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Resumen

Este trabajo tiene como objetivo el estudio de los polinomios irreducibles sobre cuerpos finitos,
desarrollando los fundamentos teóricos y destacando algunas de sus aplicaciones prácticas.

Se estudian propiedades de estos polinomios y de sus ráıces, y se obtienen resultados que per-
miten construcciones de polinomios irreducibles. También dedicamos un apartado al teorema de
Wedderburn, ya que, como veremos, es un teorema de gran importancia en el estudio de cuerpos
finitos.

Finalmente centramos nuestra atención en los polinomios irreducibles sobre F2[x], puesto que F2

es el cuerpo en el que se trabaja en las disciplinas actuales que requieren del manejo de polinomios
irreducibles.

Palabras clave

Cuerpos finitos, polinomios irreducibles, polinomios primitivos, teorema de Wedderburn, bino-
mios, trinomios, pentanomios.

Abstract

This work aims to study irreducible polynomials over finite fields, developing the theoretical
foundations and highlighting some of their practical applications.

We study properties of these polynomials and their roots, and obtain results that allow the
construction of irreducible polynomials. We also dedicate a section to Wedderburn’s theorem, that,
as we’ll see, it is a theorem of great importance in the study of finite fields.

Finally, we focus our attention to the irreducible polynomials over F2[x], since F2 is the field used
in current disciplines that require handling irreducible polynomials.

Keywords

Finite fields, irreducible polynomials, primitive polynomials, Wedderburn’s theorem, binomials,
trinomials, pentanomials.
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Introducción

El estudio de los cuerpos finitos constituye uno de los pilares fundamentales del álgebra moderna,
tanto en su desarrollo más teórico como en sus aplicaciones en campos como la criptograf́ıa y la teoŕıa
de códigos. Los polinomios irreducibles son cruciales en el estudio de estos cuerpos, permitiéndonos
construir y representar los cuerpos finitos, para aśı poder trabajar con estos.

Este trabajo se centra en el análisis de los polinomios irreducibles sobre cuerpos finitos, abor-
dando los resultados clásicos que permiten el estudio de este tema, las propiedades principales de
estos polinomios, algunos métodos de construcción de polinomios irreducibles, y estudiando ciertos
polinomios concretos como los trinomios o los polinomios primitivos.

Los oŕıgenes de la teoŕıa de cuerpos finitos se remontan al matemático Évariste Galois (1811-
1832), que fue el primero en trabajar con las estructuras algebraicas de grupos y cuerpos, y dio las
ideas que más tarde se formalizaŕıan en la teoŕıa de grupos.

Aunque la representación de cuerpos finitos y el estudio de polinomios irreducibles tiene gran
interés teórico, la motivación reciente tras el estudio de esta disciplina son principalmente sus apli-
caciones en criptograf́ıa, siendo herramientas clave para el cifrado de claves públicas y privadas, y
su uso en teoŕıa de códigos, principalmente en códigos de corrección de errores, aunque también
destacan otras aplicaciones como la generación de números pseudoaleatorios.

El primer tema es una breve recapitulación de los resultados básicos de cuerpos finitos más
relevantes para este trabajo, principalmente el teorema de existencia y unicidad de cuerpos finitos,
asumiendo conocimiento previo de la teoŕıa de grupos y de resultados básicos de anillos y cuerpos.

En el segundo tema estudiamos el orden de los polinomios y algunas caracteŕısticas de sus ráıces,
aplicadas particularmente a polinomios irreducibles en cuerpos finitos. También utilizamos las fun-
ciones de Euler y de Möbius para obtener resultados clásicos que nos permiten contar el número de
polinomios irreducibles en un cuerpo finito, principalmente basándonos en el teorema de inversión
de Möbius.

También nos centramos en un tipo particular de polinomios irreducibles, los polinomios primitivos,
revisando teoremas de caracterización y abordando algunos resultados más actuales.

El enfoque principal del estudio está en obtener polinomios irreducibles concretos con los que
poder trabajar para generar cuerpos finitos. Por tanto este tercer tema se dedica a obtener estos po-
linomios irreducibles, primero considerando criterios generales de irreducibilidad y luego centrándonos
en polinomios espećıficos de mayor interés.

Estudiamos los binomios y trinomios que, debido a su bajo número de coeficientes distintos de
cero, proveen ventajas computacionales al operar en un cuerpo representado por estos polinomios.
Continuamos con los polinomios autorrećıprocos, que tienen uso en la teoŕıa de códigos [12], y per-
miten generar secuencias de polinomios autorrećıprocos irreducibles que aumentan en grado.

Por último consideramos la irreducibilidad de los polinomios ciclotómicos, muy importantes en
la teoŕıa algebraica para generar extensiones de cuerpos.
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Dedicamos un breve tema al teorema de Wedderburn, enunciado por Joseph Wedderburn en 1905,
que establece que todo anillo de división finito es un cuerpo finito. Aunque no está directamente
relacionado con los polinomios irreducibles sobre cuerpos finitos, consideramos que es un resultado
suficientemente importante en el ámbito de los cuerpos finitos como para exponer su demostración,
ya que muestra que para los anillos finitos no hay diferencias entre dominios, anillos de división y
cuerpos.

Finalmente, el tema cinco se centra en estudiar los polinomios irreducibles sobre un cuerpo en
particular, F2[x]. Este cuerpo tiene una conexión directa con la aritmética binaria y por su fácil
implementación en hardware, es el utilizado principalmente para hacer los cálculos requeridos en
cifrados y códigos correctores.

El manejo eficiente de las operaciones en cuerpos de la forma F2n es un tema de investigación
actual, como se puede ver en los art́ıculos [4] y [8], y encontrar buenos polinomios con los que
representar este cuerpo es de gran importancia. Para la optimización de los tiempos de operaciones
los polinomios con los que se trabaja en estos casos son los trinomios y los pentanomios.

Además en ciertas disciplinas como la generación de números pseudoaleatorios, que se estudia
en un tema del libro Introduction to finite fields and their applications [10], es preferible utilizar
polinomios primitivos para representar estos cuerpos, por lo que también dedicamos una breve sección
a encontrar trinomios primitivos sobre F2[x].

Durante el desarrollo de este trabajo consultaremos varios recursos online, de los que destacamos
la enciclopedia online de sucesiones de enteros, que se abrevia como OEIS [14], creada por N. J. A.
Sloane para almacenar sucesiones de interés matemático, y la gran búsqueda de primos de Mersenne
por internet, o proyecto GIMPS [16], un proyecto de computación distribuida dedicado a encontrar
números primos de la forma 2p − 1, con p un número primo.

También obtenemos algunas tablas y ejemplos con cálculos por ordenador, todos ellos usando
MAPLE, un programa orientado al álgebra computacional.

Personalmente destaco la importancia de los trinomios, dedicando múltiples secciones a su estudio
tanto en cuerpos finitos cualquiera como sobre el cuerpo F2. En particular, me ha llamado la atención
la fuerte relación entre el teorema de Swan y la distribución de los trinomios irreducibles en F2[x],
que estudiaremos en el caṕıtulo 5.
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Caṕıtulo 1

Preliminares de cuerpos finitos

Para el desarrollo de este trabajo, daremos por conocidos los resultados de las estructuras alge-
braicas de grupos, anillos y cuerpos, aśı como algunos resultados de extensiones finitas. El primer
caṕıtulo del libro Introduction to finite fields and their applications [10] cubre toda la información
previa necesaria para el desarrollo de este trabajo.

También daremos por conocida la construcción del cuerpo de p elementos dada por las clases de
Z módulo p, que se denotará por Fp.

Esta sección de preliminares prepara los resultados principales de cuerpos finitos que necesita-
remos a lo largo de este trabajo, siendo el más importante el teorema de existencia y unicidad de
cuerpos finitos, que justifica la necesidad de encontrar polinomios irreducibles apropiados.

Seguiremos principalmente los resultados dados en el apartado 2.1 del libro Introduction to finite
fields and their applications [10].

Lema 1.1. Sea F un cuerpo finito y K un subcuerpo suyo de q elementos. Entonces F tiene qm

elementos, donde el grado de la extensión es m = [F : K].

Demostración. Consideramos F como un K-espacio vectorial, al ser F finito, su dimensión co-
mo espacio vectorial es finita. Si [F : K] = m, F tiene una base de m elementos, que denotamos
B = {b1, . . . , bm}. Usando la base, todo elemento de F se puede representar como a1b1 + · · ·+ ambm,
para cada a1, . . . , am ∈ K. Como cada ai puede tomar q valores y hay m de ellos, deducimos que F
debe tener qm elementos.

Con este resultado, establecemos el número de elementos que debe tener un cuerpo finito.

Teorema 1.2. Sea F un cuerpo finito, p la caracteŕıstica de F y n el grado de F sobre su subcuerpo
primo K. Entonces F tiene pn elementos.

Demostración. Como F es finito, su caracteŕıstica es un primo p, y por tanto, K ∼= Fp. Entonces
K tiene p elementos y, aplicando el lema previo, deducimos que F tiene pn elementos.

Para estudiar como es el cardinal de todos los cuerpos finitos, preparamos los siguientes resultados.

Lema 1.3. Sea F un cuerpo finito de q elementos. Entonces para cada a ∈ F se cumple que aq = a.

Demostración. Si a=0 la igualdad es trivial. Si a ̸= 0 consideramos el grupo multiplicativo F ∗
q ,

donde ya sabemos que aq−1 = 1 para todos sus elementos, y por tanto, aq = a.
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Lema 1.4. Sea F un cuerpo finito de q elementos y K un subcuerpo de F . Entonces el polinomio
xq − x ∈ K[x] factoriza en F [x] como

xq − x =
∏
a∈F

(x− a)

y por tanto F es un cuerpo de descomposición de xq − x sobre K.

Demostración. El polinomio xq − x tiene como mucho q ráıces en F . Por el Lema 1.3, sabemos
que todos los elementos en F son exactamente las q ráıces de este polinomio, y por tanto F es su
menor cuerpo de descomposición.

Con estos resultados previos tenemos la base necesaria para construir todos los cuerpos finitos
posibles. Ya sabemos que todo cuerpo finito debe tener pn elementos, pero ahora probaremos que
existe un cuerpo finito con pn elementos para cualquier p primo y n natural.

Para esto demostramos el teorema de existencia y unicidad de cuerpos finitos.

Teorema 1.5. Para cada p primo y n natural existe un cuerpo finito de q = pn elementos. Todo
cuerpo de q elementos es isomorfo al cuerpo de descomposición de xq − x sobre Fp.

Demostración. Empezaremos probando su existencia. Consideramos xq−x en Fp[x] y F su cuerpo
de descomposición sobre Fp. Las q ráıces que tiene en F son distintas, ya que su derivada es qxq−1−1 =
−1 en Fp[x].

Definimos el siguiente subespacio de F con q elementos, S ={a ∈ F : aq − a = 0}.
Podemos comprobar fácilmente que cumple las propiedades para ser subcuerpo demostrando que

cumple unas equivalentes.

Primero vemos que 0, 1 ∈ S. Claramente ambos cumplen la ecuación de S.

Veamos que si a, b ∈ S entonces a + b ∈ S. Sabemos que en un cuerpo de caracteŕıstica p,
(a− b)q = aq − bq. Además, al estar en S, aq = a, bq = b. Luego a− b cumple (a− b)q = a− b,
por lo que a− b ∈ S.

Por último, si a, b ∈ S y b ̸= 0, entonces (ab−1)q = aq(bq)−1 = ab−1. Por tanto ab−1 ∈ S.

Por la construcción de S, este contiene todas las ráıces de xq − x, luego el polinomio debe
descomponer en S y por tanto, F=S. Como S tiene exactamente q elementos, F es un cuerpo
finito de q elementos.

Ahora probaremos la unicidad. Sea F un cuerpo finito cualquiera de q elementos. F tiene carac-
teŕıstica p, como vimos en un lema previo, y entonces Fp será un subcuerpo de F .

Por el Lema 1.4, F es cuerpo de descomposición de xq−x sobre Fp y su unicidad salvo isomorfismo
se deduce de la unicidad de cuerpos de descomposición.

Como ahora tenemos unicidad, nos referiremos al cuerpo de q elementos como Fq a partir de este
punto. También consideraremos que q = pn para algún p primo y n natural.

Ahora veremos un resultado que permite determinar todos los subcuerpos de Fq.

Teorema 1.6. Sea Fq el cuerpo finito de q = pn elementos, con p primo y n natural. Entonces, todo
subcuerpo de Fq tiene orden pm donde m es un divisor de n. Además, para todo m con m|n, hay un
subcuerpo de orden pm y es el único con pm elementos.
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Demostración. Como Fq es de caracteŕıstica p, todo subcuerpo K de Fq tiene caracteŕıstica p y
por tanto, pm elementos, con m ∈ N. Por el Lema 1.1, sabemos que Fq tiene pms elementos, para
algún s ∈ N, luego m · s = n y m|n.

Si m es un divisor cualquiera de n, existe k ∈ N tal que m · k = n. Usando esto vemos que pm− 1
divide a pn − 1

pmk − 1 = (pm − 1) · (pm(k−1) + pm(k−2) + · · ·+ 1).

De la misma forma, como pm−1 es divisor de pn−1, vemos que xpm−1−1 divide a xpn−1−1 en Fp[x].
De aqúı deducimos que el cuerpo de descomposición de xpm−1 − 1 en Fp[x] debe estar contenido en
el cuerpo de descomposición de xpn−1 − 1, que es Fq.

Por el Teorema 1.5 sabemos que este cuerpo de descomposición tiene pm elementos. Como tiene
todas las ráıces de xpm−1 − 1, no puede haber otro subcuerpo distinto de pm elementos, pues tendŕıa
otra ráız del polinomio.

Lo siguiente que estudiaremos serán dos maneras de representar cuerpos finitos que permiten su
uso en la práctica con mayor facilidad.

Teorema 1.7. El grupo multiplicativo de Fq, representado por F∗
q, es ćıclico.

Demostración. Dado que el caso q=2 es obvio, asumimos q ≥ 3. Sea h = q − 1 = pr11 pr22 . . . prmm su
descomposición en factores primos.

Para cualquier i con 1 ≤ i ≤ m, el polinomio xh/pi − 1 tiene como mucho h/pi ráıces en Fq. Por
tanto, como h/pi < h, debe haber algún elemento distinto de cero que no sea ráız de este polinomio
en Fq y que denotaremos ai.

Consideremos el elemento bi = a
h/(p

ri
i )

i , que cumple b
p
ri
i

i = aq−1
i = 1 y por tanto, el orden de bi

divide a prii , que al ser pi primo, debe ser de la forma psii con 0 ≤ si ≤ ri. Además

b
p
ri−1
i

i = a
h/pi
i ̸= 1

luego el orden de bi es p
ri
i . Finalmente construimos el elemento b = b1b2 · · · bm, en Fq, que tiene orden

h. Para ver esto utilizamos reducción al absurdo.

Supongamos que el orden de b es un divisor propio de h y por tanto divide a h/pi para algún
1 ≤ i ≤ m, digamos h/p1. Entonces

1 = bh/p1 = b
h/p1
1 b

h/p1
2 . . . bh/p1m .

Además, considerando 2 ≤ i ≤ m, se cumple que prii divide a h/p1 y como b
p
ri
i

i = 1, entonces b
h/p1
i = 1.

Por tanto 1 = bh/p1 = b
h/p1
1 y el orden de b1 divide a h/p1, pero el orden de b1 es pr11 , que es primo

con h/p1.

De esta forma llegamos a un absurdo y deducimos que el orden de b es h=q − 1, luego b es un
generador de F∗

q y este es un grupo ćıclico.

Este resultado nos permite escribir el cuerpo F∗
q como las potencias de cierto elemento. Como

estos elementos serán de gran interés, los incluiremos en la siguiente definición.

Definición 1.8. Un generador del grupo ćıclico F∗
q se denomina elemento primitivo de Fq.

Definimos ahora dos cuerpos que necesitamos para el siguiente teorema.
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Definición 1.9. Sea E un cuerpo y F uno de sus subcuerpos.

Consideramos α ∈ E y f(x) = a0 + a1x+ · · ·+ anx
n ∈ F [x] y definimos

f(α) = a0 + a1α + · · ·+ anα
n.

También definimos los cuerpos

F [α] = {f(α) : f(x) ∈ F [x]} y F (α) = {f(α)/g(α) : f(x), g(x) ∈ F [x], g(x) ̸= 0}.

Verificar que los conjuntos definidos son cuerpos es sencillo y por tanto se omite la comprobación.

El siguiente teorema nos permite representar un cuerpo de qn elementos como el cuerpo de q
elementos cociente con un polinomio irreducible de grado n.

Teorema 1.10. Sea E un cuerpo, F un subcuerpo, α ∈ E y sea p(x) ∈ F [x] un polinomio irreducible
de grado n con p(α) = 0. Entonces todo elemento en F [α] se puede representar de forma única como
a0+ a1α+ · · ·+ an−1α

n−1, con a0, . . . , an−1 ∈ F , y por tanto, si F es un cuerpo finito de q elementos,
|F [α]| = qn. Además F [α] ∼= F [x]/(p(x)).

Demostración. Sea p(x) = p0 + p1x+ · · ·+ pnx
n con p0, . . . , pn ∈ F, pn ̸= 0. Entonces

p(α) = p0 + p1α + . . .+ pnα
n = 0

y como pn tiene inverso, podemos escribir αn como combinación lineal de 1, α, . . . , αn−1.

Multiplicando p(α) por α, tenemos

p0α + p1α
2 + . . .+ pnα

n+1 = 0

y de la misma forma, podemos escribir αn+1 como combinación lineal de 1, α, . . . , αn, y desarrollando
αn, lo podemos escribir como combinación lineal de 1, α, . . . , αn−1.

Continuando de esta forma podemos escribir todas las potencias de α como combinación lineal
de 1, α, . . . , αn−1, y por tanto, se puede escribir aśı para todos los elementos en F [α].

Ahora veremos la unicidad de la expresión. Si un elemento de F [α] se puede representar como

a0 + a1α + · · ·+ an−1α
n−1 y b0 + b1α + · · ·+ bn−1α

n−1, con ai, bi ∈ F

entonces tenemos
a0 − b0 + (a1 − b1)α + · · ·+ (an−1 − bn−1)α

n−1 = 0.

Sea h(x) = a0 − b0 + (a1 − b1)x+ · · ·+ (an−1 − bn−1)x
n−1, entonces h(α) = 0. Por tanto α es una ráız

y (x− α)|h(x), (x− α)|p(x).
Como h(x) y p(x) comparten un divisor, mcd(h(x), p(x)) ̸= 1, además h(x) es de grado menor

que p(x) y por tanto h(x)=0. Es decir a0 = b0, ..., an−1 = bn−1 y tenemos la unicidad.

Con la unicidad es claro que la aplicación que manda un polinomio a0+a1x+ · · ·+an−1x
n+(p(x))

de F [x]/(p(x)) a a0 + a1α + . . .+ an−1α
n−1 en F [α] es un isomorfismo.

Veamos como aplicar este teorema para operar en un cuerpo finito.

Ejemplo 1.11. Sea x7 + x+ 1 ∈ F2[x] y α una de sus ráıces. Es fácil comprobar que es irreducible,
y entonces por el Teorema 1.10

F27 = F2[α] = {a0 + a1α + · · ·+ a6α
6 : a0, . . . , a6 ∈ F2}
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Entonces dos elementos αi y αj con 0 ≤ i, j ≤ 6 se pueden multiplicar de la siguiente forma. Sea
i+ j = 7 + k con 0 ≤ k ≤ 5, al ser α ráız de x7 + x+ 1 tenemos que α7 = α + 1 luego

αi · αj = αi+j = α7 · αk = (α + 1)αk = αk + αk+1.

Si queremos multiplicar dos elementos cualesquiera de F27 , siendo a0, . . . , a6, b0, . . . , b6 ∈ F2,

(a0 + a1α + · · ·+ a6α
6) · (b0 + b1α + · · ·+ b6α

6) =
∑
i+j≤6

aibjα
i+j +

∑
i+j=7+k
0≤k≤5

aibj(α
k + αk+1),

y obtenemos fácilmente de esta expresión un elemento de F27 expresado como c0 + c1α + · · · + c6α
6

con c0, . . . , c6 ∈ F2.

Ahora demostramos unos resultados que nos permitirán encontrar siempre un polinomio irredu-
cible de grado n en un cuerpo finito.

Teorema 1.12. Sea Fq el cuerpo finito de q elementos y Fr una extensión finita del cuerpo. Entonces
Fr es una extensión simple de Fq y cualquier elemento primitivo de Fr genera Fr sobre Fq.

Demostración. Sea α un elemento primitivo de Fr. Como Fr es una extensión de Fq, claramente
Fq(α) ⊆ Fr. Por otro lado, el 0 y todas las potencias de α pertenecen a Fq(α) y, al ser α generador
de Fr, esto implica que Fq(α) ⊇ Fr.

Con esto tenemos la igualdad Fq(α) = Fr y, al ser α un elemento primitivo genérico, el teorema
queda probado.

Recordamos la definición de polinomio mı́nimo, que nos será muy útil al ser un polinomio irredu-
cible que podemos encontrar en cualquier cuerpo finito.

Definición 1.13. Si α ∈ F es algebraico sobre K, entonces el polinomio mónico mα ∈ K[x] que
genera el ideal J = {f ∈ K[x] : f(α) = 0} está únicamente determinado y se llama el polinomio
mı́nimo de α sobre K. El grado de α sobre F se define como el grado de su polinomio mı́nimo mα,
o equivalentemente como [F (α) : F ].

Corolario 1.14. Para cada cuerpo finito Fq y n ∈ N existe un polinomio irreducible en Fq[x] de
grado n.

Demostración. Sea Fr la extensión de Fq de orden qn, luego [Fr : Fq] = n. Por el teorema previo,
Fq(α) = Fr para algún α ∈ Fr. Entonces el polinomio mı́nimo de α sobre Fq cumple las propiedades
necesarias, ya que es un polinomio irreducible en Fq[x] que es de grado n.
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Caṕıtulo 2

Propiedades de los polinomios
irreducibles sobre cuerpos finitos

Como hemos visto en la sección previa, los polinomios irreducibles son una herramienta clave
para construir y operar con cuerpos finitos. En este caṕıtulo estudiaremos algunas propiedades de los
polinomios irreducibles en cuerpos finitos que nos permitirán posteriormente construirlos y estudiarlos
en más detalle.

Veremos el comportamiento de las ráıces de un polinomio en su cuerpo de descomposición y
algunas propiedades básicas del orden de un polinomio. También estudiaremos cuántos polinomios
irreducibles de grado fijo hay en un cuerpo finito aprovechando las funciones ϕ de Euler y µ de
Möbius.

En la última sección definiremos los polinomios primitivos, un tipo especial de polinomios irredu-
cibles, veremos como caracterizarlos y estudiaremos cuando ciertos polinomios pueden ser primitivos.

2.1. Ráıces y orden de polinomios

Empezamos esta sección con resultados sobre las ráıces de un polinomio irreducible. Vamos a ver
que siempre podemos construir el resto de ráıces del polinomio si tenemos una de ellas, y su relación
con el cuerpo en el que están. Seguimos el caṕıtulo 2.2 del libro Introduction to finite fields and their
applications [10].

Primero introducimos un par de lemas que nos permiten estudiar cuál es el cuerpo de descompo-
sición de las ráıces.

Lema 2.1. Sea f ∈ Fq[x] un polinomio irreducible sobre un cuerpo finito Fq y sea α una ráız de f
en una extensión de Fq. Entonces, para un polinomio h ∈ Fq[x], se tiene que h(α) = 0 si y solo si f
divide a h.

Demostración. Sea a el coeficiente que acompaña al término de mayor grado de f y definimos
g(x) = a−1f(x). Entonces, g es un polinomio irreducible mónico en Fq[x] con g(α) = 0, y por lo tanto
es el polinomio mı́nimo de α sobre Fq.

De la definición de polinomio mı́nimo se obtiene directamente que f(α) = 0 si y solo si el polinomio
mı́nimo de α sobre Fq divide a f , y por esta propiedad el resultado es inmediato.

Lema 2.2. Sea f ∈ Fq[x] un polinomio irreducible sobre Fq de grado m. Entonces f(x) divide a
xqn − x si y solo si m divide a n.
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Demostración. Supongamos que f(x) divide a xqn−x. Sea α una ráız de f en su cuerpo de descom-
posición sobre Fq. Entonces α es ráız de xqn −x y por tanto pertenece a su cuerpo de descomposición,
que es Fqn .

De esto se deduce que Fq(α) es un subcuerpo de Fqn . Como [Fq(α) : Fq] = m, [Fqn : Fq] = n y
[Fqn : Fq] = [Fqn : Fq(α)] · [Fq(α) : Fq] claramente m divide a n.

Rećıprocamente, si m divide a n, entonces el Teorema 1.6 implica que Fqm es subcuerpo de Fqn .
Si α es una ráız de f en su cuerpo de descomposición sobre Fq, por el Teorema 1.10, [Fq(α) : Fq] = m
y Fq(α) ∼= Fqm .

Por la contención vista previamente, α ∈ Fqn , luego αqn = α, y se ve que α es una ráız de
xqn − x ∈ Fq[x]. Se deduce del lema previo que f(x) divide a xqn − x.

Utilizando estos lemas, conseguimos todas las ráıces de un polinomio irreducible a partir de una
dada.

Teorema 2.3. Si f es un polinomio irreducible en Fq[x] de grado m, entonces f tiene una ráız
α en Fqm. Además, todas las ráıces de f son simples y están dadas por los m elementos distintos
α, αq, αq2 , . . . , αqm−1

de Fqm.

Demostración. Sea α una ráız de f en su cuerpo de descomposición sobre Fq.

Entonces Fq(α) = Fqm por el Teorema 1.10, y α ∈ Fqm . Ahora mostramos que si β ∈ Fqm es una
ráız de f , entonces βq también lo es.

Escribimos f(x) = amx
m + · · · + a1x + a0 con ai ∈ Fq para 0 ≤ i ≤ m. Entonces, usando el

Lema 1.3 y que (a+ b)q = aq + bq, tenemos

f(βq) = amβ
qm+ · · ·+a1β

q +a0 = aqmβ
qm+ · · ·+aq1β

q +aq0 = (amβ
qm+ · · ·+a1β

q +a0)
q = f(β)q = 0

Aśı, los elementos α, αq, αq2 , . . . , αqm−1
son ráıces de f . Probaremos que son distintos por reducción

al absurdo.

Supongamos,que αqj = αqk para algunos enteros j y k con 0 ≤ j < k ≤ m − 1. Elevando esta
igualdad a la potencia qm−k, obtenemos

αqm−k+j

= α.

Se obtiene del Lema 2.1 que f(x) divide a xqm−k+j − x. Por el Lema 2.2, esto solo es posible si m
divide a m− k + j. Pero 0 < m− k + j < m, lo cual lleva a una contradicción.

Como todas las ráıces pertenecen a Fqm , es fácil comprobar que este cuerpo es el de descomposición
de f .

Corolario 2.4. Sea f un polinomio irreducible en Fq[x] de grado m. Entonces el cuerpo de descom-
posición de f sobre Fq es Fqm.

Demostración. El Teorema 2.3 muestra que f descompone completamente en Fqm . Si α es una
ráız de f en Fqm

Fq(α, α
q, αq2 , . . . , αqm−1

) = Fq(α) = Fqm .

La segunda igualdad se ve en el Teorema 1.10.
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Introducimos una definición para los elementos que aparecen en el teorema previo, independien-
temente de si son ráıces de un polinomio irreducible en Fq[x] o no, para estudiar su relación con el
cuerpo al que pertenecen, o su relación con otros polinomios.

Definición 2.5. Sea Fqm una extensión de Fq y sea α ∈ Fqm . Entonces se definen los conjugados de
α con respecto a Fq como los elementos, no necesariamente distintos, α, αq, αq2 , . . . , αqm−1

.

Empezamos estudiando la relación de los conjugados con su orden en un cuerpo.

Teorema 2.6. Los conjugados de α ∈ F∗
q con respecto a cualquier subcuerpo de Fq tienen el mismo

orden en el grupo F∗
q.

Demostración. Si p es la caracteŕıstica de Fq, tenemos que Fq = Fpm para algún m ∈ N, y por

tanto, los conjugados de α respecto a cualquier subcuerpo de Fq son de la forma αpk para algún
k ∈ N.

Para ver el orden de estos elementos, podemos considerar el siguiente isomorfismo.

λ : Fq → Fq

x 7→ xpr .

Al ser un isomorfismo de grupos, el orden de un elemento y su imagen son el mismo, y como esto
es válido para cualquier r ∈ N, todos los posibles conjugados de la forma αpk tienen el mismo orden
que α.

Si el orden de α es q − 1, y por tanto α es primitivo en Fq, el siguiente corolario es directo.

Corolario 2.7. Si α es un elemento primitivo de Fq, entonces también lo son todos sus conjugados
con respecto a cualquier subcuerpo de Fq.

Veamos un ejemplo concreto donde obtenemos los conjugados de un polinomio de grado 4 en
F2[x] y en F4[x].

Ejemplo 2.8. Sea α ∈ F16 una ráız de f(x) = x4 + x+ 1 ∈ F2[x]. Entonces los conjugados de α con
respecto a F2 son α, α2, α4 = α + 1, y α8 = α2 + 1, siendo cada uno de ellos un elemento primitivo
de F16. Los conjugados de α con respecto a F4 son α y α4 = α + 1.

Podemos determinar ciertos automorfismos de un cuerpo finito usando los elementos conjugados.

Sea Fqm una extensión de Fq. Por un automorfismo α de Fqm sobre Fq entendemos un automorfismo
de Fqm que fija los elementos de Fq. Es decir, requerimos que α sea una función biyectiva de Fqm en
śı mismo, con α(a+ b) = α(a) +α(b) y α(ab) = α(a)α(b) para todos a, b ∈ Fqm , y que α(a) = a para
todo a ∈ Fq.

Teorema 2.9. Los automorfismos de Fqm sobre Fq son exactamente σ0, σ1, . . . , σm−1, las aplicaciones

definidas por σj(a) = aq
j
para a ∈ Fqm y 0 ≤ j ≤ m− 1.

Demostración. Para cada σj y todos a, b ∈ Fqm se tiene claramente que σj(ab) = σj(a)σj(b), y
también σj(a+ b) = σj(a) + σj(b), ya que la caracteŕıstica del cuerpo es p y q = pn. Por lo tanto σj

es un endomorfismo de Fqm . Además, σj(a) = 0 si y solo si a = 0, por lo que σj es inyectiva.

Como Fqm es un conjunto finito con más elementos que Fq, σj es sobreyectiva y, por tanto, un
automorfismo de Fqm . Además, se tiene que σj(a) = a para todo a ∈ Fq por el Lema 1.3, por lo que
cada σj es un automorfismo de Fqm sobre Fq.
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Las aplicaciones σ0, σ1, . . . , σm−1 son distintas ya que toman valores distintos en un elemento
primitivo de Fqm .

Supongamos ahora que α es un automorfismo arbitrario de Fqm sobre Fq. Sea β un elemento
primitivo de Fqm y sea f(x) = xm + am−1x

m−1 + · · · + a0 ∈ Fq[x] su polinomio mı́nimo sobre Fq.
Entonces

0 = σ
(
βm + am−1β

m−1 + · · ·+ a0
)
= σ(β)m + am−1σ(β)

m−1 + · · ·+ a0,

y por tanto α(β) es ráız de f en Fqm . Como β también es ráız de f se sigue del Teorema 2.3 que

α(β) = βqj para algún j, 0 ≤ j ≤ m− 1.

Como β un elemento primitivo, para cada a ∈ Fqm existe un k ∈ N tal que a = βk, y como α es
un homomorfismo tenemos

σ(a) = σ(βk) = σ(β)k = (βqj)k = (βk)q
j

= aq
j

y obtenemos que α(a) = aq
j
.

Finalizamos esta parte con un resultado que relaciona el polinomio mı́nimo de una ráız con sus
conjugados, junto a otras propiedades de los polinomios mı́nimos que nos servirán para posteriores
resultados. Hemos obtenido este teorema de la sección 3.2 del libro Introduction to finite fields and
their applications [10].

Teorema 2.10. Sea α ∈ Fqn. Supongamos que el grado de α sobre Fq es d y sea mα el polinomio
mı́nimo de α sobre Fq. Entonces:

(i) mα es irreducible sobre Fq y deg(mα) = d divide a n.

(ii) f ∈ Fq[x] satisface f(α) = 0 si y solo si mα | f .

(iii) Si α es un elemento primitivo de Fqn, entonces deg(mα) = n.

(iv) Si f es un polinomio mónico irreducible de Fq[x] tal que f(α) = 0, entonces f = mα.

(v) mα divide a xqd − x y a xqn − x.

(vi) Las ráıces de mα son α, αq, . . . , αqd−1
y son todas distintas. Además mα es el polinomio mı́nimo

sobre Fq de todos estos elementos y αqd = α.

Demostración.

(i) Sabemos que mα debe ser irreducible por la definición de polinomio mı́nimo, ya que si otro
polinomio lo dividiese entonces mα no generaŕıa el ideal. La segunda parte se obtiene de que
n = [Fqn : Fq] = [Fqn : Fq(α)] · [Fq(α) : Fq] y de que [Fq(α) : Fq] es el grado de α por definición.

(ii) Se obtiene directamente de que el polinomio mı́nimo genera el ideal que vimos en su definición.

(iii) Si α es un elemento primitivo de Fqn , al ser Fqn extensión de Fq tenemos que Fqn = Fq(α) y
por tanto, [Fqn : Fq(α)] = 1. De la igualdad en (i) obtenemos que deg(mα) = n.

(iv) Por (ii) tenemos que mα | f y, al ser f irreducible, f = mα.

(v) Por el Lema 2.2, el polinomio mı́nimo mα divide a xqn − x si d | n y por (i) d divide a n. De la
misma forma, mα | xqd − x.
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(vi) Por el Teorema 2.3, α ∈ Fqd , luego αqd = α, y α, αq, . . . , αqd−1
son todas las ráıces de mα. Para

la segunda parte, si llamamos β a una de esas ráıces, aplicando (iv) sobre mβ, como mα(β) = 0
y mα es mónico e irreducible, tenemos mα = mβ para todas las ráıces.

Ahora que hemos estudiado los conjugados de una ráız, podemos emplearlo para definir y estudiar
el orden de un polinomio, que cuando es irreducible, podremos relacionar con el orden de sus ráıces.
Para esta breve parte, seguiremos el principio del caṕıtulo 3.1 del libro Introduction to finite fields
and their applications [10].

El siguiente lema justifica su definición.

Lema 2.11. Sea f ∈ Fq[x] un polinomio de grado m ≥ 1 con f(0) ̸= 0. Entonces existe un natural
e ≤ qm − 1 tal que f divide a xe − 1.

Demostración. El grupo Fq[x]/(f) tiene qm − 1 clases no nulas. Dado que f(0) ̸= 0, las clases
xj + (f), 0 ≤ j ≤ qm − 1 son todas no nulas, y existen enteros s y t con 0 ≤ s < t ≤ qm − 1 tales que
xt ≡ xs mod(f). Entonces se tiene que xt−s ≡ 1mod(f), luego f | (xt−s−1) con 0 < t−s ≤ qm−1.

Un método para determinar e es simplemente probar si f | xe − 1 para e = m,m + 1, . . . hasta
que se cumpla. Este no es un muy buen método, pero si el polinomio f es irreducible, obtendremos
resultados que reducen el número de posibles candidatos.

Definición 2.12. Sea f ∈ Fq[x] con f(0) ̸= 0. Entonces, el menor número natural e tal que f | (xe−1)
se llama el orden de f . Si f(0) = 0, entonces f es de la forma xhg con h ∈ N y g ∈ Fq[x], g(0) ̸= 0,
para un polinomio g único. El orden de f se define entonces como el orden de g.

El orden de un polinomio irreducible puede caracterizarse mediante el orden de sus ráıces.

Teorema 2.13. Sea f ∈ Fq[x] un polinomio irreducible sobre Fq de grado m ≥ 2. Entonces ord(f)
es igual al orden de cualquier ráız de f en F∗

qm.

Demostración. Vemos que f(0) ̸= 0, ya que de otro modo seŕıa divisible por x. Fqm es el cuerpo
de descomposición de f sobre Fq. Usando el Teorema 2.3 y el Teorema 2.6 vemos que las ráıces de f
tienen el mismo orden en F∗

qm .

Sea α ∈ Fqm una ráız de f , entonces, como f es el polinomio mı́nimo de α por una constante, por
el Lema 2.1, también cumple que αe = 1 si y solo si f | xe−1. El resultado se deduce de la definición
de ord(f) y del orden de α en el grupo F∗

qm .

Con esto podemos obtener una condición necesaria que debe cumplir el orden de un polinomio
irreducible.

Corolario 2.14. Si f ∈ Fq[x] es un polinomio irreducible sobre Fq de grado k, entonces ord(f) divide
a qk − 1.

Demostración. Si f = cx con c ∈ F∗
q, entonces ord(f) = 1. En caso contrario, el resultado se

deduce del teorema previo y de que el orden de cualquier elemento en F∗
qk

divide al orden del grupo
multiplicativo.

Veamos tres casos donde usamos estos teoremas para obtener el orden de un polinomio irreducible
más fácilmente.
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Ejemplo 2.15. 1. f = x3 + x + 1 ∈ F2[x] es irreducible. Entonces ord(f) debe ser un divisor de
23 − 1 = 7. Aśı que ord(f) = 7.

2. Si f ∈ F2[x] es irreducible de grado 4, entonces 4 ≤ ord(f) y ord(f) | 24 − 1 = 15. Por tanto,
ord(f) es igual a 5 o a 15, lo cual puede estudiarse mucho más rápido que todos los candidatos
de 4 a 15. Tenemos tres opciones de f :

f1 = x4 + x3 + x2 + x+ 1,
f2 = x4 + x+ 1,
f3 = x4 + x3 + 1.

Fácilmente, podemos obtener ord(f1) = 5 ya que x5 − 1 = (x− 1)(x4 + x3 + x2 + x+ 1).

Como estamos en F2[x], el único polinomio de grado 1 que queda es x. Entonces, se ve que ni
f2 ni f3 dividen a x5 − 1 y por tanto ord(f2) = ord(f3) = 15

3. De manera similar al primer ejemplo, todo polinomio irreducible en F2[x] de grado 5 debe tener
orden 31.

Los siguientes resultados nos muestran que podemos calcular el orden de un polinomio a partir de
los órdenes de los polinomios en los que descompone en su descomposición canónica. Primero vemos
un lema que relaciona la divisibilidad de un polinomio con la divisibilidad de su orden.

Lema 2.16. Sea c ∈ N y f ∈ Fq[x] un polinomio tal que f(0) ̸= 0 y ord(f) = e. Entonces f(x)
divide xc − 1 si y sólo si e divide c.

Demostración. Supongamos que e divide c. Por la definición de orden f(x) divide xe − 1, y como
e divide c tenemos que xe − 1 divide xc − 1, luego f(x) | xc − 1.

Ahora supongamos que f(x) divide xc−1. Por definición de orden, c ≥ e, aśı que podemos escribir
c = me + r con m ∈ N y 0 ≤ r < e. Entonces xc − 1 = (xme − 1)xr + (xr − 1) y como f(x) divide
xe − 1, también divide xme − 1, luego f(x) divide xr − 1, que por definición de orden solo es posible
para r = 0.

Por lo tanto, c = me, es decir, e | c.
Ahora, apoyándonos en este lema, conociendo el orden de un polinomio f(x) calculamos el orden

de sus potencias f(x)n, con n ∈ N.

Teorema 2.17. Sea g ∈ Fq[x] un polinomio irreducible sobre Fq con g(0) ̸= 0 y ord(g) = e, y sea
f = gb con b ∈ N. Sea t el menor natural tal que pt ≥ b, donde p es la caracteŕıstica de Fq. Entonces
ord(f) = ept.

Demostración. Sea c = ord(f). Claramente f(x) | xc−1 y por tanto g(x) | xc−1. Por el Lema 2.16,
deducimos que e | c.

Además, g(x) divide xe − 1 y por tanto, f(x) divide (xe − 1)b. Como b ≤ pt, f(x) también divide
(xe − 1)p

t
= xept − 1 y por el Lema 2.16, c divide ept.

Combinando que e divide c, c divide ept y p es primo, tenemos que c = epu con 0 ≤ u ≤ t. Ahora
observamos que, por el Corolario 2.14, e | qk−1 con k el grado de g(x), por lo que e no es un múltiplo
de p y entonces xe − 1 sólo tiene ráıces simples.

Por lo tanto, todas las ráıces de xepu − 1 = (xe − 1)p
u
tienen multiplicidad pu. Como c = epu y

f(x) = g(x)b tenemos que g(x)b divide xepu − 1, y por el Teorema[tal], todas las ráıces de g(x) son
simples. Luego todas las ráıces de g(x)b tienen multiplicidad b, y comparando las multiplicidades de
las ráıces con xepu − 1, tenemos que b ≤ pu.
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Como t era el menor natural tal que b ≤ pt entonces u ≥ t, de esto concluimos que u = t y, por
lo tanto, c = ept.

Vemos ahora que también podemos calcular el orden de un polinomio a partir de los órdenes de
su descomposición en polinomios coprimos dos a dos.

Teorema 2.18. Sean g1, . . . , gk polinomios no nulos coprimos dos a dos en Fq, y sea f = g1 · · · gk.
Entonces ord(f) es igual al mı́nimo común múltiplo de ord(g1), . . . , ord(gk).

Demostración. Si gi(0) = 0 para algún 1 ≤ i ≤ k, podemos escribir f(x) = xrh1(x) · · ·hk(x) con
r ∈ N tal que hi(0) ̸= 0 para todo 1 ≤ i ≤ k, y por la definición de orden, el orden de f y de h1 · · ·hk

es el mismo. Por tanto basta considerar el caso en que gi(0) ̸= 0 para todo 1 ≤ i ≤ k.

Sea e = ord(f), ei = ord(gi) para todo 1 ≤ i ≤ k, y c = mcm(e1, . . . , ek). Entonces, gi(x) | xei − 1
para todo 1 ≤ i ≤ k y xei − 1 | xc − 1. Por lo tanto gi(x) divide xc − 1 para todo 1 ≤ i ≤ k y como
son coprimos dos a dos, obtenemos que f(x) divide xc − 1 y por el Lema 2.16 e divide a c.

Por otro lado, f(x) divide xe − 1, luego gi(x) divide xe − 1 para todo 1 ≤ i ≤ k. De nuevo por el
Lema 2.16, deducimos que ei | e para todo 1 ≤ i ≤ k, y por lo tanto c divide a e.

Concluimos aśı que e = c.

Finalmente, combinando los dos teoremas previos, podemos obtener el orden de un polinomio a
partir de los órdenes de su descomposición canónica.

Teorema 2.19. Sea Fq un cuerpo finito de caracteŕıstica p, y sea f ∈ Fq[x] un polinomio de grado
mayor o igual que 1 tal que f(0) ̸= 0. Sea f = af b1

1 · · · f bk
k , con a ∈ Fq, b1 . . . bk ∈ N y f1, . . . fk ∈ Fq[x]

polinomios mónicos e irreducibles distintos, la descomposición canónica de f en Fq[x]. Entonces
ord(f) = ept donde e es el mı́nimo común múltiplo de ord(f1), . . . , ord(fk) y t el menor natural tal
que pt ≥ max{b1, . . . , bk}.

Demostración. Como f1, . . . fk son polinomios irreducibles distintos, claramente son coprimos
dos a dos y por tanto f b1

1 . . . f bk
k también son coprimos dos a dos. Por tanto podemos aplicar el

Teorema 2.18 a estos polinomios, y deducimos que ord(f) es igual al mı́nimo común múltiplo de
ord(f b1

1 ), . . . , ord(f bk
k ).

Aplicando el Teorema 2.17 a f bi
i tenemos que ord(f bi

i ) = ord(f)pti , con ti el menor natural tal
que pti ≥ bi, para todo 1 ≤ i ≤ k. Por lo tanto,

mcm{ord(f b1
1 ), . . . , ord(f bk

k )} = mcm{ord(f1), . . . , ord(fk)} · pmax{t1,...,tk} = ept

ya que claramente el máximo de t1, . . . , tk es el menor natural tal que pmax{t1,...,tk} ≥ max{b1, . . . , bk}.

2.2. Número de polinomios irreducibles

Ya hemos visto al final del primer caṕıtulo que siempre tenemos un polinomio irreducible de
cualquier grado en un cuerpo Fq. El objetivo de esta sección es determinar cuántos polinomios hay
para un grado fijo utilizando las funciones φ de Euler y µ de Möbius.

También obtendremos fórmulas expĺıcitas para el producto de polinomios irreducibles, que podŕıamos
factorizar para extraer todos los polinomios irreducibles de cierto grado. Para esta sección nos apo-
yaremos tanto en el caṕıtulo 13 del libro Applied Abstract Algebra [11] como en el 3.2 del libro
Introduction to finite fields and their applications [10].

Empezamos definiendo las funciones φ de Euler y µ de Möbius.
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Definición 2.20. Sea φ la función phi de Euler, donde φ(n) indica el número de enteros positivos
menores o iguales que n que son coprimos con n.

Si n = pt11 · · · ptkk , donde los pi son primos distintos, entonces

φ(n) = (p1 − 1)pt1−1
1 · · · (pk − 1)ptk−1

k = n

(
1− 1

p1

)
· · ·
(
1− 1

pk

)
.

Definición 2.21. La aplicación µ : N → {0, 1,−1} definida por

µ(n) =


1 si n = 1,

(−1)k si n es el producto de k primos distintos,

0 si n es divisible por el cuadrado de un primo.

se llama la función µ de Möbius.

Vemos una propiedad simple y que nos será muy útil de la función µ de Möbius.

Lema 2.22. ∑
d|n

µ(d) =

{
1 si n = 1,

0 si n > 1.

Demostración. Para verificar esto, si n > 1, sólo debemos considerar aquellos divisores positivos
d de n tales que µ(d) ̸= 0, es decir, para los cuales d = 1 o d es un producto de primos distintos.

Si p1, p2, . . . , pk son los primos distintos que dividen a n, entonces obtenemos:

∑
d|n

µ(d) = µ(1) +
k∑

i=1

µ(pi) +
∑

1≤i1<i2≤k

µ(pi1pi2) +
∑

1≤i1<i2<i3≤k

µ(pi1pi2pi3) + · · ·+ µ(p1p2 · · · pk)

= 1 +

(
k

1

)
(−1) +

(
k

2

)
(−1)2 + · · ·+

(
k

k

)
(−1)k = (1 + (−1))k = 0.

El caso n = 1 es trivial.

El siguiente teorema nos permitirá usar la función µ de Möbius para poder contar el número de
polinomios irreducibles de grado fijo.

Teorema 2.23. Fórmula de Inversión de Möbius.

(i) (Forma aditiva) Sean f, g : N → (A,+) aplicaciones de N en un grupo abeliano aditivo A.
Entonces:

g(n) =
∑
d|n

f(d) ⇐⇒ f(n) =
∑
d|n

µ
(n
d

)
g(d).

(ii) (Forma multiplicativa) Sean f, g : N → (A, ·) aplicaciones de N en un grupo abeliano
multiplicativo A. Entonces:

g(n) =
∏
d|n

f(d) ⇐⇒ f(n) =
∏
d|n

g(d)µ(n/d).
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Demostración. Empezamos por la implicación a la derecha de la forma aditiva.

Suponemos g(n) =
∑

d|n f(d) y, considerando el lema previo en la última igualdad, obtenemos∑
d|n

µ
(n
d

)
g(d) =

∑
d|n

µ(d)g
(n
d

)
=
∑
d|n

µ(d)
∑
c|n

d

f(c) =
∑
c|n

∑
d|n

c

µ(d)f(c) =
∑
c|n

f(c)
∑
d|n

c

µ(d) = f(n).

Las últimas igualdades se obtienen considerando que, para cada c fijo con c | n
d
, tenemos que d cumple

d | n
c
, y como c recorre todos los divisores de n, podemos reordenar la suma cambiando los papeles

de c y d.

Para el rećıproco, suponiendo g(n) =
∑

d|n f(d) y considerando una idea similar para reordenar
las sumas, tenemos

f(n) =
∑
d|n

µ
(n
d

)
g(d) =

∑
d|n

∑
c|d

µ

(
d

c

)
g(c) =

∑
c|n

g(c)
∑
d:c|d
d|n

µ

(
d

c

)
.

Consideramos el cambio de variable d = c · m, donde m | n
c
, y aplicando el lema previo, podemos

continuar la igualdad con ∑
c|n

g(c)
∑
m|n

c

µ(m) = g(n).

La forma multiplicativa es la misma que la aditiva pero reemplazando sumas por productos y pro-
ductos por potencias.

Ahora tenemos todas las herramientas necesarias para empezar a contar polinomios irreducibles.
Primero contamos los polinomios irreducibles mónicos con el grado y orden fijo.

Teorema 2.24. Sea e ∈ N un divisor de qm − 1. Entonces hay exactamente φ(e)
m

polinomios irredu-
cibles mónicos de grado m y orden e ≥ 2 sobre Fq.

Demostración. Si e es el orden asociado a un polinomio irreducible de grado m, por el Corola-
rio 2.14, tenemos que e | qm − 1. Entonces xe − 1 | xqm−1 − 1, y m es el menor natural que cumple
esto, ya que por el Corolario 2.4, sabemos que Fqm es el menor cuerpo de descomposición de estos
polinomios.

Primero veremos que los polinomios irreducibles mónicos de grado m y orden e son exactamente
los polinomios mı́nimos de las ráıces primitivas e-ésimas de la unidad.

Sea f es un polinomio irreducible mónico de grado m y orden e, y α una de sus ráıces. Si m ≥ 2,
por el Teorema 2.13, todas las ráıces de f son ráıces primitivas e-ésimas de la unidad. Sim = 1, usando
que f tiene orden e, es fácil ver que su ráız es una ráız primitiva e-ésima de la unidad. Finalmente,
por el Teorema 2.10(iv), tenemos que f = mα, el polinomio mı́nimo de una ráız primitiva e-ésima
de la unidad.

Ahora consideremos mα el polinomio mı́nimo asociado a una ráız primitiva e-ésima de la unidad,
α tiene orden e, y por el Teorema 2.10(vi) sabemos que todas sus ráıces son los conjugados de α.
Usando esto, por el Teorema 2.6, todas las ráıces de mα tienen orden e. Como m es el menor natural
que cumple xe − 1 | xqm−1 − 1, el cuerpo de descomposición de todas las ráıces de mα es Fqm y por
tanto el grado del polinomio mı́nimo es [Fq(α) : Fq] = [Fqm : Fq] = m.

Además, como todas sus ráıces tienen orden e, tenemos que e es el menor natural tal que mα |
xe − 1, y por tanto, e es el orden de mα. Aśı tenemos que este polinomio mı́nimo es un polinomio
irreducible mónico de grado m y orden e.
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Finalmente, como tenemos φ(e) ráıces primitivas e-ésimas de la unidad, tenemos φ(e) polinomios
mı́nimos asociados. Como ya hemos visto antes, todas las ráıces de estos polinomios son ráıces pri-
mitivas e-ésimas de la unidad, y por el Teorema 2.10(vi), las m ráıces de uno de estos polinomios

generan el mismo polinomio mı́nimo. Por tanto, tenemos φ(e)
m

polinomios mı́nimos distintos, es decir,

tenemos φ(e)
m

polinomios irreducibles mónicos de grado m y orden e.

Gracias a los resultados de las ráıces de polinomios irreducibles, sabemos cuáles son los polinomios
que dividen a xqn − x, y podemos emplear este hecho para dar su factorización en polinomios irre-
ducibles. Además, esto nos permitirá enumerar todos los polinomios irreducibles mónicos de grado
fijo.

Teorema 2.25. Se verifica la igualdad xqn − x =
∏

i fi, con el producto extendido sobre todos los
polinomios irreducibles mónicos distintos sobre Fq cuyos grados dividen a n.

Demostración. Por el Lema 2.2, todos los polinomios que dividen a xqn − x son los polinomios
mónicos irreducibles cuyos grados dividen a n sobre Fq, a excepción de productos por una constante.

Además, como la derivada de xqn − x es −1, el polinomio no tiene ráıces repetidas. Esto implica
que en su descomposición en polinomios irreducibles no hay ninguno repetido. Por último, como no
comparten ráıces, los polinomios son coprimos.

Entonces tenemos que estos polinomios son todos los que dividen a xqn − x, ninguno se repite y
todos son coprimos entre ellos. Luego el producto de todos ellos debe ser igual a xqn − x.

Corolario 2.26. Sea Nq(d) el número de polinomios irreducibles mónicos en Fq[x] de grado d. En-
tonces, para todo n ∈ N se tiene

qn =
∑
d|n

d ·Nq(d),

donde la suma se extiende sobre todos los divisores positivos d de n.

Demostración. El resultado se deduce del teorema previo comparando el grado de xqn − x con el
grado total de la factorización de xqn − x.

Aplicando las propiedades de la función µ de Möbius, del corolario anterior obtenemos una fórmula
expĺıcita para el número de polinomios irreducibles mónicos con grado fijo.

Teorema 2.27. El número de polinomios irreducibles mónicos de grado n sobre Fq está dado por

Nq(n) =
1

n

∑
d|n

µ(d)qn/d.

Demostración. El Corolario 2.26 nos dice que
∑

d|n d ·Nq(d) = qn. La forma aditiva de la fórmula

de inversión de Möbius, Teorema 2.23(i), nos da el resultado deseado considerando f(n) = n ·Nq(n)
y g(n) = qn para todo n ∈ N,∑

d|n

d ·Nq(d) = qn ⇔ n ·Nq(n) =
∑
d|n

µ
(n
d

)
· qd =

∑
d|n

µ(d) · qn/d.

La última igualdad se obtiene cambiando d por n
d
, ya que si d recorre todos los divisores de n, también

los recorre n
d
.

Con esto podemos calcular la cantidad de polinomios irreducibles en un cuerpo. Las cuentas son
sencillas para grados bajos y cuerpos pequeños, como por ejemplo, para polinomios de grado 10 en
F4.
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Ejemplo 2.28. El número de polinomios irreducibles mónicos en Fq[x] de grado 10 está dado por:

Nq(10) =
1

10

(
µ(1)q10 + µ(2)q5 + µ(5)q2 + µ(10)q

)
=

1

10

(
q10 − q5 − q2 + q

)
.

En el caso q = 4 tenemos que N4(10) =104.754. Luego hay 104.754 polinomios irreducibles mónicos
en F4[x] de grado 10.

Usando la fórmula obtenida en el teorema, calculamos con MAPLE la Tabla 2.1 con el número
de polinomios irreducibles mónicos en F2[x] para todos los grados menores o iguales que 18.

Grado n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
N2(n) 2 1 2 3 6 9 18 30 56 99 186 335 630 1161 2182 4080 7710 14532

Cuadro 2.1: Número de polinomios irreducibles mónicos en F2[x] de grado n.

Para verificar los cálculos podemos consultar la enciclopedia online de sucesiones de enteros OEIS
[14], una página creada y mantenida por N. J. A. Sloane donde se almacenan miles de sucesiones de
interés matemático.

Concretamente consultamos la sucesión A001037 en OEIS [14] y, considerando que su sucesión
comienza en n = 0, vemos que hemos obtenido los mismos resultados.

Y finalmente, podemos obtener una fórmula expĺıcita para el producto de estos polinomios.

Teorema 2.29. El producto I(q, n) de todos los polinomios irreducibles mónicos en Fq[x] de grado
n está dado por

I(q, n) =
∏
d|n

(
xqd − x

)µ(n/d)
=
∏
d|n

(
xqn/d − x

)µ(d)
Demostración. Agrupando los productos de polinomios de grado fijo d en I(q, d), el Teorema 2.25

implica que xqn − x =
∏

d|n I(q, d).

Ahora considaremos f(n) = I(q, n) y g(n) = xqn − x para todo n ∈ N y aplicando la fórmula de
inversión de Möbius multiplicativa del Teorema 2.5 obtenemos

xqn − x =
∏
d|n

I(q, d) ⇔ I(q, n) =
∏
d|n

(
xqd − x

)µ(n/d)
=
∏
d|n

(
xqn/d − x

)µ(d)
donde la última igualdad se obtiene cambiando d por n

d
por un razonamiento similar al usado en el

teorema previo.

Ejemplo 2.30. Para q = 2, n = 4 obtenemos:

I(2, 4) = (x16 − x)µ
(1)

(x4 − x)µ
(2)

(x2 − x)µ
(4)

=
x16 − x

x4 − x
=

x15 − 1

x3 − 1
= x12 + x9 + x6 + x3 + 1.

Todos los polinomios irreducibles mónicos en F2[x] de grado 4 pueden determinarse factorizando
este polinomio, y más generalmente, todos los polinomios irreducibles mónicos de grado n sobre Fq[x]
se pueden obtener factorizando I(q, n).

2.3. Polinomios primitivos

Si tenemos un cuerpo finito Fqn , siendo q la potencia de un primo y n ∈ N, representar el cuerpo
como Fq[x]/(f(x)), donde f(x) es un polinomio irreducible, tiene ventajas para operar eficientemente.
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Si además una de las ráıces de f(x) es primitiva en Fqn nos permite representar el cuerpo como
potencias de la ráız, y un polinomio con esta propiedad es de utilidad en ciertos campos, por ejemplo
la generación de números pseudoaleatorios, como se puede ver en el caṕıtulo 7.4 del libro Introduction
to finite fields and their applications [10]. Por lo tanto esta sección se dedica a estudiar este tipo de
polinomios.

Los siguientes resultados se han obtenido de la sección 7.3 del libro Finite fields and Galois rings
[17] y de la sección 3.1 del libro Introduction to finite fields and their applications [10].

Definición 2.31 ([17]). Sea f(x) un polinomio mónico de grado n ≥ 1 sobre Fq. Si alguna ráız de
f(x) es un elemento primitivo de Fqn entonces diremos que f(x) es un polinomio primitivo de grado
n sobre Fq.

Otra definición posible para los polinomios primitivos es la siguiente, encontrada por ejemplo en
el libro Introduction to finite fields and their applications [10]. Demostramos que son definiciones
equivalentes.

Lema 2.32. Un polinomio f(x) ∈ Fq[x] de grado n ≥ 1 es primitivo sobre Fq si y solo si es el
polinomio mı́nimo en Fq de un elemento primitivo de Fqn.

Demostración. Si f(x) es primitivo, supongamos que ξ es una ráız de f(x) y un elemento primitivo
de Fqn . Consideremosmξ el polinomio mı́nimo de ξ, y aplicando el Teorema 2.10 tenemos que el grado
de mξ es n y mξ | f . Como f(x) también es un polinomio mónico de grado n, mξ = f .

La otra implicación es inmediata.

El siguiente teorema recopila las propiedades más relevantes de los polinomios primitivos. El
resultado más importante es el que nos dice que todos los polinomios primitivos son irreducibles.

Teorema 2.33 ([17]). Para cada cuerpo finito Fq y n ∈ N existe un polinomio primitivo de grado n
en Fq. Además, todas las ráıces de un polinomio primitivo de grado n en Fq son elementos primitivos
de Fqn y todos los polinomios primitivos en Fq son irreducibles sobre Fq. Finalmente, el número de
polinomios primitivos de grado n en Fq es φ(qn − 1)/n.

Demostración. Sea Fq un cuerpo finito cualquiera y n ∈ N. Consideramos ξ un elemento primitivo
de Fqn y su polinomio mı́nimo mξ, que aplicando el Teorema 2.10(iii) vemos que es de grado n, luego
por el lema previo es un polinomio primitivo de grado n en Fq.

Ahora sea f(x) un polinomio primitivo de grado n en Fq. Por el lema previo es un polinomio
mı́nimo, luego es irreducible, y aplicando el Teorema 2.10(vi) y el Teorema 2.6 todas sus ráıces tienen
el mismo orden y por tanto son primitivas en Fqn .

Finalmente, como φ(qn − 1) es el número de elementos primitivos de Fqn , si consideramos el
polinomio mı́nimo en Fq asociado a un elemento primitivo ξ, por el Teorema 2.10 el polinomio
mı́nimo es el mismo para los n elementos primitivos ξ, ξq, . . . ξq

n−1
y es distinto del polinomio mı́nimo

asociado a otro elemento primitivo. Entonces, por el lema previo, el número de polinomios primitivos
de grado n sobre Fq es φ(q

n − 1)/n.

Ahora podemos obtener la primera caracterización de los polinomios primitivos, que nos dice que
un polinomio es primitivo si y solo si es de orden máximo. La condición f(0) ̸= 0 solo se necesita
para descartar el polinomio f(x) = x ∈ F2, que claramente no es primitivo.

Teorema 2.34 ([10]). Un polinomio f ∈ Fq[x] de grado m es primitivo sobre Fq si y solo si f es
mónico, f(0) ̸= 0, y ord(f) = qm − 1.

Demostración. Si f es primitivo sobre Fq, por Teorema 2.33 f es mónico e irreducible, luego
f(0) ̸= 0. Como f es irreducible y al ser primitivo tiene ráıces de orden qm − 1, por el Teorema 2.13
obtenemos que ord(f) = qm − 1.
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Para probar el rećıproco suponemos que f es mónico, f(0) ̸= 0, y ord(f) = qm − 1, claramente
ord(f) = qm − 1 implica que m > 1. Primero probamos la irreducibilidad de f por reducción al
absurdo, suponiendo que f es reducible sobre Fq. Si f es reducible o es una potencia de un polinomio
irreducible, o descompone como producto de dos polinomios coprimos de grado positivo.

Si f = gb con g ∈ Fq[x] irreducible sobre Fq, g(0) ̸= 0 y b ≥ 2, de acuerdo con el Teorema 2.17,
la caracteŕıstica de Fq divide ord(f) y por tanto divide qm − 1, lo cual es una contradicción.

En el segundo caso, tenemos f = g1g2 con g1, g2 ∈ Fq[x] mónicos, coprimos y de grados positivos
m1 y m2, respectivamente. Si ei = ord(gi) para i = 1, 2, entonces por el Teorema 2.18 se cumple
ord(f) ≤ e1e2. Además, por el Lema 2.11 se tiene ei ≤ qmi − 1 para i = 1, 2, y por lo tanto
ord(f) ≤ (qm1 − 1)(qm2 − 1) < qm1+m2 − 1 = qm − 1, lo cual es una contradicción.

Por lo tanto, f es irreducible sobre Fq, y se sigue del Teorema 2.13 que f tiene una ráız de orden
qm − 1 en F∗

qm y entonces es un polinomio primitivo sobre Fq.

Para la segunda caracterización de polinomios primitivos necesitamos el siguiente lema.

Lema 2.35 ([10]). Sea f ∈ Fq[x] un polinomio no constante con f(0) ̸= 0 y sea r el menor natural
tal que xr es congruente módulo f(x) a algún elemento de Fq. Si ese elemento es a ∈ F∗

q entonces
ord(f) = hr, donde h es el orden de a en F∗

q.

Demostración. Si ord(f) = e, por la Definición 2.12, f | xe − 1 luego xe ≡ 1mod f(x) y entonces
tenemos que e ≥ r. Podemos escribir e = sr + t con s ∈ N y 0 ≤ t < r.

Entonces,
1 ≡ xe ≡ xsr+t ≡ asxt mod f(x) , xt ≡ a−smod f(x)

y por la definición de r, esto solo es posible si t = 0.

La equivalencia queda as ≡ 1mod f(x), y al no depender de x, esto indica que as − 1 = 0, y
entonces s ≥ h y e = sr ≥ hr. Por otro lado, xhr ≡ ah ≡ 1mod f(x), y por lo tanto hr ≥ e, y hr = e.

Teorema 2.36 ([10]). El polinomio mónico f ∈ Fq[x] de grado m ≥ 1 es un polinomio primitivo
sobre Fq si y solo si (−1)mf(0) es un elemento primitivo de Fq y el menor r ∈ N tal que xr es
congruente módulo f(x) a algún elemento de Fq es r = (qm − 1)/(q − 1).

En el caso en que f sea primitivo sobre Fq, se cumple que xr ≡ (−1)mf(0)mod f(x).

Demostración. Si f es primitivo de grado m sobre Fq, entonces f tiene una ráız α ∈ Fqm , la cual
es un elemento primitivo de Fqm . Por el Teorema 2.10 f es el polinomio mı́nimo de α y podemos
descomponerlo como f(x) = (x − α)(x − αq) · · · (x − αqm−1

), lo que nos proporciona la siguiente
igualdad,

f(0) = (−1)mα · αq · · ·αqm−1

= (−1)mα
qm−1
q−1 .

Entonces tenemos que α
qm−1
q−1 = (−1)mf(0) ∈ Fq, y como α tiene orden qm−1, se deduce que el orden

de (−1)mf(0) en F∗
q es q − 1; es decir, (−1)mf(0) es un elemento primitivo de Fq.

Si consideramos el polinomio g(x) = x
qm−1
q−1 −α

qm−1
q−1 , tenemos que g(α) = 0 y por el Teorema 2.10

f | g. Luego x
qm−1
q−1 ≡ α

qm−1
q−1 mod f(x), que por definición de r implica que r ≤ qm−1

q−1
.

Por el Lema 2.35, como el orden máximo en F∗
q es q− 1, ord(f) ≤ (q− 1)r y por el Teorema 2.34

ord(f) = qm − 1, luego r ≥ qm−1
q−1

y entonces tenemos que r = qm−1
q−1

y el elemento que cumple las

condiciones del teorema es (−1)mf(0).

Rećıprocamente, supongamos que se satisfacen las condiciones del teorema. De la igualdad r =
qm−1
q−1

= q(qm−2 + · · · + 1) + 1 se deduce que r y q son coprimos, y por el Lema 2.35 tenemos que
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ord(f) = hr donde h es el orden de un elemento en F∗
q, es decir que h | q − 1, y por tanto h y q son

relativamente coprimos. De esto deducimos que ord(f) y q son coprimos.

Por el Teorema 2.19, si la descomposición canónica de f es f(x) = f b1
1 (x) · · · f bk

k (x), tenemos que
ord(f) = ept con e, p, t definidos de la forma indicada en el teorema. Al ser p la caracteŕıstica de Fq,
para que ord(f) y q sean coprimos, t debe ser 0. Entonces, por la definición de t, b1 = · · · = bk = 1
y por tanto f(x) = f1(x) · · · fk(x) donde fi, 1 ≤ i ≤ k, son polinomios mónicos e irreducibles en Fq.

Si mi = deg(fi), entonces ord(fi) | qmi − 1 para 1 ≤ i ≤ k, según el Corolario 2.14. Ahora bien,
para cualquier i ∈ {1, . . . , k} claramente qmi − 1 divide a

d =
(qm1 − 1) · · · (qmk − 1)

qk − 1
= (qmi − 1)(

qm1 − 1

q − 1
· · · q

mi−1 − 1

q − 1

qmi+1 − 1

q − 1
· · · q

mk − 1

q − 1
).

Por lo tanto ord(fi) divide d para 1 ≤ i ≤ k.

Del Lema 2.16 se deduce que fi(x) divide x
d−1 para todo i, y por consiguiente f(x) divide xd−1

y xd ≡ 1mod f(x). Si suponemos k > 1, entonces d < qm1+···mk−1
q−1

= r, lo cual contradice la definición
de r. Por lo tanto, k = 1 y f es irreducible sobre Fq.

Si β ∈ Fqm es una ráız de f , por un razonamiento similar al del principio de la demostración, f es
el polinomio mı́nimo de β y deducimos que βr = (−1)mf(0), y por tanto, xr ≡ (−1)mf(0)mod f(x).

Dado que el orden de (−1)mf(0) en F∗
q es q − 1, se deduce del Lema 2.35 que ord(f) = qm − 1, y

por lo tanto, f es primitivo sobre Fq según el Teorema 2.34.

Para la segunda parte de la sección obtenemos resultados que garantizan que ciertos tipos de
polinomios nunca pueden ser primitivos. Estos se han obtenido del art́ıculo de Li Yujuan, Wang
Huaifu y Zhao Jinhua [9], donde se muestra que hay interés reciente por este tipo de polinomios
debido a sus aplicaciones.

Teorema 2.37. Sean m,n ≥ 2 números naturales y p primo. Los trinomios de la forma xn + ax+ b
sobre Fpm no son primitivos si b1−nan ∈ F∗

pu, donde Fpu denota un subcuerpo propio de Fpm.

Como el art́ıculo requiere algo de estudio previo de Linear Feedback Shift Registers (LFSR), no
veremos la demostración del teorema, pero queda demostrado por los autores en el art́ıculo. Además,
nos permite demostrar el siguiente corolario solo utilizando resultados que ya conocemos.

Corolario 2.38. Sean m,n ≥ 2 números naturales y p primo. No existen trinomios primitivos de la
forma xn + jx+ λ ∈ Fpm [x] si j ∈ F∗

pu, con Fpu un subcuerpo propio de Fpm y n ≡ 1mod pm − 1.

Demostración. Sea xn+jx+λ un trinomio que cumple las condiciones del corolario, luego tenemos
que λ ∈ F∗

pm aśı que se tiene λpm−1 = 1, y n ≡ 1mod pm − 1.

Entonces λn−1 = 1 ∈ F∗
pu y, como j ∈ F∗

pu , tenemos que jn ∈ F∗
pu . Por lo tanto, λ1−njn ∈ F∗

pu y
aplicando el Teorema 2.37 obtenemos que xn + jx+ λ no es primitivo.

Si nos restringimos al caso en F4, obtenemos un resultado muy interesante. El teorema presentado
en el art́ıculo también se demostraba para los n ≡ 4mod 5, pero este caso requiere un desarrollo
previo de Linear Feedback Shift Registers (LFSR), luego para este trabajo nos limitamos a los casos
n ≡ 0, 1mod 3, que śı podemos demostrar con los resultados ya vistos.

Teorema 2.39. Si n ≡ 0, 1mod 3 entonces no existen trinomios primitivos de la forma xn + x+ α
sobre F4.

Demostración. Sea xn + x + α un trinomio en F4. Por el Teorema 2.36, si α no es un elemento
primitivo de F4 entonces xn + x+ α no es primitivo en F4, ya que en este cuerpo −1 = 1.

23



Ahora consideramos el caso en el que α es un elemento primitivo de F4, es decir, α es generador
de F∗

4 = {1, α, α+ 1} y por tanto α2 = α + 1.

Si n ≡ 1mod 3, es un caso particular del Corolario 2.38 con m = 2, p = 2, j = 1 y λ = α.

Si n ≡ 0mod 3, entonces n = 3z y el trinomio queda x3z + x+ α. Como

(α + 1)3 = α3 + 3α2 + 3α + 1 = 1 + (α + 1) + α + 1 = 1

claramente α+1 es ráız del trinomio. Luego el trinomio no es irreducible sobre F4 y por el Teorema 2.33
no puede ser primitivo sobre F4.
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Caṕıtulo 3

Construcción de polinomios irreducibles
sobre cuerpos finitos

Una vez vistas las propiedades de los polinomios irreducibles, nos centramos en construirlos de
forma expĺıcita viendo condiciones de irreducibilidad y exponemos algunos ejemplos en cuerpos finitos
concretos, como F2.

Empezaremos viendo criterios de irreducibilidad para cualquier polinomio sobre un cuerpo finito,
y luego desarrollaremos criterios para ciertos tipos de polinomios. Primero cubriremos los binomios
y trinomios que, al tener pocos coeficientes distintos de cero, son fáciles de manejar y permiten
construcciones expĺıcitas que siempre son irreducibles.

También estudiaremos los polinomios autorrećıprocos, estos se pueden conseguir a partir de cual-
quier polinomio aplicando un operador que, bajo ciertas condiciones, mantiene la irreducibilidad.

Finalmente, dada su gran importancia en varias áreas del álgebra, dedicamos una sección a
estudiar las propiedades de los polinomios ciclotómicos y su irreducibilidad.

3.1. Criterios de irreducibilidad

Si queremos estudiar apropiadamente los polinomios irreducibles, es necesario tener criterios para
saber si un polinomio dado es irreducible. En esta sección probaremos algunos criterios expuestos en
el caṕıtulo 10.1 del libro Finite fields and Galois rings [17].

Empezamos viendo tres condiciones necesarias para la irreducibilidad de polinomios.

Teorema 3.1. Sea f(x) un polinomio sobre Fq. Si f(x) es irreducible sobre Fq, entonces se cumplen
las siguientes condiciones.

(i) El término constante de f(x) es distinto de cero.

(ii) La suma de los coeficientes de f(x) es distinta de cero.

(iii) mcd(f(x), f ′(x)) = 1.

Demostración. Para los tres casos, probamos el contrarrećıproco.

(i) Claramente, si el término constante es cero entonces x divide a f(x).

(ii) Si los coeficientes de f(x) suman cero, entonces f(1) = 0 y por tanto x− 1 divide a f(x).
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(iii) Si el mcd(f(x), f ′(x)) ̸= 1, como el grado de f ′(x) es menor que el de f(x), tenemos que
mcd(f(x), f ′(x)) divide a f(x).

Para el caso q = 2, podemos obtener algunas condiciones más.

Corolario 3.2. Sea f(x) ∈ F2[x]. Si f(x) es irreducible sobre F2, entonces se verifica lo siguiente.

(i) El número de términos de f(x) con coeficiente igual a 1 es impar.

(ii) Existe un término xm en f(x) con coeficiente igual a 1 tal que 2 ∤ m.

Demostración.

(i) Es un caso particular del Teorema 3.1(ii) cuando el cuerpo es F2.

(ii) Lo vemos por reducción al absurdo. Si el polinomio es de la forma f(x) = 1 + xm1 + · · ·+ xmk

para algunos k,m1, . . . ,mk ∈ N tal que 2 | mi con i = 1, . . . , k, como estamos en un cuerpo de
caracteŕıstica 2,

f(x) = (1 + xm1/2 + · · ·+ xmk/2)2

con lo que f(x) es reducible y tenemos un absurdo.

Para los siguientes resultados, necesitamos definir el polinomio rećıproco.

Definición 3.3. Sea
f(x) = anx

n + an−1x
n−1 + · · ·+ a1x+ a0 ∈ F[x],

donde an ̸= 0. Entonces, el polinomio rećıproco f̃ de f se define como

f̃(x) = xnf

(
1

x

)
= a0x

n + a1x
n−1 + · · ·+ an−1x+ an.

Podemos estudiar la irreducibilidad del rećıproco o la del polinomio original indistintamente,
como muestra este teorema.

Teorema 3.4. Sea f(x) un polinomio de grado n > 1 con constante distinta de cero sobre Fq.
Entonces f(x) es irreducible si y solo si su polinomio rećıproco f̃(x) es irreducible.

Demostración. Vamos a demostrar que f(x) es reducible si y solo si f̃(x) es reducible.

Si f(x) es reducible, f(x) = g(x)h(x) para algunos g, h ∈ Fq[x] de grado mayor que 1. Entonces

xn · f
(
1

x

)
= xdeg g · g

(
1

x

)
· xdeg h · h

(
1

x

)
, f̃(x) = g̃(x)h̃(x)

y, como la constante de f(x) es distinta de cero, también lo son las de g(x) y h(x). Por tanto los
grados de sus polinomios rećıprocos siguen siendo mayor que 1 y f̃(x) es reducible.

Si f̃(x) es reducible, como la constante de f(x) es no nula, se ve claramente de la definición que
˜̃f(x) = f(x). Entonces, aplicando el razonamiento previo a f̃(x), f(x) es reducible.

De momento solo tenemos condiciones necesarias para saber si un polinomio es irreducible. El
siguiente resultado nos dará una condición necesaria y suficiente que nos reduce el problema de
irreducibilidad a calcular un mı́nimo común divisor para una lista de polinomios.
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Teorema 3.5. Sea f(x) ∈ Fq[x] un polinomio de grado n. Entonces f(x) es irreducible sobre Fq si
y solo si se cumplen las siguientes condiciones.

(i) El polinomio f(x) divide a xqn − x.

(ii) Para todo número natural i < n tal que i | n se tiene que mcd(f(x), xqi − x) = 1.

Demostración. Si f(x) es irreducible sobre Fq, por el Lema 2.2 se cumplen (i) y (ii).

Si f(x) no es irreducible sobre Fq, entonces tiene un factor irreducible g(x) sobre Fq. Supongamos
que (i) se cumple y que deg(g(x)) = m, veamos que entonces (ii) no se cumple.

Sea α una ráız de g(x), entonces es ráız de f(x) y de xqn − x. Como αqn − α = 0 tenemos que
α ∈ Fqn y como g(x) es un polinomio irreducible de grado m en Fq[x], aplicando el Teorema 1.10
podemos escribir Fqm = Fq[α]. Entonces Fqm ⊆ Fqn , lo que implica por el Teorema 1.6 que m | n.

Por tanto aplicando otra vez el Lema 2.2 se tiene que g(x) divide a (xqm − x), y por tanto
mcd(f(x), xqm − x) ̸= 1 para algún m < n tal que m | n.

3.2. Binomios

En esta sección caracterizaremos todos los binomios irreducibles siguiendo el apartado 10.2 del
libro Finite fields and Galois rings [17]. Empezamos viendo unos lemas que nos lo permitirán.

Recordamos que, para cualquier m natural, Z∗
m denota el grupo multiplicativo de todas las clases

módulo m cuyos representantes son coprimos con m, y ordm(a) denota el orden de la clase ā en el
grupo Z∗

m.

Lema 3.6. Sean q ≥ 2 y m ≥ 2 enteros coprimos, y sea ordm(q) = l. Sea t ≥ 2 un entero tal que se
cumplen las siguientes condiciones.

(i) Todo divisor primo de t divide a m, pero no a (ql − 1)/m.

(ii) Si 4 | t, entonces 4 | (ql − 1).

Entonces ordmt(q) = lt.

Demostración. Podemos considerar el ordmt(q) ya que t divide a m y por tanto es coprimo con q,
luego mt es coprimo con q.

Razonaremos por inducción sobre el número de divisores primos de t, contándolos el número de
veces que indique su multiplicidad.

Supongamos que el número de divisores es 1, entonces t es primo. Como ordm(g) = l, ql ≡ modm
y entonces d = ql−1

m
∈ Z. Considerando ql = 1 + dm tenemos que

qlt = (1 + dm)t = 1 +

(
t

1

)
dm+

(
t

2

)
(dm)2 + · · ·+

(
t

t− 1

)
(dm)t−1 + (dm)t.

Claramente mt | tmd y mt |
(
t
i

)
(md)i cuando i = 2, . . . , t ya que t | m.

Por tanto qlt ≡ 1mod(mt). Consideramos ordm t(q) = k,entonces qk ≡ 1mod(mt) y k | lt. De
aqúı obtenemos que qk ≡ 1modm, y como ordm(q) = l, tenemos que l | k. Como t es primo y
l | k, k | lt, entonces k = l o k = lt.
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Suponemos que k = l, entonces ql ≡ 1mod(mt),mt | ql − 1, y como ql − 1 = md tenemos t | ql−1
m

.
Esto contradice (i), y por tanto, k = lt.

Ahora suponemos que el lema es cierto para enteros con n − 1 divisores primos, y sea t con n
divisores primos que cumple (i) y (ii). Veamos que ordmt(gt) = lt.

Tenemos que t tiene al menos 2 divisores primos. Consideramos t = rt0 con r divisor primo de t.
Podemos aplicar a r el razonamiento previo ya que lo único que pedimos es que sea primo y divida
a m, y r lo cumple. Entonces ordmr(q) = lr.

Si probamos que se cumple (i) y (ii) para ordmr(q) = lr entonces por la hipótesis de inducción
tenemos que ordmrt0(q) = lrt0, es decir, ordmt(q) = lt.

(ii) Si 4 | t0, entonces 4|t y por (ii) 4 | ql−1, además ql−1 | qlr−1 y tenemos que 4 | t0 ⇒ 4 | qlr−1.

(i) Sea r0 factor primo de t0, entonces lo es de t y por (i) tenemos que r0 | m y deducimos que

r0 | mr. Falta ver que r0 ∤ qlr−1
mr

.

Vemos que qlr − 1 = c(ql − 1) con c = ql(r−1) + · · · + ql + 1. Sea d0 = c · ql−1
mr

= cd
r
. Como r es

divisor primo de t, r | m, además ql ≡ 1mod(m), y de esto obtenemos que ql ≡ 1mod(r). Por
tanto

c ≡ ql(r−1) + · · ·+ ql + 1 ≡ 1 + · · ·+ 1 ≡ r ≡ 0mod(r), c/r ∈ Z.

Reescribimos lo que queremos conseguir,

qlr − 1

mr
=

c(ql − 1)

mr
=

ql − 1

m
· c
r
,

como r0 es primo, si r0 ∤ c
m

y r0 ∤ ql−1
m

entonces r0 ∤ c
m
· ql−1

m
. Ya que r0 es divisor primo de t,

tenemos por (i) que r0 ∤ ql−1
m

, veamos que r0 ∤ c
m
. Dado que r0 | m y ql − 1 = md, entonces

ql ≡ 1mod(r0) y c ≡ ql(r−1) + · · ·+ ql + 1 ≡ 1 + · · ·+ 1 ≡ rmod(r0).

Si r0 ̸= r, como ambos son primos, de la igualdad anterior obtenemos c
r
≡ 1mod(r0), luego

r0 ∤ c
r
.

Si r0 = r, como ql ≡ 1mod(r), para cierto b ∈ Z tenemos ql − 1 = br y ql − 1 ≡ brmod(r2).
Entonces

qlj ≡ (1 + br)j ≡ 1 +

(
j

1

)
br +

(
j

2

)
(br)2 + · · ·+

(
j

j

)
(br)j ≡ 1 + jbrmod(r2) para todo j ∈ N,

c ≡ q(r−1)l + q(r−2)l + · · ·+ ql + 1 ≡ r + br

(
r−1∑
j=1

j

)
≡ r + br · r(r − 1)

2
mod(r2).

Se sigue que
c

r
≡ 1 + b

r(r − 1)

2
mod(r).

Si r ̸= 2, como es primo entonces es impar, y c
r
≡ 1 + br r−1

2
≡ 1mod(r), lo que implica que,

como r = r0, r0 ∤ c
r
.

Si r = 2 entonces 4 = rr0, rr0 | rt0 y rt0 = t, aśı que 4 | t. Por (ii) 4 | (ql − 1). Pero en este
caso c = ql + 1 = ql − 1 + 2, c ≡ 2mod(4), c

2
≡ 1mod(4) y finalmente c

2
≡ 1mod(2) implica

que, como r0 = 2, r0 ∤ c
2
.
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Corolario 3.7. Sea q la potencia de un primo y m ≥ 2 un entero tal que m | (q − 1). Sea t ≥ 2 un
entero que satisface las siguientes dos condiciones.

(i) Todo divisor primo de t divide a m, pero no a (q − 1)/m.

(ii) Si 4 | t entonces 4 | (q − 1).

Entonces ordmt(q) = t.

Demostración. Claramente, mcd(q, q − 1) = 1. Como m | (q − 1), tenemos mcd(q,m) = 1 y
q−1 = km para algún k ∈ Z. Luego q ≡ 1modm y ordm(q) = 1. Por lo tanto, el corolario se obtiene
inmediatamente aplicando el Lema 3.6.

Con esta demostración podremos saber cuándo un binomio es irreducible en cualquier cuerpo.

Teorema 3.8. Sea t > 2 un entero y a ∈ F∗
q con ord(a) = m > 1. Entonces, el binomio xt − a es

irreducible en Fq[x] si y solo si se cumplen las siguientes condiciones.

(i) Cada factor primo de t divide a m, pero no a (q − 1)/m.

(ii) Si 4 | t entonces 4 | (q − 1).

Demostración. Observamos que aq−1 = 1 y ord(a) = m implica que m | q − 1 y por tanto q−1
m

es
un número natural. Además, como m > 1, tenemos que q > 2.

Primero suponemos que se verifican (i) y (ii), y probamos que xt − a es irreducible. Sea θ ráız de
xt − a en su cuerpo de descomposición, mθ su polinomio mı́nimo sobre Fq y d el grado del polinomio
mı́nimo.

Por el Teorema 2.10(ii) tenemos que mθ | xt − a y por el Teorema 2.10(vi), mθ(x) = (x− θ)(x−
θq) · · · (x− θq

d−1
) y θq

d
= θ.

Ahora veamos que θ tiene orden mt. Sabemos que θmt = am = 1, y si ord(θ) < mt, debe haber
un divisor primo de mt tal que θmt/r = 1. Como r es primo y r | mt, entonces r | t o r | m, y por (i),
si r | t, tenemos que r | m y podemos escribir

am/r = (θt)m/r = θmt/r = 1.

Esto implica que el orden de a no es m, lo que nos lleva a un absurdo y por tanto, ord(θ) = mt.

Sabiendo que su orden es mt, tenemos que θq
d−1 = 1 ⇔ mt | qd − 1 ⇔ qd ≡ 1mod(mt), y como d

es el menor natural tal que θq
d
= θ también es el menor natural tal que qd ≡ 1mod(mt) y entonces

d = ordmt(q).

Como m | q−1 y t cumple (i) y (ii), podemos aplicar el Corolario 3.7 y tenemos que t = ordmt(q).
Entonces deg(mθ) = t, y como mθ | xt − a, tenemos que xt − a es irreducible.

Ahora probaremos el contrarrećıproco.

Primero supongamos que (i) no se cumple. Entonces, existe un factor primo r de t que divide a
(q − 1)/m o que no divide a m. Consideramos t = rt1 para algún t1 ∈ N.

Si r divide a q−1
m

, tenemos rs = (q − 1)/m para algún s ∈ N. Tenemos que el subgrupo de F∗
q

formado por las r-ésimas potencias, F∗r
q = {xr : x ∈ F∗

q}, claramente tiene orden (q − 1)/r = ms.
Por lo tanto este contiene al subgrupo de orden m generado por a. Por pertenecer a al subgrupo de
r-ésimas potencias, a = br para algún b ∈ F∗

q, y aśı xt − a = xrt1 − br tiene el factor xt1 − b y por
tanto es reducible.
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Si r no divide ni a (q − 1)/m ni a m, r no divide a q − 1. Además, como r es primo y q − 1 > 1,
r ̸= q − 1, tenemos q − 1 ̸= r y por tanto son coprimos. Entonces podemos considerar un r1 ∈ N tal
que r1r ≡ 1mod(q − 1), y aśı xt − a = (xrt1 − ar1r, que tiene el factor xt1 − ar1 .

Finalmente, supongamos que se verifica (i) pero no (ii). Entonces t = 4t2 para algún t2 > 0 y
4 ∤ (q − 1). Por lo tanto, 2 es un divisor primo de t. Por la condición (i), 2 | m, aśı que m debe ser
par. Como m | (q − 1), q debe ser impar. Pero 4 ∤ (q − 1), entonces 4 ∤ m y m/2 es impar. Por lo
tanto ord(a) = m implica am/2 = −1, y aśı xt − a = xt + a(m/2)+1 = xt + ad, donde d = (m/2) + 1 es
par. Entonces ad/2/2 ∈ F∗

q, y por tanto (ad/2/2)q−1 = 1 y (ad/2/2)q+1 = (ad/2/2)2. Como q es impar y
4 ∤ (q − 1), 4 | (q + 1). Entonces, tenemos

ad = 4(ad/2/2)2 = 4(ad/2/2)q+1 = 4c4 con c = (ad/2/2)(q+1)/4,

lo cual conduce a la factorización

xt − a = xt + ad = x4t2 + 4c4 = (x2t2 + 2cxt2 + 2c2)(x2t2 − 2cxt2 + 2c2).

De este criterio obtenemos un corolario que nos permite construir un binomio irreducible.

Corolario 3.9. Sea r un divisor primo de q−1 y k un número natural. Sea a ∈ F∗
q y ord(a) = m > 1

en F∗
q. Suponemos que r no divide a (q− 1)/m y además si r = 2 y k ≥ 2, suponemos que 4 | (q− 1).

Entonces xrk − a es irreducible sobre Fq.

Demostración. Sea ord(a) = m en F∗
q, esto implica que m | (q − 1). Sea t = rk, entonces el único

divisor primo de t es r. Como r | (q − 1) y r ∤ (q − 1)/m, deducimos que r | m. Por lo tanto, la
condición (i) del Teorema 3.8 se cumple.

Si 4 | t entonces r = 2 y k ≥ 2, y por hipótesis, 4 | (q − 1), aśı que la condición (ii) también se
cumple. Aplicando el Teorema 3.8 tenemos que xrk − a es irreducible sobre Fq.

Ahora veremos como usar este corolario para construir binomios irreducibles.

Ejemplo 3.10. Empleando el corolario previo, podemos deducir que, para cualquier k natural,

(a) x2k + 2 y x2k − 2 son irreducibles sobre F5.

(b) x3k + 3, x3k − 3, x3k + 2 y x2k − 2 son irreducibles sobre F7.

(c) x3k + α es irreducible sobre F4, donde F4 = F2(α) y α es una ráız de x2 + x+ 1.

A partir de (c) deducimos que

(d) x2·3k + xk + 1 = (x3k + α)(x3k + α2) es irreducible sobre F2.

3.3. Trinomios

Continuamos estudiando la irreducibilidad de trinomios, siguiendo el caṕıtulo 10.3 del libro Finite
fields and Galois rings [17]. De forma similar a la sección de binomios, obtendremos una caracteri-
zación para ciertos trinomios irreducibles y una construcción expĺıcita de éstos.

Empezamos definiendo la función traza, necesaria para caracterizar los trinomios.
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Definición 3.11. Sea q la potencia de un primo y n un entero positivo. Si α es un elemento de Fqn ,
su traza relativa a Fq se define como

TrFqn/Fq(α) =
n−1∑
i=0

αqi ,

Si Fqn y Fq están claros por el contexto, escribimos Tr(α).

Ahora vemos sus propiedades básicas.

Lema 3.12. Sea α ∈ Fqm, f el polinomio mı́nimo de α sobre Fq[x], de grado d, y g(x) = f(x)m/d =
xm + am−1x

m−1 + · · ·+ a0. Entonces TrFqm/Fq(α) = −am−1, y en particular, TrFqm/Fq(α) ∈ Fq.

Demostración. Como solo usaremos estos cuerpos para la traza, la denotaremos Tr(α). Primero,
por el Teorema 2.10(i), vemos que d | m, y por tanto g(x) = f(x)m/d ∈ Fq[x]. Además, por el

Teorema 2.10(vi), las ráıces de f son α, αq, . . . , αqd−1
y αqd = α. Por tanto, los conjugados de α

respecto Fq son las ráıces de f repetidas m/d veces.

Por lo tanto,

g(x) = f(x)m/d = (x− α)m/d(x− αq)m/d · · · (x− αqd−1

)m/d = (x− α)(x− αq) · · · (x− αqm−1

),

y una comparación de los coeficientes con g(x) = xm + am−1x
m−1 + · · · + a0 muestra que Tr(α) =

−am−1. En particular, Tr(α) es siempre un elemento de Fq.

Teorema 3.13. La función traza TrFqm/Fq , que escribiremos Tr, satisface las siguientes propiedades:

(i) Tr(a+ b) = Tr(a) + Tr(b) para todo a, b ∈ Fqm;

(ii) Tr(ca) = cTr(a) para todo c ∈ Fq, a ∈ Fqm;

(iii) Tr(a) = ma para todo a ∈ Fq;

(iv) Tr(aq) = Tr(a) para todo a ∈ Fqm;

(v) Si la caracteŕıstica de Fq es p, Tr(ap) = (Tr(a))p para todo a ∈ Fqm.

Demostración.

(i) Para a, b ∈ Fqm , si la caracteŕıstica del cuerpo es p, usamos que (a+ b)p
k
= ap

k
+ bp

k
para todo

k ∈ N, y que q = pn para algún n ∈ N, y obtenemos

Tr(a+b) = (a+b)+(a+b)q+· · ·+(a+b)q
m−1

= a+aq+· · ·+aq
m−1

+b+bq+· · ·+bq
m−1

= Tr(a)+Tr(b).

(ii) Para c ∈ Fq, tenemos cq
j
= c para todo j ∈ N por el Lema 1.3. Por lo tanto,

Tr(ca) = (ca) + (ca)q + · · ·+ (ca)q
m−1

= c(a+ aq + · · ·+ aq
m−1

) = cTr(a).

(iii) Similarmente a (ii), si a ∈ Fq, a
qj = a para todo j ∈ N y por tanto,

Tr(a) = a+ aq + · · ·+ aq
m−1

= a+ a+ · · ·+ a = ma.
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(iv) Para a ∈ Fqm , tenemos aq
m
= a por el Lema 1.3. Por lo tanto,

Tr(aq) = aq+(aq)q+· · ·+(aq)q
m−1

= aq+aq
2

+· · ·+aq
m−1

+aq
m

= aq+aq
2

+· · ·+aq
m−1

+a = Tr(a).

(v) Como a pertenece a un cuerpo de caracteŕıstica p podemos escribir

Tr(ap) =
n−1∑
i=0

(αp)q
i

=
n−1∑
i=0

(αqi)p = (
n−1∑
i=0

αqi)p = (Tr(a))p.

Finalmente, vemos la propiedad de transitividad de la traza.

Teorema 3.14. Sea K un cuerpo finito, F una extensión finita de K y E una extensión finita de
F . Entonces, para todo a ∈ E se cumple

TrF/K(TrE/F (a)) = TrE/K(a).

Demostración. Si a ∈ E, por Lema 3.12, sabemos que TrE/F (a) ∈ F , y entonces aplicarle TrF/K

a ese elemento tiene sentido.

Sea K = Fq, [F : K] = m y [E : F ] = n, de modo que F = Fqm , [E : K] = [E : F ][F : K] = mn.
Entonces, para a ∈ E, tenemos

TrF/K(TrE/F (a)) =
m−1∑
i=0

(TrE/F (a))
qi =

m−1∑
i=0

(
n−1∑
j=0

aq
mj

)qi

=
m−1∑
i=0

n−1∑
j=0

aq
mj+i

=
mn−1∑
k=0

aq
k

= TrE/K(a).

Ahora que hemos definido la traza, podemos presentar un primer criterio de irreducibilidad.

Teorema 3.15. Sea q = pn, donde p es un número primo y n un número natural. Entonces el
trinomio

xp − x− b, b ∈ Fq,

es irreducible sobre Fq si y solo si TrFq/Fp(b) ̸= 0.

Demostración. Sea θ una ráız de xp − x− b. Entonces θp = θ + b.

Por inducción probamos que

θp
i

= θ + b+ bp + · · ·+ bp
i−1

, i = 1, 2, . . . .

El caso i = 1 lo hemos visto antes.

Si la ecuación se verifica para i− 1, tenemos que

θp
i−1

= θ + b+ bp + · · ·+ bp
i−2

y, elevando la ecuación a p,

θp
i

= (θ + b+ bp + · · ·+ bp
i−2

)p = θp + bp + · · ·+ bp
i−1

= θ + b+ bp + · · ·+ bp
i−1

.

Las últimas igualdades se obtienen usando que el cuerpo es de caracteŕıstica p.
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En particular,
θq = θp

n

= θ + b+ bp + · · ·+ bp
n−1

= θ + TrFq/Fp(b).

Con esto podemos ver una implicación por el contrarrećıproco. Supongamos que TrFq/Fp(b) = 0,
entonces θq = θ, es decir, todas las ráıces de xp − x− b están en Fq. En consecuencia, xp − x− b es
un producto de factores lineales en Fq[x], y por tanto es reducible.

Ahora vemos la otra implicación, suponiendo que TrFq/Fp(b) ̸= 0. Sea τ = TrFq/Fp(b), entonces
τ ∈ F∗

p por resultado de traza (citar) y, como bq = b,

θq
i

= θp
ni

= θ + iτ, i = 1, 2, . . . , p− 1; θq
p

= θ + pτ = θ.

Aśı, θ tiene exactamente p conjugados distintos sobre Fq y por el Teorema 2.10(vi), el polinomio
mı́nimo de θ sobre Fq tiene grado p. Finalmente, por el Teorema 2.10(ii), mθ | xp − x− b, y al tener
ambos el mismo grado, xp − x− b debe ser irreducible.

De este teorema es inmediato que xp − x− b es irreducible en Fp para cualquier b ∈ F∗
p.

Ahora introducimos los polinomios linealizados, que se usarán para simplificar posteriores demos-
traciones.

Definición 3.16. Sea q una potencia de un número primo p. Un polinomio de la forma

l(x) = lvx
pv + lv−1x

pv−1

+ · · ·+ l1x
p + l0x,

donde v ∈ N, li ∈ Fq para i = 0, 1, 2, . . . , v, se llama polinomio linealizado sobre Fq.

Si l(x) es un polinomio linealizado sobre Fq y b ∈ Fq, entonces a l(x)−b se le denomina polinomio
af́ın sobre Fq.

Vemos también algunas de sus propiedades básicas, que nos servirán más adelante.

Lema 3.17. Sea l(x) un polinomio linealizado sobre Fq cuerpo de caracteŕıstica p. Entonces

l(x+ y) = l(x) + l(y), ∀x, y ∈ Fq,

l(cx) = c · l(x), ∀x ∈ Fq, c ∈ Fp.

Rećıprocamente, si un polinomio l(x) ∈ Fq[x] cumple ambas condiciones, entonces l(x) es un polino-
mio linealizado sobre Fq.

Demostración. La primera propiedad es evidente si vemos que (x + y)p
n
= xpn + yp

n
para todo

n ∈ N. Es sencillo verlo por inducción.

Si n = 1, como estamos en un cuerpo de caracteŕıstica p, (x+ y)p = xp + yp.

Si es cierto para n− 1, tenemos

(x+ y)p
n

= ((x+ y)p
n−1

)p = (xpn−1

+ yp
n−1

)p = xpn + yp
n

Para ver la segunda propiedad, basta tener en cuenta que cp
n
= c para todo n ∈ N, ya que c ∈ Fp.

Ahora supongamos que l(x) ∈ Fq[x] es un polinomio que cumple ambas propiedades. Lo evaluamos
en x+ y,

l(x+ y) = l0 + l1(x+ y) + l2(x+ y)2 + · · ·+ lv(x+ y)v

= l0 + l1x+ l2x
2 + · · ·+ lvx

v + l0 + l1y + l2y
2 + · · ·+ lvy

v + p(x, y) = l(x) + l(y) + p(x, y),
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donde p(x, y) ∈ Fq[x, y] es un polinomio de términos Ci,k · lk ·xi ·yk−i con i = 1, . . . , k−1, k = 2, . . . , v,
Ci,k constantes que dependen de i y k, y término independiente −l0.

De la ecuación previa deducimos que si l(x+ y) = l(x)+ l(y), p(x, y) debe ser 0, y entonces tanto
el término constante como Ci,k · lk · xi · yk−i serán igual a 0. Si Ci,k ̸= 0 para algún i, necesariamente
lk = 0. Como el polinomio está formado por los términos que sobran al desarrollar la ecuación
anterior, sabemos que Ci,k = 0 para todo i solo si (x+ y)k = xk + yk, es decir, solo cuando k sea una
potencia de p.

Por tanto tenemos que lk = 0 cuando k ̸= 1, p, p2, . . . y obtenemos un polinomio de la forma
l(x) = l1x+ lpx

p + · · ·+ lptx
pt , que es linealizado.

Lema 3.18. Supongamos que el polinomio linealizado l(x) sobre Fq no tiene ráıces distintas de cero
en Fq. Entonces para cada b ∈ Fq, hay un a ∈ Fq tal que x− a divide al polinomio af́ın l(x)− b.

Demostración. Definimos la siguiente función

l : Fq → Fq

x 7→ l(x).

Veamos que esta función es inyectiva. Para α, β ∈ Fq, si l(α) = l(β), entonces l(α−β) = l(α)−l(β) =
0. Por hipótesis, l(x) no tiene ráıces distintas de cero en Fq. Aśı que α − β = 0 y por tanto, l es in-
yectiva. Dado que es una función inyectiva entre dos cuerpos finitos con el mismo cardinal, l también
es suprayectiva. Entonces, para cualquier b ∈ Fq, existe un elemento a ∈ Fq tal que l(a) = b. Por lo
tanto, a es una ráız de l(x)− b y entonces x− a divide a l(x)− b.

A partir del criterio de irreducibilidad anterior, podemos deducir un criterio más general.

Teorema 3.19. Sea q una potencia de p primo. Para a, b ∈ F∗
q, el trinomio xp−ax− b es irreducible

sobre Fq si y solo si a = ap−1
0 para algún a0 ∈ F∗

q y TrFq/Fp(b/a
p
0) ̸= 0.

Demostración. Primero suponemos que a = ap−1
0 para algún a0 ∈ F∗

q y TrFq/Fp(b/a
p
0) ̸= 0. Entonces

xp − ax− b = ap0

((
x

a0

)p

−
(

x

a0

)
− b

ap0

)
,

y podemos hacer el cambio de variable y = x/a0. Por el Teorema 3.15, yp − y − b/ap0 es irreducible
sobre Fq, y eso implica que xp − ax− b también lo es.

Para la otra implicación, probamos el contrarrećıproco. Sea a ̸= ap−1
0 para cualquier a0 ∈ F∗

q.
Entonces, el polinomio linealizado xp − ax = x(xp−1 − a) no tiene ráıces distintas de cero en Fq. Por
el Lema 3.18, el trinomio xp − ax− b es reducible.

Finalmente, supongamos que a = ap−1
0 para algún a0 ∈ F∗

q, pero TrFq/Fp(b/a
p
0) = 0. Usando el

mismo cambio de variable que antes, por el Teorema 3.15, yp − y − b/ap0 es reducible sobre Fq, y
entonces xp − ax− b también lo es.

Tenemos también la siguiente manera de construir trinomios irreducibles directamente, para la
que necesitamos definir pr ∥ n.

Definición 3.20. Decimos que pr divide exactamente a n, y lo denotamos pr ∥ n, si pr | n y pr+1 ∤ n.
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Teorema 3.21. Sea p un primo tal que p ≡ 3mod 4 y sea r ≥ 2 tal que 2r ∥ (p + 1). Definimos
elementos a1, a2, . . . , ar de Fp recursivamente de la siguiente forma,

a1 = 0,

ai = ((ai−1 + 1)/2)(p+1)/4 para i = 2, 3, . . . , r − 1,

ar = ((ar−1 − 1)/2)(p+1)/4.

Entonces, para cualquier k natural, el trinomio

x2k − 2arx
2k−1 − 1

es irreducible sobre Fp, y sobre Fpm para cualquier entero impar m. Además, el trinomio divide a

x2r+k−1
+ 1.

No veremos la demostración del teorema en este trabajo. Está expuesta de las páginas 228 a 230
en el libro Finite fields and Galois rings [17].

Los resultados conseguidos en esta sección nos permiten también construir nuevos polinomios
irreducibles a partir de otros usando trinomios.

Teorema 3.22. Sea f(x) = xm+am−1x
m−1+ · · ·+a0 un polinomio irreducible sobre el cuerpo finito

Fq de caracteŕıstica p, y sea b ∈ F∗
q. Entonces, el polinomio f(xp − x− b) es irreducible sobre Fq si y

solo si TrFq/Fp(mb− am−1) ̸= 0.

Demostración. Supongamos que TrFq/Fp(mb − am−1) ̸= 0. Sea K = Fq y sea F el cuerpo de
descomposición de f sobre K, que por el Corolario 2.4 es Fqm . Si α ∈ F es una ráız de f , entonces,
según el Teorema 2.3, todas las ráıces de f son α, αq, αq2 , . . . , αqm−1

, y F = K(α). Además, TrF/K(α) =
−am−1, por el Lema 3.12, y usando el Teorema 3.13 y el Teorema 3.14 obtenemos

TrF/Fp(α + b) = TrK/Fp(TrF/K(α + b)) = TrK/Fp(−am−1 +mb) ̸= 0.

Por el Corolario 3.15, el trinomio xp − x− (α+ b) es irreducible sobre F . Aśı, [F (β) : F ] = p, donde
β es una ráız de xp − x − (α + b). Además tenemos que [F : K] = [Fqm : Fq] = m, y usando esto
deducimos que

[F (β) : K] = [F (β) : F ][F : K] = pm.

Ahora, como β es ráız de xp − x − (α + b), α = βp + β − b, por lo que α ∈ K(β) y entonces
K(β) = K(α, β) = F (β). Aśı, [K(β) : K] = [F (β) : K] = pm y el polinomio mı́nimo de β sobre K
tiene grado pm.

Pero f(βp − β − b) = f(α) = 0, por lo que β es una ráız del polinomio f(xp − x − b) ∈ K[x]
de grado pm. Entonces tenemos que β es ráız de su polinomio mı́nimo y de f(xp − x − b), ambos
polinomios mónicos del mismo grado sobre K, y usando el Teorema 2.10(iv), claramente f(xp−x−b)
es el polinomio mı́nimo de β y por tanto, es irreducible sobre K.

Finalmente, probamos la otra implicación por el contrarrećıproco. Suponemos que TrF (mb −
am−1) = 0, entonces considerando α ∈ F una ráız de f , por la cadena de igualdades vista en la otra
implicación,

TrF/Fp(α + b) = TrK/Fp(−am−1 +mb) = 0.

Y de la misma forma, por el Corolario 3.15, el trinomio xp − x− (α + b) es reducible sobre F .

Aśı [F (β) : F ] < p para cualquier ráız β de xp − x − (a + b). Los mismos argumentos que antes
muestran que β es una ráız de f(xp − x− b) y que [K(β) : K] < pm, por lo que aplicando el Teore-
ma 2.10(ii), como β es ráız de f(xp−x−b) y mβ, tenemos que f(xp−x−b) es reducible sobre K.
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3.4. Polinomios autorrećıprocos

Los polinomios autorrećıprocos tienen cierto uso en teoŕıa de códigos, en esta sección veremos
como emplear estos polinomios para construir sucesiones de polinomios irreducibles autorrećıprocos
sobre cuerpos de caracteŕıstica 2. Seguiremos los art́ıculos [12] y [5], donde se obtienen y detallan los
resultados de esta sección.

Recordamos que vimos los polinomios rećıprocos en la Definición 3.3, empezamos definiendo los
polinomios autorrećıprocos.

Definición 3.23. Un polinomio f(x) =
∑n

i=0 aix
i de grado n es autorrećıproco si coincide con su

rećıproco, es decir, sus coeficientes de la forma aj coinciden con an−j con 0 ≤ j ≤ n.

Ahora definimos el operador de funciones que será clave para construir la sucesión de polinomios
irreducibles.

Definición 3.24. Dado un polinomio f(x) =
∑n

i=0 aix
i de grado n en Fq[x], el operador Q asocia

f(x) a fQ(x) = xnf(x+ 1
x
), polinomio de grado 2n en Fq. Si f(x) =

∑n
i=0 aix

i, tal que a0 ̸= 0 ̸= an,
la transformada queda fQ(x) =

∑n
i=0 ai(1 + x2)ixn−i.

Es fácil ver que fQ siempre es un polinomio autorrećıproco considerando la simetŕıa del binomial,(
n
j

)
=
(

n
n−j

)
, y desarrollando las potencias de x+ 1

x
.

Vamos a estudiar si el operador Q mantiene la irreducibilidad. Para un cuerpo finito general
tenemos la siguiente condición de irreducibilidad.

Lema 3.25. Sea f un polinomio irreducible de grado n sobre Fq. Entonces, f
Q es irreducible si y

solo si el polinomio
g(x) = x2 − βx+ 1 ∈ Fqn [x]

es irreducible, donde β es cualquier ráız de f .

Demostración. Si f(x) =
∑n

i=0 aix
i, como es irreducible y de grado n, a0 ̸= 0 ̸= an, y por lo

visto en la definición, fQ(x) =
∑n

i=0 ai(1 + x2)ixn−i, obtenemos que 0 no es una ráız de fQ, ya que
fQ(0) = an, por tanto si α es una ráız de fQ, entonces α + 1/α es ráız de f .

Por otro lado, si θ es una ráız de f , podemos encontrar un α tal que θ = α + 1/α, y α seŕıa ráız
de fQ. Entonces si tomamos β = α + 1/α, donde α es una ráız de fQ, entonces β es una ráız de f .

Por el Teorema 2.10, fQ es irreducible si y solo si el grado de α es 2n sobre Fq. Como g ∈ Fqn [x] es
de grado 2 y por definición de β, tenemos que g(α) = 0, podemos escribir [Fq(α):Fq]=[Fq(α):Fqn ]·n,
y entonces el grado de α es 2n si y solo si g es irreducible.

Si nos restringimos a los cuerpos de la forma F2k , obtenemos mejores criterios de irreducibilidad.

Teorema 3.26 ([12]). Sea f(x) = xn + · · ·+ a1x+ a0 ∈ F2k [x], con k ∈ N, un polinomio irreducible.
Entonces fQ(x) es irreducible si y solo si TrF

2k
/F2(a1/a0) = 1.

Demostración. Para simplificar la notación definimos F = F2, K = F2k y L = F2nk . Por el
Lema 3.25 sabemos que fQ(x) es irreducible si y solo si x2 + βx + 1 ∈ L[x] es irreducible, siendo β
una ráız de f .

Claramente β ̸= 0 ya que f es irreducible, luego podemos aplicar el Teorema 3.19 a este trinomio
y tenemos que x2 + βx + 1 es irreducible si y solo si TrL/F (1/β

2) ̸= 0. Por el Lema 3.12 esta traza
pertenece a F2, y entonces si es distinta de 0, es igual a 1. Además, aplicando el Teorema 3.13(v),
TrL/F (1/β

2) = (TrL/F (1/β))
2.
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Entonces nos queda que x2+βx+1 es irreducible si y solo si TrL/F (1/β) = 1. Por la transitividad
de la traza 3.14, tenemos que TrL/F (1/β) = TrK/F (TrL/K(1/β)). Si vemos que TrL/K(1/β) = a1/a0
habremos probado el teorema.

Por el Lema 3.12 si vemos que el polinomio g(x) = xn + a1
a0
xn−1 + · · · + an−1

a0
x + 1 ∈ F2k [x] es el

polinomio mı́nimo de 1/β tendremos que TrL/K(1/β) = a1/a0. Claramente a0 · g(x) es el polinomio
rećıproco de f(x) y por el Teorema 3.4, al ser f(x) irreducible, g(x) también lo es. Sustituyendo g(x)
en 1/β, al ser β ráız de f(x) = xn + · · ·+ a1x+ a0, tenemos que

g(1/β) =
a0 + a1β + · · ·+ an−1β

n−1 + βn

a0βn
= 0

luego, por el Teorema 2.10(iv), g(x) es el polinomio mı́nimo de 1/β y con esto obtenemos que fQ(x)
es irreducible si y solo si TrK/F (a1/a0) = 1.

En el caso k = 1, la traza de a1/a0 es a1/a0, y con esa observación, el corolario siguiente es
inmediato.

Corolario 3.27. Si f(x) = xn + · · · + a1x + 1 ∈ F2[x] es irreducible, entonces fQ(x) es irreducible
si y solo si a1 = 1.

Con estos resultados podemos probar un teorema que nos permite conseguir una sucesión de
polinomios autorrećıprocos irreducibles sobre F2k [x], para cualquier k ∈ N.

Para abreviar, de ahora en adelante nos referiremos a los polinomios mónicos irreducibles auto-
rrećıprocos como polinomios SRIM, que son sus siglas en inglés.

Teorema 3.28. Sea f(x) = xn+a1x
n−1+· · ·+a1x+1 ∈ F2k [x] un polinomio SRIM tal que Tr(a1) = 1.

Entonces fQ(x) = x2n+ b1x
2n−1+ · · ·+ b1x+1 es también un polinomio SRIM y satisface Tr(b1) = 1.

Demostración. Para simplificar la notación, definimos

F := F2, K := F2k , L := F2nk , G := F22nk .

Si α es una ráız de f , entonces β = α + 1/α es una ráız de fQ. Por el teorema previo, fQ es
irreducible, y por el lema previo, g(x) = x2 + βx + 1 ∈ L[x] es irreducible, y α es ráız de g. Por el
Teorema 2.10, como todos estos polinomios son mónicos e irreducibles, coinciden con el polinomio
mı́nimo asociado a sus ráıces. Aplicando el Lema 3.12, tenemos las siguientes identidades.

TrG/L(α) = β, TrL/K(β) = a1, TrG/K(α) = b1.

Aplicando la propiedad de transitividad de la traza, tenemos

TrK/F (b1) = TrK/F (TrG/K(α)) = TrK/F (TrL/K(β)) = TrK/F (a1) = 1.

Ahora juntando estos dos teoremas, partiendo de un polinomio irreducible f en F2 de grado n
con coeficiente a1 = 1 y aplicando el operador Q, si el coeficiente b1 de fQ es 1 podremos generar
una sucesión de polinomios autorrećıprocos irreducibles de grados n2i donde i es el número de veces
que hemos aplicado el operador Q.
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Ejemplo 3.29. Los polinomios con coeficiente a1 = 1 más sencillos posibles son xn + x + 1. El
art́ıculo [19] nos proporciona una tabla con los polinomios irreducibles de la forma xn + x + 1 con
n ≤ 30000. Podemos empezar viendo si alguno de estos polinomios proporciona un polinomio SRIM
con coeficiente asociado a x igual a 1 al aplicarle el operador Q. Para esto se ha calculado en MAPLE
la transformada por Q de estos polinomios.

Polinomio Transformada por Q
x2 + x+ 1 x4 + x3 + x2 + x+ 1
x3 + x+ 1 x6 + x3 + 1
x4 + x+ 1 x8 + x5 + x4 + x3 + 1
x6 + x+ 1 x12 + x8 + x7 + x6 + x5 + x4 + 1
x7 + x+ 1 x14 + x12 + x10 + x7 + x4 + x2 + 1
x9 + x+ 1 x18 + x16 + x10 + x9 + x8 + x2 + 1
x15 + x+ 1 x30 + x28 + x26 + x24 + x22 + x20 + x18 + x15 + x12 + x10 + x8 + x6 + x4 + x2 + 1
x22 + x+ 1 x44 + x40 + x36 + x32 + x23 + x22 + x21 + x12 + x8 + x4 + 1
x28 + x+ 1 x56 + x48 + x40 + x32 + x29 + x28 + x27 + x24 + x16 + x8 + 1

Parece que aplicar el operador Q a cualquier polinomio irreducible es una manera poco efectiva de
obtener los polinomios que estamos buscando. Podemos intentar buscar polinomios autorrećıprocos
irreducibles directamente.

Ejemplo 3.30. Buscar polinomios irreducibles tal que al aplicarles el operador Q tengan los co-
eficientes adecuados para aplicar estos resultados parece ser bastante más ineficiente que buscar
directamente polinomios SRIM con coeficiente lineal 1. Los polinomios autorrećıprocos más sencillos
de esta forma en F2[x] son xn + xn−1 + xn/2 + x+ 1 con n par.

Hacemos una búsqueda con MAPLE por los polinomios de esta forma para n ≤ 3000, y obtenemos
que los siguientes polinomios cumplen que son irreducibles, y por tanto son SRIM, en F2[x].

x2 + x+ 1

x4 + x3 + x2 + x+ 1

x10 + x9 + x5 + x+ 1

x16 + x15 + x8 + x+ 1

x100 + x99 + x50 + x+ 1

x196 + x195 + x98 + x+ 1

x730 + x729 + x365 + x+ 1

x1600 + x1599 + x800 + x+ 1

x2206 + x2205 + x1103 + x+ 1

x2800 + x2799 + x1400 + x+ 1

Por tanto, si queremos un polinomio autorrećıproco irreducible de grado 64 en F2, aplicamos el
operador Q a x16 + x15 + x8 + x+ 1 y obtenemos la siguiente secuencia

f(x) = x16 + x15 + x8 + x+ 1

fQ(x) = x32+x31+x29+x27+x25+x24+x23+x21+x19+x16+x13+x11+x9+x8+x7+x5+x3+x+1
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fQ2

(x) = x64 + x63 + x59 + x57 + x56 + x53 + x51 + x49 + x48 + x47

+ x43 + x37 + x32 + x27 + x21 + x17 + x16 + x15

+ x13 + x11 + x8 + x7 + x5 + x+ 1

De esta forma podemos obtener polinomios SRIM de grado 2i · 16 para todo i natural, y de
la misma forma, podemos obtener polinomios SRIM de grado 2i · n siempre que encontremos un
polinomio SRIM de grado n con su coeficiente asociado a x igual a 1.

Esta búsqueda se puede generalizar a cualquier cuerpo finito gracias al siguiente teorema, y para
demostrarlo necesitamos este lema previo.

Lema 3.31. Para un cuerpo finito Fq con q impar, un elemento b ∈ Fq no es el cuadrado de un

elemento, es decir, no existe un a ∈ Fq tal que a2 = b si y solo si b
q−1
2 = −1.

Demostración. Para ambas implicaciones probaremos el contrarrećıproco. Primero supongamos
que existe un a ∈ Fq tal que a2 = b, entonces b

q−1
2 = aq−1 = 1.

Ahora supongamos que b
q−1
2 = 1. Sea g un generador del grupo multiplicativo F∗

q y k ∈ N tal que

b = gk, entonces 1 = b
q−1
2 = g

q−1
2

k. Luego el orden de g divide a q−1
2
k, y como el orden de g es q − 1,

k debe ser par. Por lo tanto, si elegimos a = gk/2, tenemos que a2 = b.

Teorema 3.32 ([12]). Sea q una potencia impar de un primo. Si f es un polinomio mónico irreducible
de grado n sobre Fq, entonces fQ es irreducible si y solo si f(2) · f(−2) no es un cuadrado en Fq.

Demostración. Por el Lema 3.25 sabemos que fQ es irreducible en Fq si y solo si x2 − βx + 1 es
irreducible en Fqn , siendo β cualquier ráız de f . Y este polinomio, al ser de grado 2, es irreducible si
y solo si no tiene ráıces en Fqn .

Como estamos en un cuerpo que no es de caracteŕıstica 2, podemos calcular las posibles ráıces de

x2 − βx+ 1 con la fórmula x =
−β±

√
β2−4

2
. Luego este polinomio es irreducible si y solo si β2 − 4 no

es el cuadrado de otro elemento en Fqn .

Además, por el Teorema 2.10, f es el polinomio mı́nimo de β y todas sus ráıces son de la forma
βqi con 0 ≤ i ≤ n − 1. Por tanto, el polinomio f se puede escribir como f(x) =

∏n−1
i=0 (x − βqi).

Usando esto obtenemos la siguiente cadena de igualdades.

(β2 − 4)
qn−1

2 = ([(2− β)(−2− β)]
qn−1
q−1 )

q−1
2 = [

n−1∏
i=0

(2− β)q
i

(−2− β)q
i

]
q−1
2 = [

n−1∏
i=0

(2− βqi)(−2− βqi)]
q−1
2

= (f(2)f(−2))
q−1
2 .

Y finalmente por el Lema 3.31 tenemos la siguiente cadena de implicaciones.

β2 − 4 no es el cuadrado de un elemento en Fqn ⇐⇒ (β2 − 4)
qn−1

2 = −1 ⇐⇒ (f(2)f(−2))
q−1
2 = −1

⇐⇒ f(2)f(−2) no es el cuadrado de un elemento en Fq.

Sin embargo, buscar condiciones para que f(2) · f(−2) no sea un cuadrado no lleva a ningún
resultado satisfactorio. El art́ıculo [5] introduce otro operador, que śı permite construir una secuencia
de polinomios SRIM sobre Fq. Dedicaremos el final de esta sección a ilustrar el resultado principal
de este art́ıculo.
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Definición 3.33. Dado un polinomio f(x) =
∑n

i=0 aix
i de grado n en Fq[x], con q impar, el operador

R asocia f(x) a fR(x) = (2x)nf(1
2
(x+ 1

x
)) = 2nfQ(x

2
), polinomio de grado 2n en Fq.

Por un razonamiento similar al hecho para el operador Q, para cualquier polinomio mónico f ,
tenemos que fR es un polinomio autorrećıproco y mónico.

Lema 3.34. En un cuerpo finito Fq con q impar, −1 es el cuadrado de otro elemento en Fq si y solo
si q ≡ 1mod 4.

Demostración. Sea g un elemento primitivo de Fq, entonces todos los elementos que son cuadrados
de otro elemento en Fq deben ser de la forma g2k para 1 ≤ k ≤ q−1

2
. Como g es primitivo tenemos

que g
q−1
2 = −1, y por tanto −1 es un cuadrado si y solo si q−1

2
es par, es decir, q ≡ 1mod 4.

Teorema 3.35 ([5]). Sea f0(x) un polinomio mónico irreducible de grado n ≥ 1 en Fq, con q impar.
Suponemos que el grado n es par si q ≡ 3mod 4 y que f0(1)f0(−1) no es un cuadrado en Fq. Para
todo m ≥ 1 definimos fm = fR

m−1, entonces fm es un polinomio irreducible sobre Fq de grado n2m

para cada m ≥ 1.

Demostración. Durante esta demostración, denotaremos el producto f(1)f(−1) como λ(f). Como
claramente el operador R asocia un polinomio f de grado n a fR de grado 2n, entonces fm debe
tener grado 2mn.

Primero vamos a probar por inducción que λ(fm) = (−1)nc2mλ(f0) con cm ∈ Fq. Para el caso
m = 1 tenemos la cadena de igualdades

λ(f1) = fR
0 (1)f

R
0 (−1) = 2n(−2)nf0(1)f0(−1) = (−1)nc21λ(f0)

siendo c1 = 2n.

Suponiendo que la igualdad se cumple para m− 1, como fm−1 es de grado n2m−1 tenemos

λ(fm) = fR
m−1(1)f

R
m−1(−1) = 2n2

m−1

(−2)n2
m−1

λ(fm−1) = 2n2
m−1

(−2)n2
m−1

(−1)nc2m−1λ(f0)

= (−1)nc2mλ(f0)

siendo cm = 2n2
m−1

cm−1.

Por el Lema 3.34, como q es impar o bien (−1) es un cuadrado o bien n es par por hipótesis. Por
tanto podemos escribir λ(fm) = (−1)nc2mλ(f0) = d2mλ(f0), y como λ(f0) no es un cuadrado entonces
λ(fm) no es un cuadrado para ningún m.

Finalmente, para cada m podemos definir gm(x) = 2n2
m
fm(

x
2
). Este polinomio es de grado n2m,

luego cumple que gQm = xn2mgm(x + 1
x
) = (2x)n2

m
fm(

1
2
(x + 1

x
)) = fR

m. Por tanto fm+1 = fR
m = gQm

y podemos aplicar el Lema 3.32, entonces fm+1 es irreducible si y solo si gm(2)gm(−2) no es un
cuadrado.

Como gm(2)gm(−2) = 2n2
m+1

fm(1)fm(−1) = 2n2
m+1

λ(fm) y λ(fm) no es un cuadrado para ningún
m, entonces fm+1 es irreducible para todo m.

3.5. Polinomios ciclotómicos

En esta última sección del caṕıtulo desarrollamos los polinomios ciclotómicos sobre cuerpos finitos,
cómo construirlos y cuándo son irreducibles, siguiendo el apartado 9.3 del libro Finite fields and Galois
rings [17]. Empezamos exponiendo como definir un polinomio ciclotómico en C.
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Sea C el cuerpo de los números complejos, n un entero positivo, y ξ una ráız primitiva n-ésima
de la unidad. Tenemos la factorización completa de xn − 1 en factores lineales sobre C:

xn − 1 =
n−1∏
i=0

(x− ξi).

Como las potencias de ξ forman un grupo ćıclico, sabemos que ord(ξi) = n
mcd(n,i)

, por lo tanto, el

orden de cada ξi es un divisor de n. Sea d > 0 un divisor de n. Definimos

Φd(x) =
∏

ord(ξi)=d
0≤i≤n−1

(x− ξi).

Este polinomio no depende de la elección de n o ξ, siempre que d | n y ξ sea ráız primitiva n-ésima
de xn − 1, ya que los ξi con orden d son todas las ráıces primitivas d-ésima de xd − 1.

Considerando ξd una ráız primitiva d-ésima de xd − 1, es claro que ξid es una ráız primitiva d-
ésima solo si mcd(d, i) = 1 y entonces, el grado de Φd(x) debe ser φ(d). Llamamos d-ésimo polinomio
ciclotómico a Φd(x).

Si al factorizar xn − 1 agrupamos los productos según el orden de las ráıces, obtenemos

xn − 1 =
∏
d|n

Φd(x).

Y aplicando la versión multiplicativa de la fórmula de inversión de Möbius, Teorema 2.23, dedu-
cimos

Φn(x) =
∏
d|n

(xd − 1)µ(n/d),

lo que implica el siguiente teorema.

Teorema 3.36. Para todo entero positivo n, Φn(x) es un polinomio con coeficientes enteros.

Demostración. La ecuación previa nos permite expresar Φn(x) como el cociente de dos polinomios
mónicos con coeficientes enteros. El numerador es el producto de todos los términos xd − 1 para los
que µ(n/d) = 1, y el denominador es el producto de todos los términos para los cuales µ(n/d) = −1.

Si llamamos p(x) al numerador y q(x) al denominador tenemos p(x), q(x) ∈ Z[x] mónicos tal que
p(x) = Φn(x) · q(x). Entonces, necesariamente Φn(x) ∈ Z[x].

Este teorema justifica definir Φn(x) como el polinomio ciclotómico n-ésimo sobre cualquier cuerpo
finito Fq, donde los coeficientes enteros de Φn(x) deben interpretarse como elementos en el cuerpo
primo Fp de Fq.

Ejemplo 3.37. Usando la expresión que tiene Φn(x) como cociente de polinomios obtenemos

Φ15(x) =
(x15 − 1)(x− 1)

(x5 − 1)(x3 − 1)
=

x10 + x5 + 1

x2 + x+ 1
= x9 − x7 + x5 − x4 + x3 − x− 1.

También tenemos

Φ20(x) =
(x20 − 1)(x2 − 1)

(x10 − 1)(x4 − 1)
=

x10 + 1

x2 + 1
= x8 − x6 + x4 − x2 + 1.
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Ahora estudiamos la factorización de Φn(x) sobre un cuerpo finito dado. Para empezar, tenemos
este resultado.

Teorema 3.38. Sea p un número primo y n tal que mcd(p, n) = 1. Entonces

Φnpk(x) = Φn(x)
pk−pk−1

en cualquier cuerpo de caracteŕıstica p.

Demostración. Primero consideramos que

Φnpk(x) =
∏
d|npk

(
xd − 1

)µ(npk/d)
=
∏
d|npk

(
xnpk/d − 1

)µ(d)
ya que si d recorre todos los divisores de npk, entonces npk/d también los recorre, luego con una
reordenación del producto tenemos la última igualdad.

Ahora, como sabemos que mcd(p, n) = 1, si d | npk tenemos dos posibilidades; o bien d | n, o
bien p | d y d | npk. Si p2 | d, d es divisible por el cuadrado de un primo y eso implica que µ(d) = 0.

Entonces podemos reducir el producto al caso d | n, o al caso d = d1p para cierto d1 tal que d1 | n,
que es lo mismo que decir que d1p | np. Con esto podemos continuar la igualdad de la siguiente forma.∏

d|npk

(
xpkn/d − 1

)µ(d)
=
∏
d|n

(
xpkn/d − 1

)µ(d) ∏
dp|np

(
xpkn/dp − 1

)µ(dp)

=

∏
d|n

(xn/d − 1)µ(d)

pk ∏
d|n

(xn/d − 1)−µ(d)

pk−1

.

La última igualdad se obtiene teniendo en cuenta que (a − b)p
k
= ap

k − bp
k
en un cuerpo de carac-

teŕıstica p, y que µ(dp) = −µ(d) por definición, al ser p primo.

Finalmente, podemos reescribir la última expresión que hemos obtenido,∏
d|n

(xn/d − 1)µ(d)

pk ∏
d|n

(xn/d − 1)−µ(d)

pk−1

= Φn(x)
pkΦn(x)

−pk−1

= Φn(x)
pk−pk−1

,

lo que nos da el resultado que buscamos.

En el siguiente ejemplo recurriremos a este teorema para simplificar el cálculo de polinomios
ciclotómicos.

Ejemplo 3.39. Consideremos Φ36(x). Tenemos 36 = 9 · 22 = 4 · 32. Por el teorema previo, sobre
cualquier cuerpo de caracteŕıstica 2,

Φ36(x) = Φ9(x)
2 = Φ3(x)

2 = (x6 + x3 + x+ 1)2.

Y sobre cualquier cuerpo de caracteŕıstica 3,

Φ36(x) = Φ4(x)
3 = Φ4(x) = (x2 + 1)3 = (x6 + 1)2.

Si factorizamos Φn(x) sobre un cuerpo de caracteŕıstica p, podemos calcular el polinomio ci-
clotómico sobre un factor de n al que no divida p y aplicar el teorema previo para obtener Φn(x).
Por tanto, la suposición de que p ∤ n no nos restringe a la hora de manejar polinomios ciclotómicos.
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Teorema 3.40. Sea q la potencia de un p número primo y asumimos que p ∤ n. Sea m el menor natu-
ral tal que qm ≡ 1modn. Entonces Φn(x) factoriza sobre Fq como el producto de φ(n)/m polinomios
irreducibles mónicos de grado m.

Demostración. Sea ξ un elemento primitivo del cuerpo finito Fqm . Entonces, el orden de ξ es
qm − 1. Como qm ≡ 1 (mód n), podemos considerar qm−1

n
∈ N. Sea α = ξ(q

m−1)/n, entonces α es de
orden n y todas las potencias αi, donde 1 ≤ i ≤ n− 1 y mcd(i, n) = 1, también son de orden n. Hay
φ(n) de estos elementos.

Como ξ ∈ Fqm y es primitivo, ξ es ráız de xqm−1 − 1 y por tanto es ráız primitiva qm − 1-ésima
de la unidad. Entonces podemos considerar

Φn(x) =
∏

1≤i≤qm−1
ord(ξ)=n

(x− ξi) =
∏

1≤i≤n−1
mcd(i,n)=1

(x− αi).

ya que los αi teńıan orden n solo cuando mcd(i, n) = 1, y como el grado de Φn(x) es φ(n), no puede
haber más elementos de orden n en Fqm que los αi.

Ahora consideramos el polinomio mı́nimo de αi y lo denotamos por mα. Por el Teorema 2.10(vi),
mα = (x − αi)(x − αiq) · · · (x − αiqd−1

) y, como todas las ráıces son distintas, d es el menor natural
tal que αiqd = αi.

Entonces tenemos que αi(qd−1) = 1, usando que el orden de αi es n, deducimos que n | qd − 1
y qd ≡ 1modn. Como m es el menor natural que cumple esta propiedad, m ≤ d. Siguiendo este
razonamiento en la otra dirección, tenemos que qm ≡ 1modn implica αi(qd−1) = 1, y como d es el
menor natural que cumple esto, d ≤ m.

Luego mα = (x − αi)(x − αiq) · · · (x − αiqm−1
) es el polinomio irreducible de m elementos, y si

consideramos que p ∤ n, es claro que mcd(iqj, n) = 1. Entonces todas las ráıces del polinomio mı́nimo
están en el polinomio ciclotómico que hemos construido.

Agrupando el polinomio ciclotómico en los polinomios mı́nimos de cada ráız, como estos tienen
grado m y hay φ(n) ráıces, obtenemos una descomposición en Fq de φ(n)/m polinomios irreducibles.

Con este teorema tenemos una factorización de Φn(x), y de esto es fácil deducir un corolario para
ver cuándo Φn(x) es irreducible.

Corolario 3.41. Sea q una potencia de p número primo tal que p ∤ n. Entonces, Φn(x) es irreducible
sobre Fq si y solo si φ(n) es el menor entero positivo tal que qφ(n) ≡ 1modn.

Demostración. Si suponemos que Φn(x) es irreducible, factoriza en un polinomio irreducible.
Entonces, por el teorema previo, φ(n) = m y por tanto φ(n) es el menor natural tal que qm ≡ 1modn.

Razonando en la otra dirección, si ϕ(n) es el menor natural tal que qϕ(n) ≡ 1modn, aplicando el
teorema previo, φ(n) = m. Esto implica que Φn(x) factoriza en un polinomio irreducible, es decir, es
irreducible.

Ejemplo 3.42. En el caso de F2, podemos ver cuándo φ(n) coincide con el orden multiplicativo de
2 en Zn para los n impares. Usando esto calculamos en MAPLE todos los polinomios ciclotómicos
irreducibles Φn(x) con n impar menor o igual que 125.
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n 3 5 9 11 13 19 25 27 29 37 53 59 61 67 81 83 101 107 121 125
φ(n) 2 4 6 10 12 18 20 18 28 36 52 58 60 66 54 82 100 106 110 100

Cuadro 3.1: Valores de todo n impar menor o igual que 100 asociado a un Φn(x) irreducible en F2[x],
y su respectivo φ(n).

n φ(n) Polinomio ciclotómico de grado φ(n)
3 2 x2 + x+ 1
5 4 x4 + x3 + x2 + x+ 1
9 6 x6 + x3 + 1
11 10 x10 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + x+ 1
13 12 x12 + x11 + x10 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + x+ 1
25 20 x20 + x15 + x10 + x5 + 1
27 18 x18 + x9 + 1
81 54 x54 + x27 + 1
121 110 x110 + x99 + x88 + x77 + x66 + x55 + x44 + x33 + x22 + x11 + 1
125 100 x100 + x75 + x50 + x25 + 1

Cuadro 3.2: Algunos de los Φn(x) irreducibles en F2[x].
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Caṕıtulo 4

Teorema de Wedderburn

Un teorema de interés en cuerpos finitos es el Teorema de Wedderburn, que nos permite extender
todos los resultados vistos hasta ahora en cuerpos finitos a anillos de división finitos.

Aunque el teorema no está directamente relacionado con los polinomios irreducibles, debido a su
gran relevancia en la teoŕıa de cuerpos finitos merece una breve mención en este trabajo. El teorema
simplifica la clasificación de estructuras algebraicas, eliminando las distinciones entre dominios, anillos
de división y cuerpos en el caso finito.

La demostración que veremos está ilustrada en el libro Introduction to finite fields and their
applications [10] y requiere de ciertos resultados previos sobre polinomios ciclotómicos. Ahora que
hemos estudiado estos polinomios tenemos las herramientas necesarias para la demostración.

Recordamos que un grupo es anillo de división si cumple las condiciones de cuerpo excepto la
conmutatividad del producto.

Teorema 4.1 (Wedderburn [18]). Todo anillo de división finito es un cuerpo finito.

Demostración. Sea E un anillo de división finito y F un subconjunto de E definido de la siguiente
forma, F = {λ ∈ E : λx = xλ para todo x ∈ E}. Claramente 0, 1 ∈ F y si λ, µ ∈ F tenemos que
λµ, λ− µ ∈ F .

Además, si λ ̸= 0 ∈ F , podemos considerar (y−1λ−1y)−1 = y−1λy = y para todo y ∈ E∗,
y entonces λ−1 = y−1λ−1y para todo y ∈ E∗, es decir, λ−1 ∈ F . Por lo tanto F es un cuerpo
conmutativo.

Como E es finito, F es un cuerpo finito, |F | = q para algún q ∈ N, y considerando E como
un espacio vectorial sobre F de dimensión finita n tenemos que |E| = qn. Si probamos que n = 1,
tendremos que E es un cuerpo finito. Razonamos por reducción al absurdo, suponiendo que n > 1.

Definimos la siguiente relación de equivalencia, x ∼ y ⇔ ∃z ∈ E∗ tal que z−1xz = y, y denotamos
la clase de equivalencia de y por Cy. También definimos para cada y ∈ E∗ el normalizador de y,
Ny = {x ∈ E : xy = yx}, que con cálculos similares a los hechos para F se ve que es un anillo de
división.

Veamos ahora que para cualquier y ∈ E, considerando Ay = {aya−1 : a ∈ E∗}, tenemos que
Cy = Ay. Si b ∈ Ay, entonces b = aya−1 para algún a ∈ Ay y por tanto tomando z como a se cumple
que z−1bz = y, es decir, b ∈ Cy. Si b ∈ Cy, existe un z ∈ E∗ tal que z−1bz = y, luego b ∈ Ay.

Usando esto, podemos ver que Cy tiene solo un elemento si y solo si y ∈ F . Si Cy tiene solo un
elemento, debe ser y, luego para todo a ∈ E∗ tenemos que aya−1 = y, y por tanto y ∈ F . Si y ∈ F ,
para todo a ∈ E∗ tenemos que aya−1 = y, luego solo y está en Cy.
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Podemos escribir E∗ como la unión disjunta de todas sus clases de equivalencia. Como F = Fq,
el cardinal de F ∗ es q− 1 y por tanto en E∗ hay exactamente q− 1 clases de equivalencia de un solo
elemento.

Para contar el número de elementos del resto de clases vamos a establecer una biyección entre los
elementos de Ay y las clases laterales por la izquierda de N∗

y , es decir, los conjuntos de la forma aN∗
y

con a ∈ E∗.

Para un y ∈ E∗ fijo, si consideramos a, b ∈ E∗ tal que aya−1, byb−1 ∈ Ay, tenemos la siguiente
cadena de implicaciones.

aya−1 = byb−1 ⇐⇒ y = a−1byb−1a = (a−1b)y(a−1b)−1 ⇐⇒ a−1b ∈ N∗
y ⇐⇒ b ∈ aN∗

y .

Como cada clase lateral por la izquierda de N∗
y son los elementos de E∗ módulo N∗

y tenemos que
|Cy| = |Ay| = |E∗|/|N∗

y |.

También podemos considerar cada Ny como un espacio vectorial de F , y por tanto |Ny| = qn(y)

siendo n(y) la dimensión del espacio vectorial.

Supongamos que y1, . . . , ys son representantes de cada clase de equivalencia de más de un elemento
y λ1, . . . , λq−1 son representantes de cada clase de equivalencia de un solo elemento no nulo. Entonces
la partición de E∗ en sus clases de equivalencia queda

qn − 1 = |E∗| =
q−1∑
i=1

|Cλi
|+

s∑
j=1

|Cyj | = q − 1 +
s∑

j=1

qn − 1

qn(yj) − 1
.

Ahora, como N∗
y es subgrupo de E∗, tenemos que qn(y) − 1 | qn − 1. Si n = n(y)m + t con

0 ≤ t < n(y), entonces qn − 1 = qn(y)mqt − 1 = qt(qn(y)m − 1) + qt − 1.

Como qn(y) − 1 divide a qn − 1 y a qn(y)m − 1 tenemos que también divide a qt − 1. Pero qt − 1 <
qn(y) − 1, luego t debe ser cero y entonces n(y) divide a n para cualquier y ∈ E∗.

Para la siguiente parte de la demostración necesitamos ver que Φn(x) divide a xn − 1 y a xn−1
xn(y)−1

.
Como hemos visto en la sección de polinomios ciclotómicos, xn − 1 =

∏
d|nΦd(x), luego Φn(x) divide

a xn − 1.

Considerando que xn − 1 = (xn(y) − 1) xn−1
xn(y)−1

y que las ráıces de Φn(x) son de orden n mientras

que las ráıces de xn(y) − 1 son de orden menor o igual que n(y), tenemos que Φn(x) no comparte
ráıces con xn(y) − 1 y entonces debe dividir a xn−1

xn(y)−1
.

Por tanto, sustituyendo la ecuación de clases de equivalencia en q tenemos que Φn(q) debe dividir
a

qn − 1−
s∑

i=1

qn − 1

qn(yi) − 1
= q − 1.

Finalmente, consideramos Φn(x) =
∏

ξ∈Cn
(x − ξ) sobre C, donde Cn es el conjunto de ráıces

primitivas n-ésimas de la unidad.

Por un razonamiento geométrico, podemos considerar que |q− ξ| > q− 1, ya que las ráıces están
en la circunferencia unidad centrada en el 0 y q está a la derecha del 1 en la recta real, por lo que
está más próximo a 1 que al resto de ráıces.

Evaluando Φn(x) otra vez en q,

|Φn(q)| =
∏
ξ∈Cn

|q − ξ| > (q − 1)φ(n) ≥ q − 1.

Por tanto |Φn(q)| no puede dividir a q − 1, con lo que llegamos a contradicción.
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Caṕıtulo 5

Polinomios irreducibles sobre F2[x]

Hasta ahora hemos estado trabajando sobre cuerpos finitos cualquiera, pero si echamos un vistazo
al uso actual de los cuerpos finitos en la criptograf́ıa o la teoŕıa de códigos, tanto por motivos
de hardware como de eficiencia de las operaciones, los cuerpos que se utilizan son F2n . Por tanto
necesitaremos polinomios irreducibles sobre F2 para representar estos cuerpos y operar sobre ellos.

Los resultados de irreducibilidad que hemos visto en el caṕıtulo previo no son muy útiles al
aplicarlos en F2, aśı que obtendremos nuevos resultados de irreducibilidad centrados exclusivamente
en polinomios sobre F2[x].

En art́ıculos como [4] y [8] se representa el cuerpo F2n con trinomios o pentanomios irreducibles,
que serán los polinomios en los que centraremos nuestro estudio en esta sección.

También exploraremos una técnica para obtener polinomios primitivos que solo funciona en F2,
y la aplicaremos en particular a trinomios, obteniendo aśı trinomios primitivos de grados muy altos.

5.1. Trinomios irreducibles

Si buscamos construir cuerpos de caracteŕıstica 2, necesitaremos polinomios irreducibles sobre F2.
Por su bajo número de coeficientes distintos de cero, los binomios y trinomios generan cuerpos donde
las operaciones son más eficientes, y en cuerpos de caracteŕıstica 2 claramente los binomios nunca
pueden ser irreducibles. Por esta razón primero estudiaremos cómo encontrar trinomios irreducibles
sobre F2 y veremos si podemos caracterizarlos.

Blake, Gao y Lambert estudian la distribución de trinomios irreducibles y conjeturan posibles
caracterizaciones en el art́ıculo [1]. Durante esta sección nos apoyaremos en dicho art́ıculo para
estudiar con más detalle los casos en los que ciertos trinomios son irreducibles.

Para estudiar la irreducibilidad de trinomios sobre F2, el resultado más fuerte que tenemos nos
lo proporciona Swan [15].

Teorema 5.1 (Swan [15]). Sean 0 < k < n números naturales. El trinomio xn + xk + 1 tiene un
número par de factores sobre F2 en cada uno de los siguientes casos:

(a) n es par, k es impar, n ̸= 2k y nk/2 ≡ 0 o 1mod 4,

(b) n es impar, k es par, k ∤ 2n y n ≡ ±3mod 8,

(c) n es impar, k es par, k | 2n y n ≡ ±1mod 8.
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No veremos la demostración de este resultado ya que es bastante complicada y se sale del al-
cance de este trabajo. Sin embargo, usaremos este resultado para ver un corolario que garantiza la
reducibilidad de ciertos trinomios.

Corolario 5.2. No existe ningún trinomio irreducible de grado n en F2[x] si n ≡ 0mod 8.

Demostración. Sean 0 < k < n números naturales, consideramos el trinomio xn+xk +1 en F2[x].
Veamos que si n ≡ 0mod 8, el trinomio no puede ser irreducible. Como n ≡ 0mod 8, entonces n debe
ser par y por tanto, si k es par, podemos escribir el trinomio como (xn/2 + xk/2 + 1)2, es decir, es
reducible.

Para los casos con k impar, aplicando la parte (a) del teorema de Swan, el trinomio debe tener
un número par de factores, y por tanto no puede ser irreducible.

Veamos que se cumplen las condiciones para aplicar el teorema de Swan en este caso. Como
n ≡ 0mod 8, tenemos que 8 debe ser un factor de n, y como k es impar, necesariamente n ̸= 2k. De
la misma forma, 4 debe ser un factor de n/2, y por tanto, nk/2 ≡ 0.

Con esto hemos probado que xn + xk + 1 debe ser reducible para los casos de k par y k impar.

A partir de este punto denotaremos al trinomio xn + xk + 1 como Tn,k. Para los posibles n, k que
no se cubren en el Teorema de Swan basta considerar que si ambos son pares, como Tn,k ∈ F2[x],
tenemos que T 2

n/2,k/2 = Tn,k, luego siempre es reducible, y si ambos son impares, por el Teorema 3.4,
la reducibilidad de Tn,k es equivalente a la de Tn,n−k, al que podemos aplicar el Teorema de Swan.

Apoyándose en las consideraciones previas y en el Teorema de Swan, los autores del art́ıculo
se preguntan si los trinomios irreducibles también tienen una correlación con el grado módulo 8, y
calculan la Tabla 5.1 mostrando el número de trinomios irreducibles en F2[x] según su grado módulo
8.

En el art́ıculo se destaca la abundancia relativa de trinomios irreducibles cuando n ≡ ±1mod 8
y la escasez relativa cuando n ≡ ±3mod 8, lo que puede indicar una relación de los trinomios
irreducibles con su grado módulo 8.

También destacan ciertas relaciones que se mantienen tanto en la tabla como en las condiciones
del teorema de Swan, como la simetŕıa entre n ≡ 3mod 8 y n ≡ −3mod 8, o entre n ≡ 1mod 8 y
n ≡ −1mod 8.

Para ver esto con más detalle podemos desglosar los casos de n par en los que el teorema de Swan
no garantiza que un trinomio sea reducible, y ver si se alinea con la Tabla 5.1. No consideraremos los
casos donde n, k son pares, ya que en estos casos los trinomios son siempre reducibles, como hemos
visto antes.

Si n ≡ 2mod 8, k impar.

No se cumplen las condiciones del teorema de Swan si n = 2k o nk/2 ≡ 2 o 3mod 4.Como
n ≡ 2mod 8, tenemos que n/2 ≡ 1mod 4, luego la condición nk/2 ≡ 2 o 3mod 4 queda k ≡ 2
o 3mod 4. Como k es impar, solo se puede dar k ≡ 3mod 4.

Si n ≡ −2mod 8, k impar.

Razonando de la misma forma que antes, obtenemos que los trinomios que no cumplen las
condiciones son de la forma n = 2k o k ≡ −3 ≡ 1mod 4.

Si n ≡ 4mod 8, k impar.

En este caso tenemos que n/2 ≡ 2mod 4, luego nk/2 ≡ 2kmod 4. Entonces no cumplen las
condiciones los trinomios con n = 2k o 2k ≡ 2 o 3mod 4. Claramente el caso 2k ≡ 3mod 4 no
se puede dar y como k es impar, 2k ≡ 2mod 4 se da para todo k.

48



Rango/Grado mod 8 1 2 3 4 5 6 7 Total
1–200 73 27 7 73 5 30 82 297
201–400 92 36 0 74 2 25 76 305
401–600 85 26 0 71 0 35 71 288
601–800 87 30 1 73 0 34 94 319
801–1.000 81 31 1 77 2 29 83 304
1.001–1.200 87 28 0 67 3 36 84 305
1.201–1.400 79 29 0 74 0 29 86 297
1.401–1.600 92 29 0 75 0 41 98 335
1.601–1.800 93 22 0 66 0 26 71 278
1.801–2.000 82 21 0 58 0 33 97 291
2.001–2.200 86 28 0 75 0 27 108 324
2.201–2.400 96 29 1 77 0 23 83 309
2.401–2.600 79 26 0 84 1 31 73 294
2.601–2.800 87 27 1 85 0 23 104 327
2.801–3.000 69 29 0 59 0 16 83 256
3.001–3.200 99 23 0 74 0 29 85 310
3.201–3.400 79 29 0 77 0 37 88 310
3.401–3.600 83 28 0 74 0 32 84 301
3.601–3.800 92 23 0 86 0 28 91 320
3.801–4.000 88 25 0 75 0 29 90 307
4.001–4.200 82 32 0 57 1 37 73 282
4.201–4.400 75 34 0 72 0 35 96 312
4.401–4.600 89 36 0 66 2 34 85 312
4.601–4.800 101 32 0 84 0 20 71 308
4.801–5.000 75 25 0 67 1 30 84 282
9.801–10.000 71 31 0 76 0 33 102 313

Cuadro 5.1: Número total de trinomios irreducibles Tn,k(x) en el rango indicado, con k ≤ n/2.

Podemos ver que, al igual que en la Tabla 5.1, hay una simetŕıa entre los casos n ≡ 2mod 8 y
n ≡ 6mod 8, mientras que para n ≡ 4mod 8 se mantiene alrededor del doble de casos.

Ver en qué casos estas similitudes se mantienen podŕıa indicarnos posibles condiciones para ca-
racterizar los trinomios irreducibles, y también ilustraŕıa si estas condiciones podŕıan ser similares a
las que da el teorema de Swan.

Para hacer esta comparación construimos la Tabla 5.2 donde para cada n fijo, calculamos con
MAPLE el número de posibles k que no cumplen las condiciones del teorema de Swan, es decir, los
trinomios xn + xk +1 en F2[x] que el teorema de Swan no garantiza que sean reducibles, y comparar
ambas tablas parece indicar que el teorema de Swan tiene una fuerte relación con la irreducibilidad
de los trinomios.

Continuando con el estudio de los trinomios en F2[x], en el art́ıculo [6] los autores aplican el
teorema de Butler [3] a trinomios en F2[x] para caracterizar los trinomios irreducibles de la forma
x8n±3 + xk + 1. Durante el resto de esta sección demostraremos algunos de los resultados siguiendo
este art́ıculo y obtendremos varios criterios de irreducibilidad para trinomios.

Definición 5.3. Definimos el ı́ndice de un polinomio irreducible f(x) de grado n sobre Fq como qn−1
e

donde e es el orden de f .

Aplicando el Corolario 2.14 es inmediato ver que el ı́ndice es un número natural.

Teorema 5.4 (Butler [3]). Sea f(x) un polinomio irreducible de grado n sobre Fq de orden e, ı́ndice
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Rango/Grado mod 8 1 2 3 4 5 6 7 Total
1–200 1.142 325 63 625 61 350 1.216 3.782
201–400 3.618 950 75 1.875 73 975 3.692 11.258
401–600 6.117 1.575 83 3.125 87 1.600 6.192 18.779
601–800 8.615 2.200 89 4.375 89 2.225 8.684 26.277
801–1.000 11.107 2.825 93 5.625 91 2.850 11.186 33.777
1.001–1.200 13.606 3.450 95 6.875 101 3.475 13.684 41.286
1.201–1.400 16.103 4.075 97 8.125 93 4.100 16.178 48.771
1.401–1.600 18.602 4.700 97 9.375 97 4.725 18.670 56.266
1.601–1.800 21.098 5.325 101 10.625 97 5.350 21.182 63.778
1.801–2.000 23.606 5.950 105 11.875 105 5.975 23.674 71.290
2.001–2.200 26.090 6.575 99 13.125 97 6.600 26.172 78.758
2.201–2.400 28.600 7.200 101 14.375 109 7.225 28.674 86.284
2.401–2.600 31.098 7.825 105 15.625 107 7.850 31.168 93.778
2.601–2.800 33.586 8.450 105 16.875 95 8.475 33.664 101.250
2.801–3.000 36.096 9.075 103 18.125 113 9.100 36.174 108.786
3.001–3.200 38.594 9.700 111 19.375 103 9.725 38.664 116.272
3.201–3.400 41.094 10.325 111 20.625 113 10.350 41.166 123.784
3.401–3.600 43.592 10.950 101 21.875 109 10.975 43.660 131.262
3.601–3.800 46.094 11.575 117 23.125 109 11.600 46.176 138.796
3.801–4.000 48.582 12.200 111 24.375 107 12.225 48.664 146.264
4.001–4.200 51.091 12.825 107 25.625 115 12.850 51.162 153.775
4.201–4.400 53.592 13.450 117 26.875 111 13.475 53.670 161.290
4.401–4.600 56.090 14.075 107 28.125 111 14.100 56.156 168.764
4.601–4.800 58.580 14.700 111 29.375 117 14.725 58.670 176.278
4.801–5.000 61.089 15.325 119 30.625 101 15.350 61.158 183.767
9.801–10.000 123.576 30.950 115 61.875 111 30.975 123.634 371.236

Cuadro 5.2: Número total de trinomios Tn,k(x) que el teorema de Swan no garantiza que sean redu-
cibles en el rango indicado, con k ≤ n/2.

d. Sean M , m1, m2 números naturales tal que mcd(M, q) = 1 y M = m1m2 donde mcd(m1, e) = 1 y
cada divisor primo de m2 es un divisor primo de e. Entonces

(i) El orden de las ráıces de f(xM) es de la forma gm2e, donde g | m1;

(ii) Si g | m1, entonces f(xM) tiene exactamente

Nm2φ(g)

S(gm2e; q)

factores irreducibles de grado S(gm2e; q) con ráıces de orden gm2e, donde S(a; q) denota el
orden de q módulo a.

La demostración de este resultado es muy complicada para el alcance de este trabajo, por lo que
no la expondremos. Veamos que aplicando este teorema a un trinomio bajo ciertas condiciones nos
permite construir trinomios irreducibles.

Teorema 5.5. Supongamos que Tn,2 es un trinomio irreducible en F2, de orden e e ı́ndice d = 2n−1
e

,
y sea P un número primo. Si P | e y P ∤ d, entonces TNP,2P es irreducible con orden Pe.

Demostración. Primero veamos que podemos aplicar el teorema de Butler. Por el Corolario 2.14
tenemos que e | 2n−1, y por esto e es impar, además como P | e, entonces P ̸= 2. Ahora consideramos
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M = P , m1 = 1, m2 = P , que al ser P un primo distinto de 2, claramente cumplen que mcd(M, 2) =
1, M = m1m2, mcd(m1, e) = 1 y cada divisor primo de m2 es un divisor primo de e, ya que P | e
por hipótesis. También suponemos que P ∤ d y que Tn,2 es irreducible, aśı que podemos aplicar el
teorema y ver en cuántos factores descompone TnP,2P .

Por el segundo apartado del teorema de Butler, si g | 1, es decir g = 1, tenemos que TnP,2P tiene
exactamente nP

S(Pe;2)
factores. Veamos ahora que S(Pe; 2) = nP .

Como e | 2n − 1, tenemos que 2n ≡ 1mod e. Con esto podemos escribir, para cierto k ∈ N,

2n = 1 + ek, 2nP = (1 + ek)P = 1 +
P∑

j=1

(
P

j

)
(ek)j, 2nP ≡ 1modPe.

Para ver que el orden de 2 es nP , supongamos que 2t ≡ 1modPe para un t < nP y llegaremos a un
absurdo. Como 2t ≡ 1modPe, tenemos que 2t ≡ 1mod e, y ya hemos visto que n también lo cumple.
Por tanto, t | n o n | t. Además, como 2nP ≡ 1modPe, vemos que t | nP .

Si n | t, como t | nP , P es primo y t < nP , debe ocurrir que t = n. También, como 2n − 1 = ed
y p ∤ d, se ve que 2n ̸≡ 1modPe. Entonces, tanto si t | n como si t = n, llegamos a un absurdo, ya
que 2t ≡ 1modPe.

Por tanto, ordPe(2) = nP y entonces TnP,2P es irreducible, y por el Teorema 2.13, su orden es el
mismo que el de sus ráıces, es decir, Pe.

Ahora planteamos un par de lemas que nos permitirán demostrar el teorema que caracteriza todos
los trinomios de la forma TnPk,2Pk a partir de Tn,2.

Recordamos que la notación P a ∥ n, P a divide exactamente a n, significa que P a | n y P a+1 ∤ n.

Lema 5.6. Para un primo P distinto de 2, si P a ∥ 2n − 1 entonces P a+1 ∥ 2nP − 1.

Demostración. Tenemos que probar que P a+1 | 2nP−1 y P a+2 ∤ 2nP − 1. Empezamos viendo que

2nP − 1 = (2n − 1)(2n(P−1) + 2n(P−2) + · · ·+ 2n + 1),

como P a ∥ (2n − 1), podemos escribir 2n = 1 + P aM con M ∈ N, P ∤ M .

Entonces, para j ∈ N,
2jn = (1 + P aM)j = 1 + jP aM +K,

siendo K una suma de términos donde P 2a | K. Por tanto

P−1∑
j=0

2jn = P +
(P − 1)P

2
P aM + C donde P 2a | C.

Como P es un primo distinto de 2, es impar, y por tanto el sumatorio se puede escribir como P+P a+1q,
para algún q ∈ N. De esto se deduce que P divide exactamente a

∑P−1
j=0 2jn, y como también tenemos

que P a divide exactamente a 2n − 1, tenemos que P a+1 divide exactamente a 2nP − 1.

Lema 5.7. Si un trinomio de la forma TU,2 es reducible, todo trinomio de la forma TUV,2V es reducible.

Demostración. Si f(x) es un factor de TU,2(x) = xU + x2 + 1, al poder escribir TUV,2V como
TU,2(x

V ) = xUV + x2V + 1, tenemos que f(xV ) es factor de TUV,2V .

Teorema 5.8. Sea Tn,2 trinomio de orden e, ı́ndice d, y sea P primo tal que P | e y P ∤ d. Si Tn,2

es irreducible entonces TnP t,2P t es irreducible para todo t ∈ N. Si TnP t,2P t es irreducible para algún
t ∈ N entonces Tn,2 es irreducible. Además, cuando es irreducible, el orden de TnP t,2P t es P te.
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Demostración. Si suponemos Tn,2 irreducible, P primo tal que P | e y P ∤ d, podemos probar la
implicación, y que el orden de TnP t,2P t es P te, usando inducción sobre t.

Para t = 1, aplicamos directamente el Teorema 5.5, y tenemos que TnP,2P es irreducible de orden
Pe.

Suponemos que TnP t−1,2P t−1 es irreducible, de orden P t−1e, ı́ndice 2nPt−1−1
P t−1e

, veamos que se cumple
para t. Si aplicamos el Teorema 5.5, deducimos que TnP t,2P t es irreducible de orden P te. Notamos
ahora que se cumplen las condiciones para aplicar el teorema, es decir, P | P t−1e, que claramente es

cierto, y P ∤ 2nPt−1−1
P t−1e

.

Tenemos por hipótesis que P | e, sea a ∈ N tal que P a ∥ e. Entonces P a | 2n − 1 y como
P ∤ d = 2n−1

e
, P a ∥ 2n − 1. Usando el lema previo 5.6 tenemos que P a+1 ∥ 2nP − 1, repitiendo esto

llegamos a P a+t−1 ∥ 2nP
t−1 − 1. Aplicando esto y que P a ∥ e, es claro que P ∤ 2nPt−1−1

P t−1e
.

El contrarrećıproco es directo al aplicar el lema previo 5.7 con U = n y V = P t.

Este teorema nos proporciona una motivación para estudiar los trinomios Tn,2, ver si son irredu-
cibles y calcular sus órdenes e ı́ndices. En el art́ıculo [6], los autores hacen estos cálculos y obtienen
la tabla 5.3.

N Índice Factorización de 2N − 1
3 1 7
5 1 31
11 1 23 · 89
21 1 7 · 7 · 127 · 337
29 1 233 · 1.103 · 2.089
35 1 31 · 71 · 127 · 122.921

Cuadro 5.3: Tabla de N tal que xN + x2 + 1 es irreducible

Ejemplo 5.9. Con la tabla 5.3, podemos obtener los posibles P primos tal que se les puede aplicar
el Teorema 5.8. Por ejemplo, el trinomio x11 + x2 + 1 es irreducible, su ı́ndice es 1, y por tanto su
orden es 23 · 89, es decir, todos los polinomios T11·23t,2·23t son irreducibles.

De esta forma, si buscamos un polinomio irreducible de grado 147, como 147 = 3 · 72 y T3,2 es
irreducible de orden 7, tenemos que T147,98 es un trinomio irreducible de grado 147.

Finalmente, en el art́ıculo [6] se extiende el resultado y se prueba el siguiente teorema, que
caracteriza todos los trinomios irreducibles Tn,k donde n ≡ ±3mod 8 a partir de Tn,2.

Teorema 5.10. Los únicos trinomios irreducibles TM,K con M ≡ ±3mod 8 son de la forma TnP,2P ,
donde P | e, siendo e el orden de Tn,2 y P ∤ d, con d el ı́ndice de Tn,2, y con n ≡ ±3mod 8.

5.2. Trinomios primitivos

En esta sección nos centraremos en estudiar los trinomios primitivos, y como razonaremos poste-
riormente, nos interesará estudiarlos en F2[x].

Como los polinomios primitivos de grado n sobre Fq[x] son aquellos cuyas ráıces son elementos
primitivos de Fqn , una manera de buscar polinomios primitivos de grado n es considerar los casos
donde qn − 1 es un número primo, ya que el orden de las ráıces en Fqn debe dividir a qn − 1, luego
todos los polinomios irreducibles de grado n en Fq[x] serán primitivos.

Veamos ahora en que casos qn − 1 es un número primo.
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Teorema 5.11. Sea q potencia de un primo, n ∈ N y supongamos que qn−1 es primo. Si q es impar
entonces q = 3 y n = 1, si q = 2 entonces n es primo, y si q ̸= 2 es una potencia de 2 entonces
n = 1. En particular, si 2n − 1 es primo, todos los polinomios mónicos irreducibles de grado n en
F2[x] son primitivos.

Demostración. Si q es impar, q − 1 es par. Como q − 1 | qn − 1 tenemos que 2 es un factor de
qn − 1 y como qn − 1 es primo, qn − 1 = 2. Si q > 3 o q = 3, n > 1 entonces qn − 1 > 2, luego solo es
posible el caso q = 3 y n = 1.

Si q = 2, supongamos que n no es un primo y veamos que llegamos a un absurdo. Sean m, k ∈ N
tal que 1 < m, k < n y mk = n, claramente (2m − 1)(2(k−1)m +2(k−2)m + · · ·+2m +1) = 2n − 1 luego
2m − 1 | 2n − 1 y como 1 < m < n, tenemos que 2n − 1 no es primo. Esto contradice las hipótesis y
por tanto llegamos a un absurdo.

Si q es una potencia de 2, q = 2r con r > 1. Entonces tenemos que qn − 1 = 2nk − 1, y usando el
caso previo, nk es primo luego n = 1. Por tanto el único caso en el que qn − 1 es primo y n > 1 es
q = 2.

Finalmente, si 2n−1 es primo, como los órdenes de elementos en F∗
2n dividen a 2n−1, los elementos

distintos de 0 y 1 son primitivos en F2n . Entonces si consideramos un polinomio mónico e irreducible
de grado n en F2[x], por el Corolario 2.4 sus ráıces están en F2n y entonces son elementos primitivos
de F2n , luego el polinomio es primitivo por definición.

Como nos muestra este teorema, los polinomios a considerar son los pertenecientes a F2[x] y nos
interesa el caso 2p − 1 donde p es un número primo, lo que motiva la siguiente definición.

Definición 5.12. Si 2p− 1 es un número primo, lo llamaremos primo de Mersenne y lo denotaremos
por Mp. Al exponente p lo llamaremos exponente de Mersenne.

El proyecto GIMPS [16] se dedica a buscar primos de Mersenne, y es la página que hemos
consultado para obtener los exponentes de Mersenne que listamos en la Tabla 5.4. Si vamos a buscar
trinomios irreducibles sobre F2[x] cuyo grado es un exponente de Mersenne, podemos aplicar primero
el Teorema de Swan para simplificar la búsqueda.

Sea Tp,s un trinomio tal que p es un exponente de Mersenne, y por tanto primo, y p ≡ ±3mod 8.
Entonces, aplicando el Teorema de Swan 5.1, Tp,s solo puede ser irreducible si s | 2p, y como p es
primo solo hay que comprobar el caso Tp,2, excepto en el caso p = 3 que es el único que cumple
p− 1 | 2p, por lo que se puede considerar el trinomio T3,1.

En el caso contrario, si p es un exponente de Mersenne tal que p ≡ ±1mod 8, aplicando el Teorema
de Swan 5.1 solo descartamos el caso Tp,2.

En [2], Richard P. Brent lista todos los exponentes de Mersenne p hasta 74.207.281 junto a los
Tp,s irreducibles con s ≤ p, ya que para s > p solo hace falta considerar el rećıproco Tp,p−s por el
Teorema 3.4. Recopilamos estos trinomios irreducibles en la Tabla 5.4, destacando el hecho de que
ningún p ≡ ±3mod 8 mayor que 5 cumple que Tp,2 es irreducible y 57.885.161 es el único exponente
de Mersenne que cumple 57.885.161 ≡ ±1mod 8 y no existe ningún trinomio irreducible de tal grado.

El proyecto GIMPS [16] ha encontrado tres exponentes de Mersenne mayores que 74.207.281, que
no aparecen en la lista [2]. De estos tres exponentes, p1 =77.232.917 y p2 =82.589.933 son equivalentes
a 5 módulo 8, luego solo hay que estudiar la irreducibilidad de Tp1,2 y Tp2,2. Una comprobación en
MAPLE nos muestra que ambos trinomios son reducibles en F2.

Otra manera de encontrar trinomios primitivos en F2 es aplicando el Teorema 2.36. Por ejemplo,
si aplicamos el teorema a los trinomios de la forma Tk,1 = xk + x + 1, k ≥ 2, tenemos que Tk,1 es
primitivo si y solo si 1 es primitivo en F2, que se cumple siempre, y el menor r ∈ N tal que xr es
congruente a algún elemento de F2 módulo xk + x + 1 es r = 2k − 1. Claramente, xr no puede ser
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p s
2 1
3 1
5 2
7 1, 3
17 3, 5, 6
31 3, 6, 7, 13
89 38
127 1, 7, 15, 30, 63
521 32, 48, 158, 168
607 105, 147, 273
1.279 216, 418
2.281 715, 915, 1.029
3.217 67, 576
4.423 271, 369, 370, 649, 1.393, 1.419, 2.098
9.689 84, 471, 1.836, 2.444, 4.187
19.937 881, 7.083, 9.842
23.209 1.530, 6.619, 9.739
44.497 8.575, 21.034
110.503 25.230, 53.719
132.049 7.000, 33.912, 41.469, 52.549, 54.454
756.839 215.747, 267.428, 279.695
859.433 170.340, 288.477
3.021.377 361.604, 1.010.202
6.972.593 3.037.958
24.036.583 8.412.642, 8.785.528
25.964.951 880.890, 4.627.670, 4.830.131, 6.383.880
30.402.457 2.162.059
32.582.657 5.110.722, 5.552.421, 7.545.455
42.643.801 55.981, 3.706.066, 3.896.488, 12.899.278, 20.150.445
43.112.609 3.569.337, 4.463.337, 17.212.521, 21.078.848
74.207.281 9.156.813, 9.999.621, 30.684.570

Cuadro 5.4: Números p, s ≤ p/2 tal que Tp,s es irreducible y p es exponente de Mersenne

congruente a 0 módulo xk + x+1, luego solo tenemos que calcular el menor r tal que xr ≡ 1 módulo
xk + x+ 1.

Podemos encontrar trinomios primitivos calculados de esta forma en la enciclopedia online de
sucesiones de enteros OEIS [14]. Recordamos que OEIS es una página creada y mantenida por N. J.
A. Sloane donde se almacenan miles de sucesiones de interés matemático.

Consultando las sucesiones A002475, A073639 en OEIS [14] vemos los valores de k tal que Tk,1

es irreducible y primitivo sobre F2 respectivamente. Listamos únicamente los irreducibles cuya pri-
mitividad se ha comprobado, según lo indicado en A073639 y obtenemos lo siguiente.

Grados k tal que xk + x+1 es irreducible sobre F2: 2, 3, 4, 6, 7, 9, 15, 22, 28, 30, 46, 60, 63, 127,
153, 172, 303, 471, 532, 865, 900, 1366, 2380, 3310.

Grados k tal que xk + x+ 1 es primitivo sobre F2: 2, 3, 4, 6, 7, 15, 22, 60, 63, 127, 153, 471, 532,
865, 900, 1366.

Hemos verificado la primitividad de los trinomios en MAPLE con la técnica detallada previamente
para 2 ≤ k ≤ 20 ya que a partir de estos grados empieza a ser computacionalmente pesado.
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Podemos hacer lo mismo con los trinomios de la forma xk + x2 + 1, consultando las sucesiones
A057460, A074710 en OEIS [14] para tener los valores de k tal que Tk,2 es irreducible y primitivo
sobre F2 respectivamente, y listando solo los irreducibles cuya primitividad se ha comprobado, según
lo indicado en A074710.

Grados k tal que xk + x2 + 1 es irreducible sobre F2: 3, 5, 11, 21, 29, 35, 93, 123, 333, 845.

Grados k tal que xk + x2 + 1 es primitivo sobre F2: 3, 5, 11, 21, 29, 35, 93, 123, 333, 845.

Como se puede ver ambas sucesiones coinciden, aunque no parece ser indicativo de una propiedad
general. El siguiente término a comprobar seŕıa el 4125.

También hemos verificado la primitividad de estos trinomios en MAPLE para 3 ≤ k ≤ 20.

5.3. Pentanomios irreducibles

Como ya hemos visto, usar trinomios para representar cuerpos finitos tiene muchas ventajas,
principalmente por solo tener tres coeficientes distintos de cero.

Pero como hemos visto en el Corolario 5.2, para todos los grados que son múltiplos de 8 no tenemos
ningún polinomio irreducible, y si no encontramos un trinomio irreducible en F2[x] la siguiente opción
seŕıa un pentanomio. Es razonable preguntarse si solo usar trinomios o pentanomios es suficiente para
encontrar siempre algún polinomio irreducible de cualquier grado o necesitamos expandir la búsqueda
a otros polinomios.

En el art́ıculo [13], Gadiel Seroussi lista trinomios o pentanomios irreducibles de la siguiente forma.
Para el grado n, si existe algún trinomio irreducible Tn,k se escribe en la tabla el trinomio irreducible
de menor k, y si no existe, se busca algún pentanomio irreducible de la forma xn+xj1 +xj2 +xj3 +1 y
se escribe en la tabla el de menor orden lexicográfico, es decir, el de menor j1 y si varios pentanomios
irreducibles tienen el mismo j1 se escribe el de menor j2 y si coincide j2 el de menor j3.

En la Tabla 5.5 mostramos una versión reducida de lo obtenido en el art́ıculo [13], y se puede
ver que siempre podemos encontrar algún trinomio o pentanomio irreducible para todos los grados
que hemos considerado. Los datos del art́ıculo coinciden con esto, para todo grado 2 ≤ n ≤10.000
siempre se puede encontrar un trinomio o un pentanomio irreducible en F2[x], lo que lleva a la
siguiente conjetura.

Conjetura 5.13. Para cada n ∈ N, si no existe ningún trinomio irreducible de grado n en F2[x]
siempre existe un pentanomio irreducible de grado n en F2[x].

También destaca en la Tabla 5.5 que los pentanomios xn + xj1 + xj2 + xj3 + 1 siempre tienen un
valor de j1 bastante bajo, incluso en los grados más altos. De hecho, como se muestra en el art́ıculo
[13], el mayor valor de j1 en la tabla es j1 = 56 para n =9.760.

Conclusión
Con esto concluimos este trabajo, en el que hemos cubierto lo que hemos considerado los aspectos

principales de los polinomios irreducibles sobre cuerpos finitos, aśı como sus aplicaciones más actuales.

Esperamos haber ilustrado por qué el estudio de polinomios irreducibles sobre cuerpos finitos es
relevante, destacando particularmente la importancia del cuerpo F2 en la actualidad, y esperamos
también haber transmitido al lector el mismo interés en el tema que me ha generado a mı́ durante
estos meses de trabajo.
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Grado módulo 8
1 2 3 4 5 6 7 8

2,1 3,1 4,1 5,2 6,1 7,1 8,4,3,1
9,1 10,3 11,2 12,3 13,4,3,1 14,5 15,1 16,5,3,1
17,3 18,3 19,5,2,1 20,3 21,2 22,1 23,5 24,4,3,1
25,3 26,4,3,1 27,5,2,1 28,1 29,2 30,1 31,3 32,7,3,2
33,10 34,7 35,2 36,9 37,6,4,1 38,6,5,1 39,4 40,5,4,3
41,3 42,7 43,6,4,3 44,5 45,4,3,1 46,1 47,5 48,5,3,2
49,9 50,4,3,2 51,6,3,1 52,3 53,6,2,1 54,9 55,7 56,7,4,2
57,4 58,19 59,7,4,2 60,1 61,5,2,1 62,29 63,1 64,4,3,1
65,18 66,3 67,5,2,1 68,9 69,6,5,2 70,5,3,1 71,6 72,10,9,3
73,25 74,35 75,6,3,1 76,21 77,6,5,2 78,6,5,3 79,9 80,9,4,2
81,4 82,8,3,1 83,7,4,2 84,5 85,8,2,1 86,21 87,13 88,7,6,2
89,38 90,27 91,8,5,1 92,21 93,2 94,21 95,11 96,10,9,6
97,6 98,11 99,6,3,1 100,15 101,7,6,1 102,29 103,9 104,4,3,1

9.905,219 9.906,2.027 9.907,10,7,1 9.908,2.699 9.909,11,10,7 9.910,27,16,15 9.911,483 9.912,42,35,15
9.913,1.899 9.914,95 9.915,29,17,8 9.916,4.483 9.917,32,9,6 9.918,381 9.919,1.185 9.920,49,18,14
9.921,901 9.922,2.691 9.923,37,33,26 9.924,30,29,26 9.925,12,9,7 9.926,1.445 9.927,1.987 9.928,39,38,31
9.929,1382 9.930,331 9.931,34,10,3 9.932,2.397 9.933,23,6,2 9.934,34,7,3 9.935,2.216 9.936,22,21,1
9.937,451 9.938,25,19,9 9.939,32,26,17 9.940,2.059 9.941,29,12,10 9.942,133 9.943,3.069 9.944,15,14,6
9.945,1.882 9.946,2.355 9.947,23,17,8 9.948,1.535 9.949,32,24,10 9.950,2.453 9.951,1.334 9.952,31,30,11
9.953,539 9.954,343 9.955,9,8,5 9.956,851 9.957,25,11,4 9.958,17,14,4 9.959,381 9.960,30,15,10
9.961,2.707 9.962,20,14,3 9.963,34,29,20 9.964,2.691 9.965,34,24,23 9.966,1.701 9.967,4.399 9.968,36,3,2
9.969,295 9.970,2.587 9.971,11,8,5 9.972,519 9.973,27,24,12 9.974,2.045 9.975,124 9.976,21,19,5
9.977,2.954 9.978,1.483 9.979,26,10,2 9.980,707 9.981,30,27,22 9.982,993 9.983,785 9.984,27,10,7
9.985,1.974 9.986,1.143 9.987,14,11,10 9.988,3.129 9.989,21,20,6 9.990,573 9.991,495 9.992,7,4,2
9.993,121 9.994,29,22,3 9.995,41,40,31 9.996,1.447 9.997,26,10,6 9.998,4.013 9.999,2.951 10.000,19,13,9

Cuadro 5.5: Pares n, k asociados al trinomio irreducible xn + xk + 1 o 4-uplas n, j1, j2, j3 asociadas
al pentanomio irreducible xn + xj1 + xj2 + xj3 + 1 seleccionando para cada grado el menor trinomio
y, si no existe, el menor pentanomio según el orden lexicográfico.
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