R

G =

{
l∑

i=1

αiκ(xi, ·) : l ∈ N, xi ∈ X , αi ∈ R, i = 1, . . . , l

}
. (2.1)

Con la suma y el producto de funciones por escalares habituales, G es un espacio
vectorial. Ahora, se define

ϕ : X → G, ϕ(x) = κ(x, ·).
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Para cada x ∈ X , ϕ(x) es una función de X en R que pertenece a G.
Si f(x) =

∑n
i=1 αik(xi, x) y g(x) =

∑m
j=1 βjk(zj, x) son elementos de G, se define

la aplicación ⟨·, ·⟩ : G × G → R como:

⟨f, g⟩ =
n∑
i=1

m∑
j=1

αiβjk(xi, zj) =
n∑
i=1

αig(xi) =
m∑
j=1

βjf(zj). (2.2)

⟨·, ·⟩ es simétrico y lineal respecto de ambos argumentos. Si α = (α1, . . . , αn)
T y K

es la matriz de κ en x1, . . . , xn, debido a que κ es finitamente semidefinida positiva,
se deduce que

⟨f, f⟩ =
n∑
i=1

n∑
j=1

αiαjk(xi, xj) = αTKα ≥ 0, ∀f ∈ F .

Por lo tanto, la aplicación ⟨·, ·⟩ es un producto interno, a priori no estricto, es
decir, ⟨f, f⟩ puede ser 0 para algún f no nulo. Entonces, ⟨·, ·⟩ tiene asociada una
seminorma ∥f∥ = ⟨f, f⟩1/2. Para probar que ⟨·, ·⟩ es un producto interno estricto,
falta comprobar que si ⟨f, f⟩ = 0 implica f = 0. Para ello, se utiliza la siguiente
propiedad de los núcleos:

f(x) =
n∑
i=1

αiκ(xi, x) = ⟨f, κ(x, ·)⟩ = ⟨f, ϕ(x)⟩, ∀x ∈ X . (2.3)

Si ⟨f, f⟩ = 0, entonces

|f(x)| = |⟨f, ϕ(x)⟩| ≤ ∥f∥∥ϕ(x)∥ = 0, ∀x ∈ X .

Se ha usado la desigualdad de Cauchy-Schwarz, que se verifica también para semi-
normas.

En conclusión, (G, ⟨·, ·⟩) es un espacio vectorial con producto interno y ϕ : X → G
es una función que verifica ⟨ϕ(x), ϕ(y)⟩ = ⟨κ(x, ·), κ(y, ·)⟩ = κ(x, y). Por último,
siempre que se tiene un espacio vectorial normado G, se puede construir su comple-
ción H (se incluye con una isometŕıa en su doble dual G ′′, que es una compleción
del espacio original). Si, además, la norma del espacio vectorial original proviene de
un producto interno, la norma de la compleción también. Esto se debe a que G es
denso en su compleción H. Un argumento para probar lo que se acaba de afirmar
es el siguiente: Sean f, g ∈ H, existen sucesiones en G tales que f = ĺımn→∞ fn y
g = ĺımn→∞ gn. Como G es un espacio de Hilbert, la norma verifica la identidad del
paralelogramo:

∥fn + gn∥2 + ∥fn − gn∥2 = 2∥fn∥2 + 2∥gn∥2.

Como la norma es continua, tomando ĺımites, se obtiene que la norma en H también
verifica la identidad del paralelogramo y, por lo tanto, viene de un producto interno.

H es el espacio de Hilbert que verifica las propiedades del teorema. Se denomina
espacio de Hilbert reproductor del núcleo (RKHS, por sus iniciales en inglés).
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La demostración del teorema de Aronszajn 2.2.3 es constructiva, es decir, ca-
racteriza el espacio de Hilbert H a partir de la aplicación κ (H es un espacio de
funciones de X en R) y también se prueba que ϕ(x) = κ(x, ·) para todo x ∈ X .
Además, se ha deducido una propiedad importante de los núcleos (igualdad 2.3). Si
f ∈ H, entonces

f(x) = ⟨f, κ(x, ·)⟩ = ⟨f, ϕ(x)⟩, ∀x ∈ X .
Un ejemplo de núcleo con el que se puede trabajar (por ejemplo, en las fórmulas que
se deducirán en la siguiente sección) es el núcleo gaussiano κ : Rd × Rd → R,

κ(x, y) = exp

(
− ∥x− y∥2

2σ2

)
, ∀x, y ∈ Rd.

2.3. MMD

Resumiendo de nuevo el planteamiento del trabajo, en el contexto del aprendizaje
justo, existe un atributo protegido binario S que divide al conjunto de datos en dos
grupos; P y Q son las leyes de probabilidad que generan los datos de cada grupo.
En la sección 1.3.2 del caṕıtulo 1 se explica un método para estimar la distancia en
variación total y la parte común entre dos probabilidades P y Q en Rd.

En el paso 3 de dicho algoritmo, el objetivo es contrastar si dos probabilidades
son iguales (para ver si fijado un nivel α, los conjuntos Rα(P ) y Rα(Q) tienen
intersección no vaćıa). Para ello, la estrategia propuesta es usar un test basado en
una métrica entre probabilidades. Un tipo de distancias que resultan adecuadas en el
paso 3 del algoritmo son las métricas de máxima discrepancia media, que se definen
a continuación.

Definición 2.3.1. Sea (X ,M) un espacio medible y F una clase de funciones de
X en R. Se define la máxima discrepancia en media entre dos probabilidades p y q
en (X ,M), denotada por MMD[F , p, q], como

MMD[F , p, q] := sup
f∈F

|
∫
fdp−

∫
fdq| = sup

f∈F
|Epf − Eqf |.

Nota 2.3.2. Fijada F una clase de funciones de X en R. Si p y q son dos probabi-
lidades en (X ,M) para las que sup

f∈F

∫
fdp y sup

f∈F

∫
fdq son valores finitos, entonces

MMD[F , p, q] está bien definida.

La máxima discrepancia en media mide diferencias entre probabilidades en un
espacio X . Es una pseudo métrica. Solo es una métrica si la clase F es una clase de-
terminante de la probabilidad (por ejemplo, la clase de todas las funciones continuas
y acotadas o la clase de las funciones 1-Lipschitz). Se puede definir de forma general
como en la definición 2.3.1, pero hay un tipo de clases de funciones F que resultan
especialmente interesantes: el caso en que F es la bola unidad de un espacio de
Hilbert reproductor de núcleo (RKHS). Por esta razón, se dedica parte de la sección
a presentar algunas propiedades interesantes de estas métricas en caso RKHS, aśı
como a desarrollar la teoŕıa necesaria para estimar la métrica a partir de muestras.
Los resultados que se prueban en esta sección son una adaptación de [14].
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El primer paso es obtener una caracterización de la máxima discrepancia en
media, esto se consigue a partir de un núcleo. Sea X el espacio donde toman valores
los datos. Si se considera una función κ : X × X → R simétrica y finitamente
definida positiva (un núcleo), se puede reconstruir, siguiendo los pasos del teorema
de Aronszajn 2.2.3, el RKHS H (un espacio de funciones de X en R). Los siguientes
resultados se enuncian teniendo en cuenta este contexto.

Definición 2.3.3. Sea p una probabilidad en (X ,M), se denomina inmersión pro-
medio a una función µp ∈ H que verifique que Epf = ⟨f, µp⟩ para toda f ∈ H.

La existencia de la inmersión promedio no siempre está garantizada. Sin embargo,
gracias al teorema de Riesz, si la función núcleo

√
κ(x, x) es integrable respecto

de una probabilidad p, entonces śı existe la inmersión promedio µp. Además, la
inmersión promedio se escribe a partir del núcleo. Esto se prueba a continuación.

Proposición 2.3.4. Sea p una probabilidad en (X ,M). Si la función núcleo κ(·, ·) :
X×X → R es medible en (X×X ,M×M) y la esperanza (respecto de la probabilidad
p) de la función

√
κ(x, x) es finita, entonces se puede garantizar la existencia de la

inmersión promedio µp. En ese caso,

µp(t) =

∫
ϕ(t)(x)dp(x) = Epϕ(t).

Demostración. El funcional T : H → R que env́ıa cada función f ∈ H en Epf es
lineal. Y, teniendo en cuenta que, para todo x ∈ X , f(x) = ⟨f, ϕ(x)⟩, visto en 2.3,
se prueba que es acotado, y, por lo tanto, continuo:

|T (f)| = |
∫
f(x)dp| ≤

∫
|f(x)|dp =

∫
|⟨f, ϕ(x)⟩|dp ≤

∫
∥f∥H∥ϕ(x)∥Hdp =

=

∫
∥f∥H

√
⟨ϕ(x), ϕ(x)⟩Hdp =

∫
∥f∥H

√
κ(x, x)dp = ∥f∥HEp

√
κ(x, x).

Por el teorema de representación de Riesz, existe una única función µp de H tal que
T (f) = ⟨f, µp⟩H.

Además, considerando la función f = ϕ(t) : X → R, se ve que

T (f) =

∫
ϕ(t)dp =

∫
κ(t, ·)dp = Epκ(t, ·).

Por otro lado, se tiene que T (f) = ⟨ϕ(t), µp⟩H = µp(t). Se concluye que

µp(t) = Epκ(t, ·) = Epϕ(t).

La importancia de la inmersión promedio reside en que se puede caracterizar la
máxima discrepancia en media entre dos probabilidades a partir de sus respectivas
inmersiones promedio, si existen. Y, por lo tanto, como se ha visto que la inmersión
promedio está definida a partir de la función núcleo, se deduce una expresión para
la máxima discrepancia en media que solo depende del núcleo. Este es el objetivo
de los siguientes resultados.
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Caṕıtulo 2. Métricas de máxima discrepancia media

Proposición 2.3.5. Sean p y q dos probabilidades en (X ,M) para las que se supone
que existen las respectivas inmersiones promedio µp y µq. Sea F la bola unidad del
RKHS H. Entonces, la máxima discrepancia en media entre p y q es la distancia en
H entre las respectivas inmersiones promedio. Es decir,

MMD2[F , p, q] = ∥µp − µq∥2.

Demostración.

MMD2[F , p, q] = [ sup
∥f∥≤1

(Epf − Eqf)]
2 = [ sup

∥f∥≤1

(⟨f, µp⟩ − ⟨f, µq⟩)]2

= [ sup
∥f∥≤1

⟨f, µp − µq⟩]2 ≤ ∥µp − µq∥2.

La última desigualdad es consecuencia de la desigualdad de Cauchy-Schwarz. Se
alcanza la igualdad en f = µp−µq

∥µp−µq∥ ∈ BH(0, 1).

Teorema 2.3.6. Sean p y q dos probabilidades en (X ,M) para las que existen las
inmersiones promedio. Sea F la bola unidad en H. Entonces,

MMD2[F , p, q] =
∫∫

κ(x, x̃)d(p× p) +

∫∫
κ(y, ỹ)d(q × q)− 2

∫∫
κ(x, y)d(p× q).

(2.4)

Demostración.

MMD2[F , p, q] = ∥µp − µq∥2 = ⟨µp, µp⟩+ ⟨µq, µq⟩ − 2⟨µp, µq⟩

=

∫
µp(x)dp(x) +

∫
µq(y)dq(y)− 2

∫
µq(x)dp(x)

=

∫ (∫
κ(x, x̃)dp(x̃)

)
dp(x) +

∫ (∫
κ(y, ỹ)dq(ỹ)

)
dq(y)

− 2

∫ (∫
κ(x, y)dq(y)

)
dp(x)

=

∫∫
κ(x, x̃)d(p× p) +

∫∫
κ(y, ỹ)d(q × q)− 2

∫∫
κ(x, y)d(p× q).

El teorema anterior, 2.3.6, da una caracterización de la métrica MMD en fun-
ción de los núcleos. Este teorema muestra las ventajas de trasladar los datos a un
espacio de Hilbert. Si se tienen dos probabilidades p y q en X , se considera un núcleo
κ : X ×X → R tal que la función

√
κ(x, x) sea integrable respecto de ambas proba-

bilidades. Para calcular la máxima discrepancia en media entre dos probabilidades,
basta conocer los valores que toma ese núcleo. No se necesita conocer el espacio H.

A continuación, se prueba que, en un espacio métrico compacto X en el que se
pueda definir una función núcleo κ : X × X → R que cumpla ciertas propiedades
(lo que se definirá como núcleo universal), la máxima discrepancia en media es una
distancia entre probabilidades.
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Lema 2.3.7. Si X es un espacio métrico compacto y la función núcleo κ es conti-
nua en X × X , entonces el RKHS H está contenido en el espacio de las funciones
continuas de X en R.

Demostración. La demostración del teorema de Aronszajn 2.2.3 es constructiva. H
es la compleción de G, ver (2.1). Además, por ser κ continua, es claro que G ⊆
C(X ,R). A partir de esta afirmación, se prueba que H ⊆ C(X ,R).

Si f ∈ H, existe {fn}∞n=1 ⊆ G tal que ĺım
n→∞

fn = f para la topoloǵıa dada por

el producto escalar definido en (2.2). Como la función κ(x, x) es continua en X
compacto, existe M ≥ 0 tal que κ(x, x) ≤M2, para todo x ∈ X . Entonces,

|fn(x)− f(x)| = |⟨fn − f, ϕ(x)⟩| ≤ ∥fn − f∥H · ∥ϕ(x)∥H = ∥fn − f∥H ·
√
κ(x, x)

⇒ |fn(x)− f(x)| ≤M∥fn − f∥H, ∀x ∈ X , ∀n ∈ N.

Entonces, ∥fn−f∥∞ ≤M∥fn−f∥H. Se ha probado que la convergencia en la norma
de H implica la convergencia uniforme. Por lo tanto, f es continua.

Definición 2.3.8. Sea X un espacio métrico compacto. Se dice que el RKHS H es
universal si la función núcleo κ es continua en X × X y H es denso en C(X ).

Proposición 2.3.9. Sea X un espacio métrico compacto y H universal. Si F es
la bola unidad en H y p y q son probabilidades en X , entonces MMD[F , p, q] = 0
si, y solo si, p = q. Es decir, la máxima discrepancia en media es una distancia
en el espacio de probabilidades en (X , β), donde β es la σ-álgebra generada por los
abiertos de X .

Demostración. Como H es universal, κ(·, ·) : X × X → R es continua y
√
κ(x, x)

está acotada en X . En particular, tiene esperanza finita. Por las proposiciones 2.3.4
y 2.3.5, MMD2[F , p, q] = ∥µp − µq∥2. Esto garantiza la simetŕıa y desigualdad
triangular.

Es trivial que si p = q, entonces MMD[F , p, q] = 0. Rećıprocamente, se supone
que MMD[F , p, q] = 0, entonces µp = µq. Fijado ε > 0 y f ∈ C(X ), existe g ∈ H
tal que ∥f − g∥∞ ≤ ε.

|
∫
fdp−

∫
fdq| ≤ |

∫
(f − g)dp|+ |

∫
gdp−

∫
gdq|+ |

∫
(g − f)dq|

≤ 2 ε+ ⟨g, µp − µq⟩ = 2ε.

Se tiene que
∫
fdp =

∫
fdq, para toda f ∈ C(X ). Como X es un espacio métrico

compacto, entonces es un espacio polaco. Por el lema B.0.5, p = q.

Por último, se dan algunos posibles estimadores de la máxima discrepancia en
media. En la práctica, se usan estos estimadores para aproximar el valor real de la
máxima discrepancia en media.

Sean p y q dos probabilidades en el espacio medible (X ,M). Sea κ : X ×X → R
un núcleo, para el cual la función de una variable

√
κ(x, x) es integrable respecto

de p y q. Entonces, si F es la bola unidad del espacio de Hilbert reproductor del
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núcleo κ, el teorema 2.3.6 da una caracterización de MMD[F , p, q]. Reemplazando
las esperanzas que aparecen en la fórmula 2.4 por la media muestral, se obtiene
un estimador insesgado de MMD[F , p, q]. Teniendo en cuenta este contexto, se da
siguiente resultado:

Proposición 2.3.10 (Estimadores insesgados). Sean p y q dos probabilidades en el
espacio medible (X ,M) para las cuales se verifica el teorema 2.3.6. Sea {x1, x2, ..., xm}
una muestra de tamaño m de la distribución p y sea {y1, y2, ..., yn} una muestra de
tamaño n de la distribución q. Un estimador insesgado de la máxima discrepancia
en media al cuadrado entre p y q viene dado por la siguiente fórmula:

MMD2
u[F , p, q] =

1

m(m− 1)

m∑
i ̸=j

κ(xi, xj) +
1

n(n− 1)

n∑
i ̸=j

κ(yi, yj)−
2

mn

m∑
i=1

n∑
j=1

κ(xi, yj). (2.5)

Si se toman muestras de igual tamaño, es decir, m = n, entonces se puede usar
un estimador insesgado un poco más simple (es diferente del anterior).

MMD2
u[F , p, q] =

1

m(m− 1)

[ m∑
i ̸=j

κ(xi, xj) +
m∑
i ̸=j

κ(yi, yj)− 2
m∑
i ̸=j

κ(xi, yj)

]
. (2.6)

Demostración. Ambos estimadores son U-estad́ısticos, más detalles se pueden en-
contrar en [17]. La consistencia de estos estimadores está probada en el teorema
A de la sección 5.4. de dicho libro. Además, ambos estimadores son insesgados. Se
comprueba para el segundo:

E
(
MMD2

u[F , p, q]
)

=
1

m(m− 1)

[ m∑
i ̸=j

∫∫
κ(xi, xj)dpdp+

m∑
i ̸=j

∫∫
κ(yi, yj)dqdq − 2

m∑
i ̸=j

∫∫
κ(xi, yj)dpdq

]
=

∫∫
κ(x, x̃)d(p× p) +

∫∫
κ(y, ỹ)d(q × q)− 2

∫∫
κ(x, y)d(p× q)

=MMD2[F , p, q].

Nota 2.3.11. Aunque la máxima discrepancia en media entre dos probabilidades pa-
ra las que existen las inmersiones promedio respecto de un núcleo es siempre positiva
(ver 2.3.5), el estimador MMDu (cualquiera de las dos versiones) śı puede ser ne-

gativo. Por ejemplo, si p = q, entonces E
(
MMD2

u[F , p, q]
)
= MMD2[F , p, q] = 0

y MMD2
u[F , p, q] tomará valores por debajo de su media (negativos).

Otro estimador posible para la máxima discrepancia en media entre p y q se
deduce de la proposición 2.3.5, donde se prueba que la máxima discrepancia en
media entre dos probabilidades es la distancia entre sus respectivas inmersiones
promedio (en el RKHS). Por lo tanto, si se sustituyen las inmersiones promedio por
sus aproximaciones emṕıricas a partir de muestras, se llega a un estimador sesgado
de MMD.
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Proposición 2.3.12 (Estimador sesgado). Sean p y q dos probabilidades en el espa-
cio medible (X ,M) para las cuales se verifica la proposición 2.3.5. Sea {x1, x2, ..., xm}
una muestra de tamaño m de la distribución p y sea {y1, y2, ..., yn} una muestra de
tamaño n de la distribución q. Entonces, un estimador sesgado de la máxima dis-
crepancia en media (al cuadrado) entre p y q es:

MMD2
b [F , p, q] =

1

m2

m∑
i,j=1

κ(xi, xj) +
1

n2

n∑
i,j=1

κ(yi, yj)−
2

mn

m,n∑
i,j=1

κ(xi, yj). (2.7)

Se explica cómo se ha deducido esa fórmula: Sean µX = 1
m

m∑
i=1

ϕ(xi) y µY =

1
n

n∑
i=1

ϕ(yi) los estimadores asociados a esas muestras de las inmersiones promedio de

p y q. Entonces,

∥µX − µY ∥2

=
〈 1

m

m∑
i=1

ϕ(xi),
1

m

m∑
i=1

ϕ(xi)
〉
+
〈 1

n

n∑
i=1

ϕ(yi),
1

n

n∑
i=1

ϕ(yi)
〉

− 2
〈 1

m

m∑
i=1

ϕ(xi),
1

n

n∑
i=1

ϕ(yi)
〉

=MMD2
b [F , p, q].

En general, los tests basados en la métricaMMD se harán usando un estimador
emṕırico. En el caso de este trabajo, se usa un test basado en la máxima discrepancia
en media para contrastar si dos probabilidades son iguales (si, y solo si, su máxima
discrepancia en media es 0, bajo ciertas condiciones que se han explicado en la
sección 2.3). Entonces, se necesita que si dos probabilidades son iguales el estimador
emṕırico de la máxima discrepancia en media que se utilice también sea pequeño.

Las cotas que controlan el error de estos estimadores, asegurando la veracidad
de los resultados obtenidos al hacer algún test de este tipo, se pueden encontrar en
el art́ıculo [14].
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Caṕıtulo 3

El problema de transporte óptimo

Sean (X , σx, P ) e (Y , σy, Q) dos espacios probabiĺısticos. Se quiere transportar
la masa distribuida en el espacio X , según la distribución P , al espacio Y , con
distribución de probabilidad Q. El coste de transportar una unidad de masa de X
a Y depende de cada x ∈ X e y ∈ Y concretos. Por lo tanto, viene dado por una
función c : X × Y → R+. El objetivo es encontrar el plan de transporte menos
costoso.

Un caso particular es el de espacios finitos,

X = {x1, ...xn}, Y = {y1, ...ym}.
Si i ∈ {1, ..., n}, la masa de xi es pi. Respectivamente, para j ∈ {1, ...,m}, la masa

de yj ∈ Y es qj. Obviamente,
n∑
i=1

pi =
n∑
j=1

qj = 1. Se denota por πi,j = π(xi, yj) a la

masa transportada de xi a yj.
La función c(xi, yj) da el coste unitario de transporte de xi a yj. La idea es

reordenar en Y la masa de X para que al final esté distribuida según la ley de
probabilidad Q, minimizando el coste.

Matemáticamente, el problema se formula de la siguiente manera:

mı́n
m∑

j=1
πi,j=pi,

n∑
i=1

πi,j=qj

n∑
i=1

m∑
j=1

πi,jc(xi, yj) = mı́n
π∈

∏
(P,Q)

∫
X×Y

c(x, y)dπ(x, y).

Por ejemplo, si una empresa quiere transportar bienes desde las fábricas a los
almacenes, teniendo en cuenta su localización, los costes de transporte dependerán
de cada fábrica y cada almacén. Querrá escoger el plan de transporte óptimo, si
existe, para minimizar los costes.

Aunque el caso de espacios finitos tenga muchas aplicaciones prácticas, es muy
interesante generalizarlo. Con el mismo objetivo de otros caṕıtulos: encontrar dis-
tancias entre probabilidades, se estudiará el problema de transporte óptimo para
X = Y = Rd, con la σ-álgebra de Borel βd, y el coste c(x, y) = ∥x− y∥p, con p ≥ 1.

3.1. Formulaciones del problema

La formulación de Kantorovich del problema de transporte óptimo que se acaba
de plantear es la siguiente:
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Caṕıtulo 3. El problema de transporte óptimo

Sea p ≥ 1. Sean P y Q dos probabilidades en (Rd, βd) con momentos de orden p
finitos. Se denota por

∏
(P,Q) al conjunto de probabilidades en (Rd × Rd, β2d) con

marginales P y Q. El objetivo es encontrar la distribución de probabilidad conjunta
π ∈

∏
(P,Q) que minimice el coste de transporte, denotado por I(π). Es decir,

hallar:

Tc(P,Q) := ı́nf
π∈

∏
(P,Q)

I(π) = ı́nf
π∈

∏
(P,Q)

∫
Rd×Rd

∥x− y∥pdπ(x, y).

Se supone que P y Q tienen momentos finitos de orden p ≥ 1, para que la integral
I(π) esté bien definida: Si∫

Rn

∥x∥pdP (x) +
∫
Rn

∥y∥pdQ(y) < +∞,

entonces,

I(π) =

∫
Rd×Rd

∥x− y∥pdπ(x, y) ≤
∫
Rd×Rd

(∥x∥+ ∥y∥)pdπ(x, y)

≤
∫
Rd×Rd

(2máx{∥x∥, ∥y∥})pdπ(x, y) ≤ 2p
∫
Rd×Rd

(∥x∥p + ∥y∥p)dπ(x, y)

= 2p
∫
Rn

∥x∥pdP (x) + 2p
∫
Rn

∥y∥pdQ(y) < +∞.

El primer paso para abordar el problema de transporte óptimo es probar que la
formulación que se ha dado es coherente.

Proposición 3.1.1. En el problema descrito, el conjunto
∏
(P,Q) es no vaćıo y

ı́nf
π∈

∏
(P,Q)

∫
Rd×Rd

∥x− y∥pdπ(x, y)

se alcanza para una probabilidad concreta π0 ∈
∏
(P,Q), es decir, es un mı́nimo. Se

dice que π0 es un plan de transporte óptimo.

Demostración. La definición de sucesión ajustada, junto con las propiedades que se
usarán en esta demostración, y el teorema de Portmanteau se detallan en el apéndice
C.

En la σ-álgebra producto βd ⊗ βd = β2d se define la medida producto

(P ×Q)(A) =

∫
Rd

Q(Ax)dP (x) =

∫
Rd

P (Ay)dQ(y), ∀A ∈ β2d.

Es fácil comprobar que (P ×Q) es una probabilidad cuyas marginales son P y Q.
Como P y Q tienen momentos de orden p finitos, si π ∈

∏
(P,Q), se tiene que

0 ≤ I(π) < ∞. Entonces, 0 ≤ ı́nf
π∈

∏
(P,Q)

I(π) < ∞. Por definición de inferior, existe

una sucesión {πn}∞n=1 ⊂
∏
(P,Q) tal que

ĺım
n→∞

I(πn) = ı́nf
π∈

∏
(P,Q)

I(π).
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Es conocido que ∀ε > 0, existen Kε y Fε compactos de Rd tales que P (Kε) ≥ 1− ε
2

y Q(Fε) ≥ 1 − ε
2
. Por lo tanto, la sucesión {πn}∞n=1 es ajustada, ya que ∀ε > 0 y

∀n ∈ N,

πn((Kε × Fε)
c) ≤ πn(K

c
ε × Rd) + πn(Rd × F c

ε ) = P (Kc
ε) + P (F c

ε ) ≤
ε

2
+
ε

2
= ε.

Esto implica que existe una subsucesión {πnk
}∞k=1 de {πn}∞n=1 que converge hacia una

probabilidad π0. Se ve fácilmente que π0 ∈
∏
(P,Q). La demostración se concluye

probando que
I(π0) = ı́nf

π∈
∏

(P,Q)
I(π).

Se considera una sucesión de funciones cl : Rd × Rd → R positivas, crecientes,
continuas y acotadas, tal que ĺım

l→∞
cl(x, y) = c(x, y) := ∥x − y∥p. Por ejemplo, se

puede definir

cl(x, y) =

{
c(x, y) si c(x, y) ≤ l,
l si c(x, y) > l.

En estas condiciones, el teorema de Portmanteau garantiza que

ĺım
k→∞

∫
cl(x, y)dπnk

=

∫
cl(x, y)dπ0, ∀l ∈ N.

Además, por el teorema de la convergencia monótona,
∫
c(x, y)dπ0 = ĺım

l→∞

∫
cl(x, y)dπ0

Por lo tanto,

∫
c(x, y)dπ0 = ĺım

l→∞

∫
cl(x, y)dπ0

= ĺım
l→∞

ĺım
k→∞

∫
cl(x, y)dπnk

≤ ĺım
k→∞

∫
c(x, y)dπnk

= ı́nf
π∈

∏
(P,Q)

I(π).

En la última desigualdad se ha usado que cl ≤ c, para todo l ∈ N.
Como π0 ∈

∏
(P,Q), se tiene la desigualdad contraria, y, por tanto, la igualdad.

Se puede restringir el conjunto de probabilidades en el que se quiere minimizar
el coste de transporte I(π). Se considera el conjunto de aplicaciones medibles

T : Rd → Rd

tales que T#P = Q, es decir, Q(B) = P (T−1(B)) para todo B ∈ βd.
La formulación de Monge del problema consiste en hallar

T̃c(P,Q) = ı́nf
T :Rd→Rd

T#P=Q

∫
Rd×Rd

∥x− T (x)∥pdP (x).

En el caso discreto, esta formulación tiene un significado claro: la masa de cada punto
de X no se puede dividir entre varios puntos de Y . Es decir, si X = {x1, ..., xn} e
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Caṕıtulo 3. El problema de transporte óptimo

Y = {y1, ..., ym}, se consideran las aplicaciones T : X → Y que reordenan la masa
para que la distribución pase de ser la dada por P en X a la dada por Q en Y . Cada
aplicación induce una probabilidad π en el espacio producto

∏
(P,Q). De entre todas

ellas, se escoge a la que minimice el coste de transporte.
Como el problema de Monge tiene más restricciones que el de Kantorovich, es

lógico pensar que
Tc(P,Q) ≤ T̃c(P,Q). (3.1)

En efecto, si T es una aplicación tal que T#P = Q, Sea π la probabilidad en
(Rd × Rd, β2d) inducida por la aplicación

(Id, T ) : (Rd, βd, P ) → (Rd × Rd, β2d), x 7→ (x, T (x)).

Es decir, si A ∈ β2d, entonces π(A) = P ({x ∈ Rd : (x, T (x)) ∈ A}). Es claro
que π ∈

∏
(P,Q). Por el teorema de transferencia de integrales, se tiene que para

cualquier T tal que T#P = Q,

mı́n
π∈

∏
(P,Q)

∫
Rd×Rd

c(x, y)dπ(x, y) ≤
∫
Rd×Rd

c(x, y)dπ(x, y) =

∫
Rd

c(x, T (x))dP (x),

con lo que se tendŕıa la desigualdad 3.1.

Definición 3.1.2. Se denomina aplicación de transporte óptimo de P a Q, para
el problema descrito anteriormente, a una aplicación T : Rd → Rd medible tal que
T#P = Q, es decir, Q(B) = P (T−1(B)) para todo B ∈ βd, y que verifique

mı́n
π∈

∏
(P,Q)

∫
Rd×Rd

∥x− y∥pdπ(x, y) =
∫
Rd

∥x− T (x)∥pdP (x).

Se probará que si P no da probabilidad a conjuntos de medida nula, existe
una aplicación de transporte óptimo para el problema asociado al coste cuadrático,
es decir, se alcanza la igualdad en 3.1. Con el fin de llegar a este resultado, la
siguiente sección está centrada en el estudio del problema de transporte para el
coste cuadrático y su formulación dual.

3.2. El caso cuadrático

En esta sección se va a estudiar el problema del transporte para el coste cuadráti-
co, como se hace en el libro [22].

Sean P y Q dos probabilidades en Rd con momentos de orden 2 finitos, el pro-
blema consiste en calcular

Tc(P,Q) = mı́n
π∈

∏
(P,Q)

I(π) = ı́nf
π∈

∏
(P,Q)

∫
Rd×Rd

∥x− y∥2dπ(x, y).

El primer paso es probar una fórmula de dualidad que va a permitir simplificar el
estudio del problema. Al final, el objetivo va a ser minimizar una expresión en la
que van a ser clave las funciones convexas, cuyas propiedades se estudiarán también
en esta sección.

Se enuncia a continuación la fórmula de dualidad de Kantorovich.
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3.2. El caso cuadrático

Proposición 3.2.1 (Dualidad de Kantorovich). Sean P y Q dos probabilidades en
(Rd, βd). Sea c(x, y) : Rd×Rd → R∪{+∞} inferiormente semi-continua y positiva,
entonces

ı́nf
π∈

∏
(P,Q)

∫
Rd×Rd

c(x, y)dπ(x, y) = sup
(f,g)∈L1(P )×L1(Q)
f(x)+g(y)≤c(x,y)

∫
Rd

f(x)dP +

∫
Rd

g(y)dQ. (3.2)

Demostración. Paso 1: Sean K1 y K2 compactos en Rd y sean P y Q probabilidades
concentradas en K1 y K2, respectivamente. Se supone que la función coste es conti-
nua y positiva en K1×K2. Por el teorema de representación de Riesz, que se explica
en el apéndice B.1, el dual topológico de C(K1 × K2), con la norma infinito, es el
espacio de medidas de Borel regulares en K1×K2. Pero, en K1×K2 ⊂ Rd×Rd todas
las medidas de Borel son regulares (ver B). En otras palabras, si T es un funcional
lineal y acotado en C(K1 ×K2), existe una medida de Borel µ en K1 ×K2 tal que

Tf =

∫
K1×K2

fdµ, ∀f ∈ C(K1 ×K2).

Se consideran los siguientes funcionales convexos:

Θ : u ∈ C(K1 ×K2) 7→

{
0 si u(x, y) ≥ −c(x, y),
+∞ en otro caso.

Ξ : u ∈ C(K1 ×K2) 7→

{∫
f(x)dP +

∫
g(y)dQ si u(x, y) = f(x) + g(y),

+∞ en otro caso.

Se comprueba fácilmente que el funcional Ξ está bien definido. Además, para la
función v0 ≡ 1, se cumple que Θ es continuo en v0 y

Θ(v0) = 0 < +∞, Ξ(v0) = 1 < +∞.

Se verifica el resultado de dualidad de Fencher-Rockafellar, explicado en el apéndice
D.3, entonces:

ı́nf
u∈C(K1×K2)

{Θ(u) + Ξ(u)} = sup
π∈M(K1×K2)

{−Θ∗(−π)− Ξ(π)},

donde se denota por M(K1 × K2) al espacio de medidas de Borel en K1 × K2.
Desarrollando el lado izquierdo de la igualdad, se tiene que:

ı́nf
C(K1×K2)

{Θ+ Ξ} = ı́nf
{∫

f(x)dP +

∫
g(y)dQ : f(x) + g(y) ≥ −c(x, y)

}
= − sup

{∫
f(x)dP +

∫
g(y)dQ : f(x) + g(y) ≤ c(x, y)

}
.

En cuanto al lado derecho, primero se calculan las transformaciones de Legendre de
los funcionales Θ y Ξ:
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Caṕıtulo 3. El problema de transporte óptimo

Θ∗(−π) = sup
u∈C(K1×K2)

{
−

∫
u(x, y)dπ : u(x, y) ≥ −c(x, y)

}
= sup

u∈C(K1×K2)

{∫
u(x, y)dπ : u(x, y) ≤ c(x, y)

}
.

Si π no es una medida positiva, existe una función v ∈ C(K1 × K2) estrictamente
negativa tal que

∫
vdπ > 0. Entonces, para todo n ∈ N, nv ∈ C(K1 ×K2) y

∫
nvdπ

tiende a −∞ cuando n tiende a ∞. Si, por el contrario, la medida π es positiva,∫
u(x, y)dπ ≤

∫
c(x, y)dπ para toda u ∈ C(K1 ×K2). En conclusión,

Θ∗(−π) =

{∫
c(x, y)dπ si π es una medida positiva,

+∞ si π no es una medida positiva.

Por otro lado,

Ξ∗(π) = sup
f(x)+g(y)∈C(K1×K2)

{∫
[f(x) + g(y)]dπ −

( ∫
f(x)dP +

∫
g(y)dQ

)}
.

Si π ∈
∏
(P,Q), entonces Ξ(π) = 0. Si π /∈

∏
(P,Q), existe f(x)+g(y) ∈ C(K1×K2)

tal que
∫
Rd f(x)dP+

∫
Rd g(y)dQ = 0 y

∫
Rd×Rd [f(x)+g(y)]dπ ̸= 0, escalando la función

f(x) + g(y), se llega a que Ξ(π) = +∞. Resumiendo,

Ξ∗(−π) =

{
0 si π ∈

∏
(P,Q),

+∞ si π /∈
∏
(P,Q).

Por lo tanto,

sup
π∈M(Rd×Rd)

{
−Θ∗(−π)− Ξ(π)}

= sup{−
∫
c(x, y)dπ : π es una medida positiva y π ∈

∏
(P,Q)

}
= − ı́nf{

∫
c(x, y)dπ : π es una medida positiva y π ∈

∏
(P,Q)

}
.

Con todo esto, se ha probado que

sup
{∫

Rd

f(x)dP +

∫
Rd

g(y)dQ : f(x) + g(y) ≤ c(x, y)
}

= ı́nf{
∫
c(x, y)dπ : π es una medida positiva y π ∈

∏
(P,Q)

}
.

Paso 2: Se supone que c(x, y) es una función continua, acotada y positiva en
Rd × Rd. Repitiendo el razonamiento de la demostración de 3.1.1, se prueba que
existe una probabilidad π∗ ∈

∏
(P,Q) tal que

I(π∗) :=

∫
Rd×Rd

c(x, y)dπ∗(x, y) = ı́nf
π∈

∏
(P,Q)

∫
Rd×Rd

∥x− y∥2dπ(x, y).
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Como se detalla en el apéndice B, para todo ε > 0, existen K1 y K2 compactos de
Rd tales que

π∗
(
(K1 ×K2)

C
)
≤ ε.

Buscando aplicar el paso 1, se considera la probabilidad π∗ restringida al compacto
K1 ×K2, es decir, se define:

π∗0(B) =
1

π∗(K1 ×K2)
π∗(B), ∀B ⊂ K1 ×K2 medible.

Si P0 y Q0 son las marginales de π∗0, tienen soporte en K1 y K2, respectivamente.
Entonces, si se denota por

∏
0(P0, Q0) al conjunto de probabilidades en K1×K2 con

marginales P0 y Q0, existe una probabilidad π0 que minimiza el coste de transporte
óptimo en

∏
0(P0, Q0). La probabilidad π̃ definida como:

π̃(A) = π∗(K1 ×K2)π0

(
A ∩ (K1 ×K2)

)
+ π∗

(
A ∩ (K1 ×K2)

C
)
, ∀A ∈ βd × βd.

tiene marginales P y Q. Se comprueba que la primera marginal es P ; para probar
que la segunda es Q, se razona de forma análoga.

π̃(C × Rd) = π∗(K1 ×K2)P0(C ∩K1) + π∗

(
(C × Rd) ∩ (K1 ×K2)

C
)

= π∗(K1 ×K2)π∗0

(
(C ∩K1)×K2

)
+ π∗

(
(C ∩KC

1 )× Rd
)
+ π∗

(
(C ∩K1)×KC

2

)
= π∗(K1 ×K2)

π∗

(
(C ∩K1)×K2

)
π∗(K1 ×K2)

+ π∗

(
(C ∩KC

1 )× Rd
)
+ π∗

(
(C ∩K1)×KC

2

)
= π∗

(
(C ∩K1)× Rd

)
+ π∗

(
(C ∩KC

1 )× Rd
)
= P (C), ∀C ∈ βd.

Además, se verifica la siguiente desigualdad:

I(π̃) = π∗(K1 ×K2)

∫
K1×K2

c(x, y)dπ0 +

∫
(K1×K2)C

c(x, y)dπ∗

≤
∫
K1×K2

c(x, y)dπ0 + ∥c∥∞ε.

Entonces,

ı́nf
π∈

∏
(P,Q)

∫
Rd×Rd

c(x, y)dπ ≤
∫
K1×K2

c(x, y)dπ0 + ∥c∥∞ε.

Por otro lado, se considera el funcional J0 definido en L1(P0)× L1(Q0):

J0(φ0, ψ0) =

∫
K1

φ0 dP0 +

∫
K2

ψ0 dQ0.

Aplicando el paso 1 de la demostración, se tiene que∫
K1×K2

c(x, y)dπ0(x, y) = sup
(φ0,ψ0)∈Φ0

J0(φ0, ψ0),
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donde Φ0 = {(φ0, ψ0) ∈ L1(P0) × L1(Q0) : φ0(x) + ψ0(y) ≤ c(x, y)}. Por definición
de superior, para todo ε > 0, existe una pareja de funciones φ̃0, ψ̃0 ∈ Φ0 tal que

J0(φ̃0, ψ̃0) ≥ sup
(φ0,ψ0)∈Φ0

J0(φ0, ψ0)− ε.

En particular, para ε = 1,

J0(φ̃0, ψ̃0) ≥ sup
(φ0,ψ0)∈Φ0

J0(φ0, ψ0)− 1 ≥ J0(0, 0)− 1 ≥ −1.

Escribiendo

J0(φ̃0, ψ̃0) =

∫
K1×K2

[φ̃0(x) + ψ̃0(y)] dπ0(x, y),

se deduce que existe (x0, y0) ∈ K1 ×K2 tal que

φ̃0(x0) + ψ̃0(y0) ≥ −1. (3.3)

Para todo t ∈ R, se verifica que (φ0, ψ0) ∈ Φ0 si, y solo si, (φ0 + t, ψ0 − t) ∈ Φ0.
Además, J0(φ0, ψ0) = J0(φ0+t, ψ0−t). Escogiendo t de forma adecuada, se garantiza
que

φ̃0(x0) + t ≥ −1

2
y ψ̃0(y0)− t ≥ −1

2
.

Para simplificar la notación, se supone que

φ̃0(x0) ≥ −1

2
y ψ̃0(y0) ≥ −1

2
. (3.4)

Por lo tanto,

φ̃0(x) ≤ c(x, y0)− ψ̃0(y0) ≤ c(x, y0) +
1

2
, ∀x ∈ K1, (3.5)

ψ̃0(y) ≤ c(x0, y)− φ̃0(x0) ≤ c(x0, y) +
1

2
, ∀y ∈ K2. (3.6)

Ahora, se define la función

f0(x) := ı́nf
y∈K2

[c(x, y)− ψ̃0(y)], ∀x ∈ K1.

De la desigualdad φ̃0(x) ≤ c(x, y)− ψ̃0(y), se deduce que φ̃0 ≤ f0. Entonces,

J(φ̃0, ψ̃0) ≤ J(f0, ψ̃0).

Además, a partir de las desigualdades 3.6 y 3.4, se tiene una cota superior e inferior
de f0:

f0(x) ≥ ı́nf
y∈K2

[c(x, y)− c(x0, y)]−
1

2
, ∀x ∈ K1, (3.7)

f0(x) ≤ c(x, y0)− ψ̃0(y0) ≤ c(x, y0) +
1

2
, ∀x ∈ K1. (3.8)
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Por último, se define la función

g0(y) := ı́nf
x∈K1

[c(x, y)− f0(x)], ∀y ∈ K2.,

Entonces, (f0, g0) ∈ Φ0 y g0 ≥ ψ̃0, ya que

g0(y) ≥ ı́nf
x∈K1

[c(x, y)− c(x, y) + ψ̃0(y)] ≥ ψ̃0(y), ∀y ∈ K2.

Por esta razón, se tiene la siguiente cadena de desigualdades:

J(f0, g0) ≥ J(f0, ψ̃0) ≥ J(φ̃0, ψ̃0).

A partir de las cotas para f0 (3.8 y 3.4), se deducen cotas para g0:

g0(y) ≥ ı́nf
x∈K1

[c(x, y)− c(x, y0)]−
1

2
, ∀y ∈ K2, (3.9)

g0(y) ≤ c(x0, y)− f0(x0) ≤ c(x0, y)− φ̃0(x0) ≤ c(x0, y) +
1

2
, ∀y ∈ K2. (3.10)

Resumiendo, como c(x, y) ≥ 0, de 3.7 y 3.9 se concluye que

f0(x) ≥ −∥c∥∞ − 1

2
, y g0(y) ≥ −∥c∥∞ − 1

2
.

De estas desigualdades junto con las cotas superiores 3.10 y 3.8, se deduce que
(f0, g0) ∈ L1(P0)×L1(Q0). Con estas cotas, y extendiendo las funciones f0 y g0 por
0, se puede concluir:∫

Rd

f0dP +

∫
Rd

g0dQ =

∫
Rd×Rd

[f0(x) + g0(y)]dπ̃(x, y)

= π∗[K1 ×K2]

∫
K1×K2

[f0(x) + g0(y)] dπ0(x, y) +

∫
(K1×K2)C

[f0(x) + g0(y)] dπ∗(x, y)

≥ (1− ε)

(∫
K1

f0 dP0 +

∫
K2

g0 dQ0

)
− (2∥c∥∞ + 1)π∗[(K1 ×K2)

c]

≥ (1− ε)J0(f0, g0)− (2∥c∥∞ + 1)ε

≥ (1− ε)

(
ı́nf

π∈
∏

(P0,Q0)

∫
K1×K2

c(x, y)dπ − ε

)
− (2∥c∥∞ + 1)ε

≥ (1− ε)

(
ı́nf

π∈
∏

(P,Q)

∫
Rd×Rd

c(x, y)dπ − ∥c∥∞ε− ε

)
− (2∥c∥∞ + 1)ε.

Si ε tiende a 0, se concluye que

ı́nf
π∈

∏
(P,Q)

∫
Rd×Rd

c(x, y)dπ(x, y) = sup
(f,g)∈L1(P )×L1(Q)
f(x)+g(y)≤c(x,y)

∫
Rd

f(x)dP +

∫
Rd

g(y)dQ.

La desigualdad contraria está garantizada siempre, ya que

f(x) + g(y) ≤ c(x, y), ∀(x, y) ∈ Rd × Rd.
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Paso 3: Si la función de coste c(x, y) es inferiormente semi-continua y positiva,
existe una sucesión {cn}∞n=1 ⊂ Cc(Rd×Rd) creciente y de funciones positivas tal que

ĺım
n→∞

cn(x, y) = c(x, y), ∀(x, y) ∈ Rd × Rd.

Si π es una probabilidad con marginales P y Q,

In(π) =

∫
cn(x, y)dπ(x, y).

En primer lugar, se va a probar que

ı́nf
π∈

∏
(P,Q)

I(π) = sup
n∈N

ı́nf
π∈

∏
(P,Q)

In(π). (3.11)

Como cn ≤ c para todo n ∈ N, entonces In(π) ≤ I(π) para toda probabilidad
π ∈

∏
(P,Q). De aqúı, se deduce que

ı́nf
π∈

∏
(P,Q)

I(π) ≥ sup
n∈N

ı́nf
π∈

∏
(P,Q)

In(π).

Queda probar que
ĺım
n→∞

ı́nf
π∈

∏
(P,Q)

In(π) ≥ ı́nf
π∈

∏
(P,Q)

I(π).

Razonando como en la demostración del teorema 3.1.1, se ve que existe una sucesión
de probabilidades {πn}∞n=1 ⊂

∏
(P,Q) tal que

ı́nf
π∈

∏
(P,Q)

In(π) = I(πn), ∀n ∈ N.

Además, la sucesión {πn}∞n=1 es ajustada, por estar contenida en
∏
(P,Q) (se probó

con detalle en la demostración de 3.1.1). Entonces, existe una subuscesión {πnk
}∞k=1

que converge hacia una probabilidad π∗ ∈
∏
(P,Q). Por el teorema de Portmanteau

(ver C.0.2),

ĺım
k→∞

∫
cmdπnk

=

∫
cmdπ∗, ∀m ∈ N.

Además, si m < n entonces, cm ≤ cn y, se tiene que Im(πn) ≤ In(πn). Juntando
estas observaciones, se llega a que

ĺım
n→∞

In(πn) ≥ ĺım sup
n→∞

Im(πn) ≥ Im(π∗), ∀m ∈ N.

Por el teorema de la convergencia monótona, ĺım
m→∞

Im(π∗) = I(π∗) Entonces,

ĺım
n→∞

In(πn) ≥ I(π∗) ≥ ı́nf
π∈

∏
(P,Q)

I(π).

Con esto, queda probada la igualdad 3.11. Por el paso 1, para todo n ∈ N, se tiene
que

ı́nf
π∈

∏
(P,Q)

In(π) = sup
{∫

Rd

f(x)dP +

∫
Rd

g(y)dQ : f(x) + g(y) ≤ cn(x, y)
}

≤ sup
{∫

Rd

f(x)dP +

∫
Rd

g(y)dQ : f(x) + g(y) ≤ c(x, y)
}
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Entonces, tomando superior en n ∈ N,

ı́nf
π∈

∏
(P,Q)

I(π) ≤ sup
{∫

Rd

f(x)dP +

∫
Rd

g(y)dQ : f(x) + g(y) ≤ c(x, y)
}
.

La desigualdad contraria es evidente.

Gracias al resultado de dualidad de Kantorovich, el problema de transporte ópti-
mo asociado al coste cuadrático se reduce a calcular el inferior de

∫
Rd φdP+

∫
Rd ψdQ,

en el conjunto de pares de funciones integrables respecto de P y Q, respectivamente,
tales que x · y ≤ φ(x) + ψ(y), para todo (x, y) ∈ Rd ×Rd. Se comprueba realizando
los cálculos:

Proposición 3.2.2. Si P y Q son dos probabilidades en Rd con momentos de orden
2 finitos, entonces

máx
π∈

∏
(P,Q)

∫
Rd

(x · y)dπ(x, y) = ı́nf
(φ,ψ)∈Φ

[ ∫
Rd

φ(x)dP (x) +

∫
Rd

ψ(y)dQ(y)

]
, (3.12)

donde Φ := {(φ, ψ) ∈ L1(P )× L1(Q) : x · y ≤ φ(x) + ψ(y) ∀(x, y) ∈ Rd × Rd}.

Demostración. Por un lado,

mı́n
π∈

∏
(P,Q)

∫
Rd×Rd

∥x− y∥2dπ(x, y) = mı́n
π∈

∏
(P,Q)

∫
Rd×Rd

(
∥x∥2 + ∥y∥2 − 2(x · y)

)
dπ(x, y)

= mı́n
π∈

∏
(P,Q)

[ ∫
Rd

∥x∥2dP (x) +
∫
Rd

∥y∥2dQ(y)− 2

∫
Rd

(x · y)dπ(x, y)
]

=

∫
Rd

∥x∥2dP (x) +
∫
Rd

∥y∥2dQ(y)− 2 máx
π∈

∏
(P,Q)

∫
Rd

(x · y)dπ(x, y).

(3.13)
Por otro lado, sean (f, g) ∈ L1(P )× L1(Q) tales que f(x) + g(y) ≤ ∥x− y∥2. Se

escribe

f(x) = ∥x∥2 − 2φ(x) ⇔ φ(x) =
1

2
(∥x∥2 − f(x)),

g(y) = ∥y∥2 − 2ψ(y) ⇔ ψ(y) =
1

2
(∥y∥2 − g(y)).

De aqúı se deduce que f(x) + g(y) ≤ ∥x− y∥2 ⇔ x · y ≤ φ(x) + ψ(y).
Si Φ = {(φ, ψ) ∈ L1(P )× L1(Q) : x · y ≤ φ(x) + ψ(y), ∀(x, y) ∈ Rd × Rd}. Por

dualidad de Kantorovich,

(3.13) = sup
(φ,ψ)∈Φ

[ ∫
Rd

∥x∥2dP (x)+
∫
Rd

∥y∥2dQ(y)−2
(∫

Rd

φ(x)dP (x)+

∫
Rd

ψ(y)dQ(y)
)]

si, y solo si,

máx
π∈

∏
(P,Q)

∫
Rd

(x · y)dπ(x, y) = ı́nf
(φ,ψ)∈Φ

[ ∫
Rd

φ(x)dP (x) +

∫
Rd

ψ(y)dQ(y)

]
.
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Caṕıtulo 3. El problema de transporte óptimo

3.2.1. Convexidad y Transporte Óptimo

Si (φ, ψ) ∈ Φ, entonces x · y ≤ φ(x) + ψ(y) para todo (x, y) ∈ Rd ×Rd. Por eso,
para cualquier probabilidad π ∈

∏
(P,Q), se verifica que∫

Rd×Rd

(
φ(x) + ψ(y)

)
dπ(x, y) ≥

∫
Rd×Rd

x · y dπ(x, y).

Ya se ha probado que se alcanza el máximo de la expresión de la derecha, en una
probabilidad π0 ∈

∏
(P,Q). Si también se alcanzase el mı́nimo de la expresión de la

izquierda para un par concreto de funciones (φ0, ψ0) ∈ Φ, entonces, por 3.12,∫
(φ0(x) + ψ0(y)− x · y)dπ0(x, y) = 0 ⇔ φ0(x) + ψ0(y)− x · y = 0 π0 − c.s.

Entonces, en el par óptimo (φ0, ψ0),

ψ0(y) = sup
x∈Rd

(x · y − φ0(x)) π0 − c.s.

φ0(x) = sup
y∈Rd

(x · y − ψ0(y)), π0 − c.s.

Esto es lo que se denomina un par de funciones convexas conjugadas. Los resultados
de esta sección prueban que existe el mı́nimo de∫

Rd

φ(x)dP (x) +

∫
Rd

ψ(y)dQ(y) (3.14)

en el conjunto de pares de funciones

Φ := {(φ, ψ) ∈ L1(P )× L1(Q) : x · y ≤ φ(x) + ψ(y) ∀(x, y) ∈ Rd × Rd}.

Además, se va a formalizar la idea que se acaba de explicar: el mı́nimo se alcanzará
en un par de funciones convexas conjugadas.

Si (φ, ψ) ∈ Φ, en lo que sigue se denota por

J(φ, ψ) :=

∫
Rd

φ(x)dP (x) +

∫
Rd

ψ(y)dQ(y).

Definición 3.2.3. Se define la convexa conjugada de la función φ : Rd → R∪{+∞}
como la función

φ∗ : Rd → R ∪ {+∞}, φ∗(y) = sup
x∈Rd

[x · y − φ(x)].

Se dice que φ∗ es la transformada de Legendre de φ. Se ha ilustrado la importan-
cia de las funciones que se acaban de definir en el problema del transporte óptimo.
Para estudiar sus propiedades, se necesitan algunos resultados sobre funciones con-
vexas.

Definición 3.2.4. Sea φ : Rd → R ∪ {+∞} una función convexa. Para cada punto
x ∈ Rd, se define la subdiferencial de φ en x como el conjunto de puntos y ∈ Rd que
verifican que

φ(z) ≥ φ(x) + y · (z − x), ∀z ∈ Rd. (3.15)

Se denota por ∂φ(x).
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La subdiferencial es una generalización del gradiente. Intuitivamente, es claro
que si una función convexa es diferenciable en un punto, el gradiente es el único
vector que va a verificar la condición 3.15. Se prueba esta idea en los dos siguientes
lemas.

Lema 3.2.5. Sea φ : Rd → R ∪ {+∞} una función convexa. El dominio de φ es
el conjunto de puntos donde φ toma valores reales. Para todo x ∈ Int(Dom(φ)), la
subdiferencial ∂φ(x) es un conjunto no vaćıo.

Demostración. La demostración se basa en la segunda forma geométrica del teorema
de Hahn-Banach, que permite separar dos convexos no vaćıos disjuntos si uno es
cerrado y otro compacto, a partir de un hiperplano dado por un funcional lineal.

Sea x0 ∈ Int(Domφ), existe r > 0 tal que B̄(x0, r) ∈ Int(Domφ). Se define

E(φ) =
{
(x, t) ∈ B̄(x0, r)× R : t ≥ φ(x)

}
.

E(φ) es un conjunto convexo y cerrado. Se comprueba usando que las funciones
convexas son semicontinuas inferiormente en los puntos del interior del dominio (ver
D.1.1).

Como φ(x0) ̸= +∞, para cualquier ε > 0 se tiene que z := (x0, φ(x0)−ε) /∈ E(φ).
Se aplica la segunda forma geométrica del teorema de Hahn-Banach (ver D.2.1) a
los conjuntos {z} y E(φ). Entonces, existe un funcional lineal L : Rd × R → R y
γ ∈ R tal que

L(x, t) < γ ≤ L(z), ∀ (x, t) ∈ E(φ). (3.16)

Por el teorema de representación de Riesz, existe α ∈ Rd y β ∈ R tal que

L(x, t) = ⟨α̃, x⟩+ β t.

β ̸= 0, pues si no, no se verificaŕıa la desigualdad para el punto (x0, φ(x0)) ∈ E(φ).
Como los puntos de la forma (x0, t) ∈ E(φ) para valores arbitrariamente grandes de
t, se deduce que β < 0.

El funcional 1
|β|L(x, t) = ⟨α, x⟩ − t, con α = α̃

|β| , seguirá verificando 3.16. Por lo
tanto, se tienen las siguientes desigualdades:

γ ≤ ⟨α, x0⟩ − (φ(x0)− ε) y ⟨α, x⟩ − t < γ, ∀ (x, t) ∈ E(φ).

De la primera desigualdad, se obtiene φ(x0) − ⟨α, x0⟩ − ε ≤ −γ. Evaluando la
segunda desigualdad en los puntos (x, φ(x)) ∈ E(φ), con x ∈ B̄(x0, r), se tiene que
φ(x) ≥ ⟨α, x⟩ − γ. Por lo tanto, se concluye que

φ(x) ≥ ⟨α, x⟩+ φ(x0)− ⟨α, x0⟩ − ε = φ(x0) + ⟨α, x− x0⟩ − ε, ∀x ∈ B̄(x0, r).

Haciendo tender ε a 0, se tiene que

φ(x) ≥ φ(x0) + ⟨α, x− x0⟩, ∀x ∈ B̄(x0, r).

Si esta desigualdad se verifica para los puntos de B̄(x0, r), se verifica para cualquier
punto de Rd. Se razona por reducción al absurdo: Sea x ∈ Rd tal que

φ(x) < φ(x0) + ⟨α, x− x0⟩.
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Entonces, el segmento que une φ(x) con φ(x0) está por debajo del hiperplano φ(x0)+
⟨α, x−x0⟩. Esto se puede ver multiplicando la desigualdad anterior por t y operando:

tφ(x) + (1− t)φ(x0) < φ(x0) + ⟨α, tx+ (1− t)x0 − x0⟩, ∀t ∈ (0, 1).

Se llega a una contradicción, puesto que para algún t suficientemente pequeño,

tx+ (1− t)x0 ∈ B̄(x0, r),

φ(tx+ (1− t)x0) ≤ tφ(x) + (1− t)φ(x0) < φ(x0) + ⟨α, tx+ (1− t)x0 − x0⟩.
Esto es absurdo. Por lo tanto,

φ(x) ≥ φ(x0) + ⟨α, x− x0⟩, ∀x ∈ Rd.

Se tiene que α ∈ ∂φ(x0).

Lema 3.2.6. Sea φ : Rd → R ∪ {+∞} una función convexa. Si φ es diferenciable
en el punto x ∈ Rd, entonces el conjunto ∂φ(x) está formado por un único punto,
el gradiente de φ en x, es decir,

∂φ(x) = {∇φ(x)}.

Demostración. Primero, se prueba que ∇φ(x) ∈ ∂φ(x). Por convexidad, para todo
y ∈ Rd, se tiene que

φ
(
x+ t(y − x)

)
≤ (1− t)φ(x) + t φ(y), ∀t ∈ (0, 1).

Reescribiéndolo,
φ
(
x+ t(y − x)

)
− φ(x)

t
≤ φ(y)− φ(x).

El ĺımite de la expresión de la izquierda, cuando t tiende a 0, es la derivada direccional
de φ en x en la dirección y−x, y se denota por Dφ(x; y−x). Como φ es diferenciable
en x, ese ĺımite existe y se cumple

Dφ(x; y − x) =
〈
∇φ(x), y − x

〉
, ∀y ∈ Rd.

Entonces, 〈
∇φ(x), y − x

〉
≤ φ(y)− φ(x), ∀y ∈ Rd.

Se concluye que ∇φ(x) ∈ ∂φ(x).
Queda probar que si otro punto α ∈ Rd pertenece al gradiente de φ en x, entonces

α = ∇φ(x). Si α ∈ ∂φ(x), entonces

φ(y) ≥ φ(x) + ⟨α, y − x⟩, ∀ y ∈ Rd.

En particular, si v ∈ Rd y t > 0, tomando y = x+ tv en la desigualdad anterior, se
tiene que

φ(x+ tv)− φ(x)

t
≥ ⟨α, v⟩, ∀ v ∈ Rd, t > 0.

Tomando ĺımite cuando t tiende a 0, se deduce que

⟨∇φ(x), v⟩ ≥ ⟨α, v⟩, ∀ v ∈ Rd ⇔ ⟨∇φ(x)− α, v⟩ ≥ 0, ∀ v ∈ Rd.

Tomando v = α − ∇φ(x), se tiene que −∥∇φ(x) − α∥2 ≥ 0 si, y solo si, ∇φ(x) =
α.

48



3.2. El caso cuadrático

Se enuncian, en la siguiente proposición, propiedades básicas de la convexa con-
jugada de una función. En el apéndice D.1 se define una función inferiormente se-
micontinua (ver definición D.1.1).

Proposición 3.2.7. Sea φ : Rd → R∪{+∞}. Entonces su transformada de Legen-
dre φ∗ (ver definición en 3.2.3) es convexa e inferiormente semi-continua. Además,
si φ no es idénticamente +∞, entonces φ∗ tampoco es idénticamente +∞.

Demostración. Primero se prueba que φ∗ es convexa. Para cada x ∈ Rd, se define
la función af́ın φ̃x(y) := x · y − φ(x). Entonces, sean y1, y2 ∈ Rd,

φ̃x(ty1 + (1− t)y2) = tφ̃x(y1) + (1− t)φ̃x(y2), ∀t ∈ (0, 1).

Tomando superior en x ∈ Rd,

φ∗(y) := sup
x∈Rd

φ̃x(y) = sup
x∈Rd

[
tφ̃x(y1) + (1− t)φ̃x(y2)

]
≤ t sup

x∈Rd

φ̃x(y1) + (1− t) sup
x∈Rd

φ̃x(y2) =: tφ∗(y1) + (1− t)φ∗(y2).

El segundo paso es probar que φ∗ es inferiormente semicontinua. Para cada y0 ∈ Rd,
sea {yn}∞n=1 una sucesión tal que ĺım

n→∞
yn = y0. Entonces, ĺım

n→∞
x · yn−φ(x) = x · y0−

φ(x), para cada x ∈ Rd. Como φ∗(yn) ≥ x · yn − φ(x), para todo x ∈ Rd, entonces

ĺım inf
n→∞

φ∗(yn) ≥ x · y0 − φ(x), ∀x ∈ Rd.

Por lo tanto, ĺım inf
n→∞

φ∗(yn) ≥ sup
x∈Rd

x · y0 − φ(x) =: φ∗(y0).

Por último, si φ no es idénticamente +∞, existe x0 ∈ Rd tal que φ(x0) < +∞.
Como se ha visto en el lema 3.2.5, la subdiferencial de φ en x0 es no vaćıa, es decir,
existe y ∈ ∂φ(x0). Por definición de subdiferencial,

φ(x) ≥ φ(x0) + ⟨y, x− x0⟩, ∀x ∈ Rd.

si, y solo si,
⟨y, x⟩ − φ(x) ≤ ⟨y, x0⟩ − φ(x0), ∀x ∈ Rd.

Entonces, tomando superior en x,

φ∗(y) = sup
x
{⟨y, x⟩ − φ(x)} ≤ ⟨y, x0⟩ − φ(x0) < +∞.

A continuación, se da una caracterización de la subdiferencial de una función a
partir de su convexa conjugada.

Proposición 3.2.8. Sea φ : Rd → R∪ {+∞} una función convexa e inferiormente
semicontinua no idénticamente +∞. Entonces, para todo x, y ∈ Rd,

x · y = φ(x) + φ∗(y) ⇔ y ∈ ∂φ(x).
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Demostración. De la definición de convexa conjugada es fácil ver que se cumple que
x · y ≤ φ(x) + φ∗(y), para todo x, y ∈ Rd. Por lo tanto,

x · y = φ(x) + φ∗(y) ⇔ x · y ≥ φ(x) + φ∗(y).

Como φ∗(y) = sup
z∈Rd

[z · y − φ(z)],

x · y ≥ φ(x) + φ∗(y) ⇔ x · y ≥ φ(x) + z · y − φ(z), ∀z ∈ Rd

⇔ φ(z) ≥ φ(x) + y · (z − x), ∀z ∈ Rd

⇔ y ∈ ∂φ(x).

El objetivo del siguiente resultado es llegar a una caracterización de las funciones
convexas conjugadas φ∗, será clave para el estudio del problema dual de transporte
óptimo. Se ha visto, en la proposición 3.2.7, que la convexa conjugada de una función
φ es convexa e inferiormente semicontinua. Se prueba, a continuación, el rećıproco.

Proposición 3.2.9. Sea φ : Rd → R ∪ {+∞} una función no idénticamente +∞.
Son equivalentes:

1. φ es convexa e inferiormente semi-continua.

2. Existe una función ψ : Rd → R ∪ {+∞}, no idénticamente +∞, tal que
φ = ψ∗.

3. φ∗∗ = φ.

Demostración. 3) ⇒ 2) es claro, tomando ψ := φ∗, que no es idénticamente +∞,
como se ha visto en la proposición 3.2.7. 2) ⇒ 1) está ya probado en 3.2.7. Queda
probar 1) ⇒ 3).

Sea φ convexa e inferiormente semicontinua. La desigualdad φ(x) ≥ φ∗∗(x), se
da siempre. Para todo y ∈ Rd, x · y − φ(x) ≤ sup

x∈Rd

[x · y − φ(x)] =: φ∗(y). Entonces,

φ∗∗(x) := sup
y∈Rd

[x · y − φ∗(y)] ≤ φ(x), ∀x ∈ Rd.

Caso 1: Se supone que φ ≥ 0. Para probar que φ ≤ φ∗∗ se razona por reducción al
absurdo. Se supone que existe x0 ∈ Rd tal que

φ(x0) > φ∗∗(x0).

Como φ es inferiormente semi-continua, el conjunto convexo

epi(φ) =
{
(x, t) ∈ Rd × R : t ≥ φ(x)

}
es cerrado. Se aplica la segunda forma geométrica del teorema de Hahn Banach
(ver D.2.1) a los conjuntos epi(φ) y {(x0, φ∗∗(x0))}. Existe un funcional lineal L :
Rd × R → R y γ ∈ R tal que

L(x0, φ
∗∗(x0)) < γ ≤ L(x, t), ∀ (x, t) ∈ epi(φ). (3.17)
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Por el teorema de representación de Riesz, existe α ∈ Rd y β ∈ R tal que

L(x, t) = ⟨α, x⟩+ β t.

Existe un punto x ∈ Domφ, por ser φ propia. Como los puntos de la forma (x, t) ∈
epi(φ) para valores arbitrariamente grandes de t, se deduce que β ≥ 0.

Para cualquier ε > 0, como φ ≥ 0, se verifica:

⟨α, x⟩+ (β + ε)φ(x) ≥ ⟨α, x⟩+ βφ(x) ≥ γ, ∀x ∈ Rd

si, y solo si,

⟨− α

β + ε
, x⟩ − φ(x) ≤ − γ

(β + ε)
, ∀x ∈ Rd,

de donde se deduce que

φ∗(− α

β + ε
) ≤ − γ

(β + ε)
.

Por lo tanto,

φ∗∗(x0) ≥ ⟨− α

β + ε
, x0⟩ − φ∗(− α

β + ε
) ≥ ⟨− α

β + ε
, x0⟩+

γ

(β + ε)
.

Se llega una contradicción, puesto que

⟨α, x0⟩+ (β + ε)φ∗∗(x0) ≥ γ, ∀ε > 0.

Caso general: Como φ no es idénticamente +∞, entonces φ∗ tampoco. Sea y0 ∈
Rd tal que φ∗(y0) < +∞. Se considera la función

φ̄(x) = φ(x)− ⟨x, y0⟩+ φ∗(y0), ∀x ∈ Rd.

φ̄ es convexa, inferiormente semicontinua y mayor o igual que 0. Entonces, por el
caso 1, se deduce que φ̄ = φ̄∗∗. Desarrollando primero la expresión de φ∗, se tiene
que

φ̄∗(y) = sup
x∈Rd

{⟨x, y⟩ − φ(x) + ⟨x, y0⟩ − φ∗(y0)}

= sup
x∈Rd

{⟨x, y + y0⟩ − φ(x)} − φ∗(y0)

= φ∗(y + y0)− φ∗(y0), ∀y ∈ Rd.

En cuanto a φ∗∗, se tiene que:

φ̄∗∗(x) = sup
y∈Rd

{⟨x, y⟩ − φ∗(y + y0)}+ φ∗(y0)

= sup
y∈Rd

{⟨x, y + y0⟩ − φ∗(y + y0)} − ⟨x, y0⟩+ φ∗(y0)

= φ∗∗(x)− ⟨x, y0⟩+ φ∗(y0).

Se concluye que φ∗∗ = φ.
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3.2.2. Estudio del problema dual

En el contexto del problema de transporte óptimo que se ha planteado en esta
sección, se ha estudiado la expresión

∫
φdP +

∫
ψdQ, y se ha visto que la clave para

minimizar esa suma son los pares de funciones convexas conjugadas. Por eso, en el
apartado anterior, se estudiaron las propiedades de la transformada de Legendre.
Ahora ya se dispone de las herramientas necesarias para probar que existe un par
de funciones óptimas en el problema dual y que son inferiormente semicontinuas
conjugadas.

Lema 3.2.10 (Doble convexificación). Sean P y Q dos probabilidades en Rd con
momentos de orden 2 finitos. Sea

Φ = {(φ, ψ) ∈ L1(P )× L1(Q) : x · y ≤ φ(x) + ψ(y), ∀(x, y) ∈ Rd × Rd}

Para cada (φ, ψ) ∈ Φ, existe a ∈ R tal que el par de funciones de Φ definido de la
siguiente forma:

(φ̄, ψ̄) := (φ∗∗ − a, φ∗ + a)

verifica que J(φ̄, ψ̄) ≤ J(φ, ψ) y satisface, para todo (x, y) ∈ Rd × Rd,

φ̄(x) ≥ −∥x∥2

2
, ψ̄(y) ≥ −∥y∥2

2
. (3.18)

Demostración. Sea (φ, ψ) ∈ Φ, es fácil comprobar que el par (φ∗∗, φ∗) verifica que:

φ∗∗(x) + φ∗(y) ≥ x · y, ∀(x, y) ∈ Rd × Rd.

Además, J(φ∗∗, φ∗) ≤ J(φ, ψ). Esta afirmación se demuestra a continuación: Para
todo (x, y) ∈ Rd × Rd, x · y ≤ φ(x) + ψ(y). Se deduce que

φ∗(y) := sup
x∈Rd

[x · y − φ(x)] ≤ ψ(y).

Por otro lado, siguiendo el razonamiento que ya se ha hecho en otras demostraciones,
se verifica que x · y − φ(x) ≤ sup

x∈Rd

[x · y − φ(x)] =: φ∗(y). Entonces,

φ∗∗(x) := sup
y∈Rd

[x · y − φ∗(y)] ≤ φ(x).

Por ser φ integrable respecto de P , no es idénticamente +∞. Esto implica que
φ∗ : Rd → R ∪ {+∞} tampoco es idénticamente +∞ (por la proposición 3.2.7).
Además, φ∗ está acotada inferiormente por una función lineal: existe x0 ∈ Rd tal
que φ(x0) < +∞, entonces,

x0 · y + φ(x0) ≤ φ∗(y) ∀y ∈ Rd.

Sea a = ı́nf
y∈Rd

[φ∗(y) + ∥y∥2
2
]. Como φ∗ toma valores reales para algún punto, a <

+∞. Acotando la función que se quiere minimizar por otra que alcanza el mı́nimo
absoluto, se ve que a ∈ R:

φ∗(y) +
∥y∥2

2
≥ x0 · y + φ(x0) +

∥y∥2

2
=

∥y + x0∥2

2
− ∥x0∥2

2
+ φ(x0), ∀y ∈ Rd.
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Se considera el par de funciones (φ̄, ψ̄) := (φ∗∗ + a, φ∗ − a). Para todo y ∈ Rd,

φ∗(y)+∥y∥2
2
−a ≥ 0, (por ser a el inferior de esa función). Entonces φ̄(y) ≥ −∥y∥2

2
, para

todo y ∈ Rd. En cuanto a la función ψ̄, se tiene la siguiente cadena de desigualdades:

φ̄(x) +
∥x∥2

2
= ψ̄∗(x) +

∥x∥2

2
= sup

y∈Rd

[
x · y − ψ̄(y) +

∥x∥2

2

]
≥ sup

y∈Rd

[
− ψ̄(y)− ∥y∥2

2

]
= − ı́nf

y∈Rd

[
ψ̄(y) +

∥y∥2

2

]
= 0, ∀x ∈ Rd.

Para probar que (φ̄, ψ̄) ∈ Φ, solo falta ver que (φ̄, ψ̄) ∈ L1(P ) × L1(Q), porque ya
se ha probado que

φ̄(x) + ψ̄(y) = φ∗∗(x) + φ∗(y) ≥ x · y, ∀(x, y) ∈ Rd × Rd.

Se cumple que J(φ̄, ψ̄) = J(φ∗∗, ψ∗) ≤ J(φ, ψ) < +∞. Entonces, se tiene que∫
φ̄dP +

∫
ψ̄dQ < +∞. Además, como ambas funciones (φ̄ y ψ̄) están acotadas

inferiormente por funciones integrables (−∥x∥2
2

y −∥y∥2
2
), se deduce que

(φ̄, ψ̄) ∈ L1(P )× L1(Q).

De la demostración del lema 3.2.10, se deduce que si (φ, ψ) ∈ Φ, entonces
(φ∗∗, φ∗) ∈ Φ y se cumple que J(φ∗∗, φ∗) ≤ J(φ, ψ). Por lo tanto, para buscar
el mı́nimo de J(φ, ψ) en Φ hay que restringirse a los pares de funciones convexas
conjugadas del tipo (φ∗∗, φ∗).

Corolario 3.2.11. Sean P y Q dos probabilidades en Rd con momentos de orden 2
finitos. Minimizar la expresión J(φ, ψ) :=

∫
φdP +

∫
ψdQ en el conjunto

Φ = {(φ, ψ) ∈ L1(P )× L1(Q) : x · y ≤ φ(x) + ψ(y), ∀(x, y) ∈ Rd × Rd}

es equivalente a calcular ı́nf
φ∈L1(Q)

J(φ∗∗, φ∗).

A partir del corolario 3.2.11 y de la caracterización de las funciones convexas
conjugadas dada en la proposición 3.2.9, se tiene el siguiente resultado:

Proposición 3.2.12. Sean P y Q dos probabilidades en Rd con momentos de orden
2 finitos. Minimizar la expresión J(φ, ψ) :=

∫
φdP +

∫
ψdQ en el conjunto

Φ = {(φ, ψ) ∈ L1(P )× L1(Q) : x · y ≤ φ(x) + ψ(y), ∀(x, y) ∈ Rd × Rd}

es equivalente a calcular
ı́nf
φ∈C

J(φ, φ∗),

donde C es el conjunto de funciones φ : Rd → R ∪ {+∞} de L1(P ) convexas e
inferiormente semicontinuas, no idénticamente +∞.

Lo único que queda por demostrar es que se alcanza el mı́nimo de J(φ, ψ) en un
par de funciones concretas, esto es lo que se prueba en el siguiente teorema.
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Teorema 3.2.13. Sean P y Q dos probabilidades en Rd con momentos de orden 2
finitos. Sea Φ = {(φ, ψ) ∈ L1(P )×L1(Q) : x ·y ≤ φ(x)+ψ(y), ∀(x, y) ∈ Rd×Rd}.
Entonces, existe un par (φ, φ∗) de funciones convexas e inferiormente semicontinuas
conjugadas propias definidas en Rd tal que

ı́nf
(φ,ψ)∈Φ

J(φ, ψ) = J(φ, φ∗).

Demostración. Sea {(φk, ψk)}∞k=1 una sucesión de elementos de Φ tal que

ĺım
k→∞

J(φk, ψk) = ı́nf
(φ,ψ)∈Φ

J(φ, ψ).

Por el lema 3.2.10, se puede suponer que

0 ≤ φk(x) +
∥x∥2

2
, 0 ≤ ψk(y) +

∥y∥2

2
.

Buscando la convergencia débil de alguna subsucesión de {(φk, ψk)}∞k=1, se truncan
las funciones para conseguir una acotación por arriba (y garantizar la integrabilidad
uniforme). En el apéndice E, se definen estos conceptos y se explican las propiedades
que se van a usar a continuación.

Para cada n ∈ N, se define

φnk(x) = mı́n{φk(x) +
∥x∥2

2
, n} − ∥x∥2

2
, ψnk (y) = mı́n{ψk(y) +

∥y∥2

2
, n} − ∥y∥2

2
.

Se tiene, para todo k ∈ N,∥∥∥φnk + ∥x∥2

2

∥∥∥
L1(P )

≤ n,
∥∥∥ψnk + ∥y∥2

2

∥∥∥
L1(Q)

≤ n.

Además, fijado ε > 0, si E ∈ βd tal que P (E) < ε
n∫

E

∣∣∣φnk(x) + ∥x∥2

2

∣∣∣dP ≤ nP (E) < ε, ∀k ∈ N.

Análogamente, si F ∈ βd tal que Q(F ) < ε
n∫

F

∣∣∣ψnk (y) + ∥y∥2

2

∣∣∣dQ ≤ nQ(E) < ε, ∀k ∈ N.

Se acaba de probar que, para cada n ∈ N fijo, las sucesiones {φnk +
∥x∥2
2

}∞k=1 y {ψnk +
∥y∥2
2
}∞k=1 verifican la condición de integrabilidad uniforme (ver E.1). Por lo tanto,

por el teorema E.1.2, para cada n ∈ N fijo, existe una subsucesión de ı́ndices {kj}∞j=1

tales que {φnkj +
∥x∥2
2

}∞j=1 converge débilmente en L1(P ) (equivalentemente {φnkj}
∞
j=1

converge débilmente) y otra subsucesión de ı́ndices {ki}∞i=1 tales que {ψnki +
∥y∥2
2
}∞i=1

converge débilmente en L1(Q) (equivalentemente {ψnki}
∞
i=1 converge débilmente). Se

denota al ĺımite por (φn, ψn) ∈ L1(P )×L1(Q). Sin pérdida de generalidad, se supone
que es la misma subsucesión de ı́ndices.
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Si se extraen las subsucesiones de ı́ndices de forma recursiva, (es decir, para cada
n ∈ N\{1} se extrae una nueva subsucesión de la subsucesión que se hab́ıa extráıdo
para n− 1), se tiene que, para cada n ∈ N, existe una subsucesión de ı́ndices {kl}∞l=1

tales que los pares de funciones (φnkl , ψ
n
kl
) convergen ∀m ≤ n. Al formar la sucesión

de ı́ndices quedándose con el elemento n-ésimo de la subsucesión que elegida para n,
se construye una subsucesión de {(φk, ψk)}∞k=1 cuyas truncaciones convergen, para
cualquier n ∈ N. Para simplificar la notación, se supone que es la propia sucesión la
que cumple esta propiedad.

La convergencia débil implica, en particular, que

ĺım
k→∞

∫
φnk(x)dP (x) =

∫
φn(x)dP (x), ĺım

k→∞

∫
ψnk (y)dQ(y) =

∫
ψn(y)dQ(y).

Por lo tanto,

J(φn, ψn) = ĺım
k→∞

J(φnk , ψ
n
k ) ≤ ĺım

k→∞
J(φk, ψk) = ı́nf

(φ,ψ)∈Φ
J(φ, ψ), ∀n ∈ N.

La última desigualdad se debe a la monotońıa de la integral, ya que, fijado k ∈ N,
φnk ≤ φk y ψnk ≤ ψk, para todo n ∈ N.

Para cada k ∈ N fijo, las sucesiones {ψnk}∞n=1 y {φnk}∞n=1 son crecientes. Tomando
ĺımites en la convergencia débil, la monotońıa de estas sucesiones se traslada a las
sucesiones {ψn}∞n=1 y {φn}∞n=1, aunque son desigualdades casi seguro (con respecto
a las medidas P y Q, respectivamente). Esto se ha probado en E.0.3. Por lo tan-
to, existen los ĺımites puntuales, definidos para casi todo punto, ya que la unión
numerable de conjuntos de medida nula es de medida nula.

φ0 := ĺım
n→∞

φn : Rd → R ∪ {+∞}, ψ0 := ĺım
n→∞

ψn : Rd → R ∪ {+∞}.

En los puntos de Rd que no se cumplen las desigualdades φn(x) ≤ φn+1(x) para
todo n ∈ N, se define φ0(x) = +∞. Análogamente, en los puntos que la sucesión
{ψn(y)}n no es creciente, se define ψ0(y) = +∞.

El siguiente paso es comprobar que (φ0, ψ0) ∈ Φ. Como (φk, ψk) ∈ Φ para todo
k ∈ N, se tiene que:

φk(x) +
∥x∥2

2
+ ψk(y) +

∥y∥2

2
≥ ∥x∥2

2
+

∥y∥2

2
+ x · y =

∥x+ y∥2

2
.

Fijado n ∈ N,

φnk(x) + ψnk (y) +
∥x∥2

2
+

∥y∥2

2
≥ mı́n

{
n,

∥x+ y∥2

2

}
, ∀k ∈ N.

Tomando ĺımite, cuando k tiende a ∞, y después, haciendo tender n a ∞:

φn(x) + ψn(y) +
∥x∥2

2
+

∥y∥2

2
≥ mı́n

{
n,

∥x+ y∥2

2

}
,

φ0(x) + ψ0(y) +
∥x∥2

2
+

∥y∥2

2
≥ ∥x+ y∥2

2
⇔ φ0(x) + ψ0(y) ≥ x · y.
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Caṕıtulo 3. El problema de transporte óptimo

Por cómo se hab́ıan construido las funciones φ0 y ψ0, la última desigualdad se verifica
para todo (x, y) ∈ Rd × Rd, (aunque fijado n ∈ N, la respectiva desigualdad para
(φn, ψn) pueda no verificarse para los x de un conjunto de probabilidad P nula, y
los y de un conjunto de probabilidad Q nula).

Las sucesiones de funciones {ψn}∞n=1 y {φn}∞n=1 son crecientes y acotadas infe-
riormente por funciones integrables:

−∥x∥2

2
≤ φn(x), −∥y∥2

2
≤ ψn(y).

Por el teorema de la convergencia monótona∫
φ0dP = ĺım

n→∞

∫
φndP,

∫
ψ0dQ = ĺım

n→∞

∫
ψndQ.

Por lo tanto,

J(φ0, ψ0) = ĺım
n→∞

J(φn, ψn) ≤ ı́nf
(φ,ψ)∈Φ

J(φ, ψ).

De esta cadena de desigualdades, también se deduce que (φ0, ψ0) ∈ L1(P )×L1(Q),

puesto que −∞ < −
∫ ∥x∥2

2
dP ≤

∫
φ0dP , −∞ < −

∫ ∥y∥2
2
dQ ≤ +

∫
ψ0dQ y la suma

de ambas integrales verifica que:∫
φ0dP +

∫
φ0dP < +∞.

Entonces, se verifica la desigualdad contraria J(φ0, ψ0) ≥ ı́nf
(φ,ψ)∈Φ

J(φ, ψ) y, por lo

tanto, la igualdad.

3.2.3. Caracterización del plan de transporte óptimo

Por último, para cerrar la sección, se prueban dos teoremas que caracterizan los
planes de transporte óptimos, garantizando unicidad bajo ciertas condiciones.

Teorema 3.2.14 (Criterio de optimalidad). Sean P y Q dos probabilidades en Rd

con momentos de orden 2 finitos. La probabilidad π ∈
∏
(P,Q) es un plan de trans-

porte óptimo para el coste cuadrático c(x, y) = ∥x − y∥2 si, y solo si, existe una
función φ : Rd → R convexa e inferiormente semicontinua tal que

y ∈ ∂φ(x), π − c.s.

Si esto ocurre, el par (φ, φ∗) minimiza la expresión

J(φ, ψ) :=

∫
Rd

φdP +

∫
Rd

ψdQ

en el conjunto Φ = {(φ, ψ) ∈ L1(P )×L1(Q) : x·y ≤ φ(x)+ψ(y), ∀(x, y) ∈ Rd×Rd}
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Demostración. Se ha probado en el teorema 3.2.13 que existe una función φ convexa
e inferiormente semicontinua tal que el par (φ, φ∗) minimiza J(φ, ψ) en el conjunto
Φ. Gracias a la fórmula de dualidad 3.12, se tiene que una probabilidad π ∈

∏
(P,Q)

es un plan de transporte óptimo para el coste cuadrático si, y solo si,∫
Rd×Rd

x · ydπ(x, y) =
∫
Rd

φdP +

∫
Rd

φ∗dQ =

∫
Rd×Rd

[
φ(x) + φ∗(y)

]
dπ(x, y),

si, y solo si, ∫
Rd×Rd

[
φ(x) + φ∗(y)− x · y

]
dπ(x, y) = 0.

Como φ(x) + φ∗(y)− x · y ≥ 0 para todo (x, y) ∈ Rd × Rd, que la integral sea nula
es equivalente a que

φ(x) + φ∗(y) = x · y, π − c.s.

es decir, es equivalente a que y ∈ ∂φ(x), π − c.s.

Se enuncia, a continuación, el teorema que garantiza que si P no da probabilidad
a conjuntos de medida nula, entonces existe una aplicación de transporte óptimo de
P a Q. Además, el plan de transporte inducido por esta aplicación es el único plan
de transporte óptimo.

Lema 3.2.15. Sean P y Q dos probabilidades en Rd. Sea T : Rd → Rd una aplica-
ción medible. Si π ∈

∏
(P,Q), entonces son equivalentes:

1. π = (Id× T )#P.

2. y = T (x), π − c.s.

Además, si se verifica alguna de estas condiciones, entonces T#P = Q.

Demostración. Si π = (Id×∇φ)#P , entonces

π(C) = P
(
{x ∈ Rd : (x, T (x)) ∈ C}

)
, ∀C ∈ β2d.

Con esta definición, es claro que el conjunto {(x, y) ∈ Rd × Rd : y ̸= T (x)} tiene
probabilidad π nula.

Para probar la implicación contraria, se define la probabilidad R en Rd × Rd de
la siguiente forma:

R(C) = P
(
{x ∈ Rd : (x, T (x)) ∈ C}

)
, ∀C ∈ β2d.

Para comprobar que π = R basta con comprobar que π(A × B) = R(A × B) para
todo A,B ∈ βd, ya que los conjuntos de este tipo son una clase determinante de la
probabilidad. Si se supone que y = T (x), π − c.s., entonces

R(A×B) = P
(
{x ∈ Rd : (x, T (x)) ∈ A×B}

)
= P

(
A ∩ T−1(B)

)
= π

(
A ∩ T−1(B)× Rd

)
= π

(
{(x, y) ∈ Rd × Rd : x ∈ A, T (x) ∈ B}

)
= π(A×B).
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Por último, se comprueba que si π = (Id× T )#P , entonces T#P = Q ya que:

Q(B) = π(Rd ×B) = P
(
{x ∈ Rd : T (x) ∈ B}

)
= P (T−1(B)), ∀B ∈ βd.

Teorema 3.2.16. Sean P y Q dos probabilidades en Rd con momentos de orden 2
finitos. Si P no da masa a conjuntos de medida nula, entonces el plan de transporte
óptimo π, para el problema del coste cuadrático, es único. Y, además, se verifica que

π = (Id×∇φ)#P,

donde ∇φ es el único (salvo un conjunto de P -probabilidad nula) gradiente de una
función convexa tal que ∇φ#P = Q.

Demostración. Primero, se probará que cualquier plan de transporte óptimo π cum-
ple las condiciones descritas en el teorema. Sea φ la función convexa que minimiza∫

φdP +

∫
φ∗dQ

en el conjunto de funciones convexas e inferiormente semicontinuas. Como φ ∈
L1(P ), entonces solo puede tomar el valor +∞ en un conjunto de medida nula.
Entonces, P (Domφ) = 1. Además, la frontera de Domφ es de medida nula, por ser
un conjunto convexo. Entonces, P (Int(Domφ)) = 1 Por el teorema de Rademacher
(ver D.1.4), una función convexa definida en un abierto de Rd es diferenciable en
casi todo punto. Como P no da masa a conjuntos de medida nula, φ restringida
al interior de su dominio es diferenciable P -c.s. y su gradiente está bien definido,
salvo en un conjunto de P -probabilidad nula. Por lo tanto, el conjunto donde φ es
diferenciable, tiene P−probabilidad 1. Además, como una de las marginales de π
es P , el conjunto de puntos (x, y) ∈ Rd tales que φ no es diferenciable en x es de
π-probabilidad nula. Entonces, por el lema 3.2.6, el único vector que pertenece a la
subdiferencial de φ en (x, y) es el gradiente de φ, salvo en un conjunto de puntos de
π-probabilidad nula.

Por lo tanto, si π es un plan de transporte óptimo, por el criterio de optimalidad
3.2.14, se verifica que y = ∇φ(x), π-c.s. Esta condición es equivalente a que π =
(Id×∇φ)#P . Se tiene también que P#∇φ = Q.

En segundo lugar, queda probar la unicidad del plan de transporte. A la vez se
probará que solo existe un gradiente de una función convexa∇φ tal que∇φ#P = Q.

Sea φ̄ otra función convexa tal que ∇φ̄#P = Q. El objetivo es ver que ∇φ̄ = ∇φ
(salvo en un conjunto de P -probabilidad nula). Se considera la probabilidad

π0 = (Id×∇φ̄)#P ∈
∏

(P,Q).

Por el lema previo 3.2.15, y = ∇φ̄(x), π0 − c.s.. En consecuencia, por el criterio de
optimalidad 3.2.14, π0 es un plan de transporte óptimo y el par (φ̄, φ̄∗) minimiza la
expresión

J(φ, ψ) :=

∫
Rd

φdP +

∫
Rd

ψdQ
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3.3. Métricas de Wasserstein

en el conjunto Φ = {(φ, ψ) ∈ L1(P )×L1(Q) : x·y ≤ φ(x)+ψ(y), ∀(x, y) ∈ Rd×Rd}.
Se tiene, por la fórmula de dualidad de la proposición 3.2.2, que∫

Rd

φ̄(x)dP +

∫
Rd

φ̄∗(y)dQ =

∫
Rd

φ(x)dP +

∫
Rd

φ∗(y)dQ =

∫
Rd×Rd

x · y dπ(x, y).

Reescribiéndolo, ∫
Rd×Rd

[
φ̄(x) + φ̄∗(y)− x · y

]
dπ(x, y).

Usando que π = (Id×∇φ)#P , por el teorema de transferencia de integrales,∫
Rd×Rd

[
φ̄(x) + φ̄∗(∇φ(x))− x · ∇φ(x)

]
dP (x)

si, y solo si,
φ̄(x) + φ̄∗(∇φ(x))− x · ∇φ(x) = 0, π − c.s.

Esta última equivalencia se debe a que la función del integrando es mayor o igual
que 0 siempre. Por la proposición 3.2.8,

∇φ(x) ∈ ∂(φ̄(x)), P − c.s.

Y, como φ̄ es diferenciable salvo en un conjunto de probabilidad P nula (por un
razonamiento explicado al principio de esta demostración),

∇φ(x) = ∇(φ̄(x)), P − c.s.

De esta igualdad, se concluye que existe un único gradiente de una función convexa
que minimiza ∫

φdP +

∫
φ∗dQ

en el conjunto de funciones convexas e inferiormente semicontinuas y, por lo tanto,
un único plan de transporte óptimo.

3.3. Métricas de Wasserstein

Se ha estudiado el problema de transporte óptimo, para el coste c(x, y) = ∥x−y∥p
con p ≥ 1, porque la expresión que minimiza el coste define una métrica en la clase
de probabilidades de Rd con momentos de orden p finitos, denominada métrica de
Wasserstein:

Wp(P,Q) =

(
mı́n

π∈
∏

(P,Q)

∫
Rd×Rd

∥x− y∥pdπ(x, y)
) 1

p

, p ≥ 1. (3.19)

Volviendo al contexto del Aprendizaje Justo, para buscar subgrupos comunes en
una población (que está dividida en clases dependiendo del atributo protegido S ∈
{0, 1}), se trabaja con los recortes. Ya se ha visto que el primer paso para entrenar
reglas justas es encontrar la parte común a varios conjuntos de datos diferentes.

59



Caṕıtulo 3. El problema de transporte óptimo

Formalmente, se trata de buscar un elemento común P0 a los conjuntos de recortes
de cada una de las leyes de probabilidad que generan los datos de cada grupo.

P := L(X|S = 0), Q := L(X|S = 1).

En el caṕıtulo 1 se ha propuesto un algoritmo para estimar la parte común entre
P y Q que utiliza distancias entre probabilidades. En el paso 2 de dicho algoritmo,
se calculan los recortes óptimos, es decir,

(Pα, Qα) := argmin
R∈Rα(P )
S∈Rα(Q)

d(R, S),

para cierta distancia d entre probabilidades en Rd. Como ya se adelantó, una opción
es considerar la métrica de Wasserstein.

A continuación, se demuestra que la expresión 3.19 define una distancia. Pero,
para probar que verifica la desigualdad triangular, se necesita un resultado auxiliar:
el lema de pegado, que se puede encontrar en [21].

Lema 3.3.1 (Lema de pegado). Sean (X1,M1, P1), (X2,M2, P2), (X3,M3, P3) tres
espacios probabiĺısticos. Se supone, además, que X1, X2 y X3 son espacios métricos,
completos y separables. Entonces, fijadas las probabilidades π1,2 ∈

∏
(P1, P2) y π2,3 ∈∏

(P2, P3), existe una probabilidad π en X1×X2×X3 tal que la distribución marginal
de π sobre X1 ×X2 es π1,2 y su distribución marginal sobre X2 ×X3 es π2,3.

Demostración. Para poder construir la probabilidad descrita, se recurre a la desin-
tegración de medidas, que se explica en el apéndice F.

Como π1,2 es una probabilidad en
∏
(P1, P2), existe una función F : M1×X2 → R

de forma que

Para cada y ∈ X2 fijo, Fy := F (·, y) es una probabilidad en (X1,M1).

La función y 7→ F (A, y) es medible en (X2,M2) para todo A ∈ M1.

verificando que

π1,2(E) =

∫
X2

F (Ey, y) dP2(y), ∀E ∈ M1 ⊗M2.

Análogamente, para π2,3, existe una función G : X2 ×M3 → R de forma que

Para cada y ∈ X2 fijo, Gy := G(y, ·) es una probabilidad en (X3,M3).

La función y 7→ G(y, C) es medible en (X2,M2) para todo C ∈ M3.

verificando que

π2,3(F ) =

∫
X2

G(y, Fy) dP2(y), ∀F ∈ M2 ⊗M3.

Primero, se da una idea intuitiva para construir una probabilidad π en X1×X2×
X3 que cumpla las condiciones del lema: Se fija y ∈ X2. Si D ∈ M1 ⊗ M2 ⊗ M3,
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3.3. Métricas de Wasserstein

la probabilidad que se asigna a la y−sección de D es la probabilidad producto
Fy ⊗Gy (Dy). Después, se integra en X2, respecto de la probabilidad P2.

Formalizando lo anterior, si D ∈ M1 ⊗M2 ⊗M3, se define

π(D) :=

∫
X2

Fy ⊗Gy (Dy) dP2(y)

=

∫
X2

(∫
X1

Gy((Dy)x) dFy(x)
)
dP2(y) =

∫
X2

(∫
X3

Fy((Dy)z) dGy(z)
)
dP2(y).

Entonces, si U ∈ M1 ⊗M2,

π(U ×X3) =

∫
X2

Fy ⊗Gy (Uy ×X3) dP2(y) =

∫
X2

Fy(Uy)Gy(X3) dP2(y)

=

∫
X2

Fy(Uy) dP2(y) = π1,2(U).

Análogamente, si V ∈ M2 ⊗M3,

π(X1 × V ) =

∫
X2

Fy ⊗Gy (X1 × Vy) dP2(y) =

∫
X2

Fy(X1)Gy(Vy) dP2(y)

=

∫
X2

Gy(Vy) dP2(y) = π2,3(U).

Proposición 3.3.2. Sea p ≥ 1. Se considera el espacio de probabilidades

Fp = {µ probabilidad en Rd :

∫
Rd

∥x∥pdµ(x) < +∞}.

Se denomina

Tp(P,Q) = mı́n
π∈

∏
(P,Q)

∫
Rd×Rd

∥x− y∥pdπ(x, y)

al coste de transporte óptimo entre dos probabilidades P y Q de Fp. Entonces,

Wp : Fp ×Fp → R, Wp(P,Q) = (Tp(P,Q))
1
p

es una distancia.

Demostración. Como el coste c(x, y) = ∥x−y∥p es una función simétrica y positiva,
Wp también lo es. Se demuestra, a continuación que Wp(P,Q) = 0 si, y solo si,
P = Q.

Se ha probado que existe un plan de transporte óptimo π0 ∈
∏
(P,Q). Es decir,

existe π0 ∈
∏
(P,Q) tal que∫
Rd×Rd

∥x− y∥pdπ0(x, y) = mı́n
π∈

∏
(P,Q)

∫
Rd×Rd

∥x− y∥pdπ(x, y).

Si Wp(P,Q) = 0, entonces ∫
Rd×Rd

∥x− y∥pdπ0(x, y) = 0.
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Caṕıtulo 3. El problema de transporte óptimo

Por lo tanto, ∥x − y∥p = 0, π0-c.s. ⇔ x = y, π0-c.s.. A partir de esta igualdad, se
comprueba que P = Q. Para todo A ∈ Rd,

P (A) = π0
(
A× Rd

)
= π0

(
A× Rd ∩△(Rd × Rd)

)
= π0

(
{(x, x) : x ∈ A}

)
,

Q(A) = π0
(
Rd × A

)
= π0

(
Rd × A ∩△(Rd × Rd)

)
= π0

(
{(y, y) : y ∈ A}

)
.

Rećıprocamente, si P = Q, se define la probabilidad

π0(C) = P
(
pr(C ∩△(Rd × Rd)

)
= P

(
{x ∈ Rd : (x, x) ∈ C}

)
∀C ∈ β2d.

π0 es una probabilidad bien definida.

π0(A) ≥ 0 para todo A ∈ β2d y π0(Rd × Rd) = P (Rd) = 1.

Si {Cn}n es una sucesión disjunta de elementos de β2d, entonces

π0
( ∞∑
n=1

Cn
)
= P

(
{x ∈ Rd : (x, x) ∈

∞∑
n=1

Cn}
)
= P

( ∞∑
n=1

{x ∈ Rd : (x, x) ∈ Cn}
)

=
∞∑
n=1

P
(
pr(Cn ∩△)

)
=

∞∑
n=1

π0(Cn).

Por la definición de π0, sus marginales son P y Q respectivamente. El soporte de
esta probabilidad está contenido en la diagonal, ya que π0(△) = P (Rd) = 1. Por lo
tanto, x = y, π0-c.s. y

∫
Rd×Rd ∥x− y∥pdπ0(x, y) = 0. Entonces, π0 es la distribución

que alcanza el mı́nimo y Tp(P,Q) = 0.
Queda probar la desigualdad triangular. Si π es una probabilidad en Rd×Rd×Rd,

en el espacio Lp(π), se tiene la desigualdad de Minkowski:

∥x− z∥p ≤ ∥x− y∥p + ∥y − z∥p.

Reescribiéndolo,(∫
Rd×Rd

∥x− z∥pdπ1,3(y, z)
) 1

p
=

(∫
Rd×Rd×Rd

∥x− z∥pdπ(x, y, z)
) 1

p

≤
(∫

Rd×Rd×Rd

∥x− y∥pdπ(x, y, z)
) 1

p
+
(∫

Rd×Rd×Rd

∥y − z∥pdπ(x, y, z)
) 1

p

=
(∫

Rd×Rd

∥x− y∥pdπ1,2(x, y)
) 1

p
+
(∫

Rd×Rd

∥y − z∥pdπ2,3(y, z)
) 1

p
,

donde π1,2 y π2,3 son las marginales 1, 2 y 2, 3 de π, respectivamente.
Sean µ, ν, ρ tres probabilidades de Fp. Se denota por π1,2 a la distribución que

minimiza el coste de transporte óptimo para µ y ν. Análogamente, π2,3 es la proba-
bilidad que minimiza el coste de transporte óptimo para ν y ρ. Es decir,

Wp
p (µ, ν) =

∫
Rd×Rd

∥x− y∥pdπ1,2(x, y),

Wp
p (ν, ρ) =

∫
Rd×Rd

∥y − z∥pdπ2,3(y, z).
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3.3. Métricas de Wasserstein

El lema de pegado 3.3.1 garantiza que existe π ∈
∏
(µ, ν, ρ) cuyas marginales 1, 2 y

2, 3 son π1,2 y π2,3. Por lo tanto,

Wp(µ, ρ) ≤
(∫

Rd×Rd

∥x− z∥pdπ1,3(y, z)
) 1

p ≤ Wp(µ, ν) +Wp(ν, ρ).

3.3.1. Aproximaciones emṕıricas

Hasta ahora, se han estudiado las propiedades teóricas de la distancia de Was-
serstein. Pero, para poder usar esta distancia en el algoritmo descrito en el caṕıtulo 1,
se necesita un método para hallarla. En la práctica, la forma de calcular la distancia
de Wasserstein es a partir de aproximaciones discretas.

Sean R y S dos probabilidades en Rd con momentos de orden p ≥ 1 finitos.
Sean n,m ∈ N, se toma una muestra de cada distribución de n y m elementos,
respectivamente. Es decir, se tomanX1, X2, ..., Xn vectores aleatorios independientes
con distribución R y, análogamente, Y1, Y2, ..., Ym vectores aleatorios independientes
con distribución S. Las probabilidades emṕıricas dadas por estas muestras son:

Rn =
1

n

n∑
i=1

δxi , Sm =
1

m

m∑
j=1

δyj .

Calcular la distancia de Wasserstein entre Rn y Sm es un problema de investiga-
ción operativa.

Wp
p (Rn, Sm) = mı́n

n∑
i=1

n∑
j=1

∥xi − yj∥2πi,j,

sujeto a πi,j ≥ 0;
n∑
j=1

πi,j =
1
n
;

n∑
i=1

πi,j =
1
n
.

El algoritmo para resolver este problema tiene un coste alto, pero se ha reducido
el problema original a uno discreto, calculable en la práctica. Si la distancia de
Wasserstein emṕırica (entre Rn y Sm) tiende hacia la distancia de Wasserstein ente
R y S, cuando n ym tienden a∞, entonces se tiene un método práctico para estimar
la distancia de Wasserstein entre dos probabilidades. No es cierto que se verifique esta
propiedad para cualquier distancia entre probabilidades. Por ejemplo, ya se explicó
en la sección 1.3.2 del caṕıtulo 1 que no se verifica para la distancia en variación
total. Sin embargo, en el caso de la distancia de Wasserstein, śı se puede aproximar
a partir de las distancias emṕıricas. Se enuncia, a continuación, un resultado que
caracteriza la convergencia en la distancia de Wasserstein; su demostración se puede
encontrar en el lema 8.3 de [5].

Proposición 3.3.3. Sean R y {Rn}∞n=1 probabilidades en Fp(Rd), p ≥ 1. Entonces,

ĺım
n→∞

Wp(Rn, R) = 0

si, y solo si, la sucesión {Rn}∞n=1 converge débilmente a R y, además,

ĺım
n→∞

∫
∥x∥p dRn =

∫
∥x∥p dR.
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Demostración. Si P y Q son dos probabilidades en Fp(Rd), entonces

Wp
p (P,Q) = mı́n

π∈
∏

(P,Q)

∫
∥x− y∥pdπ(x, y) = mı́n

(X,Y )∼(P,Q)
E∥X − Y ∥p.

⇒) Se denota por πn a la probabilidad de
∏
(Rn, R) que minimiza el coste de trans-

porte. Como se detalla en el apéndice F sobre desintegración de medidas, para cada
y ∈ Rd, existe una medida Rn( · |y) tal que

πn(A×B) =

∫
B

Rn(A|y)dR(y).

Sea X un vector aleatorio con distribución R. Condicionalmente dado X = y, se
toman {Xn}n vectores aleatorios independientes con Xn ∼ Rn( · |y). Entonces,

(Xn, X) ∼ πn.

Por lo tanto,
E∥Xn −X∥p = Wp

p (Rn, R).

Si se supone que ĺım
n→∞

Wp(Rn, R) = 0, para todo ε > 0, aplicando la desigualdad de

Markov,

P (∥Xn −X∥p > ε) ≤ E∥Xn −X∥p

ε
−−−→
n→∞

0.

De aqúı se deduce que Xn converge en probabilidad a X. Esta convergencia es más
fuerte que la convergencia en distribución. Entonces, se concluye que

Rn −→
w
R, cuando n→ ∞.

Por otro lado, aplicando la desigualdad triangular de la norma en Lp(πn), para cada
n ∈ N, ∣∣∣(E∥Xn∥p

) 1
p −

(
E∥X∥p

) 1
p
∣∣∣ ≤ (

E∥Xn −X∥p
) 1

p −−−→
n→∞

0.

Entonces,
E∥Xn∥p −−−→

n→∞
E∥X∥p,

es decir, ĺım
n→∞

∫
∥x∥p dRn =

∫
∥x∥p dR.

⇐) Rećıprocamente, por el teorema de Representación de Skorokhod (ver C.0.3),
existen X y {Xn}n vectores aleatorios tales que

Xn ∼ Rn, X ∼ R y Xn −−→
c.s.

X.

Además, por hipótesis,
E∥Xn∥p −−−→

n→∞
E∥X∥p <∞.

Se concluye, aplicando el teorema de Vitali (ver E.1.3), que

Wp
p (Rn, R) ≤ E∥Xn −X∥p −−−→

n→∞
0.
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Usando la proposición anterior, se demuestra que la distancia de Wasserstein
entre las probabilidades emṕıricas tiende a la distancia de Wasserstein entre las
respectivas probabilidades reales.

Proposición 3.3.4. Sea R una probabilidad en Fp(Rd), con p ≥ 1. Sea {Xn}n
una sucesión de vectores aleatorios independientes e igualmente distribuidos con ley
de probabilidad R, definidos en el espacio probabiĺıstico (Ω,F ,P). Si w ∈ Ω, la
probabilidad emṕırica Rω

n asociada a la muestra (X1(ω), . . . , Xn(ω)) es

Rω
n =

1

n

n∑
i=1

δXi(ω),

donde δXi
es la medida de Dirac en Xi(ω). Entonces, cuando n tiende a +∞,

W2(R
ω
n , R) → 0, para casi todo ω ∈ Ω.

Demostración. Sea F la función de distribución de la probabilidad R. Teniendo en
cuenta que Xi ≤ x significa Xi,1 ≤ x1, . . . , Xi,d ≤ xd, sea

F ω
n (x) =

1

n

n∑
i=1

1{Xi(ω)≤x}

la función de distribución emṕırica asociada a la muestra (X1(ω), . . . , Xn(ω)). Por
el teorema de Glivenko-Cantelli,

sup
x∈Rd

|F ω
n (x)− F (x)| c.s.−−→ 0.

En particular, se tiene convergencia puntual para los puntos de continuidad de F .
Esto garantiza que {Rω

n}n converge débilmente a R para casi todo ω ∈ Ω.
Por otro lado, como R tiene momento cuadrático finito, la ley de los grandes

números asegura que:∫
∥x∥p dRω

n(x) =
1

n

n∑
i=1

∥Xi(ω)∥p →
∫

∥x∥p dR(x), c.s.

Se verifican las hipótesis de la proposición 3.3.3, por lo tanto,

W2(R
ω
n , R) → 0, para casi todo ω ∈ Ω.

Corolario 3.3.5. Sean R y S dos probabilidades en Fp(Rd), con p ≥ 1. Sea {Xn}n
una sucesión de vectores aleatorios independientes e igualmente distribuidos con ley
de probabilidad R y sea {Ym}m una sucesión de vectores aleatorios independientes
e igualmente distribuidos con ley de probabilidad S. Ambas sucesiones son inde-
pendientes y están definidas en el espacio probabiĺıstico (Ω,F ,P). Si w ∈ Ω, la
probabilidad emṕırica Rω

n asociada a la muestra (X1(ω), . . . , Xn(ω)) es

Rω
n =

1

n

n∑
i=1

δXi(ω).
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Análogamente, la probabilidad emṕırica Sωm asociada a la muestra (Y1(ω), . . . , Ym(ω))
es

Sωm =
1

m

m∑
j=1

δYj(ω).

Entonces, cuando mı́n(n,m) → +∞,

W2(R
ω
n , S

ω
m) → 0, para casi todo ω ∈ Ω.

Demostración. Se comprueba fácilmente a partir de la desigualdad triangular y de
la proposición anterior:

W2(R
ω
n , S

ω
m) ≤ W2(R

ω
n , R) +W2(R, S) +W2(R

ω
n , S

ω
m).

Se concluye este apartado, probando que se alcanza el mı́nimo de la distancia
de Wasserstein entre los conjuntos de recortes de dos probabilidades P1 y P2. Es
decir, se garantiza que existe un minimizador de Wp(R, S), donde R ∈ Rα(P1) y
S ∈ Rα(P2). Este resultado es importante para poder aplicar el paso 2 del algoritmo
que se explica en la sección 1.3.2.

En el algoritmo propuesto en esa sección, fijado un nivel α ∈ [0, 1], se usa la
distancia de Wasserstein para encontrar el par de recortes óptimos de nivel α entre
las dos probabilidades que se quieren comparar (P1 y P2), es decir, los dos recortes
“más parecidos” entre śı, en el sentido de que su distancia de Wasserstein sea la más
pequeña posible. Si son iguales (se denota por P0), quiere decir que P0 verifica que

P1 = (1− α)P0 + αR1,

P2 = (1− α)P0 + αR2, (3.20)

con R1 y R2 probabilidades
Cuando α sea el máximo para el cual Rα(P1) ∩ Rα(P2) ̸= ∅, la probabilidad P0

que verifique 3.3.1 será la parte común entre P1 y P2.
Primero se prueba un lema necesario para la demostración del resultado principal.

Lema 3.3.6. Sea p ≥ 1 y sea P ∈ F2(Rd). Entonces Rα(P ) es compacto para la
distancia Wp.

Demostración. Se prueba que cualquier sucesión {Rn}∞n=1 ⊂ Rα(P ) admite una
subsucesión convergente para la distancia Wp.

Si {Rn}∞n=1 ⊂ Rα(P ), entonces es ajustada (ver el apéndice C.1): Fijado ε > 0,
sea K compacto en Rd tal que P (KC) < (1 − α)ε. Entonces, Pn(K

C) < 1
(1−α)(1 −

α)ε = ε para todo n ∈ N. Por lo tanto, se puede extraer una subsucesión {Rnj
}∞j=1

que converge débilmente hacia una probabilidad R en Rd. Además, se comprueba
que R ∈ Rα(P ):

Si A ∈ βd, por la regularidad exterior de la probabilidad P (ver B),

P (A) = ı́nf{P (U) : U abierto, A ⊂ U, U ∈ βd}.
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Además, si U ∈ βd es un abierto que contiene a A, por el teorema de Portmanteau
(ver en los apéndices C.0.2), se tiene que

R(A) ≤ R(U) ≤ ĺım inf
n→∞

Rn(U) ≤
1

1− α
P (U).

Entonces,

R(A) ≤ 1

1− α
ı́nf{P (U) : U abierto, A ⊂ U, U ∈ βd} =

1

1− α
P (A).

Falta comprobar que ĺım
j→∞

Wp(Rnj
, R) = 0. Por la proposición 3.3.3, basta probar

que

ĺım
j→∞

∫
∥x∥p dRnj

=

∫
∥x∥p dR.

Como para todo j ∈ N, Rnj
y R son recortes de nivel α de P , se verifica, para todo

M ∈ N, que ∫
∥x∥p≥M

∥x∥p dRnj
≤ 1

1− α

∫
∥x∥p≥M

∥x∥p dP, ∀j ∈ N;∫
∥x∥p≥M

∥x∥p dR ≤ 1

1− α

∫
∥x∥p≥M

∥x∥p dP.

Por el teorema de la convergencia dominada, es claro que ĺım
M→∞

∫
∥x∥p≥M ∥x∥p dP = 0.

Por lo tanto, fijado ε > 0, existe M0 ∈ N, tal que 1
1−α

∫
∥x∥p≥M0

∥x∥p dP < ε
3
. Por

otro lado, por el teorema de Portmanteau, se tiene que:

ĺım
j→∞

∫
mı́n(∥x∥p,M) dRnj

=

∫
mı́n(∥x∥p,M) dR, ∀M ∈ N.

Entonces, fijado ε > 0, existe un j0 ∈ N tal que, para todo j ≥ j0,∣∣∣∣ ∫ mı́n(∥x∥p,M) dRnj
−
∫

mı́n(∥x∥p,M) dR

∣∣∣∣ ≤ ε

3
.

Por lo tanto, si j ≥ j0,∣∣∣∣ ∫ ∥x∥p dRnj
−

∫
∥x∥p dR

∣∣∣∣
≤

∣∣∣∣ ∫
∥x∥p≤M0

∥x∥p dRnj
−
∫
∥x∥p≤M0

∥x∥p dR
∣∣∣∣

+

∫
∥x∥p>M0

∥x∥p dRnj
+

∫
∥x∥p>M0

∥x∥p dR

≤
∣∣∣∣ ∫ mı́n(∥x∥p,M0) dRnj

−
∫

mı́n(∥x∥p,M0) dR

∣∣∣∣
+

∫
∥x∥p>M0

∥x∥p dRnj
+

∫
∥x∥p>M0

∥x∥p dR

<
ε

3
+
ε

3
+
ε

3
= ε.

Con lo que se concluye la prueba.
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Proposición 3.3.7. Sea p ≥ 1. Se consideran P1, P2 ∈ Fp(Rd) y α > 0. Entonces,
existe (R̃1, R̃2) ∈ Rα(P1)×Rα(P2) tal que

(R̃1, R̃2) = argmin
R1∈Rα(P1)
R2∈Rα(P2)

Wp(R1, R2).

Esto quiere decir que la función

Wp(·, ·) : Fp(Rd)×Fp(Rd) → R

alcanza un mı́nimo absoluto en el conjunto Rα(P1)×Rα(P2).

Demostración. Por el lema 3.3.6, se sabe que Rα(P1) y Rα(P2) son compactos para
la distancia Wp. Entonces, Rα(P1) ×Rα(P2) es compacto en Fp(Rd) × Fp(Rd) con
la topoloǵıa producto, que es la dada por la distancia:

Rα(P1)×Rα(P2) → R;
(
(µ1, µ2), (ν1, ν2)

)
7→ Wp(µ1, ν1) +Wp(µ2, ν2).

Además,Wp(·, ·) : Fp(Rd)×Fp(Rd) → R es continua con esta topoloǵıa. Si (µ1, µ2), (ν1, ν2) ∈
Rα(P1)×Rα(P2), se cumple:∣∣∣Wp(µ1, µ2)−Wp(ν1, ν2)

∣∣∣
≤

∣∣∣Wp(µ1, µ2)−Wp(ν1, µ2)
∣∣∣+ ∣∣∣Wp(ν1, µ2)−Wp(ν1, ν2)

∣∣∣
≤ Wp(µ1, ν1) +Wp(µ2, ν2).

Con esta cota se deduce que la función es uniformemente continua, y, por lo tanto,
alcanza el mı́nimo absoluto en un compacto.

3.3.2. Distancia de Wasserstein en R
Para concluir este caṕıtulo, se prueba un último resultado, que caracteriza la

distancia de Wasserstein para el coste cuadrático en R. La distancia de Wasserstein
para p = 2 entre dos probabilidades es la distancia L2 entre los cuantiles de las
respectivas distribuciones de probabilidad.

Proposición 3.3.8. Sean µ y ν dos probabilidades en R. Si µ tiene función de
distribución F y ν tiene función de distribución G, entonces

W2
2 (µ, ν) =

∫ 1

0

(F−1(t)−G−1(t))2dt.

Demostración. Caso 1: Se supone que µ tiene densidad, entonces no da masa a
conjuntos de medida nula. Por el teorema (3.2.16), existe una única distribución de
probabilidad óptima, π = (Id × ∇φ)#µ, donde ∇φ es el único gradiente de una
función convexa que verifica ∇φ#µ = ν. En dimensión 1, las derivadas de funciones
convexas son las funciones crecientes.
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Si X ∼ µ, entonces F (X) ∼ U(0, 1) y G−1 ◦ F (X) ∼ ν, estas propiedades se
prueban en la sección C.2 de los apéndices. Como F y G−1 son crecientes, G−1 ◦ F
también. Entonces, G−1 ◦ F es la única aplicación de transporte óptimo de µ a ν.

W2
2 (µ, ν) =

∫
R
(x−G−1 ◦ F (x))dF (x) =

∫ 1

0

(F−1(t)−G−1(t))2dt.

Caso general: Si µ es una probabilidad en Rd, siempre existe una sucesión de
probabilidades con densidad {µn}∞n=1 que converge débilmente hacia µ. Esta sucesión
se construye regularizando mediante convoluciones la distribución µ, se detalla este
procedimiento en el apéndice C, concretamente en C.3.1. Además, escogiendo una
sucesión adecuada, se prueba en ese mismo apéndice que se tiene la convergencia de
momentos de orden 2 de µn hacia µ. Entonces, si F es la función de distribución
de µ, y Fn es la función de distribución de µn para cada n ∈ N, por definición de
convergencia débil, se tiene que ĺım

n→∞
Fn(x) = F (x) para todo x ∈ R en los que F

es continua. Por el teorema de Skorohod (C.2.5), ĺım
n→∞

F−1
n (t) = F (t) para casi todo

t ∈ [0, 1]. Por lo tanto, aplicando el lema de Fatou (válido para funciones positivas),

∫ 1

0

(F−1(t)−G−1(t))2dt ≤ ĺım inf
n→∞

∫ 1

0

(F−1
n (t)−G−1(t))2dt = ĺım inf

n→∞
W2

2 (µn, ν).

Se ha probado en la proposición 3.3.3 que

ĺım
n→∞

W2
2 (µn, ν) = W2

2 (µ, ν).

Por lo tanto, ∫ 1

0

(F−1(t)−G−1(t))2dt ≤ W2
2 (µ, ν).

La desigualdad contraria se deduce considerando la probabilidad π = (Id × G−1 ◦
F )#µ. Se tiene que π ∈

∏
(µ, ν) y, por lo tanto,

W2
2 (µ, ν) ≤

∫
R
(x−G−1 ◦ F (x))dF (x) =

∫ 1

0

(F−1(t)−G−1(t))2dt.
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Caṕıtulo 4

Transporte entrópico

El problema, que se ha planteado en el caṕıtulo anterior, de minimizar el coste
de transporte tiene un coste computacional alto. La forma de calcular la distancia de
Wasserstein entre dos probabilidades R y S en Rd, con momentos finitos del orden
que sea necesario, es a partir de aproximaciones emṕıricas Rn y Sn, para cierto
n ∈ N. El coste de esos cálculos es del orden de n3.

W2(Rn, Sn) = mı́n
n∑
i=1

n∑
j=1

∥xi−yj∥2πi,j, sujeto a πi,j ≥ 0;
n∑
j=1

πi,j =
1

n
;

n∑
i=1

πi,j =
1

n
.

En esta sección se da una alternativa a la distancia de Wasserstein: el transporte
entrópico. Si la expresión a minimizar en el problema de transporte óptimo se conta-
mina con la divergencia de Kullback-Leibler, el problema de minimización resultante
se puede resolver con una iteración de punto fijo. Se denomina coste de transporte
entrópico a:

W2
2,ε(P,Q) = ı́nf

π∈
∏

(P,Q)

[ ∫
∥x− y∥2

2
dπ(x, y) + εD(π|P ⊗Q)

]
,

donde D(π|P ⊗Q) es la divergencia de Kulback-Leibler de π respecto de la medida
producto P ⊗Q y ε > 0 determina cuánto se va a modificar el funcional lineal en π:

I(π) =

∫
∥x− y∥2

2
dπ(x, y).

Primero, se estudiarán las propiedades de la divergencia de Kullback-Leibler, que
mide la diferencia entre dos probabilidades, buscando minimizadores en conjuntos
con ciertas propiedades. Después, se formulará el problema de transporte entrópico.

4.1. Divergencia de Kullback-Leibler

Si P ≪ Q son dos probabilidades, la divergencia de Kullback-Leibler de P res-
pecto de Q da una idea de cuánto se parecen ambas probabilidades. Si son muy
similares, su divergencia será prácticamente 0, mientras que si se diferencian mucho,
la divergencia de Kullback-Leibler tomará valores altos. Esto ocurre porque la di-
vergencia de Kullback-Leibler se define a partir de una integral de la función log dP

dQ
.
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Si P y Q son parecidas, la derivada de Radon-Nikodym de P respecto de Q será
prácticamente 1, y, por tanto, su logaritmo será casi 0.

En el apéndice A, se recuerdan las definiciones y teoremas sobre las medidas
absolutamente continuas y la derivada de Radon-Nikodym que se usarán continua-
mente a lo largo de este caṕıtulo.

Los resultados que se prueban en esta sección son una adaptación de [10]. En el
art́ıculo, solo se habla de la divergencia de Kullback-Leibler de probabilidades. En
este trabajo, se generaliza a cualquier medida finita y positiva, porque es necesario,
más adelante, para probar que existe un minimizador de

W2
2,ε(P,Q) = ı́nf

π∈
∏

(P,Q)

[ ∫
∥x− y∥2

2
dπ(x, y) + εD(π|P ⊗Q)

]
.

A continuación, se da la definición formal de la divergencia de Kullback-Leibler.

Definición 4.1.1. Sean P y Q medidas finitas y positivas en un espacio medible
(X ,M) tales que P ≪ Q, es decir, P es absolutamente continua respecto de Q. Se
denota por dP

dQ
: X → [0,∞] a la derivada de Radon-Nikodym de P respecto de Q.

Se define la divergencia de Kullback-Leibler como

D(P |Q) :=
∫

log
dP

dQ
dP =

∫
dP

dQ
log

dP

dQ
dQ.

Si P no es absolutamente continua respecto de Q, entonces se define

D(P |Q) := +∞.

Como P es una medida finita y positiva, se puede suponer que la derivada de
Radon-Nikodym de P respecto de Q es una función dP

dQ
: X → [0,∞), ya que como

mucho toma el valor +∞ con Q−medida 0 (y se podŕıa redefinir la función en esos
puntos). Además, la definición de la divergencia de Kullback-Leibler es correcta
porque el conjunto A = {x ∈ X : dP

dQ
(x) = 0} cumple, obviamente, que P (A) = 0.

Por lo tanto, la función log dP
dQ

: X → (0,∞) únicamente no está bien definida en un
conjunto de P−medida nula. Se entiende que∫

log
dP

dQ
dP =

∫
AC

log
dP

dQ
dP.

Si se acuerda que log 0 = −∞ y que 0 · (±∞) = 0, no hace falta hacer las considera-
ciones anteriores. En los resultados sucesivos, se tendrá en cuenta este comentario.
Se supone también que log r

0
= +∞, para r > 0. Con este convenio, se tiene una

caracterización de la divergencia de Kullback-Leibler, dada por el lema siguiente. Si
se tiene que las medidas P y Q son ambas absolutamente continuas respecto de otra
medida R, entonces la divergencia de P respecto de Q se puede escribir a partir de
las derivadas de Radon-Nikodym de P y Q respecto de R.

Lema 4.1.2. Si P , Q y R son medidas finitas y positivas en un espacio medible
(X ,M) tales que P ≪ R y Q≪ R, entonces

D(P |Q) =
∫

log
dP
dR
dQ
dR

dP =

∫
dP

dR
log

dP
dR
dQ
dR

dR.
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Demostración. Si P ≪ Q, entonces dP
dR

= dP
dQ

dQ
dR

, R − c.s.. Entonces, el conjunto de

puntos donde se anula dQ
dR

está contenido en el conjunto de puntos donde se anula
dP
dR

, que tiene medida P nula. Por lo tanto, la integral está bien definida. Se entiende
que ∫

log
dP

dQ
dP =

∫
{x∈X : dP

dQ
(x)̸=0}C

log
dP

dQ
dP =

∫
{x∈X : dP

dQ
(x)̸=0}C

log
dP
dR
dQ
dR

dP.

Si P no es absolutamente continua respecto de Q, existe un conjunto A ∈ M tal
que P (A) ̸= 0 y Q(A) = 0. Entonces, P ({x ∈ A : dP

dR
(x) ̸= 0}) > 0 mientras que

Q({x ∈ A : dP
dR

(x) ̸= 0}) = 0. Con el convenio adoptado,∫
{x∈A: dP

dR
(x)̸=0}

log
dP
dR
dQ
dR

dP = P ({x ∈ A :
dP

dR
(x) ̸= 0}) · (+∞) = +∞.

Proposición 4.1.3. Se considera el espacio medible (X ,M). La divergencia de
Kullback-Leibler de una probabilidad P respecto de una medida finita y positiva Q
es mayor o igual que 0. Y, además, D(P |Q) = 0 si, y solo si, P = Q.

Demostración. En el caso, P ≪ Q, como la función f : [0,∞) → R, dada por
f(x) = x log x es convexa, aplicando la desigualdad de Jensen se tiene que∫

dP

dQ
log

dP

dQ
dQ = Ef(

dP

dQ
) ≥ f(E

dP

dQ
) =

∫
dP

dQ
dQ · log(

∫
dP

dQ
dQ) = f(1) = 0.

Como f(x) = x log x es estrictamente convexa, la desigualdad anterior se alcanza si,
y solo si, dP

dQ
= 1, Q− c.s.. Esto es equivalente a que P = Q.

Es importante darse cuenta de que si P no fuese una probabilidad, sino que fuese
una medida finita y positiva no nula, es decir, 0 < P (X ) < ∞, la divergencia de
Kullback-Leibler puede ser negativa (si la medida del total es menor que 1), pero
está acotada inferiormente por f(P (X )), siendo f(x) = x log x.

Es fácil ver que la divergencia de Kullback-Leibler no es simétrica, y, en con-
secuencia, no es una distancia en el espacio de probabilidades. Por ejemplo, si en
X = {0, 1} se definen las probabilidades P y Q dadas por P (0) = 1

2
, P (1) = 1

2
y

Q(0) = 1
4
, Q(1) = 3

4
. Se comprueba, sin dificultad, que D(P |Q) ̸= D(Q|P ).

Aun aśı, las siguientes proposiciones recuerdan los resultados que se tienen para
las distancias, y tienen una idea geométrica clara.

4.1.1. Resultados geométricos para la divergencia de K.-L.

Se define el concepto de bola (análogo al conocido para distancias) y de proyec-
ción de una medida finita positiva R sobre un conjunto de probabilidades.

Definición 4.1.4. Sea R una medida finita y positiva (no nula) en un espacio
medible (X ,M) y sea ρ ∈ (0,∞]. Se define la bola, dada por la divergencia de
Kullback-Leibler, centrada en R y de radio ρ al conjunto

B(R, ρ) = {P probabilidad en (X ,M) : D(P |R) < ρ}.
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La bola de centro R y radio ρ es el conjunto de probabilidades cuya divergencia
de Kullback-Leibler respecto de R es menor que ρ.

Definición 4.1.5. Sea R una medida finita y positiva (no nula) en (X ,M). Si B
es un subconjunto del espacio de probabilidades en X tal que B ∩ B(R,∞) ̸= ∅, se
denomina proyección de R sobre B a una probabilidad Q que satisface

D(Q|R) = mı́n
P∈B

D(P |R).

La siguiente proposición garantiza la existencia y unicidad de la proyección en un
conjunto de probabilidades convexo y cerrado para la distancia en variación total.

En la demostración de ese resultado, se necesita una desigualdad que relaciona
la distancia en variación total con la divergencia de Kullback-Leibler, la desigualdad
de Pinsker. La demostración que se da en este trabajo se puede encontrar en [20].

Lema 4.1.6 (Desigualdad de Pinsker). Sean µ y ν y dos probabilidades en (X ,M).
Entonces, se verifica la siguiente desigualdad:

dTV (µ, ν) ≤
√

1

2
D(µ|ν). (4.1)

Demostración. Si µ no es absolutamente continua respecto de ν, entonces D(µ|ν) =
+∞ y la desigualdad es obvia. Se estudia el caso en el que µ≪ ν.

Teniendo en cuenta el convenio 0 log 0 = 0, se define la función auxiliar

ψ(x) = x log x− x+ 1, x ≥ 0.

Entonces, se verifica que

(x− 1)2 ≤ (
4

3
+

2

3
x)ψ(x), x ≥ 0.

Para x = 0, es obvio. Para x > 0, se comprueba derivando la función g(x) =

(x − 1)2 − (4
3
+ 2

3
x)ψ(x). Se verifica que g(1) = 0, g′(1) = 0 y g′′(x) = −4ψ(x)

3x
< 0

para todo x > 0. Escribiendo el desarrollo de Taylor de orden 1 de la función g, se
tiene que para todo x > 0 y x ̸= 1, existe ξ ∈ R con |ξ − 1| < |x− 1| tal que

g(x) = g(1) + g′(1)(x− 1) +
g′′(ξ)

2
(x− 1)2 = −4ψ(ξ)

3ξ
(x− 1)2 ≤ 0.

Usando el lema 1.2.2,

dTV (µ, ν) =
1

2

∫
|dµ
dν

− 1|dν ≤ 1

2

∫ √
(
4

3
+

2

3

dµ

dν
)ψ(

dµ

dν
) dν

≤ 1

2

√∫
(
4

3
+

2

3

dµ

dν
)dν

√∫
ψ(
dµ

dν
)dν =

1

2

√
2

√∫
dµ

dν
log

dµ

dν
dν

=

√
1

2
D(µ|ν).

En la segunda desigualdad, se ha usado la desigualdad de Cauchy-Schwarz.
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Proposición 4.1.7. Sea R una medida finita y positiva (no nula) en (X ,M). Sea B
un conjunto de probabilidades en (X ,M) tal que B ∩B(R,∞) ̸= ∅. Si B es convexo
y cerrado para la distancia en variación total, entonces existe la proyección de R
sobre B. Además, la proyección es única.

Demostración. Por definición de inferior, existe una sucesión de probabilidades {Pn}n
de B tal que ĺım

n→∞
D(Pn|R) = ı́nf

P∈B
D(P |R). El objetivo es probar que la sucesión

{Pn}n admite una subsucesión {Pnk
}k convergente, para la distancia en variación

total, hacia una probabilidad Q ∈ B, que será la proyección de R sobre B.
Se verifica la siguiente igualdad, para todo n,m ∈ N:

D(Pm|R)+D(Pn|R) = 2D(
Pm + Pn

2
|R)+D(Pm|

Pn + Pm
2

)+D(Pn|
Pn + Pm

2
). (4.2)

Esto se comprueba usando las propiedades de la divergencia de Kullback-Leibler:∫
dPm
dR

log
dPm
dR

dR+

∫
dPn
dR

log
dPn
dR

dR

=

∫
(
dPm
dR

+
dPn
dR

) log(
1

2

dPm
dR

+
1

2

dPn
dR

)dR

+

∫
dPm
dR

log
dPm
dR

dR−
∫
dPm
dR

log(
1

2

dPm
dR

+
1

2

dPn
dR

)dR

+

∫
dPn
dR

log
dPn
dR

dR−
∫
dPn
dR

log(
1

2

dPm
dR

+
1

2

dPn
dR

)dR.

Debido a que la función x log x es convexa, la divergencia de Kullback-Leibler res-
pecto de una probabilidad R también lo es. En particular,

D(
Pm + Pn

2
|R) ≤ 1

2
D(Pm|R) +

1

2
D(Pn|R).

Tomando ĺımites, cuando m y n tienden a ∞:

ĺım
n→∞

D(
Pm + Pn

2
|R) ≤ 1

2
ı́nf
P∈B

D(P |R) + 1

2
ı́nf
P∈B

D(P |R) = ı́nf
P∈B

D(P |R).

Por ser B un conjunto convexo, Pm+Pn

2
∈ B. Se deduce, de la igualdad 4.2 y del hecho

de que la divergencia de una probabilidad respecto de una medida positiva y finita
es mayor o igual que 0, que ĺım

n,m→∞
D(Pm|Pn+Pm

2
) = 0 y ĺım

n,m→∞
D(Pn|Pn+Pm

2
) = 0.

Usando la desigualdad de Pinsker (4.1), se prueba que la sucesión {Pn}n es de
Cauchy, con la distancia en variación total, debido a que se verifica que:

dTV (Pn, Pm) ≤ dTV (Pm,
Pn + Pm

2
) + dTV (Pn,

Pn + Pm
2

)

≤
√

1

2
D(Pm|

Pn + Pm
2

) +

√
1

2
D(Pn|

Pn + Pm
2

).

La convergencia de probabilidades en (X ,M) absolutamente continuas respecto de
R, con la distancia en variación total, no es más que la convergencia en L1(R), un
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Caṕıtulo 4. Transporte entrópico

espacio completo. Esto se debe a la caracterización de la distancia en variación total
probada en 1.2.2,

dTV (Pn, Pm) =
1

2

∫
|dPn
dR

− dPm
dR

|dR.

Por lo tanto, existe el ĺımite en L1(R) de la sucesión de funciones
{
dPn

dR

}∞
n=1

, que es
una función no negativa (por serlo todas las funciones de la sucesión). Se denota por
h. Equivalentemente, existe una probabilidad Q (absolutamente continua respecto
de R) ĺımite de la sucesión {Pn}∞n=1, definida de la siguiente forma:

Q(A) =

∫
A

hdR, ∀A ∈ M.

Además, Q ∈ B, por ser un conjunto cerrado para la distancia en variación total.
La sucesión de funciones {dPn

dR
}∞n=1 converge en L1(R), lo que implica que se puede

extraer una subsucesión
{dPnk

dR

}∞
k=1

que converge hacia dQ
dR

puntualmente R−c.s.. Las
funciones

dPnk

dR
log

dPnk

dR
están acotadas inferiormente, para todo k ∈ N, y convergen

R− c.s. hacia dQ
dR

log dQ
dR

. Se concluye la demostración aplicando el lema de Fatou:

D(Q|R) =
∫
dQ

dR
log

dQ

dR
dR ≤ ĺım

n→∞

∫
dPnk

dR
log

dPnk

dR
dR = ı́nf

P∈B
D(P |R).

La unicidad de la proyección se debe a la convexidad estricta de la divergencia de
Kullback-Leibler: Si existen dos proyecciones P y P ′ de R sobre B tales que P ̸= P ′,
entonces, existe un conjunto A de R-medida estrictamente positiva en el que

dP

dR
(x) ̸= dP ′

dR
(x), ∀x ∈ A.

Entonces, en A,(
1

2

dP

dR
+

1

2

dP ′

dR

)
log

(
1

2

dP

dR
+

1

2

dP ′

dR

)
<

1

2

dP

dR
log

dP

dR
+

1

2

dP ′

dR
log

dP ′

dR
.

Por lo tanto, para la probabilidad 1
2
P + 1

2
P ′ ∈ B, se tiene que

D(
1

2
P +

1

2
P ′|R) < ı́nf

P∈B
D(P |R).

Esto es absurdo.

El siguiente teorema recuerda al teorema de Pitágoras y al concepto de orto-
gonalidad que se tiene para distancias. Da una caracterización importante de la
proyección en un conjunto convexo.

Teorema 4.1.8. Sea B un subconjunto convexo del espacio de probabilidades en
(X ,M) tal que B∩B(R,∞) ̸= ∅, y sea R una medida finita y positiva (no nula) en
(X ,M). Una probabilidad Q ∈ B es la proyección de R sobre B si, y solo si, para
toda probabilidad P ∈ B,

D(P |R) ≥ D(P |Q) +D(Q|R). (4.3)
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4.1. Divergencia de Kullback-Leibler

Además, para cada probabilidad P ∈ B para la cual existe otra probabilidad P ′ ∈ B
y α ∈ (0, 1] tal que

Q = αP + (1− α)P ′,

la desigualdad 4.3 es una igualdad. La última condición significa que P pertenece al
conjunto de recortes de nivel 1− α de Q, tomando como espacio total de probabili-
dades el conjunto B.

Demostración. ⇒) Si Q es la proyección de R sobre B, entonces D(Q|R) ≤ D(P |R),
para toda P ∈ B. Sea probabilidad P ∈ B fija. Si D(P |R) = ∞, la desigualdad se
cumple. Si no, se tiene que P ≪ R. Como D(Q|R) < ∞, también se tiene que
Q ≪ R. Se considera el segmento que une P y Q, que está contenido en B por ser
convexo, es decir, se consideran las probabilidades

Pα = αP + (1− α)Q, 0 ≤ α ≤ 1.

La derivada de Radon-Nikodym de Pα respecto de R es la combinación lineal de las
respectivas derivadas de Radon-Nikodym de P y Q:

dPα
dR

= α
dP

dR
+ (1− α)

dQ

dR
.

Como P y Q son probabilidades, se puede suponer que sus respectivas derivadas de
Radon-Nikodym toman valores en [0,∞). Para cada x ∈ X , la función

h : [0, 1] → [0,∞), h(α) =
dPα
dR

(x) log
dPα
dR

(x)

está bien definida en [0, 1] (se ha definido log 0 = −∞ y 0 ·(−∞) = 0) y es derivable.
Además, es convexa por ser composición de dPα

dR
(una función lineal en α y, por tanto,

convexa) y de la función convexa t log t definida en [0,∞). Por lo tanto, los cocientes
incrementales de h decrecen si α → 0 y se cumple:

ĺım
α→0

1

α
[h(α)− h(0)] = h′(0) = (

dP

dR
− dQ

dR
)(log

dQ

dR
+ 1).

Se tiene que∫
[h(1)− h(0)]dR =

∫ [dP
dR

log
dP

dR
− dQ

dR
log

dQ

dR

]
dR = D(P |R)−D(Q|R).

Como P,Q ∈ B(R,∞), entonces
∫
[h(1) − h(0)]dR < ∞. Por el teorema de la

convergencia monótona (los cocientes incrementales son funciones decrecientes y
acotadas inferiormente, para las cuales la integral del primer cociente incremental,
cuando α = 1, es finita).

d

dα
D(Pα|R)

∣∣∣∣
α=0

= ĺım
α→0

∫ [dPα
dR

log
dPα
dR

− dQ

dR
log

dQ

dR

]
dR

=

∫
(
dP

dR
− dQ

dR
)(log

dQ

dR
+ 1)dR

=

∫
dP

dR
log

dQ

dR
dR +

∫
dP

dR
dR−

∫
dQ

dR
log

dQ

dR
dR−

∫
dQ

dR
dR

=

∫
log

dQ

dR
dP + 1−D(Q|R)− 1 =

∫
log

dQ

dR
dP −D(Q|R).
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Se verifica que
∫
log dQ

dR
dP −D(Q|R) ≥ 0, porque si

∫
log dQ

dR
dP < D(Q|R), entonces

la derivada en 0 de D(Pα|R) seŕıa negativa, y esa función seŕıa decreciente en 0, es
decir, existiŕıa α0 > 0 tal que

D(Pα0|R) < D(P0|R) = D(Q|R).

Esto es absurdo, por ser Q la proyección de R sobre B.
Para concluir la prueba de esta implicación, basta darse cuenta de que

D(P |R)−D(P |Q) =
∫
dP

dR
log

dP

dR
dR−

∫
dP

dR
log

dP
dR
dQ
dR

dR =

∫
dP

dR
log

dQ

dR
dR

=

∫
log

dQ

dR
dP.

(4.4)
Como se hab́ıa supuesto P ∈ B(R,∞), la resta anterior de las divergencias de
Kulback-Leibler está bien definida.

⇐) Rećıprocamente, si D(P |R) ≥ D(P |Q)+D(Q|R), para toda P ∈ B, como la
divergencia de Kullback-Leibler de una probabilidad P respecto de otra probabilidad
Q es siempre positiva, D(P |R) ≥ D(Q|R) para toda P ∈ B. Y, por tanto, Q es la
proyección de R en B.

Por último, sea P ∈ B, tal que, para cierto α ∈ (0, 1], existe P ′ ∈ B verificando
Q = αP + (1 − α)P ′. Entonces P ≪ Q ≪ R. Por lo tanto, P ∈ B(R,∞). Si se
supone que

∫
log dQ

dR
dP > D(Q|R), entonces,

D(Q|R) =
∫

log
dQ

dR
dQ

=

∫
log

dQ

dR
d(αP + (1− α)P ′) = α

∫
log

dQ

dR
dP + (1− α)

∫
log

dQ

dR
dP ′

> αD(Q|R) + (1− α)D(Q|R) = D(Q|R).

Se llega a una contradicción.

4.1.2. Minimizadores de la divergencia de K.-L.

El objetivo de este apartado es caracterizar la proyección de una medida R en un
espacio convexo concreto. Primero, se enunciará un teorema general para espacios
definidos a partir de una serie de restricciones. Después, se verá que, fijadas dos
probabilidades P1 y P2 en Rd, el conjunto de probabilidades en el espacio producto
cuyas marginales son P1 y P2 es un caso particular de los espacios considerados en el
teorema. Entonces, se tendrá caracterizada la proyección de cualquier medida finita
positiva R sobre

∏
(P1, P2), que se sabe que existe (porque

∏
(P1, P2) es convexo y

cerrado para la distancia en variación total).

Teorema 4.1.9. Sea {fi}i∈I un conjunto de funciones medibles de (X ,M) en R y
{ai}i∈I ⊂ R. Sea Γ el conjunto de probabilidades en el espacio medible (X ,M) para
las cuales fi es integrable para todo i ∈ I, y se cumple que

∫
fidP = ai. Entonces,
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4.1. Divergencia de Kullback-Leibler

si una medida finita y positiva (no nula) R en (X ,M) tiene proyección Q sobre Γ,
la derivada de Radon-Nikodym de Q respecto de R es de la forma

dQ

dR
(x) =

{
exp g(x) si x /∈ N,

0 si x ∈ N,
(4.5)

donde N es un conjunto tal que P (N) = 0, para toda probabilidad P ∈ Γ∩B(R,∞),
y g : X → R es una función que pertenece a la adherencia del subespacio vectorial
de L1(Q) generado por por la familia de funciones {fi}i∈I y por la función constante
1.

Rećıprocamente, si Q ∈ Γ es absolutamente continua respecto de R, con densi-
dad de la forma 4.5, donde g pertenece al subespacio lineal de L1(Q) generado por
{fi}i∈I ∪ {1}, sin tomar la adherencia, entonces Q es la proyección de R sobre Γ.

Demostración. Γ es un conjunto convexo. Si Q es la proyección de R sobre Γ, en-
tonces, D(Q|R) < ∞ y, en particular, Q ≪ R. Sea N = {x ∈ X : dQ

dR
(x) = 0}. Si

P ∈ Γ∩B(R,∞), la desigualdad 4.3, garantiza que D(P |Q) <∞ y, en consecuencia,
P ≪ Q. Como Q(N) = 0, entonces P (N) = 0.

Además, dQ
dR

(x) = +∞ a lo sumo en un conjunto de R−probabilidad nula, pu-
diéndose redefinir la función en este conjunto para que tome valores reales mayores
o iguales que 0. Entonces, la función log dQ

dR
: X − N → R está bien definida. Se

concluye la demostración de esta parte del teorema probando que la función

g(x) :=

{
log dQ

dR
(x) si x /∈ N,

0 si x ∈ N

pertenece a la adherencia del subespacio vectorial de L1(Q) generado por la familia
{fi}i∈I y por la función constante 1, es decir, g ∈ ⟨1, {fi}i∈I⟩. En estas condiciones,
g : X → R verifica la igualdad 4.5.

Se razona por reducción al absurdo. Si g /∈ ⟨1, {fi}i∈I⟩, por el teorema de Hahn-
Banach, existe un funcional lineal y continuo de T : L1(Q) → R tal que T |⟨1,{fi}i∈I⟩ ≡
0 y T (g) ̸= 0. Como Q es una probabilidad (medida finita), el dual de L1(Q) está
formado por los funcionales

T : L1(Q) → R, T (f) =

∫
fhdQ, con h ∈ L∞(Q).

Por lo tanto, existe una función h ∈ L∞(Q) tal que
∫
ghdQ ̸= 0,

∫
hdQ = 0 y para

todo i ∈ I,
∫
fihdQ = 0.

Por otro lado, se define al probabilidad

P̃ (A) =

∫
A

(1 +
h(x)

∥h∥∞
)dQ, ∀A ∈ M.

Es fácil comprobar que P̃ es una probabilidad: P̃ es medida por construcción y se
cumple:

P̃ (X ) =
∫
dQ+ 1

∥h∥∞

∫
hdQ = 1 + 0 = 1.
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1 + h(x)
∥h∥∞ ≥ 0, Q− c.s.⇒ P̃ (A) ≥ 0, ∀A ∈ M.

Como
∫
fidP̃ =

∫
fi(1 +

h(x)
∥h∥∞ )dQ =

∫
fidQ+ 1

∥h∥∞

∫
h(x)dQ = ai, para todo i ∈ I,

entonces P̃ ∈ Γ. Análogamente, la probabilidad P̃ ′ definida por

P̃ ′(A) =

∫
A

(1− h(x)

∥h∥∞
)dQ, ∀A ∈ M.

también pertenece a Γ. ComoQ = 1
2
(P̃+P̃ ′), teniendo en cuenta que Γ es un conjunto

convexo, se puede aplicar el teorema 4.1.8 y se tiene que D(P̃ |R) − D(P̃ |Q) =
D(Q|R). Como P̃ ≪ Q≪ R, la igualdad anterior equivale a∫

log
dQ

dR
dP̃ =

∫
log

dQ

dR
dQ⇔

∫
log

dQ

dR
(1 +

h(x)

∥h∥∞
)dQ =

∫
log

dQ

dR
dQ

si, y solo si,
∫
log dQ

dR
hdQ = 0, es decir,

∫
ghdQ = 0. Esto es absurdo.

Para probar el rećıproco, se supone que Q ∈ Γ es absolutamente continua
respecto de R y su derivada de Radon-Nikodym tiene la forma 4.5. Entonces,

g(x) = λ +
n∑
j=1

fij(x), con λ ∈ R. Se considera P ∈ Γ ∩ B(R,∞). Se tiene que

log dQ
dR

= g, P − c.s. Entonces,∫
log

dQ

dR
dP =

∫
gdP = λ+

n∑
j=1

∫
fijdP = λ+

n∑
j=1

aij = c ∈ R, ∀P ∈ Γ∩B(R,∞).

En particular, D(Q|R) =
∫
log dQ

dR
dQ = c. Repitiendo el razonamiento de 4.4,

D(P |R)−D(P |Q) =
∫

log
dQ

dR
dP = c = D(Q|P ).

Aplicando el teorema 4.1.8, se concluye que Q es la proyección de R sobre Γ.

El espacio de probabilidades en Rd×Rd cuyas marginales son dos probabilidades
P1 y P2 fijas es un caso particular de los espacios considerados en el teorema ante-
rior. El último corolario de esta sección garantiza la existencia de probabilidades en∏
(P1, P2) con una forma concreta (en términos de su derivada de Radon-Nikodym

respecto de la medida producto P1 ⊗ P2). En el problema de transporte entrópico,
que se formalizará en la siguiente sección, se necesita la existencia de estas proba-
bilidades para construir la probabilidad π ∈

∏
(P1, P2) que minimiza el coste de

transporte entrópico.
Primero, se prueba un lema que se usará en la demostración del corolario.

Lema 4.1.10. Sean P1 y P2 probabilidades en (Rd, βd). Se supone que π ∈
∏
(P1, P2).

Entonces, el subespacio

V := {f ∈ L1(π) : f(x, y) = f(x)}+ {g ∈ L1(π) : g(x, y) = g(y)}

es cerrado en L1(π).
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Demostración. Como se ha visto en el apéndice F sobre desintegración de medidas,
existe un sistema de probabilidades {πY |X=x}x∈Rd en Rd tal que

π(B) =

∫
Rd

πY |X=x(Bx) dP1(x), ∀B ∈ βd × βd.

Si f ∈ L1(π), se define la esperanza condicionada dado X = x a la función de Rd en
R definida como:

E(f | X)(x) :=

∫
Rd

f(x, y) dπY |X=x(y), ∀x ∈ Rd.

Entonces, el funcional lineal

TX : L1(π) → {f ∈ L1(π) : f(x, y) = f(x)}, TX(f) = E(f | X)

está bien definido y es continuo, ya que

∥E(f | X)∥1 ≤
∫
Rd

|E(f | X)(x)|dπ(x, y) =
∫
Rd

|E(f | X)(x)|dP1(x)

=

∫
Rd

∣∣∣∣ ∫
Rd

f(x, y′) dπY |X=x(y
′)

∣∣∣∣dP1(x)

≤
∫
Rd

(∫
Rd

|f(x, y′)| dπY |X=x(y
′)

)
dP1(x)

=

∫
Rd

|f(x, y)|dπ(x, y) = ∥f∥1.

Análogamente, existe un sistema de probabilidades {πX|Y=y}y∈Rd en Rd tal que

π(B) =

∫
Rd

πX|Y=y(By) dP1(y), ∀B ∈ βd × βd.

Si g ∈ L1(π), se define la esperanza condicionada dado Y = y a la función de Rd en
R definida como:

E(g | Y )(y) :=

∫
Rd

g(x, y) dπX|Y=y(x), ∀y ∈ Rd.

Entonces, el funcional lineal

TY : L1(π) → {g ∈ L1(π) : g(x, y) = g(y)}, TY (g) = E(g | Y )

está bien definido y es continuo.
Sea u ∈ L1(π) tal que existe una sucesión de funciones {f̃n(x)+g̃n(y)}∞n=1 ⊂ L1(π)

con ĺımite la función u (con la norma de L1(π)). Si fn(x) := f̃n(x) +
∫
gn(y)dP2(y)

y gn(y) := g̃n(y)−
∫
gn(y)dP2(y), se verifica que

fn(x) + gn(y) = f̃n(x) + g̃n(y) −−−→
n→∞

u(x, y) en L1(π).
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Entonces, utilizando la continuidad de TX ,

TX(fn(x) + gn(y)) = fn(x) +

∫
gn(y) dπY |X=x(y) = fn(x) +

∫
gn(y)dπ(x, y)

= fn(x) −−−→
n→∞

TX(u)(x) en L1(π).

Usando la continuidad de TY ,

TY (fn(x) + gn(y)) =

∫
fn(x) dπX|Y=y(x) + gn(y) =

∫
fn(x) dπ(x, y) + gn(y)

=

∫
fn(x) dP1(x) + gn(y)

= an + gn(y) −−−→
n→∞

TY (u)(y) en L1(π).

Por otro lado,
gn(y) −−−→

n→∞
u(x, y)− TX(u)(x) en L1(π)

Entonces {an}∞n=1 ⊂ R converge hacia cierto a ∈ R. Y, se tiene que

gn(y) −−−→
n→∞

TY (u)(y)− a en L1(π).

Por la unicidad del ĺımite, se concluye que

u(x, y) = TX(u)(x) + (TY (u)(y)− a),

con TX(u)(x) ∈ L1(π) y (TY (u)(y)− a) ∈ L1(π).

Corolario 4.1.11. Sean P1 y P2 probabilidades en (Rd, βd). Se denota por P1 ⊗ P2

a la probabilidad producto en (Rd×Rd, βd⊗ βd). Se considera una función c̃(x, y) ∈
L1(P1 ⊗ P2) tal que c̃(x, y) > 0 para todo (x, y) ∈ Rd × Rd. Entonces, existe una
probabilidad π en el espacio producto con marginales P1 y P2, tal que π ≪ P1 ⊗ P2,
que verifica:

dπ

d(P1 ⊗ P2)
(x, y) = c̃(x, y) exp[f(x) + g(y)] (4.6)

donde (f, g) ∈ L1(P1)× L1(P2).

Demostración. Se denota por Γ al espacio de probabilidades en (Rd×Rd, βd⊗βd) con
marginales P1 y P2. Entonces π ∈ Γ si, y solo si, verifica las restricciones siguientes:∫

f(x)dπ =

∫
f(x)dP1, ∀f ∈ L1(P1),∫

g(y)dπ =

∫
g(y)dP2, ∀g ∈ L1(P2).

Se define una medida finita y positiva de la siguiente forma:

R(E) =

∫
E

c̃(x, y)d(P1 ⊗ P2), ∀E ∈ βd ⊗ βd.
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Por la proposición 4.1.7, existe la proyección π de R sobre este espacio, y, aplicando
el teorema 4.1.9, se deduce que π ∈

∏
(P1, P2) es absolutamente continua respecto

de R y su derivada de Radon-Nikodym respecto de R es de la forma 4.5.

dπ

dR
(x) =

{
exph(x, y) si x /∈ N,

0 si x ∈ N.

donde N es un subconjunto tal que µ(N) = 0, para toda µ ∈
∏
(P,Q) ∩ B(R,∞)

y h(x, y) pertenece a la adherencia del subespacio lineal de L1(π) generado por las
funciones de L1(π) de una sola variable, es decir, si

V : = ⟨{f ∈ L1(π) : f(x, y) = f(x)} ∪ {g ∈ L1(π) : g(x, y) = g(y)}⟩
= {f ∈ L1(π) : f(x, y) = f(x)}+ {g ∈ L1(π) : g(x, y) = g(y)},

entonces, h ∈ V̄ . Pero el subespacio vectorial V es cerrado en L1(π), se probó en
el lema 4.1.10. Por lo tanto, h(x, y) = f(x) + g(y), para ciertas funciones (f, g) ∈
L1(P1)× L1(P2). Entonces,

dπ

d(P1 ⊗ P2)
(x, y) = c̃(x, y) exp[f(x) + g(y)], ∀(x, y) /∈ N.

Se sabe que R(N) = 0. A partir de la definición de R y del hecho de que la función
c : Rd×Rd → (0,+∞) es estrictamente positiva, se tiene que R(N) = 0 si, y solo si,
P1 ⊗ P2(N) = 0. Entonces, (como la derivada de Radon-Nikodym π es única salvo
conjuntos de P1 ⊗ P2-probabilidad nula) se puede concluir que

dπ

d(P1 ⊗ P2)
(x, y) = c̃(x, y) exp[f(x) + g(y)], ∀(x, y) ∈ Rd × Rd.

4.2. Problema del transporte entrópico

Se formula el problema de transporte entrópico para el coste cuadrático:
Sea ε > 0. Se consideran P y Q dos probabilidades en (Rd, βd) con momentos de

orden 2 finitos. El problema de transporte entrópico para el coste cuadrático consiste
en calcular

W2
2,ε(P,Q) = ı́nf

π∈
∏

(P,Q)

[ ∫
∥x− y∥2

2
dπ(x, y) + εD(π|P ⊗Q)

]
. (4.7)

Al contaminar la distancia de Wasserstein W2 con la divergencia de Kullback-
Leibler, deja de ser una métrica. Esto se debe a que la divergencia de Kullback-
Leibler no es simétrica. Además, W2

2,ε(P, P ) ̸= 0.
En este trabajo, se estudia el coste entrópico con el fin de comparar si dos recortes

de probabilidades distintas son iguales. Por eso, perder la simetŕıa de la distancia
de Wasserstein no es relevante. Por el contrario, śı se puede adaptar la expresión del
coste de transporte entrópico W2

2,ε(P,Q) (modificándola) para que sea igual a 0 si,
y solo si, P = Q.
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Además, como ya se ha mencionado en el caṕıtulo 1, el problema de transporte
entrópico presenta ciertas ventajas respecto al problema de transporte estudiado en
el caṕıtulo 3. En la práctica, calcular la distancia de Wasserstein entre dos probabi-
lidades es costoso y se calcula aproximando esa distancia por la emṕırica (a partir
de una muestra). Esto hace que no sea resistente a la maldición de la dimensiona-
lidad. En cambio, en esta sección se va a deducir una iteración de punto fijo para
calcular el coste de transporte entrópico entre dos probabilidades, lo que elimina la
dependencia de una muestra en los cálculos y hace que el problema de transporte
entrópico no se vea afectado por la maldición de la dimensionalidad.

Por estas razones, el transporte entrópico es una buena alternativa para comparar
dos probabilidades P y Q. Primero, se deduce una fórmula de dualidad para este
problema, que permite probar la existencia de una probabilidad π0 ∈

∏
(P,Q) tal

que

W2
2,ε(P,Q) =

∫
∥x− y∥2

2
dπ0(x, y) + εD(π0|P ⊗Q).

Para esto, se usan los resultados que se han probado previamente sobre la diver-
gencia de Kullback-Leibler. La siguiente proposición es la versión de la dualidad de
Kantorovich para el transporte entrópico.

Teorema 4.2.1. Sea ε > 0. Se consideran P y Q dos probabilidades en (Rd, βd) con
momentos de orden 2 finitos. Existe una probabilidad π̃ en (Rd×Rd, βd× βd) cuyas
marginales son P y Q que minimiza la expresión 4.7, es decir,

W2
2,ε(P,Q) =

∫
∥x− y∥2

2
dπ̃(x, y) + εD(π̃|P ⊗Q).

Además, se verifica la fórmula de dualidad

W2
2,ε(P,Q) =

sup
(f,g)∈L1(P )×L1(Q)

[ ∫
f dP +

∫
g dQ− ε

∫
γ(x, y)dP (x)dQ(y)

]
+ ε,

(4.8)

con

γ(x, y) = exp
(
−

1
2
∥x− y∥2 + f(x) + g(y)

ε

)
.

Demostración. Como D(π̃|P ⊗Q) = ∞ si π no es absolutamente continua respecto
de P ⊗ Q, basta con minimizar la expresión del enunciado en el subconjunto de
probabilidades de

∏
(P,Q) que sean absolutamente continuas respecto de la medida

producto P ⊗Q.
Por lo tanto, se supone que π(x, y) = r(x, y)dP (x)dQ(y), es decir, la derivada de

Radon-Nikodym de π respecto de P ⊗Q es la función r : Rd × Rd → [0,∞]. Como
π es una medida finita, se puede suponer que r toma valores reales. Se tiene que∫

∥x− y∥2

2
dπ(x, y) + εD(π|P ⊗Q)

=

∫ [
1

2
∥x− y∥2r(x, y) + εr(x, y) log r(x, y)

]
dP (x)dQ(y)

= ε

∫
r(x, y) log

r(x, y)

exp(−
1
2
∥x−y∥2
ε

)
dP (x)dQ(y).
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4.2. Problema del transporte entrópico

Se comprueba, a continuación, que se verifica una fórmula de dualidad 4.8. Si f ∈
L1(P ) y g ∈ L1(Q), entonces∫

f(x)dP (x) =

∫
f(x)dπ(x, y) =

∫
f(x)r(x, y)dP (x)dQ(y),∫

g(y)dQ(y) =

∫
g(y)dπ(x, y) =

∫
g(y)r(x, y)dP (x)dQ(y).

Por lo tanto,

W2
2,ε(P,Q)−

∫
fdP −

∫
gdQ = ε

∫
r(x, y) log

r(x, y)

exp(−
1
2
∥x−y∥2+f(x)+g(y)

ε
)
dP (x)dQ(y).

(4.9)
Para escribirlo de forma más compacta, se hab́ıa denotado

γ(x, y) = exp
(
−

1
2
∥x− y∥2 + f(x) + g(y)

ε

)
.

Es conocido que s log s ≥ s− 1, ∀x > 0, ya que la función h(s) = s log s definida en
(0,∞) es estrictamente convexa y la recta tangente a h en s0 = 1 viene dada por la
ecuación s− 1. Se da la igualdad solo cuando s = 1. Entonces,

(4,9) = ε

∫
γ(x, y)

r(x, y)

γ(x, y)
log

r(x, y)

γ(x, y)
dP (x)dQ(y)

≥ ε

∫
γ(x, y)

( r(x, y)
γ(x, y)

− 1
)
dP (x)dQ(y)

= ε

∫
r(x, y)dP (x)dQ(y)− ε

∫
γ(x, y)dP (x)dQ(y)

= ε− ε

∫
exp

(
−

1
2
∥x− y∥2 + f(x) + g(y)

ε

)
dP (x)dQ(y).

Entonces,

W2
2,ε(P,Q) ≥ ε+

∫
fdP+

∫
gdQ−ε

∫
γ(x, y)dP (x)dQ(y), ∀(f, g) ∈ L1(P )×L1(Q).

Tomando superior en (f, g) ∈ L1(P )× L1(Q),

W2
2,ε(P,Q) ≥ sup

(f,g)∈L1(P )×L1(Q)

[ ∫
f dP +

∫
g dQ− ε

∫
γ(x, y)dP (x)dQ(y) + ε

]
.

Sea π̃ ∈
∏
(P,Q) tal que dπ̃(x, y) = r(x, y)dP (x)dQ(y) con

r(x, y) = exp
(
−

1
2
∥x− y∥2 + f̃(x) + g̃(y)

ε

)
,

para ciertas funciones f̃ ∈ L1(P ) y g̃ ∈ L1(Q). La existencia de esta probabilidad se
ha probado en el corolario 4.1.11.

Con la probabilidad π̃ ∈
∏
(P,Q) y las funciones (f̃ , g̃) ∈ L1(Q) se alcanza la

igualdad de la fórmula de dualidad 4.8. Y, por lo tanto, π̃ es la probabilidad en la
que se alcanza el mı́nimo del coste de transporte.
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Caṕıtulo 4. Transporte entrópico

En la demostración del teorema anterior se ha deducido una caracterización de
la probabilidad óptima que minimiza el coste de transporte entrópico (en el caso
cuadrático). Esto se recoge en el siguiente corolario.

Corolario 4.2.2. Sea ε > 0. Se consideran P y Q dos probabilidades en (Rd, βd)
con momentos de orden 2 finitos. Sea π ∈

∏
(P,Q) absolutamente continua respecto

de P ⊗Q. Es decir, dπ(x, y) = r(x, y)dP (x)dQ(y), donde se denota por r(x, y) a la
derivada de Radon-Nikodym de π respecto de P ⊗Q. Entonces, π es óptima para el
problema de transporte entrópico con el coste cuadrático, es decir,

W2
2,ε(P,Q) = ı́nf

π∈
∏

(P,Q)

[ ∫
∥x− y∥2

2
dπ(x, y) + εD(π|P ⊗Q)

]
(4.10)

si, y solo si,

r(x, y) = exp
(
−

1
2
∥x− y∥2 + f0(x) + g0(y)

ε

)
,

donde f0 ∈ L1(P ) y g0 ∈ L1(Q).

Para finalizar el caṕıtulo, y el trabajo, se estudia la forma de calcular la probabi-
lidad óptima del problema de transporte entrópico planteado. Con la caracterización
del corolario 4.2.2, bastaŕıa con hallar un par de funciones (f0, g0) ∈ L1(P )×L1(Q)
que verifique que

r(x, y) = exp
(
−

1
2
∥x− y∥2 + f0(x) + g0(y)

ε

)
es la derivada de Radon-Nikodym de cierta probabilidad π respecto de P ⊗Q.

Esas funciones se pueden calcular mediante una iteración de punto fijo. Como ya
se ha mencionado, este es el resultado que hace que el coste de transporte entrópico
tenga ventajas importantes, en la práctica, con respecto a la distancia de Wassers-
tein. Se enuncia en la siguiente proposición.

Proposición 4.2.3. Sea ε > 0. Se consideran P y Q dos probabilidades en (Rd, βd)
con momentos de orden 2 finitos. Un par de funciones (f0, g0) ∈ L1(P )× L1(Q) es
óptimo para el problema dual de transporte entrópico (con el coste cuadrático), es
decir,∫

f0 dP +

∫
g0 dQ− ε

∫
exp

(
−

1
2
∥x− y∥2 + f0(x) + g0(y)

ε

)
dP (x)dQ(y) + ε

= sup
L

[ ∫
f dP +

∫
g dQ− ε

∫
exp

(
−

1
2
∥x− y∥2 + f(x) + g(y)

ε

)
dP (x)dQ(y) + ε

]
,

donde L = {(f, g) : f ∈ L1(P ), g ∈ L1(Q)}, si, y solo si, (f0, g0) verifica
f(x) = −ε log

(∫
exp(

g(y)− 1
2
∥x− y∥2

ε
)dQ(y)

)
,

g(x) = −ε log
(∫

exp(
f(x)− 1

2
∥x− y∥2

ε
)dP (x)

)
.

(4.11)
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4.2. Problema del transporte entrópico

Demostración. Sea dπ(x, y) = r(x, y)dP (x)dQ(y) con

r(x, y) = exp
(−1

2
∥x− y∥2 + f0(x) + g0(y)

ε

)
,

para ciertas funciones (f0, g0) ∈ L1(P )× L1(Q). Se verifica que:
∫
r(x, y)dQ(y) = 1,∫
r(x, y)dP (x) = 1.

(4.12)

Teniendo esta propiedad, es fácil deducir la iteración del enunciado. Se prueba la
segunda igualdad:∫

B

dQ(y) = Q(B) = π(Rd ×B) =

∫
Rd×B

r(x, y)dP (x)dQ(y)

=

∫
B

(∫
Rd

r(x, y)dP (x)
)
dQ(y), ∀B ∈ βd.

De aqúı se deduce que
∫
r(x, y)dP (x) = 1. Análogamente,

∫
r(x, y)dQ(y) = 1. Por

lo tanto, reescribiendo 4.12,
exp(f(x)

ε
)

∫
exp(

g(y)− 1
2
∥x− y∥2

ε
)dQ(y) = 1,

exp(g(y)
ε
)

∫
exp(

f(x)− 1
2
∥x− y∥2

ε
)dP (x) = 1.

Entonces, 
f(x) = −ε log

(∫
exp(

g(y)− 1
2
∥x− y∥2

ε
)dQ(y)

)
,

g(y) = −ε log
(∫

exp(
f(x)− 1

2
∥x− y∥2

ε
)dP (x)

)
.

Rećıprocamente, si (f0, g0) verifica 4.11, entonces dπ(x, y) = r(x, y)dP (x)dQ(y) de-
fine una probabilidad en Rd×Rd con marginales P y Q (por la propiedad 4.12).

Se denota por K al siguiente operador:

K(f, g) =

−ε log
(∫

exp(
g(y)− 1

2
∥x− y∥2

ε
)dQ(y)

)
−ε log

(∫
exp(

f(x)− 1
2
∥x− y∥2

ε
)dP (x)

)


Se ha comprobado que (f0, g0) es un punto fijo del operador K. Por lo tanto, se
pueden calcular a partir de la iteración

fn+1(x) = −ε log
(∫

exp(
gn(y)− 1

2
∥x− y∥2

ε
)dQ(y)

)
,

gn+1(x) = −ε log
(∫

exp(
fn(x)− 1

2
∥x− y∥2

ε
)dP (x)

)
.
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Esta iteración se conoce como algoritmo de Sinkhorn. La versión discreta de este
algoritmo supuso un salto en cuanto a la posibilidad de calcular de forma eficiente el
transporte óptimo (entrópico) entre probabilidades. Esto se desarrolla ampliamente
en [15]. El tratamiento del problema de transporte óptimo desde el punto de vista
computacional queda fuera de los objetivos de este TFG.
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Conclusiones

En el contexto del Aprendizaje “Justo”, el primer paso para entrenar reglas de
clasificación que no dependan de un atributo protegido binario S ∈ {0, 1} consiste en
estimar la parte común entre las dos distribuciones de probabilidad correspondientes
a los subgrupos en los que se divide la población según dicho atributo. Formalmente,
se ha comprobado que el nivel al que dos poblaciones están relacionadas se puede
caracterizar a partir de los conjuntos de recortes y la distancia en variación total
entre sus respectivas distribuciones. Por eso, este trabajo está motivado por un
algoritmo propuesto por H. Inouzh, cuyo objetivo es estimar cotas de la distancia
en variación total entre dos distribuciones de probabilidad P = L(X|S = 0) y
Q = L(X|S = 1), buscando elementos comunes a sus conjuntos de recortes. Dicho
algoritmo permite calcular el menor valor de α, en una partición del intervalo [0, 1],
tal que dTV (P,Q) ≤ α. El desarrollo de la aplicación que motivó este trabajo, a la
vez que el proyecto de beca de colaboración con el Departamento de Estad́ıstica e
Investigación Operativa, está todav́ıa por terminar y excede a los objetivos del TFG.
Por lo tanto, aunque este trabajo tiene una motivación aplicada, se ha dedicado
exclusivamente a estudiar las herramientas teóricas involucradas en el algoritmo.

En primer lugar, se ha propuesto utilizar la distancia de Wasserstein W2 como
métrica para calcular los recortes óptimos entre P y Q, para cierto nivel α ∈ (0, 1),
aprovechando su continuidad con respecto a aproximaciones emṕıricas y las buenas
propiedades topológicas de los conjuntos de recortes respecto de esta métrica. Por
eso, se ha estudiado el problema de transporte óptimo, demostrando la existencia de
una probabilidad que minimiza el coste. Además, a partir de la fórmula de dualidad
de Kantorovich, se ha llegado a caracterizar las aplicaciones de transporte óptimo:
gradientes de funciones convexas.

No obstante, el alto coste computacional de calcular la distancia de Wasserstein
emṕırica y su sensibilidad a la maldición de la dimensionalidad han motivado la
introducción del coste de transporte entrópico W2,ε, que contamina la distancia de
Wasserstein con la divergencia de Kullback-Leibler, para mejorar la eficiencia y la
robustez del método, gracias al algoritmo de Sinkhorn.

Por último, se ha considerado usar un test de contraste de hipótesis basado en
la Máxima Discrepancia en Media (MMD) para contrastar si los recortes óptimos
Pα y Qα son iguales, para cierto nivel α ∈ (0, 1). En caso afirmativo, se tendŕıa que
dTV (P,Q) ≤ α. Con esta finalidad, se han estudiado los núcleos, que son resistentes a
la maldición de la dimensionalidad, y sus ventajas en estad́ıstica: trabajar conociendo
únicamente los productos internos de los datos en un espacio de Hilbert.

En conclusión, este trabajo me ha servido como introducción a un campo en el
que algunas herramientas tales como los recortes, las métricas de máxima discre-
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pancia media o el problema de transporte óptimo, en sus distintas versiones, son un
elemento esencial. Lo que he aprendido con este TFG me ha puesto en condiciones
adecuadas para poderme enfrentar a este tipo de problemas, en futuros proyectos.
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Apéndice A

Teorema de Radon-Nikodym

A lo largo de varios caṕıtulos, se trabaja con el concepto de medida absoluta-
mente continua respecto de otra medida de referencia y se habla de la derivada de
Radon-Nikodym. En concreto, este concepto es imprescindible en la definición de
recorte de una probabilidad (1.1.3) y a lo largo de todo el caṕıtulo 4, para definir la
divergencia de Kullback-Leibler y el transporte entrópico. Se recuerdan, a continua-
ción, las definiciones y teoremas necesarios en este trabajo, vistos en la asignatura
de Análisis Real del grado. Se pueden encontrar las demostraciones en [16].

Definición A.0.1. Sean λ y µ dos medidas positivas en el espacio medible (X ,M).
Se dice que λ es absolutamente continua con respecto de µ, y se escribe

λ≪ µ,

si para cualquier E ∈ M tal que µ(E) = 0 se tiene que λ(E) = 0.

Si µ es una medida positiva, el teorema de Radon-Nikodym caracteriza cómo
son todas las medidas absolutamente continuas respecto de µ. Se enuncia aqúı una
versión simplificada de dicho teorema (ya que se recogen en esta sección solo los
resultados imprescindibles para el trabajo).

Teorema A.0.2 (Radon-Nikodym). Sean µ una medida positiva y λ una medida
positiva σ-finita en (X ,M) tal que λ≪ µ. Entonces, existe una función

h : X → [0,+∞]

integrable respecto de µ tal que

λ(E) =

∫
E

hdµ,

para todo conjunto E ∈ M. Cualquier otra función que verifique estas propiedades
coincide con h, µ− c.s.

La función h definida en el teorema se denota por

dλ

dµ
.
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Si la medida λ es finita (es el caso de las probabilidades), su derivada de Radon-
Nikodym respecto de µ toma valores reales salvo en un conjunto de medida µ nula.

Por último, se enuncia la regla de la cadena, que se usará para dar definiciones
equivalentes de la divergencia de Kullback-Leibler, en 4.1.2.

Proposición A.0.3 (Regla de la cadena). Sean λ, ν y µ tres medidas positivas
σ-finitas en (X ,M) tales que λ≪ ν y ν ≪ µ. Se verifica:

1. Si g : X → C es M-medible, entonces∫
g dλ =

∫
g
dλ

dν
dν.

En particular, si g ∈ L1(λ), entonces g
dλ
dν

∈ L1(ν).

2. Se verifica que λ≪ µ y

dλ

dµ
=
dλ

dν

dν

dµ
, µ− c.s.
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Apéndice B

Regularidad de las medidas

Al trabajar con probabilidades en Rd con la σ-álgebra generada por los abiertos,
denotada por βd, se cuenta con unas propiedades de regularidad, útiles para muchos
de los razonamientos de este trabajo. En este apéndice, se explica qué significa que
una medida sea regular y bajo qué condiciones lo es. Los resultados que se exponen
a continuación son una adaptación de [11].

Definición B.0.1. Sea X un espacio topológico Hausdorff.

La σ-álgebra de Borel es la generada por los abiertos de X , se denota por β.

Se denomina medida de Borel a toda medida definida sobre la σ-álgebra de
Borel de X .

Si µ es una medida de Borel positiva, un conjunto de Borel E ⊂ X es regular
exteriormente si

µ(E) = ı́nf{µ(V ) : E ⊆ V, V abierto}

y es regular interiormente si

µ(E) = sup{µ(K) : K ⊆ E, K compacto}.

Se dice que µ es una medida ajustada si X es regular interiormente.

Si todo conjunto de Borel de X es a la vez regular exterior e interiormente, se dice
que la medida µ es regular.

Lema B.0.2. Sea X un espacio topológico Hausdorff, S una σ-álgebra en X y µ
una medida finita y ajustada sobre (X ,S). Se define:

R := {A ∈ S : A y X \ A son regulares interiormente para µ}.

Entonces, R es una σ-álgebra. También es σ-álgebra la clase de conjuntos:

S := {A ∈ S : A y X \ A son regulares exteriormente para µ}.
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Demostración. Por definición, R es cerrado para complementarios. Sea {An}∞n=1 ⊂
R, y sea A :=

⋃
n≥1An. Dado ε > 0, para cada n ∈ N, existen dos conjuntos

compactos Kn ⊆ An y Ln ⊆ ACn tales que

µ(An \Kn) <
ε

3n
y µ(ACn \ Ln) <

ε

2n
.

Por ser µ una medida finita, existe un n0 ∈ N tal que

µ(A)− µ
( n0⋃
n=1

An

)
<
ε

2
.

Sea K :=
n0⋃
n=1

Kn. Entonces K es compacto, K ⊆ A, y

µ
( n0⋃
n=1

An

)
− µ(K) ≤

n0∑
n=1

[µ(An)− µ(Kn)] ≤
ε

2
.

Por lo tanto,

µ(A)− µ(K) =
[
µ(A)− µ

( n0⋃
n=1

An

)]
−
[
µ
( n0⋃
n=1

An

)
− µ(K)

]
< ε.

o, equivalentemente, µ(K) ≥ µ(A)− ε. Se tiene probado que A es regular exterior.
Para probar que AC también es regular exterior, se considera el compacto L :=
∞⋂
n=1

Ln. Entonces,

µ(Ac \ L) = µ
( n0⋃
n=1

ACn

)
− µ(L) ≤

∞∑
n=1

ε

2n
= ε.

Además, X ∈ R por ser µ una medida ajustada. Por lo tanto, R es una σ-álgebra.
Se prueba, análogamente, que S es σ-álgebra.

Teorema B.0.3. En un espacio métrico (X , d), toda medida de Borel finita y ajus-
tada µ es regular.

Demostración. Sea U un abierto de X , entonces, es regular exteriormente. Para
probar que U es regular interiormente, se considera la sucesión creciente de conjuntos
cerrados {Cn}∞n=1 definidos de la siguiente forma:

Cn := {x : d(x, UC) ≥ 1

n
}, n ∈ N.

Como UC es cerrado, d(x, UC) = 0 si y solo si x /∈ U . Entonces, para todo n ∈ N,
Cn ⊂ U y U =

∞⋃
n=1

Cn. Se tiene que:

µ(U) = µ
( ∞⋃
n=1

Cn

)
= ĺım

n→∞
µ(Cn).
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De aqúı, se concluye que

µ(U) = sup{µ(C) : C ⊆ U, C cerrado}.

Si µ es ajustada, entonces dado ε > 0, existe un conjunto compacto K tal que
µ(X \K) < ε

2
. Se acaba de probar que existe C ⊂ U cerrado en X tal que µ(U \C) <

ε
2
. Sea L := K ∩ C. Entonces L es compacto, L ⊂ U y

µ(U \ L) ≤ µ(U \ C) + µ(X \K) < ε.

Por lo tanto, U es regular interiormente.
Ahora, sea F cerrado en Rd, entonces es regular interiormente (porque µ es

ajustada). Para probar que F es regular exteriormente, se considera la sucesión
decreciente de abiertos {Vn}∞n=1 definidos como:

Vn =
{
x ∈ Rd : d(x, F ) <

1

n

}
.

Entonces, para todo n ∈ N, F ⊂ Vn y
⋂∞
n=1 Vn = F . Se tiene que:

µ(F ) = µ
( ∞⋂
n=1

Vn

)
= ĺım

n→∞
µ(Vn).

De aqúı, se concluye que

µ(F ) = ı́nf{µ(V ) : F ⊆ V, V abierto}.

Por lo tanto, si U es abierto de X , entonces U ∈ C y U ∈ S. Entonces, en X todos
los conjuntos son regulares para cualquier medida finita.

Teorema B.0.4. Si (X , d) es un espacio métrico, completo y separable (espacio
Polaco), toda medida de Borel finita es regular.

Demostración. Sea µ una medida finita en X . Por el teorema B.0.3, para ver que
es regular, basta probar que es ajustada. Existe un conjunto numerable D = {xn :
n ≥ 1} denso en X . Fijado ε > 0, para cada m ∈ N, existe un natural n(m) tal que

µ
(
X \

n(m)⋃
n=1

B(xn,
1

m
)
)
<

ε

2m
.

Se denota por Am :=
⋃n(m)
n=1 B(xn,

1
m
). Sea

K :=
⋂
m≥1

n(m)⋃
n=1

B(xn,
1

m
).

K es acotado y cerrado en un espacio métrico completo, entonces K es compacto,
y se tiene que

µ(KC) = µ
( ∞⋃
m=1

ACm

)
≤

∞∑
m=1

µ(ACm) ≤
∞∑
m=1

ε

2m
= ε.
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Apéndice B. Regularidad de las medidas

Lema B.0.5. Sea X un espacio métrico, completo y separable (espacio Polaco) y β
la σ-álgebra generada por los abiertos de X . Se supone que p y q son probabilidades
en X . Si

∫
fdp =

∫
fdq para toda función f continua y acotada en X . Entonces,

p = q.

Demostración. Sea U un abierto en X . Se considera la sucesión de funciones conti-
nuas y acotadas definidas de la siguiente forma:

fn(x) = mı́n{1, nd(x, U c)}, ∀n ∈ N.

Como U c es cerrado, d(x, U c) = 0 si y solo si x /∈ U . Es fácil ver que {fn}∞n=1 es una
sucesión creciente que converge puntualmente al indicador de U . Por el teorema de
la convergencia monótona,

p(U) =

∫
XUdp = ĺım

n→∞

∫
fndp = ĺım

n→∞

∫
fndq =

∫
XUdq = q(U).

Si dos probabilidades coinciden en el conjunto de abiertos de X , entonces son iguales.
Para ver esto, se usa la regularidad de las probabilidades en un espacio polaco (ver
apéndice B).

p(E) = ı́nf{p(U) : E ⊆ U, U abierto} = ı́nf{q(U) : E ⊆ U, U abierto} = q(E).

B.1. Teorema de representación de Riesz (funcio-

nales acotados)

En la demostración de la dualidad de Kantorovich (teorema 3.2.1), se trabaja
con el dual del espacio de las funciones continuas que se anulan en el infinito. Este
espacio vectorial se identifica con las medidas de Borel regulares. El teorema de Riesz
es el resultado que formaliza la idea anterior; se estudió en la asignatura Análisis
Real del grado y se puede encontrar en [4].

Definición B.1.1. Se dice que una función real f definida en X se anula en el
infinito si, para cada ε > 0, existe un conjunto compacto K ⊂ X tal que |f(x)| < ε
para todo x ∈ K. Se denota por C0(X ) el espacio de las funciones continuas en X
que se anulan en el infinito.

Teorema B.1.2 (Teorema de representación de Riesz). Sea X un espacio Hausdorff
localmente compacto. Todo funcional lineal y acotado φ en C0(X ) se representa por
una única medida de Borel regular µ, en el sentido de que

φ(f) =

∫
X

f dµ, para toda f ∈ C0(X).
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Apéndice C

Convergencia débil de
probabilidades

Se resumen, en este apartado, los resultados sobre convergencia en distribución
de probabilidades que se utilizan a lo largo del trabajo, todos ellos vistos en el grado
(en la asignatura de Teoŕıa de la Probabilidad). Estos resultados se pueden encontrar
en [6]

Definición C.0.1. Sea P una probabilidad en (Rd, βd) con función de distribución
F . Sea {Pn}∞n=1 una sucesión de probabilidades en (Rd, βd). Para cada n ∈ N, se
denota por Fn a la función de distribución de Pn. Se dice que la sucesión {Pn}∞n=1

converge en distribución hacia P si

ĺım
n→∞

Fn(x) = F (x), ∀x ∈ C(F ).

Se ha denotado por C(F ) al conjunto de puntos de continuidad de F .

El teorema de Portmanteau da varias caracterizaciones de la convergencia en
distribución. Se usará en la demostración de la existencia de un plan de transporte
óptimo, bajo ciertas condiciones, en el teorema 3.1.1 y en la prueba de la unicidad de
los recortes óptimos de dos probabilidades distintas, en la proposición 3.3.7, ambas
del caṕıtulo 3.

Teorema C.0.2 (Portmanteau). Sean {Pn}∞n=1 y P probabilidades en (Rd, βd) con
funciones de distribución {Fn}∞n=1 y F . Las condiciones siguientes son equivalentes:

1. {Pn}∞n=1 converge en distribución a P .

2. ĺım
n→∞

∫
fdPn =

∫
fdP para toda función f continua y acotada, es decir, para

toda f ∈ Cb(Rd).

3. Para todo A abierto de Rd, P (A) ≤ ĺım inf
n→∞

Pn(A).

4. Para todo C cerrado de Rd, P (C) ≥ ĺım sup
n→∞

Pn(C).

5. Para todo H ∈ β tal que P (∂H) = 0, ĺım
n→∞

Pn(H) = P (H).
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Apéndice C. Convergencia débil de probabilidades

También se recoge en este apéndice el teorema de Representación de Skorohod,
que se usa en 3.3.3, para probar una caracterización de la convergencia de la distancia
de Wasserstein.

Teorema C.0.3 (de Representación de Skorokhod). Sea {Rn}n una sucesión de
probabilidades en Rd que converge en distribución hacia una probabilidad R. En-
tonces, existen X y {Xn}n vectores aleatorios definidos en un espacio probabiĺıstico
(Ω,M,P) tales que

Xn ∼ Rn, X ∼ R y Xn −−→
c.s.

X.

C.1. Sucesión de probabilidades ajustada

Es claro que para cualquier probabilidad en (Rd, βd), para cada ε > 0, existe un
compacto K ⊂ Rd tal que P (KC) < ε. La siguiente definición se usa también en la
demostración de 3.1.1, en el caṕıtulo 3.

Definición C.1.1. Sea {Pn}∞n=1 una sucesión de probabilidades en (Rd, βd). Se dice
que es ajustada si para cada ε > 0, existe un compacto K ⊂ Rd tal que Pn(K

C) < ε,
para todo n ∈ N.

Se enuncian, a continuación, un resultado que se deduce del teorema de Helly.

Teorema C.1.2. Si la sucesión de probabilidades {Pn}∞n=1 en (Rd, βd) es ajusta-
da, entonces de cualquier subsucesión {Pnk

}∞k=1 se puede extraer otra subsucesión
{Pnkm

}∞m=1 que converge en distribución hacia una probabilidad P .

C.2. Función cuantil

Se trabaja, en varias ocasiones, con la función cuantil, en concreto en la sección
3.3.2 (donde se da una caracterización de la distancia de Wasserstein en R a partir
de la función cuantil). Se recuerdan la definición y algunas propiedades.

Definición C.2.1. Sea F : R → R una función de distribución, es decir, una
función creciente, continua por la derecha y tal que ĺım

x→−∞
F (x) = 0 y ĺım

x→+∞
F (x) = 1.

Entonces se define la función cuantil F−1 : (0, 1) → R como:

F−1(t) = ı́nf{x ∈ R : t ≤ F (x)}, t ∈ (0, 1).

Para todo t ∈ (0, 1) y para todo x ∈ R, se verifica que

F−1(t) ≤ x⇔ t ≤ F (x). (C.1)

También, se cumple que

F (F−1(t)−) ≤ t ≤ F (F−1(t)), ∀t ∈ (0, 1). (C.2)

donde se ha denotado por F−1(t)− al ĺımite por la izquierda de F−1 en t.
De estas propiedades, se deduce la siguiente proposición:
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C.3. Aproximación de funciones de distribución por suavizado

Proposición C.2.2. La función cuantil F−1 : (0, 1) → R es creciente y conti-
nua por la izquierda. Además, es una variable aleatoria en el espacio probabiĺıstico
((0, 1), β(0,1),L), donde L es la medida de Lebesgue.

Otra formulación equivalente de esta proposición es la siguiente:

Proposición C.2.3. Sea U una variable aleatoria con distribución U(0, 1), entonces
F−1(U) tiene función de distribución F .

Demostración. Sea x ∈ R, por C.1, se tiene que

P
(
F−1(U) ≤ x

)
= P

(
U ≤ F (x)

)
= F (x).

Proposición C.2.4. Sea µ una probabilidad con densidad en (R, β) y X una va-
riable aleatoria con distribución µ. Entonces, si F es la función de distribución de
µ, se cumple que F (X) ∼ U(0, 1).

Demostración. Sea x ∈ R,

P
(
F (X) ≥ x

)
= P

(
X ≥ F−1(x)

)
= 1− F (F−1(x)) = 1− x.

La última igualdad es consecuencia de C.2 y de que F sea continua por tener µ
densidad.

Para terminar la sección de la función cuantil, se enuncia un resultado que se
deduce de la demostración del teorema de Skorokhod en R.

Teorema C.2.5. Sean P y {Pn}∞n=1 probabilidades en (R, β) tales que {Pn}∞n=1

converge en distribución a P . Si F y {Fn}∞n=1 son las respectivas funciones de dis-
tribución, entonces

ĺım
n→∞

F−1
n (t) = F−1(t), para casi todo t ∈ (0, 1).

C.3. Aproximación de funciones de distribución

por suavizado

Por último, se explica cómo aproximar funciones de distribución mediante sua-
vizado por convolución con un núcleo, procedimiento usado también en la sección
3.3.2.

Proposición C.3.1. Sea P una probabilidad en (R, β) con función de distribución
F . Entonces, existe una sucesión de probabilidades con densidad {Pn}∞n=1 en (R, β)
que converge en distribución hacia P .

Demostración. Sea {φn}∞n=1 una sucesión regularizante en R, es decir, una sucesión
de funciones que verifique las siguientes propiedades:

1. Para todo n ∈ N, φn ∈ C∞(R).
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Apéndice C. Convergencia débil de probabilidades

2. Para todo n ∈ N, se tiene:

φn(x) ≥ 0, para todo x ∈ Rd y

∫
Rd

φn(x) dx = 1.

3. sop(φn) ⊂ B
(
0, 1

n

)
.

Como F es localmente integrable en R por ser acotada, tiene sentido considerar la
convolución con φn, y esta será derivable (por serlo φn). Además, ĺım

n→∞
F ∗ φn(x) =

F (x) para todo x ∈ C(F ). Se prueba:
Sea x ∈ C(F ), para todo ε > 0, existe n0 ∈ N tal que si |x − z| ≤ 1

n0
, entonces

|F (x)− F (z)| ≤ ε. Por lo tanto, para todo n ≥ n0,

|(F ∗ φn)(x)− F (x)| =
∣∣∣∣∫

R
(F (z)− F (x))φn(x− z) dz

∣∣∣∣
≤

∫
R
|F (z)− F (x)|φn(x− z) dz =

∫
B(x, 1

n
)

|F (z)− F (x)|φn(x− z) dz

≤ ε

∫
B(x, 1

n
)

φn(x− z) dz = ε.

Solo falta probar que Fn = F ∗ φn es una función de distribución.

Fn es creciente: Como F es creciente y φn mayor o igual que 0, esta propiedad
se deduce de la monotońıa de la integral, ya que

Fn(x) :=

∫
F (x− z)φn(z)dz.

ĺım
x→−∞

Fn(x) = 0:

Para todo z ∈ R, ĺım
x→−∞

F (x − z)φn(z) = 0. Además, se tiene la acotación de

esta función por otra integrable:

|F (x− z)φn(z)| ≤ φn(z), ∀x ∈ R.

Se concluye, por el teorema de la convergencia dominada, que

ĺım
x→−∞

F ∗ φn(x) = ĺım
x→−∞

∫
F (x− z)φn(z)dz = 0.

ĺım
x→+∞

Fn(x) = 1:

Para todo z ∈ R, ĺım
x→−∞

F (x − z)φn(z) = φn(z) y se vuelve a tener la misma

acotación que en el punto anterior, lo que permite aplicar el teorema de la
convergencia dominada de nuevo.

ĺım
x→+∞

F ∗ φn(x) = ĺım
x→+∞

∫
F (x− z)φn(z)dz =

∫
φn(z)dz = 1.
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C.3. Aproximación de funciones de distribución por suavizado

Para cada n ∈ N, sea Pn la única probabilidad en R con función de distribución Fn.
Se acaba de probar que la sucesión {Pn}∞n=1 converge en distribución hacia P

Definición C.3.2. Sea µ una probabilidad en (R, β). Sea φ una función definida
en R no negativa, con soporte compacto y tal que

∫
φ = 1. La convolución de µ con

φn es la medida µ ∗ φ definida por:

(µ ∗ φ)(A) =
∫
R

(∫
R
XA(x+ y)φn(y) dy

)
dµ(x),

para cualquier conjunto medible A ⊆ R.

Proposición C.3.3. Sea µ una probabilidad en (R, β) con función de distribución
F . Sea φ una función definida en R no negativa, con soporte compacto tal que∫
φ = 1. Entonces, la función de distribución de la medida µ ∗ φ es F ∗ φ.

Demostración. Si t ∈ R,

µ ∗ φ((−∞, t]) =

∫
R

(∫
R
X(−∞,t](x+ y)φ(y) dy

)
dµ(x).

Por Fubini (ambas funciones están acotadas), se puede cambiar el orden de integra-
ción.

µ ∗ φ((−∞, t]) =

∫
R

(∫
R
X(−∞,t](x+ y)dµ(x)

)
φ(y) dy.

Desarrollando la primera integral,∫
R
X(−∞,t](x+ y)dµ(x) = µ ({x : x+ y ≤ t}) = µ ((−∞, t− y]) = F (t− y).

Por lo tanto,

µ ∗ φ((−∞, t]) =

∫
R
F (t− y)φ(y) dy = F ∗ φ(t).

Si P es una probabilidad en R, el último resultado de este apéndice garantiza
que, escogiendo de forma adecuada la sucesión regularizante, se puede construir una
sucesión de probabilidades con densidad que converjan débilmente hacia P y cuyos
momentos de orden 2 también converjan.

Proposición C.3.4. Sea P una probabilidad en (R, β) con momento de orden 2
finito. Sea ρ ∈ C∞

c (R) una función no negativa, simétrica, con soporte compacto y
tal que

∫
ρ = 1. Para cada n ∈ N, se define

ρn(x) := nρ(nx), ∀x ∈ R.

Entonces la sucesión de medidas regularizadas por convolución Pn := P ∗ ρn verifica

ĺım
n→∞

∫
R
x2 dPn(x) =

∫
R
x2 dP (x).
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Apéndice C. Convergencia débil de probabilidades

Demostración. Por la definición de convolución, se tiene que:∫
x2 dPn(x) =

∫
R

(∫
R
(x+ y)2ρn(y) dy

)
dP (x).

Entonces,∫
x2 dPn(x)

=

∫
x2 dP (x) + 2

∫
x ·

(∫
yρn(y) dy

)
dP (x) +

∫ (∫
y2ρn(y) dy

)
dP (x).

Como ρ es simétrica, se tiene
∫
yρn(y)dy = 0 para todo n ∈ N. Además, por un

cambio de variable, ∫
y2ρn(y) dy =

1

n2

∫
z2ρ(z) dz =

C

n2
,

donde C :=
∫
z2ρ(z)dz. Por lo tanto,∫

x2 dPn(x) =

∫
x2 dP (x) +

C

n2
.

Por último, cuando n tiende a ∞,

ĺım
n→∞

∫
x2 dPn(x) =

∫
x2 dP (x).
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Apéndice D

Convexidad

D.1. Teorema de Rademacher

En el problema del transporte óptimo, estudiado en el caṕıtulo 3, se trabaja con
funciones convexas. Por eso, se necesitan los siguientes resultados, sus demostracio-
nes se pueden encontrar en [12], concretamente en la sección 3.1.

Definición D.1.1. Una función f : Rd → R∪{+∞} es inferiormente semicontinua
si, fijado x0 ∈ Rd, para toda sucesión {xn}∞n=1 tal que ĺım

n→∞
xn = x0 se cumple que

ĺım ı́nf
n→∞

f(xn) ≥ f(x0).

Definición D.1.2. f : U ⊂ Rd → Rm es Lipschitz si existe una constante L > 0 tal
que

∥f(x)− f(y)∥ ≤ L∥x− y∥, para todo x, y ∈ U.

Proposición D.1.3. Si la función φ : Rn → R ∪ {+∞} es convexa, entonces es
inferiormente semicontinua en los puntos del interior de su dominio. Es decir, si
x ∈ Int(Domφ), entonces, para toda sucesión {xn}∞n=1 que converge a x, se tiene que

ĺım inf
n→∞

φ(xn) ≥ φ(x).

Además, φ es localmente Lipschitz en los puntos del interior de su dominio, es
decir, para cada punto x ∈ Int(Domφ), existe un entorno suyo U ⊂ Rd tal que φ es
Lipschitz en U .

Teorema D.1.4 (Teorema de Rademacher). Sea f : Rn → Rm una función local-
mente Lipschitz. Entonces, f es diferenciable para casi todo punto.

Corolario D.1.5. Una función φ : Rn → R convexa es diferenciable salvo en un
conjunto de medida nula.

D.2. Segunda forma geométrica del teorema de

Hahn-Banach

En un espacio vectorial normado, para separar convexos por hiperplanos, se
razona a partir del teorema de Hahn-Banach, visto en la asignatura de Introducción
a los Espacios de Funciones del grado. Este resultado se puede encontrar en [7].
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Teorema D.2.1. Sean A, B convexos no vaćıos disjuntos del espacio vectorial nor-
mado E, tales que A es cerrado y B es compacto. Existe ϕ ∈ E ′, y a, b ∈ R tales
que si x ∈ A e y ∈ B, se tiene que

ϕ(x) ≤ a < b ≤ ϕ(y).

D.3. Dualidad de Fencher-Rockafellar

Para demostrar la dualidad de Kantorovich (teorema 3.2.1), imprescindible para
el estudio del problema de transporte óptimo asociado al coste cuadrático, se usa
un resultado de dualidad de funcionales convexos. Se demuestra a partir de la se-
gunda forma geométrica del teorema de Hahn Banach; se puede encontrar en [7], en
concreto, el teorema I.11.

Definición D.3.1. Sea E un espacio vectorial normado y E ′ su dual topológico. Sea
Θ una función convexa en E con valores en R ∪ {+∞}. Se define su transformada
de Legendre-Fenchel Θ∗ : E ′ → R ∪ {+∞} como:

Θ∗(T ) = sup
u∈E

{Tu−Θ(u)}, ∀T ∈ E ′.

Teorema D.3.2 (Dualidad de Fencher-Rockafellar). Sea E un espacio vectorial
normado y E ′ su dual topológico. Sean Θ y Ξ dos funciones convexas en E con
valores en R ∪ {+∞}. Se supone que existe v0 ∈ E tal que Θ es continuo en v0 y,
además,

Θ(v0) < +∞, Ξ(v0) < +∞.

Entonces,
ı́nf
u∈E

{Θ(u) + Ξ(u)} = sup
π∈E′

{−Θ∗(−T )− Ξ(T )}.
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Apéndice E

Convergencia débil de funciones

En el caṕıtulo 3, concretamente en la demostración del teorema 3.2.13, se necesita
trabajar con sucesiones de funciones en L1(µ) que convergen débilmente, es decir,
en el dual. En este apéndice se da la definición y algunas propiedades, que se pueden
encontrar en el caṕıtulo 6 de [13].

Definición E.0.1. Sea µ una probabilidad en (Rd, βd). Se dice que una sucesión
{fn}∞n=1 ⊂ L1(µ) converge débilmente a f ∈ L1(µ) si converge en el dual de L1(µ).
En otras palabras, si para toda función ϕ ∈ L∞(Rd) se cumple que

ĺım
n→∞

∫
fn(x)ϕ(x) dµ(x) =

∫
f(x)ϕ(x) dµ(x).

Esta convergencia es más débil que la convergencia en norma. En la demostración
de algunos teoremas del trabajo, se usa que la convergencia débil preserva el orden;
esta propiedad se prueba a partir del siguiente lema.

Lema E.0.2. Sea µ una probabilidad en (Rd, βd). Sea f ∈ L1(µ). Si∫
f(x)ϕ(x) dµ(x) ≥ 0, ∀ϕ ∈ L∞(Rd), ϕ ≥ 0,

entonces f(x) ≥ 0, µ−casi seguro.

Teorema E.0.3. Sea µ una probabilidad en (Rd, βd). Sea {fn}∞n=1 ⊂ L1(µ) una
sucesión que converge débilmente a f ∈ L1(µ). Sea g ∈ L1(Rd) tal que, para todo
n ∈ N, fn(x) ≥ g(x) para casi todo x ∈ Rd, con respecto a la probabilidad µ. Entonces
f(x) ≥ g(x) para casi todo x ∈ Rd.

E.1. Integrabilidad uniforme

Si se tiene una sucesión de funciones en L1(µ), para garantizar que existe alguna
subsucesión convergente débilmente, no es suficiente con que la sucesión esté acotada
con la norma de L1(µ), se necesitan más condiciones. Por esta razón, se introduce
el concepto de integrabilidad uniforme.

Definición E.1.1. Sea (X ,M, µ) un espacio medible. La familia de funciones F ⊂
L1(µ) es uniformemente integrable si:
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Apéndice E. Convergencia débil de funciones

sup
f∈F

∫
Rd |f(x)| dµ(x) <∞.

Para todo ε > 0, existe δ > 0 tal que, para todo conjunto E ⊂ βd con µ(E) < δ,
se cumple:

sup
f∈F

∫
E

|f(x)| dµ(x) < ε.

Teorema E.1.2 (Dunford–Pettis). Sea µ una medida en Rd y {fn}∞n=1 ⊂ L1(µ) una
sucesión de funciones uniformemente integrable. Entonces, existe una subsucesión
{fnk

}∞k=1 y una función f ∈ L1(µ) tal que {fnk
}∞k=1 converge débilmente a f .

La prueba de este teorema se puede ver en [8], teorema 4.30. Por último, se
enuncia un resultado que se deduce del teorema de Vitali. Establece condiciones
para garantizar cuándo hay convergencia en norma p, con p ≥ 1, y se usa para
probar una caracterización de la convergencia con la distancia de Wasserstein, en
3.3.3. Se puede encontrar en [19], teorema 5.5.

Teorema E.1.3 (Vitali). Sea {Xn}n una sucesión de vectores aleatorios en Rd que
converge en probabilidad hacia X. Entonces, para p ≥ 1,

ĺım
n→∞

E∥Xn∥p = E∥X∥p <∞

si, y solo si,
ĺım
n→∞

∥Xn −X∥p = 0.
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Apéndice F

Desintegración de medidas

Para demostrar el lema de pegado, en 3.3.1, se necesita recurrir a la desintegra-
ción de medidas. Los resultados que se enuncian a continuación se pueden encontrar
en [11].

Proposición F.0.1. Sean (X1,M1) y (X2,M2) dos espacios medibles. Sea P1 una
probabilidad en (X1,M1). Si K : X1 ×M2 → R es una función tal que

Para cada x ∈ X1, K(x, ·) es una probabilidad en (X2,M2).

x 7→ K(x,B) es medible ∀B ∈ M2.

Entonces,

π(E) =

∫
X1

K(x,Ex) dP1(x), ∀E ∈ M1 ⊗M2.

define una probabilidad en (X1 ×X2,M1 ⊗M2).

Teorema F.0.2. Sean (X1,M1) y (X2,M2) dos espacios medibles. Además, se supo-
ne que X1 y X2 son espacios métricos, completos y separables. Sea π una probabilidad
en (X1 ×X2,M1 ⊗M2) cuya marginal sobre X1 es P1. Entonces existe una función
K : X1 ×M2 → R de forma que

Para cada x ∈ X1, K(x, ·) es una probabilidad en (X2,M2).

x 7→ K(x,B) es medible ∀B ∈ M2.

que verifica

π(E) =

∫
X1

K(x,Ex) dP1(x), ∀E ∈ M1 ⊗M2.
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