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Resumen

Este TFG estd motivado por un algoritmo propuesto por H. Inouzhe, cuyo ob-
jetivo es determinar cotas para la distancia en variacion total y estimar la parte
comun entre dos distribuciones, con vistas a construir algoritmos de clasificaciéon
mas justos. Se estudian las herramientas tedricas necesarias para su desarrollo, in-
cluyendo formulaciones equivalentes del modelo de mezcla de probabilidades, pro-
piedades topoldgicas de los conjuntos de recortes y el andlisis de métricas como las

de Wasserstein y las basadas en la discrepancia media promedio.

Abstract

This work is motivated by an algorithm proposed by H. Inouzhe, aimed at de-
termining bounds for the total variation distance and estimating the common part
between two distributions, with a view toward constructing fairer classification al-
gorithms. The necessary theoretical tools for its development are studied, including
equivalent formulations of the probabilistic mixture model, topological properties
of trimming sets, and the analysis of metrics such as the Wasserstein distance and

those based on the maximum mean discrepancy.
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Introduccion

El objetivo principal en Aprendizaje Automatico es la obtencion de reglas para
predecir una variable de interés, Y, denominada de forma genérica como “etiqueta”,
a partir de otras variables mas facilmente medibles, X, a las que se suele llamar
“atributos”. Desde un punto de vista formal, sea X el espacio de los atributos e )
el espacio de las etiquetas. Se quiere determinar una funciéon h : X — ) tal que
Y = h(X) sea una prediccién de la variable respuesta Y, para cada X € X.

Un caso particular es el de la clasificacién binaria, donde el conjunto de posibles
etiquetas es ) = {—1,1}. Se trata de asignar a cada individuo de la poblacién una
de estas dos clases, a partir de ciertas variables aleatorias conocidas (los atributos).
Para ello, se busca la regla de decisién ¥ := h(z) que acierte la clase del individuo las
maximas veces posibles, es decir, que minimice la probabilidad de fallo P(Y £Y).

Muchos de los algoritmos de prediccion aprenden de un conjunto de datos de los
que se conocen tanto los atributos como la etiqueta:

{(z1,11), (z2,92)s oo, (Tn,ym) }, 1€ {L,...,n}.

A partir de esta informacién (datos de entrenamiento), el modelo ajusta una regla
que le permite predecir la clase {—1,1} de nuevos individuos, para los cuales solo se
observan los atributos x, pero no se conoce la etiqueta y. Esto es lo que se denomina
Aprendizaje Supervisado.

El desarrollo de algoritmos de clasificacion es uno de los problemas mas actuales.
Se usan en medicina para diagnosticar enfermedades a partir de datos de otros pa-
cientes anteriores, en ciberseguridad para detectar correos electronicos maliciosos, en
el sector automovilistico para hacer coches més seguros a partir del reconocimiento
de imagenes, en finanzas para evaluar el riesgo de que una persona no devuelva un
préstamo bancario, etc. En un futuro, practicamente se tomaran todas las decisio-
nes a partir de algoritmos. Por esta razon, surgen nuevos conflictos, principalmente,
relacionados con la ética.

Por ejemplo, se considera un algoritmo para predecir si un alumno de bachillerato
estudiard una carrera STEM o no. Si ahora hay menos mujeres que hombres con
puestos de trabajo STEM, y el algoritmo tiene como conjunto de entrenamiento
datos actuales, podria relacionar a las mujeres con carreras que no sean de ciencias.
Seria un algoritmo injusto, en el que la variable sexo tendria bastante peso para
determinar la carrera de futuros estudiantes. Para que el algoritmo no carezca de
ética, el sexo de un estudiante no debe influir en la regla de decisién. Esto es solo un
ejemplo ilustrativo de un problema real en inteligencia artificial: detectar, corregir
y prevenir sesgos causados por el uso de algoritmos.
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Introduccién

El aprendizaje “justo” se plantea en relacién con situaciones en las que, ademas
de los atributos admisibles, hay otras variables involucradas, S, cuyo efecto sobre la
prediccion se desea limitar o eliminar. A estas variables se las conoce como “atributos
protegidos”.

Para limitar la influencia de los atributos protegidos en la clasificacion de los
individuos no es suficiente con determinar una regla de clasificacién que no tenga
en cuenta esas variables, ya que probablemente los atributos protegidos S no sean
independientes de otros atributos X.

Formalizando el problema, se denota por S al espacio de los atributos protegidos.
Si se tiene un atributo protegido binario, entonces S = {0, 1}. La ley de probabilidad
a partir de la cual estan generados los datos del grupo S = 0 es posiblemente
distinta a la ley de los datos del grupo S = 1. Se denota P, := L(X|S = 0) y
Py := L(X|S = 1). En el caso general, un atributo protegido va a dividir a la
poblacién en varios subgrupos, y la ley de probabilidad que genera los datos de cada
subgrupo sera, posiblemente, distinta para cada uno de ellos.

El cambio de marco de trabajo debido a la inclusién de atributos protegidos
en el problema produce cierto conflicto de intereses en el problema de Aprendizaje
Automatico. Por un lado, se busca garantizar que las reglas obtenidas produzcan
resultados similares para individuos con caracteristicas similares. Por otro lado, las
decisiones no deberian, globalmente, estar influenciadas por los atributos que se
tratan de proteger. Frecuentemente, el aprendizaje involucra casos con diferentes
atributos y también con diferentes atributos protegidos. En esta situacién, el entre-
namiento de reglas resulta problematico.

Un primer paso necesario para entrenar reglas adecuadas seria la busqueda de
subgrupos comparables entre las poblaciones con diferente atributo protegido. Asi,
se podran entrenar reglas de clasificacion sobre datos de estos subgrupos, que seran
éticas. Con esta idea en mente, se busca escribir la ley de probabilidad de cada grupo
con diferente atributo protegido como la mezcla de una probabilidad comin a todos
ellos y de otra diferente para cada grupo:

P=(01-a)Ph+aR;, i={1,2,...n}, a€0,1]. (1)

Ademas, el nivel al que dos poblaciones comparten una parte comun se puede des-
cribir en términos de la distancia en variacién total. Cuanto menor sea la distancia
en variaciéon total entre dos probabilidades P, y P, mas peso tendra la probabilidad
comun Fjy: las distribuciones de los datos de cada grupo seran similares.

Este TFG esta motivado por la propuesta de H. Inouzhe de un algoritmo que
persigue obtener cotas probables para la distancia en variacién total y una estimacion
consistente de la parte comtun entre dos probabilidades. Las cotas se buscan dentro
de una particién fija P = {ap = 0 < a1 < g < ... < a; = 1} del intervalo [0, 1]. Este
algoritmo consta de tres pasos, descritos en la seccién[1.3.2] Se resumen brevemente:

1. Fijar a; € P (se empieza fijando a; = a).
2. Calcular los recortes 6ptimos para una métrica d entre probabilidades:

(P, Qa;) = argmin d(R,YS5),
RGRai(Pl)
SERa, (P2)



Introduccion

donde R,(P;) := {R probabillidad : R(A) < ==Pj(A), VA medible} es el
conjunto de recortes de nivel o de P;, con j =1, 2.
3. Realizar el test de hipdtesis nula

H():Pai:@ai

Si se rechaza la hipdtesis nula, se cambia a; por a;41 y se vuelve a repetir el algoritmo.
Si no se rechaza la hipdtesis nula, entonces dry (P, ) < «; y es la mejor cota que
se ha podido encontrar para la distancia en variacién total entre P; y P,, dentro de
los valores de la particién P. Ademads, P,, = (),, es la estimacion de la parte comun
de ambas probabilidades.

Este TFG esta relacionado con el trabajo que estoy desarrollando a través de la
beca de colaboracion con el Departamento de Estadistica e Investigacion Operati-
va. Se ha dedicado al estudio de las herramientas matemaéticas relacionadas con los
distintos aspectos involucrados en el algoritmo. No se aborda el desarrollo del algo-
ritmo (ni tedrico, ni computacional); este tema queda como trabajo futuro, dentro
del proyecto, mas grande, de la beca de colaboracion.

Por eso, se dedica el capitulo [1| a estudiar formulaciones equivalentes al modelo
de mezcla descrito en la ecuacion [} Ese capitulo permitird reescribir el problema
de mezcla en términos de otro problema de distancia entre conjuntos de recorte. La
métrica elegida deberia hacer que los conjuntos de recorte tuvieran buenas propie-
dades topologicas, garantizando, por ejemplo, la existencia de minimizadores. Las
métricas de Wasserstein, asociadas al transporte 6ptimo, resultan adecuadas y por
ello se les dedica el capitulo [3] Se estudia la existencia de minimizadores en las
versiones de Kantorovich y de Monge y las propiedades de la métrica de Wassers-
tein asociada. Se estudian también las propiedades topoldgicas de los conjuntos de
recortes respecto de esta métrica.

Los problemas computacionales asociados al problema de transporte 6ptimo
clasico se resuelven con el problema entrépico. Por eso, se ha dedicado un capitulo
final al estudio de este problema entrépico.

Una vez estimados los recortes més préximos (respecto a la métrica de Wassers-
tein) se trata de comparar esos dos recortes. Para ello, resulta conveniente emplear
otra métrica. Las métricas basadas en la discrepancia media promedio parecen una
buena opcién y por ello se dedica el capitulo 2/ del TFG a ellas. La estimacion de
la distancia de Wasserstein se ve afectada por la maldicién de la dimensionalidad
mientras que las métricas MMD parecen ser mas resistentes a este problema, esta es
una razon por la que estas métricas parecen mas adecuadas que la de Wasserstein.
En todo caso, estudiar este aspecto de forma mas detallada se plantea como trabajo
futuro.






Capitulo 1

Modelos de mezcla: recortes y
métricas

1.1. Recortes de una probabilidad

Un método estadistico para predecir resultados en funcién de ciertas variables
no puede ser sensible a pequenas modificaciones de los datos. Ese es el principio
motivador de la “Estadistica Robusta”, desarrollada por P. Huber. En este contexto
son interesantes los “recortes” de una probabilidad.

En un espacio finito X = {1, s, ..., 2, }, un recorte de una probabilidad P de
nivel a € [0, 1) es otra probabilidad @ cuya masa estd concentrada en los mismos
puntos que la primera, pero con pesos ligeramente modificados. Es decir, si P =

n n

> Bibs,, entonces Q = > w;d,,, con 0 < (1 —a)w; < f;, para cada i € {1,...n}.

- Un ejemplo précticoZ eil el que se ilustra la utilidad de los recortes es el siguiente:
Si {Xy, X, ..., X,,} son n variables aleatorias independientes de una determinada
distribucion P, una aproximacion a esa ley de probabilidad es la empirica asociada

a la muestra:
1 n
i—

Para dar menos peso a las observaciones atipicas, se puede recortar P, de la siguiente
forma. Sea a € [0, 1) tal que an € N,

1 [n(1-3)]
P =—— O
e X

i=|ne 41

Con este recorte, se ordenan las observaciones {X(1y, X(2), ..., X(5) }. El pardmetro o
indica el porcentaje de observaciones que se quieren eliminar (las més alejadas de
los valores centrales). El peso total que tenian esas observaciones atipicas se divide
entre las n(1 — «) observaciones restantes.

En esta seccién, se definen los entornos de contaminacion de una probabilidad,
que fueron propuestos por P. Huber. También se generaliza la definicién de proba-
bilidad recortada (que se ha definido inicamente para el caso discreto). Los recortes
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Capitulo 1. Modelos de mezcla: recortes y métricas

de una probabilidad son una propuesta de Cuesta, Matran y coautores. Mas detalles
sobre estos aspectos se pueden encontrar en [3]. Ambos conceptos estan relacionados
con los modelos de mezcla de probabilidades y la parte comtn entre diferentes leyes
de probabilidad. Por esta razon, su estudio es clave si se quieren encontrar subgrupos
comparables en las poblaciones con diferente atributo protegido.

Los resultados que se presentan a continuacién estan en su mayor parte en [3],
se han adaptado o completado las demostraciones.

Definicién 1.1.1. Sea X' un espacio con una o-dlgebra M y sea € € [0,1). Sea P,
una probabilidad en este espacio. Se define el entorno de contaminacion de nivel €
de Py como el conjunto de probabilidades:

ve(Py) :=={(1 —e)Py+eR: R probabilidad en (X, M)}.
La definicién es correcta: Si Py, P, son probabilidades en (X, M), entonces
(1 — €)P1 + €P2

es probabilidad en (X, M) (es medida positiva por ser suma de medidas positivas y
el peso total es 1).

La idea de entorno de contaminacion es clara: es el conjunto de probabilidades
que se definen a partir de pequenas modificaciones de F,. Por eso, tiene sentido
pensar que “cuanto mas se permita modificar F,, mas grande sera el conjunto de
probabilidades que forman el entorno de contaminacion”. Esta idea se formaliza en
la siguiente proposicion.

Proposicién 1.1.2. Sea Py una probabilidad en un espacio medible (X, M). Los
entornos de contaminacion, para cada € € [0,1), son crecientes:

= vo(Fo) = {Fo}.
n Sean e1,e9 € (0,1) tales que €1 < g9, entonces ve, (Py) C Ve, ().

Demostracion. Se supone Q € v., (P), es decir, Q = (1 — 1) Py + 1R con R proba-
bilidad. Entonces,

Q:(1—82)P0+[(€2—€1)P0+€1R]:(1—62)P0+€2 (1—§)P0+§R
2 2

—(1-e)Py + &R, R=(1- ?)PO + i—lR es probabilidad en (X, M).
2 2

Por lo tanto, @ € v, (Fp). O

Para la siguiente definicién, se utilizan los conceptos de probabilidad absolu-
tamente continua y derivada de Radon-Nikodym, que se recuerdan en el apéndice

Al

Definicién 1.1.3. Sean o € [0,1) y P una probabilidad en un espacio medible
(X, M). El conjunto de recortes de P de nivel a (denotado por R, (P)) es el conjunto
de probabilidades en (X, M) absolutamente continuas respecto de P cuya derivada
de Radon-Nikodym es menor o igual que ﬁ P-casi sequro, es decir,

Q0
dP ~ 1 -«

Ro(P) ={Q < P: P-c.s.}.
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1.1. Recortes de una probabilidad

Es facil comprobar que la definicién de recorte de una probabilidad coincide con
la dada previamente para el caso discreto. Al recortar una probabilidad se modifica
ligeramente la probabilidad, sin dar masa a conjuntos que antes no la tenian y sin
aumentar excesivamente la probabilidad de cualquier conjunto. Se tiene una carac-
terizacion de los recortes de una probabilidad, dada por la siguiente proposicion.

Proposicién 1.1.4. Sean P y Q probabilidades en (X, M) y o € [0,1). Son equi-
valentes:

1. Q € Ro(P).

2. Para todo conjunto A € M,

Q(A) < —

T 1-a«

P(A).
Ademds, si (X, M) = (R%,5%), las condiciones 1 y 2 son equivalentes también a

1
/fdQ < 1—/fdP, Vf > 0 continua y acotada.
-«

Demostracion. Si @ € R.(P), entonces () es absolutamente continua respecto de P
y se verifica:

dQ 1 1
A)= [ —=dP < dP = P(A).
@A) = /dP /Al—a 1—« (4)
Reciprocamente, si Q(A) < 2=P(A), para todo A € M, Q es absolutamente con-

tinua respecto de P. Ademsds, si el conjunto A = { dQ > -} € M tuviese probabi-
lidad P estrictamente positiva, entonces

1 aQ 1 1
1—aP(A) = QM) = dP /A1—adp_ 1—aP(A)‘

Se llega a un absurdo. Por lo tanto, P(A) =0y 5 dQ < 1 P-cs.

Por tltimo, si (X, M) = (R%, 39), entonces las probabﬂldades son regulares (ver
apéndice . Se supone que se tiene 3. Sea U un abierto en X, se considera la
sucesion de funciones continuas y acotadas definidas de la siguiente forma:

fo(z) = min{1,nd(z,U°)}, VneN.

Como U* es cerrado, d(z,U¢) = 0siy solo si z ¢ U. Es facil ver que {f,}72, es una
sucesiéon creciente que converge puntualmente a la funcién indicadora de U. Por el
teorema de la convergencia monotona,

d
U) = / XpdQ = lim / £,dQ = Tim / fngdp
1 1 |

< I AP = —— | xydP =
_n%ool—a/f 1—0{/ v 1l -«

P(U).

lim

13



Capitulo 1. Modelos de mezcla: recortes y métricas

Por la regularidad de las probabilidades en R%, si A € 5%, se tiene que

Q(A) =mf{Q(U) : E CU, U abierto}

1
< . inf{P(U) : E C U, U abierto} = P(A).

-« 1l—«

La implicacién contraria es facil usando la regla de la cadena (ver |A.0.3). Si @ €
Ro(P), para cualquier funcién f positiva, continua y acotada, se tiene que:

JECE /f;l—gdps — [ sar.

A continuacion, se relaciona el conjunto de recortes con el entorno de contami-
nacion.

]

Proposicién 1.1.5. Sea a € [0,1). Sean P, QQ dos probabilidades en (X, M). En-
tonces,
QERL(P) & Pev(Q).

Demostracion. Sea QQ € R, (P), es decir, () es una probabilidad tal que
(1—-a)Q(A) < P(A), VAe M.

Se define )
R::a(P—(l—a)Q).
R es medida, por ser suma de medidas, y positiva, por la hipétesis. Ademas,
1 1
R(X) =~ (P(X) ~ (1= a)Q(X)) = (1~ (1 ~a)) = 1.
Entonces R es una probabilidad y se cumple P = (1 — «)@ + aR. Queda probado

que P € 1,(Q).
Reciprocamente, si P € v,(Q), existe una probabilidad R en (X, M) tal que

P(A)=(1-a)Q(A) +aR(4), VAe M.

Entonces P(A) > (1 — @)Q(A). Por la caracterizacién de recortes vista en [1.1.4]
Q € Ra(P). O

1.2. Distancia en variacion total entre dos proba-
bilidades

Primero, se recuerda la definicién de distancia en variacién total.

Definicién 1.2.1. Sean P, y P, probabilidades en (X, M). Se define la distancia
en variacion total entre Py y Py como:

dTV(Pla PQ) = juj{)/t |P1(A) — PQ(A>|
S

14



1.2. Distancia en variacién total entre dos probabilidades

Si P, y P, son probabilidades en un espacio (X, M), siempre existe otra medida
positiva p en ese mismo espacio tal que P; y P, son absolutamente continuas respecto
de p. Por ejemplo, = P, + Ps.

En el siguiente lema, se da una caracterizaciéon de la distancia en variacién total
en términos de la derivada de Radon-Nikodym de P, y P, respecto de p.

Si (X, M) = (R? B%) y las probabilidades P, y P, tienen funcién de densidad,
se trata de un caso particular de lo que se acaba de explicar, tomando y como la
medida de Lebesgue.

Lema 1.2.2. Sean Py y P, probabilidades en (X, M) y u una medida positiva en
ese espacio tal que Py y Py son absolutamente continuas respecto de . Parai=1,2
se denota por f; a la derivada de Radon-Nikodym de P; respecto de . Entonces,

drv(Pup) =1~ [win(Gi, )i =5 [ 15~ ol

Demostracion. Sea Ay = {x € X : fi(z) > fo(x)}. Para cualquier conjunto A € X,

Py(4) — Py(A) = / (i = fo)dp = / (i — fo)dp + / (i — f2)d.

NAg ANAY

Teniendo en cuenta que [ mac (1 — fa)dp <0, se puede acotar esa diferencia de
0
probabilidades superiormente:

Pi(A) — Py(A) < /

ANAg

(fi = fo)dp < /A (fi = fa)dpu = Pi(Ag) — Pa(Ay).

Anélogamente, se tiene que
—(P1(Ag) — Pa(Ag)) = Pi(AF) — Po(AF) < Pi(A) — Py(A).

Como ambas desigualdades se verifican para cualquier conjunto A € X, tomando
superiores, se deduce que

drv(P1, Py) = Pi(Ag) — Pa(Ag) = /A (fi = f2)dp = /(fl — f2)+dp.

Usando la igualdad (f; — f2)+ = fi — min(f, f2), se concluye que

dTV(P17 PQ) =1- /min(fl, fg)d[,b

Por otro lado,
1= [ fdu= [ pedn=o= [(r- o= | (= fou+ / = L
Entonces,
Jth=ta-au=— | = S = / (h — fn = [t~ £dn

15



Capitulo 1. Modelos de mezcla: recortes y métricas

J15i= pldu= [ (5= et [ (= f)du=2 [ (5~ £

Con esta igualdad, es claro que

dry (P, P2) = /(fl — fo)rdp = %/’fl — faldp.

]

Volviendo al problema del aprendizaje justo, si un atributo protegido binario
divide a la poblacién en dos subgrupos, cada uno de ellos tendré una distribuciéon
de probabilidad diferente (P, y P,). La distancia en variacién total mide cudnto se
parecen esas dos probabilidades.

Como ya se ha explicado, para entrenar reglas de clasificacion justas, el primer
paso es buscar la parte comun F, entre esas dos probabilidades. Para ello, se busca
representar, para cierto « € (0,1), P, y P> de la siguiente forma:

Pi:(l—a)Po—f—O[RZ‘, 22{1,2}

para ciertas probabilidades Ry y Rs.

En otras palabras, se quiere determinar una probabilidad Py tal que P, y P
pertenezcan al entorno de contaminacién de Py, para cierto nivel o € (0, 1). O, equi-
valentemente, encontrar una probabilidad Py que pertenezca al conjunto de recortes
de P y de P,, del mismo nivel o € (0,1). Ademds, cuanto més pequeno sea «, mas
se pareceran las probabilidades P, y P,. Por lo tanto, el objetivo es encontrar el
menor « € (0,1) que verifique esa condicién.

El dltimo resultado de esta seccién, que se puede encontrar en [2], relaciona
los recortes de una probabilidad con la distancia en variacion total. La idea es la
siguiente: cuanto menor es la distancia en variacion total entre las probabilidades
P, y P, mas peso tiene la probabilidad comun F.

Proposicién 1.2.3. Sean P, y P, dos probabilidades en (X, M) y sea a € [0,1).
Los siguientes enunciados son equivalentes:

1. Ezxiste una probabilidad Py en X tal que Py y P pertenecen al entorno de
contaminacion de Py de nivel . Es decir,

P =(1—a)Py+ aRy,
Py=(1—a)Py+ aRy,
con Ry y Ry probabilidades en X .
2. Los conjuntos de recortes de nivel o de Py y de Py tienen interseccion no vacia.
3. La distancia en variacion total entre Py y Py es menor o igual que .

Demostracion. Se ha probado en que los dos primeros puntos son equivalentes,
hay que probar la equivalencia con el tercero.

Si Py, Py € v,(By), entonces |Py(A) — Py(A)| = |a(Ri(A) — Ry(A))| < a, para
todo A € M. Se concluye que dry (P, Py) < a.
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Para probar el reciproco, hay que probar que existe una probabilidad F, tal que
Py € R,(P1) N Ry(P,). Sea p una medida en (X, M) con P, < p, Py < p. Por
ejemplo, p = P + P». Y sea
db;
dp’

fi= i=1,2.

Por hipétesis (y usando la caracterizacién de la distancia en variacién total dada en

el lema [1.2.2)),
dry (P, Py) =1— /ml’n(fl,fg)d,u <a&e /min(fl,fg)du >1—aq.

Se considera la funcién fj := % y sea dFPy := fodu. Es decir,

:/fodu, VA € M.
A

Asi definida, Py es una medida positiva que cumple que Py(X) = % =1.

Es decir, es una probabilidad. Ademads, para i € {1,2}:

1
FPy(A) = y /min,d<—/l_
Se ha probado la existencia de una probabilidad Py € R4 (P1) N R (FP2). O

Pi(A).

La proposiciéon que se acaba de enunciar es de gran utilidad. Sirve para establecer
cotas para la distancia en variacion total entre dos probabilidades P, y P». Si para
un nivel a € [0, 1) se encuentra un elemento comin a R, (P;) y Ra(F2), entonces la
distancia en variacion total entre P; y P, estd acotada por «.

1.3. Estimacion de la parte comin de dos conjun-
tos de datos

1.3.1. Maldicién de la dimensionalidad

La demostracién de la proposicion [I.2.3] es constructiva, es decir, da un método
para definir la parte comun Fy entre dos probabilidades P; y P». De esta forma, se
tiene caracterizada la parte comin de dos conjuntos de datos.

Si, por ejemplo, P, y P, son dos probabilidades en (R?, 39) que tienen densidades
f1, [, respectivamente, se ha visto en el lema que

dTV(Pla PQ) =1- /min(fl, fg)dl‘

También se ha visto, en [1.2.3, que la densidad de la parte comin Fy es el minimo
de ambas densidades normalizado. Es decir, si se define

1 .
Py(A) = Fmin(fy, o) /Amln(fl,fg)dac, VAe X,
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entonces Py € Ry(Pr) N Ro(Py), con o = dpy (Py, P) =1 — [min(f1, f2)dx.

Por lo tanto, estimando las densidades f; y fs, se tiene una estimacion de la
parte comun entre esas dos distribuciones y de su distancia en variacion total. Pero
esta estrategia no es la adecuada. El problema es que los estimadores de funciones
de densidad no son resistentes a lo que se conoce como “maldiciéon de la dimensio-
nalidad”.

Al aumentar la dimensién en la que se trabaja, los datos se dispersan tanto que se
vuelven dificiles de analizar. Los métodos que funcionan bien en pocas dimensiones
(como estimar densidades o distancias) se vuelven ineficaces. En esto consiste la
maldicién de la dimensionalidad. Si se estima la funcién de densidad a partir de
una muestra de tamano n, por ejemplo en los histogramas, estimadores kernel, etc.,
cuando la dimensién es muy alta, d > n, los datos estan muy separados entre si,
no cubren practicamente nada del espacio. Hay resultados teéricos que demuestran
que el mejor estimador posible de una densidad en R? comete un error de orden
n~% (4 para ciertas constantes a,b > 0, lo que demuestra que la precisién de los
estimadores se deteriora con d.

Por eso, hay que buscar otras alternativas para encontrar la parte comun a
dos conjuntos de datos. Los procedimientos que se proponen en este trabajo estan
basados en distancias entre probabilidades. En concreto, se estudia el problema del
transporte 6ptimo, con algunas variaciones, y la maxima discrepancia en media.

1.3.2. Estimacion de cotas para la distancia en variacién
total

Sea X C R? el espacio en el que toman valores los atributos (variables alea-
torias facilmente medibles que se usan para determinar una regla de clasificacion).
Sea S un atributo protegido binario, es decir, S € § = {0,1}. Se consideran dos
probabilidades en X':

Pi=L(X]|S=0), Q:=L(X|S=1).

H. Inouzhe propuso un procedimiento, alternativo a la estimacion de las funciones
de densidad, para estimar una cota « € [0,1] de la distancia en variacién total
entre Py (), vy determinar la parte comin F, a ambas probabilidades. Se explica a
continuacion:

Se considera una particién del intervalo [0, 1]:

P={ay=0<a <ay<..<a=1}
Al comienzo, se fija a = . El algoritmo consta de tres etapas:
1. Para a; € P fijo, la pregunta es si dry(P,Q) < «;. Se ha probado ya que
a es una cota para la distancia en variacion total entre P y @ si, y solo si,
Ro(P)NRL(Q) # 0. Por eso, el siguiente paso consiste en buscar el elemento

comun a los dos conjuntos de recortes. Esto es un problema de distancia é6ptima
recortada.
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2. Se considera una métrica d en una clase de probabilidades en R?. Se calculan
los recortes éptimos, definidos como:

(P,;, Qs,) := argmin d(R, S).
RERq,; (P)
S€Ra, (Q)

3. El tercer paso consiste en contrastar si P,, = (),,. Se hace este contraste con
un test de hipdtesis nula.
Hy : pai = Qai

Si se rechaza la hipotesis nula, entonces, dry (P, Q) > «;. Se aumenta el valor
de la cota o, cambiando «a; por a;41 y se vuelve a repetir el algoritmo. Si no se
rechaza la hip6tesis nula, entonces dry (P, Q) < «; y es la mejor cota que se ha
podido encontrar para la distancia en variaciéon total entre P y @), dentro de
los valores de la particion P. Ademas, P,, = (., es la parte comun de ambas
probabilidades.

Para concluir este capitulo, se detallan los pasos 2 y 3 del algoritmo, en los que se
centraran el resto de capitulos del trabajo:

En el paso 2, hay que escoger una distancia adecuada entre probabilidades en
R?. Una opcién es trabajar con la distancia de Wasserstein W, que se definird en el
capitulo [3 a partir del estudio del problema de transporte éptimo. Si Py @ tienen
momentos de orden 2 finitos, su distancia de Wasserstein viene dada por la siguiente
expresion:

1
, 2 2
WiP.Q) = _min ([ e—ylinte.y)”
donde se ha denotado por [](P, Q) al conjunto de probabilidades en R? x R? con
marginales P y (. En el articulo [1], se garantiza que existe un minimizador de
Wh(R, S), donde R € Ro(P)y S € Ra(Q). Es decir, existe (P,, Q,) probabilidades
tales que
(P, Qy) := argmin Wh(R, S).
RER(P)
SER(Q)
Por lo tanto, si existe un recorte Py comin a Py (), esa probabilidad minimiza la
distancia de Wasserstein entre ambos conjuntos de recortes (el minimo es 0) y se
tiene, entonces, que

(1 — Oé)P() + OéRl,
1

P
Q= (

- Oé)Po + CYRQ,

con Ry y Ry probabilidades.

En la practica, se calcula la distancia de Wasserstein entre R y S a partir de
aproximaciones empiricas. Para ello, se consideran aproximaciones discretas a esas
dos probabilidades y se calcula su respectiva distancia de Wasserstein. Formalizando
esta idea, sea n € N, y sea {z1,...x,} una muestra de la distribucién R. Anéloga-

mente, sea {y1,...y,} una muestra de la distribucién S. Se definen R, = £ 34, v
i=1
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n
= % Z . La distancia de Wasserstein entre R,, y S, viene dada por la siguiente

formula

1 1
Way(R,,, Sn) HHHZZ |zi—y;|*mi;, sujeto a m;; > 0; Z’/Tm = Ewm =

=1 j=1 =

Este procedimiento (aproximar la distancia por su versién empirica) no es valido
para la distancia en variacién total entre Ry .S, ya que si, por ejemplo, Ry S tienen
densidad y no estdn concentradas en conjuntos disjuntos, entonces dry(R,S) <
1; pero si se generan muestras de cualquier tamano de ambas probabilidades, no
tendran puntos en comun, lo que implica que

dT\/(Rn, Sn) = 1, Vn € N.

Por lo tanto, lim dry(R,,S,) = 1 # drv(R,S). En este aspecto, la distancia de
n—oo

Wasserstein presenta ventajas con respecto a la distancia en variacion total ya que

lim W, (R, Sn) = W,(R, S).
n—oo
Esto se demostrard en el capitulo [3| en concreto, en la seccién [3.3.1
Sin embargo, el célculo de la distancia de Wasserstein, con la férmula empirica,
tiene un coste computacional muy alto, del orden de O(n?®). Ademds, al calcularla
a partir de una muestra, se ve afectada por la maldicién de la dimensionalidad. Por
estas razones, se propone modificar la distancia de Wasserstein, contaminandola con
la divergencia de Kullback-Leibler (mide cudnto de diferentes son dos probabilida-
des). Este tema se trata en el capitulo , donde se estudia el coste de transporte
entrépico W .
Para cada ¢ > 0, si P y Q son probabilidades en R? con momentos de orden 2
finitos, se define

2
Wi(PQ) = nf {/de(x y) +eD(r|P 2 Q)|,

donde D(7|P ® @) es la divergencia de Kullback-Leibler de 7 respecto de la medida
producto P ® @), que también se definird en el capitulo [4]

El coste de transporte entrépico W . se calcula, gracias a una formulacion dual,
a través de una iteracion de punto fijo, que hace que sea menos costoso y que no se
vea afectado por la maldicién de la dimensionalidad.

En cuanto al paso 3 del método, el test que se usa para contrastar si P, = (), esta
basado en la mdxima discrepancia en media MM D, que se estudia en el capitulo [2]

MM DI[F,p,q| —sup/fdp /qu —supEf E,f),

donde p v ¢ son probabilidades en R? y F es una clase fija de funciones f : R? — R.
Bajo ciertas condiciones, la maxima discrepancia en media entre dos probabilidades
es 0 si, y solo si, las probabilidades son iguales; esto se formaliza en la seccién [2.3]
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1.3. Estimacién de la parte comin de dos conjuntos de datos

Se plantea un test en el que se estima la maxima discrepancia en media entre los
recortes P, y (), por una version muestral, calculable en la practica. En esa seccion
también se dan varias opciones de estimadores de esta métrica, que se calculan en
la practica tnicamente a partir de productos escalares de los datos de una muestra,
lo que resulta computacionalmente muy ventajoso.
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Capitulo 2

Métricas de maxima discrepancia
media

2.1. Contexto y Motivacion

En estadistica, es importante representar los datos en un espacio en el que sea
facil trabajar con ellos. Se ilustra esta idea con un ejemplo, en el contexto del Apren-
dizaje Automadtico (determinacién de reglas para predecir respuestas en funcién de
variables conocidas). En concreto, en la clasificacién binaria, la variable respuesta
Y, llamada etiqueta, solo puede tomar los valores 1 o —1, que determinan la clase
del individuo. El objetivo es predecir Y a partir de otras variables aleatorias X, los
atributos.

Para los datos dibujados en la grafica, se puede encontrar un clasificador lineal
(recta) que divide a los individuos de la clase verde de los rojos perfectamente (al
menos para el conjunto de entrenamiento).

4
N -~
— _ -
-
-
o _| -
— _--
-
-
0 -
-
N _--
x © - -
-
- — —
- —_ -_ ——
< -~ = -
- - = = —
- ——
- — = -
N - - = = -
-~ - _ -
- =
o —
T T T T T I
2 4 6 8 10 12
X1

Figura 2.1: Clasificacién lineal

En este ejemplo, se han generado 100 observaciones de la siguiente forma. Para
t=1,...,100:
X, =01-2Z)U; + Z;V;,
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donde
B(3) i.i.d.
U ~ N((3 0),1d) i.i.d.
V; ~ N((10,3),1d) i.i.d.
Es decir, los datos del grupo Y = 1 siguen una distribucién normal bivariante
centrada en el punto (3, 10) con matriz de covarianzas la identidad, mientras que los
individuos del grupo Y = —1 estan generados a partir de una distribucién normal

con media en (10, 3) y misma matriz de covarianzas.
No siempre es posible encontrar un hiperplano que separe los datos. Por ejemplo,
para ¢ = 1,...,100, se generan observaciones de la siguiente forma:

U Vi
Xi=(1-2) {mUE + E} + 2 {1001/3 +3+ E] !

donde

Vi~ U(=0,3,0—3) i.id.

o~ | — 1 S /’
A \ —_— — ] — -_— ,
o _| - — ] o | = /
= \ — - 1 -~ — ’
o — ' - B / © — - /,
' = = / = .
Q © - \\ _:_ = ,I Q © - : ,I
< Ve ) < = /,
1 N =y 1=
= E,’
N \\ ” N .
4
o — o —
I I I I I I I I I I I
-1.0 -05 0.0 0.5 1.0 00 02 04 06 08 1.0
X1 X1

Figura 2.2: Clasificacién mediante una regla cuadratica

Se puede ver en el grafico de la izquierda que los datos no se pueden clasifi-
car con una regla lineal. Quedarian bien clasificados mediante una regla cuadratica
(parabola). Sin embargo, al cambiar la representacién de los datos, es decir, al repre-
sentarlos en otro espacio, si quedan perfectamente divididos por una recta, como se
ve en la figura de la derecha. Entonces, en el nuevo espacio, se pueden usar técnicas
de clasificacion lineal, como Support Vector Machine o el discriminante de Fisher.
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2.2. Espacio de Hilbert reproductor del nicleo

Para transformar el primer conjunto de puntos (grafico de la izquierda) en el
segundo (gréfico de la derecha), se ha aplicado a los datos la transformacién:

¢:R* >R g(ar,2) = (a1, 22).

No siempre es tan facil encontrar la funciéon que representa los datos en un espacio
donde es més facil operar con ellos. Habra que probar diferentes transformaciones.
Una forma cémoda de trabajar con aplicaciones ¢ que representan los datos en otro
espacio es a partir de los nucleos.

En la siguiente seccion, se definen los ntcleos, y se explica una forma de represen-
tar los datos en un espacio de Hilbert, para trabajar tinicamente con sus productos
internos.

2.2. Espacio de Hilbert reproductor del nicleo

Sea X el espacio donde toman valores las variables aleatorias. Se ha visto, en
el ejemplo anterior, que cambiar la representacién de los datos puede simplificar su
tratamiento, como en el problema de clasificacion. En este capitulo, se estudiaran
técnicas para transformar los datos para que tomen valores en un espacio de Hilbert,
donde se puede trabajar con un producto interno. Por lo tanto, si H es un espacio
de Hilbert, una aplicacién ¢ : X — H representa los datos de X en H. Ademas,
en muchos casos, no es necesario conocer explicitamente la funcién ¢, inicamente
hace falta conocer los productos internos entre los elementos del espacio H (que sean
imagen por ¢ de algun elemento de X').

Esta técnica se va a aplicar, en particular, a la obtencién de una caracterizacién
para la maxima discrepancia en media entre dos probabilidades. Se deducird una
expresion en la que solo intervengan los productos internos de los datos representados
en el nuevo espacio (que es de Hilbert).

Con esta motivacion, se define el nicleo, una aplicacién de X x X en R? que
recoge Unicamente la informacion de los productos internos. Los resultados expuestos
en esta seccion estan basados en [9] y [1§].

Definicién 2.2.1. Se considera ¢ : X — H una aplicacion con llegada a un espacio
de Hilbert. En este contexto, se denomina nicleo del espacio de Hilbert H a la funcion

K: A XX >R
Kz, 2) = (p(x), 9(2))-

Proposiciéon 2.2.2. St ¢ : X — H es una aplicacion con llegada a un espacio de
Hilbert. El nicleo k : X x X — R werifica dos propiedades:

1. K es una funcion simétrica.

2. Kk es finitamente semidefinida positiva. Esto quiere decir que para cualquier

subconjunto finito {x1,xs,...,x,} C X, la matriz
K(x1,21) KT, 22) o0 K1, T)
KJ(Q?Q,ZEl) fi(.fQ,LUQ) e H($2,$n)
K= . . .
K(Tp, 1) K(Tp,xa) -+ K(Ty,T,)
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es semidefinida positiva.

Demostracion. Por las propiedades del producto interno, es claro que k es una fun-
cién simétrica.

En cuanto a la segunda propiedad, sea {z1,s,...,2,} C &. Para todo vector
v € R”, se tiene:

v Kv = Zl Zlv,-vj/i(xi,xj) = Zl Zlij<¢(xi)7 o(xj)) = <Zl v;o(x;), Zlv]¢(x])> )

Entonces,

n 2

Z%M%)

=1

v Kv = > 0.

]

Hasta ahora, se ha definido la funcién nicleo a partir de un espacio de Hilbert
‘H conocido y una aplicacién ¢ : X — H que representa los datos en dicho espacio.
Pero, como ya se ha enfatizado antes, en muchos casos no es necesario conocer
explicitamente el espacio H, solo los valores que toma el nicleo.

Por esta razén, el proximo objetivo es determinar cuando una funcién es un
nucleo. Es decir, si, dada una funcién k : X x X — R, existe un espacio de Hilbert
H y una funcion ¢ : X — H tal que k(z, 2) = (¢(x), ¢(z)) para todo (z,2) € X x X.
El siguiente teorema da una caracterizacion de los nticleos: cualquier funciéon s :
X x X — R simétrica y finitamente semidefinida positiva es un nicleo. Es decir, es
una especie de reciproco de la proposicién

Asi, se tiene una forma sencilla de trabajar con los datos en un espacio de Hilbert,
que no hace falta conocer explicitamente. Se considera una funcién x: X x X - R
con las propiedades que se han mencionado (simétrica y finitamente semidefinida
positiva). Entonces, ya se conocerian los productos internos de los datos trasladados
a cierto espacio de Hilbert.

Teorema 2.2.3 (Aronszajn). Sea X un espacio medible. Una funcién k : X xX — R
es de la forma

k(z,z) = (p(x),P(2)), Vr,z€ X,
donde ¢ : X — H es una aplicacion con llegada en un espacio de Hilbert H y (-, -)

es el producto interno de H, si y solo si, k es simétrica y finitamente semidefinida
positiva.

Demostracion. Se va a construir un espacio de Hilbert H y una funcién ¢ : X — H

que tiene como ntcleo la funcién k. Primero, se considera el espacio de funciones de
X en R

!
g= {Zam(mi,-): leN, z; € X, o; € R, izl,...,l}. (2.1)
i=1

Con la suma y el producto de funciones por escalares habituales, G es un espacio
vectorial. Ahora, se define

¢o: X =G, o(z) = k(z, ).



2.2. Espacio de Hilbert reproductor del nicleo

Para cada x € X, ¢(z) es una funcién de X en R que pertenece a G.
Si f(z) = 1L cuk(wi, @) y g(z) = 372, Bik(zj, ) son elementos de G, se define
la aplicacién (-,-) : G x G — R como:

(f,9) = Z Z Bk (s, 2;) = Z a;g(z;) = Zﬂjf(zj)- (2.2)

i=1 j=1
(-,+) es simétrico y lineal respecto de ambos argumentos. Si & = (o, ..., a,)" y K
es la matriz de k en 1, ..., x,, debido a que k es finitamente semidefinida positiva,

se deduce que

n n

(fLf) = Zzaiajk(l’i,xj) =ao'Ka>0, VfelF.

i=1 j=1

Por lo tanto, la aplicacién (-,-) es un producto interno, a priori no estricto, es
decir, (f, f) puede ser 0 para algin f no nulo. Entonces, (-,-) tiene asociada una
seminorma || f|| = (f, f)/2. Para probar que (-,-) es un producto interno estricto,
falta comprobar que si (f, f) = 0 implica f = 0. Para ello, se utiliza la siguiente
propiedad de los ntcleos:

flz) = Z ik, x) = (f, k(x,")) = (f,0(x)), Vz€X. (2.3)

Si (f, f) = 0, entonces

[f(@)] = | o] < N fllo(@)] =0, VeeX.

Se ha usado la desigualdad de Cauchy-Schwarz, que se verifica también para semi-
normas.

En conclusién, (G, (-, -)) es un espacio vectorial con producto internoy ¢ : X — G
es una funcién que verifica (¢(z), ¢(y)) = (k(z,-),k(y,-)) = k(x,y). Por ultimo,
siempre que se tiene un espacio vectorial normado G, se puede construir su comple-
cién H (se incluye con una isometria en su doble dual G”, que es una complecién
del espacio original). Si, ademés, la norma del espacio vectorial original proviene de
un producto interno, la norma de la complecién también. Esto se debe a que G es
denso en su compleciéon H. Un argumento para probar lo que se acaba de afirmar
es el siguiente: Sean f,g € H, existen sucesiones en G tales que f = lim,, o fr v
g = lim,,_,o g,. Como G es un espacio de Hilbert, la norma verifica la identidad del
paralelogramo:

an +gn||2 + an - gn||2 = 2an”2 + 2”971”2'

Como la norma es continua, tomando limites, se obtiene que la norma en H también
verifica la identidad del paralelogramo y, por lo tanto, viene de un producto interno.
‘H es el espacio de Hilbert que verifica las propiedades del teorema. Se denomina

espacio de Hilbert reproductor del niicleo (RKHS, por sus iniciales en inglés).
m
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La demostracién del teorema de Aronszajn [2.2.3] es constructiva, es decir, ca-
racteriza el espacio de Hilbert H a partir de la aplicacién x (H es un espacio de
funciones de X en R) y también se prueba que ¢(x) = k(zx,-) para todo z € X.
Ademéds, se ha deducido una propiedad importante de los nicleos (igualdad . Si
f € H, entonces

f@) = (f,h(z,)) = (f,0(x)), VeekX.
Un ejemplo de niicleo con el que se puede trabajar (por ejemplo, en las férmulas que
se deduciran en la siguiente seccién) es el niicleo gaussiano x : RY x R — R,

202

2
K(z,y) :exp(— M), Va,y € RY

2.3. MMD

Resumiendo de nuevo el planteamiento del trabajo, en el contexto del aprendizaje
justo, existe un atributo protegido binario S que divide al conjunto de datos en dos
grupos; P y () son las leyes de probabilidad que generan los datos de cada grupo.
En la seccién del capitulo |1 se explica un método para estimar la distancia en
variacién total y la parte comun entre dos probabilidades Py @ en R

En el paso 3 de dicho algoritmo, el objetivo es contrastar si dos probabilidades
son iguales (para ver si fijado un nivel «, los conjuntos R,(P) y R.(Q) tienen
interseccion no vacia). Para ello, la estrategia propuesta es usar un test basado en
una métrica entre probabilidades. Un tipo de distancias que resultan adecuadas en el
paso 3 del algoritmo son las métricas de maxima discrepancia media, que se definen
a continuacion.

Definicién 2.3.1. Sea (X, M) un espacio medible y F una clase de funciones de
X en R. Se define la mdrima discrepancia en media entre dos probabilidades p y q

en (X, M), denotada por MM D|F,p,q|, como
MMDI[F,p,q] :=sup| [ fdp— /fdQ\ = sup|E, f — Eqf].
fer feFr

Nota 2.3.2. Fijada F una clase de funciones de X en R. Sip y q son dos probabi-
lidades en (X, M) para las que sup [ fdp y sup [ fdg son valores finitos, entonces
fer feF

MMDI[F,p,q| estd bien definida.

La maxima discrepancia en media mide diferencias entre probabilidades en un
espacio X. Es una pseudo métrica. Solo es una métrica si la clase F es una clase de-
terminante de la probabilidad (por ejemplo, la clase de todas las funciones continuas
y acotadas o la clase de las funciones 1-Lipschitz). Se puede definir de forma general
como en la definicién [2.3.1] pero hay un tipo de clases de funciones F que resultan
especialmente interesantes: el caso en que F es la bola unidad de un espacio de
Hilbert reproductor de nicleo (RKHS). Por esta razoén, se dedica parte de la seccién
a presentar algunas propiedades interesantes de estas métricas en caso RKHS, asi
como a desarrollar la teoria necesaria para estimar la métrica a partir de muestras.
Los resultados que se prueban en esta seccién son una adaptacién de [14].
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El primer paso es obtener una caracterizacién de la maxima discrepancia en
media, esto se consigue a partir de un nicleo. Sea X el espacio donde toman valores
los datos. Si se considera una funcién x : X x X — R simétrica y finitamente
definida positiva (un nicleo), se puede reconstruir, siguiendo los pasos del teorema

de Aronszajn [2.2.3] el RKHS H (un espacio de funciones de X en R). Los siguientes
resultados se enuncian teniendo en cuenta este contexto.

Definicién 2.3.3. Sea p una probabilidad en (X, M), se denomina inmersion pro-
medio a una funcion p, € H que verifique que E,f = (f, i) para toda f € H.

La existencia de la inmersién promedio no siempre estd garantizada. Sin embargo,
gracias al teorema de Riesz, si la funcién ntcleo \/k(x, ) es integrable respecto
de una probabilidad p, entonces si existe la inmersiéon promedio p,. Ademds, la
inmersién promedio se escribe a partir del niicleo. Esto se prueba a continuacién.

Proposicién 2.3.4. Sea p una probabilidad en (X, M). Si la funcion nicleo k(-,-) :
XXX — R es medible en (X X X, Mx M) y la esperanza (respecto de la probabilidad
p) de la funcion \/k(x,x) es finita, entonces se puede garantizar la existencia de la
inmersion promedio p,. En ese caso,

;Mw=/¢@@mm»=@aw

Demostracion. El funcional T': H — R que envia cada funcién f € H en E,f es
lineal. Y, teniendo en cuenta que, para todo z € X, f(z) = (f, ¢(z)), visto en [2.3]
se prueba que es acotado, y, por lo tanto, continuo:

WUWﬂ/ﬂmMS/W@W=/KMMMWS/memM®=
=/WMMW@@@M®:/WWNM%WWZWM%%%M&

Por el teorema de representacion de Riesz, existe una unica funcion pu, de H tal que

T(f) = (f tp)n-

Ademéds, considerando la funcién f = ¢(t) : X — R, se ve que

1) = [ otydp= [ nit.)dp = Bt ).
Por otro lado, se tiene que T'(f) = (¢(t), pp)n = pp(t). Se concluye que

p(t) = Epr(t, ) = Epp(t).
O

La importancia de la inmersién promedio reside en que se puede caracterizar la
maxima discrepancia en media entre dos probabilidades a partir de sus respectivas
inmersiones promedio, si existen. Y, por lo tanto, como se ha visto que la inmersién
promedio esta definida a partir de la funcién nicleo, se deduce una expresion para
la maxima discrepancia en media que solo depende del nicleo. Este es el objetivo
de los siguientes resultados.
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Capitulo 2. Métricas de maxima discrepancia media

Proposicién 2.3.5. Sean p y q dos probabilidades en (X, M) para las que se supone
que ezisten las respectivas inmersiones promedio (i, Y (ty. Sea F la bola unidad del
RKHS H. Entonces, la mazxima discrepancia en media entre p y q es la distancia en
H entre las respectivas inmersiones promedio. Es decir,

MMDQ[]:,p, q) = llmp — Nq”2-

Demostracion.
MMD?F,p,q) = [H?ngl(Epf — B, f))? = [Hi‘ﬁfl“f’ tip) = (s 1))
= [ sup <f>,up_:uq>]2 < ||:up_ ||2
I flI<1

La ultima desigualdad es consecuencia de la desigualdad de Cauchy-Schwarz. Se
alcanza la igualdad en f = € By(0,1).

||# u ||

]

Teorema 2.3.6. Sean p y q dos probabilidades en (X, M) para las que existen las
inmersiones promedio. Sea F la bola unidad en H. Entonces,

MMD?F,p,q // K(x, Z)d(p X p) // k(y,7) q><q—2// k(z,y)d(p X q).

(2.4)

Demostracion.

MMDQ[]:,Q Q] = ||Np - quHQ = <ﬂp7ﬂp> + <qu,,qu> - 2<Mpmuq>
— [ @)t + [ l)dats) -2 [ plwldpta)
) dp(

= dp

:/( k(z, T) a}))dp(:c)Jr/(/H(y,z?)dQ(z?)>dQ(y)

~2 [ [ et dpte)
://n@jm@Xpy+[/d%@ﬂqx®—2//H@wM@xq)

]

El teorema anterior, 2.3.6] da una caracterizacién de la métrica MM D en fun-
cion de los nicleos. Este teorema muestra las ventajas de trasladar los datos a un
espacio de Hilbert. Si se tienen dos probabilidades p y ¢ en X', se considera un ntcleo
k: X xX — R tal que la funcién y/k(z, x) sea integrable respecto de ambas proba-
bilidades. Para calcular la maxima discrepancia en media entre dos probabilidades,
basta conocer los valores que toma ese nicleo. No se necesita conocer el espacio H.

A continuacion, se prueba que, en un espacio métrico compacto X en el que se
pueda definir una funcién nucleo x : X x X — R que cumpla ciertas propiedades
(lo que se definird como nucleo universal), la maxima discrepancia en media es una
distancia entre probabilidades.
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Lema 2.3.7. 5@ X es un espacio métrico compacto y la funcion nicleo k es conti-
nua en X X X, entonces el RKHS H estd contenido en el espacio de las funciones
continuas de X en R.

Demostracion. La demostracion del teorema de Aronszajn [2.2.3] es constructiva. H
es la complecién de G, ver . Ademas, por ser k continua, es claro que G C
C(X,R). A partir de esta afirmacién, se prueba que H C C(X,R).

Si f € H, existe {f,}22, C G tal que nh_)IIOlO fn = [ para la topologia dada por

el producto escalar definido en ([2.2). Como la funcién k(z,x) es continua en X
compacto, existe M > 0 tal que x(x, ) < M?, para todo z € X. Entonces,

|fa(@) = f@)] = {fa = f, 0@ <1 fo = fllac- 0@l = 1 fo = flln - vV E(, @)
= |fulz) — f(@)] < M||fo — flln, Yz € X, ¥neN.

Entonces, || fr — flloo < M||fn— fl|%. Se ha probado que la convergencia en la norma
de H implica la convergencia uniforme. Por lo tanto, f es continua. O]

Definicién 2.3.8. Sea X un espacio métrico compacto. Se dice que el RKHS H es
universal si la funcién nicleo k es continua en X X X y H es denso en C(X).

Proposicion 2.3.9. Sea X un espacio métrico compacto y H universal. Si F es
la bola unidad en H y p y q son probabilidades en X, entonces MM D[F,p,q] =0
st, y solo si, p = q. Fs decir, la maxima discrepancia en media es una distancia
en el espacio de probabilidades en (X, ), donde [ es la o-dlgebra generada por los
abiertos de X .

Demostracion. Como H es universal, k(-,-) : X X X — R es continua y /k(x,x)
estd acotada en X. En particular, tiene esperanza finita. Por las proposiciones
y , MMD?*F,p,q] = |lgp — 1ll*- Esto garantiza la simetria y desigualdad
triangular.

Es trivial que si p = ¢, entonces MM D|F,p, q] = 0. Reciprocamente, se supone
que MMDI[F,p,q] = 0, entonces p, = p,. Fijado e > 0y f € C(X), existe g € H
tal que || f — gl < &

\/fdp—/fdQKI/f gdp|+|/gdp /ngI+|/g f)da|

<2e+ (g, p — fig) = 2¢.

Se tiene que [ fdp = [ fdg, para toda f € C(X). Como X es un espacio métrico
compacto, entonces es un espacio polaco. Por el lema [B.0.5, p = ¢.
[

Por ultimo, se dan algunos posibles estimadores de la maxima discrepancia en
media. En la practica, se usan estos estimadores para aproximar el valor real de la
maxima discrepancia en media.

Sean p y ¢ dos probabilidades en el espacio medible (X, M). Sea k : X x X — R
un ntcleo, para el cual la funcién de una variable \/k(z,x) es integrable respecto
de p v q. Entonces, si F es la bola unidad del espacio de Hilbert reproductor del
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nicleo k, el teorema da una caracterizacion de MM D|F,p, q]. Reemplazando
las esperanzas que aparecen en la féormula [2.4] por la media muestral, se obtiene
un estimador insesgado de MM D[F, p,q]. Teniendo en cuenta este contexto, se da
siguiente resultado:

Proposicién 2.3.10 (Estimadores insesgados). Sean p y q dos probabilidades en el
espacio medible (X, M) para las cuales se verifica el teorema[2.3.6, Sea {x1, z2, ..., T}
una muestra de tamano m de la distribucion p y sea {y1, Y2, ..., Yn} una muestra de
tamano n de la distribucion q. Un estimador insesgado de la mdxima discrepancia
en media al cuadrado entre p y q viene dado por la siguiente formula:

MMD2[F,p,q| =

n m n

m<m1_ y Z k(,25) + _n(nl_ 3 Z k(YY) — % Z Z k(zi,y;).  (2.5)

i#j i#j i=1 j=1
Si se toman muestras de igual tamano, es decir, m = n, entonces se puede usar
un estimador insesgado un poco mds simple (es diferente del anterior).

MMDAF o) = oot | S o) 4 3 k() =23 vl (20)
i#] 1#] i#]
Demostracion. Ambos estimadores son U-estadisticos, mas detalles se pueden en-
contrar en [17]. La consistencia de estos estimadores estd probada en el teorema
A de la seccién 5.4. de dicho libro. Ademads, ambos estimadores son insesgados. Se
comprueba para el segundo:

E (MMDfL F. p. q]>

— [[ w00+ [ [ stwpratax ) —2 [ [ w0

= MMD?[F,p,q.
O

Nota 2.3.11. Aunque la mdzrima discrepancia en media entre dos probabilidades pa-
ra las que existen las inmersiones promedio respecto de un nicleo es siempre positiva

(ver[2.3.8), el estimador MM D, (cualquiera de las dos versiones) si puede ser ne-
gativo. Por ejemplo, si p = q, entonces E(MMD%L[]:,p, q]) = MMD?*F,p,q] =0
y MM D?[F, p,q] tomard valores por debajo de su media (negativos).

Otro estimador posible para la maxima discrepancia en media entre p y ¢ se
deduce de la proposicién [2.3.5] donde se prueba que la méxima discrepancia en
media entre dos probabilidades es la distancia entre sus respectivas inmersiones
promedio (en el RKHS). Por lo tanto, si se sustituyen las inmersiones promedio por
sus aproximaciones empiricas a partir de muestras, se llega a un estimador sesgado

de MMD.
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Proposicién 2.3.12 (Estimador sesgado). Sean p y q dos probabilidades en el espa-
cio medible (X, M) para las cuales se verifica la proposicion|[2.5.5 Sea {1, 2, ..., 2}
una muestra de tamano m de la distribucion p y sea {y1,vs, ..., Yn} una muestra de
tamano n de la distribucion q. Entonces, un estimador sesgado de la mdzima dis-
crepancia en media (al cuadrado) entre p y q es:

1 m 1 n 9 m,n
MMD}[F,p,q] = — Z k(T T5) + — Z k(Yinyj) — — Z k(xi,y;).  (2.7)
1,5=1 1,j=1 4,j=1
Se explica c6mo se ha deducido esa férmula: Sean py = = 3 d(2;) y py =
i=1

n

% > ¢(yi) los estimadores asociados a esas muestras de las inmersiones promedio de
i=1

py q. Entonces,

lx — MYH2

m

) DTS TR ERED SRS STAY

i=1 =1 i=1 i=1

—2(= 3 0l Y o)
ZMMD_?[f,p,q]- _

En general, los tests basados en la métrica M M D se haran usando un estimador
empirico. En el caso de este trabajo, se usa un test basado en la maxima discrepancia
en media para contrastar si dos probabilidades son iguales (si, y solo si, su maxima
discrepancia en media es 0, bajo ciertas condiciones que se han explicado en la
seccion . Entonces, se necesita que si dos probabilidades son iguales el estimador
empirico de la maxima discrepancia en media que se utilice también sea pequeno.

Las cotas que controlan el error de estos estimadores, asegurando la veracidad
de los resultados obtenidos al hacer algin test de este tipo, se pueden encontrar en
el articulo [14].
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Capitulo 3

El problema de transporte 6ptimo

Sean (X, 0., P) e (), 0,,Q) dos espacios probabilisticos. Se quiere transportar
la masa distribuida en el espacio X, segin la distribucion P, al espacio ), con
distribucién de probabilidad ). El coste de transportar una unidad de masa de X
a ) depende de cada x € X e y € Y concretos. Por lo tanto, viene dado por una
funcién ¢ : X x Y — R*. El objetivo es encontrar el plan de transporte menos
€ost0so.

Un caso particular es el de espacios finitos,

X =A{xy,..x.}, Y={v1,--Un}

Sii e {l,...,n}, la masa de z; es p;. Respectivamente, para j € {1,...,m}, la masa
n

de y; € Y es ¢;. Obviamente, > p; = > ¢; = 1. Se denota por 7, ; = m(x;,y;) a la
i=1 j=1
masa transportada de z; a y;.

La funcién c(x;,y;) da el coste unitario de transporte de z; a y;. La idea es
reordenar en ) la masa de X para que al final esté distribuida segin la ley de
probabilidad (), minimizando el coste.

Matematicamente, el problema se formula de la siguiente manera:

min YO mijelwiyy) = o /X XyC(w,y)dW(ﬂc,y)-

T 5=Di, ), i j=q; i=1 j=1
=1

s

1

J

Por ejemplo, si una empresa quiere transportar bienes desde las fabricas a los
almacenes, teniendo en cuenta su localizacion, los costes de transporte dependeran
de cada fébrica y cada almacén. Querra escoger el plan de transporte 6ptimo, si
existe, para minimizar los costes.

Aunque el caso de espacios finitos tenga muchas aplicaciones practicas, es muy
interesante generalizarlo. Con el mismo objetivo de otros capitulos: encontrar dis-
tancias entre probabilidades, se estudiard el problema de transporte 6ptimo para
X =Y =R4 con la o-dlgebra de Borel 8¢, y el coste c(z,y) = ||z — y||P, con p > 1.

3.1. Formulaciones del problema

La formulacién de Kantorovich del problema de transporte éptimo que se acaba
de plantear es la siguiente:
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Seap > 1. Sean P y Q dos probabilidades en (R%, 3%) con momentos de orden p
finitos. Se denota por [](P,Q) al conjunto de probabilidades en (R x R%, 32?) con
marginales P y Q. El objetivo es encontrar la distribucion de probabilidad conjunta
m € [[(P,Q) que minimice el coste de transporte, denotado por I(w). Es decir,
hallar:

e[ [(P,Q) e[ [(P,Q)

Se supone que P y () tienen momentos finitos de orden p > 1, para que la integral
I(m) esté bien definida: Si

T(P.Q) = ftf I(m)= fnf / o — ylPdn(z, ).
R4 x R4

/ lelPdP(z) + / lyIPdQ(y) < +oo.
R™ R™

entonces,

I(7T) = /Rd R ||IE — ?/deﬂ(a:,y) < /Rd Rd(HxH + ||y||)pd7r(x,y)
< /Rd Rd(2 méX{||I||7 ”yH})pdﬂ'(ZE,y) < 2p/ (Hx||p+ ||y||p)d7T(l‘,y)

R xR4

=2 [ Jalpar@)+2 [ l7dQu) <+
R™ R™

El primer paso para abordar el problema de transporte éptimo es probar que la
formulacién que se ha dado es coherente.

Proposicién 3.1.1. En el problema descrito, el conjunto [[(P, Q) es no vacio y

inf x —y||Pdr(x,
it /Rdedn y|Pdn(z,y)

se alcanza para una probabilidad concreta my € [[(P,Q), es decir, es un minimo. Se
dice que Ty es un plan de transporte optimo.

Demostracion. La definicion de sucesion ajustada, junto con las propiedades que se
usaran en esta demostracion, y el teorema de Portmanteau se detallan en el apéndice
[Cl

En la o-algebra producto /¢ ® B3¢ = 3?? se define la medida producto

(P QA) = [ Qa)aP@) = [ PlA)IQE). A€ s

Es facil comprobar que (P x @) es una probabilidad cuyas marginales son Py Q.
Como P y @ tienen momentos de orden p finitos, si m € [[(P,Q), se tiene que

0 < I(m) < oo. Entonces, 0 < lllr%lf’ Q)I (m) < oo. Por definicién de inferior, existe
S y

una sucesion {m, 22, C [[(P, Q) tal que

lim I(m,) = inf I(m).
T I(r,) et o) ()
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Es conocido que Ve > 0, existen K. y F. compactos de R? tales que P(K.) > 1 — 5
y Q(F:) > 1 — 5. Por lo tanto, la sucesién {m,};2, es ajustada, ya que Ve > 0y
Vn e N,

T (K. x F)) < m,(KE x RY) + 7, (R x F°) = P(KE) + P(FF°) <

+ - =c.

N ™

Esto implica que existe una subsucesion {m,, }72, de {m,}>°; que converge hacia una
probabilidad my. Se ve facilmente que my € [[(P, Q). La demostracién se concluye

probando que
I(mg) = inf I(m).

me[[(PQ)
Se considera una sucesién de funciones ¢; : RY x R — R positivas, crecientes,
continuas y acotadas, tal que lh'm a(z,y) = c(z,y) := ||z — y||P. Por ejemplo, se
— 00

puede definir

ey siclny) <1,
a(@,y) = { l sie(x,y) > 1.

En estas condiciones, el teorema de Portmanteau garantiza que

k—o0

lim [ ¢(z,y)dmr,, = /cl(x,y)dﬁo, Vi e N.

Ademds, por el teorema de la convergencia monétona, [ ¢(x,y)dmry = lh’m [ a(z,y)dmg
— 00

Por lo tanto,

/c(x,y)dﬂo = llirglo/cl(x,y)dwo

= lim lim | ¢(z,y)dm,,

l—00 k—o00
< lim [ ¢(x,y)dm, = inf I(m).
~ koo (2, y)dn, re[1(P,Q) ()

En la ultima desigualdad se ha usado que ¢; < ¢, para todo [ € N.
Como 7y € [[(P,Q), se tiene la desigualdad contraria, y, por tanto, la igualdad.
]

Se puede restringir el conjunto de probabilidades en el que se quiere minimizar
el coste de transporte /(7). Se considera el conjunto de aplicaciones medibles

T:R* — R?
tales que T#P = Q, es decir, Q(B) = P(T~!(B)) para todo B € <.

La formulacién de Monge del problema consiste en hallar

F(P.Q) = fuf / e — T(x)|PdP(x).
T:Rd—>Rd R xRd
THP=()

En el caso discreto, esta formulacion tiene un significado claro: la masa de cada punto
de X no se puede dividir entre varios puntos de ). Es decir, si X = {x1,...,x,} e
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Y =A{y1,...,Ym}, se consideran las aplicaciones 7' : X — ) que reordenan la masa
para que la distribucién pase de ser la dada por P en X" a la dada por () en ). Cada
aplicacién induce una probabilidad 7 en el espacio producto [ [(P, @). De entre todas
ellas, se escoge a la que minimice el coste de transporte.

Como el problema de Monge tiene mas restricciones que el de Kantorovich, es
l6gico pensar que

Te(P,Q) < Te(P,Q). (3.1)

En efecto, si T es una aplicacion tal que T#P = (@, Sea 7w la probabilidad en
(R? x R?, 324) inducida por la aplicacién

(Id,T): (R%, % P) — (R x RY 521, 2 (2,T(2)).

Es decir, si A € 5% entonces 7(A) = P({x € R? : (z,T(z)) € A}). Es claro
que ™ € [[(P,Q). Por el teorema de transferencia de integrales, se tiene que para
cualquier T tal que T#P = Q,

_min / | clain(zg) < / | cla)dn(a.y) - / (o, T(x))dP(z),

R4
con lo que se tendria la desigualdad [3.1]

Definicién 3.1.2. Se denomina aplicacion de transporte optimo de P a @, para
el problema descrito anteriormente, a una aplicacion T : R? — R? medible tal que

T#P = Q, es decir, Q(B) = P(T~Y(B)) para todo B € %, y que verifique

‘ p — p
iy [ e ylPdrten) = [ o= T@)1PdP)

Se probard que si P no da probabilidad a conjuntos de medida nula, existe
una aplicacién de transporte éptimo para el problema asociado al coste cuadratico,
es decir, se alcanza la igualdad en [3.I] Con el fin de llegar a este resultado, la
siguiente seccion estd centrada en el estudio del problema de transporte para el
coste cuadratico y su formulacion dual.

3.2. El caso cuadratico

En esta seccién se va a estudiar el problema del transporte para el coste cuadrati-
co, como se hace en el libro [22].

Sean Py @ dos probabilidades en R? con momentos de orden 2 finitos, el pro-
blema consiste en calcular

, , 2
TP.Q) = iy 1) = nt [l ylPnay)
El primer paso es probar una formula de dualidad que va a permitir simplificar el
estudio del problema. Al final, el objetivo va a ser minimizar una expresién en la
que van a ser clave las funciones convexas, cuyas propiedades se estudiaran también
en esta seccion.

Se enuncia a continuacién la formula de dualidad de Kantorovich.
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Proposicién 3.2.1 (Dualidad de Kantorovich). Sean P y Q) dos probabilidades en
(R%, 4. Sea c(x,y) : R x R — RU{+o0} inferiormente semi-continua y positiva,
entonces

wf [ cowiney = sw @dP+ [ gwiQ. (32
me[1(P,Q) Jrd xRrd (£,9)€LY(P)x LY (Q) JR? R?
f(x)+g(y)<c(z,y)

Demostracién. Paso 1: Sean K, y K, compactos en R? y sean P y () probabilidades
concentradas en K; y K, respectivamente. Se supone que la funcién coste es conti-
nua y positiva en K; X K5. Por el teorema de representacién de Riesz, que se explica
en el apéndice , el dual topolégico de C(K; x K3), con la norma infinito, es el
espacio de medidas de Borel regulares en K; x Ko. Pero, en K; x Ky C RYxR? todas
las medidas de Borel son regulares (ver |B]). En otras palabras, si T' es un funcional
lineal y acotado en C(K; x Ks), existe una medida de Borel p en K x K, tal que

Tf = fd/L, Vf S C(Kl X KQ)
Kl ><K2
Se consideran los siguientes funcionales convexos:

0 siu(ey) > —c(zy),

@ZUEC(KlXKQ)'—){
+00 en otro caso.

[ f(@)dP + [ g(y)dQ siu(z,y) = f(z)+ g(y),

+o0 en otro caso.

EIUEC(K1XK2)P—>{

Se comprueba facilmente que el funcional = esta bien definido. Ademas, para la
funcién vy = 1, se cumple que © es continuo en vy y

O(vg) =0 < 400, E(vg) =1 < 400.

Se verifica el resultado de dualidad de Fencher-Rockafellar, explicado en el apéndice

[D.3], entonces:

inf {O(u)+Zw)}= sup {-0"(—7)—

u€C (K1 x K2) rEM (K1 xK>)

[1]

(m)},

donde se denota por M(K; x K,) al espacio de medidas de Borel en K; x K.
Desarrollando el lado izquierdo de la igualdad, se tiene que:

it (@ +z =i { [ f@ar+ [ Qs 1)+ o) = et}
——swp{ [ s@)ir+ [ )+ gl) < clo)}.

En cuanto al lado derecho, primero se calculan las transformaciones de Legendre de
los funcionales © y =:
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O*(—m) = sup { — /u(:p,y)dﬂ cu(z,y) > —c(x,y)}

ueC(K1xK>)

= sup {/u(m,y)dﬂ cu(z,y) < c(x,y)}.

uEC(Kl ><K2)

Si 7 no es una medida positiva, existe una funciéon v € C(K; x K,) estrictamente
negativa tal que [ vdr > 0. Entonces, para todo n € N, nv € C(K; x K») y [ nvdr
tiende a —oo cuando n tiende a oo. Si, por el contrario, la medida 7 es positiva,
Ju(z,y)dr < [ c(z,y)dr para toda u € C(K; x K3). En conclusién,

. [ e(z,y)dr sim es una medida positiva,
O (—m) = . : .
+00 si 7 no es una medida positiva.

Por otro lado,

=w= s { [if@) gz~ ([ r@aP+ [ g0)a0)}.

F(z)+9(y)€C(K1 x K2)

Sim e [[(P,Q), entonces =(w) = 0. Siw ¢ [[(P,Q), existe f(x)+g(y) € C(K; x K3)

tal que [pu f(2)dP~+ [pa 9(y)dQ =0y [ou, galf(2)+g(y)ldr # 0, escalando la funcién
f(z) + g(y), se llega a que Z(m) = +00. Resumiendo,

= (o) = {0 sime[(P,Q),
+o0o sim ¢ J[(P,Q).

Por lo tanto,

s { —0'(=m) — Z(n)}

mEM(RIxRT)
= sup{— /c(x, y)dm : 7w es una medida positiva y T € I_I(P7 Q)}
=— inf{/ c(x,y)dm : m es una medida positiva y 7 € H(P, Q)}
Con todo esto, se ha probado que
sup{ [ 5@aP+ [ o0)dQ: (@) + aly) < )}
= inf{/ c(x,y)dm : m es una medida positivay 7w € H(P, Q)}
Paso 2: Se supone que c¢(z,y) es una funcién continua, acotada y positiva en

R? x R?. Repitiendo el razonamiento de la demostracién de [3.1.1] se prueba que
existe una probabilidad 7, € [[(P, @) tal que

I(n,) = y)dr(z,y) = inf —y|dn(z,y).
(r.) /< D (e.y) = ot /Md”f” ylPdr(z,y)
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Como se detalla en el apéndice [B], para todo e > 0, existen K; y K> compactos de
R? tales que
W*((Kl X KQ)C) <e.

Buscando aplicar el paso 1, se considera la probabilidad m, restringida al compacto
K1 x K, es decir, se define:

ro(B) = ——

= < Ky B VB C o Ky medible.

Si Py y Qo son las marginales de 7,q, tienen soporte en K; y Ks, respectivamente.
Entonces, si se denota por [[,(Fp, Qo) al conjunto de probabilidades en K x K con
marginales Py y (Jg, existe una probabilidad 7y que minimiza el coste de transporte
6ptimo en [[,(F, Qo). La probabilidad 7 definida como:

ﬁ(A) = 7T*(K1 X KQ)T‘-O(AH (Kl X KQ)) + Ty (Aﬂ (Kl X KQ)C>, VA € ﬂd X Bd.

tiene marginales P y (). Se comprueba que la primera marginal es P; para probar
que la segunda es (), se razona de forma andloga.

F(C x RY) = m, (K, x K3)Po(C N K + w*((c x R N (K, x KQ)C)

= (K % Kg)w*()((CﬂKﬂ X KQ) +7r*<(CﬂKIC) X ]Rd> +7r*<(C’ﬂK1) X K20>

m(((}’ﬂKl) X K2)
= m.(K, x K,) T (I x K>)

- m((@ N Ky x Rd> v w*((C N KC) x Rd) — P(C), YCe Bl

+m((CNEO) xRY) +m((C N K) x KS)

Ademas, se verifica la siguiente desigualdad:

c(x,y)dmy + / c(x,y)dm,

(K1 XKQ)C

I1(7) = m(Ky x ) /

Kl XKQ

< / (2, y)dmo + [lclloce.
K1 XKQ

Entonces,

inf c(zx, dwg/ clz, y)dmo + | cl| e
WGH(PvQ)/RdXJRd( y) leK2< y)dmo + | c|

Por otro lado, se considera el funcional Jy definido en L'(Py) x L'(Qo):

Jo(0, tho) = /

K1

podPy+ [ o dQo.
Ky
Aplicando el paso 1 de la demostracion, se tiene que

/ c(x,y)dﬁo(:v,y): sup Jo(@ojwo):
K1 xKso

(p0,%0)ePo
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donde &g = {(o,%0) € L*(Fy) x L'(Qo) : ¢o(x) + o(y) < c(x,y)}. Por definicién
de superior, para todo € > 0, existe una pareja de funciones @g, 1y € P tal que

Jo(@os o) > sup  Jo(wo, %) — €.
(¢0,%0)EPo

En particular, para ¢ = 1,

Jo(@o,10) > sup  Jo(o, o) — 1> Jp(0,0) — 1> —1.
(¢0,%0)€Po

Escribiendo

%@m%wa/ (Go(a) + To(w)] dmo(z, ),

K1><K2

se deduce que existe (xg, o) € K1 X K; tal que

Go(xo) + tho(yo) > —1. (3.3)

Para todo t € R, se verifica que (pg,19) € g si, y solo si, (g + £,y — t) € Py.
Ademas, Jo(vo, o) = Jo(wo+t, o—t). Escogiendo t de forma adecuada, se garantiza
que

N 1 - 1
Go(To) +1 > —5 7 VYo(yo) —t > —5

Para simplificar la notacién, se supone que

1 ~ 1
Po(xo) > —5 7 Yo(yo) > 5 (3.4)
Por lo tanto,
Po(x) < c(z,y0) — bo(yo) < el yo) + =, Vo € K, (3.5)
Do(y) < c(w0,y) — @olw0) < clzo,y) + =, Vy€ Ky (3.6)

Ahora, se define la funcién

folz) = inf [e(z,y) —do(y)], Vz €Ki,

yeK2
De la desigualdad ¢o(z) < c(x,y) — o (y), se deduce que @ < fo. Entonces,
T(0,40) < I (fos tho)-

Ademds, a partir de las desigualdades [3.6] y [3.4], se tiene una cota superior e inferior
de f()i

folw) 2 inf [e(e,) = e(wo,)] — 5, Vo € Ko, (3.7)
fo(x) < c(z,yo) — 2Zo(yo) < c(x,yo) + %7 Vo € K. (3.8)
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Por 1ultimo, se define la funcién

9o(y) = inf [c(z,y) — fo(r)], Vy € Ky,

€K,
Entonces, (fo, 90) € ®o y go > to, ya que
go(y) = f [e(w,y) = c(w,y) + Yo(y)] > Yo(y), Yy € Ko,
Por esta razon, se tiene la siguiente cadena de desigualdades:

J(f07 gO) Z J(f07 7/;0) 2 J(@Oa QZO)
A partir de las cotas para fy y , se deducen cotas para g:

y Vy € KQ, (39)

N | —

9o(y) = Inf [e(z,y) — c(x, y0)] —

reKq

90(y) < e(zo,y) — folwo) < e(x0,y) — Golz0) < c(x0,y) + %, Yy € Ky (3.10)
Resumiendo, como ¢(x,y) > 0, de y se concluye que
1
%
De estas desigualdades junto con las cotas superiores v 3-8, se deduce que

(fo, 90) € L' (Py) x LY(Qo). Con estas cotas, y extendiendo las funciones fy y go por
0, se puede concluir:

1
fol@) = —llelle = 5. ¥ g0(y) = —lelleo — 5

[ nip+ [ aia= [ (5o + w)iEe.
= m,|K; X K3 olx 0 dmo(x, olx 0 dm(x,
Kol [ ) sl - [ 1) el )

v

(1—¢) ( i fodPy + /K 9o dQO) — (2]|e|loo + 1) [(K7 x K2)9
> (1 —¢)Jo(fo,90) — (2]|c]|oc + 1)

(1—¢) ( inf /KK (s y)dr — g) @l + 1)

m€[1(Po,Qo)

v

>(1—¢) ( inf / c(z,y)dr — ||c||oce — e) — (2|e)|oo + 1)e.
Rax R4

e[ 1(P.Q)

Si € tiende a 0, se concluye que

inf / c(z,y)dn(z,y) = sup (x)dPJr/ 9(y)dQ.
7€[1(P,Q) JrdxRd (f.9) €LY (P)xL}(Q) /R4 R4
f(@)+g(y)<c(z,y)

La desigualdad contraria estd garantizada siempre, ya que
f@)+9(y) <cla,y), V(z,y) € R xR
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Paso 3: Si la funcién de coste ¢(x,y) es inferiormente semi-continua y positiva,
existe una sucesion {c, }22, C C.(R? x RY) creciente y de funciones positivas tal que

lim c,(z,y) = c(z,y), V(zr,y) € RYx R
n—o0

Si 7 es una probabilidad con marginales Py @,

im) = [ ealo )itz )
En primer lugar, se va a probar que

inf I(m)=su inf I,(m). 3.11
m€[1(P,Q) () nEIN)WEH(P:Q) (™) ( )

Como ¢, < ¢ para todo n € N, entonces I,(r) < I(m) para toda probabilidad
7w € [[(P, Q). De aqui, se deduce que

inf I(mw)>su inf I,(m).
WGH(P,Q) ( ) o neg TFGH(PvQ) ( )

Queda probar que

lim inf [,(m)> inf I(7).
n—oo re[[(P,Q) e[ [(P.Q)

Razonando como en la demostracién del teorema|3.1.1], se ve que existe una sucesion

de probabilidades {7, }>*, C [[(P, Q) tal que

inf I,(r)=1I1(m,), Vne€N.
me[1(P.Q)

Ademas, la sucesion {m, }52, es ajustada, por estar contenida en [[(P, Q) (se prob6
con detalle en la demostracion de (3.1.1)). Entonces, existe una subuscesién {m,, }7,
que converge hacia una probabilidad 7, € [[(P, Q). Por el teorema de Portmanteau

(ver [C:02).

k—o0

lim [ ¢pdm,, = /cmdﬁ*, VYm € N.

Ademads, si m < n entonces, ¢,, < ¢, vy, se tiene que I, (m,) < I,(m,). Juntando
estas observaciones, se llega a que

lim I, (m,) > limsup I,,(m,) > I,(m.), VYm € N.

n—oo n—oo

Por el teorema de la convergencia monétona, lim I, (m,) = I(w,) Entonces,
m—0o0

lim I,(7,) > I(m) > inf I(m).

n—00 me[1(PQ)
Con esto, queda probada la igualdad Por el paso 1, para todo n € N se tiene

que

it nm =swo{ [ J@dP+ [ )@ f@) + aly) < eulon))

< sup{ g f(z)dP + /Rdg(y)dQ D f(z) +g(y) < C(x,y)}
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Entonces, tomando superior en n € N,

wf 1 <sw{ [ f@ap+ / 90)dQ < f2) + g(y) < clp)

mel1(P,Q)
La desigualdad contraria es evidente. O]

Gracias al resultado de dualidad de Kantorovich, el problema de transporte 6pti-
mo asociado al coste cuadratico se reduce a calcular el inferior de fRd pdP+ f]Rd Yd(@Q,
en el conjunto de pares de funciones integrables respecto de P y @), respectivamente,

tales que = -y < () + ¥ (y), para todo (x,y) € R? x RY. Se comprueba realizando
los célculos:

Proposicién 3.2.2. Si P y Q son dos probabilidades en RY con momentos de orden
2 finitos, entonces

wix [ @opanea) = it | [ e+ [ swaew). @12

me[[(P,Q) JRrd (ph)ed

donde ® := {(p, ) € L'"(P) x LN(Q) : 2 -y < p(z) +(y) V(z,y) € R x R}

Demostracion. Por un lado,

win [ o= ylPdrteg) = iy [ (el P - 2o ) )dn(oy)
Rd xRd R4 xRd

me[1(PQ) me[1(PQ)

= i [/ \|z||2dP(z / ly]I?dQ( )—2/ (x - y)dn(z, y)}

||[*dP(x lyl[?dQ(y) — 2 miéx (@ - y)dm(z,y).
- JJetare s | o /.

(3.13)
Por otro lado, sean (f,g) € L'(P) x LY(Q) tales que f(z) + g(y) < ||z — y||*. Se
escribe

F(a) = 2l ~20(z) & o(x) = 5(lall* ~ (@)
9(0) = Il — 26(0) & () = 5 (ol ~ o(v)).
De aqui se deduce que f(x) + g(y) < [l — 32 < =y < p(x) + 1(v).

Si @ = {(p,9) € L'(P) x LQ) : vy < p(2) + ¥(y), V(z,y) € R? x R}. Por
dualidad de Kantorovich,

@ - sw | [ leare [ loaeu-2( [ e@ares [ vmiow)

si, y solo si,

wix [ wpanea) = it | [ e+ [ swian)

T‘-GH(PzQ) R4 (SO:TZ})E‘I’
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Capitulo 3. El problema de transporte éptimo

3.2.1. Convexidad y Transporte ()ptimo

Si (p,9) € @, entonces x -y < p(x) + 1 (y) para todo (z,y) € R? x R Por eso,
para cualquier probabilidad m € [[(P, @), se verifica que

/Rded (90(x) + w(y))dﬂ(ﬂi,y) > /Rdedx -~y dr(z,y).

Ya se ha probado que se alcanza el maximo de la expresién de la derecha, en una
probabilidad my € [[(P, Q). Si también se alcanzase el minimo de la expresién de la
izquierda para un par concreto de funciones (¢g, %) € ®, entonces, por m,

/(800(95) +o(y) — - y)dmo(z,y) = 0 o(x) +¢ho(y) —z-y=0 m —c.s.
Entonces, en el par éptimo (¢, ¢),

Yo(y) = suﬂgl(:v Yy —o(x)) o — c.s.

po(r) = Suﬂg(m Yy —o(y)), m —cs.

Esto es lo que se denomina un par de funciones convexas conjugadas. Los resultados
de esta seccién prueban que existe el minimo de

/ p(x)dP(z) + | ¥(y)dQ(y) (3.14)
Rd Rd
en el conjunto de pares de funciones

O :={(p, ) € L'(P) x L'(Q) s w -y < p(x) + ¢(y) V(z,y) € RT x R},

Ademas, se va a formalizar la idea que se acaba de explicar: el minimo se alcanzara
en un par de funciones convexas conjugadas.
Si (¢, %) € @, en lo que sigue se denota por

Hew) = [ o@iP@+ [ vaew)

Definicién 3.2.3. Se define la convexa conjugada de la funcion o : R — RU{+o0}
como la funcion
¢ R RU{+o0},  ¢"(y) = supfz -y — p(a)].
zeR
Se dice que ¢* es la transformada de Legendre de ¢. Se ha ilustrado la importan-
cia de las funciones que se acaban de definir en el problema del transporte 6ptimo.

Para estudiar sus propiedades, se necesitan algunos resultados sobre funciones con-
vexas.

Definicién 3.2.4. Sea ¢ : R — RU {400} una funcién conveza. Para cada punto
r € RY, se define la subdiferencial de ¢ en x como el conjunto de puntos y € R? que
verifican que

o(z) > p(x)+y-(z—x), VzeR%L (3.15)

Se denota por Op(x).
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La subdiferencial es una generalizacion del gradiente. Intuitivamente, es claro
que si una funciéon convexa es diferenciable en un punto, el gradiente es el tinico
vector que va a verificar la condicion [3.15] Se prueba esta idea en los dos siguientes
lemas.

Lema 3.2.5. Sea p : R? — R U {+o00} una funcion convexa. El dominio de ¢ es
el conjunto de puntos donde ¢ toma valores reales. Para todo x € Int(Dom(p)), la
subdiferencial Op(x) es un conjunto no vacio.

Demostracion. La demostracion se basa en la segunda forma geométrica del teorema

de Hahn-Banach, que permite separar dos convexos no vacios disjuntos si uno es

cerrado y otro compacto, a partir de un hiperplano dado por un funcional lineal.
Sea zy € Int(Domy), existe 7 > 0 tal que B(zg,r) € Int(Domy). Se define

E(p) = {(z,t) € Blzo,7) x R:t > p(x)}.

E(p) es un conjunto convexo y cerrado. Se comprueba usando que las funciones
convexas son semicontinuas inferiormente en los puntos del interior del dominio (ver
DLl

Como ¢(z9) # +o0, para cualquier £ > 0 se tiene que z := (xg, @(x0) —¢€) & E(yp).
Se aplica la segunda forma geométrica del teorema de Hahn-Banach (ver a
los conjuntos {z} y &(p). Entonces, existe un funcional lineal L : R x R — R y
v € R tal que

L(z,t) <~v < L(z), V(x,t)€&(p). (3.16)
Por el teorema de representacién de Riesz, existe « € R? y 8 € R tal que
L(z,t) = (&, x) + Bt

S # 0, pues si no, no se verificarfa la desigualdad para el punto (zg, p(z9)) € E(p).
Como los puntos de la forma (x¢,t) € £(¢) para valores arbitrariamente grandes de
t, se deduce que 8 < 0.

El funcional & L(z,t) = (a,x) — ¢, con o = |i, seguird verificando [3.16{ Por lo

18] B
tanto, se tienen las siguientes desigualdades:

7 < (e mo) = (plzo) =€)y (eyz) =t <, V(z,1) € E(p).

De la primera desigualdad, se obtiene p(zg) — (a,x9) — e < —7v. Evaluando la

segunda desigualdad en los puntos (x, ¢(z)) € E(p), con x € B(xzg,7), se tiene que
o(x) > (a,z) — 7. Por lo tanto, se concluye que

p(a) > (o, ) + p(w0) — (a, 20) — & = p(0) + (@, 7 — o) — &, Va € B(xo, 7).
Haciendo tender € a 0, se tiene que
() > p(xg) + (o, — 30), Vo € Blxg,r).

Si esta desigualdad se verifica para los puntos de B(zg, ), se verifica para cualquier
punto de R?. Se razona por reduccién al absurdo: Sea z € R? tal que

p(x) < p(w0) + (o, @ — o).
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Entonces, el segmento que une ¢(x) con ¢(x) esta por debajo del hiperplano ¢(zg)+
(o, x —x0). Esto se puede ver multiplicando la desigualdad anterior por ¢ y operando:

to(x) + (1 —t)p(zo) < @(xo) + (o, tx + (1 — t)xg — 20), Vit € (0,1).
Se llega a una contradiccion, puesto que para algun t suficientemente pequeno,
tr + (1 —t)zo € B(zo,7),
otz + (1 —t)xg) < to(x) + (1 —t)p(z) < @(xg) + (o, tx + (1 — t)zo — T0).
Esto es absurdo. Por lo tanto,
o(x) > p(zo) + (o, x — o), Vo€ R
Se tiene que a € dp(zo). O

Lema 3.2.6. Sea ¢ : R? — R U {+o00} una funcién conveza. Si ¢ es diferenciable
en el punto x € R?, entonces el conjunto dp(x) estd formado por un inico punto,
el gradiente de ¢ en x, es decir,

dp(x) = {Ve(r)}.

Demostracion. Primero, se prueba que Vip(z) € dp(x). Por convexidad, para todo
y € R?, se tiene que

ple+ty—x) < (1—t)p(z)+tely), Yte(0,1).

Reescribiéndolo,

(p(x + t(y _t@) — () < o(y) — p(x).

El limite de la expresion de la izquierda, cuando ¢ tiende a 0, es la derivada direccional
de ¢ en x en la direccién y—x, y se denota por Dp(x; y—x). Como ¢ es diferenciable
en z, ese limite existe y se cumple

Do(z; y—x) = (Veo(z), y—z), VyeR"

Entonces,
(Veo(), y —x) < o(y) —p(z), VyeR"
Se concluye que Vo(x) € 0p(z).
Queda probar que si otro punto o € R? pertenece al gradiente de ¢ en x, entonces
a=Vep(x). Si a € dp(x), entonces

oly) > o)+ (o, y — x), Vy € R

En particular, si v € R? y ¢ > 0, tomando y = x + tv en la desigualdad anterior, se
tiene que
p(z +tv) — o(z)
t
Tomando limite cuando ¢ tiende a 0, se deduce que

(Vo(z), v) > (a,v), YveR < (Vp(z)—a,v) >0, VovecRL

> (a,v), YveR% t>0.

Tomando v = o — V(z), se tiene que —||V(z) — a|* > 0 si, y solo si, Vip(x) =
. [l
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Se enuncian, en la siguiente proposicion, propiedades basicas de la convexa con-
jugada de una funcién. En el apéndice se define una funcién inferiormente se-
micontinua (ver definicién [D.1.1]).

Proposicién 3.2.7. Sea ¢ : R? — RU{+o0}. Entonces su transformada de Legen-
dre ©* (ver definicion enm es convexa e inferiormente semi-continua. Ademds,
81 no es idénticamente 400, entonces ©* tampoco es idénticamente +00.

Demostracién. Primero se prueba que ¢* es convexa. Para cada x € RY, se define
la funcién afin @, (y) := x - y — p(x). Entonces, sean y;,y, € R,

Gu(tyr + (1 = t)y2) = tPo(y1) + (1 = 1)Pa(y2), Vt € (0,1).

Tomando superior en z € R?,

©*(y) = sup G.(y) = sup [t@.(y1) + (1 — )Ba(yo)]

z€R4 R4
< tsup @.(y1) + (1 —1t) sup @u(y2) =: to"(y1) + (1 — )" (12).
rcR4 rcRd

El segundo paso es probar que ¢* es inferiormente semicontinua. Para cada 1, € R,
sea {y,}>2; una sucesion tal que lim vy, = yo. Entonces, lim x -y, —¢(x) = x-yo—
n—oo n—oo

¢(z), para cada z € R% Como ¢*(y,) > = -y, — ¢(x), para todo z € RY, entonces

liminf ©* (y,,) > = - yo — (), Vo € R%

n—oo

Por lo tanto, lim inf ¢*(y,) > sup = - yo — p(z) =: ©*(yo)-
n—o0 [L’ERd
Por tiltimo, si ¢ no es idénticamente +oo, existe zg € R? tal que p(x) < +oc.
Como se ha visto en el lema(3.2.5] la subdiferencial de ¢ en z( es no vacia, es decir,
existe y € 0p(xg). Por definicién de subdiferencial,

o(x) > ¢(x0) + (y, 2 — xp), Vo €R

si, y solo si,
(y,x) — p(z) < {y,20) — p(x0), Vo€ R’

Entonces, tomando superior en =,
™ (y) = sup{{y, r) — (z)} < (y,20) — ¢(x0) < +00.

]

A continuacion, se da una caracterizacion de la subdiferencial de una funcién a
partir de su convexa conjugada.

Proposicién 3.2.8. Sea ¢ : R? = RU {400} una funcién conveza e inferiormente
semicontinua no idénticamente +oo. Entonces, para todo x,y € RY,

r-y =)+ (y) &y € dp(z).
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Demostracion. De la definicién de convexa conjugada es facil ver que se cumple que
x -y < o(z) + ¢*(y), para todo z,y € R Por lo tanto,

-y =p)+¢(y) & r-y>el)+ e (y)

Como ¢*(y) = sup[z -y — p(2)],

z€Rd
vy > @)+ (y) e r-y>el)+z2-y—¢(z), vz € R?
© o(z) > (@) +y- (2 —2), vz € R
&y € 0p(x).

]

El objetivo del siguiente resultado es llegar a una caracterizacion de las funciones
convexas conjugadas ¢*, sera clave para el estudio del problema dual de transporte
6ptimo. Se ha visto, en la proposicién [3.2.7] que la convexa conjugada de una funcién
@ es convexa e inferiormente semicontinua. Se prueba, a continuacién, el reciproco.

Proposicién 3.2.9. Sea ¢ : R? — R U {+00} una funcién no idénticamente +oo.
Son equivalentes:

1. ¢ es convexa e inferiormente semi-continua.

2. Eziste una funcion v : R? — R U {400}, no idénticamente +oo, tal que
=y
3. o™ =.

Demostracion. 3) = 2) es claro, tomando 9 := ¢*, que no es idénticamente +o0,

como se ha visto en la proposicién [3.2.7} 2) = 1) esta ya probado en [3.2.7, Queda
probar 1) = 3).
Sea ¢ convexa e inferiormente semicontinua. La desigualdad ¢(x) > ¢**(x), se

da siempre. Para todo y € RY, z -y — p(x) < sup[z -y — ()] =: »*(y). Entonces,
z€RL

e (z) == suplz -y — " (y)] < p(zx), VzeR%
y€ERd

Caso 1: Se supone que @ > 0. Para probar que ¢ < ¢** se razona por reduccién al
absurdo. Se supone que existe o € R? tal que

¢(x0) > ™ (o).
Como ¢ es inferiormente semi-continua, el conjunto convexo
epi(p) = {(z,t) ER*x R:t > p(z)}

es cerrado. Se aplica la segunda forma geométrica del teorema de Hahn Banach

(ver [D.2.1)) a los conjuntos epi(y) y {(xo, ¢**(x0))}. Existe un funcional lineal L :
R?x R — Ry~ cR tal que

L(zg, 0" (x0)) < v < L(z,t), V(z,t) € epi(yp). (3.17)
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Por el teorema de representacién de Riesz, existe « € R? y 3 € R tal que
L(xz,t) = {a,x) + Bt

Existe un punto x € Domg, por ser ¢ propia. Como los puntos de la forma (z,t) €
epi(p) para valores arbitrariamente grandes de ¢, se deduce que 5 > 0.
Para cualquier € > 0, como ¢ > 0, se verifica:

(@, 2) + (B+e)p(r) 2 (o, z) + fp(z) > 7, Yz RS

si, y solo si,
a g d

—h ., - < - ) VreR )

(g e S~ Ve
de donde se deduce que

BT S T (Bre)
Por lo tanto,
> (==, 20) — " (—7——) = (———, w0} +
SO(CCO)—< 5+€$0> ¢(5+6) <6+5x0> (ﬁ+5)

Se llega una contradiccion, puesto que
(a,z0) + (B+ €)™ (20) =7, Ve>0.

Caso general: Como ¢ no es idénticamente +00, entonces ¢* tampoco. Sea yy €
R? tal que ¢*(yo) < +00. Se considera la funcién

@(r) = o(x) — (z,90) + ¢* (o), Vo € R

@ es convexa, inferiormente semicontinua y mayor o igual que 0. Entonces, por el
caso 1, se deduce que ¢ = @**. Desarrollando primero la expresion de ¢*, se tiene
que

" (y) = S;lﬂg{@c, y) — () + (7, 90) — ¢" (o)}

= s;@{(x, Y+ o) — (@)} — ¥ (vo)

=" (y+y0) — ¢ (y), Vy€R™L

En cuanto a ¢**, se tiene que:

¢ (z) = s;ﬂg{m y) — ¢ (y+ o)} + ¢ (o)

= sup{(@.y +y0) ="y +90)} = {:90) + 2" (30)
=" (x) — (2,90) + @ (o).

Se concluye que ¢** = . m
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3.2.2. Estudio del problema dual

En el contexto del problema de transporte 6ptimo que se ha planteado en esta
seccidn, se ha estudiado la expresién [ @dP + [1dQ, y se ha visto que la clave para
minimizar esa suma son los pares de funciones convexas conjugadas. Por eso, en el
apartado anterior, se estudiaron las propiedades de la transformada de Legendre.
Ahora ya se dispone de las herramientas necesarias para probar que existe un par
de funciones 6ptimas en el problema dual y que son inferiormente semicontinuas
conjugadas.

Lema 3.2.10 (Doble convexificacién). Sean P y Q dos probabilidades en R? con
momentos de orden 2 finitos. Sea

¢ ={(p,9) € L'(P) x L'(Q) : x-y < p(z) +¢(y), V(z,y) € R xR}

Para cada (p,v) € @, existe a € R tal que el par de funciones de ® definido de la
siguiente forma: B

(@, ¢) = (¢ —a,¢" + a)
verifica que J(p,0) < J(p,v) y satisface, para todo (z,y) € R x R?,

o(x) > —@, U(y) > —%. (3.18)

Demostracion. Sea (¢,1) € ®, es facil comprobar que el par (¢**, ¢*) verifica que:
P @)+ (y) > x-y, Y(z,y) e R xR

Ademas, J(p**, ¢*) < J(p, ). Esta afirmacién se demuestra a continuacién: Para
todo (z,7) € R4 x R, -y < p(x) + ¢(y). Se deduce que

¢"(y) = sup[z -y — p(z)] < ¥(y).
z€R4
Por otro lado, siguiendo el razonamiento que ya se ha hecho en otras demostraciones,

se verifica que z -y — p(x) < sup[z -y — ¢(x)] =: ¢*(y). Entonces,
zeR?

¢ (x) = sup [z -y — ¢"(y)] < p().
y€R4
Por ser ¢ integrable respecto de P, no es idénticamente +oo. Esto implica que
¢©* : R4 — R U {+o0} tampoco es idénticamente +oo (por la proposicién .
Ademss, ¢* estd acotada inferiormente por una funcién lineal: existe zo € R? tal
que ¢(xg) < +00, entonces,

zo -y + o(wo) < 9™ (y) VyeRL

‘ 2

Sea a = infd[gp*(y) + y2\ ]. Como ¢* toma valores reales para algin punto, a <
yeR
+00. Acotando la funcién que se quiere minimizar por otra que alcanza el minimo

absoluto, se ve que a € R:

Ll lly - woll® ol

> x0 -y + (o) 5 5 5
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Se considera el par de funciones (,%) = (¢** + a,¢* — a). Para todo y € R,

go*(y)—{—@—& > 0, (por ser a el inferior de esa funcién). Entonces ¢(y) > ”y” , para

todo y € R%. En cuanto a la funcién 1), se tiene la siguiente cadena de de&gualdades

2 2
0+ B8 B oy )  lelPy

_ 2 _ 2
> sup [ 90 - 155 = - ot [ + 15 =, veeme

Para probar que (p,1) € @, solo falta ver que (p,v) € L'(P) x L*(Q), porque ya
se ha probado que

px) +o(y) =" (@) + " (y) > z-y, Y(z,y) e R xR"

Se cumple que J(p,v) = J(¢**,9*) < J(p,1) < +oo. Entonces, se tiene que

[@dP + [ YdQ < +oo. Ademds, como ambas funciones (¢ y 1) estdn acotadas

inferiormente por funciones integrables (— ”g” y — HyzH

(@,9) € L'(P) x LN(Q).

), se deduce que

O

De la demostracion del lema se deduce que si (p,19) € P, entonces
(™, %) € & y se cumple que J(¢™*, ¢*) < J(p,v). Por lo tanto, para buscar
el minimo de J(p,1) en ® hay que restringirse a los pares de funciones convexas
conjugadas del tipo (¢**, ©*).

Corolario 3.2.11. Sean P y Q dos probabilidades en R? con momentos de orden 2
finitos. Minimizar la expresion J(p,¢) = [ pdP + [dQ en el conjunto

= {(p,9) € LNP) x INQ) vy < pl(a) + ¥(y), V(w,y) € R x R}

es equivalente a calcular inf J(p**, ¢*).
q ok T )

A partir del corolario [3.2.11] y de la caracterizacién de las funciones convexas
conjugadas dada en la proposicion se tiene el siguiente resultado:

Proposicién 3.2.12. Sean P y @) dos probabilidades en R? con momentos de orden
2 finitos. Minimizar la expresion J(p,1) = [ pdP + [1dQ en el conjunto

®={(p,¥) € L'(P) x L'(Q) : x-y < p(z) +¥(y), V(z,y) € R xR}
es equivalente a calcular
Inf J(p, "),
donde C es el conjunto de funciones ¢ : R? — R U {400} de L'(P) convezas e

inferiormente semicontinuas, no idénticamente +00.

Lo tnico que queda por demostrar es que se alcanza el minimo de J(p, ) en un
par de funciones concretas, esto es lo que se prueba en el siguiente teorema.
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Capitulo 3. El problema de transporte éptimo

Teorema 3.2.13. Sean P y Q dos probabilidades en R? con momentos de orden 2
finitos. Sea ® = {(p, ) € LY(P)x LYQ) : x-y < p(x)+9(y), V(x,y) € RIx R4},
Entonces, existe un par (p, ¢*) de funciones convezas e inferiormente semicontinuas
conjugadas propias definidas en RY tal que

mf J(p,¥) = J(p,¢").

(ph)e®

Demostracion. Sea {(pk, V) }52; una sucesién de elementos de ¢ tal que

lim J(pp, ) = Inf J(p,1).
k—oo

(p)ed

Por el lema |3.2.10] se puede suponer que

&l
2 Y

0 < gp(x) +

Buscando la convergencia débil de alguna subsucesién de {(py, ¥x)}52,, se truncan
las funciones para conseguir una acotacién por arriba (y garantizar la integrabilidad
uniforme). En el apéndice , se definen estos conceptos y se explican las propiedades
que se van a usar a continuacion.

Para cada n € N, se define

&S
2

B Edl
2 Y

ly1I*

2

2
oy ol

,n} Vi (y) = min{yx(y) + 5

wr () = min{py(z) +

Se tiene, para todo k € N,

[ H Iyl
n < n <
’ Pkt 2 lleyp) — m Yk + 2 g — n
Ademds, fijado € > 0, si E € 8¢ tal que P(E) < £
n [Edls
o () + - dP <nP(F)<e, VkeN.
E

Analogamente, si F' € 4% tal que Q(F) <

£
n

/ \@b};(y) + ”y2”2 )d@ <nQ(E) <e, VkeN.
F

[Ed[

Se acaba de probar que, para cada n € N fijo, las sucesiones {p} + 5122, y {) +

@}z"zl verifican la condicién de integrabilidad uniforme (ver [E.1). Por lo tanto,
por el teorema|k.1.2) para cada n € N fijo, existe una subsucesién de indices {k;}32,

tales que {¢}; + @};";1 converge débilmente en L'(P) (equivalentemente {or, 152

converge débilmente) y otra subsucesion de indices {k;}§2; tales que {9} + @};’il
converge débilmente en L'(Q) (equivalentemente {¢} }3°, converge débilmente). Se
denota al limite por (", ¥") € L'(P)x L*(Q). Sin pérdida de generalidad, se supone
que es la misma subsucesién de indices.
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3.2. El caso cuadréatico

Si se extraen las subsucesiones de indices de forma recursiva, (es decir, para cada
n € N\ {1} se extrae una nueva subsucesién de la subsucesién que se habia extraido
para n— 1), se tiene que, para cada n € N, existe una subsucesién de indices {k; };°,
tales que los pares de funciones (7,1 ) convergen ¥m < n. Al formar la sucesién
de indices quedandose con el elemento n-ésimo de la subsucesién que elegida para n,
se construye una subsucesién de {(¢g, ¥x)}72; cuyas truncaciones convergen, para
cualquier n € N. Para simplificar la notacion, se supone que es la propia sucesion la
que cumple esta propiedad.

La convergencia débil implica, en particular, que

lin [ i@)ip@) = [ @ir@). Jin [wwiew = [ o)
Por lo tanto,

La ultima desigualdad se debe a la monotonia de la integral, ya que, fijado k£ € N,
op <y Yy <y, para todo n € N.

Para cada k € N fijo, las sucesiones {¢p}7°, v {¢}}52, son crecientes. Tomando
limites en la convergencia débil, la monotonia de estas sucesiones se traslada a las
sucesiones {¢"}°2, y {¢"}>2;, aunque son desigualdades casi seguro (con respecto
a las medidas P y @, respectivamente). Esto se ha probado en m Por lo tan-
to, existen los limites puntuales, definidos para casi todo punto, ya que la unién
numerable de conjuntos de medida nula es de medida nula.

@o = lim " : RY = RU {400}, p:= lim ¢": R = RU {+o0}.
n—00 n—oo

En los puntos de R? que no se cumplen las desigualdades ¢"(z) < ¢""!(z) para

todo n € N, se define py(x) = +00. Andlogamente, en los puntos que la sucesion

{¥"(y)}, no es creciente, se define 1y(y) = 4o0.

El siguiente paso es comprobar que (¢g, %) € ®. Como (¢, x) € ¢ para todo
k € N, se tiene que:

Il
2

Iyll? _ llzl?  llyl? lz + y|I?
> P .
+ r(y) + 5 2 5 + 5 +x-y 5

wr(z) +

Fijado n € N,

2 2 4 2
or(z) + Yp(y) + H‘Z” + @ > min {n M} vk € N.

Tomando limite, cuando k tiende a oo, y después, haciendo tender n a oco:

lol? | W g, Dt P

" () + 9" (y) +

2 2 2
x||? y|I? x + vy
) ) L WS B s
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Capitulo 3. El problema de transporte éptimo

Por cé6mo se habian construido las funciones g y ¥, la tltima desigualdad se verifica
para todo (z,y) € RY x R, (aunque fijado n € N, la respectiva desigualdad para
(™, 9™) pueda no verificarse para los = de un conjunto de probabilidad P nula, y
los y de un conjunto de probabilidad @) nula).

Las sucesiones de funciones {¢"}> ;v {©"}>2, son crecientes y acotadas infe-
riormente por funciones integrables:

]

2

<@, ME <y

Por el teorema de la convergencia mondtona

/ podP = lim / ©"dP, / thod@Q = 1im / PrdQ.

Por lo tanto,
J(SO()) ¢0) = nlinolo J(g0n7 ¢n) S inf J(QO, 77Z))

(p,h)e®

De esta cadena de desigualdades, también se deduce que (¢, 1) € L'(P) x LY(Q),
puesto que —oo < — [ @dP < [ podP, —co < — [ WdQ < + [1od@Q y la suma
de ambas integrales verifica que:

/gpodP+ /goodP < +o00.

Entonces, se verifica la desigualdad contraria J(pg, ) > ( izrpl)f o J(p, 1) vy, por lo
pab)e

tanto, la igualdad.
O

3.2.3. Caracterizacion del plan de transporte optimo

Por tltimo, para cerrar la seccion, se prueban dos teoremas que caracterizan los
planes de transporte 6ptimos, garantizando unicidad bajo ciertas condiciones.

Teorema 3.2.14 (Criterio de optimalidad). Sean P y Q dos probabilidades en R?
con momentos de orden 2 finitos. La probabilidad m € [[(P, Q) es un plan de trans-
porte optimo para el coste cuadrdtico c(z,y) = ||v — y||* si, y solo si, existe una
funcion ¢ : R — R convexa e inferiormente semicontinua tal que

y € 0p(r), m™—cs.

Si esto ocurre, el par (p, *) minimiza la expresion

J = dP d
()= [ eap+ [ vaQ
en el conjunto ® = {(p,) € LY P)xLY(Q) : vy < o(z)+(y), V(z,y) € RIxR?}
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3.2. El caso cuadréatico

Demostracion. Se ha probado en el teorema [3.2.13| que existe una funcién ¢ convexa
e inferiormente semicontinua tal que el par (¢, ¢*) minimiza J(p, ) en el conjunto

®. Gracias a la férmula de dualidad se tiene que una probabilidad 7 € [[(P, Q)
es un plan de transporte éptimo para el coste cuadratico si, y solo si,

[ et = [ ers [ wia= [ o e )i,

si, y solo si,
/ [90(90) +¢"(y) —w- y} dr(x,y) = 0.
R4 xR4

Como ¢(z) + ¢*(y) — x -y > 0 para todo (z,7) € R? x R?, que la integral sea nula
es equivalente a que

o)+ (y) =2y, m—cs.

es decir, es equivalente a que y € dp(x), 7T — c.s. O

Se enuncia, a continuacion, el teorema que garantiza que si P no da probabilidad
a conjuntos de medida nula, entonces existe una aplicacion de transporte 6ptimo de
P a ). Ademas, el plan de transporte inducido por esta aplicacién es el tnico plan
de transporte éptimo.

Lema 3.2.15. Sean P y Q dos probabilidades en R:. Sea T : R — R una aplica-
cion medible. Si m € [[(P,Q), entonces son equivalentes:

1. m=(Id x T)#P.
2. y=T(z), 7 — c.s.
Ademds, si se verifica alguna de estas condiciones, entonces T#P = Q).

Demostracion. Sim = (Id X Vp)#P, entonces
7(C) = P({:c eRY: (2,T(2)) € o}), v € B,

Con esta definicién, es claro que el conjunto {(z,y) € R? x R? : y # T(x)} tiene
probabilidad 7 nula.

Para probar la implicacién contraria, se define la probabilidad R en R? x R? de
la siguiente forma:

R(C) = P({x eRY: (2,T(z)) € C}>, Ve € g,

Para comprobar que m = R basta con comprobar que (A x B) = R(A X B) para
todo A, B € 3%, ya que los conjuntos de este tipo son una clase determinante de la
probabilidad. Si se supone que y = T'(x), m — c.s., entonces

R(Ax B) = P({x eRY: (z,T(2)) € A x B}) - p(AmT—l(B))
- W(AﬂT’l(B) X Rd) - W({(x,y) cRIxRY:z € A T(z) € B})
=m(A X B).
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Capitulo 3. El problema de transporte éptimo

Por 1ltimo, se comprueba que si 7 = (Id x T)#P, entonces T#P = ) ya que:
Q(B) = n(R% x B) = P({x eR?: T(z) € B}> = P(I"'(B)), VBep"

]

Teorema 3.2.16. Sean P y Q dos probabilidades en R? con momentos de orden 2
finitos. St P no da masa a conjuntos de medida nula, entonces el plan de transporte
optimo 7, para el problema del coste cuadrdtico, es unico. Y, ademdas, se verifica que

= (Id X Vp)#P,

donde Vi es el unico (salvo un conjunto de P-probabilidad nula) gradiente de una
funcion convexa tal que Vo#P = Q).

Demostracion. Primero, se probara que cualquier plan de transporte 6ptimo 7 cum-
ple las condiciones descritas en el teorema. Sea ¢ la funcién convexa que minimiza

/(de—l—/go*dQ

en el conjunto de funciones convexas e inferiormente semicontinuas. Como ¢ €
L'(P), entonces solo puede tomar el valor +0co en un conjunto de medida nula.
Entonces, P(Domy) = 1. Adem4s, la frontera de Domy es de medida nula, por ser
un conjunto convexo. Entonces, P(Int(Domy)) = 1 Por el teorema de Rademacher
(ver , una funcién convexa definida en un abierto de R? es diferenciable en
casi todo punto. Como P no da masa a conjuntos de medida nula, ¢ restringida
al interior de su dominio es diferenciable P-c.s. y su gradiente estd bien definido,
salvo en un conjunto de P-probabilidad nula. Por lo tanto, el conjunto donde ¢ es
diferenciable, tiene P—probabilidad 1. Ademé&s, como una de las marginales de
es P, el conjunto de puntos (z,y) € R? tales que ¢ no es diferenciable en x es de
m-probabilidad nula. Entonces, por el lema [3.2.6] el iinico vector que pertenece a la
subdiferencial de ¢ en (z,y) es el gradiente de ¢, salvo en un conjunto de puntos de
m-probabilidad nula.

Por lo tanto, si 7 es un plan de transporte éptimo, por el criterio de optimalidad
se verifica que y = Vp(z), m-c.s. Esta condicién es equivalente a que m =
(Id x V)#P. Se tiene también que P#Vo = Q.

En segundo lugar, queda probar la unicidad del plan de transporte. A la vez se
probard que solo existe un gradiente de una funcion convexa Vo tal que Vo#P = Q.

Sea @ otra funcion convexa tal que Vp# P = (). El objetivo es ver que Vg = Vo
(salvo en un conjunto de P-probabilidad nula). Se considera la probabilidad

mo = (Idx Ve)#P € [[(P.Q).

Por el lema previo [3.2.15, y = V@(z), mp — c¢.s.. En consecuencia, por el criterio de
optimalidad [3.2.14] 7 es un plan de transporte 6ptimo y el par (@, *) minimiza la
expresion

Hew) = [ wap+ [ vaQ
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en el conjunto ® = {(p,¢) € LY(P)x LYQ) : z-y < p(x)+¢(y), V(z,y) € RIxR}.
Se tiene, por la férmula de dualidad de la proposicién [3.2.2] que

[ owars [ gwao= [ wwars [ = [ sy,
Rd R R4 R R xRd
Reescribiéndolo,
/ [@(ﬂf) +¢"(y) —x- y} dr (@, y).
R4 xR4

Usando que m = (Id x Vp)#P, por el teorema de transferencia de integrales,

/]Rd Rd [@(a:) + " (Vep(x) — - v@(x)] dP(x)
si, y solo si,
o(x)+ ¢*(Vo(x)) —x-Ve(r) =0, m—c.s.

Esta ultima equivalencia se debe a que la funcién del integrando es mayor o igual
que 0 siempre. Por la proposicién [3.2.8]

Vo(x) € d(p(z)), P —c.s.

Y, como ¢ es diferenciable salvo en un conjunto de probabilidad P nula (por un
razonamiento explicado al principio de esta demostracién),

Vo(z) =V(p(z)), P —c.s.

De esta igualdad, se concluye que existe un tnico gradiente de una funciéon convexa

que minimiza
/ wdP + / ©*dQ

en el conjunto de funciones convexas e inferiormente semicontinuas y, por lo tanto,
un unico plan de transporte 6ptimo.

[]

3.3. Meétricas de Wasserstein

Se ha estudiado el problema de transporte éptimo, para el coste ¢(z,y) = ||[z—y||”
con p > 1, porque la expresiéon que minimiza el coste define una métrica en la clase
de probabilidades de R? con momentos de orden p finitos, denominada métrica de
Wasserstein:

1
W, P,Qz( min / :z:—ypdwx,y)p, p> 1. 3.19
(P.Q)=( min |- yldne (3.19)

Volviendo al contexto del Aprendizaje Justo, para buscar subgrupos comunes en
una poblacién (que estd dividida en clases dependiendo del atributo protegido S €
{0,1}), se trabaja con los recortes. Ya se ha visto que el primer paso para entrenar
reglas justas es encontrar la parte comin a varios conjuntos de datos diferentes.
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Capitulo 3. El problema de transporte éptimo

Formalmente, se trata de buscar un elemento comtn F, a los conjuntos de recortes
de cada una de las leyes de probabilidad que generan los datos de cada grupo.

Pi=L(X|S=0), Q:i=”L(X|S=1).

En el capitulo|l]se ha propuesto un algoritmo para estimar la parte comun entre
P y @ que utiliza distancias entre probabilidades. En el paso 2 de dicho algoritmo,
se calculan los recortes éptimos, es decir,

(P, Qo) := argmin d(R, S),
RERW(P)
SER(Q)

para cierta distancia d entre probabilidades en R%. Como ya se adelanté, una opcién
es considerar la métrica de Wasserstein.

A continuacion, se demuestra que la expresion define una distancia. Pero,
para probar que verifica la desigualdad triangular, se necesita un resultado auxiliar:
el lema de pegado, que se puede encontrar en [21].

Lema 3.3.1 (Lema de pegado). Sean (X, My, P), (Xo, My, Py), (X3, M3, P3) tres
espacios probabilisticos. Se supone, ademds, que X1, Xy y X3 son espacios métricos,
completos y separables. Entonces, fijadas las probabilidades m o € [[(P1, P2) y ma3 €
[[( P2, P3), existe una probabilidad w en Xy x Xy X X5 tal que la distribucion marginal
de m sobre Xy x Xy es w9 y su distribucion marginal sobre Xy x X3 es my 3.

Demostracion. Para poder construir la probabilidad descrita, se recurre a la desin-
tegracion de medidas, que se explica en el apéndice

Como 7y 5 es una probabilidad en [[(Py, P»), existe una funcién F' : My x X, — R
de forma que

» Para cada y € X fijo, F, := F(,y) es una probabilidad en (X3, M,).
» La funcién y — F(A,y) es medible en (X5, My) para todo A € M.

verificando que
7T1’2(E> :/ F(Ey,y) dP2<y), \V/E €M1®M2.
Xo

Analogamente, para 7,3, existe una funcién G : Xy x M3 — R de forma que
» Para cada y € &, fijo, G, := G(y, -) es una probabilidad en (X5, M3).
» La funcién y — G(y, C) es medible en (X, My) para todo C' € M.

verificando que
maalF) = [ G.F)dP), VF € Mo My
Xo

Primero, se da una idea intuitiva para construir una probabilidad 7 en X} X X5 X
X3 que cumpla las condiciones del lema: Se fijay € Xy. Si D € M; ® My ® Mas,
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3.3. Métricas de Wasserstein

la probabilidad que se asigna a la y—secciéon de D es la probabilidad producto
F, ® G, (D,). Después, se integra en Xj, respecto de la probabilidad P.
Formalizando lo anterior, si D € M; ® My ® M3, se define

(D) = /X F, ® Gy, (D) dPs(y)

= [ ([ cuwpaane)arw = [ ([ Rp)de, ) an),
Entonces, si U € M; ® M.,

AU x X) :/

Xo

F, @ G, (U, x Xy) dPs(y) = / F,(U,)Gy () dPy(y)

Xo

— /X Fy(Uy) dPy(y) = m2(U).

Andlogamente, si V € My ® Ms,

(X XV):/

Xo

Fy© Gy (% V,) dPy(y) = / F,(X)G, (V) dPy(y)

Xo

:/X Gy (V) dPy(y) = ma5(U).

Proposicién 3.3.2. Sea p > 1. Se considera el espacio de probabilidades
F, = {u probabilidad en R? / |z|[Pdp(x) < 4+o00}.
Rd
Se denomina

me[1(P,Q)
al coste de transporte optimo entre dos probabilidades P y ) de F,. Entonces,

7.(P.Q) = min / e — ylPdn(z,y)
RIx R4

S =

Wyt Fp X Fp = R, Wp(PaQ) = (%(HQ))
es una distancia.

Demostracion. Como el coste ¢(z,y) = || —y||P es una funcién simétrica y positiva,
W, también lo es. Se demuestra, a continuaciéon que W,(P,Q) = 0 si, y solo si,

P =Q.
Se ha probado que existe un plan de transporte 6ptimo m € [[(P, Q). Es decir,
existe mp € [[(P, Q) tal que

xr —y||Pdmo(x,y) = min / x —yl||Pdr(x,y).
/Mdn WPamie.) = min [ e ylPnte.)
Si W,(P, Q) = 0, entonces

/ e — ylPdmo(x, y) = 0.

R xRd
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Capitulo 3. El problema de transporte éptimo

Por lo tanto, ||z — y||? = 0, mp-c.s. & & =y, me-c.s.. A partir de esta igualdad, se
comprueba que P = (. Para todo A € RY,

P(A) =m(Ax RY) =7 (A xRN AR? x RY) = mo({(z,2) : z € A}),
Q(A) = m(R? x A) =7 (R? x AN AR? x RY)) =m0 ({(y,y) : y € A}).

Reciprocamente, si P = (), se define la probabilidad

m0(C) = P(pr(CN AR x RY)) = P({z e R?: (z,2) € C}) VC € B>
o es una probabilidad bien definida.
» T(A) > 0 para todo A € 8% y mp(R? x R?) = P(R?) = 1.

» Si {C,}, es una sucesién disjunta de elementos de 3?¢, entonces

ZC P{zeR: (z ZC’} (Z{xERd:(x,x)ECn})

:i P(pr(C, N A)) :ZWO(C
n=1 n=1

Por la definicién de mp, sus marginales son P y () respectivamente. El soporte de
esta probabilidad estd contenido en la diagonal, ya que mo(A) = P(RY) = 1. Por lo
tanto, © =y, mp-C.S. y fRded | — y||Pdmo(z, y) = 0. Entonces, 7, es la distribucién
que alcanza el minimo y 7,(P, Q) = 0.

Queda probar la desigualdad triangular. Si 7 es una probabilidad en R? x R x RY,
en el espacio LP(r), se tiene la desigualdad de Minkowski:

Iz = 2llp < [lz = yllp + [ly — 2l

Reescribiéndolo,

1 1
([, oelpima2) = ([ o= elPintey.2)”
R xRd R x R4 xR
1 1
S B ) KR O S [ EX )
R4 x R4 x R4 Rd xR x R4
1 1
— ([ le=ulrdmaten))” 4 ([l sPdmate. )"
Rd xRd Rd xR

donde 715 y 23 son las marginales 1,2 y 2,3 de 7, respectivamente.

Sean u, v, p tres probabilidades de F,. Se denota por 7 a la distribucién que
minimiza el coste de transporte éptimo para p y v. Andlogamente, 7, 3 es la proba-
bilidad que minimiza el coste de transporte éptimo para v y p. Es decir,

W) = [ o= ylPdmate.)
RIx R4

WE (1, p) = / ly — =lPdmas(y, 2).
Rdx R4
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3.3. Métricas de Wasserstein

El lema de pegado m garantiza que existe m € [[(u, v, p) cuyas marginales 1,2y
2,3 son w9 y ma3. Por lo tanto,

Wiep) < ([, o= 2lPdmaly. ) < Wylanr) + W)

3.3.1. Aproximaciones empiricas

Hasta ahora, se han estudiado las propiedades tedricas de la distancia de Was-
serstein. Pero, para poder usar esta distancia en el algoritmo descrito en el capitulo[T]
se necesita un método para hallarla. En la practica, la forma de calcular la distancia
de Wasserstein es a partir de aproximaciones discretas.

Sean R v S dos probabilidades en R? con momentos de orden p > 1 finitos.
Sean n,m € N, se toma una muestra de cada distribuciéon de n y m elementos,
respectivamente. Es decir, se toman X1, Xo, ..., X,, vectores aleatorios independientes
con distribucion R y, analogamente, Y7, Ys, ..., Y,, vectores aleatorios independientes
con distribucién S. Las probabilidades empiricas dadas por estas muestras son:

m

1 & 1
RHZE;%, Sm:EZ(syj.

Jj=1

Calcular la distancia de Wasserstein entre R,, y .5, es un problema de investiga-
cion operativa.

n n
WE(Ry, Sp) = min Y > |l — y;°miy,
i=1 j=1
n n
sujeto a m;; > 0; > m; = %; Yomi;=
j=1 i=1
El algoritmo para resolver este problema tiene un coste alto, pero se ha reducido
el problema original a uno discreto, calculable en la practica. Si la distancia de
Wasserstein empirica (entre R,, v S,,) tiende hacia la distancia de Wasserstein ente
Ry S, cuando n y m tienden a oo, entonces se tiene un método practico para estimar
la distancia de Wasserstein entre dos probabilidades. No es cierto que se verifique esta
propiedad para cualquier distancia entre probabilidades. Por ejemplo, ya se explicd
en la seccién del capitulo [I] que no se verifica para la distancia en variacién
total. Sin embargo, en el caso de la distancia de Wasserstein, si se puede aproximar
a partir de las distancias empiricas. Se enuncia, a continuacion, un resultado que
caracteriza la convergencia en la distancia de Wasserstein; su demostracion se puede
encontrar en el lema 8.3 de [5].

Proposicién 3.3.3. Sean R y {R,}°, probabilidades en F,(RY), p > 1. Entonces,

S|

Ifm W,(R,,R) =0

n—0o0

si, y solo si, la sucesion {R,}>2, converge débilmente a R y, ademds,

lim /Hx”p an—/Hpr dR.
n—oo
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Capitulo 3. El problema de transporte éptimo

Demostracion. Si Py @ son dos probabilidades en JF,(R?), entonces

WP(P,()) = min /x— Pdrn(x,y) = min E|X —Y]|".
1P.Q) = win o= ylPinten) = _in  BIX -

=) Se denota por 7, a la probabilidad de [[(R,, R) que minimiza el coste de trans-
porte. Como se detalla en el apéndice [F]sobre desintegracién de medidas, para cada
y € R? existe una medida R, ( - |y) tal que

(A x B) = / Ro(Aly)dR(y).

B

Sea X un vector aleatorio con distribucién R. Condicionalmente dado X = y, se
toman {X,}, vectores aleatorios independientes con X,, ~ R,( - |y). Entonces,

(X, X) ~ 7.
Por lo tanto,
E|X,—-X|P= Wg(Rn, R).

Si se supone que lim W,(R,, R) = 0, para todo ¢ > 0, aplicando la desigualdad de
n—oo

Markov,
_ EllX, - x|

> 0.

P([Xn = X" > ¢)

£ n—o0

De aqui se deduce que X,, converge en probabilidad a X. Esta convergencia es méas
fuerte que la convergencia en distribucién. Entonces, se concluye que

R, — R, cuando n — oo.
w

Por otro lado, aplicando la desigualdad triangular de la norma en LP(7,), para cada
n €N,

(B1x0)” = (B1x1P)7| < (1% - X)) — 0.
n—oo

Entonces,
E||Xn[" — E|X]",
n—oQ

es decir, lim [ ||z||P dR, = [ ||z||” dR.
n—oo

<) Reciprocamente, por el teorema de Representacion de Skorokhod (ver |C.0.3]),
existen X y {X,}, vectores aleatorios tales que

X,~R,, X~R y X,— X.

Ademas, por hipdtesis,
El| X |P —— E|X]]” < oo,
n— oo

Se concluye, aplicando el teorema de Vitali (ver [E.1.3]), que

WP(Ro, R) < E|| X, — X[? — 0.
n—oo
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3.3. Métricas de Wasserstein

Usando la proposicién anterior, se demuestra que la distancia de Wasserstein
entre las probabilidades empiricas tiende a la distancia de Wasserstein entre las
respectivas probabilidades reales.

Proposicién 3.3.4. Sea R una probabilidad en F,(R?), con p > 1. Sea {X,}n
una sucesion de vectores aleatorios independientes e igualmente distribuidos con ley
de probabilidad R, definidos en el espacio probabilistico (2, F,P). Si w € €, la
probabilidad empirica R asociada a la muestra (X1 (w),..., X, (w)) es

1 n
Ry = n ;5&(‘«1)’

donde dx, es la medida de Dirac en X;(w). Entonces, cuando n tiende a +0o0,
Wa(RZ, R) — 0, para casi todo w € §.

Demostracion. Sea F' la funcién de distribucion de la probabilidad R. Teniendo en
cuenta que X; < x significa X;; < x1,...,X;q < 24, sea

[0%) 1 -
F(@) =~ D Lixiw<al
i=1

la funcién de distribucién empirica asociada a la muestra (X;(w),..., X, (w)). Por
el teorema de Glivenko-Cantelli,

sup |F¥(xz) — F(x)] 50,

z€ER4

En particular, se tiene convergencia puntual para los puntos de continuidad de F'.
Esto garantiza que {R“},, converge débilmente a R para casi todo w € .

Por otro lado, como R tiene momento cuadratico finito, la ley de los grandes
nimeros asegura que:

el ars) = 2> x> [ lele are), s

Se verifican las hipdtesis de la proposicion [3.3.3], por lo tanto,
Wy (R, R) — 0, para casi todo w € Q.

]

Corolario 3.3.5. Sean R y S dos probabilidades en F,(R?), con p > 1. Sea {X, }n
una suceston de vectores aleatorios independientes e igualmente distribuidos con ley
de probabilidad R y sea {Y,,}m una sucesion de vectores aleatorios independientes
e igualmente distribuidos con ley de probabilidad S. Ambas sucesiones son inde-
pendientes y estdn definidas en el espacio probabilistico (Q, F,P). St w € €, la
probabilidad empirica RY asociada a la muestra (X1 (w),. .., X,(w)) es

1 n
Ry = n ;5&(‘0)'
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Capitulo 3. El problema de transporte éptimo

Andlogamente, la probabilidad empirica S, asociada a la muestra (Yi(w), ..., Y (w))
es

W 1 -
S =D v
j=1
Entonces, cuando min(n,m) — 400,
Wy (R2,S2) — 0, para casi todo w € €.

Demostracion. Se comprueba facilmente a partir de la desigualdad triangular y de
la proposicién anterior:

UJ

Se concluye este apartado, probando que se alcanza el minimo de la distancia
de Wasserstein entre los conjuntos de recortes de dos probabilidades P, y P;. Es
decir, se garantiza que existe un minimizador de W,(R, S), donde R € R,(P1) y
S € Ro(Ps). Este resultado es importante para poder aplicar el paso 2 del algoritmo
que se explica en la seccién [1.3.2]

En el algoritmo propuesto en esa seccién, fijado un nivel a € [0, 1], se usa la
distancia de Wasserstein para encontrar el par de recortes éptimos de nivel a entre
las dos probabilidades que se quieren comparar (P, y P), es decir, los dos recortes
“mas parecidos” entre si, en el sentido de que su distancia de Wasserstein sea la mas
pequena posible. Si son iguales (se denota por Fy), quiere decir que Py verifica que

P1 = (1 —Q)P0+CYR1,
P2 = (1 — Oé)Po + OéRQ, (320)

con R; y Ry probabilidades

Cuando « sea el maximo para el cual R, (P1) N Ry (Ps) # 0, la probabilidad P,
que verifique serd la parte comun entre P, y Ps.

Primero se prueba un lema necesario para la demostracién del resultado principal.

Lema 3.3.6. Sea p > 1 y sea P € Fo(R?). Entonces Ro(P) es compacto para la
distancia W,.

Demostracién. Se prueba que cualquier sucesion {R,}52, C R,(P) admite una
subsucesion convergente para la distancia W,

Si{R,}52, C Ru(P), entonces es ajustada (ver el apéndice |C.1)): Fijado € > 0,
sea K compacto en R? tal que P(K®) < (1 — a)e. Entonces, P,(K%) < (1_1a)(1 —
a)e = ¢ para todo n € N. Por lo tanto, se puede extraer una subsucesién { R, }22,
que converge débilmente hacia una probabilidad R en R¢. Ademds, se comprueba
que R € Ro(P):

Si A € B4, por la regularidad exterior de la probabilidad P (ver ,

P(A) = inf{P(U) : U abierto, A C U, U € B%}.
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3.3. Métricas de Wasserstein

Ademés, si U € 5% es un abierto que contiene a A, por el teorema de Portmanteau

(ver en los apéndices [C.0.2)), se tiene que

1
R(A) < R(U) <liminf R, (U) < P(U).
n—00 1 —«
Entonces,
R(A) < ] ia inf{P(U) : U abierto, A C U, U € g%} = 1 iaP(A).

Falta comprobar que hm Wy(Ry,, R) = 0. Por la proposicién (3.3.3} basta probar

que
hm /||a:||p dR,; = /||x||p dR.

Como para todo j € N, an y R son recortes de nivel o de P, se verifica, para todo
M e N, que

1
/ el dR,, < —— lelP dP, Vj € N:
|z||[P>M

Tl =a Jjpem

1
/ el dR < —— J|? dP
lzl|P>M L—a Jygppsm

Por el teorema de la convergencia dominada, es claro que J\/l[fm fo”p> o 1zlP dP = 0.
—00 =

Por lo tanto, fijado € > 0, existe M, € N, tal que ﬁfnquMo |z]|? dP < 5. Por

otro lado, por el teorema de Portmanteau, se tiene que:
lim [ min(||z||", M) dR,, = /min(||.i£||p,M) dR, VM eN.

j—)OO

Entonces, fijado € > 0, existe un j, € N tal que, para todo 7 > jo,

’/min(Hpr,M) dR,, —/ml’n(H:ch,M) dR ‘ < %

Por lo tanto, si j > jo,

'/HwH” dRy, —/qup dR‘

<| [ par,- [ jelran)
[|lz||P < Mo llz||P<Mo

+/ | ]|” dRy, +/ |z||” dR
llz|lP>Mo [l ||P> Mo

< '/ml’n(Hpr,Mo) IR, - /min(Hpr,Mo) iR ‘

+/ [2)|” dRn, +/ |z||P dR
[|]|P> Mo l|lz||P> Mo

<E+€—|—€—5
3 3 3

Con lo que se concluye la prueba. n
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Proposicién 3.3.7. Sea p > 1. Se consideran P;, P, € Fp(RY) y a > 0. Entonces,
existe (R, Ra) € Ro(P1) X Rao(P2) tal que

(Rl,é2) = argmin W, (R, Ra).
R1€ER(Pr)
Ro€R(P2)

Esto quiere decir que la funcion
Wy(+, ) : Fp(RY) x Fp(RY) — R
alcanza un minimo absoluto en el conjunto Ro(Pr) X Ra(Ps).

Demostracion. Por el lema [3.3.6] se sabe que Ry (P1) ¥ Ra(FP2) son compactos para
la distancia W,. Entonces, R, (P1) X Ra(P2) es compacto en F,(R?) x F,(R?) con
la topologia producto, que es la dada por la distancia:

Ra(P1) X Ra(FP2) — R; (1, p2), (v1,2)) = Wylpa, v1) + Wy (i, v2).

Ademés, W, (-, -) : F,(RY) x F,(R%) — R es continua con esta topologia. Si (1, iz), (1, v2) €
Ra(P1) X Ro(Py), se cumple:

[Walhr, ) = Wy(01,2)

Wp(ﬂlam) - Wp(VIHLLQ)
< Wy, vi) + Wiz, v2).

<

| Wolvr, ) = Wy, )

Con esta cota se deduce que la funcion es uniformemente continua, y, por lo tanto,
alcanza el minimo absoluto en un compacto.

]

3.3.2. Distancia de Wasserstein en R

Para concluir este capitulo, se prueba un ultimo resultado, que caracteriza la
distancia de Wasserstein para el coste cuadratico en R. La distancia de Wasserstein
para p = 2 entre dos probabilidades es la distancia L? entre los cuantiles de las
respectivas distribuciones de probabilidad.

Proposiciéon 3.3.8. Sean p y v dos probabilidades en R. Si pu tiene funcion de
distribucion F' y v tiene funcion de distribucion G, entonces

W2 (i, ) = / (F(t) — G\ ().

Demostracion. Caso 1: Se supone que u tiene densidad, entonces no da masa a
conjuntos de medida nula. Por el teorema , existe una tnica distribucion de
probabilidad éptima, 7 = (Id x Vy)#u, donde Vi es el tnico gradiente de una
funcién convexa que verifica Vop#u = v. En dimensién 1, las derivadas de funciones
convexas son las funciones crecientes.
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Si X ~ u, entonces F(X) ~ U(0,1) y G™' o F(X) ~ v, estas propiedades se
prueban en la seccion de los apéndices. Como F'y G~! son crecientes, G~ o F
también. Entonces, G~! o I es la tinica aplicacién de transporte éptimo de u a v.

W2(,v) = /R (x — G~ o F(2))dF(z) = /0 (F'(t) — G'(¢))dt.

Caso general: Si ;i es una probabilidad en RY, siempre existe una sucesién de
probabilidades con densidad {1, }°°; que converge débilmente hacia . Esta sucesién
se construye regularizando mediante convoluciones la distribucion u, se detalla este
procedimiento en el apéndice [C] concretamente en [C.3.1] Ademds, escogiendo una
sucesién adecuada, se prueba en ese mismo apéndice que se tiene la convergencia de
momentos de orden 2 de u, hacia pu. Entonces, si F' es la funcién de distribucion
de u, y F), es la funcién de distribucion de p,, para cada n € N, por definicion de
convergencia débil, se tiene que 7}1_{20 F,(z) = F(x) para todo = € R en los que F

es continua. Por el teorema de Skorohod (C.2.5)), lim F,!(t) = F(t) para casi todo
n—oo

t € [0, 1]. Por lo tanto, aplicando el lema de Fatou (valido para funciones positivas),

/I(F—l(t) — G7Ht))*dt < lim inf/l(Fn_l(t) — G7Ht))?dt = lminf Wi (i, V).

n—o0 n—o0

Se ha probado en la proposicion que
lim W; (pt, v) = Wi (1, v).
n—oo
Por lo tanto,
1
| F0 - 60 < Wi,
0

La desigualdad contraria se deduce considerando la probabilidad 7 = (Id x G~ o
F)#pu. Se tiene que m € [[(p, V) y, por lo tanto,

W2(p,v) < / (z — G~Yo F(2))dF(z) = /O (F7L(t) — G~1(1))%dt.

R
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Capitulo 4

Transporte entropico

El problema, que se ha planteado en el capitulo anterior, de minimizar el coste
de transporte tiene un coste computacional alto. La forma de calcular la distancia de
Wasserstein entre dos probabilidades R y S en RY, con momentos finitos del orden
que sea necesario, es a partir de aproximaciones empiricas R, y S,, para cierto
n € N. El coste de esos célculos es del orden de n3.

n n n n

, . 1 1

WQ(-Rn,Sn) = mlnzz Hxi_yjHQﬂ-i,ja SujetO a 7Ti,j Z O, Zlﬂ-i’j = E’ Zlﬂ-i’j = ﬁ
J= i=

i=1 j=1

En esta seccién se da una alternativa a la distancia de Wasserstein: el transporte
entropico. Si la expresion a minimizar en el problema de transporte éptimo se conta-
mina con la divergencia de Kullback-Leibler, el problema de minimizacién resultante
se puede resolver con una iteracion de punto fijo. Se denomina coste de transporte
entrépico a:

) o |z —yl”
W; . (P,Q) = Wehr%]fm)[/—z dr(x,y) +eD(m|P @ Q)|,

donde D(7|P ® Q) es la divergencia de Kulback-Leibler de 7 respecto de la medida
producto P® Q) y € > 0 determina cuanto se va a modificar el funcional lineal en 7:

I(r) —/de(x,y).

Primero, se estudiaran las propiedades de la divergencia de Kullback-Leibler, que
mide la diferencia entre dos probabilidades, buscando minimizadores en conjuntos
con ciertas propiedades. Después, se formulara el problema de transporte entrépico.

4.1. Divergencia de Kullback-Leibler

Si P < @ son dos probabilidades, la divergencia de Kullback-Leibler de P res-
pecto de ) da una idea de cuanto se parecen ambas probabilidades. Si son muy
similares, su divergencia serd practicamente 0, mientras que si se diferencian mucho,
la divergencia de Kullback-Leibler tomara valores altos. Esto ocurre porque la di-
vergencia de Kullback-Leibler se define a partir de una integral de la funcién log %.
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Si Py @ son parecidas, la derivada de Radon-Nikodym de P respecto de @) sera
practicamente 1, y, por tanto, su logaritmo sera casi 0.

En el apéndice [A] se recuerdan las definiciones y teoremas sobre las medidas
absolutamente continuas y la derivada de Radon-Nikodym que se usaran continua-
mente a lo largo de este capitulo.

Los resultados que se prueban en esta seccién son una adaptacion de [10]. En el
articulo, solo se habla de la divergencia de Kullback-Leibler de probabilidades. En
este trabajo, se generaliza a cualquier medida finita y positiva, porque es necesario,
mas adelante, para probar que existe un minimizador de

2

Wi (P,Q)= inf [/ de(m‘ y) +eD(n|P®Q)|.
’ e[ 1(P,Q)

A continuacién, se da la definicion formal de la divergencia de Kullback-Leibler.

Definicién 4.1.1. Sean P y QQ medidas finitas y positivas en un espacio medible

(X, M) tales que P < @Q, es decir, P es absolutamente continua respecto de Q). Se

denota por % : X — [0,00] a la derivada de Radon-Nikodym de P respecto de Q).
Se define la divergencia de Kullback-Leibler como

dP dP
D(P|Q ::/lo —dP = | — 1o —dQ
(PQ) 830 20 8 30
Si P no es absolutamente continua respecto de ), entonces se define
D(P|Q) = +o0.

Como P es una medida finita y positiva, se puede suponer que la derivada de
Radon-Nikodym de P respecto de () es una funcién dP : X — [0,00), ya que como
mucho toma el valor +o0o0 con (Q—medida 0 (y se podr1a redefinir la funcién en esos
puntos). Ademsds, la definicién de la divergencia de Kullback-Leibler es correcta
porque el conjunto A = {z € X : dP( ) = 0} cumple, obviamente, que P(A) = 0.

Por lo tanto, la funcién log dg X — (0,00) dnicamente no estd bien definida en un
conjunto de P—medida nula. Se entiende que

dP dP
loc —dP = loc —dP.
/ 840 / 8 Q

Si se acuerda que log0 = —oo y que 0- (+£o00) = 0, no hace falta hacer las considera-
ciones anteriores. En los resultados sucesivos, se tendra en cuenta este comentario.
Se supone también que log § = +00, para 7 > 0. Con este convenio, se tiene una
caracterizacion de la divergencia de Kullback-Leibler, dada por el lema siguiente. Si
se tiene que las medidas P y () son ambas absolutamente continuas respecto de otra
medida R, entonces la divergencia de P respecto de () se puede escribir a partir de
las derivadas de Radon-Nikodym de P y @) respecto de R.

Lema 4.1.2. 51 P, QQ y R son medidas finitas y positivas en un espacio medible
(X, M) tales que P < R y Q < R, entonces

dP ip L
D(P|Q) :/log deP /dR log deR
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el 3 d dP d
Demostracion. Si P < (), entonces dT]; — £d%’
puntos donde se anula % estda contenido en el conjunto de puntos donde se anula

4P " que tiene medida P nula. Por lo tanto, la integral estd bien definida. Se entiende
dP dP

dR’
que
dP o=
/log —dP = / log —dP = / log %dP.
dQ {xGX:%(x);éO}C dQ {IEX:%(I);éO}C aR

Si P no es absolutamente continua respecto de (), existe un conjunto A € M tal
que P(A) # 0y Q(A) = 0. Entonces, P({z € A : 9£(z) # 0}) > 0 mientras que
Q({z € A: 4E(x) #0}) = 0. Con el convenio adoptado,

R — c.s.. Entonces, el conjunto de

dpP

o dP
/ log %dP =P{z e A: —=(x) #0}) - (+00) = +o0.
{eAtE @40} an R

O
Proposicién 4.1.3. Se considera el espacio medible (X, M). La divergencia de

Kullback-Leibler de una probabilidad P respecto de una medida finita y positiva ()
es mayor o igual que 0. Y, ademds, D(P|Q) = 0 si, y solo si, P = Q.

Demostracion. En el caso, P < @, como la funcién f : [0,00) — R, dada por
f(z) = xlog x es convexa, aplicando la desigualdad de Jensen se tiene que

[ e Gpda = Er o) = 5855 = [ G5d0-ton( [ G5d@) = 1) =0,

dQ " dQ dQ dQ dQ dQ
Como f(z) = xlogx es estrictamente convexa, la desigualdad anterior se alcanza si,
y solo si, % =1, Q) — c.s.. Esto es equivalente a que P = Q). n

Es importante darse cuenta de que si P no fuese una probabilidad, sino que fuese
una medida finita y positiva no nula, es decir, 0 < P(X) < oo, la divergencia de
Kullback-Leibler puede ser negativa (si la medida del total es menor que 1), pero
estd acotada inferiormente por f(P(X)), siendo f(z) = xlogx.

Es facil ver que la divergencia de Kullback-Leibler no es simétrica, y, en con-
secuencia, no es una distancia en el espacio de probabilidades. Por ejemplo, si en
X = {0,1} se definen las probabilidades P y @ dadas por P(0) = %, P(1) =1y

Q(0) = 1, Q(1) = 3. Se comprueba, sin dificultad, que D(P|Q) # D(Q|P).

= 4_1:7
Aun asi, las siguientes proposiciones recuerdan los resultados que se tienen para

las distancias, y tienen una idea geométrica clara.

4.1.1. Resultados geométricos para la divergencia de K.-L.

Se define el concepto de bola (andlogo al conocido para distancias) y de proyec-
ciéon de una medida finita positiva R sobre un conjunto de probabilidades.

Definicién 4.1.4. Sea R una medida finita y positiva (no nula) en un espacio
medible (X, M) y sea p € (0,00]. Se define la bola, dada por la divergencia de
Kullback-Leibler, centrada en R y de radio p al conjunto

B(R, p) = {P probabilidad en (X, M) : D(P|R) < p}.
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La bola de centro R y radio p es el conjunto de probabilidades cuya divergencia
de Kullback-Leibler respecto de R es menor que p.

Definicién 4.1.5. Sea R una medida finita y positiva (no nula) en (X, M). Si B
es un subconjunto del espacio de probabilidades en X tal que BN B(R,00) # (), se
denomina proyeccion de R sobre B a una probabilidad () que satisface

D(Q|R) = min D(P|R).

La siguiente proposicién garantiza la existencia y unicidad de la proyeccién en un
conjunto de probabilidades convexo y cerrado para la distancia en variacién total.

En la demostracién de ese resultado, se necesita una desigualdad que relaciona
la distancia en variacién total con la divergencia de Kullback-Leibler, la desigualdad
de Pinsker. La demostraciéon que se da en este trabajo se puede encontrar en [20].

Lema 4.1.6 (Desigualdad de Pinsker). Sean u y v y dos probabilidades en (X, M).
Entonces, se verifica la siguiente desigualdad:

drv () </ 5 D(ul). (4.1)

Demostracion. Si pno es absolutamente continua respecto de v, entonces D(u|v) =
+oo y la desigualdad es obvia. Se estudia el caso en el que u < v.
Teniendo en cuenta el convenio 0log 0 = 0, se define la funcién auxiliar

Y(z)=xlogx —xz+1, x>0.

Entonces, se verifica que

4 2
(z=1)° < (3 +32)¢(x), @0,
Para © = 0, es obvio. Para © > 0, se comprueba derivando la funcién g(z) =
(x —1)% — (5 + 22)¢(x). Se verifica que g(1) =0, ¢'(1) =0y ¢"(z) = w( L <0

para todo x > 0. Escribiendo el desarrollo de Taylor de orden 1 de la fun(non g, se
tiene que para todo z > 0y x # 1, existe £ € R con | — 1] < |z — 1| tal que

x—1)2<0.

g9(x) =9(1) +¢' (1) (z — 1) + (z -

Usando el lema [1.2.2]

2d
dTV ,u, /| 1|dl/< /\/ Bd/: 'u) dv

2 du d,u 1 du du
< = _ - -
< ¢ / ¢ [ o q [ 10a,
= —D
5 D(ul).
En la segunda desigualdad, se ha usado la desigualdad de Cauchy-Schwarz. [
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Proposicién 4.1.7. Sea R una medida finita y positiva (no nula) en (X, M). Sea B
un congunto de probabilidades en (X, M) tal que BN B(R,00) # (). Si B es convexo
y cerrado para la distancia en variacion total, entonces existe la proyeccion de R
sobre B. Ademds, la proyeccion es unica.

Demostracion. Por definicién de inferior, existe una sucesion de probabilidades { P, },,
de B tal que lim D(P,|R) = Il;ngD(P|R). El objetivo es probar que la sucesién
n—oo €

{P,}, admite una subsucesién {P,, }; convergente, para la distancia en variacién
total, hacia una probabilidad @) € B, que sera la proyeccién de R sobre B.
Se verifica la siguiente igualdad, para todo n,m € N:

P, +P, P, + P,

P, + Py,
R)+D(F, _—
TR |R)+ (P

D(P,,|R)+D(P,|R) = 2D( )+D(P,| ). (4.2)

Esto se comprueba usando las propiedades de la divergencia de Kullback-Leibler:
dp, dP,

/ —dR—|— iR og IR
_/(de dpP, 1dP,, 1dP,

R T ar) e Gur Taar)
dP,, 1dP, 1 dP,
/—log —dR — / log(= “)dR

ar %R T2ur
dP dP,  1dP, 1dP,
+ dR & IR ik 8GR T aap R

Debido a que la funcion xlog x es convexa, la divergencia de Kullback-Leibler res-
pecto de una probabilidad R también lo es. En particular,

P, + P,
2

1

(T4 R) < S D(PulR) + 5 D(PIR).

Tomando limites, cuando m y n tienden a oo:

P+ P,
lfm D2

n—o0 2

< , .
|R) D(P|R) + zgégmmm inf D(P|R).

1
2

Por ser B un conjunto convexo, w € B. Se deduce, de la igualdad 4.2y del hecho

de que la divergencia de una probabilidad respecto de una medida positiva y finita

es mayor o igual que 0, que lim D(P,|Bt) =0y lim D(P,|Btl) = 0.
n,Mm—00 n,Mm—00

Usando la desigualdad de Pinsker (4.1]), se prueba que la sucesion {P,}, es de
Cauchy, con la distancia en variacion total, debido a que se verifica que:

P, + P, P, + P,
T) + dpy (P, T)

1 P, + P, \/1 P, + P,
<\/=D(P,|-—>——™ —D(P,| 22—,
_\/2 (P 5 )+ 5 (Pnl 5 )

dry (P, Pp) < dpy (P,

La convergencia de probabilidades en (X', M) absolutamente continuas respecto de
R, con la distancia en variacién total, no es mds que la convergencia en L!'(R), un
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espacio completo. Esto se debe a la caracterizacién de la distancia en variacién total
probada en [1.2.2]

dTV PTL7P R

Por lo tanto, existe el limite en Ll(R) de la sucesién de funciones “fi% _,» que es

una funcién no negativa (por serlo todas las funciones de la sucesién). Se denota por
h. Equivalentemente, existe una probabilidad @ (absolutamente continua respecto
de R) limite de la sucesién {P,}22 ,, definida de la siguiente forma:

Q(A):/AhdR, VA e M.

Ademaés € B, por ser un conjunto cerrado para la distancia en variacién total.
) Y
La sucesién de funciones dP dinloe | converge en L'(R), lo que implica que se puede

extraer una subsuceswn { an } ey que converge hacia 42 i © puntualmente R—c.s.. Las

d
R —c.s. ha(na log 75+ Se concluye la demostra(non aplicando el lema de Fatou:

D(QIR) = /—log d—dR < lim dpn’“l A,

am | R 108 g 4R = L D(PIR).

La unicidad de la proyeccién se debe a la convexidad estricta de la divergencia de
Kullback-Leibler: Si existen dos proyecciones Py P’ de R sobre B tales que P # P/,
entonces, existe un conjunto A de R-medida estrictamente positiva en el que

dP dP’
ﬁ(x) # i

(x), Vze A

Entonces, en A,

1dP  1dP'\ | (1dP 1dP'\ _1dP, dP 1dP'  dP
5dR T 2dr ) % \24dr T24r) “24r % 4R T 24r R

Por lo tanto, para la probabilidad %P + %P’ € B, se tiene que

11, ,
D<§P + §P |IR) < Pl)rggD(P|R).

Esto es absurdo. O

El siguiente teorema recuerda al teorema de Pitagoras y al concepto de orto-
gonalidad que se tiene para distancias. Da una caracterizacion importante de la
proyeccion en un conjunto convexo.

Teorema 4.1.8. Sea B un subconjunto convexo del espacio de probabilidades en
(X, M) tal que BN B(R,00) # 0, y sea R una medida finita y positiva (no nula) en
(X, M). Una pmbabzlzdad @ € B es la proyeccion de R sobre B si, y solo si, para
toda probabilidad P € B,

D(P|R) = D(P|Q) + D(Q|R). (4.3)
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Ademds, para cada probabilidad P € B para la cual existe otra probabilidad P' € B
ya € (0,1] tal que

Q=aP+(1-a)P,
la desigualdad[4.3 es una igualdad. La dltima condicion significa que P pertenece al
conjunto de recortes de nivel 1 — a de ), tomando como espacio total de probabili-
dades el conjunto B.

Demostracion. =) Si @ es la proyeccién de R sobre B, entonces D(Q|R) < D(P|R),
para toda P € B. Sea probabilidad P € B fija. Si D(P|R) = oo, la desigualdad se
cumple. Si no, se tiene que P < R. Como D(Q|R) < oo, también se tiene que
@ < R. Se considera el segmento que une Py (), que estd contenido en B por ser
convexo, es decir, se consideran las probabilidades

P,=aP+(1-a)Q, 0<a<l.

La derivada de Radon-Nikodym de P, respecto de R es la combinacién lineal de las
respectivas derivadas de Radon-Nikodym de Py Q:

dP, dP dQ

ar~ar T Y
Como P y @ son probabilidades, se puede suponer que sus respectivas derivadas de
Radon-Nikodym toman valores en [0, 00). Para cada x € X, la funcién

dP, dP,
log —<
2 (a)log 2 (2)
estd bien definida en [0, 1] (se ha definido log0 = —oco y 0-(—00) = 0) y es derivable.
Ademas, es convexa por ser composicion de dP &2 (una funcion lineal en « y, por tanto,

Convexa) y de la funcién convexa ¢ logt deﬁmda en [0, 00). Por lo tanto, los cocientes
incrementales de h decrecen si o — 0 y se cumple:

h:[0,1] = [0,00), h(a)=

1 o AP _dQ,
lim ~[h(a) = h(0)] = W'(0) = (o — —5)(log = +1).
Se tiene que
/[h( 0)|dR = / g d—P - % log % iR = D(P|R) — D(Q|R).

Como P,Q) € B(R,0), entonces f 1) — h(0)]dR < oo. Por el teorema de la
convergencia monétona (los cocientes incrementales son funciones decrecientes y
acotadas inferiormente, para las cuales la integral del primer cociente incremental,
cuando o = 1, es finita).

d - AP, dQ  dQ
—D(Pa|R hm/ log % — ZE log dR}d

da
dP d d
- [ - %)( log 52 + 1)dR

/—log dR+/—dR /dQ ;zg /Zﬁ
/logdgdp—i—l— (Q|R)—1:/logjgdP D(QIR).
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Se verifica que [ log deP D(Q|R) > 0, porque si [ log 3QdP < D(Q|R), entonces
la derivada en 0 de D(P,|R) seria negativa, y esa funcién seria decreciente en 0, es
decir, existiria ap > 0 tal que

D(Po,|R) < D(By|R) = D(Q|R).

Esto es absurdo, por ser () la proyeccion de R sobre B.
Para concluir la prueba de esta implicacion, basta darse cuenta de que

D(P|R) — D(P|Q) = /—log—dR /—1 og deR /—log—dR

/ log ﬁgdP
(4.4)

Como se habia supuesto P € B(R,00), la resta anterior de las divergencias de
Kulback-Leibler esta bien definida.

<) Reciprocamente, si D(P|R) > D(P|Q)+ D(Q|R), para toda P € B, como la
divergencia de Kullback-Leibler de una probabilidad P respecto de otra probabilidad
() es siempre positiva, D(P|R) > D(Q|R) para toda P € B. Y, por tanto, @ es la
proyecciéon de R en B.

Por 1ltimo, sea P € B, tal que, para cierto « € (0, 1], existe P’ € B verificando
Q = aP + (1 — a)P'. Entonces P < @ < R. Por lo tanto, P € B(R,00). Si se
supone que [ log %dP > D(Q|R), entonces,

D(@IR) = [ 1og G240

= /log %d(aP +(1—a)P) = a/log %dP +(1—a) /log j—gdp’
> aD(Q[R) + (1 — a)D(Q|R) = D(Q|R).

Se llega a una contradiccion. O

4.1.2. Minimizadores de la divergencia de K.-L.

El objetivo de este apartado es caracterizar la proyeccion de una medida R en un
espacio convexo concreto. Primero, se enunciard un teorema general para espacios
definidos a partir de una serie de restricciones. Después, se vera que, fijadas dos
probabilidades P, v P, en R?, el conjunto de probabilidades en el espacio producto
cuyas marginales son P; y P, es un caso particular de los espacios considerados en el
teorema. Entonces, se tendré caracterizada la proyeccion de cualquier medida finita
positiva R sobre [[(P;, P»), que se sabe que existe (porque [[(Pi, P) es convexo y
cerrado para la distancia en variacién total).

Teorema 4.1.9. Sea {f;}icr un conjunto de funciones medibles de (X, M) en R y
{a;}ier CR. Sea T' el conjunto de probabilidades en el espacio medible (X, M) para
las cuales f; es integrable para todo i € I, y se cumple que ffidP = a;. FEntonces,
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si una medida finita y positiva (no nula) R en (X, M) tiene proyeccion @ sobre T,
la deriwvada de Radon-Nikodym de ) respecto de R es de la forma
dQ expg(x) six ¢ N,

——(x) = . (4.5)
dR 0 six € N,

donde N es un conjunto tal que P(N) = 0, para toda probabilidad P € I'N B(R, o),
yg:X — R es una funcion que pertenece a la adherencia del subespacio vectorial
de LY(Q) generado por por la familia de funciones { fi}ier y por la funcion constante
1.

Reciprocamente, si () € I' es absolutamente continua respecto de R, con densi-
dad de la forma donde g pertenece al subespacio lineal de L'(Q) generado por
{fitier U{1}, sin tomar la adherencia, entonces Q es la proyeccion de R sobre T'.

Demostracion. T es un conjunto convexo. Si () es la proyeccion de R sobre I', en-
tonces, D(Q|R) < oo y, en particular, Q < R. Sea N = {z € X : %@) = 0}. Si
P e I'NB(R, ), la desigualdad , garantiza que D(P|Q) < ooy, en consecuencia,
P <« Q. Como Q(N) =0, entonces P(N) = 0.

Ademss, %(m) = +00 a lo sumo en un conjunto de R—probabilidad nula, pu-
diéndose redefinir la funcion en este conjunto para que tome valores reales mayores
o iguales que 0. Entonces, la funcion log% : X — N — R esta bien definida. Se

concluye la demostracion de esta parte del teorema probando que la funcién

d .
o(z) = logﬁg(:ﬁ) S?(E%N,
0 size N

pertenece a la adherencia del subespacio vectorial de L'(Q) generado por la familia
{fi}ier y por la funcién constante 1, es decir, g € (1, {f;}icr). En estas condiciones,
g : X — R verifica la igualdad

Se razona por reduccién al absurdo. Si g ¢ (1, {f;}icr), por el teorema de Hahn-
Banach, existe un funcional lineal y continuo de T': L' (Q) — R tal que T|(1 ¢f,3:cp) =
0y T(g) # 0. Como @ es una probabilidad (medida finita), el dual de L'(Q) esté

formado por los funcionales
T LNQ) >R, T(f) = /fhd@, con h € L®(Q).
Por lo tanto, existe una funcién h € L*(Q) tal que [ ghdQ # 0, [ hdQ = 0 y para

todo i € I, [ f;hdQ = 0.
Por otro lado, se define al probabilidad

50N h(z)
P(A) _/A(1+ HhHOO)dQ, VA e M.

Es fdcil comprobar que P es una probabilidad: P es medida por construccién y se
cumple:

= P(X) = [dQ+ i [hdQ =1+0=1.
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. 1+%20,Q—c.3.:>15(/1)20, VA e M.

Como [ fidP = [ fi(1+ H};L(‘T) dQ = [ f,dQ + ”h” [ h(x)dQ = a;, para todo i € I,
entonces P € I'. Anélogamente, la probabilidad P’ definida por

- h
P/(A) = /(1 M) 0, vae m
A HhHoo
también pertenece a I'. Como () = %(]54—]5’ ), teniendo en cuenta que I" es un conjunto

convexo, se puede aplicar el teorema y se tiene que D(P|R) — D(P|Q) =
D(Q|R). Como P < @ < R, la igualdad anterior equivale a

dQ) dQ dQ) h(z) _ dQ)
/log deP /logﬁdQ<:>/logﬁ(l+m)d@—/logﬁdQ

si, y solo si, [log %2 th = 0, es decir, [ ghdQ = 0. Esto es absurdo.
Para probar el reciproco, se supone que ) € I' es absolutamente continua
respecto de R y su derivada de Radon-Nikodym tiene la forma [4.5] Entonces,

g(x) = X+ > fi,(x), con A € R. Se considera P € I' N1 B(R,00). Se tiene que
=1

log % =g, P — c.s. Entonces,

dQ)
/logﬁdP:/gdP )\+Z/f, dP = )\JrX:OLz =ceR, VPelNB(R, ).

7j=1

En particular, D(Q|R) = f log fl d@ = c. Repitiendo el razonamiento de

dQ
D(PIR) ~ D(PIQ) = [ log G2 —c = D(@IP).
Aplicando el teorema [4.1.8] se concluye que () es la proyeccion de R sobre I'.
m

El espacio de probabilidades en R? x R? cuyas marginales son dos probabilidades
P, y P, fijas es un caso particular de los espacios considerados en el teorema ante-
rior. El ultimo corolario de esta seccién garantiza la existencia de probabilidades en
[[(P1, P2) con una forma concreta (en términos de su derivada de Radon-Nikodym
respecto de la medida producto P; ® P,). En el problema de transporte entrépico,
que se formalizard en la siguiente seccion, se necesita la existencia de estas proba-
bilidades para construir la probabilidad = € [[(P, P2) que minimiza el coste de
transporte entrépico.

Primero, se prueba un lema que se usard en la demostracién del corolario.

Lema 4.1.10. Sean P, y P, probabilidades en (R?, 3%). Se supone que 7 € [[(Py, P).
Entonces, el subespacio

Vi={feL'(n): flz,y) = f(x)} +{g € L'(n) : g(z,y) = 9(y)}

es cerrado en L'(r).
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4.1. Divergencia de Kullback-Leibler

Demostracidn. Como se ha visto en el apéndice [F] sobre desintegracién de medidas,
existe un sistema de probabilidades {my|x—; },cre en R? tal que

~(B) = /R (B AP (r), VB € x

Si f € L'(r), se define la esperanza condicionada dado X = x a la funcién de R? en
R definida como:

E(f ] X)( / f(@,y) dry|x=(y), VxeR%

Entonces, el funcional lineal

Tx:Li(m) > {f € L(m): flz,y) = f(2)},  Tx(f) = E(f|X)

estd bien definido y es continuo, ya que

1B 1300 < [ 1B X)@ldr@n) = [ BG1X)@)]dP)

< /]R d ( 9 1f(z,9))] d7ry|X=z(y/))dP1(fL’)
_ / . y)ldn(e.y) = £

Fy) dwYX:xw')\dPl(x)

Analogamente, existe un sistema de probabilidades {7x|y—y},ers en R? tal que
~(B) = / txiv—y(B,) dPi(y), VB € 5% x B
Rd

Si g € L'(n), se define la esperanza condicionada dado Y = y a la funcién de R? en
R definida como:

E(g|Y)(y) = /Rdg(r,y) drx|y—y(r), Yy eR™

Entonces, el funcional lineal

Ty : L' (m) = {g € L'(n) : g(z,y) = g(v)},  Tv(9)=E(g|Y)

estd bien definido y es continuo.
Seaw € L'(r) tal que existe una sucesién de funciones { n(7)+g ( Jhoe 1 C Ll(ﬂ')

con limite la fun(:lon u (con la norma de L*(m)). Si fu(x) := fu(z) + [ gnly)dPa(y)
Y 9n(y) == Gn(y) — | 9u(y)dPs(y), se verifica que

Fa(@) + ga(y) = fal@) + Guly) — u(z,y) en L'(7).

n—oo
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Entonces, utilizando la continuidad de T,

T (ful) + 9u(0)) = fula) + / 0a() ATy 1x—o(y) = fulz) + / gu(y)dn(z,y)

= fule) — Tx(u)(x) en L'(x).

Usando la continuidad de Ty,
Ty (fu(z) + galy)) = / Fa() dmxiy—y (2) + guly) = / ful@) dn(z,y) + galy)
- / ful@) dPu(z) + ga(y)

=+ 9,(0) —2 Tr(W)y) en L'().

Por otro lado,
gn(y) —— u(z,y) — Tx(u)(x) en L'(m)

n—o0

Entonces {a,};>; C R converge hacia cierto a € R. Y, se tiene que

9n(y) —— Ty(u)(y) —a en Li(m).

n—oo

Por la unicidad del limite, se concluye que
u(z,y) = Tx(u)(z) + (Ty (u)(y) — a),

con Ty (u)(z) € L'(m) y (Ty (u)(y) — a) € L' (7). .

Corolario 4.1.11. Sean P, y P, probabilidades en (R%, 3%). Se denota por P, @ P,
a la probabilidad producto en (R x R, 34 ® B%). Se considera una funcién é(z,y) €
LY P, ® Py) tal que &(z,y) > 0 para todo (z,y) € R x RY. Entonces, existe una
probabilidad 7 en el espacio producto con marginales Py y Py, tal que m1 < Py ® Py,
que verifica:

ﬁ@’ y) = &z, y) explf(z) + g(y)] (4.6)

donde (f,g) € L'(Py) x L*(P).

Demostracién. Se denota por I al espacio de probabilidades en (R¢xR?, 39®39) con
marginales P, y P,. Entonces 7 € I si, y solo si, verifica las restricciones siguientes:

/f(x)dw:/f(x)dPl, Vf e L{(Py),

/ g(y)dm = / 9(y)dPs, Vg e L'(Py).

Se define una medida finita y positiva de la siguiente forma:
RE)= [ depapop), vEep o
E
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Por la proposicién |4.1.7, existe la proyeccion m de R sobre este espacio, y, aplicando
el teorema m, se deduce que m € [[(P1, P») es absolutamente continua respecto
de R y su derivada de Radon-Nikodym respecto de R es de la forma [4.5]

d7r( ) exph(z,y) siz ¢ N,
— () =
dR 0 sixz € N.

donde N es un subconjunto tal que u(N) = 0, para toda p € [[(P,Q) N B(R, o)
y h(x,y) pertenece a la adherencia del subespacio lineal de L'(7) generado por las
funciones de L'(7) de una sola variable, es decir, si

Vi={felL'(n): f(z,y) = f(z)} U{g € L' () : g(z,y) = g(y)})
={felin): f(z,y) = f(x)} +{g € L'(n) : g(x,y) = 9(y)},

entonces, h € V. Pero el subespacio vectorial V es cerrado en L'(7), se probé en

el lema |4.1.10] Por lo tanto, h(x,y) = f(x) + g(y), para ciertas funciones (f, g) €
LY(P)) x L'(P,). Entonces,

dm

—(7,y) = c(z,y)e x) + , Y(x, N.

iP @ PQ)( y) = c(z,y)explf(z) +9(y)], V(z,y) ¢

Se sabe que R(N) = 0. A partir de la definicién de R y del hecho de que la funcién
c: R xR? — (0,400) es estrictamente positiva, se tiene que R(N) = 0 si, y solo s,
P, ® P,(N) = 0. Entonces, (como la derivada de Radon-Nikodym 7 es tnica salvo
conjuntos de P; ® Pp-probabilidad nula) se puede concluir que

%W y) = &z, y) exp[f(z) + g(y)], V(z,y) € R? x R%.

4.2. Problema del transporte entrépico

Se formula el problema de transporte entrépico para el coste cuadrético:

Sea e > 0. Se consideran P y Q dos probabilidades en (R%, 3%) con momentos de
orden 2 finitos. El problema de transporte entropico para el coste cuadrdtico consiste
en calcular

: / Iz — ol
WE(P,Q) —Weﬁr%]fD’Q)[ [ ey +eDrPe Q). @)
Al contaminar la distancia de Wasserstein W, con la divergencia de Kullback-
Leibler, deja de ser una métrica. Esto se debe a que la divergencia de Kullback-
Leibler no es simétrica. Ademés, Wj (P, P) # 0.
En este trabajo, se estudia el coste entréopico con el fin de comparar si dos recortes
de probabilidades distintas son iguales. Por eso, perder la simetria de la distancia
de Wasserstein no es relevante. Por el contrario, si se puede adaptar la expresion del

coste de transporte entrépico W3 (P, Q) (modificandola) para que sea igual a 0 si,
y solo si, P = Q.

83



Capitulo 4. Transporte entropico

Ademds, como ya se ha mencionado en el capitulo [T} el problema de transporte
entropico presenta ciertas ventajas respecto al problema de transporte estudiado en
el capitulo 3] En la préctica, calcular la distancia de Wasserstein entre dos probabi-
lidades es costoso y se calcula aproximando esa distancia por la empirica (a partir
de una muestra). Esto hace que no sea resistente a la maldicién de la dimensiona-
lidad. En cambio, en esta seccion se va a deducir una iteracion de punto fijo para
calcular el coste de transporte entropico entre dos probabilidades, lo que elimina la
dependencia de una muestra en los calculos y hace que el problema de transporte
entrépico no se vea afectado por la maldiciéon de la dimensionalidad.

Por estas razones, el transporte entropico es una buena alternativa para comparar
dos probabilidades P y (). Primero, se deduce una féormula de dualidad para este
problema, que permite probar la existencia de una probabilidad 7y € [[(P, Q) tal
que

_ 2
W) = [ o) + eDrlP o Q).

Para esto, se usan los resultados que se han probado previamente sobre la diver-
gencia de Kullback-Leibler. La siguiente proposicion es la version de la dualidad de
Kantorovich para el transporte entrépico.

Teorema 4.2.1. Sea ¢ > 0. Se consideran Py Q dos probabilidades en (R?, 3%) con
momentos de orden 2 finitos. Existe una probabilidad 7 en (R% x R, 8¢ x 84) cuyas
marginales son P y Q que minimiza la expresion[{.7, es decir,

a2
W2(P,Q) = / = IE gtz ) + (7P 2 Q).

Ademds, se verifica la formula de dualidad

W22,5(P7 Q) =
sup { [rar+ [gaa-- v(w)dP(w)d@(y)} T,
xL1(Q)

(f,9)eL*(P)

(4.8)

con

_ sl —yl* + f() + 9(y)
v(ﬂf,y)—eXp(— . >
Demostracion. Como D(7|P ® @) = oo si m no es absolutamente continua respecto
de P ® @, basta con minimizar la expresion del enunciado en el subconjunto de
probabilidades de [[(P, @) que sean absolutamente continuas respecto de la medida
producto P ® Q).

Por lo tanto, se supone que 7(z,y) = r(z,y)dP(z)dQ(y), es decir, la derivada de
Radon-Nikodym de 7 respecto de P ® @ es la funcién r : R? x R — [0, 0o]. Como

7 es una medida finita, se puede suponer que r toma valores reales. Se tiene que
2
:L’ —
/ wdw(x, y) +eD(w|P ® Q)

B / [%IIZE —ylPr(z,y) +er(z,y)logr(z, y) | dP(x)dQ(y)

— [ r(y)os ") p()aQuy).

Lie_qyl2
exp(—QH ay” )
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4.2. Problema del transporte entréopico

Se comprueba, a continuacién, que se verifica una férmula de dualidad (.8} Si f €
LY(P)y g € LY(Q), entonces

[ t@ar@) = [ f@inte.y) = [ fa@r@pdPaaw)

/ o()dQ(y) = / o(y)dn(z,y) = / 9(y)r (2, y)AP(2)dQ(y).

Por lo tanto,

WE.(PQ)~ [ ap— [ ga@ == [ et —— r(@.y) AP(2)dQ(y).

slle—y|?+f(z)+
eXp(_Qll yll Ef() g(y))

Para escribirlo de forma mas compacta, se habia denotado

sz —yl* + f(x) +g(y)>‘

3

v(x,y) = exp ( -

Es conocido que slogs > s — 1, Vax > 0, ya que la funcién h(s) = slog s definida en
(0,00) es estrictamente convexa y la recta tangente a h en so = 1 viene dada por la
ecuacion s — 1. Se da la igualdad solo cuando s = 1. Entonces,

R R ) B CY ) e
= [ A( ,y)v(z,y)l g,y(x’y)dp( )dQ(y)

> a/y(x,y)(;g:g)) — 1)dP(x)dQ(y)

—¢ / r(z,y)dP(2)dQ(y) — ¢ / V(x, y)dP(x)dQ(y)
L 6/exp ( Callr =yl + fl=) + g(y)>dp(x)dQ(y)_

3

Entonces,
Wi (P,Q) > 6+/ fdP+/ng—€/v(w,y)dP(ﬂf)dQ(y), V(f,9) € L'(P)xL'(Q).

Tomando superior en (f,g) € L'(P) x L}(Q),

2 _
W@z ap | [ [oao-c [omipeion) +:
Sea 7 € [[(P,Q) tal que dm(z,y) = r(x,y)dP(z)dQ(y) con

r.y) = exp a”x—y|!“;f<x>+g<y>>
y

g € LY(Q). La existencia de esta probabilidad se

Y

para ciertas funciones f € L'(P)
ha probado en el corolario [4.1.11}

Con la probabilidad 7 € [[(P,Q) y las funciones (f, g) € LY(Q) se alcanza la
igualdad de la férmula de dualidad .8 Y, por lo tanto, 7 es la probabilidad en la
que se alcanza el minimo del coste de transporte. O
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En la demostracién del teorema anterior se ha deducido una caracterizacion de
la probabilidad éptima que minimiza el coste de transporte entrépico (en el caso
cuadrético). Esto se recoge en el siguiente corolario.

Corolario 4.2.2. Sea ¢ > 0. Se consideran P y Q dos probabilidades en (R?, %)
con momentos de orden 2 finitos. Sea m € [[(P, Q) absolutamente continua respecto
de P® Q. Es decir, dn(z,y) = r(z,y)dP(x)dQ(y), donde se denota por r(x,y) a la
derivada de Radon-Nikodym de 7 respecto de P ® (). Entonces, m es optima para el
problema de transporte entropico con el coste cuadrdtico, es decir,

o2
Wi(P.Q) = l%r(llfj’@{ / de(z,y) +€D(7T‘P®Q)] (4.10)

st, y solo si,

1 Xr — 2 T
() :eXp<_ allz =yl +€fo( )‘*‘90(3/))’
donde fy € L*(P) y go € LY(Q).

Para finalizar el capitulo, y el trabajo, se estudia la forma de calcular la probabi-
lidad 6ptima del problema de transporte entrépico planteado. Con la caracterizacion
del corolario [4.2.2] bastarfa con hallar un par de funciones (fo, go) € L'(P) x L}(Q)
que verifique que

sllz =yl + fo(x) + go(?;))

r(z,y) = exp ( - .

es la derivada de Radon-Nikodym de cierta probabilidad 7 respecto de P ® Q).

Esas funciones se pueden calcular mediante una iteraciéon de punto fijo. Como ya
se ha mencionado, este es el resultado que hace que el coste de transporte entrépico
tenga ventajas importantes, en la practica, con respecto a la distancia de Wassers-
tein. Se enuncia en la siguiente proposicion.

Proposicién 4.2.3. Sea ¢ > 0. Se consideran Py Q dos probabilidades en (R?, 5%)
con momentos de orden 2 finitos. Un par de funciones (fo,g0) € L'(P) x L'(Q) es
optimo para el problema dual de transporte entropico (con el coste cuadrdtico), es
decir,

/dePJr/gOdQ_E/eXp(_ %!\x—y!\2+fo(x)+go(y)>dp($>dQ(y)+€

3

= sup dep+/ng—s/exp<_ %Hx—yw—i_f(x)+g(y)>dP(m)dQ(y)+s],

3

donde L ={(f,q): f € L'(P),g € L'(Q)}, si, y solo si, (fo,go) verifica

i) = —<tog [ @A 1)
o(z) = —clog (/exp(f(x) - 56””“" - y||2)dP(a;)>.
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Demostracion. Sea dr(x,y) = r(z,y)dP(x)dQ(y) con

—%x—MV+ﬁ@9+%@U

o) = oo 8

para ciertas funciones (fy, go) € L*(P) x L'(Q). Se verifica que:

/ ra,)dQ(y) = 1,

(4.12)
/r(x,y)dP(ac) =1

Teniendo esta propiedad, es facil deducir la iteraciéon del enunciado. Se prueba la
segunda igualdad:

[ dat) =) = =@ < B) = [ rlyaP@aw)

Rix B

:L<4f@@M@Ww@,VBQﬂ

De aqui se deduce que [r(z,y)dP(xz) = 1. Andlogamente, [ r(z,y)dQ(y) = 1. Por
lo tanto, reescribiendo |4.12]

(mw—au—MP

€
(@) = gllz — yll?
€

exp(£2)

exp(*2) [ expl

)dQ(y) =1,

JdP(x) = 1.

exp

Entonces,

pio) = —eton [ @7y,

S
o) = <t ( [ exp N2 =21 =00 0p).

Reciprocamente, si (fo, go) verifica [4.11} entonces dm(x,y) = r(x,y)dP(z)dQ(y) de-
fine una probabilidad en R? x R? con marginales Py @Q (por la propiedad [4.12). [

Se denota por K al siguiente operador:

—¢clog (/exp(g(y> — %Jm — sz)dQ(y))
—clog (/exp(f(x) - %Jx - yw)dP(g:))

Se ha comprobado que (fo, go) es un punto fijo del operador K. Por lo tanto, se
pueden calcular a partir de la iteracién

K(f,9) =

frat) = —etos  [ep( D20y,
guia() = —etos [0 20 gpy)
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Esta iteracion se conoce como algoritmo de Sinkhorn. La version discreta de este
algoritmo supuso un salto en cuanto a la posibilidad de calcular de forma eficiente el
transporte éptimo (entrépico) entre probabilidades. Esto se desarrolla ampliamente
en [15]. El tratamiento del problema de transporte 6ptimo desde el punto de vista
computacional queda fuera de los objetivos de este TFG.
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Conclusiones

En el contexto del Aprendizaje “Justo”, el primer paso para entrenar reglas de
clasificacién que no dependan de un atributo protegido binario S € {0, 1} consiste en
estimar la parte comun entre las dos distribuciones de probabilidad correspondientes
a los subgrupos en los que se divide la poblacién segin dicho atributo. Formalmente,
se ha comprobado que el nivel al que dos poblaciones estan relacionadas se puede
caracterizar a partir de los conjuntos de recortes y la distancia en variacion total
entre sus respectivas distribuciones. Por eso, este trabajo estd motivado por un
algoritmo propuesto por H. Inouzh, cuyo objetivo es estimar cotas de la distancia
en variacién total entre dos distribuciones de probabilidad P = L(X|S = 0) y
Q = L(X]|S = 1), buscando elementos comunes a sus conjuntos de recortes. Dicho
algoritmo permite calcular el menor valor de «, en una particién del intervalo [0, 1],
tal que dry (P, Q) < a. El desarrollo de la aplicacién que motivé este trabajo, a la
vez que el proyecto de beca de colaboracién con el Departamento de Estadistica e
Investigacion Operativa, esta todavia por terminar y excede a los objetivos del TFG.
Por lo tanto, aunque este trabajo tiene una motivacién aplicada, se ha dedicado
exclusivamente a estudiar las herramientas tedricas involucradas en el algoritmo.

En primer lugar, se ha propuesto utilizar la distancia de Wasserstein W, como
métrica para calcular los recortes 6ptimos entre Py @), para cierto nivel a € (0, 1),
aprovechando su continuidad con respecto a aproximaciones empiricas y las buenas
propiedades topoldgicas de los conjuntos de recortes respecto de esta métrica. Por
eso, se ha estudiado el problema de transporte éptimo, demostrando la existencia de
una probabilidad que minimiza el coste. Ademas, a partir de la férmula de dualidad
de Kantorovich, se ha llegado a caracterizar las aplicaciones de transporte optimo:
gradientes de funciones convexas.

No obstante, el alto coste computacional de calcular la distancia de Wasserstein
empirica y su sensibilidad a la maldiciéon de la dimensionalidad han motivado la
introduccién del coste de transporte entréopico Wa ., que contamina la distancia de
Wasserstein con la divergencia de Kullback-Leibler, para mejorar la eficiencia y la
robustez del método, gracias al algoritmo de Sinkhorn.

Por tltimo, se ha considerado usar un test de contraste de hipdtesis basado en
la Maxima Discrepancia en Media (MMD) para contrastar si los recortes 6ptimos
P, vy Q. son iguales, para cierto nivel o € (0, 1). En caso afirmativo, se tendria que
dry (P, Q) < «a. Con esta finalidad, se han estudiado los nticleos, que son resistentes a
la maldicion de la dimensionalidad, y sus ventajas en estadistica: trabajar conociendo
unicamente los productos internos de los datos en un espacio de Hilbert.

En conclusién, este trabajo me ha servido como introduccién a un campo en el
que algunas herramientas tales como los recortes, las métricas de méaxima discre-

89



Capitulo 4. Transporte entropico

pancia media o el problema de transporte éptimo, en sus distintas versiones, son un
elemento esencial. Lo que he aprendido con este TFG me ha puesto en condiciones
adecuadas para poderme enfrentar a este tipo de problemas, en futuros proyectos.
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Apéndice A
Teorema de Radon-Nikodym

A lo largo de varios capitulos, se trabaja con el concepto de medida absoluta-
mente continua respecto de otra medida de referencia y se habla de la derivada de
Radon-Nikodym. En concreto, este concepto es imprescindible en la definicién de
recorte de una probabilidad y a lo largo de todo el capitulo 4] para definir la
divergencia de Kullback-Leibler y el transporte entréopico. Se recuerdan, a continua-
cion, las definiciones y teoremas necesarios en este trabajo, vistos en la asignatura
de Analisis Real del grado. Se pueden encontrar las demostraciones en [16].

Definicién A.0.1. Sean A y pn dos medidas positivas en el espacio medible (X, M).
Se dice que )\ es absolutamente continua con respecto de p, y se escribe

A<

si para cualquier E € M tal que u(E) = 0 se tiene que \(E) = 0.

Si p es una medida positiva, el teorema de Radon-Nikodym caracteriza cémo
son todas las medidas absolutamente continuas respecto de u. Se enuncia aqui una
versién simplificada de dicho teorema (ya que se recogen en esta seccién solo los
resultados imprescindibles para el trabajo).

Teorema A.0.2 (Radon-Nikodym). Sean p una medida positiva y A una medida
positiva o-finita en (X, M) tal que N < u. Entonces, existe una funcion

h:X — [0, 400]

integrable respecto de i tal que

NE) = [

para todo conjunto E € M. Cualquier otra funcion que verifique estas propiedades
coincide con h, ju — c.s.

La funcién h definida en el teorema se denota por

dA
dp
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Si la medida A es finita (es el caso de las probabilidades), su derivada de Radon-
Nikodym respecto de p toma valores reales salvo en un conjunto de medida p nula.

Por tltimo, se enuncia la regla de la cadena, que se usara para dar definiciones
equivalentes de la divergencia de Kullback-Leibler, en [4.1.2]

Proposicién A.0.3 (Regla de la cadena). Sean A\, v y p tres medidas positivas
o-finitas en (X, M) tales que N < v y v < p. Se verifica:

1. Sig: X = C es M-medible, entonces

dA
/g d)\:/g—du.
dv

En particular, si g € L1()), entonces g 2 € Ly (v).

2. Se verifica que N < oy
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Apéndice B
Regularidad de las medidas

Al trabajar con probabilidades en R? con la o-algebra generada por los abiertos,
denotada por 4%, se cuenta con unas propiedades de regularidad, ttiles para muchos
de los razonamientos de este trabajo. En este apéndice, se explica qué significa que
una medida sea regular y bajo qué condiciones lo es. Los resultados que se exponen
a continuacién son una adaptacion de [11].

Definicién B.0.1. Sea X' un espacio topologico Hausdorff.
» La o-dlgebra de Borel es la generada por los abiertos de X, se denota por 5.

» Se denomina medida de Borel a toda medida definida sobre la o-dlgebra de
Borel de X.

» Sip es una medida de Borel positiva, un conjunto de Borel E C X es regular
exteriormente si

w(E) =inf{u(V): ECV,V abierto}
y es reqular interiormente si

u(E) =sup{u(K): K C E, K compacto}.

n Se dice que p es una medida ajustada si X es reqular interiormente.

Si todo conjunto de Borel de X es a la vez regular exterior e interiormente, se dice
que la medida 1 es regular.

Lema B.0.2. Sea X un espacio topologico Hausdorff, S una o-dlgebra en X y u
una medida finita y ajustada sobre (X,S). Se define:

R:={AeS:AyX\ A son requlares interiormente para p}.
Entonces, R es una o-dlgebra. También es o-dlgebra la clase de conjuntos:

S:={Ae€S:AyX\ A son requlares exteriormente para ji}.
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Apéndice B. Regularidad de las medidas

Demostracion. Por definicién, R es cerrado para complementarios. Sea {A,}>2, C
R,y sea A = J, -, A, Dado ¢ > 0, para cada n € N, existen dos conjuntos
compactos K, C A,y L, C Ag tales que

£ £
pANE) < oy plAT\ La) < 5

Por ser 1 una medida finita, existe un ng € N tal que

o

w(A) — u( U An> < g

n=1

no
Sea K := |J K,. Entonces K es compacto, K C A,y

n=1

(U An) = 1) < 3 [n(Aw) = (i) < 5.

Por lo tanto,

) = ) = [ = 2.)] = U ) = )] <

0, equivalentemente, u(K) > u(A) — €. Se tiene probado que A es regular exterior.
Para probar que A® también es regular exterior, se considera el compacto L :=
[e.e]

() L,. Entonces,

n=1

8

v n=a(()) - w0 <3 5 =

n=1

Ademas, X € R por ser u una medida ajustada. Por lo tanto, R es una o-algebra.
Se prueba, andlogamente, que S es o-algebra. O

Teorema B.0.3. En un espacio métrico (X,d), toda medida de Borel finita y ajus-
tada p es regular.

Demostracion. Sea U un abierto de X, entonces, es regular exteriormente. Para
probar que U es regular interiormente, se considera la sucesion creciente de conjuntos
cerrados {C,,}5°, definidos de la siguiente forma:

= {z:d(z,U%) >

S|

b, neN

Como UY es cerrado, d(x,U®) = 0 si y solo si x ¢ U. Entonces, para todo n € N,
C, CUyU= | C,. Se tiene que:

n=1

)= (| €2) = i o),
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De aqui, se concluye que
wu(U) = sup{u(C) : C C U, C cerrado}.

Si u es ajustada, entonces dado € > 0, existe un conjunto compacto K tal que
(X \K) < 5. Se acaba de probar que existe C' C U cerrado en & tal que u(U\C) <
5. Sea L := K NC. Entonces L es compacto, L C Uy

pUNL) < p(UN\C) + (X \ K) <e.

Por lo tanto, U es regular interiormente.

Ahora, sea F' cerrado en RY, entonces es regular interiormente (porque u es
ajustada). Para probar que F' es regular exteriormente, se considera la sucesién
decreciente de abiertos {V,,}°°, definidos como:

V,={zeR:d(z,F) < %}.

Entonces, para todon € N, F C V,, y (', V,, = F. Se tiene que:

n—oo

u(F) = ﬁ V) = lim p(V).

De aqui, se concluye que
p(F) =mf{u(V): F CV,V abierto}.

Por lo tanto, si U es abierto de X, entonces U € C y U € S. Entonces, en X todos
los conjuntos son regulares para cualquier medida finita.
[

Teorema B.0.4. Si (X,d) es un espacio métrico, completo y separable (espacio
Polaco), toda medida de Borel finita es regular.

Demostracion. Sea p una medida finita en X. Por el teorema [B.0.3] para ver que
es regular, basta probar que es ajustada. Existe un conjunto numerable D = {z,, :
n > 1} denso en X. Fijado € > 0, para cada m € N, existe un natural n(m) tal que

1 €
p(2\ U Bl ) < o
n=1
Se denota por A,, := UZ(:”I) B(x,, =). Sea
n(m) 1
K= U Bzn,—)
m>1 n=1

K es acotado y cerrado en un espacio métrico completo, entonces K es compacto,
y se tiene que

p(KC) = u(HAS;) < ,;”(A’C”) < mz =
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Apéndice B. Regularidad de las medidas

Lema B.0.5. Sea X un espacio métrico, completo y separable (espacio Polaco) y 3
la o-dlgebra generada por los abiertos de X. Se supone que p y q son probabilidades
en X. Si [ fdp = [ fdq para toda funcion f continua y acotada en X. Entonces,

pP=4q.

Demostracion. Sea U un abierto en X. Se considera la sucesion de funciones conti-
nuas y acotadas definidas de la siguiente forma:

fo(x) = min{1,nd(z,U°)}, VneN.

Como U* es cerrado, d(z,U¢) = 0 siy solo si z ¢ U. Es fécil ver que {f,}>2, es una
sucesion creciente que converge puntualmente al indicador de U. Por el teorema de
la convergencia monotona,

p(U) = /XUdp: lim /fndp: lim /fndq:/Xqu:q(U).

Si dos probabilidades coinciden en el conjunto de abiertos de X', entonces son iguales.
Para ver esto, se usa la regularidad de las probabilidades en un espacio polaco (ver

apéndice [B).
p(E) =mf{p(U) : E C U, U abierto} = inf{q(U) : E C U, U abierto} = q(E).

]

B.1. Teorema de representacién de Riesz (funcio-
nales acotados)

En la demostracién de la dualidad de Kantorovich (teorema , se trabaja
con el dual del espacio de las funciones continuas que se anulan en el infinito. Este
espacio vectorial se identifica con las medidas de Borel regulares. El teorema de Riesz
es el resultado que formaliza la idea anterior; se estudié en la asignatura Analisis
Real del grado y se puede encontrar en [4].

Definicién B.1.1. Se dice que una funcion real f definida en X se anula en el
infinito si, para cada € > 0, existe un conjunto compacto K C X tal que |f(z)| < e
para todo x € K. Se denota por Co(X) el espacio de las funciones continuas en X
que se anulan en el infinito.

Teorema B.1.2 (Teorema de representacion de Riesz). Sea X un espacio Hausdorff
localmente compacto. Todo funcional lineal y acotado ¢ en Co(X) se representa por
una unica medida de Borel reqular i, en el sentido de que

o(f) = /deu, para toda [ € Co(X).
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Apéndice C

Convergencia débil de
probabilidades

Se resumen, en este apartado, los resultados sobre convergencia en distribucién
de probabilidades que se utilizan a lo largo del trabajo, todos ellos vistos en el grado
(en la asignatura de Teoria de la Probabilidad). Estos resultados se pueden encontrar
en [6]

Definicién C.0.1. Sea P una probabilidad en (R, 3%) con funcion de distribucion
F. Sea {P,}°° | una sucesién de probabilidades en (R%, 3%). Para cada n € N, se
denota por F, a la funcion de distribucion de P,. Se dice que la sucesion {P,}%2
converge en distribucion hacia P st

lim F,(z) = F(z), VzeC(F).

n—oo
Se ha denotado por C(F') al conjunto de puntos de continuidad de F.

El teorema de Portmanteau da varias caracterizaciones de la convergencia en
distribucién. Se usard en la demostracion de la existencia de un plan de transporte
éptimo, bajo ciertas condiciones, en el teorema[3.1.1]y en la prueba de la unicidad de
los recortes éptimos de dos probabilidades distintas, en la proposicién [3.3.7, ambas
del capitulo [3]

Teorema C.0.2 (Portmanteau). Sean {P,}°%, y P probabilidades en (R, 3%) con
funciones de distribucion {F,}°, y F'. Las condiciones siguientes son equivalentes:

1. {P,}2, converge en distribucion a P.

2. lMm [ fdP, = [ fdP para toda funcion f continua y acotada, es decir, para
n—oo
toda f € Cy(R?).

3. Para todo A abierto de RY, P(A) < liminf P,(A).

n—oo

4. Para todo C cerrado de R?, P(C) > limsup P,(C).

n—00

5. Para todo H € B tal que P(OH) =0, lim P,(H) = P(H).

n—oo
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Apéndice C. Convergencia débil de probabilidades

También se recoge en este apéndice el teorema de Representaciéon de Skorohod,
que se usa en[3.3.3] para probar una caracterizacién de la convergencia de la distancia
de Wasserstein.

Teorema C.0.3 (de Representacién de Skorokhod). Sea {R,}, una sucesion de
probabilidades en R? que converge en distribucion hacia una probabilidad R. En-
tonces, existen X y {X,}n vectores aleatorios definidos en un espacio probabilistico

(Q, M, P) tales que
X,~R,, X~R y X,— X.

C.1. Swucesion de probabilidades ajustada

Es claro que para cualquier probabilidad en (R%, 39), para cada ¢ > 0, existe un
compacto K C R? tal que P(K®) < ¢. La siguiente definicién se usa también en la
demostracién de [3.1.1] en el capitulo [3|

Definicién C.1.1. Sea {P,}°°, una sucesién de probabilidades en (R, 3%). Se dice
que es ajustada si para cada € > 0, existe un compacto K C R? tal que P,(KY) < &,
para todo n € N.

Se enuncian, a continuacion, un resultado que se deduce del teorema de Helly.

Teorema C.1.2. Si la sucesion de probabilidades {P,}°, en (R, 3%) es ajusta-
da, entonces de cualquier subsucesion {P,, }?>, se puede extraer otra subsucesion
{ P, Yov=1 que converge en distribucion hacia una probabilidad P.

C.2. Funcidén cuantil

Se trabaja, en varias ocasiones, con la funciéon cuantil, en concreto en la seccién
3.3.2| (donde se da una caracterizacién de la distancia de Wasserstein en R a partir
de la funcién cuantil). Se recuerdan la definicién y algunas propiedades.

Definicién C.2.1. Sea F' : R — R wuna funcion de distribucion, es decir, una
funcion creciente, continua por la derecha y tal que lim F(z) =0y lir+n F(x)=1.
T——00 T—r+00

Entonces se define la funcién cuantil F~1: (0,1) — R como:
Flt)y=mf{r eR:t< F(z)}, te(0,1).
Para todo t € (0,1) y para todo x € R, se verifica que
F't)<zet< F(o). (C.1)
También, se cumple que
F(FYt)—) <t < F(F'(t), Vvte(0,1). (C.2)

donde se ha denotado por F~!(¢)— al limite por la izquierda de F~* en t.
De estas propiedades, se deduce la siguiente proposicion:
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Proposicién C.2.2. La funcién cuantil F~' : (0,1) — R es creciente y conti-
nua por la izquierda. Ademds, es una variable aleatoria en el espacio probabilistico
((0,1), B0y, £), donde L es la medida de Lebesgue.

Otra formulacién equivalente de esta proposicion es la siguiente:

Proposicién C.2.3. Sea U una variable aleatoria con distribucionU(0,1), entonces
F~Y(U) tiene funcién de distribucién F.

Demostracion. Sea x € R, por [C.1] se tiene que
P(F ' (U)<z)=P(U < F(z)) = F().
]

Proposiciéon C.2.4. Sea p una probabilidad con densidad en (R, () y X una va-
riable aleatoria con distribucion p. Entonces, si F' es la funcion de distribucion de
w, se cumple que F(X) ~U(0,1).

Demostracion. Sea x € R,
P(FX)>z)=P(X>F '(z))=1-F(F '(z)=1—u.

La ultima igualdad es consecuencia de y de que F' sea continua por tener pu
densidad. 0

Para terminar la seccién de la funcion cuantil, se enuncia un resultado que se
deduce de la demostracién del teorema de Skorokhod en R.

Teorema C.2.5. Sean P y {P,}>, probabilidades en (R, ) tales que {P,}°,
converge en distribucion a P. Si F y {F,}5°, son las respectivas funciones de dis-
tribucion, entonces

lim F7Y(t) = F7'(t), para casi todo t € (0,1).
n—oo
C.3. Aproximacion de funciones de distribucion
por suavizado

Por ultimo, se explica cémo aproximar funciones de distribuciéon mediante sua-
vizado por convolucién con un nicleo, procedimiento usado también en la seccion
3.3.2

Proposicién C.3.1. Sea P una probabilidad en (R, 3) con funcion de distribucion
F. Entonces, existe una sucesion de probabilidades con densidad {P,}22, en (R, )
que converge en distribucion hacia P.

Demostracion. Sea {¢,}°°; una sucesién regularizante en R, es decir, una sucesién
de funciones que verifique las siguientes propiedades:

1. Para todo n € N, ¢, € C*(R).
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2. Para todo n € N, se tiene:

¢n(z) >0, paratodor € R? y / on(z)dx = 1.
Rd

3. sop(g,) C B (0,2).

Como F' es localmente integrable en R por ser acotada, tiene sentido considerar la
convolucién con ,, y esta serd derivable (por serlo ¢,,). Ademds, lim F x ¢, (x) =
n—oo

F(x) para todo = € C(F). Se prueba:
Sea z € C(F), para todo ¢ > 0, existe ng € N tal que si |z — z|] < n%)? entonces
|F(z) — F(2)| < e. Por lo tanto, para todo n > no,

|(F" % @n) () = F(x)| =

/R (F(2) — F(2))pn(a — 2)dz
< / F(2) - F(a)|gu(z — ) dz = / F(2) - F(a)lgu(z — 2)dz

B(w,%)

§€/ on(x —2)dz =¢.
B(z,)

Solo falta probar que F,, = F' * ¢, es una funcién de distribucion.

= F, es creciente: Como F' es creciente y ¢, mayor o igual que 0, esta propiedad
se deduce de la monotonia de la integral, ya que

F.(z) = /F(x — 2)pn(2)dz.

» lim F,(x)=0:

Tr——00
Para todo z € R, lim F(x — 2)¢,(z) = 0. Ademds, se tiene la acotacién de
Tr—r—00

esta funcion por otra integrable:
|F (7 — 2)pn(2)| < ou(2), VxR

Se concluye, por el teorema de la convergencia dominada, que

lim Fx@,(z)= lim [ F(x— 2)p,(2)dz =0.

T—r—00 T—r—00

. xll){lrloo F.(x)=1:

Para todo z € R, lim F(z — 2)p,(2) = ¢n(2) vy se vuelve a tener la misma
T—>—00

acotacién que en el punto anterior, lo que permite aplicar el teorema de la
convergencia dominada de nuevo.

lim Fx@,(z)= lim [ F(x—2)p,(2)dz = /gpn(z)dz =1

T—r+400 T—r+400
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C.3. Aproximacién de funciones de distribucién por suavizado

Para cada n € N, sea P, la tinica probabilidad en R con funcién de distribucién F,.
Se acaba de probar que la sucesién {P,}2° | converge en distribucién hacia P [

Definicién C.3.2. Sea p una probabilidad en (R, ). Sea ¢ una funcion definida
en R no negativa, con soporte compacto y tal que [ ¢ = 1. La convolucidn de p con
©n es la medida p* ¢ definida por:

e = [ ( [ xate+ o) dy) dn(z).

para cualquier conjunto medible A C R.

Proposicién C.3.3. Sea u una probabilidad en (R, B) con funcién de distribucion
F. Sea ¢ una funcion definida en R no negativa, con soporte compacto tal que
[ ¢ = 1. Entonces, la funcion de distribucion de la medida pux ¢ es F x .

Demostracion. Sit € R,

wepl(-oent) = [ ([ Hewato+ oty ) dute)
Por Fubini (ambas funciones estan acotadas), se puede cambiar el orden de integra-
cion.

px p((—o00, 1)) = /R (/R X oo (T + y)du(w)) p(y) dy.

Desarrollando la primera integral,

[ Xewata+ pdute) = (G sy < 09) = (=0t =) = Flt =)

Por lo tanto,

px p((—00, ) Z/RF(t—y)w(y)dy=F*w(t)~

]

Si P es una probabilidad en R, el ultimo resultado de este apéndice garantiza
que, escogiendo de forma adecuada la sucesion regularizante, se puede construir una
sucesién de probabilidades con densidad que converjan débilmente hacia P y cuyos
momentos de orden 2 también converjan.

Proposiciéon C.3.4. Sea P una probabilidad en (R,5) con momento de orden 2
finito. Sea p € CP(R) una funcidn no negativa, simétrica, con soporte compacto y
tal que [ p=1. Para cadan € N, se define

pn(z) :=np(nx), VreR.

Entonces la sucesion de medidas reqularizadas por convolucion P, := P x p, verifica

lim [ 2*dP,(r) = / 2 dP(z).
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Demostracion. Por la definicion de convolucion, se tiene que:

[ an@ = [ ([ oot are)

Entonces,

/ 2 dP,(x)
- /132 dP(:c)+2/:6' (/ypn(y) dy) dP(z) +/ (/yZPn(y) dy) dP(z).

Como p es simétrica, se tiene [ yp,(y)dy = 0 para todo n € N. Ademéds, por un
cambio de variable,

1 C
/f%@@z—-zwaw:—

)
n? n?

donde C := [ z%p(z)dz. Por lo tanto,

/:ﬁ dP,(z) = /x2 dP(z) + Q.

n2

Por 1ltimo, cuando n tiende a oo,

lim [ 2*dP,(x) = /x2 dP(z).

n—oo
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Apéndice D

Convexidad

D.1. Teorema de Rademacher

En el problema del transporte 6ptimo, estudiado en el capitulo 3| se trabaja con
funciones convexas. Por eso, se necesitan los siguientes resultados, sus demostracio-
nes se pueden encontrar en |12], concretamente en la seccion 3.1.

Definicién D.1.1. Una funcién f : R — RU{+o0} es inferiormente semicontinua
si, fijado o € RY, para toda sucesion {z,}22, tal que lim x, = xy se cumple que
n—oo

lim nf f(2,) > f(xo).

Definicién D.1.2. f: U C R? — R™ es Lipschitz si existe una constante L > 0 tal
que
If(x) = FW)ll < Lllz —yll,  para todo z,y € U.

Proposicién D.1.3. Si la funcion ¢ : R* — R U {400} es conveza, entonces es
inferiormente semicontinua en los puntos del interior de su dominio. Fs decir, si
x € Int(Domep), entonces, para toda sucesion {x,}52 | que converge a x, se tiene que
liminf ¢(x,) > @(x).
n—oo

Ademds, ¢ es localmente Lipschitz en los puntos del interior de su dominio, es
decir, para cada punto x € Int(Domy), existe un entorno suyo U C R? tal que ¢ es
Lipschitz en U.

Teorema D.1.4 (Teorema de Rademacher). Sea f : R" — R™ una funcion local-
mente Lipschitz. Entonces, [ es diferenciable para casi todo punto.

Corolario D.1.5. Una funcion ¢ : R® — R convezxa es diferenciable salvo en un
conjunto de medida nula.

D.2. Segunda forma geométrica del teorema de
Hahn-Banach

En un espacio vectorial normado, para separar convexos por hiperplanos, se
razona a partir del teorema de Hahn-Banach, visto en la asignatura de Introducciéon
a los Espacios de Funciones del grado. Este resultado se puede encontrar en [7].
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Teorema D.2.1. Sean A, B convexos no vacios disjuntos del espacio vectorial nor-
mado E, tales que A es cerrado y B es compacto. Existe ¢ € E', y a,b € R tales
que si x € A ey € B, se tiene que

¢(z) < a <b< o(y).

D.3. Dualidad de Fencher-Rockafellar

Para demostrar la dualidad de Kantorovich (teorema , imprescindible para
el estudio del problema de transporte éptimo asociado al coste cuadratico, se usa
un resultado de dualidad de funcionales convexos. Se demuestra a partir de la se-
gunda forma geométrica del teorema de Hahn Banach; se puede encontrar en [7], en
concreto, el teorema 1.11.

Definiciéon D.3.1. Sea E un espacio vectorial normado y E' su dual topoldgico. Sea
© una funcion convera en E con valores en RU {4+o00}. Se define su transformada
de Legendre-Fenchel ©* : E' — R U {400} como:

©*(T) =sup{Tu—O(u)}, VT €L
uel
Teorema D.3.2 (Dualidad de Fencher-Rockafellar). Sea E un espacio vectorial
normado y E' su dual topoldgico. Sean © y Z dos funciones converas en E con
valores en R U {+oc}. Se supone que existe vy € E tal que © es continuo en vgy v,
ademds,
O(vg) < 00, Z=(vp) < +00.
Entonces,
inf {O(u) + E(u)} = sup{—O0"(-T) — =(T)}.

uelk rER!
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Apéndice E
Convergencia débil de funciones

En el capitulo[3, concretamente en la demostracién del teoremal3.2.13] se necesita
trabajar con sucesiones de funciones en L'(u) que convergen débilmente, es decir,
en el dual. En este apéndice se da la definicién y algunas propiedades, que se pueden
encontrar en el capitulo 6 de [13].

Definicién E.0.1. Sea p una probabilidad en (RY, 3%). Se dice que una sucesion
{fu}>2, C L' (n) converge débilmente a f € L'(u) si converge en el dual de L'(p).
En otras palabras, si para toda funcién ¢ € L°(RY) se cumple que

i [ fu(x) (x) du(z) = / £(2) é(x) dpz).

n—o0

Esta convergencia es mas débil que la convergencia en norma. En la demostracién
de algunos teoremas del trabajo, se usa que la convergencia débil preserva el orden;
esta propiedad se prueba a partir del siguiente lema.

Lema E.0.2. Sea pu una probabilidad en (R?, 3%). Sea f € L'(u). Si

/ F(2) 6(a) du(z) > 0, Vo e L(RY, ¢ >0,

entonces f(x) > 0, u—-casi sequro.

Teorema E.0.3. Sea p una probabilidad en (R, 3%). Sea {f,}°, C L'(u) una
sucesion que converge débilmente a f € L'(n). Sea g € L*(R?) tal que, para todo
n €N, fu(x) > g(x) para casi todo x € RY, con respecto a la probabilidad pi. Entonces
f(x) > g(x) para casi todo v € R,

E.1. Integrabilidad uniforme

Si se tiene una sucesién de funciones en L'(u1), para garantizar que existe alguna
subsucesion convergente débilmente, no es suficiente con que la sucesion esté acotada
con la norma de L'(u), se necesitan mds condiciones. Por esta razon, se introduce
el concepto de integrabilidad uniforme.

Definicién E.1.1. Sea (X, M, p) un espacio medible. La familia de funciones F C
LY () es uniformemente integrable si:
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 sup [y |F(2)] du() < oo.
feF

» Para todo e > 0, existe § > 0 tal que, para todo conjunto E C 3% con p(E) < 6,
se cumple:

sup /E (@) dpu(a) < e.

fer

Teorema E.1.2 (Dunford-Pettis). Sea ju una medida en R? y {f,}°°, C L'(u) una
sucesion de funciones uniformemente integrable. Entonces, existe una subsucesion
{fu 332, v una funcién f € L'(u) tal que {f,, }3>, converge débilmente a f.

La prueba de este teorema se puede ver en [8], teorema 4.30. Por tltimo, se
enuncia un resultado que se deduce del teorema de Vitali. Establece condiciones
para garantizar cuando hay convergencia en norma p, con p > 1, y se usa para
probar una caracterizacién de la convergencia con la distancia de Wasserstein, en

3.3.3l Se puede encontrar en [19], teorema 5.5.

Teorema E.1.3 (Vitali). Sea {X,}, una sucesion de vectores aleatorios en R? que
converge en probabilidad hacia X . Entonces, para p > 1,

lim E||X,|]” = E| X < oo
n—oo

st, y solo si,
lim || X, — X[, =0.
n—o0

106



Apéndice F
Desintegracion de medidas

Para demostrar el lema de pegado, en [3.3.1] se necesita recurrir a la desintegra-
cion de medidas. Los resultados que se enuncian a continuacion se pueden encontrar
en [11].

Proposicién F.0.1. Sean (Xy, M) y (X2, Ms) dos espacios medibles. Sea P, una
probabilidad en (X1, My). Si K : X1 x My — R es una funcion tal que

» Para cada x € Xy, K(x,-) es una probabilidad en (Xy, Ma).
» ©— K(z,B) es medible VB € Ms.

Entonces,
T(E) = K(z,E,)dP(z), VE € M;® Ms,.

A

define una probabilidad en (X; X Xy, My @ Mas).

Teorema F.0.2. Sean (Xy, M) y (X2, M3) dos espacios medibles. Ademds, se supo-
ne que Xy y Xy son espacios métricos, completos y separables. Sea m una probabilidad
en (X) X Xy, My ®@ Ms) cuya marginal sobre Xy es Pi. Entonces existe una funcion
K : X1 x My — R de forma que

» Para cada x € Xy, K(x,-) es una probabilidad en (X5, My).
» z+— K(z,B) es medible VB € Ms.

que verifica
m(E) = K(z,E,)dPy(z), VYE € M;® M,.

X
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