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Resumen:  
 
En esta memoria se aborda el estudio de los p-grupos finitos. Se comienza 
con la clasificación completa del caso abeliano. A continuación, se aportan 
dos maneras diferentes para construir p-grupos no conmutativos: el uso del 

producto semidirecto y las construcciones matriciales, brindando en ambos 
casos gran cantidad de ejemplos. Posteriormente, se incluye un capítulo a 
nivel informativo de los últimos avances en el campo. Finalmente, se cierra 
el trabajo tratando los grupos extraespeciales. 
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Abstract: 

 
The study of finite p-groups is addressed on this paper. It starts with the 
complete classification of the abelian case. It then presents two distinct 
methods for constructing non-commutative p-groups: semidirect product and 
matrix constructions, with numerous examples provided for each approach. 
Subsequently, an informative chapter outlines the latest developments in the 

field. The work concludes with a discussion of extraspecial groups. 
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Caṕıtulo 1

Introducción

Necesitamos unas supermatemáticas en las que las operaciones sean tan
desconocidas como las cantidades sobre las que operan, y un supermatemático
que no sepa qué está haciendo cuando realiza esas operaciones.
Esas supermatemáticas son la teoŕıa de grupos.

Sir Arthur Stanley Eddington

Siempre me han llamado la atención los escritos que empiezan con alguna cita relacionada con el
tema a tratar, y desde que léı esta del astrof́ısico y filósofo Sir Arthur Stanley Eddington supe que la
necesitaba para introducir el trabajo. El motivo es que, precisamente, logra describir de una manera
muy amena lo que significa estudiar teoŕıa de grupos para mı́.

Seŕıa presuntuoso por mi parte dejar al lector la libertad de pensar que con ello me creo una
supermatemática. No, estoy lejos de ser Lagrange, Cayley o cualquier matemático que sentó las bases
de este campo. Reconozco mis limitaciones. Pero, en el segundo curso de la universidad, gracias a
Estructuras Algebraicas (y también a Topoloǵıa), comprend́ı la belleza de la abstracción matemática.
Recuerdo bien la sensación de satisfacción al completar y comprender un trabajo de ampliación del
temario que introdućıa a los p-grupos. De modo que la propuesta de acabar el grado profundizando
en tal tema me resultó atractiva.

La pretensión de obtener clasificaciones es una ambición muy matemática. En este texto, sin
embargo, no se pretende dar una clasificación cerrada de los p-grupos finitos, pues supera con creces
mis posibilidades. De hecho, en el sexto caṕıtulo se confirma que es, de manera general, un objetivo
poco realista.

Uno de los resultados mencionados más llamativos está precisamente en el informativo caṕıtulo 6
sobre la clasificación de los p-grupos finitos, que pone de manifiesto el superexponencial crecimiento
del número de grupos con pn elementos, que es de orden

p

(
2
27

n3+O

(
n(

8
3)

))
.

A lo largo de todo el trabajo se aportan numerosos ejemplos para la construcción de p-grupos que
respaldan un orden tan sumamente alto como el mostrado previamente.

Resulta grato comprobar que a pesar de la saturación de p-grupos que existen, tan inmensa como
para ser incapaces de abarcarlos actualmente, cuando se exigen ciertas propiedades el estudio se
simplifica. El caṕıtulo 3 es una buena muestra de ello, ya que en él se detallan todos los grupos
abelianos que hay de orden pn salvo isomorfismo.

La parte más compleja llega a la hora de abordar la construcción de p-grupos no abelianos. En
este trabajo se muestran dos herramientas distintas en los caṕıtulos 4 y 5. Cada una de ellas es
enriquecedora por su cuenta, y también es interesante ver cómo se complementan la una a la otra.
Además, al mismo tiempo, se muestra como ambos caminos, en ocasiones, pueden guiarnos al mismo
lugar.
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Concretamente, por un lado, el caṕıtulo 4 nos introduce una nueva construcción que permite
generalizar el producto de grupos con el que se trabaja en el grado: el producto semidirecto, dando
un paso más en la abstracción.

Por otro lado, dedicando el caṕıtulo 5 a los p-grupos de matrices enfatizamos el interés que tienen
en las matemáticas estos elementos que nos resultan tan habituales desde el comienzo de la carrera.
Un reconocimiento al hecho de que cada concepto aprendido desde los inicios es valioso.

Para acabar, en cambio, escogimos los grupos extraespeciales: un tema bastante espećıfico dentro
de la teoŕıa de grupos. Es un contenido apropiado para remarcar que la materia aportada a lo largo
de la memoria prepara de una manera muy gradual el camino para perimitirnos abordar algo tan
particular.

Henar Mart́ın Mart́ın



Caṕıtulo 2

Prelimiares de p-grupos

En esta sección se revisarán algunos conceptos de estructuras algebraicas. Se dan por conocidas
definiciones fundamentales como la de grupo, de clases laterales o subgrupos normales, aśı como
sus propiedades y resultados derivados elementales, como el Teorema de Lagrange. Algunos de los
resultados que śı revisaremos no se demostraran, pues suelen ser materia vista en el grado.

Lo primero será definir nuestro objeto principal de estudio.

Definición 1. Sea p un primo. Un p-grupo finito es un grupo de orden pn con n ≥ 1.

En este texto nos centramos en el caso finito, pero la definición general de p-grupo merece igual-
mente una mención.

Definición 2. Sea p un primo. Un p-grupo es un grupo en el que cada elemento tiene como orden
una potencia de p.

Observación. A lo largo de todo el texto la letra p queda reservada para los números primos.

Ahora damos paso a los conceptos de centro y centralizador por su peso en los primeros resultados
que conseguiremos sobre p-grupos.

Definición 3. Dado un grupo G se define el centro del grupo como el conjunto

Z(G) = {x ∈ G : xg = gx para todo g ∈ G}.

Esto es, el conjunto de los elementos de G que conmuntan con todos los elementos de G.

Definición 4. Sea x ∈ G. El centralizador de x en G es el conjunto

CG(x) = {g ∈ G : xg = gx} = {g ∈ G : x = gxg−1}

Esto es, los elementos de G que conmutan con x.

Notemos que el concepto de centralizador está estrechamente relacionado con el de centro. Además,
ambos nacen de la misma idea que surge con la relación de conjugación y ligan con los subgrupos
normales.

Fijamos que las clases de un elemento x ∈ G por la relación de conjugación se escriben como
Cl(x), y recordamos que son precisamente

Cl(x) = {gxg−1 : g ∈ G}.

Repasamos algunos resultados importantes respecto a estos conceptos, comenzando por las pro-
piedades del centro.

Lema 5. El centro Z(G) es un subgrupo abeliano y normal de G.

5
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Tal y como anticipamos, el centro está ligado a las clases de conjugación y los subgrupos normales.
Veamos algunos resultados al respecto:

Lema 6. Un elemento x pertenece al centro si y solo si Cl(x) = {x}.
En particular, el elemento neutro e de G cumple Cl(e) = {e}.

Lema 7. Sea G un grupo y H un subgrupo suyo. Entonces H es normal en G si y solo si H es unión
de clases de conjugación de G.

Demostración. Probaremos cada una de las implicaciones:
=⇒ Veremos que, de hecho,

H =
⋃
h∈H

Cl(h).

Obviamente H ⊂ ∪h∈HCl(h). Aseguremos que la contención contraria también se da.
Resulta que, al asumir que H es normal, tenemos que gHg−1 ⊂ H. Y por tanto, para cada h ∈ H se
verifica que

Cl(h) = {ghg−1 : g ∈ G} ⊂ gHg−1 ⊂ H.

Entonces Cl(h) ⊂ H para todo h ∈ H y aśı
⋃

h∈H Cl(h) ⊂ H. Al darse las dos contenciones se da
la igualdad.

⇐= Necesitamos ver que dado g ∈ G, gHg−1 ⊂ H .
Si H es unión de clases de conjugación, en particular

H =
⋃
h∈H

Cl(h).

Pero como las clases de conjugación son precisamente Cl(h) = {xhx−1 : x ∈ G}, se concluye que

H =
⋃
h∈H

Cl(h) =
⋃
h∈H

{xhx−1 : x ∈ G} ⊃ gHg−1.

■

Respecto al centralizador, comenzamos por su propiedad más elemental.

Lema 8. Sea G un grupo y g ∈ G. El centralizador CG(g) es un subgrupo de G.

Ahora podemos continuar relacionando el centro y las clases de conjugación con el centralizador.

Lema 9. Sea G un grupo y x ∈ G. Las siguientes condiciones son equivalentes:

CG(x) = G.

x ∈ Z(G).

De hecho, entre el centro y las clases de conjugación, en cuestión de cardinalidad tenemos el
siguiente resultado:

Lema 10. Sea G un grupo y x ∈ G. El cardinal de la clase de conjugación Cl(x) es el ı́ndice del
subgrupo centralizador. Es decir,

|Cl(x)| = [G : CG(x)].

En particular, si G es finito, el cardinal de Cl(x) divide al orden del grupo. Concretamente,

|Cl(x)| = [G : CG(x)] =
|G|

|CG(x)|
.

Henar Mart́ın Mart́ın



7 p- grupos finitos

Demostración. Como el ı́ndice [G : CG(x)] es el cardinal del conjunto de clases por la izquierda
respecto a CG(x) denotaremos por comodidad

A = {Clases por la izquierda respecto a CG(x)}.

Si probamos que existe una biyección entre Cl(x) y A habremos terminado. Definimos entonces

α : Cl(x) −→ A

gxg−1 −→ gCG(x)

Lo primero es asegurarnos de que esta aplicación está bien definida. Si suponemos que g, h ∈ G
verifican gxg−1 = hxh−1, necesitamos probar que α(gxg−1) = α(hxh−1), vaya, que gCG(x) = hCG(x).
Pero notemos que multiplicando a gxg−1 = hxh−1 por la izquierda por h−1 y por la derecha por g, se
sigue que h−1gx = xh−1g. Y esto justamente quiere decir que h−1g ∈ CG(x) y por tanto h y g están
relacionados y su clase es la misma.

Para ver la sobreyectividad basta notar que un elemento de A es de la forma gCG(x) para algún
g ∈ G. Aśı, tomando tal elemento g y eligiendo en Cl(x) a gxg−1, podemos concluir que α(gxg−1) =
gCG(x).

Para ver la inyectividad, probemos que si α(gxg−1) = α(hxh−1), entonces gxg−1 = hxh−1. Que
α(gxg−1) = α(hxh−1) es exactamente lo mismo que decir que gCG(x) = hCG(x). Por tanto h−1g ∈
CG(x), es decir (h−1g)x = x(h−1g). Entonces si multiplicamos tal igualdad por la izquierda por h y
por la derecha por g−1, se sigue que gxg−1 = hxh−1.

Justo lo que necesitábamos ver.
Por último, las igualdades finales del enunciado son ciertas si G es finito a consecuencia del Teorema

de Lagrange.
■

A consecuencia de que las clases de conjugación son una partición, del lema previo y del lema 6,
tenemos que para un grupo finito G con r = m+n clases de conjugación, siendo xi un representante de
cada clase para cada i = 1, 2, . . . , r , y considerando además n como el número de clases unipuntuales
y m aquellas con más de un elemento, se tiene la ecuación de las clases de conjugación:

|G| =
r∑

i=1

|Cl(xi)| = |Z(G)|+
m∑
i=1

|Cl(xi)| = |Z(G)|+
m∑
i=1

[G : CG(xi)].

Con esta primera base, ya podemos dar unos primeros resultados interesantes sobre p-grupos:

Proposición 11. Sea G un p-grupo finito de pn elementos. Entonces Z(G) tiene más de un elemento.

Demostración. Sea r el número de clases de conjugación deG. Consideremos para cada i ∈ {1, 2, . . . , r}
un elemento xi representante de cada clase.

Por la ecuación de las clases de conjugación, tenemos que

|G| = |Cl(x1)|+ |Cl(x2)|+ · · ·+ |Cl(xr)|. (2.1)

Notemos que la clase de conjugación del elemento neutro es unipuntual, es decir, Cl(1) = {1}.
Sin pérdida de generalidad podemos numerar las clases de manera que x1 = 1, con lo que |Cl(x1)| =

|Cl(1)| = |{1}| = 1.
Por el lema 10, para todo i ∈ {1, 2, . . . , r} tenemos que

|G| = |Cl(xi)||CG(xi)|. (2.2)

Entonces para todo i ∈ {1, 2, . . . , r} tenemos que |Cl(xi)| divide a |G|, o dicho de otra manera y
teniendo en cuenta que |G| = pn, lo que deducimos es que |Cl(xi)| es potencia de p.

Universidad de Valladolid
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Como el centro es un subgrupo, 1 ∈ Z(G).
De modo que para probar que Z(G) tiene más de un elemento, solo tenemos que justificar que

existe algún elemento distinto de 1 que está en Z(G). Para ello aprovecharemos de nuevo el lema 9.
Razonaremos por reducción al absurdo suponiendo que 1 es el único elemento de Z(G). Por el lema
9, esto se traduce en que CG(xi) ̸= G para todo i ∈ {2, 3, . . . , r}, y por tanto |Cl(xi)| = pki con ki
natural distinto de cero para todo i ∈ {2, 3, . . . , r}, o lo que es lo mismo, p divide a cada |Cl(xi)|
con i ∈ {2, 3, . . . , r}. Pero bajo estas consideraciones volviendo a la igualdad (2.1) llegamos a dos
conclusiones contradictorias:

Por un lado, como |Cl(x1)| = 1 y p divide a cada |Cl(xi)| con i ∈ {2, 3, . . . , r}, tenemos que
|Cl(x1)|+ |Cl(x2)|+ · · ·+ |Cl(xr)| ≡ 1 mód p.

Por otro lado de |G| = pn se deduce |G| ≡ 0 mód p.

Llegamos al absurdo, y por tanto la hipótesis de que 1 es el único elemento de Z(G) es falsa y ha de
existir otro i distinto de 1 para el cual CG(xi) = G y que por tanto xi pertenezca a Z(G).

■

Proposición 12. Sea G un grupo tal que G/Z(G) es ćıclico. Entonces G es abeliano, y por tanto
G = Z(G).

Demostración. Sea G/Z(G) ćıclico generado por xZ(G). Por tanto para todo g ∈ G se tiene que
g está en una de las clases laterales de Z(G), xZ(G), x2Z(G), . . . ya que las clases laterales forman
una partición de G. Aśı pues, dados g1, g2 ∈ G arbitrarios, se pueden escribir de la forma g1 = xiz1,
g2 = xjz2 para ciertos exponentes i, j y algún z1, z2 ∈ Z(G).

Como el objetivo es probar que G es abeliano, veamos que g1g2 = g2g1. Para ello solo hay que
aprovechar adecuadamente la forma de escribir g1 y g2 y sus propiedades como potencias, la asociati-
vidad y las propiedades del centro:

g1g2 = (xiz1)(x
jz2) = xi(z1x

j)z2 = xi(xjz1)z2 = (xixj)(z1z2) = (xixj)(z2z1) = (xi+j)(z2z1) =

= (xj+i)(z2z1) = (xjxi)(z2z1) = xj(xiz2)z1 = xj(z2x
i)z1 = (xjz2)(x

iz1) = g2g1

■

Proposición 13. Cualquier grupo con p2 elementos es abeliano.

Demostración. Sea G un grupo de cardinal |G| = p2. Al ser por hipótesis G finito y ser conocido
que Z(G) es un subgrupo de G, el teorema de Lagrange nos dice que Z(G) solo puede tener 1, p o p2

elementos. Estudiemos entonces cada caso:

Caso 1. Supongamos que |Z(G)| = 1.
Es un caso que no puede darse por la proposición 11.

Caso 2. Supongamos que |Z(G)| = p.
Si |Z(G)| = p, del teorema de Lagrange se deduce que |G| = p2 = p · |G/Z(G)| = |Z(G)|·|G/Z(G)|,
y por tanto |G/Z(G)| = p, y al ser p primo tendŕıamos que G/Z(G) es ćıclico. Pero por la pro-
posición 12 al ser G/Z(G) ćıclico obtendŕıamos que G = Z(G) y en consecuencia |Z(G)| = p2 ,
lo cual es contrario a la hipóteis del caso. Por tanto no se puede dar que |Z(G)| = p.

Caso 3. Supongamos que |Z(G)| = p2.
Si |Z(G)| = p2 como Z(G) está contenido en G, al tener los mismos elementos se deduce que
Z(G) = G, y como el centro es abeliano, el grupo G lo será también.

Por tanto la única posibilidad viable es la del caso 3, ante la cual hemos probado que G es abeliano,
y por tanto queda demostrada la proposición.

■

Henar Mart́ın Mart́ın



9 p- grupos finitos

Una consecuencia inmediata del Teorema de Cauchy, el cual se puede consultar en A course on
Finite Groups de Harvey E. Rose [12], es el siguiente resultado:

Corolario 14. Sea G un p-grupo abeliano finito de orden pn. Entonces existe algún b ∈ G tal que
orden(b) = p.

Teorema 15. Sea G un p-grupo de orden pn. Entonces el grupo G tiene algún subgrupo de orden ps

para cada 1 ≤ s ≤ n.

Demostración. Lo demostraremos por inducción sobre n.

Si n = 1 es obvio por el corolario anterior.

Si se verifica para 1, 2, . . . n− 1, veamos que es cierto para n.
Por la ecuación de las clases de conjugación

|G| = |Z(G)|+
m∑
i=1

[G : CG(xi)],

siendo m el número de clases con más de un elemento y xi un generador de cada una para cada
i ∈ {1, 2, . . . ,m}.
Como p divide a G y a [G : CG(xi)] para todo i ∈ {1, 2, . . . ,m}, se tiene que p divide a |Z(G)|.
Entonces, por el Teorema de Cauchy, Z(G) tiene algún subgrupo A con |A| = p , y además es
ćıclico por ser p primo. Como el centro es abeliano, el subgrupo A es normal.
Consideremos el cociente G/A, cuyo orden es pn−1. Podemos aplicar la hipótesis de inducción a
G/A y entonces tenemos que G/A tiene subgrupos de orden pm para cada 1 ≤ m ≤ n − 1. Por
la biyección existente entre los subgrupos de G/A y los subgrupos de G que contienen a A se
sigue que G tiene subgrupos de orden pm para 1 ≤ m ≤ n − 1. Como para n es evidentemente
cierto porque el propio G lo verifica, hemos terminado.

■

Nota. El resultado previo es un caso particular del primer teorema de Sylow.

Cerramos la sección con la definición del exponente de un grupo.

Definición 16. Sea G un grupo. En caso de existir, el menor número natural r tal que gr = e para
todo g ∈ G se denomina exponente o periodo del grupo G.

Además de ser útil para algunas de las demostraciones de este texto, tiene interés en śı misma
porque conocer el exponente de un grupo nos da información sobre su estructura interna.

Nota. Si un grupo es finito de orden n, obviamente el periodo divide a n.

Nota. En un p-grupo finito G de orden pn, el exponente o periodo es un divisor de pn.

Universidad de Valladolid
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Caṕıtulo 3

Grupos abelianos de orden pn

Una estrategia muy común en matemáticas es comenzar estudiando casos con propiedades más
amables, para luego poco a poco ir extendiendo el estudio a situaciones más genéricas. Esa será nuestra
manera de proceder, de modo que comenzaremos exigiendo a los grupos ser abelianos.

Definición 17. Sea (G,+) un grupo conmutativo. Sean H1, H2, . . . ,Hm subgrupos de G. Se define el
grupo suma de H1, H2, . . . ,Hm a

H1 +H2 + · · ·+Hm = {a1 + a2 + · · ·+ am ∈ G : a1 ∈ H1, a2 ∈ H2, . . . , am ∈ Hm}.

Definición 18. Sea (G,+) un grupo conmutativo. Sean H1, H2, . . . ,Hm subgrupos de G. Se dice que
G es suma directa de H1, H2, . . . ,Hm, y se denota

H1 ⊕H2 ⊕ · · · ⊕Hm

si se cumplen las dos condiciones siguientes:

G = H1 +H2 + · · ·+Hm.

Para todo b ∈ G existen a1 ∈ H1, a2 ∈ H2, . . . , am ∈ Hm únicos tales que b = a1 + a2 + · · ·+ am.

Exponemos condiciones equivalentes para la suma directa en el siguiente resultado:

Lema 19. Sea G un grupo y sean H1, H2, . . . ,Hm subgrupos de G tales que G = H1+H2+ · · ·+Hm.
Las cuatro condiciones siguientes son equivalentes:

1. G es suma directa de H1, H2, . . . ,Hm.

2. Si 0 = a1 + a2 + · · ·+ am con a1 ∈ H1, a2 ∈ H2, . . . , am ∈ Hm, entonces a1 = a2 = · · · = am = 0.

3. El homomorfismo de grupos

α : H1 ×H2 × · · · ×Hm −→ H1 +H2 + · · ·+Hm

(a1, a2, . . . , am) −→ a1 + a2 + · · ·+ am

es un isomorfismo.

4. Para cada i = 1, 2, . . . ,m se cumple que

Hi ∩
∑
j ̸=i

Hj = {0}.

11
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Demostración. Probaremos la cadena de implicaciones:

(1) =⇒ (2)

Razonaremos por reducción al absurdo. Supongamos que se tiene que 0 = a1 + a2 + · · ·+ am con
cierto j ∈ {1, 2, . . .m} tal que aj ̸= 0. Pero sabemos que también 0 = 0 + 0 + · · · + 0, por tanto se
rompe la unicidad para la expresión de 0 y llegamos al absurdo.

(2) =⇒ (3)

Para ver que es isomorfismo nos falta asegurar la biyectividad. Por tanto tenemos que ver que es
sobreyectiva e inyectiva.

La sobreyectividad es sencilla, puesto que dado un elemento g ∈ G = H1+H2+ · · ·+Hm se puede
escribir como g = a1 + a2 + · · ·+ am con a1 ∈ H1, a2 ∈ H2, . . . , am ∈ Hm, de modo que considerando
(a1, a2, . . . , am) ∈ H1 ×H2 × · · · ×Hm, su imagen por el homomorfismo α es la deseada.

La inyectividad tampoco requiere un gran esfuerzo. Notemos que si α(a1, a2, . . . , am) = α(b1, b2, . . . , bm)
tenemos que α(a1, a2, . . . , am) − α(b1, b2, . . . , bm) = 0. Y al ser α homomorfismo se sigue que α(a1 −
b1, a2−b2, . . . , am−bm) = 0. Ahora bien, por como está definida α, esto es (a1−b1)+(a2−b2)+· · ·+(am−
bm) = 0, y la hipótesis (2) nos garantiza que esto solo sucede si a1−b1 = 0, a2−b2 = 0, . . . , am−bm = 0.
Vaya, si a1 = b1, a2 = b2, . . . , am = bm, lo cual implica que (a1, a2, . . . , am) = (b1, b2, . . . , bm). Justo lo
que nos aporta que es inyectiva.

(3) =⇒ (4)

Recordemos que por ser H1, H2, . . . ,Hm subgrupos el elemento neutro 0 está en todos ellos.
Ahora, para probar la implicación razonaremos por reducción al absurdo y suponemos que existe
i ∈ {1, 2, . . . ,m} tal que

Hi ∩
∑
j ̸=i

Hj ̸= {0}.

Sin pérdida de generalidad podemos asumir que i = 1. Tenemos que entonces existen a ∈ H1, bj ∈ Hj

para j = 2, 3, . . . ,m verificando a = b2 + b3 + · · ·+ bm.
Por tanto α(a, 0, . . . , 0) = α(0, b2, . . . , bm), lo que está en contra de la inyectividad.

(4) =⇒ (1)

Notemos que por hipótesis general, se asume que G = H1 +H2 + · · · +Hm. Aśı, lo que tenemos
que garantizar es que dado b ∈ G existen a1 ∈ H1, a2 ∈ H2, . . . , am ∈ Hm únicos tales que b =
a1 + a2 + · · ·+ am.

Si razonamos para ver el contrarećıproco y suponemos que existe i ∈ {1, 2, . . . ,m} tal que

Hi ∩
∑
j ̸=i

Hj ̸= {0},

donde sin pérdida de generalidad podemos asumir que i = 1, tenemos que entonces existen a ∈ H1,
bj ∈ Hj para j = 2, 3, . . . ,m verificando a = b2 + b3 + · · ·+ bm.
Pero entonces tenemos al menos dos maneras distintas de expresar a, lo que implica que G no es suma
directa de H1, H2, . . . ,Hm.

■

Y pasamos ahora a introducir un nuevo término y algunos resultados al respecto que nos empiezan
a acercar a la clasificación de los p-grupos abelianos finitos.

Definición 20. Sea (G,+) un grupo abeliano no nulo. Decimos que G es indescomponible si, puesto
como suma directa de dos subgrupos, entonces uno de los dos subgrupos es trivial.

Proporcionamos más información sobre los grupos indescomponibles, puesto que entenderlos nos
permitirá comprender casos más complejos. El siguiente lema nos justifica precisamente en qué sentido
nos ayudará a estudiar casos más complicados.

Lema 21. Todo grupo G abeliano finito no nulo se puede expresar como suma directa de subgrupos
indescomponibles, admitiedo el caso de que el propio grupo de partida sea indescomponible.

Henar Mart́ın Mart́ın



13 p- grupos finitos

Demostración. Se demuestra por inducción sobre |G|.
Si |G| = 2 es trivial.

Supongamos que es cierto para |G| = 1, 2, . . . , n−1 y probémoslo para n. Tenemos dos posibilidades:

Si G es indescomponible, es trivial.

Si G no es indescomponible entonces existen subgrupos no triviales A y B tales que G = A⊕B.
Notemos que los cardinales de A y B son menores que el de G. Podemos entonces aplicar la
hipótesis de inducción de modo que A y B son suma directa de indescomponibles. Aśı pues
usamos esas dos descomposiciones para construir la de G y hemos terminado.

■

Lema 22. Sea G un p-grupo abeliano finito de orden pn. Si pm es el periodo de G, entonces existe
a ∈ G tal que orden(a) = periodo(G).

Demostración. Como |G| = pn y el orden de un elemento de g debe dividir al orden del grupo, los
órdenes de los elementos solo pueden ser potencias de p. Por tanto el periodo coincide con el orden del
elemento b con mayor orden. Aśı, tenemos lo que deseábamos, orden(a) = periodo(G) = pm, porque
si no existiera un b con tales caracteŕısticas el periodo seŕıa menor.

■

Lema 23. Sea G un p-grupo abeliano de orden pn. Sea a ∈ G tal que orden(a) = periodo(G) = pm.
Consideramos el grupo cociente G/⟨a⟩. Entonces para todo elemento b ∈ G/⟨a⟩ existe x ∈ G tal que
b = x+ ⟨a⟩ y orden(b) = orden(x).

Demostración. Tomemos un representante de b: sea y ∈ G tal que b = y + ⟨a⟩. Sean orden(b) = pk

y orden(y) = ps. Se tiene que pk ≤ ps ≤ pm, lo que equivale a que k ≤ s ≤ m.

Si k = s, entonces ya hemos conseguido lo pedido.

Si k < s hay que trabajar un poco más. Como el orden de b es pk, tenemos que pk(y+⟨a⟩) = pkb = 0
y vemos que pky ∈ ⟨a⟩. Es decir, pky = qa para cierto q ∈ Z. Podemos expresar q como el producto
q = rpt, donde p no divide a r.
Entonces,

pm+k−ty = pm−tpky = pm−tqa = pm−trpta = rpma = 0 = psy,

y se deduce que m+ k − t ≥ s.
Pero por otro lado

pm+k−t−1y = pm−t−1pky = pm−t−1qa = pm−t−1rpta = rpm−1a ̸= 0,

y junto con lo anterior se concluye que m+ k − t = s.
Consideremos el elemento x = y − rpm−sa de G y veamos que cumple lo las dos condiciones que
necesitamos. Es obvio que x + ⟨a⟩ = y + ⟨a⟩ = b. Luego orden(b) = pk divide a orden(x). Y como
además pkx = pky − rpk+m−sa = pky − rpta = pky − qa = pky − pky = 0 concluimos que orden(x) =
pk = orden(b).

■

Lema 24. Sea G un p-grupo abeliano de orden pn. Son equivalentes los siguientes tres asertos:

1. G es indescomponible.

2. G es ćıclico.

3. G es isomorfo a Z/(pn).
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Demostración. La equivalencia entre (2) y (3) es conocida, aśı que nos centramos en probar la
equivalencia entre (1) y (2).

(1) =⇒ (2)

Sea G indescomponible. Probaremos por inducción sobre n que entonces es ćıclico.

Si n = 1 entonces |G| = p y es conocido que todo grupo de orden primo es ćıclico.

Supongamos que para 1, 2, . . . , n − 1 es cierto y probemos que entonces también es cierto para
n, cuando |G| = pn.
Por el lema 22 existe a ∈ G tal que el orden de a es igual al periodo del grupo. Tenemos dos
casos:

� Si orden(a) = pn hemos terminado.

� Si orden(a) ̸= pn entonces considero el cociente G/⟨a⟩.
Por el lema 21 lo puedo expresar como suma directa de subgrupos indescomponibles:

G/⟨a⟩ = C1 ⊕ C2 ⊕ · · · ⊕ Ck (3.1)

Por hipótesis de inducción, cada Ci con 1 ≤ i ≤ k es ćıclico, de modo que existen xi tales
que Ci = ⟨xi + ⟨a⟩⟩ para cada 1 ≤ i ≤ k. Además, por el lema 23 podemos suponer que
orden(xi + ⟨a⟩) = orden(xi) para cada 1 ≤ i ≤ k.
Vamos a comprobar que

G = ⟨a⟩ ⊕ ⟨x1⟩ ⊕ ⟨x2⟩ ⊕ · · · ⊕ ⟨xk⟩,

lo que contradice la hipótesis de ser indescomponible. Necesitamos asegurar que la suma
es directa y para ello veremos una de las condiciones equivalentes vistas en el lema 19: si
b,m1,m2, . . . ,mk ∈ Z con ba + m1x1 + m2x2 + · · · + mkxk = 0 entonces ba = m1x1 =
m2x2 = · · · = mkxk = 0.
Notemos que ba+m1x1 +m2x2 + · · ·+mkxk = 0 implica que 0 = m1(x1 + ⟨a⟩) +m2(x2 +
⟨a⟩)+ · · ·+mk(xk+⟨a⟩). Por tanto, de la ecuación (3.1) seguimos que mi(xi+⟨a⟩) = 0 para
cada 1 ≤ i ≤ k. Entonces mi es múltipo de orden(xi) para cada 1 ≤ i ≤ k. En consecuencia
mixi = 0 para todo 1 ≤ i ≤ k y también ba = 0.

(2) =⇒ (1)

Razonaremos por reducción al absurdo. Supongamos que G es descomponible con G = A ⊕ B.
Entonces tenemos |A| = ps y |B| = pt de forma que 1 < ps < pn y 1 < pt < pn. En esta situación, el
exponente o periodo de G será

exp(G) = m.c.m(ps, pt) = máx{ps, pt} < pn,

lo que contradice el hecho de que G es ćıclico.
■

El siguiente resultado es clave, porque nos da una manera de describir cualquier p-grupo abeliano
afirmando la invariancia respecto a los exponentes en el orden de los subgrupos implicados en la
descomposición.

Teorema 25. Sea G un p-grupo abeliano de orden pn. Entonces G es suma directa de subgrupos
ćıclicos de órdenes pe1 , pe2 , . . . , per donde los números e1 ≥ e2 ≥ · · · ≥ er son únicos y cumplen
e1 + e2 + · · ·+ er = n.

Demostración. Se demuestra por inducción sobre n.

Si n = 1 es obvio porque G es ćıclico en śı mismo.

Henar Mart́ın Mart́ın



15 p- grupos finitos

Supongamos que es cierto para 1, 2, . . . , n− 1 y veamos que es cierto para n.

Consideremos un elemento x ∈ G de máximo orden posible y sea A = ⟨x⟩. Lo que probaremos
será que G = A × B para algún subgrupo B, porque aplicando a B la hipótesis de inducción
tendŕıamos la descomposición deseada.

La existencia de tal subgrupo B la probaremos precisamente construyéndolo.
Consideremos el espacio cociente G/A. Por la hipótesis de inducción este espacio es producto
interno de grupos ćıclicos generados por las clases ⟨y1A⟩, ⟨y2A⟩, . . . , ⟨ysA⟩, siendo sus órdenes
pm1 , pm2 , . . . , pms . Entonces tenemos que (yi)

pmi = xti para algún ti para cada 1 ≤ i ≤ s.
Para cada 1 ≤ i ≤ s, podemos suponer además que pmi divide a ti, obteniendo de ello que
(yi)

pmi = (xi)
pmi para algún xi = xti/p

mi ∈ A.
Notemos que tal suposición es ĺıcita ya que en caso de que para algún valor de i se tuviera
que pmi no divide a ti se tendŕıa que ti = kip

ri , donde p no divide a ki y ri < mi. Lo que
permitiŕıa concluir que xki genera A y que el orden de xti es pm−ri siendo pm el orden de x.
Lo que implicaŕıa que el orden de yi es mayor que el orden de x, en contra de como hab́ıamos
tomado x.

Escribimos ahora zi = yix
−1
i para cada 1 ≤ i ≤ s y consideremos el grupo B generado por

z1, z2, . . . , zs.

Notemos que como zp
mi

i = 1, el orden de cada zi divide a pmi para cada 1 ≤ i ≤ s. Además,
ziA = yiA siendo ord(yiA) = pmi para cada 1 ≤ i ≤ s, aśı que el orden de zi no puede ser menor
que pmi . Por tanto el orden de zi es concretamente pmi .

Si vemos que finalmente G es producto interno de A y B habremos terminado. Para ello necesi-
tamos probar dos propiedades:

� Cada elemento de G se puede escribir como ab siendo a ∈ A y b ∈ b.
Como ziA = yiA para 1 ≤ i ≤ s, la clase puede escribirse como producto de potencias de
z1A, z2A, . . . , zsA. Entonces g es producto de un elemento de A y otro de B.

� A ∩B = {1}.
Si a ∈ A ∩ B, entonces por estar en B es de la forma a = zk11 zk22 . . . zkss = yk11 yk22 . . . ykss , y
por tanto aA = zk11 Azk22 A . . . zkss A = yk11 Ayk22 A . . . ykss A. Pero por estar a en A, esta clase
es A.
Al generar y1A, y2A, . . . , ysA el cocienteG/A tenemos que es isomorfo a Cpm1 , Cpm2 , . . . , Cpmr

y concluimos que pmi divide a ki para 1 ≤ i ≤ s, de modo que a = 1.

Con ello terminamos la prueba.

■

En esta situación, los números pe1 , pe2 , , . . . , per se denominan factores invariantes y también
divisores elementales.

Gracias al teorema previo, podemos dar un ejemplo de todos los grupos abelianos de orden p5 que
existen, salvo isomorfismo:

Z
(p5)

,
Z

(p4)
× Z

(p)
,

Z
(p3)

× Z
(p2)

,
Z

(p3)
× Z

(p)
× Z

(p)

Z
(p2)

× Z
(p2)

× Z
(p)

,
Z

(p2)
× Z

(p)
× Z

(p)
× Z

(p)
,

Z
(p)

× Z
(p)

× Z
(p)

× Z
(p)

× Z
(p)

.

Dentro de esta lista, sabemos que la primera posibilidad dada es un grupo ćıclico. La última
también tiene su terminoloǵıa concreta, que es la siguiente:
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Definición 26. Un p-grupo elemental es un p-grupo conmutativo finito de exponente o periodo
exactamente p, en el que todo elemento distinto del neutro es de orden p.

Cada p-grupo elemental de orden pn es isomorfo al grupo

n veces︷ ︸︸ ︷
Z
(p)

× Z
(p)

× · · · × Z
(p)

dotado de la operación suma.

3.1. Particiones

Para cerrar el caṕıtulo, en esta sección vamos a demostrar cuántos p-grupos abelianos no isomorfos
existen. Para ello, la unicidad de los factores invariantes es clave, al igual que recordar la función
partición.

Definición 27. La función partición P asocia a cada entero no negativo n el número de posibles
particiones de śı mismo, esto es, la cantidad de formas en las que n puede ser expresado como la suma
de números enteros positivos sin importar el orden.

Por ejemplo, P (5) = 7 porque el número 5 tiene 7 particiones: 5, 4 + 1, 3 + 2, 3 + 1+ 1, 2 + 2+ 1,
2 + 1 + 1 + 1 y 1 + 1 + 1 + 1 + 1.

Nótese que tales particiones se corresponden con los grupos abelianos de orden p5 indicados pre-
viamente.

Se incluyen a continuación también los datos de las primeras cuarenta evaluaciones de la función
partición.

n P (n)

1 1
2 2
3 3
4 5
5 7
6 11
7 15
8 22
9 30
10 42

n P (n)

11 56
12 77
13 101
14 135
15 176
16 231
17 297
18 385
19 490
20 627

n P (n)

21 792
22 1002
23 1255
24 1575
25 1958
26 2436
27 3010
28 3718
29 4565
30 5604

n P (n)

31 6842
32 8349
33 10143
34 12310
35 14883
36 17977
37 21637
38 26015
39 31185
40 37338

Tabla 3.1: Número de particiones P (n) para n = 1 a 40

Se puede dar mucha información interesante sobre la función partición, y hay teoŕıa bastante
complicada al respecto. Aunque en la página de OEIS (referencia [OEIS]) se puede encontrar mucho
más contenido, no vamos a profundizar en ello. Lo que en nuestro contexto śı es relevante, es incluir
la siguiente fórmula obtenida por los matemáticos G. H. Hardy y Ramanujan:

P (n) ∼ 1

4n
√
3
exp

(
π

√
2n

3

)
cuando n → ∞. (3.2)

Su demostración se sale de los objetivos del texto, pero es importante porque permite un cálculo
aproximado mucho más rápido que las fórmulas exactas y aporta información valiosa sobre su creci-
miento: es más veloz que cualquier función polinómica en n pero no tanto como la exponencial pura.

Con el teorema siguiente justificamos el interés de este trabajo por la función partición.
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17 p- grupos finitos

Teorema 28. Sea n un natural. Entonces hay exactamente P (n) grupos abelianos no isomorfos de
orden pn.

Demostración. Por el teorema 25 sabemos que un p-grupo abeliano de orden pn puede ser expresado
como suma directa de subgrupos ćıclicos cuyos órdenes son los factores invariantes.

La unicidad de los factores invariantes nos garantiza que, si al hacer tal descomposición dos grupos
los tienen iguales, entonces son isomorfos.

Por tanto, como cada partición de n nos da unos factores invariantes distintos, se tiene que cada
partición de n define una estructura única de un grupo abeliano.

■

Aśı pues, acudiendo a la tabla (3.1) podemos asegurar que, por ejemplo, tenemos 5604 grupos
abelianos de orden p30; y por la fórmula de Hardy y Ramanujan de la ecuación (3.2) conocemos el
crecimiento asintótico del número de p-grupos abelianos no isomorfos.
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Caṕıtulo 4

Producto semidirecto para la
construcción de p-grupos no abelianos

En este caṕıtulo dejamos de exigir la conmutatividad y pasamos a los grupos no abelianos. Para
ello nos enfocaremos en una manera de construir nuevos grupos basándonos en el producto semidirecto
externo.

Antes, recordamos que dado un grupo (G, ∗), el conjunto de sus automorfismos dotado de la
operación “composición de automorfismos” tiene estructura de grupo . Lo denotamos (Aut(G), ◦).

Definición 29. Sean dos grupos N y H, y sea ϕ un homomorfismo de grupos ϕ : H −→ Aut(N) para
el que denotamos ϕ(h) := ϕh. El producto semidirecto externo de N y H, denotado por N ⋊ϕ H,
es la pareja constituida por (N ×H, •), donde N ×H el conjunto dado por el producto cartesiano y
• la operación dependiente de ϕ definida como sigue:

• : (N ×H)× (N ×H) −→ N ×H

((n1, h1), (n2, h2)) −→ (n1, h1) • (n2, h2) = (n1ϕh1(n2), h1h2)

Proposición 30. El producto semidirecto externo es un grupo.

Demostración. Sean H, N y ϕ como en la definición previa. Probemos que N ⋊ϕ H es un grupo,
para lo que necesitamos asegurar las tres condiciones siguientes:

Asociatividad.
Dados (nj , hj) ∈ N ×H para j = 1, 2, 3, veamos que ((n1, h1) • (n2, h2)) • (n3, h3) = (n1, h1) •
((n2, h2) • (n3, h3)).

Por un lado tenemos que
((n1, h1) • (n2, h2)) • (n3, h3) = (n1ϕh1(n2), h1h2) • (n3, h3) = (n1ϕh1(n2)ϕh1h2(n3), (h1h2)h3).

Por otro lado tenemos que
(n1, h1) • ((n2, h2) • (n3, h3)) = (n1, h1) • (n2ϕh2(n3), h2h3) = (n1ϕh1(n2ϕh2(n3)), h1(h2h3)) =
(n1ϕh1(n2)ϕh1h2(n3), (h1h2)h3). Como de ambas formas obtenemos lo mismo, la asociatividad
queda probada.

Existe elemento neutro.
Veamos que dado (n, h) ∈ N ×H se verifica que (1, 1) • (n, h) = (n, h) = (n, h) • (1, 1).
Tenemos que (1, 1) • (n, h) = (1ϕ1(n), 1h) = (n, h).
Y de igual modo tenemos que (n, h) • (1, 1) = (nϕh(1), h) = (n, h).

Cada elemento tiene su inverso.
Veamos que dado (n, h) ∈ N × H el elemento (ϕ−1

h (n−1), h−1) cumple la condición de ser su
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inverso. Nótese que (ϕh)
−1 = ϕh−1 , pues ϕ es homomorfismo de grupos. Teniéndolo en cuenta,

se comprueba directamente operando:

(n, h) • (ϕ−1
h (n−1), h−1) = (nϕh(ϕ

−1
h (n−1)), hh−1) = (1, 1)

(ϕ−1
h (n−1), h−1) • (n, h) = (ϕ−1

h (n−1)ϕh−1(n), h−1h) = (1, 1)

■

Nota. Al asegurar que el producto semidirecto externo, el par (N ×H, •) =: N ⋊ϕ H, es de hecho
un grupo, notemos que podemos tomar la licencia habitual de escribir el conjunto subyacente con la
misma notación que el propio grupo N ⋊ϕ H = (N ⋊ϕ H, •) sin perder de vista en qué contexto está
cada uno.

Proposición 31. Dado un grupo N ⋊ϕ H, producto semidirecto como el anterior, se cumple que
N × {1} es un subgrupo normal suyo.

Cabe destacar que el producto semidirecto externo que hemos presentado no deja de ser una
generalización del producto directo, ya que si el homomorfismo ϕ de la definición 29 es la aplicación
constantemente igual a la identidad de Aut(G), la operación • es exactamente el producto usual.

4.1. Un ejemplo de construcción de 2-grupos no abelianos

En esta sección vamos a introducir un primer ejemplo que nos permitirá obtener de un 2-grupo
conmutativo no elemental, otro 2-grupo no conmutativo. Además, estableceremos la relación que tiene
este procedimiento con los grupos diédricos.

La obtención del nuevo 2-grupo no conmutativo se buscará con la construcción de un producto
semidirecto. Para ello necesitamos recordar algunos resultados que nos asegurarán la correción al
definir el homomorfismo del que dependerá la operación. Los resultados no se demostrarán porque son
sencillos y no aportan contenido de interés al texto.

Lema 32. Sea (G,+) un grupo conmutativo. La aplicación

ϕ−1 : G −→ G

a 7−→ −a

es un automorfismo del grupo.

Observación. En esta sección consideraremos C2 = {+1,−1} el grupo ćıclico de dos elementos con
notación multiplicativa.

Observación. El grupo C2 considerado previamente es isomorfo a
(

Z
(2) ,+

)
.

Lema 33. Sea (G,+) un grupo conmutativo con algún elemento de orden mayor o igual que 3.
Consideremos ϕ1 la aplicación identidad y el automorfismo ϕ−1 del lema previo. La aplicación

ϕ : C2 −→ Aut(G)

1 7−→ ϕ1

−1 7−→ ϕ−1

es un homomorfismo de grupos inyectivo.
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Observación. Nótese que la condición sobre el orden de G, que tenga al menos tres elementos,
es necesaria para que en Aut(G) haya algún homomorfismo distinto de la identidad. Si no lo hay, el
producto semidirecto que podemos definir es, como dijimos, justamente el producto directo. Entonces,
al estar construido a partir de dos grupos conmutativos, conseguiŕıamos otro grupo conmutativo, y
ese no es el objetivo.

Una vez definido el homomorfismo ϕ, es inmediato el asegurar la posibilidad de la construcción de
un producto semidirecto.

Lema 34. Sea (G,+) un grupo conmutativo con algún elemento de orden mayor o igual que 3.
Entonces tenemos definido un grupo producto semidirecto

G⋊ϕ C2

con la operación de grupo dada por

(g, a) • (h, b) = (g + ϕa(h), a · b).

Observación. Con una notación más compacta la operación se puede escribir como

(g, a) • (h, b) = (g + a · h, a · b).

Proposición 35. Si (G,+) es un 2-grupo conmutativo de orden 2n con algún elemento de orden
mayor o igual que 4, entonces el producto semidirecto definido en el lema previo,

G⋊ϕ C2,

es un 2-grupo de orden 2n+1 y no conmutativo.
En esta situación,

G ∼= G× {1}
es un subgrupo normal de G⋊ϕ C2.

Ya hemos detallado una manera de construir para cada 2-grupo conmutativo no elemental, otro
2-grupo no conmutativo. Aśı pues, finalizamos la sección detallando como se relaciona este caso con
el grupo diédrico. Recordemos primero su definición:

Definición 36. El grupo diédrico, denotado por Dn es el grupo de simetŕıas de un poĺıgono regular
de n lados, incluyendo rotaciones y reflexiones.

Recordemos también que el grupo diédrico Dn tiene orden |Dn| = 2n, y que además se escribe
usualmente como

Dn = ⟨a, b|an = b2 = e, bab = an−1⟩,
siguiendo la representación con generadores y relaciones.

Ahora, nuestra construcción de 2-grupos no abelianos liga con el grupo diédrico porque

D2n
∼=

Z
(2n)

⋊ϕ C2.

De entrada podemos observar que Z
(2n) cumple evidentemente las condiciones requeridas para ser

el grupo G de la proposición 35, de modo que se sigue que

|D2n | = 2n+1 =

∣∣∣∣ Z
(2n)

⋊ϕ C2

∣∣∣∣ .
Además, es sencillo encontrar en este producto semidirecto dos elementos que verifiquen las rela-

ciones de a y b. Concretamente los elementos (1, 1) y (0,−1), asignando respectivamente los roles de
a y b, funcionan como indican .
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4.2. El p-grupo no abeliano Z
(p2) ⋊

Z
(p)

En esta sección vamos a introducir un ejemplo algo más elaborado que nos permitirá obtener a
partir de Z

(p2)
y Z

(p) , un p-grupo de orden p3 no conmutativo.

La manera de proceder será análoga a la sección previa: se buscará su obtención con la construcción
del producto semidirecto (

Z
(p2)

⋊ϕ
Z
(p)

,⊕
)
.

La clave vuelve a ser definir el homomorfismo ϕ adecuado del que dependerá la operación ⊕ del
producto semidirecto, y se requerirán también algunos lemas auxiliares para garantizar su correcta
definición. Los resultados tampoco se demostrarán porque son sencillos y no aportan contenido de
interés al texto.

Lema 37. Sea j ∈ {0, 1, 2, . . . , p− 2, p− 1}. La aplicación

ϕj :
Z

(p2)
−→ Z

(p2)

a 7−→ (1 + jp)a

es un automorfismo del grupo
(

Z
(p2)

,+
)
.

Observación. Nótese que con el producto (1+jp)a escrito en la definición de la aplicación anterior,

no nos referimos a otro que al producto usual del anillo
(

Z
(p2)

,+, ·
)
.

A continuación detallamos algunas propiedades que verifican estos automorfismos:

ϕ0 es el automorfismo identidad.

Dados ϕj y ϕk con j ∈ {0, 1, 2, . . . , p−2, p−1}, la composición de ambos reulta ser ϕj ◦ϕk = ϕj+k

donde j + k se toma como su residuo módulo p, ya que (1+ jp)(1 + kp) = 1+ (j + k)p+ jkp2 ≡
1 + (j + k)p mód (p2).

El punto previo nos asegura que el inverso de ϕj es ϕp−j .

Podemos poner un caso sencillo de como funcionan los inversos de este tipo de automorfismos, por
ejemplo cuando p = 5. Si consideramos ϕ2, ϕ3 :

Z
(25) −→

Z
(25) , notemos que 2+3 = 5 y (1+2·5)(1+3·5) =

1 + (2 + 3) · 5 + 2 · 3 · 52 ≡ 1 + 52 ≡ 1 mód (52).

Lema 38. Consideremos ϕj para j ∈ {0, 1, 2, . . . , p− 2, p− 1} del lema previo.
La aplicación

ϕ :

(
Z
(p)

,+

)
−→ Aut

((
Z

(p2)
,+

))
j 7−→ ϕj

es un homomorfismo de grupos inyectivo.

Nótese también que el homomorfismo ϕ previamente definido no es una biyección, puesto que hay
otros automorfismos distintos de nuestros ϕj en Aut(( Z

(p2)
,+)).

Lema 39. Tenemos definido un grupo producto semidirecto

Z
(p2)

⋊ϕ
Z
(p)
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de los grupos (
Z

(p2)
,+

)
y

(
Z
(p)

,+

)
con la operación de grupo dada por

(g, a)⊕ (h, b) = (g + ϕa(h), a+ b).

Observación. Con una notación más compacta la operación se puede escribir como

(g, a)⊕ (h, b) = (g + (1 + ap)h, a+ b).

Proposición 40. El producto semidirecto definido en el lema previo,

Z
(p2)

⋊ϕ
Z
(p)

,

es un p-grupo de orden p3 y no conmutativo.

Para cerrar esta sección vamos a enunciar un par de propiedades de la construcción realizada:

1. Por un lado, notemos que podemos contabilizar cuantos elementos hay de cada orden posible.

Para ello, recordemos que en
(

Z
(p2)

,+
)
hay:

Un elemento de orden 1. Es el neutro, 0̄.

p− 1 elementos de orden p. Son los elementos de la forma j̄p con j ∈ {1, 2, . . . , p− 1}.
p2 − p elementos de orden p2. Son los elementos de la forma h̄ con mcd(h, p) = 1.

Entonces con un simple razonamiento de combinatoria, volviendo a nuestro producto semidirecto
Z

(p2)
⋊ϕ

Z
(p) , podemos concluir que hay:

Un elemento de orden 1. Es el neutro, (0, 0).

p(p−1) = p2−p elementos de orden p2. Son los elementos de la forma (h, 0) con mcd(h, p) =
1.

p3 − (p2 − p+ 1) = p3 − p2 + p− 1 elementos de orden p. Son los elementos de la forma:{
(h, 0) con mcd(h, p) = p y h ̸= 0

(h, a) con a ̸= 0

2. Por otro lado, notemos que el centro de Z
(p2)

⋊ϕ
Z
(p) tiene necesariamente orden p. Esto se debe

a que, de hecho, el centro de cualquier grupo no conmutativo de orden p3 tiene necesariamente
orden p. Tal afirmación es consecuencia de las proposiciones 11 y 12. Detallémoslo:

Proposición 41. El centro de cualquier grupo G no conmutativo de orden p3 tiene orden p.

Demostración. Por la proposición 11 al ser |G| = p3, el centro Z(G) tiene más de un elemento.

Como el centro es un subgrupo, y el orden de los subgrupos debe dividir al orden del grupo, solo
puede ser que |Z(G)| sea o p o p2.

Vamos a descartar la posibilidad de que sea p2. Si |Z(G)| = p2, entonces el cociente G/Z(G)
tendŕıa orden

|G/Z(G)| = |G|
|Z(G)|

=
p3

p2
= p.

Pero esto implicaŕıa que G/Z(G) fuera ćıclico y abeliano, y entonces de la proposición 12 se
deduciŕıa que G es abeliano, algo que va en contra de nuestra hipótesis de que G era no abeliano.

■
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En este caso, de hecho, el centro de Z
(p2)

⋊ϕ
Z
(p) es

Z

(
Z

(p2)
⋊ϕ

Z
(p)

)
= {(jp, 0) : j ∈ {0, 1, . . . , p− 1}} = ⟨(p, 0)⟩.

4.3. El p-grupo no abeliano
(

Z
(p2) ×

Z
(p2) × · · · × Z

(p2)

)
⋊ Z

(p)

En esta sección nos vamos a centrar en una forma de generalizar la construcción de la anterior.
Considerarmos, en lugar de Z

(p2)
, su producto n veces, Z

(p2)
× Z

(p2)
× · · · × Z

(p2)
.

Los pasos que daremos serán los mismos, y las demostraciones no las detallaremos porque tampoco
aportan contenido de interés. Primero, como hicimos con el lema 37, aseguraremos que las aplicaciones
que nos interesan son automorfismos:

Lema 42. Sea j ∈ {0, 1, 2, . . . , p− 2, p− 1}. La aplicación

ϕj :
Z

(p2)
× Z

(p2)
× · · · × Z

(p2)
−→ Z

(p2)
× Z

(p2)
× · · · × Z

(p2)

(a1, a2, . . . , an) 7−→ ((1 + jp)a1, (1 + jp)a2, . . . , (1 + jp)an)

es un automorfismo del grupo
(

Z
(p2)

× Z
(p2)

× · · · × Z
(p2)

,+
)
.

El segundo paso es garantizar la correcta definición del homomorfismo ϕ, como en el lema 38:

Lema 43. Consideremos ϕj para j ∈ {0, 1, 2, . . . , p− 2, p− 1} del lema previo.
La aplicación

ϕ :

(
Z
(p)

,+

)
−→ Aut

((
Z

(p2)
× Z

(p2)
× · · · × Z

(p2)
,+

))
j 7−→ ϕj

es un homomorfismo de grupos inyectivo.

El tercer paso, análogamente al lema 39, se centra en construir el producto semidirecto:

Lema 44. Tenemos definido un grupo producto semidirecto(
Z

(p2)
× Z

(p2)
× · · · × Z

(p2)

)
⋊ϕ

Z
(p)

de los grupos (
Z

(p2)
× Z

(p2)
× · · · × Z

(p2)
,+

)
y

(
Z
(p)

,+

)
con la operación de grupo dada por

((g1, g2, · · · , gn), a)⊕ ((h1, h2, · · · , hn), b) = ((g1, g2, · · · , gn) + ϕa(h), a+ b).

Observación. Con una notación más compacta la operación se puede escribir como

((g1, g2, · · · , gn), a)⊕ ((h1, h2, · · · , hn), b) = ((g1+(1+ap)h, g2+(1+ap)h, · · · , gn+(1+ap)h), a+ b).

Proposición 45. El producto semidirecto definido en el lema previo,(
Z

(p2)
× Z

(p2)
× · · · × Z

(p2)

)
⋊ϕ

Z
(p)

,

es un p-grupo de orden p2n+1 y no conmutativo cuyos elementos son todos de orden 1, p o p2.
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4.4. El p-grupo no abeliano Z
(p2) ⋊

(
Z
(p) ×

Z
(p) × · · · × Z

(p)

)
En esta sección vamos a generalizar de nuevo la construcción Z

(p2)
⋊ Z

(p) , pero esta vez modificando

el segundo espacio. Considerarmos, en lugar de Z
(p) , su producto n veces Z

(p) ×
Z
(p) × · · · × Z

(p) .

La manera de proceder es similar, pero en este caso no podremos garantizar también la inyectividad
del homomorfismo ϕ. Por otro lado, las aplicaciones que nos interesan vuelven a ser

ϕj :
Z

(p2)
−→ Z

(p2)

a 7−→ (1 + jp)a

con j ∈ {0, 1, 2, . . . , p− 1}, las del lema 37, que, como hab́ıamos enunciado ya, son automorfismos.

La carencia de inyectividad del homomorfismo ϕ viene de que ahora no tenemos la ventaja que nos
otorgaba la cómoda inclusión de Z

(p) en Z
(p2)

. En esta situación nos interesa más garantizar solamente

el lema siguiente:

Lema 46. Consideremos ϕj para j ∈ {0, 1, 2, . . . , p− 1} como indicamos anteriormente, las del lema
37. Entonces, la aplicación

ϕ :

(
Z
(p)

× Z
(p)

× · · · × Z
(p)

,+

)
−→ Aut

(
Z

(p2)
,+

)
j = (j1, j2, · · · , jn) 7−→ ϕj1+j2+···+jn

es un homomorfismo de grupos.

Nótese que j1 + j2 + · · ·+ jn se refiere a j1 + j2 + · · ·+ jn mód p.

A continuación, en el tercer paso, análogamente a los lemas 39 y 44, construimos el producto
semidirecto.

Lema 47. Tenemos definido un grupo producto semidirecto

Z
(p2)

⋊ϕ

(
Z
(p)

× Z
(p)

× · · · × Z
(p)

)
de los grupos (

Z
(p2)

,+

)
y

(
Z
(p)

× Z
(p)

× · · · × Z
(p)

,+

)
con la operación de grupo dada por

(g, (a1, a2, . . . , an))⊕ (h, (b1, b2, . . . , bn)) = (g + ϕ(a1,a2,...,an)(h), (a1 + b1, a2 + b2, · · · , an + bn)).

Observación. Con una notación más compacta la operación se puede escribir como

(g, (a1, a2, . . . , an))⊕(h, (b1, b2, . . . , bn)) = (g+(1+(a1+a2+· · ·+an)p)h, (a1+b1, a2+b2, · · · , an+bn)).

Proposición 48. El producto semidirecto definido en el lema previo,

Z
(p2)

⋊
(

Z
(p)

× Z
(p)

× · · · × Z
(p)

)
,

es un p-grupo de orden p2+n y no conmutativo cuyos elementos son todos de orden 1, p o p2.
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4.5. Otros productos semidirectos

Como hemos podido ver en las secciones previas, elmodus operandi para construir grupos utilizando
el producto semidirecto no difiere mucho de unos a otros. Por ese motivo, citamos algunos casos más
sin introducir los lemas y justificaciones que aseguran las condiciones que necesitamos.

Los primeros ejemplos que mencionaremos nacen de incrementar las potencias del primo en en las
que basamos los grupos implicados.

Por ejemplo, modificando el primer factor se puede construir el producto semidirecto

Z
(p3)

⋊
Z
(p)

considerando la operación (g, a)⊕ (h, b) = (g + (1 + ap2)h, a+ b).
En este caso el centro del grupo es

Z = {(jp, 0) : j ∈ {0, 1, · · · , p2 − 1}}.

∼ ∼ ∼ ∼ ∼

En cambio, modificando el segundo factor se puede construir el producto semidirecto

Z
(p2)

⋊
Z

(p2)

considerando la operación (g, a)⊕ (h, b) = (g + (1 + ap)h, a+ b).
En este caso el centro del grupo es

Z = {(jp, kp) : j, k ∈ {0, 1, · · · , p− 1}}.

∼ ∼ ∼ ∼ ∼

Además, si modificamos ambos, se puede construir el producto semidirecto

Z
(p3)

⋊
Z

(p2)

considerando la operación (g, a)⊕ (h, b) = (g + (1 + ap2)h, a+ b).
En este caso el centro del grupo es

Z = {(jp, kp) : j ∈ {0, 1, · · · , p2 − 1}, k ∈ {0, 1, · · · , p− 1}}.

∼ ∼ ∼ ∼ ∼

De hecho, de manera general se tiene que(
Z

(pn)
⋊

Z
(ps)

,⊕
)

considerando la operación (g, a)⊕(h, b) = (g+(1+apn−1)h, a+b), es también un producto semidirecto.
En este caso el centro del grupo es

Z = {(jp, kp) : j ∈ {0, 1, · · · , pn−1 − 1}, k ∈ {0, 1, · · · , ps−1 − 1}.

∼ ∼ ∼ ∼ ∼
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Nótese que, además de la amplia gama de posibilidades que nos otorga la generalización previa,
podemos conseguir aún más grupos definiendo una operación diferente. Por ejemplo,(

Z
(pn)

⋊
Z

(ps)
,⊞

)
cuando consideramos una nueva operación dada por (g, a) ⊞ (h, b) = (g + (1 + apn−s)h, a + b) es un

producto semidirecto distinto de
(

Z
(pn) ⋊

Z
(ps) ,⊕

)
.

En este caso el centro del grupo es

Z = {(jps, 0) : j ∈ {0, 1, · · · , pn−s − 1}}.

∼ ∼ ∼ ∼ ∼

Por último, cabe mencionar que una vez conocidos algunos ejemplos, se puede complicar un poco
más la idea mezclando estas construcciones. Por ejemplo,((

Z
(p3)

)
⋊
(

Z
(p)

× Z
(p2)

)
,⊙
)

con la operación (a, (b, c)) ⊙ (α, (β, γ)) = (a + (1 + p2b + pc)α, (b + β, c + γ)) es otro producto
semidirecto.
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Caṕıtulo 5

p-grupos de matrices

El teorema de Cayley nos asegura que cada grupo finito de orden n es isomorfo a un subgrupo
del grupo simétrico. Teniendo en cuenta que las permutaciones pueden verse como transformaciones
lineales, y que estas se pueden representar matricialmente, el interés en los grupos de matrices es
natural.

Por desgracia, la construcción de estos subgrupos de matrices no es sencilla y se sale de los objetivos
de este texto. Sin embargo, śı que resulta procedente detallar algunos ejemplos de p-grupos de matrices.
Para ello introduciremos primero el grupo lineal general y el lineal especial, a pesar de que ellos mismos
no son p-grupos, y detallaremos posteriormente como encontrar en ellos ciertos subgrupos que śı son
p-grupos.

5.1. El grupo lineal general y grupo lineal especial

El grupo lineal general de grado n es el grupo constituido por el conjunto de las matrices
invertibles de tamaño n × n con el producto usual de matrices. Las entradas de la matriz pueden
fijarse en cualquier cuerpo o anillo, pero nosotros nos centraremos en aquellas con entradas en Fp, los
cuerpos finitos de p elementos. Aśı pues, consideraremos el conjunto

GL(n,Fp) = {A ∈ Mn×n(Fp) : det(A) ̸= 0}

con la operación producto de matrices habitual, trabajando aśı con el grupo

(GL(n,Fp), ·).

Notación. A veces al conjunto GL(n,Fp) se le denota simplemente como GL(n, p).

Proposición 49. El orden del grupo GL(n, p) es (pn − 1)(pn − p)(pn − p2) · · · (pn − pn−1).

Demostración. Necesitamos contar el número de matrices con determinante no nulo y entradas en
el cuerpo Fp. Para ello la combinatoria será nuestra principal herramienta, ya que el procedimiento se
basará en comprobar de cuantas formas podemos elegir la columna j una vez sabemos las opciones
que teńıamos en las previas de modo que continue sin ser dependiente de las anteriores.

La forma génerica de las matrices que nos interesan es la siguiente:
a11 a12 a13 . . . a1n
a21 a22 a23 . . . a2n
a31 a32 a33 . . . a3n
...

...
...

. . .
...

an1 an2 an3 . . . ann


Si nos centramos en la primera columna, lo único que se exige es que no sea nula. Esto nos permite
pn − 1 opciones.
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Pasando a la segunda columna, si esta fuera un múltiplo de la primera el determinante si seŕıa nulo.
Como es precisamente lo que deseamos evitar, se concluye que hay pn − p opciones para la segunda
columna.

Del mismo modo, la tercera columna no puede ser combinación lineal de las dos anteriores, puesto
que en tal caso el determinante se anulaŕıa. Eso nos deja con pn−p2 opciones para la tercera columna.

Con un razonamiento análogo para cada una de las columnas restantes se deduce que, de hecho,
para cada i ∈ {1, 2, . . . , n} tenemos pn − pi−1 opciones para la i-ésima columna.

Por lo tanto, el número total de matrices invertibles, es decir, el orden de GL(n, p) es el producto

(pn − 1)(pn − p)(pn − p2) · · · (pn − pn−1).

■

Notemos que la proposición previa nos asegura que GL(n, p) no es un p-grupo.

Veamos entonces qué conclusiones podemos sacar si nos restringimos a un subgrupo suyo, al grupo
lineal especial de grado n. El grupo lineal especial es el grupo

(SL(n,Fp), ·),

constituido por el conjunto de las matrices de tamaño n× n con determinante 1, es decir,

SL(n,Fp) = {A ∈ Mn×n(Fp) : det(A) = 1},

y considerando como operación el producto usual de matrices.
Las entradas de la matriz, al igual que antes, nos intersan en Fp y aśı lo describimos, pero de

manera general también se podŕıa considerar cualquier anillo o cuerpo.
Notación. A veces al conjunto SL(n,Fp) se le denota simplemente como SL(n, p).

Proposición 50. El orden del grupo SL(n, p) es

|GL(n, p)|
p− 1

.

Demostración. Recurrimos a la aplicación determinante:

det : GL(n, p) −→ (F∗
p, ·)

A −→ det(A)

Notemos que det es un homomorfismo, porque es bien conocido que det(A · B) = det(A) det(B).
Además, al considerar el conjunto de llegada F∗

p donde ya no contamos con el cero, la aplicación es
sobreyectiva, de modo que Im(det) = F∗

p. Y también se puede observar que el núcleo de la aplicación
es precisamente

ker(det) = {A ∈ Mn×n : det(A) = 1} = SL(n, p).

Aplicando a det el teorema del homomorfismo, deducimos que

GL(n, p)

ker(det)
∼= Im(det).

Y con lo que sabemos sobre el núcleo y la imagen de det, se puede escribir precisamente como

GL(n, p)

SL(n, p)
∼= F∗

p.

Por tanto, en cuestión de cardinalidad, se llega a

|GL(n, p)|
|SL(n, p)|

= |F∗
p|,

donde despejando |SL(n, p)| se confirma la expresión para el orden de tal grupo que teńıamos en el
enunciado.

■
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Notemos que la proposición previa nos asegura que SL(n, p) tampoco es un p-grupo. Sin embargo,
todo este estudio śı tiene cabida en el texto, y el sentido nos lo da la siguiente sección.

5.2. UT (n, p), un p-grupo de matrices triangulares dentro de SL(n, p)

Entre las matrices, aquellas triangulares suelen ser de interés, puesto que es más sencillo trabajar
con ellas. Por ejemplo, en la rama de numérico se suelen aprovechar para descomposiciones por el
ahorro computacional que permiten.

En este texto vamos a quedarnos con el grupo que denotaremos

(UT (n, p), ·),

constituido por el conjunto UT (n, p) de matrices triangulares superiores con diagonal de unos, de
tamaño n× n y entradas en Fp, es decir,

UT (n, p) =




1 a12 a13 . . . a1n
0 1 a23 . . . a2n
0 0 1 . . . a3n
...

...
...

. . .
...

0 0 0 . . . 1

 ∈ Mn×n(Fp)


,

y la operación producto usual de matrices.

Recuérdese que el producto de matrices es no conmutativo, y nótese que si n ≥ 3 este caso no es
distinto.

Observemos también que las matrices de este grupo tienen todas determinante 1, de modo que
(UT (n, p), ·) es un subgrupo de (SL(n, p), ·), y por tanto también de (GL(n, p), ·). Además, el orden
de (UT (n, p), ·) es precisamente

|UT (n, p)| = p
n(n−1)

2 .

Entonces, este grupo (UT (n, p), ·) śı es un p-grupo, que además es no conmutativo si n ≥ 3. Este
hecho nos confirma que, a pesar de que ni GL(n, p), ni SL(n, p) son p-grupos, siempre se puede
encontrar un subgrupo suyo que śı lo es.

En las siguientes secciones aportaremos más información respecto a este p-grupo.

5.3. Exponente en UT (n, p)

Por la información curiosa que aporta sobre la estructura interna de los grupos y las simplificaciones
que permitirán después en las operaciones que nos requerirán algunos ejemplos, vamos a comenzar
especificando algunos resultados que ligan con el concepto de exponente.

Lema 51. Si p ≥ 3, entonces todo elemento distinto del neutro en UT (3, p) tiene orden p. Es decir,
el exponente del grupo es p.

Demostración. Tomamos una matriz M cualquiera de UT (3, p) distinta de la identidad,

M =

1 a b
0 1 c
0 0 1

 ,
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y comprobaremos que multiplicancándola por śı misma, es a la p-ésima potencia la primera vez que
llegamos a la matriz identidad. Notése que:

M2 =

1 2a 2b+ ac
0 1 2c
0 0 1



M3 =

1 3a 3b+ 3ac
0 1 3c
0 0 1



M4 =

1 4a 4b+ 6ac
0 1 4c
0 0 1



M5 =

1 5a 5b+ 10ac
0 1 5c
0 0 1


Podemos observar que la recurrencia que se deduce para el cálculo de la j-ésima potencia para cada
j ∈ N es precisamente:

M j =

1 ja jb+
(
j
2

)
ac

0 1 jc
0 0 1

 .

Notemos que el orden de M no puede ser estrictamente menor que p, porque como al menos una
de las varibles a, b o c ha de ser no nula para que M no sea la identidad, se tiene que al menos ja ̸= 0,
o jb ̸= 0, o jc ̸= 0 para j < p recordando que estamos trabajando en Z

(p) .

Para asegurar que el orden es realmente p, confirmemos que pa, pc y pb +
(
p
2

)
ac son cero. Ahora

bien, es inmediato que pa = pb = pc = 0. Y como
(
p
2

)
= p(p−1)

2 es múltiplo de p, también se anula(
p
2

)
ac.

Hemos comprobado entonces lo que necesitábamos y podemos asegurar que todos los elementos
de UT (3, p) son de orden p.

Además, el exponente de UT (3, p) es p por la propia definición de exponente (definición 16).

■

Generalicemos el lema anterior a una condición que relacione el tamaño de las matrices para
cualquier n con el orden del cuerpo en el que tienen las entradas. La naturaleza del resultado es la
misma y por tanto el modus operandi también. Sin embargo, la detallaré porque las herramientas
técnicas son distintas, aportando una bonita mezcla de combinatoria y álgebra básica.

Proposición 52. Sea UT (n, p) con p ≥ n. Entonces todo elemento distinto del neutro tiene orden p
y por tanto se trata de un grupo de exponente p.

Demostración. Sea A ∈ UT (n, p) distinta de la identidad. Entonces A = I +N siendo I la matriz
identidad y N triangular superior estricta no nula.

En esta ocasión recurriremos al binomio de Newton,

Am = (I +N)m = I +
m∑
k=1

(
m

k

)
Nk.

Nótese que
(
m
k

)
= m!

k!(m−k)! , y se puede ver que si m = p, entonces
(
m
k

)
es múltiplo de p para

0 < k < p. Además, las matrices triangulares estrictamente superiores de tamaño n son nilpotentes, y
Nn = 0. Aśı pues, como p ≥ n también Np = 0 . De modo que es Ap = I.
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Veamos ahora que p es el primer natural para el que esto sucede. Asegurémoslo razonando por
reducción al absurdo suponiendo que existe j < p tal que Aj = I.
En esta situación tenemos que

I = Aj = (I +N)j = I +

(
j

1

)
N +

(
j

2

)
N2 +

(
j

3

)
N3 + · · ·+

(
j

j − 1

)
N j−1 +N j ,

equivalentemente,

0 =

(
j

1

)
N +

(
j

2

)
N2 +

(
j

3

)
N3 + · · ·+

(
j

j − 1

)
N j−1 +N j .

Sacando factor común N , esto se ve como

0 = N

((
j

1

)
I +

(
j

2

)
N +

(
j

3

)
N2 + · · ·+

(
j

j − 1

)
N j−2 +N j−1

)
,

donde notemos que la expresión matricial del paréntesis ha de ser invertible. Esto es porque el producto
de matrices estrictamente superiores es estrictamente superior, de modo que el primer sumando es el
único que interviene en la diagonal y nos permite conocer fácilmente que su determinante es

(
j
1

)n
= jn,

que no es nulo porque 0 < j < p y n ≤ p. Que una matriz sea invertible equivale a que sea regular por
la derecha, lo cual entra en contradicción con que N no es nula.

■

Por último, nos centramos en los 2-grupos. Nótese que la proposición previa no entra en conflicto
con la siguiente.

Proposición 53. Sea G un 2-grupo en el que todo elemento distinto del neutro tiene orden 2 (grupo
de exponente 2). Entonces G es un grupo conmutativo.

Demostración. Deseamos ver que dados a, b ∈ G entonces ab = ba. Nótese que por ser un grupo,
ab ∈ G. Por ser todos los elementos de orden dos, en particular (ab)2 = 1. Es decir, abab = 1. Además,
que cada elemento sea de orden dos, nos aporta que el inverso de cada elemento es él mismo. Entonces,
si multiplicamos en ambos lados de la igualdad anterior por a por la izquierda y por b por la derecha,
se sigue que ba = ab. Justo lo que deseábamos probar.

■

Recordando la definición 26, esto nos garantiza que simplemente con ser 2-grupo de exponente 2
se cumple la condición de conmutatividad y por tanto es un grupo elemental, que ya afirmamos que
es isomorfo al grupo Z

(2) ×
Z
(2) × · · · × Z

(2) dotado de la operación suma.

5.4. Subgrupos de UT (n, p)

La mayor parte de esta sección se dedicará a dar ejemplos. Sin embargo, el primer resultado se
centra en garantizar la relación de isomorf́ıa entre grupos con matrices de distintos tamaños sobre el
mismo cuerpo. El motivo es que esto nos permite conocer directamente subgrupos que son p-grupos
para casos de grupos de orden mayor, lo que puede ser útil al estudiar la estructura de grupos más
grandes.

Lema 54. Si n < m se tiene que UT (n, p) es isomorfo a un subgrupo de UT (m, p)

No lo demostraremos, pero podemos poner un ejemplo cuando n = 3 ym = 4 que ilustra claramente
un modo constructivo de proceder. Basta con definir el isomorfismo siguiente:

i : UT (3, p) −→ UT (4, p)1 a c
0 1 b
0 0 1

 −→


1 a c 0
0 1 b 0
0 0 1 0
0 0 0 1

 .
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Ahora ya śı pasamos a los ejemplos. Cabe remarcar primero que los grupos de UT (n, p) tienen
muchos subgrupos que son p-grupos.

Expongamos algunos ejemplos curiosos partiendo del grupo UT (4, p). Consideraremos casos con
p ≥ 4, ya que por el lema 52 conocemos que el exponente de estos subgrupos es p. Como adelantamos
al introducir la sección previa, esto simplificará partes tediosas y poco interesantes del estudio de estos
ejemplos.

H1 =



1 a b c
0 1 0 d
0 0 1 e
0 0 0 1

 ∈ UT (4, p)



H2 =



1 a 0 b
0 1 0 c
0 0 1 d
0 0 0 1

 ∈ UT (4, p)



H3 =



1 0 0 a
0 1 b c
0 0 1 d
0 0 0 1

 ∈ UT (4, p)


Nótese que:

|H1| = p5

|H2| = p4

|H3| = p4.

La matriz identidad pertenece evidentemente a todos los conjuntos. Aśı pues, para asegurar que
realmente son subgrupos es suficiente con ver que dadas dos matrices cualesquiera en el conjunto, su
producto continúa siendo una matriz del conjunto. Como es una sencilla comprobación ver que cada
H1, H2, H3 es cerrado para el producto, no lo detallaremos.

Nótese que ver la clausura para el producto es suficiente, porque en particular esto obliga a que
las potencias de un elemento estén en el conjunto, y como el exponente es p tenemos garantizada la
pertenencia del inverso al conjunto.

Además, aunque gracias a la proposición 52 ya sabemos que si p ≥ 5 el exponente es p y hemos
contado con las ventajas que esto ofrece, por reafirmar el interés que puede tener la manera de trabajar
del lema 51, nótese que es sencillo asegurar que el orden de cualquier elemento es p si se conoce la
forma de la j-ésima potencia.

Tomemos una matriz M =


1 a b c
0 1 0 d
0 0 1 e
0 0 0 1

 ∈ H1 \ I y calculemos algunas potencias:

M2 =


1 2a 2b 2c+ ad+ be
0 1 0 2d
0 0 1 2e
0 0 0 1



M3 =


1 3a 3b 3c+ 3ad+ 3be
0 1 0 3d
0 0 1 3e
0 0 0 1



M4 =


1 4a 4b 4c+ 6ad+ 6be
0 1 0 4d
0 0 1 4e
0 0 0 1



M5 =


1 5a 5b 5c+ 10ad+ 10be
0 1 0 5d
0 0 1 5e
0 0 0 1


Esto nos permite reconocer la recurrencia para la j-ésima potencia,

M j =


1 ja jb jc+

(
j
2

)
ad+

(
j
2

)
be

0 1 0 jd
0 0 1 je
0 0 0 1

 ,
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y argumentando análogamente al lema 51 se concluye de igual forma que el exponente es p.

Exponemos también algunos ejemplos partiendo del grupo UT (5, p) con p ≥ 5, que nos permite
dar subgrupos de mayor orden manteniendo que p sea el exponente del grupo:

B1 =




1 a b 0 c
0 1 0 0 0
0 0 1 0 d
0 0 0 1 e
0 0 0 0 1

 ∈ UT (5, p)



B2 =




1 a b c d
0 1 0 0 e
0 0 1 0 f
0 0 0 1 g
0 0 0 0 1

 ∈ UT (5, p)



B3 =




1 a b c d
0 1 0 e f
0 0 1 0 g
0 0 0 1 h
0 0 0 0 1

 ∈ UT (5, p)


Nótese que:

|B1| = p5

|B2| = p7

|B3| = p8.

Por razonamientos análogos a los realizados para los ejemplos de UT (4, p), para asegurar que real-
mente son subgrupos basta ver que son conjuntos cerrados para la operación. Tampoco lo detallaremos,
porque comprobar que cada B1, B2, B3 es cerrado para el producto es sencillo.

Nótese que, como hemos ilustrado, esta es una manera bastante mécanica de trabajar para construir
gran cantidad de p-grupos. De todos modos, obsérvese que no hemos asegurado en ningún momento
que no nos conduzcan a grupos no isomorfos. No hay mayor problema, es parte de lo que augurábamos
en la introducción, se puede llegar al mismo lugar por varios caminos.

5.5. El grupo de Heisenberg

Dentro de estos grupos de matrices UT (n, p) con el producto matricial usual, hacemos una mención
especial a

Hp = UT (3, p) =


1 a c
0 1 b
0 0 1

 ∈ M3×3(Fp)

 .

A este grupo (Hp, ·) de orden p3 se le denota de manera especial y se le llama grupo de Heisenberg
en honor al f́ısico Werner Heisenberg, ya que esta estructura está estrechamente relacionada con la
mecánica cuántica a la que él se dedicaba.

Para este texto el caso de interés es el discreto por ser el que liga con los p-grupos, pero realmente
en f́ısica el que tiene más importancia es el caso continuo con coeficientes en R. Aún aśı, el estudio de
unos invita al estudio de los otros y por su peso en la ciencia el grupo de Heisenberg merece destacarse,
además de que nos será de utilidad en caṕıtulos posteriores.

Ya hemos adelantado en la sección 5.3 que si p ≥ 3 el exponente de Hp es p, y cerraremos el
contenido sobre este grupo describiendo su centro:

Z(Hp) = Z(UT (3, p)) =


1 0 c
0 1 0
0 0 1

 ∈ M3×3(Fp)

 .
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5.6. Otro ejemplo de producto semidirecto

En esta sección mezclaremos las ideas propias de este caṕıtulo con las del caṕıtulo 4. Vamos a
definir un producto semidirecto ((

Z
(3)

)3

⋊ϕ
Z
(3)

, •

)
.

Nótese que en esta situación el homomorfismo ϕ va de Z
(3) a Aut

((
Z
(3)

)3)
, y recuérdese que los

automorfismos de
(

Z
(3)

)3
se pueden escribir como matrices 3 × 3. De este modo la operación de la

pareja que forma el producto semidirecto se pude definir de la siguiente forma:

((a1, a2, a3), b) • ((c1, c2, c3), d) =

(a1, a2, a3) + (c1, c2, c3)

1 1 0
0 1 1
0 0 1

b

, b+ d

 .

Con la notación que hemos estado utilizando para las cuestiones sobre el producto semidirecto se
identifica claramente que

ϕ :
Z
(3)

−→ Aut

((
Z
(3)

)3
)

b 7−→ ϕb

siendo ϕb el homomorfismo

ϕb :

(
Z
(3)

)3

−→
(

Z
(3)

)3

(a1, a2, a3) 7−→ (a1, a2, a3)

1 1 0
0 1 1
0 0 1

b

.

Obsérvese que en el caso b = 0 tenemos el homomorfismo identidad.

Notése que esta misma construcción es válida para cada primo p ≥ 3.

Además, la construcción previa también puede generalizarse a otras dimensiones. Si p es un primo
tal que p ≥ 5, entonces se puede construir el producto semidirecto((

Z
(p)

)4

⋊
Z
(p)

,⊙

)
considerando la operación

((a1, a2, a3, a4), b)⊙ ((c1, c2, c3, c4), d) =

(a1, a2, a3, a4) + (c1, c2, c3, c4)


1 1 0 0
0 1 1 0
0 0 1 1
0 0 0 1


b

, b+ d

 .

Remarcamos el interés de esta sección por la manera en la que permite fusionar dos herramientas
distintas para la construcción de p-grupos.
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5.7. p-grupos de matrices sobre Z
(pn)

Esta sección es algo más delicada porque hasta ahora hemos trabajado con cuerpos, pero Z
(pn)

solamente es un anillo, de modo que hay que ser cuidadosos con las limitaciones que impone.

Si consideramos el conjunto

T =

{(
1 + ap b

0 1

)
: a ∈ {0, 1, . . . , p− 1}, b ∈ Z

(p2)

}
con el producto usual de matrices obtenemos un p-grupo de orden p3.

En T la operación de dos elementos resulta(
1 + ap b

0 1

)(
1 + αp β

0 1

)
=

(
1 + (a+ α)p (1 + ap)β + b

0 1

)
.

Recordemos que en Z
(p2)

se tiene que p2 = 0. Precisamente por ello para cada a, α ∈ {0, 1, . . . , p−1},
se tiene que (1 + ap)(1 + αp) = 1 + (a+ α)p+ aαp2 = 1 + (a+ α)p.

Remarcamos la importancia de tener cuidado con los inversos, una de esas limitaciones que impone
no tener todas las ventajas de trabajar con cuerpos. En este caso, para cada a ∈ {0, 1, . . . , p − 1}, se
obtiene que (1+ap)(1−ap) = 1−a2p2 = 1. Esto es, para cada a ∈ {0, 1, . . . , p−1}, (1+ap)−1 = 1−ap
en Z

(p2)
, donde −ap = (p− a)p .

Además, es interesante reconocer que este grupo es isomorfo a nuestro conocido Z
(p2)

⋊ Z
(p) .

Para demostrarlo basta con definir el isomorfismo adecuado.

Concretamente, si consideramos la apliación

φ : T −→ Z
(p2)

⋊
Z
p(

1 + ap b
0 1

)
7−→ (b, a)

asegurar la isomorf́ıa es casi inmediato.

La sobreyectividad es evidente, y por cardinalidad la biyectividad queda garantizada. Además, es
simplemente cuestión de operar el deducir que

φ

(
1 + ap b

0 1

)
φ

(
1 + αp β

0 1

)
= (b+ (1 + ap)β, a+ α)

y que

φ

(
1 + (a+ α)p (1 + ap)β + b

0 1

)
= (b+ (1 + ap)β, a+ α),

asegurando que φ es homomorfismo.

De una manera similar, tomando en el conjunto

T̃ =


1 + ap d e

0 1 + bp f
0 0 1 + cp

 : a, b, c ∈ {0, 1, . . . , p− 1}, d, e, f ∈ Z
(p2)


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con el producto usual de matrices obtenemos un p-grupo de orden p9.

En este caso podemos llegar a otra conclusión intersante, y es que hemos llegado a un grupo

que tiene como subgrupo a UT
(
3, Z

(p2)

)
, una generalización del mismo concepto que el grupo de

Heisenberg, pero ahora para algo más allá del cuerpo finito de p elementos.
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Caṕıtulo 6

Sobre la clasificación de p-grupos finitos

En este caṕıtulo hablaremos a t́ıtulo informativo sobre la evolución en la clasificación de los p-
grupos finitos. No cabe duda de que se han dado grandes pasos, pero también es evidente que queda
mucho camino.

En los preliminares del caṕıtulo 2 ya obtuvimos una información muy intersante sobre los grupos
de orden p2 gracias a la proposición 13, que nos garantizaba que todos eran abelianos. Una informa-
ción que quedaba muy bien complementada en el caṕıtulo 3, donde detallamos la existencia de una
clasificación de los p-grupos finitos abelianos. Ese caṕıtulo cerraba de manera precisa una parte muy
interesante, nos permit́ıa el control del caso conmutativo.

Con los ejemplos de los caṕıtulos siguientes se aportaron nuevos casos que se saĺıan de la conforta-
ble zona de los grupos abelianos, pero podemos notar que por muchos ejemplos que dimos, no hemos
aportado una clasificación cerrada.

El motivo de ello es, precisamente, el gran camino que aún queda en la clasificación de los p-grupos
finitos y que se sale de los objetivos de este texto. A lo largo de los años, ha habido ciertos avances
en la clasificación de los grupos de orden pn cuando n es pequeño, pero la tarea se ha ido volviendo
progresivamente más dif́ıcil conforme aumenta el valor del exponente. El primer paso importante en
este objetivo ocurrió en 1882, cuando el matemático alemán Eugen Netto logró clasificar los grupos
de orden p2. Fue el primer intento serio de avanzar en este campo. Apenas un año después, en 1883,
un grupo de matemáticos, compuesto por Cole y Glover, Hölder y Young, consiguió avanzar en la
clasificación de los grupos de orden p3, y más tarde los dos últimos continuaron trabajando y obtuvie-
ron resultados en la clasificación de los grupos de orden p4. Sin embargo, después de estos primeros
avances, pasaron cinco años hasta que, en 1898, el matemático Bagnera logró dar un gran paso al
clasificar los grupos de orden p5 [1]. A partir de este momento, el ritmo de los avances disminuyó
considerablemente. Fue necesario esperar hasta el año 2004, cuando, después de varios intentos infruc-
tuosos, un equipo de matemáticos formado por Newman, O’Brien y Vaughan-Lee, finalmente logró la
clasificación de los grupos de orden p6 [9]. Este logro se consideró un avance significativo, y a estos dos
últimos matemáticos también se les debe el mérito de haber logrado clasificar los grupos de orden p7

[11], en 2005, solo un año más tarde. Desde entonces, han transcurrido ya 20 años, y aunque no se han
producido avances tan rápidos ni tan significativos como en el pasado, la clasificación de los p-grupos
finitos sigue siendo un área activa de investigación. En la actualidad, incluso los avances alcanzados en
la clasificación de aquellos de orden pequeño se están incorporando a bases de datos computacionales
especializadas.

Por todo el trabajo que ha llevado detrás y el interés que tiene, incluimos a continuación una tabla
que muestra el número de grupos que hay, salvo isomorfismo, de orden pn para n ≤ 5:
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p 2 3 p ≥ 5

p1 1 1 1
p2 2 2 2
p3 5 5 5
p4 14 15 15
p5 51 67 2p+ 61 + 2 gcd(p− 1, 3) + gcd(p− 1, 4)

Hemos adelantado que también se conocen los datos para n = 6 y n = 7, aśı que los incluimos
también. Como era de esperar, las expresiones se complican en cuanto crece el exponente n del orden
a estudiar pn, y por ello los casos n = 6 y n = 7 los listamos:

Caso p6:

� Existen 267 grupos de orden 26

� Existen 504 grupos de orden 36.

� Para p ≥ 5, el número de grupos de orden p6 viene dado por

3p2 + 39p+ 344 + 24 gcd(p− 1, 3) + 11 gcd(p− 1, 4) + 2 gcd(p− 1, 5).

Caso p7:

� Existen 2328 grupos de orden 27

� Existen 9310 grupos de orden 37.

� Existen 34297 grupos de orden 57.

� Para p > 5, el número de grupos de orden p7 viene dado por

3p5 + 12p4 + 44p3 + 170p2 + 707p+ 2455

+(4p2 + 44p+ 291) gcd(p− 1, 3) + (p2 + 19p+ 135) gcd(p− 1, 4)

+(3p+ 31) gcd(p− 1, 5) + 4 gcd(p− 1, 7) + 5 gcd(p− 1, 8)

+ gcd(p− 1, 9).

Dar expresiones cerradas y exactas de la cantidad de grupos de cada orden es, como se puede
notar, terriblemente costoso. Sin embargo, ya en 1965 Charles C. Sims [4] halló una aproximación al
número de grupos de orden pn para cualquier primo p y natural n:

p

(
2
27

n3+O

(
n(

8
3)

))
.

Destacamos que en este trabajo hemos aportado una cantidad ingente de p-grupos que avalan tal
crecimiento.

6.1. Grupos de orden 2n

Como hemos podido observar con los datos previos, la cantidad de grupos de orden pn sigue una
regla independiente cuando p = 2. En los últimos años no ha habido avances para p génerico, sin
embargo en el caso de p = 2 śı se ha cerrado la clasificación para algunas potencias más. Gracias de
nuevo a O’Brien se determinaron los 56092 grupos de orden 28 [10], y su colaboración con Besche y
Eick demostró que de orden 29 hay 10494213 grupos [2]. Ellos mismos demostraron que de orden 210

hay 49487367289 grupos no isomorfos.
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Recogemos en la siguiente tabla todos los datos conocidos:

|G| 1 2 4 8 16 32 64 128 256 512 1024

Número de grupos 1 1 2 5 14 51 267 2328 56092 10494213 49487367289

Se deconoce el número de grupos que hay de orden 211 = 2048, pero gracias al resultado de Charles
C. Sims [4] śı que se sabe que el número de grupos de orden 2n se aproxima a

2

(
2
27

n3+O

(
n(

8
3)

))
.

6.2. Grupos de orden 3n

También se observa que el caso para p = 3 sigue, como para p = 2, sus propias reglas. Como
venimos remarcando, según se incrementa el orden el trabajo es más costoso. Sin embargo, como bien
refleja [OEIS] es conocido el número de grupos no isomorfos cuyos ordenes son potencias de 3 hasta
39 = 19683. La siguiente tabla recoge esos datos:

|G| 1 3 9 27 81 243 729 2187 6561 19683

Número de grupos 1 1 2 5 15 67 504 9310 1396077 5937876645

De hecho, esta sección está ampliamente motivada por ese último descubrimiento, del número de
grupos no isomorfos de orden 39, ya que la clasificación de los grupos de orden 39 es uno de los más
novedosos avances en el campo. De este logro es responsable David Burrel, que en 2023 mostró que
hay 5937876645 grupos de tal orden [3].

6.3. Grupos de orden p3 con p ≥ 3

Ya se han presentado los 5 grupos que existen, salvo isomorfismo, de orden p3 cuando p ≥ 3. Re-
capitularemos ahora todos ellos, pues es una buena manera de reafirmar el interés de las herramientas
que hemos ido describiendo.

En el caṕıtulo 3 confirmamos que hay 3 posibles grupos abelianos no isomorfos de orden p3, y son:

Z
(p3)

,
Z

(p2)
× Z

(p)
, y

Z
(p)

× Z
(p)

× Z
(p)

.

Después, en el caṕıtulo 4, con la potente aportación que supone el producto semidirecto para la
construcción de nuevos grupos mostramos la existencia del grupo no conmutativo

Z
(p2)

⋊
Z
(p)

.

Dimos todos los pasos necesarios para llegar a confirmar los requisitos que nos intersaban en la pro-
posición 40, asegurando entonces que es no conmutativo de orden p3.

Por último, el quinto grupo de orden p3 protagonizó una sección completa, la sección 5.5 sobre el
grupo de Heisemberg

Hp = UT (3, p) =


1 a c
0 1 b
0 0 1

 ∈ M3×3(Fp)

 .

Observación. Nótese que la exigencia de p ≥ 3 para poder presentar los 5 grupos de la manera
elegida radica en que la construcción matricial no aporta nada nuevo cuando p = 2, ya que H2 =
UT (3, 2) es conmutativo.
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6.4. Grupos de orden 8

Esta sección es importante para cerrar el estudio completo de los grupos de orden p3. Como aca-
bamos de mencionar, el caso p = 2 hay que abordarlo de manera algo distinta.

Sin embargo, para los grupos abelianos no cambia nada, es decir, tenemos:

Z
(8)

,
Z
(4)

× Z
(2)

, y
Z
(4)

× Z
(2)

× Z
(2)

.

También la construcción del producto semidirecto

Z
(p2)

⋊
Z
(p)

sigue siendo válida para p = 2.
Sin embargo, como bien adelantamos,

H2 = UT (3, 2) =


1 a c
0 1 b
0 0 1

 ∈ M3×3(F2)

 ,

es abeliano. De hecho, es isomorfo a Z
(4) ×

Z
(2) . Por tanto no lo consideramos.

Pero, śı disponemos de otro grupo no conmutativo de orden 8: el grupo cuaternio de Hamilton.
Este grupo, debido al matemático dublinés que le dio el nombre en 1843, se descibe como el conjunto

Q8 = {1, i, j, k,−1,−i,−j,−k}

con la operación producto y las relaciones

ij = −ji = k

−ik = ki = j

jk = −kj = i

Este grupo es bastante peculiar y bien conocido. Curiosamente, solo puede ser definido en el
contexto de 2-grupos. Tiene propiedades intersantes, como que todos sus subgrupos son normales,
algo que se dice, precisamente, ser hamiltoniano.

Con el grupo cuaternio cerramos la sección, aśı como el último hilo suelto de la clasificación de los
grupos de orden p3.
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Caṕıtulo 7

Grupos extraespeciales

Este caṕıtulo entra en un tema bastante especializado de la teoŕıa de grupos y supone un buen
cierre del trabajo, recopilando algunos de los puntos que hemos ido exponiendo.

Definición 55. Un grupo extraespecial es un p-grupo G tal que:

Su centro Z(G) es un grupo ćıclico de orden p.

El cociente G/Z(G) es un p-grupo abeliano elemental no trivial.

Nótese que no hay grupos extraespeciales de orden p porque incumplen la segunda condición de
la definición previa. Tampoco hay grupos extraespeciales de orden p2 por la proposición 13, ya que al
ser abelianos su centro es todo el grupo y por tanto incumplen la primera condición de la definición
de extraespecial.

Encontrar los grupos extraespeciales de orden p3 es sencillo con todo el material visto, precisamen-
te son los no abelianos. De hecho son los únicos por una argumentación similar a la de los grupos de
orden p2: en los grupos conmutativos su centro coincide con todo el grupo, de modo que la primera
condición para ser extraespecial es imposible que la cumplan.

Con lo que hemos trabajado ya podemos verificar que los no abelianos de orden p3 śı cumplen
ambas condiciones. Recordemos que por la proposición 41 sabemos que el centro de cualquier grupo
G no conmutativo de orden p3 tiene orden p. Esto también garantiza que |G/Z(G)| = |G|

|Z(G)| = p2. Por

la proposición 13 cualquier grupo con p2 elementos es abeliano. Además, G/Z(G) ha de ser elemental,
porque solo puede ser Z

(p2)
o Z

(p) ×
Z
(p) , y si fuera ćıclico entonces por la proposición 12 el grupo debeŕıa

ser abeliano, en contra de nuestras condiciones.

De este modo y gracias a las secciones 6.3 y 6.4 aseguramos que:

Si p ≥ 3, los grupos extraespeciales de orden p3 son Z
(p2)

⋊ Z
(p) y el grupo de Heisemberg Hp =

UT (3, p).

Si p = 2, los grupos extraespeciales de orden p3 son Z
(p2)

⋊ Z
(p) y el grupo cuaternio de Hamilton.

La obtención de los grupos extraespeciales cuando la potencia de p es mayor que tres se logra
definiendo otra construcción: el producto central. Entramos en detalles en la siguiente sección.
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7.1. Producto central

El producto central es una construcción que guarda cierta relación con el producto directo, y
considerando la importancia que ha tenido en esta memoria la vuelta de tuerca que le da el producto
semidirecto, su definición ya no presentará grandes dificultades.

Hay dos posibilidades para el producto central, pero concretamente nos interesa la definición del
producto central externo.

Definición 56. Dados dos grupos G y H con el mismo centro Z = Z(G) = Z(H) definimos el
conjunto

J = {(a, b) : a, b ∈ Z, ab = 1} = {(a, a−1) : a ∈ Z}.

Entonces, decimos que el producto central externo de G y H es

G⊗H =
G×H

J
.

Observación. No hay convenio para la notación del producto externo, pero aqúı consideraremos ⊗.

Nótese que siendo Z = Z(G) = Z(H), el centro de G×H es Z×Z. Además, al ser J un subgrupo
de Z × Z tenemos que J es normal, lo que garantiza la correción de la definición 56.

Respecto a cardinalidad tenemos que si |Z| = m, entonces |Z × Z| = m2 y que |J | = m.
Es más,

Z × Z

J
∼= Z y Z(G⊗H) ∼=

Z × Z

J
∼= Z = Z(G) = Z(H).

Volviendo al punto por el que nos interesaba el producto central, para la construcción de grupos
extraespeciales de orden pn con n > 3, demostramos la siguiente proposición:

Proposición 57. El producto central de dos p-grupos extraespeciales es extraespecial.

Demostración. Sean G y H dos grupos extraespeciales con el mismo centro Z = Z(G) = Z(H), el
cual es ćıclico de orden p.

Veamos el cociente de G⊗H por su centro:

G⊗H

Z(G⊗H)
=

G×H
J

Z×Z
J

∼=
G×H

Z × Z
∼=

G

Z
× H

Z
,

donde la primera relación de isomorf́ıa es consecuencia del segundo teorema de isomorf́ıa.
Nótese que la expresión a la que hemos llegado es ya un producto de dos p-grupos abelianos

elementales, luego
G⊗H

Z(G⊗H)

es también un p-grupo abeliano elemental.
■

Aśı pues, finalizaremos el trabajo detallando algunos ejemplos de construcción de grupos extraes-
peciales de orden pn con n > 3. Sin embargo, antes cabe mencionar el siguiente resultado:

Proposición 58. Si G es un grupo extraespecial de orden pn con n > 3, entonces puede escribirse
como producto central de grupos extraespeciales de orden p3.

En particular, el orden de tal G será p2m+1 para algún m natural.

La demostración no se detallará porque se sale de la ĺınea de trabajo que sigue esta memoria, pero
se puede consultar en la referencia bibiográfica [13]. Aún aśı, es curioso concretar que, dado un natural
n, hay exactamente 2 grupos extraespeciales de orden 2n+1, de modo que a continuación resumimos
cuales son. Nótese, que, como cab́ıa esperar, se vuelve a distinguir entre el caso con p = 2 y p ≥ 3:
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p ≥ 3:

� El producto central de n grupos extraespeciales de orden p3 y exponente p.
En este caso el grupo resultante tiene también exponente p.

� El producto central de n grupos extraespeciales de orden p3 con al menos un factor de
exponente p2.
En este caso el grupo resultante tiene exponente p2.

p = 2:

� El producto central de n grupos extraespeciales de orden 8, siendo un número impar de
factores el grupo cuaternio de Hamilton.

� El producto central de n grupos extraespeciales de orden 8, siendo un número par de factores
el grupo cuaternio de Hamilton.

A continuación ya śı vamos a dar un ejemplo de como construir un grupo extraespecial de orden
p5 basándonos en el grupo de Heisenberg Hp = UT (3, p). Recordemos que su centro es

Z = Z(Hp) = Z(UT (3, p)) =


1 0 c
0 1 0
0 0 1

 ∈ M3×3(Fp)

 .

Ahora, siguiendo la misma notación que en la definición 56, el conjunto

J =


1 0 c

0 1 0
0 0 1

 ,

1 0 −c
0 1 0
0 0 1

 : c ∈ Fp


nos permite construir el producto central

Hp ⊗Hp =
Hp ×Hp

J
.

Nótese que su orden es

|Hp ⊗Hp| =
∣∣∣∣Hp ×Hp

J

∣∣∣∣ = p3 · p3

p
= p5.

Se debe apreciar que este no es el único camino para construir grupos extraespeciales. Ya hab́ıamos
construido un grupo isomorfo a este Hp⊗Hp anteriormente, el ejemplo H1 de la página 45. Recordamos
su definición:

H1 =



1 a b c
0 1 0 d
0 0 1 e
0 0 0 1

 ∈ UT (4, p)

 .

Su exponente confirmamos que era p, y su centro es es sencillo de asegurar que es

Z(H1) =



1 0 0 c
0 1 0 0
0 0 1 0
0 0 0 1

 ∈ UT (4, p)

 ,

que tiene orden p.
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Podemos proseguir y conseguimos de esta forma grupos extraespeciales de orden p2n+1 y exponente
p. Veamos el ejemplo de orden p7, ya construido en el ejemplo B2 de la página 35,

B2 =




1 a b c d
0 1 0 0 e
0 0 1 0 f
0 0 0 1 g
0 0 0 0 1

 ∈ UT (5, p)

 .

En este caso también es fácil ver que

Z(B2) =




1 0 0 0 d
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0

 ∈ UT (5, p)

 ,

lo que nos permite identificar un patrón que invita a declarar otro mecanismo para definir ciertos
p-grupos extraespeciales con herramientas presentadas previamente.

Henar Mart́ın Mart́ın



Bibliograf́ıa

[1] G. Bagnera, La composizione dei gruppi finiti il cui grado è la quinta potenza di un numero primo,
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