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Resumen

Este trabajo tiene como objetivo el estudio de los polinomios irreducibles sobre cuerpos finitos,
desarrollando los fundamentos teéricos y destacando algunas de sus aplicaciones practicas.

Se estudian propiedades de estos polinomios y de sus raices, y se obtienen resultados que per-
miten construcciones de polinomios irreducibles. También dedicamos un apartado al teorema de
Wedderburn, ya que, como veremos, es un teorema de gran importancia en el estudio de cuerpos
finitos.

Finalmente centramos nuestra atencién en los polinomios irreducibles sobre [Fy[x], puesto que Fy
es el cuerpo en el que se trabaja en las disciplinas actuales que requieren del manejo de polinomios
irreducibles.
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Abstract

This work aims to study irreducible polynomials over finite fields, developing the theoretical
foundations and highlighting some of their practical applications.

We study properties of these polynomials and their roots, and obtain results that allow the
construction of irreducible polynomials. We also dedicate a section to Wedderburn’s theorem, that,
as we'll see, it is a theorem of great importance in the study of finite fields.

Finally, we focus our attention to the irreducible polynomials over Fs[z], since Fs is the field used
in current disciplines that require handling irreducible polynomials.
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Introduccion

El estudio de los cuerpos finitos constituye uno de los pilares fundamentales del dlgebra moderna,
tanto en su desarrollo mas teérico como en sus aplicaciones en campos como la criptografia y la teoria
de cédigos. Los polinomios irreducibles son cruciales en el estudio de estos cuerpos, permitiéndonos
construir y representar los cuerpos finitos, para asi poder trabajar con estos.

Este trabajo se centra en el analisis de los polinomios irreducibles sobre cuerpos finitos, abor-
dando los resultados clasicos que permiten el estudio de este tema, las propiedades principales de
estos polinomios, algunos métodos de construccién de polinomios irreducibles, y estudiando ciertos
polinomios concretos como los trinomios o los polinomios primitivos.

Los origenes de la teoria de cuerpos finitos se remontan al matematico Evariste Galois (1811-
1832), que fue el primero en trabajar con las estructuras algebraicas de grupos y cuerpos, y dio las
ideas que més tarde se formalizarian en la teoria de grupos.

Aunque la representacién de cuerpos finitos y el estudio de polinomios irreducibles tiene gran
interés tedrico, la motivacion reciente tras el estudio de esta disciplina son principalmente sus apli-
caciones en criptografia, siendo herramientas clave para el cifrado de claves piblicas y privadas, y
su uso en teoria de cddigos, principalmente en coédigos de correccion de errores, aunque también
destacan otras aplicaciones como la generacion de ntimeros pseudoaleatorios.

El primer tema es una breve recapitulacion de los resultados bésicos de cuerpos finitos mas
relevantes para este trabajo, principalmente el teorema de existencia y unicidad de cuerpos finitos,
asumiendo conocimiento previo de la teoria de grupos y de resultados basicos de anillos y cuerpos.

En el segundo tema estudiamos el orden de los polinomios y algunas caracteristicas de sus raices,
aplicadas particularmente a polinomios irreducibles en cuerpos finitos. También utilizamos las fun-
ciones de Euler y de Mobius para obtener resultados clasicos que nos permiten contar el nimero de
polinomios irreducibles en un cuerpo finito, principalmente basandonos en el teorema de inversién
de Mobius.

También nos centramos en un tipo particular de polinomios irreducibles, los polinomios primitivos,
revisando teoremas de caracterizacion y abordando algunos resultados més actuales.

El enfoque principal del estudio estd en obtener polinomios irreducibles concretos con los que
poder trabajar para generar cuerpos finitos. Por tanto este tercer tema se dedica a obtener estos po-
linomios irreducibles, primero considerando criterios generales de irreducibilidad y luego centrandonos
en polinomios especificos de mayor interés.

Estudiamos los binomios y trinomios que, debido a su bajo niimero de coeficientes distintos de
cero, proveen ventajas computacionales al operar en un cuerpo representado por estos polinomios.
Continuamos con los polinomios autorreciprocos, que tienen uso en la teoria de cédigos [12], y per-
miten generar secuencias de polinomios autorreciprocos irreducibles que aumentan en grado.

Por dltimo consideramos la irreducibilidad de los polinomios ciclotémicos, muy importantes en
la teoria algebraica para generar extensiones de cuerpos.



Dedicamos un breve tema al teorema de Wedderburn, enunciado por Joseph Wedderburn en 1905,
que establece que todo anillo de divisién finito es un cuerpo finito. Aunque no estd directamente
relacionado con los polinomios irreducibles sobre cuerpos finitos, consideramos que es un resultado
suficientemente importante en el ambito de los cuerpos finitos como para exponer su demostracion,
ya que muestra que para los anillos finitos no hay diferencias entre dominios, anillos de divisién y
cuerpos.

Finalmente, el tema cinco se centra en estudiar los polinomios irreducibles sobre un cuerpo en
particular, Fy[z]. Este cuerpo tiene una conexién directa con la aritmética binaria y por su facil
implementacion en hardware, es el utilizado principalmente para hacer los calculos requeridos en
cifrados y codigos correctores.

El manejo eficiente de las operaciones en cuerpos de la forma Fon es un tema de investigacion
actual, como se puede ver en los articulos [4] y [§], v encontrar buenos polinomios con los que
representar este cuerpo es de gran importancia. Para la optimizacion de los tiempos de operaciones
los polinomios con los que se trabaja en estos casos son los trinomios y los pentanomios.

Ademas en ciertas disciplinas como la generacion de nimeros pseudoaleatorios, que se estudia
en un tema del libro Introduction to finite fields and their applications [10], es preferible utilizar
polinomios primitivos para representar estos cuerpos, por lo que también dedicamos una breve seccién
a encontrar trinomios primitivos sobre Fy[z].

Durante el desarrollo de este trabajo consultaremos varios recursos online, de los que destacamos
la enciclopedia online de sucesiones de enteros, que se abrevia como OEIS [I4], creada por N. J. A.
Sloane para almacenar sucesiones de interés matematico, y la gran biusqueda de primos de Mersenne
por internet, o proyecto GIMPS [16], un proyecto de computacién distribuida dedicado a encontrar
nimeros primos de la forma 2P — 1, con p un nimero primo.

También obtenemos algunas tablas y ejemplos con calculos por ordenador, todos ellos usando
MAPLE, un programa orientado al algebra computacional.

Personalmente destaco la importancia de los trinomios, dedicando multiples secciones a su estudio
tanto en cuerpos finitos cualquiera como sobre el cuerpo Fy. En particular, me ha llamado la atencién
la fuerte relacién entre el teorema de Swan y la distribucién de los trinomios irreducibles en Fy[z],
que estudiaremos en el capitulo 5.



Capitulo 1

Preliminares de cuerpos finitos

Para el desarrollo de este trabajo, daremos por conocidos los resultados de las estructuras alge-
braicas de grupos, anillos y cuerpos, asi como algunos resultados de extensiones finitas. El primer
capitulo del libro Introduction to finite fields and their applications [10] cubre toda la informacién
previa necesaria para el desarrollo de este trabajo.

También daremos por conocida la construccién del cuerpo de p elementos dada por las clases de
Z moédulo p, que se denotara por [F,.

Esta seccion de preliminares prepara los resultados principales de cuerpos finitos que necesita-
remos a lo largo de este trabajo, siendo el mas importante el teorema de existencia y unicidad de
cuerpos finitos, que justifica la necesidad de encontrar polinomios irreducibles apropiados.

Seguiremos principalmente los resultados dados en el apartado 2.1 del libro Introduction to finite
fields and their applications [10].

Lema 1.1. Sea F' un cuerpo finito y K un subcuerpo suyo de q elementos. Entonces F tiene q™
elementos, donde el grado de la extension es m = [F : K].

Demostracion. Consideramos F' como un K-espacio vectorial, al ser F' finito, su dimension co-
mo espacio vectorial es finita. Si [F' : K] = m, F tiene una base de m elementos, que denotamos

B ={by,...,by,}. Usando la base, todo elemento de F se puede representar como a1b; + - - - + @by,
para cada ay,...,a, € K. Como cada a; puede tomar g valores y hay m de ellos, deducimos que F
debe tener ¢ elementos. O

Con este resultado, establecemos el niimero de elementos que debe tener un cuerpo finito.

Teorema 1.2. Sea F un cuerpo finito, p la caracteristica de F' y n el grado de F sobre su subcuerpo
primo K. Entonces F tiene p™ elementos.

Demostracion. Como F es finito, su caracteristica es un primo p, y por tanto, K = [F,. Entonces
K tiene p elementos y, aplicando el lema previo, deducimos que F' tiene p" elementos. O

Para estudiar como es el cardinal de todos los cuerpos finitos, preparamos los siguientes resultados.
Lema 1.3. Sea F un cuerpo finito de q elementos. Entonces para cada a € F se cumple que a? = a.

Demostracion. Si a=0 la igualdad es trivial. Si a # 0 consideramos el grupo multiplicativo Fy,
donde ya sabemos que a?~! = 1 para todos sus elementos, y por tanto, a? = a. O



Lema 1.4. Sea F' un cuerpo finito de q elementos y K un subcuerpo de F. Entonces el polinomio
z? — x € Klz| factoriza en F|x] como

xq—:p:H(a:—a)

y por tanto F' es un cuerpo de descomposicion de x? — x sobre K.

Demostracion. El polinomio 7 — x tiene como mucho ¢ raices en F'. Por el Lema [1.3] sabemos
que todos los elementos en F' son exactamente las ¢ raices de este polinomio, y por tanto F' es su
menor cuerpo de descomposicion. O]

Con estos resultados previos tenemos la base necesaria para construir todos los cuerpos finitos
posibles. Ya sabemos que todo cuerpo finito debe tener p" elementos, pero ahora probaremos que
existe un cuerpo finito con p” elementos para cualquier p primo y n natural.

Para esto demostramos el teorema de existencia y unicidad de cuerpos finitos.

Teorema 1.5. Para cada p primo y n natural existe un cuerpo finito de ¢ = p" elementos. Todo
cuerpo de q elementos es isomorfo al cuerpo de descomposicion de x? — x sobre IF,,.

Demostracion. Empezaremos probando su existencia. Consideramos z? —x en F,[z| y F' su cuerpo
de descomposicién sobre F,,. Las ¢ raices que tiene en F' son distintas, ya que su derivada es gz? ' —1 =
—1 en F,[z].

Definimos el siguiente subespacio de F' con ¢ elementos, S ={a € F': a? —a = 0}.

Podemos comprobar facilmente que cumple las propiedades para ser subcuerpo demostrando que
cumple unas equivalentes.

= Primero vemos que 0,1 € S. Claramente ambos cumplen la ecuacion de S.

= Veamos que si a,b € S entonces a + b € S. Sabemos que en un cuerpo de caracteristica p,
(a —b)? = a? — b?. Ademds, al estar en S,a? = a,b? = b. Luego a — b cumple (a — b)? = a — b,
por loquea —b € S.

» Por tltimo, si a,b € Sy b # 0, entonces (ab~')? = a?(b?)~! = ab™!. Por tanto ab™' € S.

Por la construccion de S, este contiene todas las raices de 2% — x, luego el polinomio debe
descomponer en S y por tanto, F’=S. Como S tiene exactamente ¢ elementos, F' es un cuerpo
finito de ¢ elementos.

Ahora probaremos la unicidad. Sea F' un cuerpo finito cualquiera de ¢ elementos. F' tiene carac-
teristica p, como vimos en un lema previo, y entonces [F,, sera un subcuerpo de F'.

Por el Lema , F es cuerpo de descomposicién de ¢ —z sobre [F,, y su unicidad salvo isomorfismo
se deduce de la unicidad de cuerpos de descomposicién. O

Como ahora tenemos unicidad, nos referiremos al cuerpo de g elementos como F, a partir de este
punto. También consideraremos que ¢ = p™ para algin p primo y n natural.

Ahora veremos un resultado que permite determinar todos los subcuerpos de F,.
Teorema 1.6. Sea I, el cuerpo finito de ¢ = p" elementos, con p primo y n natural. Entonces, todo

subcuerpo de F, tiene orden p™ donde m es un divisor de n. Ademds, para todo m con m|n, hay un
subcuerpo de orden p™ y es el unico con p™ elementos.



Demostracion. Como F, es de caracteristica p, todo subcuerpo K de F, tiene caracteristica p y
por tanto, p™ elementos, con m € N. Por el Lema , sabemos que F, tiene p™* elementos, para
algin s € N, luego m - s =n y m|n.

Si m es un divisor cualquiera de n, existe k € N tal que m -k = n. Usando esto vemos que p™ — 1
divide a p™ — 1

De la misma forma, como p™ — 1 es divisor de p" — 1, vemos que 27" ! —1 divide a 2"~ — 1 en F,[z].

De aqui deducimos que el cuerpo de descomposicién de x?”~! — 1 en F,[z] debe estar contenido en
. e n__

el cuerpo de descomposicién de z#"~1 — 1, que es F,.

Por el Teorema sabemos que este cuerpo de descomposicién tiene p™ elementos. Como tiene
todas las raices de 27" ~! — 1, no puede haber otro subcuerpo distinto de p™ elementos, pues tendria
otra raiz del polinomio. O

Lo siguiente que estudiaremos seran dos maneras de representar cuerpos finitos que permiten su
uso en la practica con mayor facilidad.

Teorema 1.7. El grupo multiplicativo de ¥, representado por ¥y, es ciclico.

Demostracion. Dado que el caso ¢=2 es obvio, asumimos ¢ > 3. Sea h = ¢ — 1 = p}'py* ... pl™ su
descomposicion en factores primos.

Para cualquier i con 1 < i < m, el polinomio "/ — 1 tiene como mucho h/p; raices en IF,. Por
tanto, como h/p; < h, debe haber algin elemento distinto de cero que no sea raiz de este polinomio
en [, y que denotaremos a;.

Consideremos el elemento b; = a?/ v "Z), que cumple bf — 1 y por tanto, el orden de b;

71 o
1=
divide a p;*, que al ser p; primo, debe ser de la forma p;* con 0 < s; < r;. Ademaés

r;—1

pPi _ a?/pz‘ ?é 1

(2

luego el orden de b; es p;'. Finalmente construimos el elemento b = b1by - - - by, en Fy, que tiene orden
h. Para ver esto utilizamos reduccién al absurdo.

Supongamos que el orden de b es un divisor propio de h y por tanto divide a h/p; para algin

1 <i < m, digamos h/p;. Entonces

1 =p/r — bfll/mb;l/pl o bfn/pl‘

Ademés, considerando 2 < i < m, se cumple que p]’ divide a h/p; y como b; i = 1, entonces b?/ Pr—1,
Por tanto 1 = b"/P1 = b}f/pl y el orden de by divide a h/p;, pero el orden de by es pi', que es primo
con h/p;.

De esta forma llegamos a un absurdo y deducimos que el orden de b es h=q — 1, luego b es un
generador de [} y este es un grupo ciclico. O

Este resultado nos permite escribir el cuerpo F} como las potencias de cierto elemento. Como
estos elementos seran de gran interés, los incluiremos en la siguiente definicién.

Definicioén 1.8. Un generador del grupo ciclico F; se denomina elemento primitivo de F,.

Definimos ahora dos cuerpos que necesitamos para el siguiente teorema.



Definicién 1.9. Sea E un cuerpo y F uno de sus subcuerpos.
Consideramos a € E'y f(z) = ap+ a1x + - - - + a,2™ € F|z] y definimos
fla) =ap+aa+ -+ a,a™.

También definimos los cuerpos
Fla] ={f(a): f(z) € Flz]} y F(a) = {f(a)/g(a) : f(z),9(x) € F[z], g(x) # 0}.

Verificar que los conjuntos definidos son cuerpos es sencillo y por tanto se omite la comprobacion.

El siguiente teorema nos permite representar un cuerpo de ¢" elementos como el cuerpo de ¢
elementos cociente con un polinomio irreducible de grado n.

Teorema 1.10. Sea E un cuerpo, F un subcuerpo, a € E y sea p(x) € F|x] un polinomio irreducible
de grado n con p(a) = 0. Entonces todo elemento en F|a] se puede representar de forma tinica como
agp+ara+--+an_1a" 1 conayg,...,an_1 € F, y por tanto, si I es un cuerpo finito de q elementos,

|Flo]| = q". Ademds Flo] = Flz]/(p(x)).
Demostracion. Sea p(x) = po + p1x + + -+ + ppa™ con py, ..., pn € F,p, # 0. Entonces

pla) =po+pra+...+p,a”=0

y como p, tiene inverso, podemos escribir a” como combinacién lineal de 1, v, ..., a" L.
Multiplicando p(«) por «, tenemos
2 n+l _
pPox +pra” + ...+ p ' =0
y de la misma forma, podemos escribir a™*! como combinacién lineal de 1, «v, . .., a", y desarrollando
a™, lo podemos escribir como combinacién lineal de 1, c, ..., " L.

Continuando de esta forma podemos escribir todas las potencias de a como combinacién lineal
de 1,a,...,a" 1 y por tanto, se puede escribir asi para todos los elementos en F[a].

Ahora veremos la unicidad de la expresién. Si un elemento de F'|a] se puede representar como

1

agFao+ - +an 10" yby+ba+ -+ by1a"t, con a;, b € F

entonces tenemos
ap — by + (ay —b))a+ -+ (ap_1 — bp_y)a" "+ = 0.
Sea h(x) = ag — by + (a; — by)x + -+ (ap_1 — b,_1)x"', entonces h(a) = 0. Por tanto « es una raiz
y (z — a)|h(z), (x — a)|p(z).
Como h(x) y p(x) comparten un divisor, med(h(x),p(z)) # 1, ademds h(z) es de grado menor
que p(z) y por tanto h(x)=0. Es decir ay = by, ..., ap—1 = b,—1 y tenemos la unicidad.

Con la unicidad es claro que la aplicacién que manda un polinomio ag+ayz+- - -+ a,_12" + (p(z))
de F[z]/(p(x)) a ag + a1+ ... + ap,_12™ " en Fa] es un isomorfismo. O

Veamos como aplicar este teorema para operar en un cuerpo finito.

Ejemplo 1.11. Sea 27 + z + 1 € Fy[x] y o una de sus raices. Es facil comprobar que es irreducible,
y entonces por el Teorema [1.10

Fyr = Fya] = {ag + a1 + -+ aga® : ag, ..., a5 € Fa}

8



Entonces dos elementos o y a? con 0 < i,j < 6 se pueden multiplicar de la siguiente forma. Sea
i+j=T7+kcon0<Ek<5, al ser a raiz de 27 4+ = + 1 tenemos que o’ = o + 1 luego

ool =o't =a"-ad" = (a4 1)d" = aF +aFt
Si queremos multiplicar dos elementos cualesquiera de Fy7, siendo ay, . .., ag, bo, - . ., bg € Fa,

(a0 + @i+ -+ +aga®) - (b + bra+ -+ ba®) = Y abia' ™ + > abi(of + k),
i+j<6 i+j=T+k
0<k<5
y obtenemos facilmente de esta expresién un elemento de Fyr expresado como ¢y + cior + - - - + cga®
con ¢y, ..., cq € Fo.

Ahora demostramos unos resultados que nos permitirdan encontrar siempre un polinomio irredu-
cible de grado n en un cuerpo finito.

Teorema 1.12. Sea I, el cuerpo finito de q elementos y IF, una extension finita del cuerpo. Entonces
F, es una extension simple de IF, y cualquier elemento primitivo de F, genera IF, sobre F,.

Demostracion. Sea a un elemento primitivo de IF,. Como F, es una extensién de F,, claramente
F,(a) C F,. Por otro lado, el 0 y todas las potencias de o pertenecen a F,(«) y, al ser a generador
de F,, esto implica que F,(a) D F,.

Con esto tenemos la igualdad F (o) = I, y, al ser o un elemento primitivo genérico, el teorema
queda probado. O

Recordamos la definiciéon de polinomio minimo, que nos serd muy 1til al ser un polinomio irredu-
cible que podemos encontrar en cualquier cuerpo finito.

Definicién 1.13. Si @ € F es algebraico sobre K, entonces el polinomio ménico m, € K[z] que
genera el ideal J = {f € K[z] : f(a) = 0} estd tinicamente determinado y se llama el polinomio
minimo de « sobre K. El grado de « sobre F' se define como el grado de su polinomio minimo m,,
o equivalentemente como [F'(«) : F.

Corolario 1.14. Para cada cuerpo finito F, y n € N existe un polinomio irreducible en Fy[z] de
grado n.

Demostracion. Sea F, la extensién de F, de orden ¢", luego [F, : F ] = n. Por el teorema previo,
F,(a) = F, para algin « € F,. Entonces el polinomio minimo de « sobre F, cumple las propiedades
necesarias, ya que es un polinomio irreducible en F,[z] que es de grado n. O



Capitulo 2

Propiedades de los polinomios
irreducibles sobre cuerpos finitos

Como hemos visto en la seccién previa, los polinomios irreducibles son una herramienta clave
para construir y operar con cuerpos finitos. En este capitulo estudiaremos algunas propiedades de los
polinomios irreducibles en cuerpos finitos que nos permitiran posteriormente construirlos y estudiarlos
en mas detalle.

Veremos el comportamiento de las raices de un polinomio en su cuerpo de descomposicién y
algunas propiedades basicas del orden de un polinomio. También estudiaremos cuantos polinomios
irreducibles de grado fijo hay en un cuerpo finito aprovechando las funciones ¢ de Euler y u de
Mobius.

En la dltima seccién definiremos los polinomios primitivos, un tipo especial de polinomios irredu-
cibles, veremos como caracterizarlos y estudiaremos cuando ciertos polinomios pueden ser primitivos.

2.1. Raices y orden de polinomios

Empezamos esta seccién con resultados sobre las raices de un polinomio irreducible. Vamos a ver
que siempre podemos construir el resto de raices del polinomio si tenemos una de ellas, y su relacién
con el cuerpo en el que estan. Seguimos el capitulo 2.2 del libro Introduction to finite fields and their
applications [10].

Primero introducimos un par de lemas que nos permiten estudiar cudl es el cuerpo de descompo-
sicion de las raices.

Lema 2.1. Sea f € F,[z] un polinomio irreducible sobre un cuerpo finito F, y sea o una raiz de f
en una extension de F,. Entonces, para un polinomio h € F[z], se tiene que h(a) =0 si y solo si f

divide a h.

Demostracion. Sea a el coeficiente que acompana al término de mayor grado de f y definimos
g(z) = a7 f(z). Entonces, g es un polinomio irreducible ménico en F,[x] con g(a)) = 0, y por lo tanto
es el polinomio minimo de a sobre .

De la definicién de polinomio minimo se obtiene directamente que f(a) = 0 siy solo si el polinomio
minimo de « sobre F, divide a f, y por esta propiedad el resultado es inmediato. O

Lema 2.2. Sea f € F,[z] un polinomio irreducible sobre ¥, de grado m. Entonces f(x) divide a
29" — x si y solo si m divide a n.

10



., . . n ,
Demostracion. Supongamos que f(x) divide a 29 —zx. Sea o una raiz de f en su cuerpo de descom-
. e ’ n . e
posicion sobre ;. Entonces « es raiz de 29" —x y por tanto pertenece a su cuerpo de descomposicion,
que es Fyn.

De esto se deduce que F (a) es un subcuerpo de Fyn. Como [Fy(«) : F,] = m, [Fpn : F] =ny
[Fpn i F,] = [Fpn : Fy(a)] - [Fy(a) : F,] claramente m divide a n.

Reciprocamente, si m divide a n, entonces el Teorema implica que F,m es subcuerpo de Fn.
Si a es una rafz de f en su cuerpo de descomposicién sobre Fy, por el Teorema [1.10} [Fy(a) : Fy] = m
y ]Fq(Oé) = ]qu.

Por la contencién vista previamente, « € F,n, luego 4" = a, y se ve que « es una rafz de
x7" — x € F,[x]. Se deduce del lema previo que f(z) divide a 27" — 2. O

Utilizando estos lemas, conseguimos todas las raices de un polinomio irreducible a partir de una
dada.

Teorema 2.3. Si f es un polinomio irreducible en F,[x] de grado m, entonces f tiene una raiz

a en Fym. Ademds, todas las raices de f son simples y estan dadas por los m elementos distintos
2 —1

a, 00, a?" de Fym.

Demostracion. Sea o una raiz de f en su cuerpo de descomposicién sobre F,.

Entonces Fy(a) = Fym por el Teorema [1.10] y a € Fym. Ahora mostramos que si 3 € Fym es una
raiz de f, entonces (87 también lo es.

Escribimos f(z) = apa™ + -+ + a12 + a¢ con a; € F, para 0 < i < m. Entonces, usando el
Lema [1.3]y que (a4 b)? = a? + b?, tenemos

f(BY) = anfT™ 4+ +ar1f'+ag = al B+ -+aif?+al = (a4 +ar1+ap)? = f(5)T=0

, 2 m—1 4 . . s
Asi, los elementos a, a4, a9, ..., a?  son raices de f. Probaremos que son distintos por reduccién
al absurdo.

Supongamos,que @ = o para algunos enteros j y k con 0 < j < k£ < m — 1. Elevando esta

igualdad a la potencia ¢™*, obtenemos

m—k+j
o =

Se obtiene del Lema que f(x) divide a 27" " — z. Por el Lema , esto solo es posible si m
divide am — k + j. Pero 0 < m — k 4+ 7 < m, lo cual lleva a una contradiccion. O

Como todas las raices pertenecen a Fym, es facil comprobar que este cuerpo es el de descomposicién
de f.

Corolario 2.4. Sea f un polinomio irreducible en F,[x] de grado m. Entonces el cuerpo de descom-
posicion de f sobre F, es Fym.

Demostracion. El Teorema muestra que f descompone completamente en Fym. Si a es una
raiz de f en Fgm
F(a, 0?0, .., a”") = Fy(a) = Fyn.

La segunda igualdad se ve en el Teorema |1.10} O
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Introducimos una definiciéon para los elementos que aparecen en el teorema previo, independien-
temente de si son raices de un polinomio irreducible en F [z] o no, para estudiar su relacién con el
cuerpo al que pertenecen, o su relaciéon con otros polinomios.

Definicién 2.5. Sea F;» una extension de F, y sea o € Fym. Entonces se deﬁnen los conjugados de
a con respecto a I, como los elementos, no necesarlamente distintos, a, af aq e ,oﬂm

Empezamos estudiando la relacion de los conjugados con su orden en un cuerpo.

Teorema 2.6. Los conjugados de o € F}, con respecto a cualquier subcuerpo de Fy tienen el mismo
orden en el grupo F}.

Demostracion. Si p es la caracteristica de F,, tenemos que F, = [F,» para algin m € N, y por

tanto, los conjugados de a respecto a cualquier subcuerpo de F, son de la forma o’ para algun
k e N.

Para ver el orden de estos elementos, podemos considerar el siguiente isomorfismo.

AN F, =T,

.
Tz — xP .

Al ser un isomorfismo de grupos, el orden de un elemento y su imagen son el mismo, y como esto
RE . . . k. .

es valido para cualquier » € N, todos los posibles conjugados de la forma o tienen el mismo orden

que . ]

Si el orden de v es ¢ — 1, y por tanto « es primitivo en F,, el siguiente corolario es directo.

Corolario 2.7. Si o es un elemento primitivo de F,, entonces también lo son todos sus conjugados
con respecto a cualquier subcuerpo de F,.

Veamos un ejemplo concreto donde obtenemos los conjugados de un polinomio de grado 4 en
Fylx] y en Fylz].

Ejemplo 2.8. Sea a € Fi una raiz de f(z) = 2* + 2 + 1 € Fy[z]. Entonces los conjugados de o con
respecto a Fy son a,a?,a* =a+ 1,y o® = o? + 1, siendo cada uno de ellos un elemento primitivo
de Fi4. Los conjugados de o con respecto a Fy son a v o* = o + 1.

Podemos determinar ciertos automorfismos de un cuerpo finito usando los elementos conjugados.

Sea [F,m una extension de F,. Por un automorfismo o de [Fym sobre F, entendemos un automorfismo
de Fym que fija los elementos de F,. Es decir, requerimos que « sea una funcién biyectiva de Fym en
s{ mismo, con a(a+b) = a(a) + a(b) y a(ab) = a(a)a(b) para todos a,b € Fym, y que a(a) = a para
todo a € IF,.

Teorema 2.9. Los automorfismos de F,m sobre F, son exactamente og,01,...,0m_1, las aplicaciones
definidas por o;(a) = a? para a € Fpm y 0 <j<m—1.

Demostracion. Para cada o; y todos a,b € Fym se tiene claramente que o;j(ab) = o;(a)o;(b), y
también o;(a + b) = 0j(a) + 0;(b), ya que la caracteristica del cuerpo es p y ¢ = p". Por lo tanto o,
es un endomorfismo de F,m. Ademas, o;(a) = 0 si y solo si a = 0, por lo que o, es inyectiva.

Como Fym es un conjunto finito con mas elementos que F,, o, es sobreyectiva y, por tanto, un
automorfismo de Fym. Ademads, se tiene que o;(a) = a para todo a € F, por el Lema por lo que
cada o; es un automorfismo de Fym sobre F,.
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Las aplicaciones g, 01,...,0,_1 son distintas ya que toman valores distintos en un elemento
primitivo de Fym.

Supongamos ahora que o es un automorfismo arbitrario de F,m sobre F,. Sea 8 un elemento
primitivo de Fym y sea f(z) = 2™ + ap_12™ ' + -+ 4+ ap € F,[z] su polinomio minimo sobre F,,.
Entonces

0=0 (ﬁm + Q1 S+ ao) =0(B)" + am_10(B)"™ " + -+ ag,

y por tanto a(f) es raiz de f en Fym. Como [ también es raiz de f se sigue del Teorema que
a(B) = BY para algtin j, 0 < j <m — 1.

Como 3 un elemento primitivo, para cada a € F,m existe un k € N tal que a = ¥, y como « es
un homomorfismo tenemos

. ky __ kE qj k k qj . qj
o(a) =0o(B") =a(B)"=(B")"=(8")" =a
y obtenemos que a(a) = a? . O
Finalizamos esta parte con un resultado que relaciona el polinomio minimo de una raiz con sus
conjugados, junto a otras propiedades de los polinomios minimos que nos servirdn para posteriores

resultados. Hemos obtenido este teorema de la seccion 3.2 del libro Introduction to finite fields and
their applications [10].

Teorema 2.10. Sea a € Fyn. Supongamos que el grado de o sobre F, es d y sea m, el polinomio
minimo de o sobre F,. Entonces:

(1) mq es irreducible sobre F, y deg(m,) = d divide a n.

(1) f € F,lx] satisface f(a) =0 siy solo si mq | f.

(iii) Si a es un elemento primitivo de Fyn, entonces deg(mgy) = n.

(v) Si f es un polinomio monico irreducible de F,[x] tal que f(a) =0, entonces f = m,.
(v) mg divide a 27" —z y a 29" — .

. , -1 . . . L
(vi) Las raices de my, son a,ad,...,a%  y son todas distintas. Ademds m,, es el polinomio minimo
d
sobre IF, de todos estos elementos y a? = a.

Demostracion.

(i) Sabemos que m, debe ser irreducible por la definicién de polinomio minimo, ya que si otro
polinomio lo dividiese entonces m, no generaria el ideal. La segunda parte se obtiene de que
n=[Fpm:F,] =[Fp:Fyla)]- [Fy(e) : F,] y de que [F,(«) : F,] es el grado de o por definicién.

(ii) Se obtiene directamente de que el polinomio minimo genera el ideal que vimos en su definicién.

(iii) Si v es un elemento primitivo de Fn, al ser Fyn extension de F, tenemos que Fyn = F () v
por tanto, [F,» : Fy(a)] = 1. De la igualdad en (i) obtenemos que deg(mg) = n.

(iv) Por (i7) tenemos que m,, | f y, al ser f irreducible, f = m,,.

(v) Por el Lema 2.2} el polinomio minimo m,, divide a 2" —z si d | n y por (i) d divide a n. De la
misma forma, mq | 27" — 1.
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. d d—1 ,
(vi) Por el Teorema , a € Fpa, luego a? =,y a,a?,...,a9  son todas las raices de m,. Para
la segunda parte, si llamamos /5 a una de esas raices, aplicando (iv) sobre mg, como m,(8) =0
y mg es monico e irreducible, tenemos m, = mg para todas las raices. O

Ahora que hemos estudiado los conjugados de una raiz, podemos emplearlo para definir y estudiar
el orden de un polinomio, que cuando es irreducible, podremos relacionar con el orden de sus raices.
Para esta breve parte, seguiremos el principio del capitulo 3.1 del libro Introduction to finite fields
and their applications [10].

El siguiente lema justifica su definicion.

Lema 2.11. Sea f € Fy[x] un polinomio de grado m > 1 con f(0) # 0. Entonces existe un natural
e <qm™—1 tal que f divide a x° — 1.

Demostracion. El grupo F,[z]/(f) tiene ¢™ — 1 clases no nulas. Dado que f(0) # 0, las clases
27+ (f), 0 < j < ¢™—1 son todas no nulas, y existen enteros s y t con 0 < s <t < ¢™ — 1 tales que
r' = x* mod(f). Entonces se tiene que z'~5 = 1mod(f), luego f | (z'"*—1) con 0 < t—s < ¢™—1. [

Un método para determinar e es simplemente probar si f | ¢ — 1 para e = m,m + 1,... hasta
que se cumpla. Este no es un muy buen método, pero si el polinomio f es irreducible, obtendremos
resultados que reducen el nimero de posibles candidatos.

Definicién 2.12. Sea f € F,[z] con f(0) # 0. Entonces, el menor nimero natural e tal que f | (z¢—1)
se llama el orden de f. Si f(0) = 0, entonces f es de la forma z"g con h € Ny g € F,[z], g(0) # 0,
para un polinomio g unico. El orden de f se define entonces como el orden de g.

El orden de un polinomio irreducible puede caracterizarse mediante el orden de sus raices.

Teorema 2.13. Sea f € Fy[x] un polinomio irreducible sobre F, de grado m > 2. Entonces ord(f)
es igual al orden de cualquier raiz de f en Fn.

Demostracion. Vemos que f(0) # 0, ya que de otro modo seria divisible por z. Fym es el cuerpo
de descomposicién de f sobre F,. Usando el Teorema[2.3)y el Teorema [2.6| vemos que las raices de f
tienen el mismo orden en Fy...

Sea o € Fym una raiz de f, entonces, como f es el polinomio minimo de o por una constante, por
el Lema , también cumple que o = 1 siy solo si f | z¢ — 1. El resultado se deduce de la definicién
de ord(f) y del orden de « en el grupo .. O

Con esto podemos obtener una condicién necesaria que debe cumplir el orden de un polinomio
irreducible.

Corolario 2.14. Si f € F [z] es un polinomio irreducible sobre F, de grado k, entonces ord(f) divide
k
aq®—1.

Demostracion. Si f = cx con ¢ € F;, entonces ord(f) = 1. En caso contrario, el resultado se

deduce del teorema previo y de que el orden de cualquier elemento en IFZk divide al orden del grupo
multiplicativo. [

Veamos tres casos donde usamos estos teoremas para obtener el orden de un polinomio irreducible
mas facilmente.
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Ejemplo 2.15. 1. f =23+ x+ 1 € Fy[z] es irreducible. Entonces ord(f) debe ser un divisor de
23 —1=17. Asi que ord(f) = 7.

2. Si f € Fy[z] es irreducible de grado 4, entonces 4 < ord(f) y ord(f) | 2* — 1 = 15. Por tanto,
ord(f) esigual a 5 0 a 15, lo cual puede estudiarse mucho més rapido que todos los candidatos
de 4 a 15. Tenemos tres opciones de f:

fi=at+ 3+ +x+1,

fo=at+o+1,

fs=at + 23+ 1.

Facilmente, podemos obtener ord(f1) =5 ya que 2° — 1 = (z — 1)(z* + 23 + 2 + x + 1).

Como estamos en Fy[x], el inico polinomio de grado 1 que queda es x. Entonces, se ve que ni
fo ni f3 dividen a 2° — 1 y por tanto ord(fs) = ord(f3) = 15

3. De manera similar al primer ejemplo, todo polinomio irreducible en Fy[x] de grado 5 debe tener
orden 31.

Los siguientes resultados nos muestran que podemos calcular el orden de un polinomio a partir de
los 6rdenes de los polinomios en los que descompone en su descomposicion candnica. Primero vemos
un lema que relaciona la divisibilidad de un polinomio con la divisibilidad de su orden.

Lema 2.16. Sea ¢ € N y f € F,[z] un polinomio tal que f(0) # 0 y ord(f) = e. Entonces f(x)
divide x¢ — 1 si y solo si e divide c.

Demostracion. Supongamos que e divide c. Por la definicién de orden f(x) divide ¢ — 1, y como
e divide ¢ tenemos que z¢ — 1 divide ¢ — 1, luego f(z) | ¢ — 1.

Ahora supongamos que f(x) divide z¢— 1. Por definicién de orden, ¢ > e, asi que podemos escribir
c=me+rconméeNyO0<r <e Entonces z°—1= (2™ —1)2" 4+ (2" — 1) y como f(z) divide
z¢ — 1, también divide 2™¢ — 1, luego f(z) divide 2" — 1, que por definicién de orden solo es posible
para r = 0.

Por lo tanto, ¢ = me, es decir, e | c. O

Ahora, apoyandonos en este lema, conociendo el orden de un polinomio f(x) calculamos el orden
de sus potencias f(x)", con n € N.

Teorema 2.17. Sea g € F,[z] un polinomio irreducible sobre F, con g(0) # 0 y ord(g) = e, y sea
f=g° conbeN. Seat el menor natural tal que p* > b, donde p es la caracteristica de F,. Entonces

ord(f) = ep".

Demostracion. Sea ¢ = ord(f). Claramente f(x) | x—1y por tanto g(x) | z°—1. Por el Lema|2.16}
deducimos que e | c.

Ademss, g(z) divide 2¢ — 1 y por tanto, f(x) divide (¢ —1)°. Como b < p', f(x) también divide
(z¢ — 1) = 2" — 1 y por el Lema ¢ divide ep'.

Combinando que e divide ¢, ¢ divide ep’ y p es primo, tenemos que ¢ = ep* con 0 < u < t. Ahora
observamos que, por el Corolario[2.14] e | ¢* —1 con k el grado de g(z), por lo que e no es un miiltiplo
de p y entonces x¢ — 1 sélo tiene raices simples.

Por lo tanto, todas las raices de z%?" — 1 = (2° — 1)P" tienen multiplicidad p*. Como ¢ = ep" y
f(x) = g(x)® tenemos que g(z)° divide 2*" — 1, y por el Teoremaltal], todas las raices de g(x) son
simples. Luego todas las raices de g(z)” tienen multiplicidad b, y comparando las multiplicidades de
las raices con " — 1, tenemos que b < p.
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Como t era el menor natural tal que b < p! entonces u > t, de esto concluimos que u = t y, por
lo tanto, ¢ = ep'. O

Vemos ahora que también podemos calcular el orden de un polinomio a partir de los 6rdenes de
su descomposicién en polinomios coprimos dos a dos.

Teorema 2.18. Sean g, ..., g polinomios no nulos coprimos dos a dos en F,, y sea f = g1+ gi.
Entonces ord(f) es igual al minimo comin multiplo de ord(g), .. .,ord(gg).

Demostracion. Si g;(0) = 0 para algin 1 < i < k, podemos escribir f(z) = 2"hy(z) - - - h(z) con
r € N tal que h;(0) # 0 para todo 1 < i < k, y por la definicién de orden, el orden de f y de hy - - - hy
es el mismo. Por tanto basta considerar el caso en que g;(0) # 0 para todo 1 < i < k.

Sea e = ord(f), e; = ord(g;) para todo 1 <i < k,y ¢ = mem(ey, ..., e;). Entonces, g;(z) | 2% — 1
para todo 1 <i < kyz® —1|z°— 1. Por lo tanto g;(x) divide ¢ — 1 para todo 1 < i < k y como
son coprimos dos a dos, obtenemos que f(z) divide ¢ — 1 y por el Lema e divide a c.

Por otro lado, f(z) divide ¢ — 1, luego g;(x) divide x° — 1 para todo 1 < i < k. De nuevo por el
Lema [2.16] deducimos que e; | e para todo 1 < i < k, y por lo tanto ¢ divide a e.

Concluimos asi que e = c. O

Finalmente, combinando los dos teoremas previos, podemos obtener el orden de un polinomio a
partir de los érdenes de su descomposicién canonica.

Teorema 2.19. Sea F, un cuerpo finito de caracteristica p, y sea f € F,[x] un polinomio de grado
mayor o igual que 1 tal que f(0) # 0. Sea f = af - ,?’“, cona € Fy, by...0, e Ny fi, ... fr € F[]
polinomios mdnicos e irreducibles distintos, la descomposicion candnica de f en F,x]. Entonces
ord(f) = ep' donde e es el minimo comin miltiplo de ord(fy),...,ord(fx) y t el menor natural tal

que p' > max{by,...,by}.

Demostracion. Como f1,... fi son polinomios irreducibles distintos, claramente son coprimos
dos a dos y por tanto ffl e fﬁ’“ también son coprimos dos a dos. Por tanto podemos aplicar el
Teorema a estos polinomios, y deducimos que ord(f) es igual al minimo comtin multiplo de
ord(f), ... ord(f*).

Aplicando el Teorema a f’ tenemos que ord(f) = ord(f)p", con t; el menor natural tal
que p'" > b;, para todo 1 < ¢ < k. Por lo tanto,

mem{ord(fP1), ..., ord(f7*)} = mem{ord(fy), ..., ord(fi)} - pmtioted = ept

ya que claramente el maximo de ¢y, ..., es el menor natural tal que p™>{t} > max{b;,..., b}
O

2.2. Ntumero de polinomios irreducibles

Ya hemos visto al final del primer capitulo que siempre tenemos un polinomio irreducible de
cualquier grado en un cuerpo IF,. El objetivo de esta seccién es determinar cudntos polinomios hay
para un grado fijo utilizando las funciones ¢ de Euler y u de Mobius.

También obtendremos férmulas explicitas para el producto de polinomios irreducibles, que podriamos
factorizar para extraer todos los polinomios irreducibles de cierto grado. Para esta seccién nos apo-
yaremos tanto en el capitulo 13 del libro Applied Abstract Algebra [I1] como en el 3.2 del libro
Introduction to finite fields and their applications [10].

Empezamos definiendo las funciones ¢ de Euler y 1 de Mobius.
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Definicién 2.20. Sea ¢ la funcién phi de Euler, donde ¢(n) indica el nimero de enteros positivos
menores o iguales que n que son coprimos con n.

. t . ..
Sin=pl-.. p,, donde los p; son primos distintos, entonces

_ _ 1 1
p(n) = (pr— P~ (o — Dpf 1:"(1__) (1__)'
2 Pk
Definicién 2.21. La aplicacién p: N — {0, 1, —1} definida por
1 sin=1,
pu(n) =< (=1)F sin es el producto de k primos distintos,
0 si n es divisible por el cuadrado de un primo.

se llama la funciéon p de Mobius.
Vemos una propiedad simple y que nos serda muy ttil de la funcién p de Mobius.

Lema 2.22.

1 sin=1
d) = ’
Z,u() {O stm > 1.

dn

Demostracion. Para verificar esto, si n > 1, s6lo debemos considerar aquellos divisores positivos
d de n tales que u(d) # 0, es decir, para los cuales d = 1 o d es un producto de primos distintos.

Si p1,p2, ..., pr son los primos distintos que dividen a n, entonces obtenemos:
k
Sopd)=p(W)+> pp)+ D> ppapn)+ Y w(papinpi) o+ p(pipe - pr)
dn i=1 1<iy <ia<k 1<i1 <in<izg<k
k k k
=1+ (1) (1) + (2)(—1)2 + -+ (k) (-DF = (14 (=1)"=0.
El caso n =1 es trivial. O

El siguiente teorema nos permitira usar la funcion p de Mobius para poder contar el nimero de
polinomios irreducibles de grado fijo.

Teorema 2.23. Férmula de Inversion de Mobius.

(i) (Forma aditiva) Sean f,g: N — (A, +) aplicaciones de N en un grupo abeliano aditivo A.

Entonces:
gn) =D fd) = fm) =Y u(Z) (@)

dln dn

(ii) (Forma multiplicativa) Sean f,g : N — (A,-) aplicaciones de N en un grupo abeliano
multiplicativo A. Entonces:

o) =T 1) = fn)=]]g(@" .
din

dln
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Demostracion. Empezamos por la implicacion a la derecha de la forma aditiva.

Suponemos g(n) = > an f (d) y, considerando el lema previo en la dltima igualdad, obtenemos

Son(5) o =Y u@g (5) = Do ud Y 0 =3 D uld)fe) = )Y uld) = f).
din d|n dn g

o7 cln dl% cln

Las tltimas igualdades se obtienen considerando que, para cada c fijo con c | 5, tenemos que d cumple
d | %,y como c recorre todos los divisores de n, podemos reordenar la suma cambiando los papeles
de cy d.

Para el reciproco, suponiendo g(n) = > dn (d) y considerando una idea similar para reordenar
las sumas, tenemos

s =S () ot = n (4) o0 = a0 X u (%)

dln din c|d cln d:c|d
dln

Consideramos el cambio de variable d = ¢ - m, donde m | 2, y aplicando el lema previo, podemos

continuar la igualdad con
> 9(@) > ulm) = g(n).

c|n m| 2
c

La forma multiplicativa es la misma que la aditiva pero reemplazando sumas por productos y pro-
ductos por potencias. O

Ahora tenemos todas las herramientas necesarias para empezar a contar polinomios irreducibles.
Primero contamos los polinomios irreducibles ménicos con el grado y orden fijo.
Teorema 2.24. Sea e € N un divisor de ¢™ — 1. Entonces hay eractamente % polinomios irredu-
cibles monicos de grado m y orden e > 2 sobre IFy.

Demostracion. Si e es el orden asociado a un polinomio irreducible de grado m, por el Corola-
rio , tenemos que e | ¢™ — 1. Entonces 2¢ — 1 | 29" ~! — 1, y m es el menor natural que cumple
esto, ya que por el Corolario sabemos que Fy» es el menor cuerpo de descomposicion de estos
polinomios.

Primero veremos que los polinomios irreducibles moénicos de grado m y orden e son exactamente
los polinomios minimos de las raices primitivas e-ésimas de la unidad.

Sea f es un polinomio irreducible ménico de grado m y orden e, y o una de sus raices. Si m > 2,
por el Teorema[2.13], todas las raices de f son raices primitivas e-ésimas de la unidad. Sim = 1, usando
que f tiene orden e, es facil ver que su raiz es una raiz primitiva e-ésima de la unidad. Finalmente,
por el Teorema (iv), tenemos que f = my, el polinomio minimo de una raiz primitiva e-ésima

de la unidad.

Ahora consideremos m,, el polinomio minimo asociado a una raiz primitiva e-ésima de la unidad,
a tiene orden e, y por el Teorema [2.10|vi) sabemos que todas sus raices son los conjugados de a.
Usando esto, por el Teorema [2.6] todas las raices de m,, tienen orden e. Como m es el menor natural
que cumple ¢ — 1 | 29"~ — 1, el cuerpo de descomposicién de todas las raices de m,, es Fm y por
tanto el grado del polinomio minimo es [Fy(a) : Fy] = [Fym : F,] = m.

Ademads, como todas sus raices tienen orden e, tenemos que e es el menor natural tal que m,, |
x¢ — 1, y por tanto, e es el orden de m,. Asi tenemos que este polinomio minimo es un polinomio
irreducible ménico de grado m y orden e.
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Finalmente, como tenemos ¢(e) raices primitivas e-ésimas de la unidad, tenemos (e) polinomios
minimos asociados. Como ya hemos visto antes, todas las raices de estos polinomios son raices pri-
mitivas e-ésimas de la unidad, y por el Teorema [2.10|vi), las m raices de uno de estos polinomios

( )

generan el mismo polinomio minimo. Por tanto, tenemos £ polinomios minimos distintos, es decir,

(

tenemos £ polinomios irreducibles ménicos de grado m y orden e. O]

Gracias a los resultados de las raices de polinomios irreducibles, sabemos cuales son los polinomios
que dividen a 29" — z, y podemos emplear este hecho para dar su factorizacién en polinomios irre-
ducibles. Ademads, esto nos permitird enumerar todos los polinomios irreducibles ménicos de grado
fijo.

Teorema 2.25. Se verifica la igualdad 29" — x = IL fi, con el producto extendido sobre todos los
polinomios irreducibles monicos distintos sobre Fy cuyos grados dividen a n.

Demostracion. Por el Lema , todos los polinomios que dividen a 29" — x son los polinomios
monicos irreducibles cuyos grados dividen a n sobre [y, a excepcién de productos por una constante.

Ademés, como la derivada de 29" — x es —1, el polinomio no tiene raices repetidas. Esto implica
que en su descomposicion en polinomios irreducibles no hay ninguno repetido. Por tltimo, como no
comparten raices, los polinomios son coprimos.

Entonces tenemos que estos polinomios son todos los que dividen a 29" — z, ninguno se repite y
todos son coprimos entre ellos. Luego el producto de todos ellos debe ser igual a 29" — x. O]

Corolario 2.26. Sea N,(d) el nimero de polinomios irreducibles monicos en Fy[x] de grado d. En-
tonces, para todo n € N se tiene
= Z d - Ny(d)

din

donde la suma se extiende sobre todos los divisores positivos d de n.

Demostracion. El resultado se deduce del teorema previo comparando el grado de z9" — x con el
grado total de la factorizacién de z9" — x. O

Aplicando las propiedades de la funcién p de Mébius, del corolario anterior obtenemos una férmula
explicita para el nimero de polinomios irreducibles ménicos con grado fijo.

Teorema 2.27. El nimero de polinomios irreducibles monicos de grado n sobre F, estd dado por

Ny(n) = % > u(d)ge.

d|n

Demostracion. El Corolario nos dice que >, d- Ny(d) = ¢". La forma aditiva de la férmula

de inversién de Mobius, Teorema [2.23((1), nos da el resultado deseado considerando f(n) =n- N,(n)
y g(n) = ¢" para todo n € N,

> d-Ny(d)=q" < n- ZM( )-qd=Zu(d)

din din dln

La ultima 1gualdad se obtiene cambiando d por %, ya que si d recorre todos los divisores de n, también
los recorre 4. N

Con esto podemos calcular la cantidad de polinomios irreducibles en un cuerpo. Las cuentas son
sencillas para grados bajos y cuerpos pequenos, como por ejemplo, para polinomios de grado 10 en

Fy.
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Ejemplo 2.28. El nimero de polinomios irreducibles ménicos en Fy[x] de grado 10 esta dado por:

Ng(10) = 110 (t(D)g" + 1(2)¢° + 1(5)¢” + p(10)q) = 110 ("= = +aq).

En el caso ¢ = 4 tenemos que N4(10) =104.754. Luego hay 104.754 polinomios irreducibles ménicos
en [Fy[x] de grado 10.

Usando la férmula obtenida en el teorema, calculamos con MAPLE la Tabla con el nimero
de polinomios irreducibles moénicos en Fy[z| para todos los grados menores o iguales que 18.

Gradon [ 123456 7 8|9 [10] 11 | 12 | 13 14 15 16 17 18

No(n) [211]123[6[9|18]30|56|99|186 | 335|630 | 1161 | 2182 | 4080 | 7710 | 14532

Cuadro 2.1: Nimero de polinomios irreducibles ménicos en Fy[z] de grado n.

Para verificar los calculos podemos consultar la enciclopedia online de sucesiones de enteros OEIS
[14], una pagina creada y mantenida por N. J. A. Sloane donde se almacenan miles de sucesiones de
interés matemaético.

Concretamente consultamos la sucesién A001037 en OEIS [14] y, considerando que su sucesién
comienza en n = 0, vemos que hemos obtenido los mismos resultados.

Y finalmente, podemos obtener una férmula explicita para el producto de estos polinomios.

Teorema 2.29. El producto I(q,n) de todos los polinomios irreducibles monicos en Fy[z] de grado

n estd dado por
IS | [ G | (P

dn dn
Demostracion. Agrupando los productos de polinomios de grado fijo d en I(q, d), el Teorema
implica que 29" — x = T4 L(q,d).

Ahora considaremos f(n) = I(q,n) y g(n) = 27" — x para todo n € N y aplicando la férmula de
inversiéon de Mobius multiplicativa del Teorema 2.5 obtenemos

27" _w_H[q, & I(g,n) = H<qu_x)“(n/d_H< " )

din dln

p(d)

donde la tltima igualdad se obtiene cambiando d por % por un razonamiento similar al usado en el

teorema previo. O

Ejemplo 2.30. Para ¢ = 2, n = 4 obtenemos:
16 15
_ (16 M 4 @ 9 w_r7—r _ r7—1 o9 6, 3
12,4)= (7 —x)* (2" =) " (" — )l " = prampeilion: s Bl +a’+ a2+ 20+ 1

Todos los polinomios irreducibles ménicos en Fy[z| de grado 4 pueden determinarse factorizando
este polinomio, y més generalmente, todos los polinomios irreducibles ménicos de grado n sobre I, [z]
se pueden obtener factorizando I(g,n).

2.3. Polinomios primitivos

Si tenemos un cuerpo finito [Fyn, siendo ¢ la potencia de un primo y n € N, representar el cuerpo
como F,[z]/(f(z)), donde f(z) es un polinomio irreducible, tiene ventajas para operar eficientemente.
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Si ademds una de las raices de f(x) es primitiva en Fy» nos permite representar el cuerpo como
potencias de la raiz, y un polinomio con esta propiedad es de utilidad en ciertos campos, por ejemplo
la generacién de numeros pseudoaleatorios, como se puede ver en el capitulo 7.4 del libro Introduction
to finite fields and their applications [10]. Por lo tanto esta seccién se dedica a estudiar este tipo de
polinomios.

Los siguientes resultados se han obtenido de la seccion 7.3 del libro Finite fields and Galois rings
[17] y de la seccion 3.1 del libro Introduction to finite fields and their applications [10].

Definicién 2.31 ([17]). Sea f(z) un polinomio ménico de grado n > 1 sobre F,. Si alguna raiz de
f(z) es un elemento primitivo de Fyn entonces diremos que f(z) es un polinomio primitivo de grado
n sobre [Fy.

Otra definicién posible para los polinomios primitivos es la siguiente, encontrada por ejemplo en
el libro Introduction to finite fields and their applications [10]. Demostramos que son definiciones
equivalentes.

Lema 2.32. Un polinomio f(z) € F,[z] de grado n > 1 es primitivo sobre F, si y solo si es el
polinomio minimo en F, de un elemento primitivo de Fyn.

Demostracion. Si f(z) es primitivo, supongamos que £ es una raiz de f(z) y un elemento primitivo
de Fyn. Consideremos mg el polinomio minimo de &, y aplicando el Teorema tenemos que el grado
de mg esny me | f. Como f(z) también es un polinomio ménico de grado n, me = f.

La otra implicacion es inmediata. O

El siguiente teorema recopila las propiedades mas relevantes de los polinomios primitivos. El
resultado més importante es el que nos dice que todos los polinomios primitivos son irreducibles.

Teorema 2.33 ([17]). Para cada cuerpo finito F, yn € N eziste un polinomio primitivo de grado n
en IF,. Ademds, todas las raices de un polinomio primitivo de grado n en F, son elementos primitivos
de Fgn y todos los polinomios primitivos en F, son irreducibles sobre IF,. Finalmente, el nimero de
polinomios primitivos de grado n en [F, es o(q" — 1)/n.

Demostracion. Sea F, un cuerpo finito cualquiera y n € N. Consideramos £ un elemento primitivo
de Fy» y su polinomio minimo my, que aplicando el Teorema M(iii) vemos que es de grado n, luego
por el lema previo es un polinomio primitivo de grado n en [F,.

Ahora sea f(x) un polinomio primitivo de grado n en IF,. Por el lema previo es un polinomio
minimo, luego es irreducible, y aplicando el Teorema [2.10](vi) y el Teorema [2.6|todas sus raices tienen
el mismo orden y por tanto son primitivas en Fn.

Finalmente, como ¢(¢" — 1) es el nimero de elementos primitivos de Fyn, si consideramos el
polinomio minimo en F, asociado a un elemento primitivo &, por el Teorema el polinomio
, . . . - n—1 . . N . ’ .
minimo es el mismo para los n elementos primitivos &, £9,...£9 * y es distinto del polinomio minimo
asociado a otro elemento primitivo. Entonces, por el lema previo, el niimero de polinomios primitivos

n
de grado n sobre F, es p(¢" — 1) /n. O

Ahora podemos obtener la primera caracterizacién de los polinomios primitivos, que nos dice que
un polinomio es primitivo si y solo si es de orden maximo. La condicién f(0) # 0 solo se necesita
para descartar el polinomio f(z) =z € Fy, que claramente no es primitivo.

Teorema 2.34 ([10]). Un polinomio f € F,[x] de grado m es primitivo sobre F, si y solo si f es
monico, f(0) # 0, yord(f) =¢™ — 1.

Demostracion. Si f es primitivo sobre F,, por Teorema f es monico e irreducible, luego
f(0) # 0. Como f es irreducible y al ser primitivo tiene raices de orden ¢™ — 1, por el Teorema
obtenemos que ord(f) = ¢™ — 1.
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Para probar el reciproco suponemos que f es ménico, f(0) # 0, y ord(f) = ¢ — 1, claramente
ord(f) = ¢™ — 1 implica que m > 1. Primero probamos la irreducibilidad de f por reduccién al
absurdo, suponiendo que f es reducible sobre IF,. Si f es reducible o es una potencia de un polinomio
irreducible, o descompone como producto de dos polinomios coprimos de grado positivo.

Si f = ¢° con g € F,[z] irreducible sobre F,, g(0) # 0 y b > 2, de acuerdo con el Teorema [2.17]
la caracteristica de F, divide ord(f) y por tanto divide ¢™ — 1, lo cual es una contradiccion.

En el segundo caso, tenemos f = g1, con g1, g2 € Fy[x] ménicos, coprimos y de grados positivos
my y ma, respectivamente. Si e; = ord(g;) para ¢ = 1,2, entonces por el Teorema se cumple
ord(f) < ejes. Ademds, por el Lema se tiene ¢; < ¢™ — 1 para i = 1,2, y por lo tanto
ord(f) < (g™ —1)(¢™ — 1) < g™*™™2 — 1 =¢™ — 1, lo cual es una contradiccién.

Por lo tanto, f es irreducible sobre F,, y se sigue del Teorema que f tiene una raiz de orden
q™ — 1 en [y y entonces es un polinomio primitivo sobre F,. O

Para la segunda caracterizacion de polinomios primitivos necesitamos el siguiente lema.

Lema 2.35 ([10]). Sea f € F,[z] un polinomio no constante con f(0) # 0 y sea r el menor natural
tal que " es congruente modulo f(x) a algin elemento de F,. Si ese elemento es a € [y entonces

ord(f) = hr, donde h es el orden de a en F}.

Demostracion. Si ord(f) = e, por la Definicién f]2¢—1luego ¢ = 1mod f(z) y entonces
tenemos que e > r. Podemos escribire =sr+tcons e Ny 0 <t <r.

Entonces,
1=2°=2"" =a’2" mod f(z) , 2" = a *mod f(x)

y por la definicién de r, esto solo es posible si ¢t = 0.

La equivalencia queda a® = 1mod f(z), y al no depender de x, esto indica que a®* — 1 = 0, y
entonces s > h'y e = sr > hr. Por otro lado, 2" = " = 1mod f(x), y por lo tanto hr > e,y hr = e.
m

Teorema 2.36 ([10]). El polinomio mdnico f € F,lx] de grado m > 1 es un polinomio primitivo
sobre F, si y solo si (—1)™f(0) es un elemento primitivo de F, y el menor r € N tal que x" es
congruente modulo f(x) a algin elemento de Fy esr = (¢™ —1)/(¢ —1).

En el caso en que f sea primitivo sobre IF,, se cumple que " = (—1)™ f(0) mod f(z).

Demostracion. Si f es primitivo de grado m sobre F,, entonces f tiene una raiz a € Fym, la cual
es un elemento primitivo de Fym. Por el Teorema [2.10) - f es el polinomio minimo de « y podemos
descomponerlo como f(z) = (a: —a)(z —a9)---(x —a""), lo que nos proporciona la siguiente
igualdad,

m—1 " -1

f0)=(-1)"a-a? o = (=-1)"a 1.

Entonces tenemos que g (=1)™f(0) € F,, y como « tiene orden ¢" — 1, se deduce que el orden
e (—=1)"f(0) en F; es ¢ — 1; es decir, (—1)™f(0) es un elemento primitivo de F,.

gm—1 m

Si conaderamos el pohnomlo g(x) =x 1 — o' T , tenemos que g(a) = 0 y por el Teorema [2.10

qgm—1
g—1 "

Por el Lema . como el orden méximo en F es ¢ — 1, ord(f) < (q — 1)r y por el Teorema W
ord(f) =

condiciones del teorema es ( )m £(0).

f1g. Luego z G = = o' mod f(z), que por definicién de r implica que r <

que r = qq y el elemento que cumple las

Reciprocamente, supongamos que se satisfacen las condiciones del teorema. De la igualdad r =

;ﬂ g = q(¢g™ 2+ -+ 1)+ 1 se deduce que 7 y ¢ son coprimos, y por el Lema [2.35| tenemos que
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ord(f) = hr donde h es el orden de un elemento en [y, es decir que h | ¢ — 1, y por tanto h y ¢ son
relativamente coprimos. De esto deducimos que ord(f) y ¢ son coprimos.

Por el Teorema [2.19) si la descomposicién canénica de f es f(z) = f'(z)--- f*(x), tenemos que

ord(f) = ep' con e, p,t definidos de la forma indicada en el teorema. Al ser p la caracteristica de F,,
para que ord(f) y g sean coprimos, t debe ser 0. Entonces, por la definiciéon de ¢, by = --- = by = 1
y por tanto f(z) = fi(z)--- fi(z) donde f;, 1 <14 <k, son polinomios ménicos e irreducibles en F,.

Si m; = deg(f;), entonces ord(f;) | ¢™ — 1 para 1 < i < k, segun el Corolario [2.14, Ahora bien,

para cualquier i € {1,...,k} claramente ¢™ — 1 divide a
qm1_1,.,qu_1 . qm1_1 qmi—l_lqmiJrl_]_ qu_l
TS PV P e U e,
q" —1 q—1 g—1 q—1 q—1

Por lo tanto ord(f;) divide d para 1 <i < k.
Del Lema se deduce que f;(z) divide 2% — 1 para todo 4, y por consiguiente f(z) divide 2% —1

y 2% = 1mod f(z). Si suponemos k > 1, entonces d < gl

de r. Por lo tanto, k = 1y f es irreducible sobre F,.

s = r, lo cual contradice la definicién

Si B € Fym es una raiz de f, por un razonamiento similar al del principio de la demostracion, f es
el polinomio minimo de 5 y deducimos que " = (—1)™f(0), y por tanto, 2" = (—1)™f(0) mod f(x).

Dado que el orden de (—1)™f(0) en F} es ¢ — 1, se deduce del Lemaﬁ que ord(f) =¢™ =1,y
por lo tanto, f es primitivo sobre [F, segtin el Teorema m O

Para la segunda parte de la seccion obtenemos resultados que garantizan que ciertos tipos de
polinomios nunca pueden ser primitivos. Estos se han obtenido del articulo de Li Yujuan, Wang
Huaifu y Zhao Jinhua [9], donde se muestra que hay interés reciente por este tipo de polinomios
debido a sus aplicaciones.

Teorema 2.37. Sean m,n > 2 numeros naturales y p primo. Los trinomios de la forma x" + ax + b
sobre Fym no son primitivos si b*""a™ € [P, donde Fyu denota un subcuerpo propio de Fym.

Como el articulo requiere algo de estudio previo de Linear Feedback Shift Registers (LFSR), no
veremos la demostracion del teorema, pero queda demostrado por los autores en el articulo. Ademas,
nos permite demostrar el siguiente corolario solo utilizando resultados que ya conocemos.

Corolario 2.38. Sean m,n > 2 numeros naturales y p primo. No existen trinomios primitivos de la
forma " + jx + X € Fym (] si j € Fr., con Fypu un subcuerpo propio de Fym y n = 1mod p™ — 1.

Demostracion. Sea "+ jx+ A un trinomio que cumple las condiciones del corolario, luego tenemos
que A € 7, asi que se tiene A" 7' =1,y n = 1modp™ — 1.

Entonces A"~" =1 € F}, y, como j € Fy., tenemos que j* € Fy,. Por lo tanto, \'""j" € F. y
aplicando el Teorema [2.37| obtenemos que x™ + jx + A no es primitivo. O

Si nos restringimos al caso en [y, obtenemos un resultado muy interesante. El teorema presentado
en el articulo también se demostraba para los n = 4mod 5, pero este caso requiere un desarrollo
previo de Linear Feedback Shift Registers (LFSR), luego para este trabajo nos limitamos a los casos
n = 0,1 mod 3, que si podemos demostrar con los resultados ya vistos.

Teorema 2.39. Sin = 0,1 mod 3 entonces no existen trinomios primitivos de la forma x" + x + «
sobre Fy.

Demostracion. Sea ™ + x + « un trinomio en F,. Por el Teorema si @ no es un elemento
primitivo de [, entonces " + x + « no es primitivo en Fy4, ya que en este cuerpo —1 = 1.
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Ahora consideramos el caso en el que « es un elemento primitivo de Fy, es decir, o es generador
de F; = {1,a,a + 1} y por tanto o? = a + 1.

Si n = 1mod 3, es un caso particular del Corolario 2.38con m=2,p=2,j=1y A =a.

Si n = 0mod 3, entonces n = 3z y el trinomio queda 2** + x + a. Como
(a+1)P=a*+3a*+3a+1=1+(a+1)+a+1=1

claramente a+1 es raiz del trinomio. Luego el trinomio no es irreducible sobre I, y por el Teorema |[2.33
no puede ser primitivo sobre Fy. O
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Capitulo 3

Construccion de polinomios irreducibles
sobre cuerpos finitos

Una vez vistas las propiedades de los polinomios irreducibles, nos centramos en construirlos de
forma explicita viendo condiciones de irreducibilidad y exponemos algunos ejemplos en cuerpos finitos
concretos, como F.

Empezaremos viendo criterios de irreducibilidad para cualquier polinomio sobre un cuerpo finito,
y luego desarrollaremos criterios para ciertos tipos de polinomios. Primero cubriremos los binomios
y trinomios que, al tener pocos coeficientes distintos de cero, son faciles de manejar y permiten
construcciones explicitas que siempre son irreducibles.

También estudiaremos los polinomios autorreciprocos, estos se pueden conseguir a partir de cual-
quier polinomio aplicando un operador que, bajo ciertas condiciones, mantiene la irreducibilidad.

Finalmente, dada su gran importancia en varias dreas del algebra, dedicamos una seccion a
estudiar las propiedades de los polinomios ciclotémicos y su irreducibilidad.

3.1. Criterios de irreducibilidad

Si queremos estudiar apropiadamente los polinomios irreducibles, es necesario tener criterios para
saber si un polinomio dado es irreducible. En esta seccion probaremos algunos criterios expuestos en
el capitulo 10.1 del libro Finite fields and Galois rings [17].

Empezamos viendo tres condiciones necesarias para la irreducibilidad de polinomios.

Teorema 3.1. Sea f(x) un polinomio sobre F,. Si f(z) es irreducible sobre F,, entonces se cumplen
las siguientes condiciones.

(i) El término constante de f(x) es distinto de cero.

(ii) La suma de los coeficientes de f(x) es distinta de cero.
(i) med(f(x), f'(x)) = 1.
Demostracion. Para los tres casos, probamos el contrarreciproco.

(i) Claramente, si el término constante es cero entonces x divide a f(z).

(ii) Si los coeficientes de f(x) suman cero, entonces f(1) = 0 y por tanto z — 1 divide a f(z).
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(iii) Si el med(f(x), f'(z)) # 1, como el grado de f'(x) es menor que el de f(z), tenemos que
med(f(x), f'(x)) divide a f(x). O

Para el caso ¢ = 2, podemos obtener algunas condiciones mas.

Corolario 3.2. Sea f(x) € Fo[z]. Si f(x) es irreducible sobre Fy, entonces se verifica lo siguiente.

(i) El nimero de términos de f(x) con coeficiente igual a 1 es impar.

(ii) Existe un término x™ en f(x) con coeficiente igual a 1 tal que 21 m.
Demostracion.

(i) Es un caso particular del Teorema [3.1fii) cuando el cuerpo es Fo.

(ii) Lo vemos por reduccién al absurdo. Si el polinomio es de la forma f(z) =1+ 2™ +--- + 2™
para algunos k,mq,...,my € N tal que 2 | m; con i =1,...,k, como estamos en un cuerpo de
caracteristica 2,

flx)=(1+ /2 _|_l»mk/2)2

con lo que f(x) es reducible y tenemos un absurdo. O

Para los siguientes resultados, necesitamos definir el polinomio reciproco.
Definicién 3.3. Sea
f(2) = a, 2" + ap 12" + -+ ayx + ag € Fla],

donde a, # 0. Entonces, el polinomio reciproco f de f se define como

~ 1
flz)=2"f (;) =apz" + " a1z + ay,.

Podemos estudiar la irreducibilidad del reciproco o la del polinomio original indistintamente,
como muestra este teorema.

Teorema 3.4. Sea f(x) un polinomio de grado n > 1 con constante distinta de cero sobre F,.
Entonces f(x) es irreducible si y solo si su polinomio reciproco f(x) es irreducible.

Demostracion. Vamos a demostrar que f(x) es reducible si y solo si f(x) es reducible.

Si f(x) es reducible, f(z) = g(x)h(x) para algunos g, h € F,[z] de grado mayor que 1. Entonces

g () =g () atn (1), flo) = i)

y, como la constante de f(x) es distinta de cero, también lo son las de g(z) y h(z). Por tanto los
grados de sus polinomios reciprocos siguen siendo mayor que 1y f(z) es reducible.

Si f(x) es reducible, como la constante de f(x) es no nula, se ve claramente de la definicién que

f: (z) = f(z). Entonces, aplicando el razonamiento previo a f(z), f(x) es reducible. O

De momento solo tenemos condiciones necesarias para saber si un polinomio es irreducible. El
siguiente resultado nos dard una condiciéon necesaria y suficiente que nos reduce el problema de
irreducibilidad a calcular un minimo comun divisor para una lista de polinomios.
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Teorema 3.5. Sea f(x) € Fy[z] un polinomio de grado n. Entonces f(x) es irreducible sobre F si
y solo si se cumplen las siguientes condiciones.

(i) El polinomio f(x) divide a 24" — .

(ii) Para todo nimero natural i < n tal que i | n se tiene que med(f(z),z9 —x) = 1.

Demostracion. Si f(z) es irreducible sobre Fy, por el Lema [2.2[se cumplen (i) y (ii).

Si f(z) no es irreducible sobre F,, entonces tiene un factor irreducible g(z) sobre F,. Supongamos
que (i) se cumple y que deg(g(z)) = m, veamos que entonces (i) no se cumple.

Sea a una raiz de g(z), entonces es raiz de f(x) y de 29" — 2. Como a?" — a = 0 tenemos que
a € Fyn y como g(z) es un polinomio irreducible de grado m en F[z], aplicando el Teorema
podemos escribir Fym = F,[a]. Entonces Fym C Fyn, lo que implica por el Teorema que m | n.

Por tanto aplicando otra vez el Lema se tiene que g(x) divide a (27" — z), y por tanto
med(f(x), 29" — 1) # 1 para algin m < n tal que m | n. O

3.2. Binomios

En esta seccion caracterizaremos todos los binomios irreducibles siguiendo el apartado 10.2 del
libro Finite fields and Galois rings [17]. Empezamos viendo unos lemas que nos lo permitiran.

Recordamos que, para cualquier m natural, Z;, denota el grupo multiplicativo de todas las clases
médulo m cuyos representantes son coprimos con m, y ord,,(a) denota el orden de la clase a en el
grupo Zy,.

Lema 3.6. Sean ¢ > 2 y m > 2 enteros coprimos, y sea ord,,(q) = 1. Sea t > 2 un entero tal que se
cumplen las siguientes condiciones.

(i) Todo divisor primo de t divide a m, pero no a (¢ —1)/m.

(ii) Si4|t, entonces 4| (¢ —1).
Entonces ord,,;(q) = It.

Demostracion. Podemos considerar el ord,,;(q) ya que ¢ divide a m y por tanto es coprimo con g,
luego mt es coprimo con gq.

Razonaremos por induccién sobre el nimero de divisores primos de ¢, contandolos el nimero de
veces que indique su multiplicidad.

Supongamos que el nimero de divisores es 1, entonces ¢ es primo. Como ord,,(g) = [, ¢/ = modm

y entonces d = ql—; € Z. Considerando ¢' = 1 + dm tenemos que

' =1+dn)t=1+ G) dm + (;) (dm)* + .-+ (t f 1) (dm)'~" + (dm)".

Claramente mt | tmd y mt | (})(md)" cuando i = 2,...,¢ ya que t | m.

Por tanto ¢! = 1mod(mt). Consideramos ord,, t(q) = k,entonces ¢ = 1mod(mt) y k | It. De
aqui obtenemos que ¢* = 1modm, y como ord,,(q) = [, tenemos que [ | k. Como t es primo y
l| kK |1t entonces k =10 k = It.
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Suponemos que k = [, entonces ¢' = 1 mod(mt), mt | ¢ — 1, y como ¢ — 1 = md tenemos t | qlm—_l.
Esto contradice (i), y por tanto, k = [t.

Ahora suponemos que el lema es cierto para enteros con n — 1 divisores primos, y sea t con n
divisores primos que cumple (i) y (ii). Veamos que ord,;(gt) = It.

Tenemos que t tiene al menos 2 divisores primos. Consideramos t = rty con r divisor primo de .
Podemos aplicar a r el razonamiento previo ya que lo tinico que pedimos es que sea primo y divida
am,y r lo cumple. Entonces ord,,.(q) = Ir.

Si probamos que se cumple (i) y (ii) para ord,,.(¢) = Ir entonces por la hipétesis de induccién
tenemos que ord, ., (q) = lrty, es decir, ord,;(q) = It.

(ii) Si4 | to, entonces 4|t y por (ii) 4 | ¢! — 1, ademds ¢ —1 | ¢!" — 1 y tenemos que 4 | to = 4 | ¢'" —1.

(i) Sea 7 factor primo de t,, entonces lo es de t y por (i) tenemos que 79 | m y deducimos que

Ir__
ro | mr. Falta ver que ro f .

Vemos que ¢" —1=c(¢" —1) con c = ¢V + ... 4 ¢ + 1. Sea dj :c~q:n—_rl = %. Como r es
divisor primo de ¢, r | m, ademds ¢' = 1 mod(m), y de esto obtenemos que ¢' = 1 mod(r). Por
tanto

c=¢" V. 4gd+1=14---+1=7r=0mod(r), ¢/r € Z

Reescribimos lo que queremos conseguir,

¢"—1 _cd-1) -1
mr mr m

&
—y
T

como rg es primo, si rg < y ro { qlT_l entonces ro { < - QZT_l. Ya que 7 es divisor primo de t,
tenemos por (i) que rg { %, veamos que 7o { =. Dado que ro [ m y ¢ — 1 = md, entonces
¢ =1mod(rg) ye=¢d" V4. ¢ +1=1+---41=rmod(r).

Si rg # r, como ambos son primos, de la igualdad anterior obtenemos ¢ = 1mod(ry), luego

To )( 7%
Si 79 = 7, como ¢ = 1 mod(r), para cierto b € Z tenemos ¢ — 1 = br y ¢ — 1 = br mod(r?).
Entonces

P=0+br)yY =1+ (‘i) br + (‘7) (br)? + -+ (]) (br)? = 1 + jbr mod(r?) para todo j € N,

2 J
1 r(r—1)
CEq(r—l)l+q(r—2)l+___+ql+1 =r+br (Zj) ET—}—bT-TmOd(TQ).
=1

Se sigue que

c r(r—1)

- =1+b——mod(r).

. + 5 o (r)

Sir # 2, como es primo entonces es impar, y £ =1+ br% = 1mod(r), lo que implica que,
como 1 = 7o, 79 1 £.

Si r = 2 entonces 4 = 17g, 779 | rtg ¥ rtg = t, asi que 4 | t. Por (ii) 4 | (¢! — 1). Pero en este
caso c=¢ +1=¢ —1+2, ¢=2mod(4), § = 1mod(4) y finalmente § = 1mod(2) implica
que, como 1y = 2, 79 { 5. H
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Corolario 3.7. Sea q la potencia de un primo y m > 2 un entero tal que m | (g — 1). Sea t > 2 un
entero que satisface las siquientes dos condiciones.

(i) Todo divisor primo de t divide a m, pero no a (¢ — 1)/m.

(i) Si 4|t entonces 4| (q—1).
Entonces ord,;(q) = t.

Demostracion. Claramente, med(q,q — 1) = 1. Como m | (¢ — 1), tenemos mcd(q,m) = 1y
q—1 = km para algun k € Z. Luego ¢ = 1 mod m y ord,,(¢q) = 1. Por lo tanto, el corolario se obtiene
inmediatamente aplicando el Lema (3.6 O

Con esta demostracion podremos saber cuando un binomio es irreducible en cualquier cuerpo.

Teorema 3.8. Sea t > 2 un entero y a € F; con ord(a) = m > 1. Entonces, el binomio 2 —a es
irreducible en Fy[x] siy solo si se cumplen las siguientes condiciones.

(i) Cada factor primo de t divide a m, pero no a (¢ — 1)/m.

(ii) Si 4|t entonces 4| (q—1).

Demostracién. Observamos que a? ! = 1y ord(a) = m implica que m | ¢ — 1 y por tanto % es
un nimero natural. Ademas, como m > 1, tenemos que ¢ > 2.

Primero suponemos que se verifican (i) y (ii), y probamos que z* — a es irreducible. Sea 6 raiz de
z' — a en su cuerpo de descomposicién, my su polinomio minimo sobre F, y d el grado del polinomio
minimo.

Por el Teorema [2.10((ii) tenemos que my | 2 — a y por el Teorema [2.10(vi), my(z) = (z — 6)(x —
09) - (x — 07" y 07" = 0.

Ahora veamos que 6 tiene orden mt. Sabemos que 6™ = ¢™ = 1, y si ord(f) < mt, debe haber
un divisor primo de mt tal que 6™ = 1. Como r es primo y r | mt, entonces 7 | t o r | m, y por (i),
si | t, tenemos que r | m y podemos escribir

am/'r _ (Ht)m/r _ th/r -1

Esto implica que el orden de a no es m, lo que nos lleva a un absurdo y por tanto, ord(6) = mt.

Sabiendo que su orden es mt, tenemos que #9'~1 = 1 < mt | ¢* — 1 < ¢ = 1mod(mt), y como d
es el menor natural tal que 97" = § también es el menor natural tal que ¢¢ = 1mod(mt) y entonces
d = ord(q).

Como m | ¢—1y t cumple (i) y (ii), podemos aplicar el Corolario |3.7]y tenemos que t = ord,,;(q).
Entonces deg(mg) = t, y como my | ' — a, tenemos que z* — a es irreducible.

Ahora probaremos el contrarreciproco.

Primero supongamos que (i) no se cumple. Entonces, existe un factor primo r de t que divide a
(¢ — 1)/m o que no divide a m. Consideramos t = rt; para algun t; € N.

Si r divide a %, tenemos rs = (¢ — 1)/m para algtin s € N. Tenemos que el subgrupo de F;

formado por las r-ésimas potencias, F;" = {2" : x € F;}, claramente tiene orden (¢ — 1)/r = ms.
Por lo tanto este contiene al subgrupo de orden m generado por a. Por pertenecer a al subgrupo de
r-ésimas potencias, a = b" para algin b € F;, y asf 2' —a = 2™ — 0" tiene el factor 2" — b y por
tanto es reducible.
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Si 7 no divide ni a (¢ — 1)/m ni a m, r no divide a ¢ — 1. Ademés, como r es primoy ¢ — 1 > 1,
r # q— 1, tenemos ¢ — 1 # r y por tanto son coprimos. Entonces podemos considerar un r; € N tal
que rir = 1lmod(q — 1), y asi 2" —a = (2" — a™", que tiene el factor z* — a™.

Finalmente, supongamos que se verifica (i) pero no (ii). Entonces ¢t = 4t para algin to > 0y
41 (¢ —1). Por lo tanto, 2 es un divisor primo de ¢. Por la condicién (i), 2 | m, asi que m debe ser
par. Como m | (¢ — 1), g debe ser impar. Pero 4 1 (¢ — 1), entonces 4 f m y m/2 es impar. Por lo
tanto ord(a) = m implica a™? = —1, y asf 2 —a = 2' + a™/?D*! = 2 + a?, donde d = (m/2) + 1 es
par. Entonces a%/?/2 € [y, y por tanto (a??/2)171 = 1y (a¥?/2)9+! = (a¥/2/2)2. Como q es impar y
41(¢q—1),4| (¢+1). Entonces, tenemos

a® = 4(a??/2)? = 4(a¥?/2)" = 4¢*  con ¢ = (a¥/?/2)(@tV/4

lo cual conduce a la factorizacion

ot —a=2"+a% =2 +4ct = (2% + 2ca’™ + 26%) (2% — 2ca™ + 267).

De este criterio obtenemos un corolario que nos permite construir un binomio irreducible.

Corolario 3.9. Sear un divisor primo de ¢q—1 y k un nimero natural. Sea a € F}; y ord(a) =m > 1
en ;. Suponemos que v no divide a (q—1)/m y ademds sir =2 y k > 2, suponemos que 4 | (¢—1).
Entonces ™" — a es irreducible sobre F,.

Demostracion. Sea ord(a) = m en F}, esto implica que m | (¢ — 1). Sea t = r*, entonces el tinico
divisor primo de t es . Como r | (¢ — 1) y r 1 (¢ — 1)/m, deducimos que r | m. Por lo tanto, la
condicién (i) del Teorema (3.8 se cumple.

Si4 |t entonces r =2y k > 2,y por hipdtesis, 4 | (¢ — 1), asi que la condicién (ii) también se
cumple. Aplicando el Teorema tenemos que 2™ — a es irreducible sobre F,. O]

Ahora veremos como usar este corolario para construir binomios irreducibles.

Ejemplo 3.10. Empleando el corolario previo, podemos deducir que, para cualquier k£ natural,

(a) 22" 4+ 2y 22 — 2 son irreducibles sobre Fs.
(b) 23" +3, 23" — 3, 23" + 2 y 22" — 2 son irreducibles sobre Fy.
(¢) %" + a es irreducible sobre Fy, donde F; = Fy() y « es una raiz de 22 + 2 + 1.

A partir de (¢) deducimos que

(d) 22 + 2% +1 = (2% 4 a) (@ + a?) es irreducible sobre Fs.

3.3. Trinomios

Continuamos estudiando la irreducibilidad de trinomios, siguiendo el capitulo 10.3 del libro Finite
fields and Galois rings [I7]. De forma similar a la seccién de binomios, obtendremos una caracteri-
zacion para ciertos trinomios irreducibles y una construccion explicita de éstos.

Empezamos definiendo la funcién traza, necesaria para caracterizar los trinomios.
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Definicién 3.11. Sea ¢ la potencia de un primo y n un entero positivo. Si a es un elemento de Fyn,
su traza relativa a I, se define como

n—1

Trp,. /r, (@) = Z o

=0

Si Fyn y F, estan claros por el contexto, escribimos Tr(a).
Ahora vemos sus propiedades béasicas.

Lema 3.12. Sea a € Fym, f el polinomio minimo de o sobre F,[x], de grado d, y g(z) = f(x)™/¢ =
"+ a2 4+ oo+ ay. Entonces Trgm /r, (@) = —am-1, y en particular, Trg,, /v, (o) € F,.

Demostracion. Como solo usaremos estos cuerpos para la traza, la denotaremos Tr(«). Primero,
por el Teorema [2.10) - ), vemos que d | m, y por tanto g( ) = f(x)™? € F,[z]. Ademés, por el
Teorema - (vi), las raices de f son «,a? Lt y a1’ = . Por tanto, los conjugados de «
respecto [F, son las raices de f repetidas m/ d veces.

Por lo tanto,
) = ()" = (o = )"/ ix — @ty (o — ) = () (@ — a) e (= at™),

y una comparacién de los coeficientes con g(z) = 2™ + ay_12™ ! + -+ + ap muestra que Tr(a) =
—@p—1. En particular, Tr(«) es siempre un elemento de F,. ]

Teorema 3.13. La funcion traza Try ., r,, que escribiremos Tr, satisface las siguientes propiedades:

(i) Tr(a +b) = Tr(a) + Tr(b) para todo a,b € Fym;
(11) Tr(ca) = c¢Tr(a) para todo c € Fy,a € Fym;
(i1i) Tr(a) = ma para todo a € Fy;

() Tr(a?) = Tr(a) para todo a € Fym;

v) Si la caracteristica de F, es p, Tr(a?) = (Tr(a))? para todo a € Fym
q q
Demostracion.

(i) Para a,b € Fym, sila caracteristica del cuerpo es p, usamos que (a + b)pk = " + b para todo
k € N, y que ¢ = p™ para algin n € N, y obtenemos

m—1

Tr(a+b) = (a+b)+(a+b)"+- - +(a+b)?" " = a+a®+- - +a?"  +b+bi+--+b7" = Tr(a)+Tr(b).

(ii) Para c € F,, tenemos @ =c para todo 7 € N por el Lema Por lo tanto,
Tr(ca) = (ca) + (ca)? + -+ (ca)" " =cla+a?+---+a”" ) = cTr(a).
iii) Similarmente a (ii), si a € F,, o’ =a para todo 5 € N y por tanto,
q

1

Tr(a)=a+a’+---+a? =a+a+---+a=ma
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(iv) Para a € F m, tenemos a?" = a por el Lema . Por lo tanto,

n—1

Tr(a?) = a®+(a)?+ - +(a)?" " =a+a® + - +a?" +a?" = al+a + - +a’"  +a = Tr(a).
(v) Como a pertenece a un cuerpo de caracteristica p podemos escribir
n—1 ‘ n—1 ‘ n—1 )
Tr(a?) = Y (a”)" = (a®) = (Do) = (Tr(a))".
i=0 i=0 i=0
O

Finalmente, vemos la propiedad de transitividad de la traza.

Teorema 3.14. Sea K un cuerpo finito, F' una extension finita de K y E una extension finita de
F'. Entonces, para todo a € E se cumple

TI'F/K(TIE/F(CL>> = TI"E/K(Q)
Demostracion. Si a € E, por Lema [3.12 sabemos que Trg/p(a) € F, y entonces aplicarle Trp/x

a ese elemento tiene sentido.

Sea K =F,, [F:K|=my[E:F|=n,demodo que F =Fm, [E:K|]=[E:F|F:K|=mn.
Entonces, para a € E, tenemos

m—1 m—1 n—1 q m—1n—1 mn—1
TrF/K(TrE/F(a)) — Z(TTE/F(CL))qZ — (Z aqu> _ aquH — Z aqk — TrE/K(a)_ ]

=0 i=0

Ahora que hemos definido la traza, podemos presentar un primer criterio de irreducibilidad.

Teorema 3.15. Sea q = p”, donde p es un numero primo y n un numero natural. Entonces el
trinomaio

¥ —x—-0b, bel,,

es irreducible sobre ¥, si y solo si Trg, /p,(b) # 0.

Demostracion. Sea 6 una raiz de 2P — x — b. Entonces 67 = 0 + b.

Por induccién probamos que

i—1

0" =0 +b+bP 4+, i=1,2....

El caso 7 = 1 lo hemos visto antes.

Si la ecuacion se verifica para ¢ — 1, tenemos que
7 =0 b B
y, elevando la ecuacién a p,
i—1

e (A A L R A o Y S

Las tultimas igualdades se obtienen usando que el cuerpo es de caracteristica p.
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En particular,
01 = 0" =0+ b+ 0+ -+ 0" =0+ Trg,r, (b).

Con esto podemos ver una implicacién por el contrarreciproco. Supongamos que Trg,_/r,(b) = 0,
entonces 07 = 0, es decir, todas las raices de 2 — x — b estdn en F,. En consecuencia, ¥ —x — b es
un producto de factores lineales en F,[z], y por tanto es reducible.

Ahora vemos la otra implicacién, suponiendo que Trg /g, (b) # 0. Sea 7 = Trg /g, (b), entonces
7 € I} por resultado de traza (citar) y, como b? = b,

0 =" =0 +ir, i=12,....p—1; 07 =0+pr=9.

Asi, 6 tiene exactamente p conjugados distintos sobre F, y por el Teorema [2.10|(vi), el polinomio
minimo de 6 sobre I, tiene grado p. Finalmente, por el Teorema m(ii), mg | 2P —x — b, y al tener
ambos el mismo grado, ? — xz — b debe ser irreducible. O]

De este teorema es inmediato que 2¥ — x — b es irreducible en [, para cualquier b € .

Ahora introducimos los polinomios linealizados, que se usaran para simplificar posteriores demos-
traciones.

Definicién 3.16. Sea ¢ una potencia de un nimero primo p. Un polinomio de la forma
l<x> - l'ua'fpv + lv_lxpv_l 44 lll‘p + lox7

donde v € N, [; € F, para:=0,1,2,...,v, se llama polinomio linealizado sobre [F,.

Sil(z) es un polinomio linealizado sobre F, y b € IF,, entonces a [(z) — b se le denomina polinomio
afin sobre IF,.

Vemos también algunas de sus propiedades béasicas, que nos serviran méas adelante.

Lema 3.17. Sea l(z) un polinomio linealizado sobre F, cuerpo de caracteristica p. Entonces
lz+y)=1Uz)+1(y), Vryel,

l(cx)=c-l(z), VYxelF, cel,.

Reciprocamente, si un polinomio l(x) € Fy[z] cumple ambas condiciones, entonces l(x) es un polino-
mio linealizado sobre IF,.

Demostracién. La primera propiedad es evidente si vemos que (z + y)?" = zP" + y?" para todo
n € N. Es sencillo verlo por induccién.

Si n =1, como estamos en un cuerpo de caracteristica p, (x + y)? = aP + yP.

Si es cierto para n — 1, tenemos

n—1

Y () L e

Para ver la segunda propiedad, basta tener en cuenta que ¢*" = ¢ para todo n € N, ya que ¢ € F,.

Ahora supongamos que [(z) € F,[z] es un polinomio que cumple ambas propiedades. Lo evaluamos
en x + vy,
z+y)=lo+hz+y)+hz+y)?*+ -+ (x+y)°

=lo+hr+ha®+ - +La" +lo+hy+ Ly’ + -+ Ly +plx,y) =1(z) +(y) + plz,y),
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donde p(z,y) € F,[z,y] es un polinomio de términos C; 1.l -x*-y**coni=1,...,k—1,k =2,..., v,
(., constantes que dependen de 7 y k, y término independiente —I.

De la ecuacién previa deducimos que si l(z +y) = () +(y), p(x,y) debe ser 0, y entonces tanto
el término constante como Cj, - [, - x' - y*~ serén igual a 0. Si Cir # 0 para algun ¢, necesariamente
[, = 0. Como el polinomio esta formado por los términos que sobran al desarrollar la ecuacién

anterior, sabemos que C;;, = 0 para todo i solo si (x +y)* = 2¥ + ¢*, es decir, solo cuando k sea una
potencia de p.

Por tanto tenemos que I/, = 0 cuando k # 1,p,p?, ... y obtenemos un polinomio de la forma
I(z) =l + LaP + - - + Lya?' | que es linealizado. O

Lema 3.18. Supongamos que el polinomio linealizado l(z) sobre F, no tiene raices distintas de cero
en F,. Entonces para cada b € Fy, hay un a € F, tal que x — a divide al polinomio afin l(x) — b.

Demostracion. Definimos la siguiente funcion

l[:F, =T,
x — l(z).
Veamos que esta funcion es inyectiva. Para o, § € Fy, si [(a) = [(3), entonces l[(a— ) = l(a) —1(B) =
0. Por hipétesis, I(z) no tiene raices distintas de cero en F,. Asi que o — 8 = 0 y por tanto, [ es in-
yectiva. Dado que es una funcién inyectiva entre dos cuerpos finitos con el mismo cardinal, [ también

es suprayectiva. Entonces, para cualquier b € F,, existe un elemento a € F, tal que I(a) = b. Por lo
tanto, a es una raiz de I(x) — b y entonces x — a divide a I(x) — b. O

A partir del criterio de irreducibilidad anterior, podemos deducir un criterio més general.

Teorema 3.19. Sea q una potencia de p primo. Para a,b € Fy, el trinomio x¥ —ax —b es irreducible
sobre B, si y solo si a = al " para algin ag € F y Trg,/r, (b/ag) # 0.

Demostracion. Primero suponemos que a = ag_l para algin ag € Fy y Trg, v, (b/ag) # 0. Entonces

z \? x b
(2 () 2)
Qo Qo ag

y podemos hacer el cambio de variable y = x:/ag. Por el Teorema [3.15 y* —y — b/ah es irreducible
sobre F,, y eso implica que 27 — ax — b también lo es.

. . ., , —1 .

Para la otra implicacién, probamos el contrarreciproco. Sea a # ag  para cualquier ag € F}.
Entonces, el polinomio linealizado 27 — ax = z(zP~' — a) no tiene raices distintas de cero en F,. Por
el Lema [3.18] el trinomio x? — ax — b es reducible.

Finalmente, supongamos que a = a = para algin ag € I, pero Trg, v, (b/ag) = 0. Usando el
mismo cambio de variable que antes, por el Teorema m, y? —y — b/ag es reducible sobre F,, y
entonces 2P — ax — b también lo es. O]

Tenemos también la siguiente manera de construir trinomios irreducibles directamente, para la
que necesitamos definir p” || n.

Definicién 3.20. Decimos que p” divide exactamente a n, y lo denotamos p” || n, sip” | ny p"™! { n.
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Teorema 3.21. Sea p un primo tal que p = 3mod4 y sea r > 2 tal que 2" || (p + 1). Definimos
elementos ay, aq, ..., a, de I, recursivamente de la siguiente forma,

ap = 0,
a; = ((ai_ +1)/2)PV4 para i =2.3,...r —1,
ay = ((ay_y —1)/2)P+D/4,

Entonces, para cualquier k natural, el trinomio

k k—1
2 — 2a,1?
es irreducible sobre Fp,, y sobre Fym para cualquier entero impar m. Ademds, el trinomio divide a

r+k—1
x? +1.

No veremos la demostracion del teorema en este trabajo. Esta expuesta de las paginas 228 a 230
en el libro Finite fields and Galois rings [17].

Los resultados conseguidos en esta seccién nos permiten también construir nuevos polinomios
irreducibles a partir de otros usando trinomios.

Teorema 3.22. Sea f(x) = 2™+ a,,_12™ 1+ - -+ ag un polinomio irreducible sobre el cuerpo finito
F, de caracteristica p, y sea b € F;. Entonces, el polinomio f(z¥ —x —b) es irreducible sobre Fy siy
solo si Trg, /5, (Mmb — ap_1) # 0.

Demostracion. Supongamos que TrFq/Fp(mb — am-1) # 0. Sea K = F, y sea F el cuerpo de
descomposicion de f sobre K, que por el Corolario es Fym. Si o € F es una raiz de f, entonces,
seguin el Teorema , todas las raices de f son a, a?,a%,...,a0" ",y F = K(a). Ademas, Trp k(o) =
—@m—1, por el Lema [3.12] y usando el Teorema y el Teorema obtenemos

TrF/Fp(a + b) = TrK/]Fp(TrF/K(O-/ —I— b)) = TrK/]Fp(_am—l —f- mb) 7& O

Por el Corolario 3.15} el trinomio 27 —x — (a + b) es irreducible sobre F. Asi, [F(() : F] = p, donde
[ es una raiz de ¥ — x — (a + b). Ademds tenemos que [F' : K| = [Fym : F;] = m, y usando esto
deducimos que

[F(B) : K] = [F() : FI[F : K] = pm.

Ahora, como ( es raiz de 2? —x — (a + b), a« = P + 5 — b, por lo que o € K(f) y entonces
K(B) = K(a,B) = F(B). Asi, [K(B) : K] = [F(B) : K] = pm y el polinomio minimo de  sobre K
tiene grado pm.

Pero f(p? — p —b) = f(a) = 0, por lo que § es una raiz del polinomio f(a? —z —b) € K|x]
de grado pm. Entonces tenemos que (3 es raiz de su polinomio minimo y de f(z — z — b), ambos
polinomios ménicos del mismo grado sobre K, y usando el Teorema [2.10|(iv), claramente f (2P —z —b)
es el polinomio minimo de 3 y por tanto, es irreducible sobre K.

Finalmente, probamos la otra implicacién por el contrarreciproco. Suponemos que Trg(mb —
am—1) = 0, entonces considerando o € F' una raiz de f, por la cadena de igualdades vista en la otra
implicacion,

TI‘F/FP(Oé + b) = TrK/Fp(—CLm,1 + mb) = 0.
Y de la misma forma, por el Corolario [3.15] el trinomio 2¥ — z — (a + b) es reducible sobre F'.

Asi [F(f) : F] < p para cualquier raiz 8 de 2? — x — (a + b). Los mismos argumentos que antes
muestran que f es una raiz de f(z? — x — b) y que [K(B) : K] < pm, por lo que aplicando el Teore-
ma [2.10(ii), como (3 es raiz de f(aP —x—b) y mg, tenemos que f(aP —x —b) es reducible sobre K. [
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3.4. Polinomios autorreciprocos

Los polinomios autorreciprocos tienen cierto uso en teoria de cédigos, en esta seccion veremos
como emplear estos polinomios para construir sucesiones de polinomios irreducibles autorreciprocos
sobre cuerpos de caracteristica 2. Seguiremos los articulos [12] y [5], donde se obtienen y detallan los
resultados de esta seccién.

Recordamos que vimos los polinomios reciprocos en la Definicién [3.3] empezamos definiendo los
polinomios autorreciprocos.

Definicién 3.23. Un polinomio f(z) = > ,a;z" de grado n es autorreciproco si coincide con su
reciproco, es decir, sus coeficientes de la forma a; coinciden con a,_; con 0 < 7 <mn.

Ahora definimos el operador de funciones que sera clave para construir la sucesion de polinomios
irreducibles.

Definicién 3.24. Dado un polinomio f(z) = Y " a;z" de grado n en Fy[z], el operador @ asocia
f(z) a f9x) = 2" f(x + %), polinomio de grado 2n en F,. Si f(z) = " a;z’, tal que ag # 0 # ay,
la transformada queda f9(z) = Y"1 a;(1 + 2?)a" "

Es facil ver que f€ siempre es un polinomio autorreciproco considerando la simetria del binomial,

(’f) = (n’ij), y desarrollando las potencias de x + 9—16

Vamos a estudiar si el operador () mantiene la irreducibilidad. Para un cuerpo finito general
tenemos la siguiente condicion de irreducibilidad.

Lema 3.25. Sea f un polinomio irreducible de grado n sobre F,. Entonces, f% es irreducible si y
solo si el polinomio

g@) = a® — Bz + 1€ Fpla
es irreducible, donde B es cualquier raiz de f.

Demostracion. Si f(z) = > a;z", como es irreducible y de grado n, ag # 0 # a,, y por lo
visto en la definicién, f9(z) = 37 a;(1 + 2?)'z"~, obtenemos que 0 no es una raiz de f9, ya que
f2(0) = ay,, por tanto si a es una raiz de f, entonces o + 1/a es raiz de f.

Por otro lado, si 6 es una raiz de f, podemos encontrar un « tal que § = a + 1/«, y « seria raiz
de f9. Entonces si tomamos 8 = a + 1/a, donde « es una raiz de f%, entonces (3 es una raiz de f.

Por el Teorema[2.10], f¢ es irreducible si y solo si el grado de « es 2n sobre F,. Como g € Fyu[z] es
de grado 2 y por definicién de /3, tenemos que g(a) = 0, podemos escribir [F,(a):F,|=[F,(a):F]-n,
y entonces el grado de « es 2n si y solo si g es irreducible. O]

Si nos restringimos a los cuerpos de la forma Foyr, obtenemos mejores criterios de irreducibilidad.

Teorema 3.26 ([12]). Sea f(x) = 2"+ -+ a1z + ap € For[x], con k € N, un polinomio irreducible.
Entonces f9(x) es irreducible si y solo si Trr,, /m, (a1/ao) = 1.

Demostracion. Para simplificar la notacion definimos F' = Fy, K = For v L = Fonr. Por el
Lema sabemos que f9(z) es irreducible si y solo si 2% + Bz + 1 € L[z| es irreducible, siendo /3
una raiz de f.

Claramente 3 # 0 ya que f es irreducible, luego podemos aplicar el Teorema [3.19] a este trinomio
y tenemos que 2 + Sz + 1 es irreducible si y solo si Try,p(1/5%) # 0. Por el Lema esta traza
pertenece a Fa, vy entonces si es distinta de 0, es igual a 1. Ademés, aplicando el Teorema |3.13|(v),

Trp/p(1/6%) = (Trpr(1/8))%
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Entonces nos queda que z*+ Sz +1 es irreducible si y solo si Try,p(1/8) = 1. Por la transitividad

de la traza [3.14] tenemos que Trp p(1/5) = Trx/p(Trr/k(1/8)). Si vemos que Try x(1/5) = a1/ag
habremos probado el teorema.

Por el Lema si vemos que el polinomio g(z) = 2" + “a" ' + ... + az—o‘lx + 1 € For[z] es el
polinomio minimo de 1/8 tendremos que Try/k(1/8) = a1/ag. Claramente ag - g(x) es el polinomio
reciproco de f(z) y por el Teorema[3.4] al ser f(z) irreducible, g(z) también lo es. Sustituyendo g(z)
en 1/5, al ser § raiz de f(z) = 2™ + -+ + a1z + ag, tenemos que

a0+a15+ +(In_1ﬁn_1 _’_Bn .

g(1/8) = 0

1/9) =

luego, por el Teorema 2.10|(iv), g(z) es el polinomio minimo de 1/8 y con esto obtenemos que f%(x)
es irreducible si y solo si Trg/p(ai/ag) = 1. O

En el caso k = 1, la traza de a1/ag es a1/ag, y con esa observacién, el corolario siguiente es
inmediato.

Corolario 3.27. Si f(z) = 2"+ -+ + a1z + 1 € Fy[x] es irreducible, entonces f9(x) es irreducible
sty solo st a; = 1.

Con estos resultados podemos probar un teorema que nos permite conseguir una sucesién de
polinomios autorreciprocos irreducibles sobre Fyx[x], para cualquier k£ € N.

Para abreviar, de ahora en adelante nos referiremos a los polinomios ménicos irreducibles auto-
rreciprocos como polinomios SRIM, que son sus siglas en inglés.

Teorema 3.28. Sea f(x) = 2" +a1x™ '+ - -+ayz+1 € For[x] un polinomio SRIM tal que Tr(a;) =

1.
Entonces fQ(z) = 2+ b2 L+ -+ bx+1 es también un polinomio SRIM y satisface Tr(b;) = 1.

Demostracion. Para simplificar la notacién, definimos

F:=TFy, K:=Fu, L:=Fyu, G:=TFynu.

Si  es una rafz de f, entonces 3 = o + 1/a es una raiz de f. Por el teorema previo, f¢ es
irreducible, y por el lema previo, g(z) = x? + Bz + 1 € L[] es irreducible, y « es raiz de g. Por el
Teorema [2.10, como todos estos polinomios son moénicos e irreducibles, coinciden con el polinomio
minimo asociado a sus raices. Aplicando el Lema tenemos las siguientes identidades.

Trg/L(O{) = ﬁ, TrL/K(B) = a, Trc;/K(O{) = bl.

Aplicando la propiedad de transitividad de la traza, tenemos
Tri/p(by) = Tryp(Tre k(@) = Tri/p(Trr/k(8)) = Triye(ar) = 1.

]

Ahora juntando estos dos teoremas, partiendo de un polinomio irreducible f en Fy de grado n
con coeficiente a; = 1 y aplicando el operador @Q, si el coeficiente b; de f@ es 1 podremos generar
una sucesiéon de polinomios autorreciprocos irreducibles de grados n2¢ donde i es el nimero de veces
que hemos aplicado el operador ().
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Ejemplo 3.29. Los polinomios con coeficiente a; = 1 mas sencillos posibles son 2" + =z + 1. El
articulo [19] nos proporciona una tabla con los polinomios irreducibles de la forma z™ + x 4+ 1 con
n < 30000. Podemos empezar viendo si alguno de estos polinomios proporciona un polinomio SRIM
con coeficiente asociado a x igual a 1 al aplicarle el operador ). Para esto se ha calculado en MAPLE
la transformada por () de estos polinomios.

Polinomio Transformada por Q

?+r+1 4+t +ar+1

24+l 20+ 23+ 1

+r+1 PB4t 41

P +r+1 22+ ¥+t 41

T+ x+1 o4 20Tt 2?41

204 r+1 218 4 p16 4 210 4 00 | 08 4 02

215 b1 | 280 4 28 26 4 024 4 022 L 020 L 018 4 015 4 002 L 00 L 08 4 06 4 ad 4 02 4
222 4 g4 1 aM 40 | 436 4 032 4 23 L 022 L 021 | 212 4 o8 L ad ]

228 411 256 4 48 | 40 4 082 L 029 4 028 | 02T 4 24 L 06 4 48 4 ]

Parece que aplicar el operador () a cualquier polinomio irreducible es una manera poco efectiva de
obtener los polinomios que estamos buscando. Podemos intentar buscar polinomios autorreciprocos
irreducibles directamente.

Ejemplo 3.30. Buscar polinomios irreducibles tal que al aplicarles el operador () tengan los co-
eficientes adecuados para aplicar estos resultados parece ser bastante mas ineficiente que buscar
directamente polinomios SRIM con coeficiente lineal 1. Los polinomios autorreciprocos mas sencillos
de esta forma en Fa[z] son 2" + 2"~ + 2™% 4+ 2 + 1 con n par.

Hacemos una bisqueda con MAPLE por los polinomios de esta forma para n < 3000, y obtenemos
que los siguientes polinomios cumplen que son irreducibles, y por tanto son SRIM, en Fy[z].

4+ r+1
st r+1
20+ 2+ 41

216 4 15 a8 4

2100 4 99 4 050 4 0y
2196 4 195 L 98 L o0
2730 4 729 | 365 4 o4
21600 | 1599 4 2800 4 o 4 q
22206 4 2205 4 1103 4 o4 g

IL‘2800 +$2799 + 1'1400 T4

Por tanto, si queremos un polinomio autorreciproco irreducible de grado 64 en Iy, aplicamos el
operador Q a x'® + 2! + 2% + 2 + 1 y obtenemos la siguiente secuencia

fr)y=2C+2P® 4+ 2%+ +1

fOx) = a2+ 4 2P ¥ 2P o 2P e e e B 2t T 2 a1
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(@) = 2% + 2% 4+ 2% 4+ 277 4 250 4+ 2% 4 2% 4 2% 4 2™ 4 2
L8 BT 4 B2 02T 21 T 4 16 5

+aB et ST 41

De esta forma podemos obtener polinomios SRIM de grado 2! - 16 para todo ¢ natural, y de
la misma forma, podemos obtener polinomios SRIM de grado 2¢ - n siempre que encontremos un
polinomio SRIM de grado n con su coeficiente asociado a z igual a 1.

Esta busqueda se puede generalizar a cualquier cuerpo finito gracias al siguiente teorema, y para
demostrarlo necesitamos este lema previo.

Lema 3.31. Para un cuerpo finito F, con q impar, un elemento b € F, no es el cuadrado de un
elemento, es decir, no existe un a € F, tal que a®* = b si y solo si b'e = —1.

Demostracion. Para ambas implicaciones prolbaremos el contrarreciproco. Primero supongamos
que existe un a € F, tal que a> = b, entonces bz = a?~! = 1.
Ahora supongamos que bz = 1. Sea g un generador del grupo multiplicativo Fy y k£ € N tal que

b = ¢g*, entonces 1 = b'r = g%k. Luego el orden de g divide a q;—lk;, y como el orden de g es ¢ — 1,
k debe ser par. Por lo tanto, si elegimos a = ¢*/?, tenemos que a® = b. O

Teorema 3.32 ([12]). Sea q una potencia impar de un primo. Si f es un polinomio monico irreducible
de grado n sobre F,, entonces f9 es irreducible si y solo si f(2) - f(—=2) no es un cuadrado en F,.

Demostracion. Por el Lema sabemos que f9 es irreducible en F, si y solo si 22 — Bz + 1 es
irreducible en Fy», siendo 3 cualquier raiz de f. Y este polinomio, al ser de grado 2, es irreducible si
y solo si no tiene raices en Fn.

Como estamos en un cuerpo que no es de caracteristica 2, podemos calcular las posibles raices de

— 2 _
22 — Br 4+ 1 con la formula z = 2=V ~1 V2B4
es el cuadrado de otro elemento en Fn.

. Luego este polinomio es irreducible si y solo si 3% — 4 no

“Ademas, por el Teorema, f es el polinomio minimo de 3 y todas sus raices son de la forma
B9 con 0 < i < n — 1. Por tanto, el polinomio f se puede escribir como f(r) = Hz;_ol(x — ).
Usando esto obtenemos la siguiente cadena de igualdades.

" n—1 n—1
q"—1 =1 gq a—

(B -4 =((2-p)(-2-p)]7)= =[[[e-p)7(-2- 07T =[[J-8")(~2-p")""

=0 =0

Y finalmente por el Lema tenemos la siguiente cadena de implicaciones.

q" -1 g—1

3% — 4 no es el cuadrado de un elemento en Fn < (5> —4) 2 = -1 <= (f(2)f(-2))z =-1
<= f(2)f(—2) no es el cuadrado de un elemento en F,.

]

Sin embargo, buscar condiciones para que f(2) - f(—2) no sea un cuadrado no lleva a ningin
resultado satisfactorio. El articulo [5] introduce otro operador, que si permite construir una secuencia
de polinomios SRIM sobre F,. Dedicaremos el final de esta seccién a ilustrar el resultado principal
de este articulo.
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Definicién 3.33. Dado un polinomio f(z) =Y i, a;z* de grado n en Fy[z], con ¢ impar, el operador

2:

R asocia f(z) a ff(z) = 22)"f(3(z + 1)) = 2" f9(%), polinomio de grado 2n en F,.

Por un razonamiento similar al hecho para el operador (), para cualquier polinomio ménico f,
tenemos que f¥ es un polinomio autorreciproco y ménico.

Lema 3.34. En un cuerpo finito IF, con q tmpar, —1 es el cuadrado de otro elemento en F, si y solo
st ¢ = 1mod4.

Demostracion. Sea g un elemento primitivo de F,, entonces todos los elementos que son cuadrados
de otro elemento en F, deben ser de la forma ¢g** para 1 < k < %=, Como ¢ es primitivo tenemos

que g 5= —1, y por tanto —1 es un cuadrado si y solo si Tl es par, es decir, ¢ = 1 mod 4. O

Teorema 3.35 ([5]). Sea fo(x) un polinomio ménico irreducible de gradon > 1 en F,, con q impar.
Suponemos que el grado n es par si ¢ = 3mod4 y que fo(1)fo(—1) no es un cuadrado en F,. Para
todo m > 1 definimos f,, = fR_ |, entonces f, es un polinomio irreducible sobre F, de grado n2™
para cada m > 1.

Demostracion. Durante esta demostracion, denotaremos el producto f(1)f(—1) como A(f). Como
claramente el operador R asocia un polinomio f de grado n a f# de grado 2n, entonces f,, debe
tener grado 2™n.

Primero vamos a probar por induccién que A(f,,) = (=1)"c2,\(fo) con ¢, € F,. Para el caso
m = 1 tenemos la cadena de igualdades

M) = for M fi(=1) = 2(=2)" fo(1) fo(=1) = (=1)"EA(fo)
siendo ¢; = 2™.
Suponiendo que la igualdad se cumple para m — 1, como f,,_; es de grado n2™ ! tenemos
AMfm) = Fia ()i (=1) = 2777 (=27 A(fn1) = 277 (=2)"" (1)) A (fo)
= (=1)"c M (fo)

. —1
siendo ¢, = 2™" ¢

Por el Lema |3.34] como ¢ es impar 0 bien (—1) es un cuadrado o bien n es par por hipétesis. Por
tanto podemos escribir A(f,,) = (=1)"cZ A (fo) = d2,\(fo), y como A(fo) no es un cuadrado entonces
A(fm) no es un cuadrado para ningin m.

m—1-

Finalmente, para cada m podemos definir g,,(z) = 22" fm(5). Este polinomio es de grado n2™,
luego cumple que g8 = 2" g,,(x + %) = (22)"" fu(3(x + 1)) = fE Por tanto fu1 = fi = g%
y podemos aplicar el Lema [3.32] entonces f,,11 es irreducible si y solo si ¢, (2)gm(—2) no es un
cuadrado.

Como gm(2)gm(—=2) = 22" £ (1) fin(=1) = 22" X(fm) ¥ A(fm) 00 es un cuadrado para ningtin
m, entonces f,,1 es irreducible para todo m. O

3.5. Polinomios ciclotémicos

En esta tltima seccién del capitulo desarrollamos los polinomios ciclotomicos sobre cuerpos finitos,
c¢émo construirlos y cuando son irreducibles, siguiendo el apartado 9.3 del libro Finite fields and Galois
rings [17]. Empezamos exponiendo como definir un polinomio ciclotémico en C.
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Sea C el cuerpo de los niimeros complejos, n un entero positivo, y £ una raiz primitiva n-ésima
de la unidad. Tenemos la factorizacion completa de 2™ — 1 en factores lineales sobre C:

n—1

at—1= H(m — &Y.
i=0

(i Por lo tanto, el

Como las potencias de ¢ forman un grupo ciclico, sabemos que ord(£%) =

orden de cada &' es un divisor de n. Sea d > 0 un divisor de n. Definimos

2ue)= [ (@&

ord(¢%)=d
0<i<n—1

Este polinomio no depende de la eleccién de n o £, siempre que d | n 'y £ sea raiz primitiva n-ésima

de 2™ — 1, ya que los &' con orden d son todas las raices primitivas d-ésima de z¢ — 1.

Considerando &; una raiz primitiva d-ésima de ¢ — 1, es claro que & es una rafz primitiva d-
ésima solo si med(d, 1) = 1y entonces, el grado de ®,4(z) debe ser ¢(d). Llamamos d-ésimo polinomio
ciclotémico a ®y4(x).

Si al factorizar ™ — 1 agrupamos los productos segtin el orden de las raices, obtenemos

at—1= H(I)d(x).

d|n

Y aplicando la version multiplicativa de la férmula de inversién de M6bius, Teorema [2.23| dedu-
cimos

@, (z) = [ = 10,

dln
lo que implica el siguiente teorema.
Teorema 3.36. Para todo entero positivo n, ®,(x) es un polinomio con coeficientes enteros.
Demostracion. La ecuacién previa nos permite expresar ®,(x) como el cociente de dos polinomios

ménicos con coeficientes enteros. El numerador es el producto de todos los términos % — 1 para los
que pu(n/d) =1,y el denominador es el producto de todos los términos para los cuales u(n/d) = —1.

Si llamamos p(z) al numerador y ¢(x) al denominador tenemos p(x), ¢(z) € Z[x] ménicos tal que
p(z) = ®,(z) - q(z). Entonces, necesariamente ®,,(x) € Z|x]. O

Este teorema justifica definir @,,(x) como el polinomio ciclotémico n-ésimo sobre cualquier cuerpo
finito F,, donde los coeficientes enteros de ®,,(z) deben interpretarse como elementos en el cuerpo
primo F, de F,.

Ejemplo 3.37. Usando la expresién que tiene ®,,(x) como cociente de polinomios obtenemos

(@®-1D@@-1) 2%4+a°+1 9 74,5 4 .3
15() @ D@ 1) il = ° 4’ -+t —x

También tenemos

(-1 (z*—1) z'%+1 8 6. 4 9
P = = =8 St — 2+ 1
20(2) (0 —1)(z*—1) 2241 o
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Ahora estudiamos la factorizacién de ®,,(x) sobre un cuerpo finito dado. Para empezar, tenemos
este resultado.

Teorema 3.38. Sea p un nimero primo y n tal que med(p,n) = 1. Entonces

1

P (z) = (I)n(x)pk_pki
en cualquier cuerpo de caracteristica p.

Demostracion. Primero consideramos que

B, (x) = H (xd _ 1)H(npk/d) _ H (xnpk/d _ 1>u(d)

d|np* dnp*
ya que si d recorre todos los divisores de np*, entonces np*/d también los recorre, luego con una
reordenacién del producto tenemos la ultima igualdad.

Ahora, como sabemos que mcd(p,n) = 1, si d | np* tenemos dos posibilidades; o bien d | n, o
bien p | dy d | np*. Si p? | d, d es divisible por el cuadrado de un primo y eso implica que p(d) = 0.

Entonces podemos reducir el producto al caso d | n, o al caso d = dyp para cierto d; tal que d; | n,
que es lo mismo que decir que d;p | np. Con esto podemos continuar la igualdad de la siguiente forma.

H <kan/d - 1>u(d) _ H <xpkn/d _ 1>u(d) H <xpkn/dp B 1>u(dp)
d

d|npk [n dp|np
ok ph-1
— H(xn/d _ 1)u(d) H(mn/d _ 1)—u(d)
dln din

La ultima igualdad se obtiene teniendo en cuenta que (a — b)pk = a”" — b*" en un cuerpo de carac-
teristica p, y que pu(dp) = —u(d) por definicion, al ser p primo.

Finalmente, podemos reescribir la tltima expresién que hemos obtenido,

pk pkfl
H(xn/d _ 1)p(d) H(xn/d _ 1)—u(d) _ q)n(l’)pk(bn(x)_pk_l _ (I)n<l'>pk_pk_17
dln dln
lo que nos da el resultado que buscamos. O]

En el siguiente ejemplo recurriremos a este teorema para simplificar el calculo de polinomios
ciclotémicos.

Ejemplo 3.39. Consideremos ®34(z). Tenemos 36 = 9 - 22 = 4 - 3% Por el teorema previo, sobre
cualquier cuerpo de caracteristica 2,

@36(.73) = (I)g(I)Z = @3(.%‘)2 = (.T6 + Ig +x+ 1)2
Y sobre cualquier cuerpo de caracteristica 3,

(1336(33) = @4(33)3 = @4(.17) = (,CEQ + 1)3 = (%6 + 1)2

Si factorizamos ®,(z) sobre un cuerpo de caracteristica p, podemos calcular el polinomio ci-
clotémico sobre un factor de n al que no divida p y aplicar el teorema previo para obtener ®,(x).
Por tanto, la suposicién de que p {n no nos restringe a la hora de manejar polinomios ciclotémicos.
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Teorema 3.40. Sea q la potencia de un p nimero primo y asumimos que p 1 n. Sea m el menor natu-
ral tal que ¢™ = 1modn. Entonces ®,(x) factoriza sobre F, como el producto de ¢(n)/m polinomios
1rreducibles monicos de grado m.

Demostracion. Sea § un elemento primitivo del cuerpo finito Fym. Entonces, el orden de ¢ es
g™ — 1. Como ¢ =1 (mdd n), podemos considerar qmnfl € N. Sea a = £@"~D/" entonces a es de
orden n y todas las potencias o', donde 1 < i <mn —1y mcd(i,n) = 1, también son de orden n. Hay
©(n) de estos elementos.

Como & € Fym y es primitivo, ¢ es rafz de 29" ! — 1 y por tanto es raiz primitiva ¢™ — 1-ésima
de la unidad. Entonces podemos considerar

duw)= ] @-¢)= J] @-ad.

1<i<q™—1 1<i<n—1
ord(§)=n med(i,n)=1

yva que los o' tenfan orden n solo cuando med(i,n) = 1, y como el grado de ®,(x) es p(n), no puede
haber mds elementos de orden n en Fym que los o'

Ahora consideramos el polinomio minimo de o' y lo denotamos por m,,. Por el Teorema [2.10|(vi),
; ; s d—1 , . .
me = (x —a')(x — a")---(x — 'l )y, como todas las raices son distintas, d es el menor natural
. d .
tal que o' = o',

Entonces tenemos que /(=1 = 1, usando que el orden de o' es n, deducimos que n | ¢% — 1
vy ¢* = 1modn. Como m es el menor natural que cumple esta propiedad, m < d. Siguiendo este
razonamiento en la otra direccion, tenemos que ¢™ = 1 modn implica ail@’=1 = 1, y como d es el
menor natural que cumple esto, d < m.

i ; ;aom—1 . . . . .

Luego my = (x — a')(x — ') --- (x — &’ ) es el polinomio irreducible de m elementos, y si

consideramos que p 1 n, es claro que mecd(ig’, n) = 1. Entonces todas las raices del polinomio minimo
estan en el polinomio ciclotémico que hemos construido.

Agrupando el polinomio ciclotémico en los polinomios minimos de cada raiz, como estos tienen
grado m y hay ¢(n) raices, obtenemos una descomposicién en F, de ¢(n)/m polinomios irreducibles.
O

Con este teorema tenemos una factorizaciéon de ®,,(z), y de esto es facil deducir un corolario para
ver cuando @, (x) es irreducible.

Corolario 3.41. Sea q una potencia de p nimero primo tal que p{ n. Entonces, ®,(x) es irreducible
sobre I, si y solo si p(n) es el menor entero positivo tal que ¢?™ = 1modn.

Demostracion. Si suponemos que ®,(z) es irreducible, factoriza en un polinomio irreducible.
Entonces, por el teorema previo, ¢(n) = m y por tanto ¢(n) es el menor natural tal que ¢" = 1 mod n.

Razonando en la otra direccién, si ¢(n) es el menor natural tal que ¢*™ = 1modn, aplicando el
teorema previo, p(n) = m. Esto implica que ®,(z) factoriza en un polinomio irreducible, es decir, es
irreducible. [

Ejemplo 3.42. En el caso de Fy, podemos ver cudndo ¢(n) coincide con el orden multiplicativo de
2 en Z, para los n impares. Usando esto calculamos en MAPLE todos los polinomios ciclotémicos
irreducibles ®,,(x) con n impar menor o igual que 125.
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271293715359 (61|67 |8 |8 101|107 | 121 | 125

n (315911 ]13]19]25
54 | 82| 100 | 106 | 110 | 100

pn)| 2146|1012 | 18 20|18 |28 |36 |52 |58 | 60 | 66

Cuadro 3.1: Valores de todo n impar menor o igual que 100 asociado a un ®,(x) irreducible en Fy[z],

y su respectivo ¢(n).

n | o(n) Polinomio ciclotémico de grado ¢(n)

3 2 2 +r+1

5} 4 44+

9 6 2+ +1

11 10 2042+ "+ a2+t e+ 1

13 12 |22+t 4204294+ a8 42"+l + 2P+t 23+ 22+ 4+ 1
25 | 20 RN AR R A |

27 | 18 o1+ 2% +1

81 | 54 5+ 22T+ 1

121 110 1.110 + 1.99 + 1’88 + ZL‘77 + 1,66 + ZL’55 + I44 + 1,33 + 1.22 + 1.11 + 1
125 | 100 2100 4 2™ 4 250 4 2% 1

Cuadro 3.2: Algunos de los ®,,(x) irreducibles en Fy|x].
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Capitulo 4

Teorema de Wedderburn

Un teorema de interés en cuerpos finitos es el Teorema de Wedderburn, que nos permite extender
todos los resultados vistos hasta ahora en cuerpos finitos a anillos de division finitos.

Aunque el teorema no esta directamente relacionado con los polinomios irreducibles, debido a su
gran relevancia en la teoria de cuerpos finitos merece una breve mencién en este trabajo. El teorema
simplifica la clasificacion de estructuras algebraicas, eliminando las distinciones entre dominios, anillos
de division y cuerpos en el caso finito.

La demostracién que veremos estd ilustrada en el libro Introduction to finite fields and their
applications [10] y requiere de ciertos resultados previos sobre polinomios ciclotémicos. Ahora que
hemos estudiado estos polinomios tenemos las herramientas necesarias para la demostracion.

Recordamos que un grupo es anillo de division si cumple las condiciones de cuerpo excepto la
conmutatividad del producto.

Teorema 4.1 (Wedderburn [18]). Todo anillo de division finito es un cuerpo finito.

Demostracion. Sea F un anillo de divisién finito y F' un subconjunto de F definido de la siguiente
forma, ' = {\ € E : Ax = z\ para todo x € E}. Claramente 0,1 € F' y si A\, p € F tenemos que
A, A—p € F.

Ademds, si A # 0 € F, podemos considerar (y~*A7'y)™' = y~'\y = y para todo y € E*,
y entonces A\~! = y~!A\7ly para todo y € E*, es decir, ™' € F. Por lo tanto F es un cuerpo
conmutativo.

Como FE es finito, F' es un cuerpo finito, |F| = ¢ para algin ¢ € N, y considerando E como
un espacio vectorial sobre F' de dimensién finita n tenemos que |E| = ¢". Si probamos que n = 1,
tendremos que E es un cuerpo finito. Razonamos por reduccién al absurdo, suponiendo que n > 1.

Definimos la siguiente relacién de equivalencia, z ~ y < 3z € E* tal que 27 'zz = y, y denotamos

la clase de equivalencia de y por C,. También definimos para cada y € E* el normalizador de y,
N, ={z € E : xy = yx}, que con calculos similares a los hechos para F' se ve que es un anillo de
division.

Veamos ahora que para cualquier y € F, considerando A, = {aya™ : a € E*}, tenemos que
C,=A,.Sibe A, entonces b = aya™! para algin a € A, y por tanto tomando z como a se cumple

que 27z =y, es decir, b € C,,. Si b € C,, existe un z € E* tal que 27 'bz =y, luego b € A,,.

Usando esto, podemos ver que () tiene solo un elemento si y solo si y € F. Si ), tiene solo un
elemento, debe ser y, luego para todo a € E* tenemos que aya~! =y, y por tanto y € F. Siy € F,
para todo a € E* tenemos que aya~! = y, luego solo y estd en C,.

45



Podemos escribir £* como la unién disjunta de todas sus clases de equivalencia. Como F' = I,
el cardinal de F™* es ¢ — 1 y por tanto en E* hay exactamente ¢ — 1 clases de equivalencia de un solo
elemento.

Para contar el niimero de elementos del resto de clases vamos a establecer una biyeccion entre los
elementos de A, y las clases laterales por la izquierda de N, es decir, los conjuntos de la forma aN;
con a € K™,

Para un y € E* fijo, si consideramos a,b € E* tal que aya™',byb~" € A,, tenemos la siguiente
cadena de implicaciones.

aya' =byb' <=y =a""bybla = (a'b)y(a”'b) T <= a'b e NJ <= b e aN;.
Como cada clase lateral por la izquierda de N, son los elementos de E* médulo N tenemos que
|Gyl = Ay = [E*|/IN].
También podemos considerar cada N, como un espacio vectorial de F, y por tanto |N,| = ¢"¥
siendo n(y) la dimensién del espacio vectorial.

Supongamos que y1, . . . , Ys son representantes de cada clase de equivalencia de mas de un elemento
Y A1, ..., Ag—1 son representantes de cada clase de equivalencia de un solo elemento no nulo. Entonces
la particion de E* en sus clases de equivalencia queda

S B S qn—l
D OCAETEEED Wt

q—1
¢"—1=[E"|=> |0
i=1

Ahora, como N es subgrupo de E*, tenemos que W — 1| ¢ —1.Sin =n(yym+t con
0 <t < n(y), entonces ¢" — 1 = "Wt — 1 = ¢'(¢"W™ — 1) + ¢ — 1.

Como ¢"® —1 divide a ¢" — 1 y a ¢"¥™ — 1 tenemos que también divide a ¢* — 1. Pero ¢ — 1 <
¢"W) — 1, luego t debe ser cero y entonces n(y) divide a n para cualquier y € E*.

. . ., . .. n__
Para la siguiente parte de la demostracién necesitamos ver que ®,(r) divide a 2" — 1 y a -Z .

Como hemos visto en la seccién de polinomios ciclotémicos, 2" —1 =[], Pa(x), luego ®,,(z) divide
ax" — 1.

Considerando que z" — 1 = (z"¥) — )27 v que las raices de ®,(z) son de orden n mientras
que las raices de 2% — 1 son de orden menor o igual que n(y), tenemos que ®,(x) no comparte
raices con ™% — 1 y entonces debe dividir a %

Por tanto, sustituyendo la ecuacién de clases de equivalencia en ¢ tenemos que ®,,(¢) debe dividir

S
¢ ”‘Z;qn(yi)_l_q_l'

Finalmente, consideramos ®,(z) = [[.¢, (z — &) sobre C, donde C), es el conjunto de raices
primitivas n-ésimas de la unidad.

Por un razonamiento geométrico, podemos considerar que |¢ — &| > g — 1, ya que las raices estan
en la circunferencia unidad centrada en el 0 y ¢ esta a la derecha del 1 en la recta real, por lo que
esta mas proximo a 1 que al resto de raices.

Evaluando ®,,(z) otra vez en g,

n(g) = [J la—¢l > (@—1)?" >q—1.
£eCp

Por tanto |®,(q)| no puede dividir a ¢ — 1, con lo que llegamos a contradiccién. ]
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Capitulo 5

Polinomios irreducibles sobre Fy|z]

Hasta ahora hemos estado trabajando sobre cuerpos finitos cualquiera, pero si echamos un vistazo
al uso actual de los cuerpos finitos en la criptografia o la teoria de cddigos, tanto por motivos
de hardware como de eficiencia de las operaciones, los cuerpos que se utilizan son Fy.. Por tanto
necesitaremos polinomios irreducibles sobre [y para representar estos cuerpos y operar sobre ellos.

Los resultados de irreducibilidad que hemos visto en el capitulo previo no son muy tutiles al
aplicarlos en Fy, asi que obtendremos nuevos resultados de irreducibilidad centrados exclusivamente
en polinomios sobre Fy[z].

En articulos como [4] y [8] se representa el cuerpo Fan con trinomios o pentanomios irreducibles,
que seran los polinomios en los que centraremos nuestro estudio en esta seccion.

También exploraremos una técnica para obtener polinomios primitivos que solo funciona en s,
y la aplicaremos en particular a trinomios, obteniendo asi trinomios primitivos de grados muy altos.

5.1. Trinomios irreducibles

Si buscamos construir cuerpos de caracteristica 2, necesitaremos polinomios irreducibles sobre 5.
Por su bajo nimero de coeficientes distintos de cero, los binomios y trinomios generan cuerpos donde
las operaciones son mas eficientes, y en cuerpos de caracteristica 2 claramente los binomios nunca
pueden ser irreducibles. Por esta razon primero estudiaremos cémo encontrar trinomios irreducibles
sobre [Fy y veremos si podemos caracterizarlos.

Blake, Gao y Lambert estudian la distribucién de trinomios irreducibles y conjeturan posibles
caracterizaciones en el articulo [I]. Durante esta seccién nos apoyaremos en dicho articulo para
estudiar con mas detalle los casos en los que ciertos trinomios son irreducibles.

Para estudiar la irreducibilidad de trinomios sobre [y, el resultado mas fuerte que tenemos nos
lo proporciona Swan [15].

Teorema 5.1 (Swan [15]). Sean 0 < k < n nimeros naturales. El trinomio x™ + x* + 1 tiene un
numero par de factores sobre Fy en cada uno de los siguientes casos:

(a) n es par, k es impar, n # 2k ynk/2 =0 o 1mod4,
(b) n es impar, k es par, k12n yn = +3modS8,

(c) n es impar, k es par, k| 2n y n = £1mod 8.
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No veremos la demostracion de este resultado ya que es bastante complicada y se sale del al-
cance de este trabajo. Sin embargo, usaremos este resultado para ver un corolario que garantiza la
reducibilidad de ciertos trinomios.

Corolario 5.2. No existe ningin trinomio irreducible de grado n en Fylx] si n = 0mod 8.

Demostracion. Sean 0 < k < n nimeros naturales, consideramos el trinomio 2" + x* + 1 en Fy[x].
Veamos que si n = 0mod 8, el trinomio no puede ser irreducible. Como n = 0 mod 8, entonces n debe
ser par y por tanto, si k es par, podemos escribir el trinomio como (m”/ 2 4 k2 4 1)%, es decir, es
reducible.

Para los casos con k impar, aplicando la parte (a) del teorema de Swan, el trinomio debe tener
un numero par de factores, y por tanto no puede ser irreducible.

Veamos que se cumplen las condiciones para aplicar el teorema de Swan en este caso. Como
n = 0mod 8, tenemos que 8 debe ser un factor de n, y como k es impar, necesariamente n # 2k. De
la misma forma, 4 debe ser un factor de n/2, y por tanto, nk/2 = 0.

Con esto hemos probado que 2 + ¥ + 1 debe ser reducible para los casos de k par y k impar.
m

A partir de este punto denotaremos al trinomio 2" + z* 4+ 1 como T}, ;.. Para los posibles n, k que
no se cubren en el Teorema de Swan basta considerar que si ambos son pares, como T, € Fyz],
tenemos que 772 o2 = Ly luego siempre es reducible, y si ambos son impares, por el Teorema ,
la reducibilidad de T}, ;, es equivalente a la de T, ,_, al que podemos aplicar el Teorema de Swan.

Apoyéandose en las consideraciones previas y en el Teorema de Swan, los autores del articulo
se preguntan si los trinomios irreducibles también tienen una correlacion con el grado modulo 8, y
calculan la Tabla |5.1{ mostrando el nimero de trinomios irreducibles en Fy[z]| segtin su grado médulo
8.

En el articulo se destaca la abundancia relativa de trinomios irreducibles cuando n = +1mod 8
y la escasez relativa cuando n = £3mod8, lo que puede indicar una relaciéon de los trinomios
irreducibles con su grado maédulo 8.

También destacan ciertas relaciones que se mantienen tanto en la tabla como en las condiciones
del teorema de Swan, como la simetria entre n = 3mod8 y n = —3mod 8, o entre n = 1 mod8 y
n = —1modS8.

Para ver esto con mas detalle podemos desglosar los casos de n par en los que el teorema de Swan
no garantiza que un trinomio sea reducible, y ver si se alinea con la Tabla[5.1} No consideraremos los
casos donde n, k son pares, ya que en estos casos los trinomios son siempre reducibles, como hemos
visto antes.

= Sin =2modS8, k impar.
No se cumplen las condiciones del teorema de Swan si n = 2k o nk/2 = 2 o 3mod 4.Como
n = 2mod 8, tenemos que n/2 = 1 mod 4, luego la condicién nk/2 =2 o 3mod4 queda k = 2
o 3mod 4. Como k es impar, solo se puede dar k = 3mod 4.

= Sin=-—2mod8, k impar.
Razonando de la misma forma que antes, obtenemos que los trinomios que no cumplen las
condiciones son de la forma n = 2k o k = —3 = 1 mod 4.

= Sin =4mod8, k impar.

En este caso tenemos que n/2 = 2mod4, luego nk/2 = 2kmod 4. Entonces no cumplen las
condiciones los trinomios con n = 2k o 2k = 2 o 3mod 4. Claramente el caso 2k = 3mod 4 no
se puede dar y como k es impar, 2k = 2mod 4 se da para todo k.
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Rango/Gradomod 8 | 1 | 2 |3| 4 |5| 6 | 7 | Total
1-200 73|27 | 7| 731530 82 297
201-400 92 136 |0 |74 2|25 76 305
401-600 8 260|710 (35| 71 288
601-800 87 |30 |1 73]0 34| 94 319
801-1.000 81 |31 |1]|77]2[29| 83 304
1.001-1.200 87 128 1067|336 | 84 305
1.201-1.400 79 12910|7410]29| 8 297
1.401-1.600 92 1290|7041 98 335
1.601-1.800 93 |22,0166 |0 26| 71 278
1.801-2.000 82 21]0|58|0]33]| 97 291
2.001-2.200 86 | 28 | 0|75 |0 |27 108 324
2.201-2.400 96 [29 |1 |77|0|23| 83 309
2.401-2.600 79 126|084 1|31 73 294
2.601-2.800 87 |27 1|85 |0 | 23| 104 | 327
2.801-3.000 69 129059 |0|16| 83 256
3.001-3.200 99 | 2310741029 8 310
3.201-3.400 79 290|770 37| 88 310
3.401-3.600 83 |28 0| 74032 &4 301
3.601-3.800 92 12310186 |0 28| 91 320
3.801-4.000 88 250 75(0[29| 90 307
4.001-4.200 82 32057 [1[37| 73 282
4.201-4.400 7 1341072 0]35| 96 312
4.401-4.600 89 |36 |0]66|2|34| 8 312
4.601-4.800 101 1321084 [0]20| 71 308
4.801-5.000 75 1251067 |1]30]| 84 282
9.801-10.000 71 131[0|76|0]33]|102| 313

Cuadro 5.1: Numero total de trinomios irreducibles T, x(z) en el rango indicado, con k < n/2.

Podemos ver que, al igual que en la Tabla [5.1} hay una simetria entre los casos n = 2mod8 y
n = 6 mod 8, mientras que para n = 4mod 8 se mantiene alrededor del doble de casos.

Ver en qué casos estas similitudes se mantienen podria indicarnos posibles condiciones para ca-
racterizar los trinomios irreducibles, y también ilustraria si estas condiciones podrian ser similares a
las que da el teorema de Swan.

Para hacer esta comparacion construimos la Tabla donde para cada n fijo, calculamos con
MAPLE el nimero de posibles £ que no cumplen las condiciones del teorema de Swan, es decir, los
trinomios 2" + 2* + 1 en Fy[x] que el teorema de Swan no garantiza que sean reducibles, y comparar
ambas tablas parece indicar que el teorema de Swan tiene una fuerte relacién con la irreducibilidad
de los trinomios.

Continuando con el estudio de los trinomios en Fy[z], en el articulo [6] los autores aplican el
teorema de Butler [3] a trinomios en Fy[z| para caracterizar los trinomios irreducibles de la forma
283 4+ ¥ + 1. Durante el resto de esta seccién demostraremos algunos de los resultados siguiendo
este articulo y obtendremos varios criterios de irreducibilidad para trinomios.

Definicién 5.3. Definimos el indice de un polinomio irreducible f(z) de grado n sobre F, como an,l

donde e es el orden de f.

Aplicando el Corolario [2.14] es inmediato ver que el indice es un nimero natural.
Teorema 5.4 (Butler [3]). Sea f(x) un polinomio irreducible de grado n sobre F, de orden e, indice
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Rango/Grado mod 8 1 2 3 4 5 6 7 Total
1-200 1.142 325 63 625 61 350 1.216 3.782
201-400 3.618 950 75 | 1.875 | 73 975 3.692 11.258
401-600 6.117 1.575 | 83 | 3.125 | 87 | 1.600 6.192 18.779
601-800 8.615 2.200 | 89 | 4.375 | 89 | 2.225 8.684 26.277
801-1.000 11.107 | 2.825 | 93 | 5.625 | 91 | 2.850 | 11.186 | 33.777
1.001-1.200 13.606 | 3.450 | 95 | 6.875 | 101 | 3.475 | 13.684 | 41.286
1.201-1.400 16.103 | 4.075 | 97 | 8.125 | 93 | 4.100 | 16.178 | 48.771
1.401-1.600 18.602 | 4.700 | 97 | 9.375 | 97 | 4.725 | 18.670 || 56.266
1.601-1.800 21.098 | 5.325 | 101 | 10.625 | 97 | 5.350 | 21.182 | 63.778
1.801-2.000 23.606 | 5.950 | 105 | 11.875 | 105 | 5.975 | 23.674 || 71.290
2.001-2.200 26.090 | 6.575 | 99 | 13.125 | 97 | 6.600 | 26.172 | 78.758
2.201-2.400 28.600 | 7.200 | 101 | 14.375 | 109 | 7.225 | 28.674 | 86.284
2.401-2.600 31.098 | 7.825 | 105 | 15.625 | 107 | 7.850 | 31.168 | 93.778
2.601-2.800 33.586 | 8.450 | 105 | 16.875 | 95 | 8.475 | 33.664 | 101.250
2.801-3.000 36.096 | 9.075 | 103 | 18.125 | 113 | 9.100 | 36.174 | 108.786
3.001-3.200 38.594 | 9.700 | 111 | 19.375 | 103 | 9.725 | 38.664 | 116.272
3.201-3.400 41.094 | 10.325 | 111 | 20.625 | 113 | 10.350 | 41.166 | 123.784
3.401-3.600 43.592 | 10.950 | 101 | 21.875 | 109 | 10.975 | 43.660 | 131.262
3.601-3.800 46.094 | 11.575 | 117 | 23.125 | 109 | 11.600 | 46.176 | 138.796
3.801-4.000 48.582 | 12.200 | 111 | 24.375 | 107 | 12.225 | 48.664 | 146.264
4.001-4.200 51.091 | 12.825 | 107 | 25.625 | 115 | 12.850 | 51.162 || 153.775
4.201-4.400 53.592 | 13.450 | 117 | 26.875 | 111 | 13.475 | 53.670 | 161.290
4.401-4.600 56.090 | 14.075 | 107 | 28.125 | 111 | 14.100 | 56.156 | 168.764
4.601-4.800 58.580 | 14.700 | 111 | 29.375 | 117 | 14.725 | 58.670 || 176.278
4.801-5.000 61.089 | 15.325 | 119 | 30.625 | 101 | 15.350 | 61.158 || 183.767
9.801-10.000 123.576 | 30.950 | 115 | 61.875 | 111 | 30.975 | 123.634 || 371.236

Cuadro 5.2: Numero total de trinomios T, x(z) que el teorema de Swan no garantiza que sean redu-
cibles en el rango indicado, con k < n/2.

d. Sean M, my, ms nimeros naturales tal que med(M,q) =1 y M = mymy donde med(my,e) =1y
cada divisor primo de mo es un divisor primo de e. Entonces

(i) El orden de las raices de f(2™) es de la forma gmae, donde g | my;
(ii) Si g | my, entonces f(z™) tiene exactamente

Nmap(g)
S(gmge; Q)

factores irreducibles de grado S(gmae;q) con raices de orden gmsge, donde S(a;q) denota el
orden de ¢ modulo a.

La demostracion de este resultado es muy complicada para el alcance de este trabajo, por lo que
no la expondremos. Veamos que aplicando este teorema a un trinomio bajo ciertas condiciones nos
permite construir trinomios irreducibles.

. . . . 7/ . n—
Teorema 5.5. Supongamos que T, o es un trinomio irreducible en Fy, de orden e e indice d = 2 -~ L
y sea P un nidmero primo. Si P | e y P{d, entonces Typap es irreducible con orden Pe.

Demostracion. Primero veamos que podemos aplicar el teorema de Butler. Por el Corolario [2.14
tenemos que e | 2" —1, y por esto e es impar, ademds como P | e, entonces P # 2. Ahora consideramos
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M = P, my =1, my = P, que al ser P un primo distinto de 2, claramente cumplen que med(M,2) =
1, M = mymgy, med(my,e) = 1y cada divisor primo de my es un divisor primo de e, ya que P | e
por hipétesis. También suponemos que P 1 d y que T, 5 es irreducible, asi que podemos aplicar el
teorema y ver en cuantos factores descompone 1), pap.

Por el segundo apartado del teorema de Butler, si g | 1, es decir g = 1, tenemos que T, pap tiene

exactamente S(’;;—I;Q) factores. Veamos ahora que S(Pe;2) = nP.

Como e | 2" — 1, tenemos que 2" = 1 mod e. Con esto podemos escribir, para cierto k € N,
" rp
2":1+em2“2:u+empz1+§:<_)@mﬂ2“Ezumﬂpa
, J
7j=1

Para ver que el orden de 2 es nP, supongamos que 2! = 1 mod Pe para un t < nP y llegaremos a un
absurdo. Como 2/ = 1 mod Pe, tenemos que 2° = 1 mod e, y ya hemos visto que n también lo cumple.
Por tanto, t | n o n | t. Ademés, como 2"” = 1 mod Pe, vemos que t | nP.

Sin|t, comot|nP, P esprimoyt<nP, debe ocurrir que ¢t = n. También, como 2" — 1 = ed
y p1d, se ve que 2" # 1 mod Pe. Entonces, tanto si ¢t | n como si t = n, llegamos a un absurdo, ya
que 2! = 1 mod Pe.

Por tanto, ordp.(2) = nP y entonces T,,pop es irreducible, y por el Teorema [2.13] su orden es el
mismo que el de sus raices, es decir, Pe. O

Ahora planteamos un par de lemas que nos permitiran demostrar el teorema que caracteriza todos
los trinomios de la forma T}, pk opr a partir de 7T}, o.

Recordamos que la notacién P || n, P® divide exactamente a n, significa que P* | ny P {n.
Lema 5.6. Para un primo P distinto de 2, si P* || 2" — 1 entonces P || 2P — 1.

Demostracién. Tenemos que probar que P+t | 2nP=1y pat2yonP 1 Empezamos viendo que
P 1= (2" —1)(2"FD (P2 o 1),

como P? || (2" — 1), podemos escribir 2" =1+ P*M con M € N, P { M.

Entonces, para j € N,
2" = (1+ P*M)! =1+ jP°M + K,

siendo K una suma de términos donde P?* | K. Por tanto

. P-1)P
Xpwzp+i—?l4ww+0®meﬁwc.

Como P es un primo distinto de 2, es impar, y por tanto el sumatorio se puede escribir como P+P%q,
para algin ¢ € N. De esto se deduce que P divide exactamente a Zf:iol 27"y como también tenemos
que P® divide exactamente a 2" — 1, tenemos que P**! divide exactamente a 277 — 1. O

Lema 5.7. Si un trinomio de la forma Ty o es reducible, todo trinomio de la forma Tyvay es reducible.

Demostracion. Si f(z) es un factor de Tya(z) = 2V + 2% + 1, al poder escribir Tyy9y como
Tya(xV) = 2V + 22V 4+ 1, tenemos que f(z") es factor de Tyyav.

Teorema 5.8. Sea T, 5 trinomio de orden e, indice d, y sea P primo tal que P | e y P{d. Si T,

es irreducible entonces T, ptopt es trreducible para todo t € N. Si T,,pt opt es irreducible para algin
t € N entonces T,, o es irreducible. Ademds, cuando es irreducible, el orden de T, ptopt es Ple.

51



Demostracion. Si suponemos T, 5 irreducible, P primo tal que P | e y Pt d, podemos probar la
implicacién, y que el orden de 7T}, pt opt €s Pte, usando induccién sobre t.

Para t = 1, aplicamos directamente el Teorema y tenemos que T),p2p es irreducible de orden
Pe.

. . _ T npi=1_
Suponemos que T}, pi—1 5pi-1 es irreducible, de orden P'~'e, indice %, veamos que se cumple

para t. Si aplicamos el Teorema , deducimos que T, pt opt es irreducible de orden Pte. Notamos
ahora que se cumplen las condiciones para aplicar el teorema, es decir, P | P'"e, que claramente es

t—1
. 27LP -1
cierto, y P { 5=~

Tenemos por hipdtesis que P | e, sea a € N tal que P* || e. Entonces P* | 2" — 1 y como
Pt{d= 2= P 2" — 1. Usando el lema previo [5.6{ tenemos que P**! || 2" — 1, repitiendo esto

e

‘o . n t—1
llegamos a P**=1 || 27" — 1. Aplicando esto y que P | e, es claro que P ¢ 2;;#;1

El contrarreciproco es directo al aplicar el lema previo conU=nyV =P O

Este teorema nos proporciona una motivacién para estudiar los trinomios 7, o, ver si son irredu-
cibles y calcular sus érdenes e indices. En el articulo [6], los autores hacen estos célculos y obtienen

la tabla (.3l

N | Indice | Factorizacién de 2V — 1
3 1 7

5 1 31

11 1 23 - 89

21 1 77127 - 337
29 1 233 - 1.103 - 2.089
35 1 3171127 -122.921

Cuadro 5.3: Tabla de N tal que 2V + 22 + 1 es irreducible

Ejemplo 5.9. Con la tabla [5.3, podemos obtener los posibles P primos tal que se les puede aplicar
el Teorema [5.8] Por ejemplo, el trinomio x'! + 22 + 1 es irreducible, su indice es 1, y por tanto su
orden es 23 - 89, es decir, todos los polinomios 771.23t 2.03¢ son irreducibles.

De esta forma, si buscamos un polinomio irreducible de grado 147, como 147 = 3 - 7% y T35 es
irreducible de orden 7, tenemos que 714795 es un trinomio irreducible de grado 147.

Finalmente, en el articulo [6] se extiende el resultado y se prueba el siguiente teorema, que
caracteriza todos los trinomios irreducibles 7,, , donde n = =3 mod 8 a partir de T, 5.

Teorema 5.10. Los dnicos trinomios irreducibles Ty g con M = £3mod 8 son de la forma T, pap,
donde P | e, siendo e el orden de T, y P1d, con d el indice de T,, 5, y con n = £3 mod 8.

5.2. Trinomios primitivos

En esta seccién nos centraremos en estudiar los trinomios primitivos, y como razonaremos poste-
riormente, nos interesard estudiarlos en Fy[z].

Como los polinomios primitivos de grado n sobre F,[z] son aquellos cuyas raices son elementos
primitivos de Fy», una manera de buscar polinomios primitivos de grado n es considerar los casos
donde ¢" — 1 es un ntmero primo, ya que el orden de las raices en F,» debe dividir a ¢" — 1, luego
todos los polinomios irreducibles de grado n en [ [z] serdn primitivos.

Veamos ahora en que casos ¢" — 1 es un numero primo.
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Teorema 5.11. Sea q potencia de un primo, n € N y supongamos que ¢" — 1 es primo. Si q es impar
entonces ¢ = 3 yn = 1, si ¢ = 2 entonces n es primo, y si ¢ # 2 es una potencia de 2 entonces
n = 1. En particular, st 2" — 1 es primo, todos los polinomios monicos irreducibles de grado n en
Fylx] son primitivos.

Demostracion. Si q es impar, ¢ — 1 es par. Como ¢ — 1 | ¢" — 1 tenemos que 2 es un factor de
q"—1ycomoq”—1esprimo,¢g"—1=2.S1¢g>30q=3,n>1entonces ¢" —1 > 2, luego solo es
posible el caso g =3y n=1.

Si ¢ = 2, supongamos que n no es un primo y veamos que llegamos a un absurdo. Sean m, k € N
tal que 1 < m, k < ny mk = n, claramente (2™ — 1)(2*=Ym y o(k=2m 4 ... 1 9m 4 1) = 2" — 1 luego
2™ —1|2" =1y como 1 < m < n, tenemos que 2" — 1 no es primo. Esto contradice las hipdtesis y
por tanto llegamos a un absurdo.

Si g es una potencia de 2, ¢ = 2" con r > 1. Entonces tenemos que ¢® — 1 = 2% — 1, y usando el
caso previo, nk es primo luego n = 1. Por tanto el tnico caso en el que ¢" — 1 es primo y n > 1 es
q=2.

Finalmente, si 2" —1 es primo, como los érdenes de elementos en [F3, dividen a 2" —1, los elementos
distintos de 0 y 1 son primitivos en Fon. Entonces si consideramos un polinomio ménico e irreducible
de grado n en Fy[z], por el Corolario sus raices estan en Fon y entonces son elementos primitivos
de Fan, luego el polinomio es primitivo por definicién. O]

Como nos muestra este teorema, los polinomios a considerar son los pertenecientes a Fy[z] y nos
interesa el caso 2P — 1 donde p es un nimero primo, lo que motiva la siguiente definicién.

Definicién 5.12. Si 2? — 1 es un niimero primo, lo llamaremos primo de Mersenne y lo denotaremos
por M,. Al exponente p lo llamaremos exponente de Mersenne.

El proyecto GIMPS [16] se dedica a buscar primos de Mersenne, y es la pagina que hemos
consultado para obtener los exponentes de Mersenne que listamos en la Tabla Si vamos a buscar
trinomios irreducibles sobre Fa[z] cuyo grado es un exponente de Mersenne, podemos aplicar primero
el Teorema de Swan para simplificar la busqueda.

Sea T}, ; un trinomio tal que p es un exponente de Mersenne, y por tanto primo, y p = 3 mod 8.
Entonces, aplicando el Teorema de Swan , T,.s solo puede ser irreducible si s | 2p, y como p es
primo solo hay que comprobar el caso 7,2, excepto en el caso p = 3 que es el tnico que cumple
p— 1] 2p, por lo que se puede considerar el trinomio T3 ;.

En el caso contrario, si p es un exponente de Mersenne tal que p = 1 mod 8, aplicando el Teorema
de Swan [5.1] solo descartamos el caso T, 5.

En [2], Richard P. Brent lista todos los exponentes de Mersenne p hasta 74.207.281 junto a los
T, s irreducibles con s < p, ya que para s > p solo hace falta considerar el reciproco 7}, , 5 por el
Teorema [3.4] Recopilamos estos trinomios irreducibles en la Tabla [5.4] destacando el hecho de que
ningin p = 3 mod 8 mayor que 5 cumple que 7,5 es irreducible y 57.885.161 es el tinico exponente
de Mersenne que cumple 57.885.161 = +1mod 8 y no existe ningin trinomio irreducible de tal grado.

El proyecto GIMPS [16] ha encontrado tres exponentes de Mersenne mayores que 74.207.281, que
no aparecen en la lista [2]. De estos tres exponentes, p; =77.232.917 y p, =82.589.933 son equivalentes
a 5 moédulo 8, luego solo hay que estudiar la irreducibilidad de 7}, o y 7}, 2. Una comprobacién en
MAPLE nos muestra que ambos trinomios son reducibles en Fs.

Otra manera de encontrar trinomios primitivos en Iy es aplicando el Teorema Por ejemplo,
si aplicamos el teorema a los trinomios de la forma 7} ; = 2 + x4+ 1, k > 2, tenemos que 7, k1 €s
primitivo si y solo si 1 es primitivo en Fy, que se cumple siempre, y el menor » € N tal que z” es
congruente a algtin elemento de Fy médulo 2F + x + 1 es 7 = 2% — 1. Claramente, 2" no puede ser
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p S
2 1
3 1
5 2
7 1,3
17 3,5, 6
31 3,6,7, 13
89 38
127 1,7, 15, 30, 63
521 32, 48, 158, 168
607 105, 147, 273
1.279 216, 418
2.281 715, 915, 1.029
3.217 67, 576
4.423 271, 369, 370, 649, 1.393, 1.419, 2.098
9.689 84, 471, 1.836, 2.444, 4.187
19.937 881, 7.083, 9.842
23.209 1.530, 6.619, 9.739
44.497 8.575, 21.034
110.503 25.230, 53.719
132.049 7.000, 33.912, 41.469, 52.549, 54.454
756.839 215.747, 267.428, 279.695
859.433 170.340, 288.477
3.021.377 361.604, 1.010.202
6.972.593 3.037.958
24.036.583 8.412.642, 8.785.528
25.964.951 880.890, 4.627.670, 4.830.131, 6.383.880
30.402.457 2.162.059
32.582.657 5.110.722, 5.552.421, 7.545.455
42.643.801 | 55.981, 3.706.066, 3.896.488, 12.899.278, 20.150.445
43.112.609 3.569.337, 4.463.337, 17.212.521, 21.078.848
74.207.281 9.156.813, 9.999.621, 30.684.570

Cuadro 5.4: Numeros p, s < p/2 tal que T, es irreducible y p es exponente de Mersenne

congruente a 0 médulo ¥ + x + 1, luego solo tenemos que calcular el menor r tal que " = 1 médulo

¢+ 41

Podemos encontrar trinomios primitivos calculados de esta forma en la enciclopedia online de
sucesiones de enteros OEIS [I4]. Recordamos que OEIS es una pégina creada y mantenida por N. J.
A. Sloane donde se almacenan miles de sucesiones de interés matematico.

Consultando las sucesiones A002475, A073639 en OEIS [14] vemos los valores de k tal que T},
es irreducible y primitivo sobre [y respectivamente. Listamos tinicamente los irreducibles cuya pri-
mitividad se ha comprobado, segiin lo indicado en A073639 y obtenemos lo siguiente.

Grados k tal que 2* 4+ = + 1 es irreducible sobre Fy: 2, 3, 4, 6, 7, 9, 15, 22, 28, 30, 46, 60, 63, 127,
153, 172, 303, 471, 532, 865, 900, 1366, 2380, 3310.

Grados k tal que zF + 2 + 1 es primitivo sobre Fy: 2, 3, 4, 6, 7, 15, 22, 60, 63, 127, 153, 471, 532,
865, 900, 1366.

Hemos verificado la primitividad de los trinomios en MAPLE con la técnica detallada previamente
para 2 < k < 20 ya que a partir de estos grados empieza a ser computacionalmente pesado.
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Podemos hacer lo mismo con los trinomios de la forma x* + 2% + 1, consultando las sucesiones
A057460, A074710 en OEIS [I4] para tener los valores de k tal que T} 5 es irreducible y primitivo
sobre [y respectivamente, y listando solo los irreducibles cuya primitividad se ha comprobado, segin
lo indicado en IAQ074710.

Grados k tal que 2¥ + 22 4 1 es irreducible sobre Fy: 3, 5, 11, 21, 29, 35, 93, 123, 333, 845.
Grados k tal que 2¥ + 22 4 1 es primitivo sobre Fy: 3, 5, 11, 21, 29, 35, 93, 123, 333, 845.

Como se puede ver ambas sucesiones coinciden, aunque no parece ser indicativo de una propiedad
general. El siguiente término a comprobar seria el 4125.

También hemos verificado la primitividad de estos trinomios en MAPLE para 3 < k < 20.

5.3. Pentanomios irreducibles

Como ya hemos visto, usar trinomios para representar cuerpos finitos tiene muchas ventajas,
principalmente por solo tener tres coeficientes distintos de cero.

Pero como hemos visto en el Corolario[5.2] para todos los grados que son miltiplos de 8 no tenemos
ningun polinomio irreducible, y si no encontramos un trinomio irreducible en Fy[x] la siguiente opcién
seria un pentanomio. Es razonable preguntarse si solo usar trinomios o pentanomios es suficiente para
encontrar siempre algin polinomio irreducible de cualquier grado o necesitamos expandir la bisqueda
a otros polinomios.

En el articulo [13], Gadiel Seroussi lista trinomios o pentanomios irreducibles de la siguiente forma.
Para el grado n, si existe algin trinomio irreducible 7, ;, se escribe en la tabla el trinomio irreducible
de menor k, y si no existe, se busca algtin pentanomio irreducible de la forma 2" + 2/t + 272 + 273 + 1y
se escribe en la tabla el de menor orden lexicografico, es decir, el de menor j; y si varios pentanomios
irreducibles tienen el mismo j; se escribe el de menor j; y si coincide j5 el de menor j3.

En la Tabla mostramos una version reducida de lo obtenido en el articulo [13], y se puede
ver que siempre podemos encontrar algin trinomio o pentanomio irreducible para todos los grados
que hemos considerado. Los datos del articulo coinciden con esto, para todo grado 2 < n <10.000
siempre se puede encontrar un trinomio o un pentanomio irreducible en Fylz], lo que lleva a la
siguiente conjetura.

Conjetura 5.13. Para cada n € N; si no existe ningin trinomio irreducible de grado n en Fy|x]
siempre existe un pentanomio irreducible de grado n en Fy|x].

También destaca en la Tabla que los pentanomios z™ + 27t + 272 + 273 + 1 siempre tienen un
valor de j; bastante bajo, incluso en los grados mas altos. De hecho, como se muestra en el articulo
[13], el mayor valor de j; en la tabla es j; = 56 para n =9.760.

Conclusion

Con esto concluimos este trabajo, en el que hemos cubierto lo que hemos considerado los aspectos
principales de los polinomios irreducibles sobre cuerpos finitos, asi como sus aplicaciones mas actuales.

Esperamos haber ilustrado por qué el estudio de polinomios irreducibles sobre cuerpos finitos es
relevante, destacando particularmente la importancia del cuerpo Fy en la actualidad, y esperamos
también haber transmitido al lector el mismo interés en el tema que me ha generado a mi durante
estos meses de trabajo.
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Grado médulo 8

1 2 3 1 5 6 7 5
2.1 3.1 11 5,2 6,1 71 8,431
9,1 10,3 11,2 12,3 13,4,3,1 14,5 15,1 16,5,3,1
17,3 18,3 19,5,2,1 20,3 21,2 22,1 23,5 24,4,3,1
25,3 26,4,3,1 27,5,2,1 28,1 29,2 30,1 31,3 32,7,3.2
33,10 34,7 35,2 36,9 37,6,4,1 38,6,5,1 39,4 40,5,4,3
41,3 42,7 43,6,4,3 44,5 45,4,3,1 46,1 47,5 48,5,3,2
49,9 50,4,3,2 51,6,3,1 52,3 53,6,2,1 54,9 55,7 56,7,4,2
57,4 58,19 59,742 60,1 61,5,2,1 62,29 63,1 64,4,3,1
65,18 66,3 67,5,2,1 68,9 69,6,5,2 70,5,3,1 71,6 72,10,9,3
73,25 74,35 75,6,3,1 76,21 77,6,5,2 78,6,5,3 79,9 80,9,4,2
81,4 82,8,3,1 83,742 84,5 85,8,2,1 86,21 87,13 88,7,6,2
89,38 90,27 91,8,5,1 92,21 93,2 94,21 95,11 96,10,9,6
97,6 98,11 99,6,3,1 100,15 101,7,6,1 102,29 103,9 104,4,3,1
9.905,219 | 9.906,2.027 | 9.907,10,7,1 | 9.908,2.699 | 9.909,11,10,7 | 9.910,27,16,15 | 9.911,483 | 9.912,42,35,15
9.913,1.899 | 9.914,95 | 9.915,29,17.8 | 9.916,4.483 | 9.917,32,9.6 9.918,381 | 9.919,1.185 | 9.920,49,18,14
9.921,901 | 9.922,2.691 | 9.923,37,33,26 | 9.924,30,29,26 | 9.925,12,9,7 | 9.926,1.445 | 9.927,1.987 | 9.928,39,38,31
9.920,1382 | 9.930,331 | 9.931,34,10,3 | 9.932.2.397 | 9.933,23.6,2 | 9.934,34,7.3 |9.935,2.216 | 9.936,22,21,1
9.937.451 |9.938,25,19,9 | 9.939,32,26,17 | 9.940,2.059 | 9.941,29,12,10 |  9.942,133 | 9.943,3.069 | 9.944,15,14,6
9.945,1.882 | 9.946,2.355 | 9.947,23,17.8 | 9.948,1.535 | 9.949,32.24,10 | 9.950,2.453 | 9.951,1.334 | 9.952,31,30,11
9.953,539 | 9.954,343 9.955,9,8,5 9.956,851 | 9.957,25,11,4 | 9.958,17,14,4 | 9.959,381 | 9.960,30,15,10
9.961,2.707 | 9.962,20,14,3 | 9.963,34,20.20 | 9.964,2.691 | 9.965,34,24,23 | 9.966,1.701 | 9.967,4.399 | 9.968,36,3,2
9.969,295 | 9.970,2.587 | 9.971,11,8.5 9.972,519 | 9.973,27,24,12 | 9.974,2.045 | 9.975,124 | 9.976,21,19,5
9.977,2.954 | 9.978,1.483 | 9.979,26,10,2 | 9.980,707 | 9.981,30,27,22 |  9.982,993 9.983,785 | 9.984,27,10,7
9.985,1.974 | 9.986,1.143 | 9.987,14,11,10 | 9.988,3.120 | 9.989,21,20,6 | 9.990,573 9.991,495 | 9.992,7,4,2
9.993,121 |9.994,29,22.3 | 9.995,41,40,31 | 9.996,1.447 | 9.997,26,10,6 | 9.998,4.013 | 9.999,2.951 | 10.000,19,13,9

Cuadro 5.5: Pares n, k asociados al trinomio irreducible 2 + z* + 1 o 4-uplas n, ji, jo, js asociadas
al pentanomio irreducible x™ + 27t + 272 + 27* 4+ 1 seleccionando para cada grado el menor trinomio
y, si no existe, el menor pentanomio segun el orden lexicografico.
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