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Resumen:

En esta memoria se aborda el estudio de los p-grupos finitos. Se comienza
con la clasificacion completa del caso abeliano. A continuacion, se aportan
dos maneras diferentes para construir p-grupos no conmutativos: el uso del
producto semidirecto y las construcciones matriciales, brindando en ambos
casos gran cantidad de ejemplos. Posteriormente, se incluye un capitulo a
nivel informativo de los Ultimos avances en el campo. Finalmente, se cierra
el trabajo tratando los grupos extraespeciales.

Palabras clave: p-grupos, producto semidirecto, grupos extraespeciales.

Abstract:

The study of finite p-groups is addressed on this paper. It starts with the
complete classification of the abelian case. It then presents two distinct
methods for constructing non-commutative p-groups: semidirect product and
matrix constructions, with numerous examples provided for each approach.
Subsequently, an informative chapter outlines the latest developmentsin the
field. The work concludes with a discussion of extraspecial groups.

Keywords: p-groups, semidirect product, extraspecial groups.
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Capitulo 1

Introduccion

Necesitamos unas supermatematicas en las que las operaciones sean tan
desconocidas como las cantidades sobre las que operan, y un supermatematico
que no sepa qué estd haciendo cuando realiza esas operaciones.

Esas supermatemaéticas son la teoria de grupos.

Sir Arthur Stanley Eddington

Siempre me han llamado la atencién los escritos que empiezan con alguna cita relacionada con el
tema a tratar, y desde que lef esta del astrofisico y filésofo Sir Arthur Stanley Eddington supe que la
necesitaba para introducir el trabajo. El motivo es que, precisamente, logra describir de una manera
muy amena lo que significa estudiar teoria de grupos para mi.

Seria presuntuoso por mi parte dejar al lector la libertad de pensar que con ello me creo una
supermatematica. No, estoy lejos de ser Lagrange, Cayley o cualquier matematico que senté las bases
de este campo. Reconozco mis limitaciones. Pero, en el segundo curso de la universidad, gracias a
Estructuras Algebraicas (y también a Topologia), comprendi la belleza de la abstraccién matematica.
Recuerdo bien la sensacién de satisfaccién al completar y comprender un trabajo de ampliacién del
temario que introducia a los p-grupos. De modo que la propuesta de acabar el grado profundizando
en tal tema me resulté atractiva.

La pretension de obtener clasificaciones es una ambicion muy matematica. En este texto, sin
embargo, no se pretende dar una clasificacién cerrada de los p-grupos finitos, pues supera con creces
mis posibilidades. De hecho, en el sexto capitulo se confirma que es, de manera general, un objetivo
poco realista.

Uno de los resultados mencionados més llamativos estd precisamente en el informativo capitulo [6]
sobre la clasificaciéon de los p-grupos finitos, que pone de manifiesto el superexponencial crecimiento
del nimero de grupos con p" elementos, que es de orden

(a0 )

A lo largo de todo el trabajo se aportan numerosos ejemplos para la construccién de p-grupos que
respaldan un orden tan sumamente alto como el mostrado previamente.

Resulta grato comprobar que a pesar de la saturacién de p-grupos que existen, tan inmensa como
para ser incapaces de abarcarlos actualmente, cuando se exigen ciertas propiedades el estudio se
simplifica. El capitulo |3| es una buena muestra de ello, ya que en él se detallan todos los grupos
abelianos que hay de orden p" salvo isomorfismo.

La parte mas compleja llega a la hora de abordar la construccién de p-grupos no abelianos. En
este trabajo se muestran dos herramientas distintas en los capitulos {4f y |5 Cada una de ellas es
enriquecedora por su cuenta, y también es interesante ver cémo se complementan la una a la otra.
Ademsds, al mismo tiempo, se muestra como ambos caminos, en ocasiones, pueden guiarnos al mismo
lugar.



Concretamente, por un lado, el capitulo [] nos introduce una nueva construccién que permite
generalizar el producto de grupos con el que se trabaja en el grado: el producto semidirecto, dando
un paso mas en la abstraccion.

Por otro lado, dedicando el capitulo [5| a los p-grupos de matrices enfatizamos el interés que tienen
en las matematicas estos elementos que nos resultan tan habituales desde el comienzo de la carrera.
Un reconocimiento al hecho de que cada concepto aprendido desde los inicios es valioso.

Para acabar, en cambio, escogimos los grupos extraespeciales: un tema bastante especifico dentro
de la teoria de grupos. Es un contenido apropiado para remarcar que la materia aportada a lo largo
de la memoria prepara de una manera muy gradual el camino para perimitirnos abordar algo tan
particular.
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Capitulo 2

Prelimiares de p-grupos

En esta seccién se revisaran algunos conceptos de estructuras algebraicas. Se dan por conocidas
definiciones fundamentales como la de grupo, de clases laterales o subgrupos normales, asi como
sus propiedades y resultados derivados elementales, como el Teorema de Lagrange. Algunos de los
resultados que si revisaremos no se demostraran, pues suelen ser materia vista en el grado.

Lo primero sera definir nuestro objeto principal de estudio.

Definiciéon 1. Sea p un primo. Un p-grupo finito es un grupo de orden p” con n > 1.

En este texto nos centramos en el caso finito, pero la definiciéon general de p-grupo merece igual-
mente una mencion.

Definiciéon 2. Sea p un primo. Un p-grupo es un grupo en el que cada elemento tiene como orden
una potencia de p.

Observacion. A lo largo de todo el texto la letra p queda reservada para los nimeros primos.

Ahora damos paso a los conceptos de centro y centralizador por su peso en los primeros resultados
que conseguiremos sobre p-grupos.

Definicion 3. Dado un grupo G se define el centro del grupo como el conjunto
Z(G) ={x € G:xg = gz para todo g € G}.
Esto es, el conjunto de los elementos de G que conmuntan con todos los elementos de G.
Definicion 4. Sea x € G. El centralizador de x en G es el conjunto
Colw)={geGiag=gr}={9€G:a=grg™'}
Esto es, los elementos de G que conmutan con x.

Notemos que el concepto de centralizador esté estrechamente relacionado con el de centro. Ademas,
ambos nacen de la misma idea que surge con la relacién de conjugacion y ligan con los subgrupos
normales.

Fijamos que las clases de un elemento x € G por la relaciéon de conjugacién se escriben como
Cl(x), y recordamos que son precisamente

Cl(z) = {gzg~': g € G}.

Repasamos algunos resultados importantes respecto a estos conceptos, comenzando por las pro-
piedades del centro.

Lema 5. El centro Z(G) es un subgrupo abeliano y normal de G.



Tal y como anticipamos, el centro esta ligado a las clases de conjugacion y los subgrupos normales.
Veamos algunos resultados al respecto:

Lema 6. Un elemento x pertenece al centro si y solo si Cl(z) = {z}.
En particular, el elemento neutro e de G cumple Cl(e) = {e}.

Lema 7. Sea G un grupo y H un subgrupo suyo. Entonces H es normal en G si y solo si H es union
de clases de conjugacion de G.

Demostracién. Probaremos cada una de las implicaciones:
Veremos que, de hecho,

H= ] cin).

heH

Obviamente H C UpepCl(h). Aseguremos que la contencién contraria también se da.
Resulta que, al asumir que H es normal, tenemos que ¢Hg~' C H. Y por tanto, para cada h € H se
verifica que

Cl(h)={ghg t:9e G} CcgHg ' C H.

Entonces Cl(h) C H para todo h € H y asi |J,c Cl(h) C H. Al darse las dos contenciones se da
la igualdad.

Necesitamos ver que dado g € G, gHg™' C H .
Si H es unién de clases de conjugacién, en particular

H= ] cun).

heH

Pero como las clases de conjugacién son precisamente Cl(h) = {xhx~! : x € G}, se concluye que

H = U Cl(h) = U {zhe™' 2 € G} D gHg™ .
heH heH

Respecto al centralizador, comenzamos por su propiedad mas elemental.
Lema 8. Sea G un grupo y g € G. El centralizador C(g) es un subgrupo de G.

Ahora podemos continuar relacionando el centro y las clases de conjugacién con el centralizador.
Lema 9. Sea GG un grupo y = € (. Las siguientes condiciones son equivalentes:

» Co(x) =G.

» € Z(G).

De hecho, entre el centro y las clases de conjugacién, en cuestiéon de cardinalidad tenemos el
siguiente resultado:

Lema 10. Sea G un grupo y z € G. El cardinal de la clase de conjugacién Cl(zx) es el indice del
subgrupo centralizador. Es decir,

|ICl(x)| =[G : Ca(x)].

En particular, si G es finito, el cardinal de Cl(z) divide al orden del grupo. Concretamente,

Cl(a)] = G : Co(a)] = rcﬁbr‘

HENAR MARTIN MARTIN



7 P- GRUPOS FINITOS

Demostracién. Como el indice [G : Cg(x)] es el cardinal del conjunto de clases por la izquierda
respecto a Cg(x) denotaremos por comodidad

A = {Clases por la izquierda respecto a Cg(x)}.
Si probamos que existe una biyeccién entre Cl(z) y A habremos terminado. Definimos entonces

a:Clz) — A
grg~' — gCql(x)

Lo primero es asegurarnos de que esta aplicacion estd bien definida. Si suponemos que g, h € G
verifican grg~! = hah~!, necesitamos probar que a(grg—t) = a(hzh™1), vaya, que gCq(x) = hCq(z).
Pero notemos que multiplicando a gzg~' = hah™! por la izquierda por h~! y por la derecha por g, se
sigue que h~1gx = zh~1g. Y esto justamente quiere decir que h='g € Cg(x) y por tanto h y g estan
relacionados y su clase es la misma.

Para ver la sobreyectividad basta notar que un elemento de A es de la forma gCq(z) para algin
g € G. Asi, tomando tal elemento g y eligiendo en Cl(x) a grg~', podemos concluir que a(grg™!) =
9Cq ().

Para ver la inyectividad, probemos que si a(gzg~') = a(hxh™!), entonces grg~! = hah~!. Que
a(grg™') = a(hxh™!) es exactamente lo mismo que decir que gCg(z) = hCg(x). Por tanto h=lg €
Cg(7), es decir (h~1g)z = z(h~!g). Entonces si multiplicamos tal igualdad por la izquierda por h y
por la derecha por ¢g~!, se sigue que grg~!' = hah~ L.

Justo lo que necesitdbamos ver.

Por ultimo, las igualdades finales del enunciado son ciertas si G es finito a consecuencia del Teorema
de Lagrange.

|

A consecuencia de que las clases de conjugacién son una particién, del lema previo y del lema [6]
tenemos que para un grupo finito G con r = m+n clases de conjugacion, siendo x; un representante de
cada clase para cada ¢ =1,2,...,r , y considerando ademas n como el nimero de clases unipuntuales
y m aquellas con més de un elemento, se tiene la ecuacién de las clases de conjugacion:

m

Gl =" ICUa)| = 12(G)| + D [Cllx:)| = |Z(G)| + Y G : Ca(x)).
=1 i=1

i=1
Con esta primera base, ya podemos dar unos primeros resultados interesantes sobre p-grupos:
Proposicién 11. Sea G un p-grupo finito de p" elementos. Entonces Z(G) tiene mas de un elemento.

Demostracién. Sea r el nimero de clases de conjugacién de G. Consideremos para cadai € {1,2,...,r}
un elemento x; representante de cada clase.
Por la ecuacion de las clases de conjugacién, tenemos que

|G| = |Cl(z1)| + |Cl(z2)| + - - - + |Cl(z,)]. (2.1)

Notemos que la clase de conjugacién del elemento neutro es unipuntual, es decir, Cl(1) = {1}.

Sin pérdida de generalidad podemos numerar las clases de manera que x; = 1, con lo que |Cl(z1)| =
ci()| = {1} = 1.

Por el lema para todo 7 € {1,2,...,r} tenemos que

G| = [Cl(zi)||Ca ()] (2.2)

Entonces para todo i € {1,2,...,7} tenemos que |Cl(z;)| divide a |G|, o dicho de otra manera y
teniendo en cuenta que |G| = p”, lo que deducimos es que |Cl(x;)| es potencia de p.

UNIVERSIDAD DE VALLADOLID



Como el centro es un subgrupo, 1 € Z(G).

De modo que para probar que Z(G) tiene mds de un elemento, solo tenemos que justificar que
existe algtin elemento distinto de 1 que estd en Z(G). Para ello aprovecharemos de nuevo el lema @
Razonaremos por reduccién al absurdo suponiendo que 1 es el tinico elemento de Z(G). Por el lema
@7 esto se traduce en que Cg(z;) # G para todo i € {2,3,...,r}, y por tanto |Cl(z;)| = p* con k;
natural distinto de cero para todo i € {2,3,...,7}, o lo que es lo mismo, p divide a cada |Cl(z;)|
con i € {2,3,...,7}. Pero bajo estas consideraciones volviendo a la igualdad llegamos a dos
conclusiones contradictorias:

» Por un lado, como |Cl(z1)| = 1 y p divide a cada |Cl(z;)| con i € {2,3,...,r}, tenemos que
|Cl(x1)] + |Cl(za)| + - -+ |Cl(z,)| =1 méd p.

» Por otro lado de |G| = p" se deduce |G| =0 mdd p.

Llegamos al absurdo, y por tanto la hipdtesis de que 1 es el tnico elemento de Z(G) es falsa y ha de
existir otro ¢ distinto de 1 para el cual Cg(z;) = G y que por tanto z; pertenezca a Z(G).
[ |

Proposicién 12. Sea G un grupo tal que G/Z(G) es ciclico. Entonces G es abeliano, y por tanto
G =Z(G).

Demostracién. Sea G/Z(G) ciclico generado por xZ(G). Por tanto para todo g € G se tiene que
g estd en una de las clases laterales de Z(G),2Z(G),2?Z(G),... ya que las clases laterales forman
una particién de G. Asi pues, dados g1, g € G arbitrarios, se pueden escribir de la forma ¢; = %21,
go = 27 25 para ciertos exponentes 7, ] y algin z1, 22 € Z(G).

Como el objetivo es probar que G es abeliano, veamos que gigo = g2g1. Para ello solo hay que
aprovechar adecuadamente la forma de escribir g; y g2 y sus propiedades como potencias, la asociati-
vidad y las propiedades del centro:

9192 = (x'21) (27 22) = ' (2107 )20 = 2 (07 21) 20 = (2"27) (2122) = (2'2)(2221) = (&) (2221) =

= (27T (2p21) = (2?2%) (2021) = 27 (2'20) 21 = 27 (200%) 21 = (27 20) (2" 21) = Gog

Proposicién 13. Cualquier grupo con p? elementos es abeliano.

Demostracién. Sea G un grupo de cardinal |G| = p?. Al ser por hipétesis G finito y ser conocido
que Z(G) es un subgrupo de G, el teorema de Lagrange nos dice que Z(G) solo puede tener 1, p o p?
elementos. Estudiemos entonces cada caso:

» Caso 1. Supongamos que |Z(G)| = 1.
Es un caso que no puede darse por la proposicién

» Caso 2. Supongamos que |Z(G)| = p.
Si|Z(G)| = p, del teorema de Lagrange se deduce que |G| = p*> =p - |G/Z(G)| = |Z(G)||G/Z(G)],
y por tanto |G/Z(G)| = p, y al ser p primo tendriamos que G/Z(G) es ciclico. Pero por la pro-
posicién [12] al ser G/Z(G) ciclico obtendriamos que G = Z(G) y en consecuencia |Z(G)| = p? ,
lo cual es contrario a la hipéteis del caso. Por tanto no se puede dar que |Z(G)| = p.

= Caso 3. Supongamos que |Z(G)| = p*.
Si |Z(G)| = p? como Z(G) estd contenido en G, al tener los mismos elementos se deduce que
Z(G) = G, y como el centro es abeliano, el grupo G lo serd también.

Por tanto la tnica posibilidad viable es la del caso 3, ante la cual hemos probado que G es abeliano,
y por tanto queda demostrada la proposicién.
|
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9 P- GRUPOS FINITOS

Una consecuencia inmediata del Teorema de Cauchy, el cual se puede consultar en A course on
Finite Groups de Harvey E. Rose [12], es el siguiente resultado:

Corolario 14. Sea G un p-grupo abeliano finito de orden p™. Entonces existe algin b € G tal que
orden(b) = p.

Teorema 15. Sea GG un p-grupo de orden p™. Entonces el grupo G tiene algin subgrupo de orden p*
para cada 1 < s < n.

Demostraciéon. Lo demostraremos por induccién sobre n.
= Sin =1 es obvio por el corolario anterior.

= Si se verifica para 1,2,...n — 1, veamos que es cierto para n.
Por la ecuacion de las clases de conjugacién

m

G| = 1Z(G)| + DG : Cala)],

i=1

siendo m el nimero de clases con més de un elemento y x; un generador de cada una para cada
ie{l,2,...,m}.

Como p divide a G y a [G : Cg(z;)] para todo i € {1,2,...,m}, se tiene que p divide a |Z(G)].
Entonces, por el Teorema de Cauchy, Z(G) tiene algin subgrupo A con |A| = p , y ademds es
ciclico por ser p primo. Como el centro es abeliano, el subgrupo A es normal.

Consideremos el cociente /A, cuyo orden es p"~!. Podemos aplicar la hipétesis de induccién a
G/A y entonces tenemos que G/A tiene subgrupos de orden p™ para cada 1 < m < n — 1. Por
la biyeccién existente entre los subgrupos de G/A y los subgrupos de G que contienen a A se
sigue que G tiene subgrupos de orden p"” para 1 < m < n — 1. Como para n es evidentemente
cierto porque el propio G lo verifica, hemos terminado.

Nota. El resultado previo es un caso particular del primer teorema de Sylow.

Cerramos la seccién con la definicion del exponente de un grupo.

Definiciéon 16. Sea G un grupo. En caso de existir, el menor niimero natural r tal que ¢" = e para
todo g € G se denomina exponente o periodo del grupo G.

Ademsds de ser 1til para algunas de las demostraciones de este texto, tiene interés en si misma
porque conocer el exponente de un grupo nos da informacién sobre su estructura interna.

Nota. Si un grupo es finito de orden n, obviamente el periodo divide a n.

Nota. En un p-grupo finito G de orden p"™, el exponente o periodo es un divisor de p™.

UNIVERSIDAD DE VALLADOLID
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Capitulo 3

Grupos abelianos de orden p"

Una estrategia muy comun en matematicas es comenzar estudiando casos con propiedades més
amables, para luego poco a poco ir extendiendo el estudio a situaciones mas genéricas. FEsa sera nuestra
manera de proceder, de modo que comenzaremos exigiendo a los grupos ser abelianos.

Definicién 17. Sea (G,+) un grupo conmutativo. Sean Hy, Ho, ..., H,, subgrupos de G. Se define el
grupo suma de Hy,Hs,...,H,, a

H{+Hy+---+ H, :{a1+a2+-~~+am€G:a1GHl,ageHQ,...,amGHm}.

Definicién 18. Sea (G, +) un grupo conmutativo. Sean Hi, Ho, ..., Hy, subgrupos de G. Se dice que
G es suma directa de Hy, Ho, ..., H,,, vy se denota

Hi®Hy @& Hp,
si se cumplen las dos condiciones siguientes:
» G=H +Hy+---+ Hp,.
» Para todo b € G existen a1 € Hy,a9 € Ho,...,a,, € H,, Gnicos tales que b =aj +ao+ -+ am.
Exponemos condiciones equivalentes para la suma directa en el siguiente resultado:

Lema 19. Sea G un grupo y sean Hy, Ho, ..., Hy, subgrupos de G tales que G = H1+ Ho+-- -+ Hy,.
Las cuatro condiciones siguientes son equivalentes:

1. G es suma directa de Hq, Ho, ..., Hp,.
2. S5i0=a;+as+---+am, conay € Hy,as € Ho,...,a, € Hy,,, entonces a1 = as = --- = a,, = 0.
3. El homomorfismo de grupos

a:H xHyx---xH, — H +Hy+ ---+H,

(a1,a2,...,a4m) —> a1+az+- -+ an
es un isomorfismo.
4. Para cada i =1,2,...,m se cumple que
H;nY Hj={0}.
i

11
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Demostracién. Probaremos la cadena de implicaciones:
(1) = (2)

Razonaremos por reduccién al absurdo. Supongamos que se tiene que 0 = a1 + a2 + - - - + a,, con
cierto j € {1,2,...m} tal que a; # 0. Pero sabemos que también 0 = 0+ 0+ --- + 0, por tanto se
rompe la unicidad para la expresion de 0 y llegamos al absurdo.

(2) = ()

Para ver que es isomorfismo nos falta asegurar la biyectividad. Por tanto tenemos que ver que es
sobreyectiva e inyectiva.

La sobreyectividad es sencilla, puesto que dado un elemento g € G = Hy + Hs+- - -+ H,, se puede

escribir como g = a1 +as+ -+ + a, con a1 € Hy,as € Ho,...,a, € Hy,, de modo que considerando
(a1,a2,...,am) € Hy X Hy X -+- x Hy,, su imagen por el homomorfismo « es la deseada.

La inyectividad tampoco requiere un gran esfuerzo. Notemos que si a(ay, ag, . .., am) = (b1, ba, ..., by)
tenemos que a(ay,az,...,an) — a(bi,ba,...,by) = 0. Y al ser @ homomorfismo se sigue que a(a; —
b1,a2—ba, ..., aym—0by) = 0. Ahora bien, por como estd definida «a, esto es (a1 —b1 )+ (ag—b2)+- - -+ (am—
bm) = 0,y la hipétesis (2) nos garantiza que esto solo sucede si a; —b; = 0,a2—by = 0,. .., a4 —by, = 0.
Vaya, si a1 = by, ag = by, ..., an = by, lo cual implica que (aj,as,...,an) = (b1,b2,...,by). Justo lo

que nos aporta que es inyectiva.

8) = (4)

Recordemos que por ser Hi, Hs,..., H,, subgrupos el elemento neutro 0 estd en todos ellos.
Ahora, para probar la implicacién razonaremos por reduccién al absurdo y suponemos que existe
i€ {1,2,...,m} tal que

H;nY  Hj #{0}.
J#i
Sin pérdida de generalidad podemos asumir que ¢ = 1. Tenemos que entonces existen a € Hi, b; € H;
para j = 2,3,...,m verificando a = by + b3 + - - - + by,

Por tanto a(a,0,...,0) = «(0,bs,...,by), lo que esta en contra de la inyectividad.

(4) = (1)

Notemos que por hipétesis general, se asume que G = Hy + Hy + --- + H,,. Asi, lo que tenemos
que garantizar es que dado b € G existen a; € Hi,a0 € Ho,...,a;, € H,, Unicos tales que b =
airt+azx+ -+ am.

Si razonamos para ver el contrareciproco y suponemos que existe i € {1,2,...,m} tal que

J#i

donde sin pérdida de generalidad podemos asumir que ¢ = 1, tenemos que entonces existen a € Hi,
bj € H; para j = 2,3,...,m verificando a = by + b3 + - - - + byy,.
Pero entonces tenemos al menos dos maneras distintas de expresar a, lo que implica que G no es suma
directa de Hy, Ho, ..., Hp,.

|

Y pasamos ahora a introducir un nuevo término y algunos resultados al respecto que nos empiezan
a acercar a la clasificacion de los p-grupos abelianos finitos.

Definicién 20. Sea (G, +) un grupo abeliano no nulo. Decimos que G es indescomponible si, puesto
como suma directa de dos subgrupos, entonces uno de los dos subgrupos es trivial.

Proporcionamos mas informacién sobre los grupos indescomponibles, puesto que entenderlos nos
permitird comprender casos méas complejos. El siguiente lema nos justifica precisamente en qué sentido
nos ayudard a estudiar casos mas complicados.

Lema 21. Todo grupo G abeliano finito no nulo se puede expresar como suma directa de subgrupos
indescomponibles, admitiedo el caso de que el propio grupo de partida sea indescomponible.
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Demostracién. Se demuestra por induccién sobre |G].
Si |G| = 2 es trivial.
Supongamos que es cierto para |G| = 1,2,...,n—1y probémoslo para n. Tenemos dos posibilidades:

= Si G es indescomponible, es trivial.

= Si G no es indescomponible entonces existen subgrupos no triviales A y B tales que G = A® B.
Notemos que los cardinales de A y B son menores que el de G. Podemos entonces aplicar la
hipdtesis de inducciéon de modo que A y B son suma directa de indescomponibles. Asi pues
usamos esas dos descomposiciones para construir la de G y hemos terminado.

Lema 22. Sea G un p-grupo abeliano finito de orden p™. Si p™ es el periodo de G, entonces existe
a € G tal que orden(a) = periodo(QG).

Demostracién. Como |G| = p™ y el orden de un elemento de g debe dividir al orden del grupo, los
o6rdenes de los elementos solo pueden ser potencias de p. Por tanto el periodo coincide con el orden del
elemento b con mayor orden. Asi, tenemos lo que desedbamos, orden(a) = periodo(G) = p™, porque
si no existiera un b con tales caracteristicas el periodo seria menor.

Lema 23. Sea G un p-grupo abeliano de orden p". Sea a € G tal que orden(a) = periodo(G) = p™.
Consideramos el grupo cociente G/(a). Entonces para todo elemento b € G/(a) existe = € G tal que
b=x+ (a) y orden(b) = orden(z).

Demostracién. Tomemos un representante de b: sea y € G tal que b = y + (a). Sean orden(b) = p*

y orden(y) = p®. Se tiene que p* < p* < p™, lo que equivale a que k < s < m.

Si k = s, entonces ya hemos conseguido lo pedido.

Si k < s hay que trabajar un poco mas. Como el orden de b es p¥, tenemos que p* (y+(a)) = pFb=0
y vemos que p*y € (a). Es decir, p*y = qa para cierto ¢ € Z. Podemos expresar ¢ como el producto
g = rp', donde p no divide a r.

Entonces,
k m—t m

pm-i-k—ty _ pm_tp y=p qa =1p _trpta =rp™a=0=7py,

y se deduce que m + k —t > s.
Pero por otro lado

perkftfly — pmftflpky — pmftflqa — pmftflrpta _ rpmfla 7& 0’

y junto con lo anterior se concluye que m + k —t = s.
Consideremos el elemento z = y — rp *a de G y veamos que cumple lo las dos condiciones que
necesitamos. Es obvio que = + (a) = y + (a) = b. Luego orden(b) = p* divide a orden(z). Y como
ademds pFx = pFy — rpFtm=sa = pFy — rpta = p*y — qa = p*y — pFy = 0 concluimos que orden(z) =
p* = orden(b).

|

Lema 24. Sea GG un p-grupo abeliano de orden p™. Son equivalentes los siguientes tres asertos:
1. G es indescomponible.

2. G es ciclico.

3. G es isomorfo a Z/(p").
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Demostracién. La equivalencia entre (2) y (3) es conocida, asi que nos centramos en probar la
equivalencia entre (1) y (2).
(1) = (2)

Sea G indescomponible. Probaremos por induccién sobre n que entonces es ciclico.

» Sin =1 entonces |G| = p y es conocido que todo grupo de orden primo es ciclico.

= Supongamos que para 1,2,...,n — 1 es cierto y probemos que entonces también es cierto para
n, cuando |G| = p".
Por el lema 22 existe a € G tal que el orden de a es igual al periodo del grupo. Tenemos dos
casos:

e Si orden(a) = p™ hemos terminado.

e Si orden(a) # p" entonces considero el cociente G/(a).
Por el lema [21] lo puedo expresar como suma directa de subgrupos indescomponibles:

G/la)=C1®Ca®--- @ Cy (3.1)

Por hipétesis de induccién, cada C; con 1 < ¢ < k es ciclico, de modo que existen z; tales
que C; = (x; + (a)) para cada 1 < ¢ < k. Ademds, por el lema [23| podemos suponer que
orden(z; + (a)) = orden(x;) para cada 1 < i < k.

Vamos a comprobar que

G = (a) ® (z1) ® (x2) ® - ® (g,

lo que contradice la hipdtesis de ser indescomponible. Necesitamos asegurar que la suma
es directa y para ello veremos una de las condiciones equivalentes vistas en el lema si
b,mi,ms,...,my € Z con ba + miz1 + moxs + --- + mpx = 0 entonces ba = miz] =
Mmoxg = -+ = mprE = 0.

Notemos que ba + myxy + moza + - - - + mypx, = 0 implica que 0 = mq(z1 + (a)) + ma(z2 +
(a))+---+mg(xg+ (a)). Por tanto, de la ecuacion (3.1)) seguimos que m;(x; + (a)) = 0 para
cada 1 <i < k. Entonces m; es multipo de orden(z;) para cada 1 < i < k. En consecuencia
m;x; = 0 para todo 1 < ¢ < k y también ba = 0.

(2) = (1)

Razonaremos por reduccién al absurdo. Supongamos que G es descomponible con G = A & B.
Entonces tenemos |A| = p® y |B| = p! de forma que 1 < p* < p" y 1 < p! < p™. En esta situacién, el
exponente o periodo de G sera

exp(G) = m.c.m(p®, p') = max{p®,p'} < p",

lo que contradice el hecho de que G es ciclico.
|

FEl siguiente resultado es clave, porque nos da una manera de describir cualquier p-grupo abeliano
afirmando la invariancia respecto a los exponentes en el orden de los subgrupos implicados en la
descomposicion.

Teorema 25. Sea G un p-grupo abeliano de orden p™. Entonces G es suma directa de subgrupos
ciclicos de d6rdenes p®t,p©,...,p° donde los numeros e; > ey > --- > e, son Unicos y cumplen
ejtex+ - +e =n.

Demostracién. Se demuestra por induccién sobre n.

= Sin =1 es obvio porque G es ciclico en si mismo.
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= Supongamos que es cierto para 1,2,...,n — 1 y veamos que es cierto para n.

Consideremos un elemento x € G de maximo orden posible y sea A = (z). Lo que probaremos
serd que G = A x B para algin subgrupo B, porque aplicando a B la hipdtesis de induccion
tendriamos la descomposicién deseada.

La existencia de tal subgrupo B la probaremos precisamente construyéndolo.

Consideremos el espacio cociente G/A. Por la hipdtesis de induccién este espacio es producto
interno de grupos ciclicos generados por las clases (y1A4), (y24), ..., (ysA), siendo sus érdenes
p™,p™2, ..., p™s. Entonces tenemos que (y;)P" ' = x' para algiin t; para cada 1 <i < s.

Para cada 1 < i < s, podemos suponer ademds que p" divide a ¢;, obteniendo de ello que
(y;)P"" = (x;)P™" para algin z; = z4/P™ € A.

Notemos que tal suposicion es licita ya que en caso de que para algin valor de i se tuviera
que p™ no divide a t; se tendria que t; = k;p", donde p no divide a k; y r; < m;. Lo que
permitirfa concluir que z** genera A y que el orden de z* es p™ i siendo p™ el orden de z.
Lo que implicaria que el orden de y; es mayor que el orden de x, en contra de como habiamos
tomado .

Escribimos ahora z; = yixf para cada 1 < ¢ < s y consideremos el grupo B generado por
215 Ry« ey Rge

Notemos que como z!’ " = 1, el orden de cada z; divide a p™ para cada 1 < i < s. Ademads,
ziA = y; A siendo ord(y; A) = p™ para cada 1 < i < s, asi que el orden de z; no puede ser menor

que p"*. Por tanto el orden de z; es concretamente p*.
Si vemos que finalmente G es producto interno de A y B habremos terminado. Para ello necesi-

tamos probar dos propiedades:

e Cada elemento de G se puede escribir como ab siendo a € Ay b € b.
Como z;A = y;A para 1 < i < s, la clase puede escribirse como producto de potencias de

214, 29A, ..., zsA. Entonces g es producto de un elemento de A y otro de B.

e ANB = {1}
Sia € AN B, entonces por estar en B es de la forma a = z’fleQ . zfs = ylfly§2 ok y
por tanto aA = z]flAzé”A. 2B A = ylflAyl;“’A ...yPs A. Pero por estar a en A, esta clase
es A.
Al generar y1 4, y2 A, . . ., ys A el cociente G /A tenemos que es isomorfo a Cpm1, Cpma, . .., Cpmr

y concluimos que p™ divide a k; para 1 < i < s, de modo que a = 1.
Con ello terminamos la prueba.

En esta situacién, los nimeros p®,p®, ..., p° se denominan factores invariantes y también

divisores elementales.

Gracias al teorema previo, podemos dar un ejemplo de todos los grupos abelianos de orden p® que

existen, salvo isomorfismo:

z z Z Zz  Z zZ 7z

(p°)’ () (p)’ ) ¥’ )" ()
Zz  Z Z z z Z Z z % z 2 7
®*) " ) )’ ®)  ® » O ()" (») () (@ (p)

Dentro de esta lista, sabemos que la primera posibilidad dada es un grupo ciclico. La ultima

también tiene su terminologia concreta, que es la siguiente:
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Definiciéon 26. Un p-grupo elemental es un p-grupo conmutativo finito de exponente o periodo
exactamente p, en el que todo elemento distinto del neutro es de orden p.

Cada p-grupo elemental de orden p” es isomorfo al grupo
n veces

7 Y/ Z

(?) > @ e X @

dotado de la operacién suma.

3.1. Particiones

Para cerrar el capitulo, en esta seccién vamos a demostrar cudntos p-grupos abelianos no isomorfos
existen. Para ello, la unicidad de los factores invariantes es clave, al igual que recordar la funcién
particién.

Definiciéon 27. La funcién particion P asocia a cada entero no negativo n el nimero de posibles
particiones de si mismo, esto es, la cantidad de formas en las que n puede ser expresado como la suma
de ntimeros enteros positivos sin importar el orden.

Por ejemplo, P(5) = 7 porque el nimero 5 tiene 7 particiones: 5,4 +1,3+2,3+1+1,2+2+1,
241+1+1y1+1+1+1+41.

Nétese que tales particiones se corresponden con los grupos abelianos de orden p° indicados pre-
viamente.

Se incluyen a continuacién también los datos de las primeras cuarenta evaluaciones de la funcion
particién.

n | P(n) n | P(n) n | P(n) n | P(n)
1 1 11 56 21| 792 31 | 6842
2 2 12 7 22 | 1002 32 | 8349
3 3 13 | 101 23 | 1255 33 | 10143
4 ) 14 | 135 24 | 1575 34 | 12310
) 7 15 | 176 25 | 1958 35 | 14883
6 11 16 | 231 26 | 2436 36 | 17977
7 15 17 | 297 27 | 3010 37 | 21637
8 22 18 | 385 28 | 3718 38 | 26015
9 30 19 | 490 29 | 4565 39 | 31185
10 | 42 20 | 627 30 | 5604 40 | 37338

Tabla 3.1: Ntimero de particiones P(n) paran =1 a 40

Se puede dar mucha informacién interesante sobre la funcién particion, y hay teoria bastante
complicada al respecto. Aunque en la pdgina de OEIS (referencia [OEIS|) se puede encontrar mucho
mas contenido, no vamos a profundizar en ello. Lo que en nuestro contexto si es relevante, es incluir
la siguiente férmula obtenida por los matematicos G. H. Hardy y Ramanujan:

1 2
P(n) ~ yve exp (71\/?) cuando n — oo. (3.2)

Su demostracién se sale de los objetivos del texto, pero es importante porque permite un calculo
aproximado mucho maés rapido que las formulas exactas y aporta informacion valiosa sobre su creci-
miento: es mas veloz que cualquier funcién polindmica en n pero no tanto como la exponencial pura.

Con el teorema siguiente justificamos el interés de este trabajo por la funcién particién.
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Teorema 28. Sea n un natural. Entonces hay exactamente P(n) grupos abelianos no isomorfos de
orden p™.

Demostracién. Por el teorema [25sabemos que un p-grupo abeliano de orden p™ puede ser expresado
como suma directa de subgrupos ciclicos cuyos érdenes son los factores invariantes.
La unicidad de los factores invariantes nos garantiza que, si al hacer tal descomposicién dos grupos
los tienen iguales, entonces son isomorfos.
Por tanto, como cada particion de n nos da unos factores invariantes distintos, se tiene que cada
particion de n define una estructura tnica de un grupo abeliano.
[ |

Asi pues, acudiendo a la tabla (3.1) podemos asegurar que, por ejemplo, tenemos 5604 grupos
abelianos de orden p®’; y por la férmula de Hardy y Ramanujan de la ecuacién (3.2) conocemos el
crecimiento asintético del niimero de p-grupos abelianos no isomorfos.
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Capitulo 4

Producto semidirecto para la
construccion de p-grupos no abelianos

En este capitulo dejamos de exigir la conmutatividad y pasamos a los grupos no abelianos. Para
ello nos enfocaremos en una manera de construir nuevos grupos basandonos en el producto semidirecto
externo.

Antes, recordamos que dado un grupo (G,x*), el conjunto de sus automorfismos dotado de la
operacién “composicién de automorfismos” tiene estructura de grupo . Lo denotamos (Aut(G), o).

Definicién 29. Sean dos grupos N y H, y sea ¢ un homomorfismo de grupos ¢ : H — Aut(N) para
el que denotamos ¢(h) := ¢3. El producto semidirecto externo de N y H, denotado por N x4 H,
es la pareja constituida por (N x H,e), donde N x H el conjunto dado por el producto cartesiano y
e la operacién dependiente de ¢ definida como sigue:

o:(NxH)x(NxH) — NxH
((n1,h1), (n2,h2)) —  (n1, h1) @ (n2, ha) = (n1¢n, (n2), hihs)

Proposicion 30. El producto semidirecto externo es un grupo.

Demostracién. Sean H, N como en la definicién previa. Probemos que N x4 H es un grupo
) o) )
para lo que necesitamos asegurar las tres condiciones siguientes:

= Asociatividad.
Dados (n;,hj) € N x H para j = 1,2,3, veamos que ((n1,h1) ® (n2,ha)) ® (n3, h3) = (n1,hi) e
((n2, ha) e (n3, h3)).
Por un lado tenemos que
((n1,h1) @ (n2,h2)) ® (n3, h3) = (n1¢n, (n2), hiha) @ (n3, h3) = (n1dn, (n2)Phiny (n3), (h1h2)h3).
Por otro lado tenemos que
(n1,h1) ® ((n2, ha) @ (n3,h3)) = (n1,h1) @ (n2dn,(n3), hehs) = (n1dn, (R2dn,(n3)), h1(h2hs)) =
(n1¢p, (n2)Pryn, (n3), (hiha)hs). Como de ambas formas obtenemos lo mismo, la asociatividad
queda probada.

= Existe elemento neutro.
Veamos que dado (n,h) € N x H se verifica que (1,1) ® (n,h) = (n,h) = (n,h) e (1,1).
Tenemos que (1,1) e (n,h) = (1¢1(n),1h) = (n,h).
Y de igual modo tenemos que (n,h) e (1,1) = (ngx(1),h) = (n, h).

= Cada elemento tiene su inverso.
Veamos que dado (n,h) € N x H el elemento (¢, ' (n~!),h~!) cumple la condicién de ser su
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inverso. Nétese que (¢,)~! = ¢p,-1, pues ¢ es homomorfismo de grupos. Teniéndolo en cuenta,
se comprueba directamente operando:

(n,h) @ (¢, (n 1), A1) = (nen(d, ' (n 1)), hh™1) = (1,1)
(6, (n™),h™1) o (n,h) = (¢, (0™ ) p-1(n), k™ h) = (1,1)
|

Nota. Al asegurar que el producto semidirecto externo, el par (N x H,e) =: N x4 H, es de hecho
un grupo, notemos que podemos tomar la licencia habitual de escribir el conjunto subyacente con la
misma notacién que el propio grupo N x4 H = (N x4 H, e) sin perder de vista en qué contexto esta
cada uno.

Proposicién 31. Dado un grupo N x4 H, producto semidirecto como el anterior, se cumple que
N x {1} es un subgrupo normal suyo.

Cabe destacar que el producto semidirecto externo que hemos presentado no deja de ser una
generalizacién del producto directo, ya que si el homomorfismo ¢ de la definicién [29] es la aplicacion
constantemente igual a la identidad de Aut(G), la operacién e es exactamente el producto usual.

4.1. Un ejemplo de construccién de 2-grupos no abelianos

En esta secciéon vamos a introducir un primer ejemplo que nos permitird obtener de un 2-grupo
conmutativo no elemental, otro 2-grupo no conmutativo. Ademads, estableceremos la relacién que tiene
este procedimiento con los grupos diédricos.

La obtencién del nuevo 2-grupo no conmutativo se buscara con la construcciéon de un producto
semidirecto. Para ello necesitamos recordar algunos resultados que nos aseguraran la correcién al
definir el homomorfismo del que dependera la operacién. Los resultados no se demostraran porque son
sencillos y no aportan contenido de interés al texto.

Lema 32. Sea (G,+) un grupo conmutativo. La aplicacién

¢p_1:G — G
a —— —a

es un automorfismo del grupo.

Observacion. En esta seccién consideraremos Co = {+1, —1} el grupo ciclico de dos elementos con
notacién multiplicativa.

Observacion. El grupo Co considerado previamente es isomorfo a (%, +>.

Lema 33. Sea (G,+) un grupo conmutativo con algin elemento de orden mayor o igual que 3.
Consideremos ¢; la aplicacién identidad y el automorfismo ¢_; del lema previo. La aplicacién

¢:Cy — Aut(G)
1 — ¢1
-1 — ¢

es un homomorfismo de grupos inyectivo.
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Observacion. Notese que la condicién sobre el orden de G, que tenga al menos tres elementos,
es necesaria para que en Aut(G) haya algin homomorfismo distinto de la identidad. Si no lo hay, el
producto semidirecto que podemos definir es, como dijimos, justamente el producto directo. Entonces,
al estar construido a partir de dos grupos conmutativos, conseguiriamos otro grupo conmutativo, y
ese no es el objetivo.

Una vez definido el homomorfismo ¢, es inmediato el asegurar la posibilidad de la construccion de
un producto semidirecto.

Lema 34. Sea (G,+) un grupo conmutativo con algin elemento de orden mayor o igual que 3.
Entonces tenemos definido un grupo producto semidirecto

G %y Co
con la operacién de grupo dada por
(g,a) ® (h,b) = (g + ¢a(h),a - b).
Observacion. Con una notacién mas compacta la operacién se puede escribir como
(g,a) e (h,b) =(g9g+a-h,a-b).

Proposicién 35. Si (G,+) es un 2-grupo conmutativo de orden 2™ con algin elemento de orden
mayor o igual que 4, entonces el producto semidirecto definido en el lema previo,

G A CQ,

es un 2-grupo de orden 2"t y no conmutativo.
En esta situacion,

G=GxA{l}
es un subgrupo normal de G' x4 Cs.

Ya hemos detallado una manera de construir para cada 2-grupo conmutativo no elemental, otro
2-grupo no conmutativo. Asi pues, finalizamos la secciéon detallando como se relaciona este caso con
el grupo diédrico. Recordemos primero su definicién:

Definicion 36. El grupo diédrico, denotado por D,, es el grupo de simetrias de un poligono regular
de n lados, incluyendo rotaciones y reflexiones.

Recordemos también que el grupo diédrico D,, tiene orden |D,| = 2n, y que ademds se escribe
usualmente como
D,, = (a,bla" = b* = e, bab = a™ ),

siguiendo la representacion con generadores y relaciones.

Ahora, nuestra construccién de 2-grupos no abelianos liga con el grupo diédrico porque

De entrada podemos observar que % cumple evidentemente las condiciones requeridas para ser
el grupo G de la proposicién de modo que se sigue que

7
(27)
Ademss, es sencillo encontrar en este producto semidirecto dos elementos que verifiquen las rela-

ciones de a y b. Concretamente los elementos (1,1) y (0, —1), asignando respectivamente los roles de
a y b, funcionan como indican .
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. z z
4.2. El p-grupo no abeliano (R0

En esta secciéon vamos a introducir un ejemplo algo més elaborado que nos permitird obtener a
partir de % y % , un p-grupo de orden p? no conmutativo.
La manera de proceder serd analoga a la seccién previa: se buscard su obtencién con la construccién

La clave vuelve a ser definir el homomorfismo ¢ adecuado del que dependerd la operacién @ del
producto semidirecto, y se requeriran también algunos lemas auxiliares para garantizar su correcta
definicién. Los resultados tampoco se demostraran porque son sencillos y no aportan contenido de
interés al texto.

Lema 37. Sea j € {0,1,2,...,p— 2,p — 1}. La aplicacién
Z
(»?)

a

E

¢j

2

T~
+\_/

—

p
— (14 jp)a
es un automorfismo del grupo (%, +>.

Observacion. Nétese que con el producto (1+ jp)a escrito en la definicién de la aplicacién anterior,
no nos referimos a otro que al producto usual del anillo (%, +, )

A continuacién detallamos algunas propiedades que verifican estos automorfismos:

= ¢p es el automorfismo identidad.

= Dados ¢; y ¢ con j € {0,1,2,...,p—2,p—1}, la composiciéon de ambos reulta ser ¢jo¢, = dji
donde j + k se toma como su residuo médulo p, ya que (14 jp)(1+kp) = 1+ (j + k)p + jkp? =
14 (j+k)p méd (p?).

» El punto previo nos asegura que el inverso de ¢; es ¢,_;.

Podemos poner un caso sencillo de como funcionan los inversos de este tipo de automorfismos, por

ejemplo cuando p = 5. Si consideramos ¢2, ¢3 : % — %, notemos que 2+3 = 5y (1+2:5)(1+43:5) =

1+(243)-5+2-3-52=1+52=1 méd (52).

Lema 38. Consideremos ¢; para j € {0,1,2,...,p —2,p — 1} del lema previo.

La aplicacién
() = ()

j'_>¢j

es un homomorfismo de grupos inyectivo.

Noétese también que el homomorfismo ¢ previamente definido no es una biyeccion, puesto que hay
otros automorfismos distintos de nuestros ¢; en Aut(( %, +)).

Lema 39. Tenemos definido un grupo producto semidirecto

z  Z
®®) "¢ ()
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de los grupos

con la operacién de grupo dada por

(9:a) @ (h,b) = (94 @a(h),a +b).
Observacion. Con una notacién mas compacta la operacién se puede escribir como
(g,a) ® (h,b) = (g + (1 +ap)h,a+0).
Proposicion 40. El producto semidirecto definido en el lema previo,
Z 7
) " )

es un p-grupo de orden p? y no conmutativo.

Para cerrar esta seccion vamos a enunciar un par de propiedades de la construccién realizada:

1. Por un lado, notemos que podemos contabilizar cuantos elementos hay de cada orden posible.

Para ello, recordemos que en <(pZ—2), +> hay:

= Un elemento de orden 1. Es el neutro, 0.
= p— 1 elementos de orden p. Son los elementos de la forma jp con j € {1,2,...,p— 1}.

» p? — p elementos de orden p?. Son los elementos de la forma h con med(h,p) = 1.

Entonces con un simple razonamiento de combinatoria, volviendo a nuestro producto semidirecto

% X %, podemos concluir que hay:

» Un elemento de orden 1. Es el neutro, (0,0).

» p(p—1) = p?—p elementos de orden p?. Son los elementos de la forma (h,0) con med(h, p) =
1.

» 2 — (p? —p+1)=p>—p?+p—1 elementos de orden p. Son los elementos de la forma:

(h,0) con med(h,p) =py h#0
(h,a) con a #0

2. Por otro lado, notemos que el centro de % X % tiene necesariamente orden p. Esto se debe

a que, de hecho, el centro de cualquier grupo no conmutativo de orden p3 tiene necesariamente
orden p. Tal afirmacién es consecuencia de las proposiciones [11]y Detallémoslo:

Proposicién 41. El centro de cualquier grupo G no conmutativo de orden p3 tiene orden p.

Demostracién. Por la proposicién al ser |G| = p3, el centro Z(G) tiene més de un elemento.

Como el centro es un subgrupo, y el orden de los subgrupos debe dividir al orden del grupo, solo
puede ser que |Z(G)| sea o p o p?.

Vamos a descartar la posibilidad de que sea p?. Si |Z(G)| = p?, entonces el cociente G/Z(G)

tendria orden <l 5
p
G/Z(G)| = ===
Z(G)| p?
Pero esto implicaria que G/Z(G) fuera ciclico y abeliano, y entonces de la proposicién se
deduciria que G es abeliano, algo que va en contra de nuestra hipdtesis de que G era no abeliano.
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En este caso, de hecho, el centro de %+ X L es
(r*) (p)

g <<;Z?> X# 55) =1{p,0) 5 {0, L,....p —1}} = {(p, 0))-

. Z Z Z Z
4.3. El p-grupo no abeliano (@ X oy X X @) X0

En esta seccién nos vamos a centrar en una forma de generalizar la construccién de la anterior.
Considerarmos, en lugar de %, su producto n veces, % X % X oo X %.

Los pasos que daremos serdn los mismos, y las demostraciones no las detallaremos porque tampoco
aportan contenido de interés. Primero, como hicimos con el lema[37] aseguraremos que las aplicaciones
que nos interesan son automorfismos:

Lema 42. Sea j € {0,1,2,...,p— 2,p — 1}. La aplicacién

¢~-Z><Z>< XZ—>Z><Z>< ><Z
T (0?) (»?) ®*) () (»?)
(a1, az,...,an) +—— ((1+jp)ar, (1+ jp)az,...,(1+ jp)an)
es un automorfismo del grupo ((pZ—Q) X (pZ—Q) X oo X %, +).
El segundo paso es garantizar la correcta definicion del homomorfismo ¢, como en el lema

Lema 43. Consideremos ¢; para j € {0,1,2,...,p —2,p — 1} del lema previo.

La aplicacién
¢>:<(i),+) — Aut<<(;zé)x(;zé)x---x(;zé),+>)

j»—>¢j

es un homomorfismo de grupos inyectivo.
El tercer paso, andlogamente al lema se centra en construir el producto semidirecto:

Lema 44. Tenemos definido un grupo producto semidirecto

(&7 o o) e
®?) " () ®)) "7 ()

(Breded) v ()

con la operaciéon de grupo dada por

((91,92,"' agn)aa) ® ((h17h27"' 7hn)7b) = ((917927"' >gn) +¢a(h)7a+b)'

Observacidon. Con una notacién méas compacta la operacién se puede escribir como

de los grupos

((917925"' 7gn)7a)@((h17h’27"' ahn)vb) = ((gl+(1+ap)h’a.92+(1+ap)ha )gn+(1+ap)h)aa+b)

Proposicion 45. El producto semidirecto definido en el lema previo,

(& ) e
®?) " (%) @) "7 ()’

2n+1 v no conmutativo cuyos elementos son todos de orden 1, p o p?.

es un p-grupo de orden p
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. zZ z . Z zZ
4.4. El p-grupo no abeliano B <@ X gy X X @>

En esta seccién vamos a generalizar de nuevo la construccién % X %, pero esta vez modificando

. . 7 Lo Lo ... L
el segundo espacio. Considerarmos, en lugar de o) Su producto n veces ORACERS X

La manera de proceder es similar, pero en este caso no podremos garantizar también la inyectividad
del homomorfismo ¢. Por otro lado, las aplicaciones que nos interesan vuelven a ser

b Z Z
T (?) (»?)
a — (1+jpla
con j €{0,1,2,...,p— 1}, las del lema que, como habiamos enunciado ya, son automorfismos.

La carencia de inyectividad del homomorfismo ¢ viene de que ahora no tenemos la ventaja que nos
otorgaba la comoda inclusién de % en %. En esta situacién nos interesa mas garantizar solamente
el lema siguiente:

Lema 46. Consideremos ¢; para j € {0,1,2,...,p — 1} como indicamos anteriormente, las del lema
Entonces, la aplicacién

¢: (éxéx---Xé,+> — Aut(fé),+>

j= (jlvj?a T a]n) — ¢j1+j2+"’+jn

es un homomorfismo de grupos.

Notese que j1 + jo + - - - + jn se refiere a j; + jo + -+ + j, mod p.

A continuacién, en el tercer paso, andlogamente a los lemas y 4] construimos el producto
semidirecto.

Lema 47. Tenemos definido un grupo producto semidirecto
z X (Z X z X X Z>
) "\ @) ()

(@) v (@ e w)

con la operacién de grupo dada por

de los grupos

(9, (a1,a2,...,an)) ® (h, (b1,b2, ..., bn)) = (9 + Day,as,....an) (1)s (a1 + b1, a2 + ba, - -+ an + by)).
Observacion. Con una notacién mas compacta la operacién se puede escribir como
(g, (a1,a2,...,ay))®(h, (b1,ba,...,bn)) = (9+ (14 (a1 +az+- - -+an)p)h, (a1 +b1,a2+ba, - ,an+by)).
Proposiciéon 48. El producto semidirecto definido en el lema previo,
Z Z VA Z
@ (@X@X"'X(Jnﬁ)’

es un p-grupo de orden p?>*" y no conmutativo cuyos elementos son todos de orden 1, p o p?.
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4.5. Otros productos semidirectos

Como hemos podido ver en las secciones previas, el modus operandi para construir grupos utilizando
el producto semidirecto no difiere mucho de unos a otros. Por ese motivo, citamos algunos casos més
sin introducir los lemas y justificaciones que aseguran las condiciones que necesitamos.

Los primeros ejemplos que mencionaremos nacen de incrementar las potencias del primo en en las
que basamos los grupos implicados.

Por ejemplo, modificando el primer factor se puede construir el producto semidirecto

Z Z

@) " )

considerando la operacién (g,a) ® (h,b) = (g + (1 + ap?)h,a + b).
En este caso el centro del grupo es

Z ={(jp,0):j € {0,1,--- ,p* — 1}}.

~ NN N Y

En cambio, modificando el segundo factor se puede construir el producto semidirecto

z  Z
() ()

considerando la operacién (g,a) @ (h,b) = (g + (1 + ap)h,a + b).
En este caso el centro del grupo es

ZZ{(jp,kp) :j7k€{0717"' 7p_1}}'

~ NN N Y

Ademas, si modificamos ambos, se puede construir el producto semidirecto

z  Z
) ()

considerando la operacién (g,a) ® (h,b) = (g + (1 + ap®)h,a + b).
En este caso el centro del grupo es

Z:{(]p,kp)je{(),l’ 7p2_1}7k€{0313 ap_]-}}

De hecho, de manera general se tiene que
( Y/ y Z EB>
(")~ ()’

considerando la operacion (g,a)® (h,b) = (¢g+(1+ap™ 1)k, a+b), es también un producto semidirecto.
En este caso el centro del grupo es

Z:{(]p’kp)je{()’l? ’pn_li]-}akg{o,]-a"' 7ps—171}'

~ NN AN Y
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Noétese que, ademas de la amplia gama de posibilidades que nos otorga la generalizacién previa,
podemos conseguir ain mas grupos definiendo una operacién diferente. Por ejemplo,

((i) " <§Z>E)

cuando consideramos una nueva operacién dada por (g,a) B (h,b) = (¢ + (1 + ap™ *)h,a + b) es un

producto semidirecto distinto de <(pz—n) X (pz—s), D
En este caso el centro del grupo es

Z = {(jpsvo) 1J € {071’ 7pn78 - 1}}

~ NN YA

Por 1ultimo, cabe mencionar que una vez conocidos algunos ejemplos, se puede complicar un poco
mas la idea mezclando estas construcciones. Por ejemplo,

(@) (@) <)

con la operacién (a, (b,c)) ® (a, (8,7)) = (a + (1 + p?b + pc)a, (b + B,¢ + 7)) es otro producto
semidirecto.
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Capitulo 5

p-grupos de matrices

El teorema de Cayley nos asegura que cada grupo finito de orden n es isomorfo a un subgrupo
del grupo simétrico. Teniendo en cuenta que las permutaciones pueden verse como transformaciones
lineales, y que estas se pueden representar matricialmente, el interés en los grupos de matrices es
natural.

Por desgracia, la construccion de estos subgrupos de matrices no es sencilla y se sale de los objetivos
de este texto. Sin embargo, si que resulta procedente detallar algunos ejemplos de p-grupos de matrices.
Para ello introduciremos primero el grupo lineal general y el lineal especial, a pesar de que ellos mismos
no son p-grupos, y detallaremos posteriormente como encontrar en ellos ciertos subgrupos que si son

P-grupos.

5.1. El grupo lineal general y grupo lineal especial

El grupo lineal general de grado n es el grupo constituido por el conjunto de las matrices
invertibles de tamano n x n con el producto usual de matrices. Las entradas de la matriz pueden
fijarse en cualquier cuerpo o anillo, pero nosotros nos centraremos en aquellas con entradas en I, los
cuerpos finitos de p elementos. Asi pues, consideraremos el conjunto

GL(n,Fp) = {A € Myun(F,) : det(A) # 0}

con la operacién producto de matrices habitual, trabajando asi con el grupo

(GL(n, Fp),-).
Notacion. A veces al conjunto GL(n,F)) se le denota simplemente como GL(n, p).
Proposicién 49. El orden del grupo GL(n,p) es (p™ — 1)(p™ — p)(p" — p?)--- (p" — p"~1).

Demostracién. Necesitamos contar el nimero de matrices con determinante no nulo y entradas en
el cuerpo Fj,. Para ello la combinatoria serd nuestra principal herramienta, ya que el procedimiento se
basarda en comprobar de cuantas formas podemos elegir la columna j una vez sabemos las opciones
que teniamos en las previas de modo que continue sin ser dependiente de las anteriores.

La forma génerica de las matrices que nos interesan es la siguiente:

aix a2 aiz ... Qin
asy ago a3 Ce a9n,
a3r asz2 a3z ... Qa3p
Gpl an2 Gp3 ... Onp

Si nos centramos en la primera columna, lo inico que se exige es que no sea nula. Esto nos permite
p" — 1 opciones.
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Pasando a la segunda columna, si esta fuera un multiplo de la primera el determinante si seria nulo.
Como es precisamente lo que deseamos evitar, se concluye que hay p™ — p opciones para la segunda
columna.

Del mismo modo, la tercera columna no puede ser combinacion lineal de las dos anteriores, puesto
que en tal caso el determinante se anularfa. Eso nos deja con p™ — p? opciones para la tercera columna.

Con un razonamiento andlogo para cada una de las columnas restantes se deduce que, de hecho,
para cada i € {1,2,...,n} tenemos p" — p'~! opciones para la i-ésima columna.

Por lo tanto, el nimero total de matrices invertibles, es decir, el orden de GL(n,p) es el producto

" —1)(p" —p)(p" —p*) - (" —p" ).

Notemos que la proposicién previa nos asegura que GL(n,p) no es un p-grupo.

Veamos entonces qué conclusiones podemos sacar si nos restringimos a un subgrupo suyo, al grupo
lineal especial de grado n. El grupo lineal especial es el grupo

(SL(n7Fp)’ ')7
constituido por el conjunto de las matrices de tamano n X n con determinante 1, es decir,
SL(n,Fp) ={A € Myxn(Fp) : det(A) =1},

y considerando como operacién el producto usual de matrices.

Las entradas de la matriz, al igual que antes, nos intersan en I, y asi lo describimos, pero de
manera general también se podria considerar cualquier anillo o cuerpo.

Notacion. A veces al conjunto SL(n,[F,) se le denota simplemente como SL(n,p).

Proposicién 50. El orden del grupo SL(n,p) es
|GL(n,p)|
p—1 =
Demostracién. Recurrimos a la aplicacién determinante:
det : GL(n,p) — (F,,)
A — det(A)
Notemos que det es un homomorfismo, porque es bien conocido que det(A - B) = det(A)det(B).
Ademas, al considerar el conjunto de llegada F, donde ya no contamos con el cero, la aplicacién es

sobreyectiva, de modo que Im(det) = F,. Y también se puede observar que el nticleo de la aplicacién
es precisamente

ker(det) = {A € M, xp, = det(A) = 1} = SL(n,p).
Aplicando a det el teorema del homomorfismo, deducimos que

ker(det) Im(det).
Y con lo que sabemos sobre el nticleo y la imagen de det, se puede escribir precisamente como
GL(n,p) o s
SL(n,p) ¥
Por tanto, en cuestién de cardinalidad, se llega a
GLILD| _ e
|SL(n,p)l "7

donde despejando |SL(n,p)| se confirma la expresién para el orden de tal grupo que tenfamos en el
enunciado.
|
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Notemos que la proposicién previa nos asegura que SL(n,p) tampoco es un p-grupo. Sin embargo,
todo este estudio si tiene cabida en el texto, y el sentido nos lo da la siguiente seccién.

5.2. UT(n,p), un p-grupo de matrices triangulares dentro de SL(n,p)

Entre las matrices, aquellas triangulares suelen ser de interés, puesto que es més sencillo trabajar
con ellas. Por ejemplo, en la rama de numérico se suelen aprovechar para descomposiciones por el
ahorro computacional que permiten.

En este texto vamos a quedarnos con el grupo que denotaremos

(UT(n,p),-),

constituido por el conjunto UT'(n,p) de matrices triangulares superiores con diagonal de unos, de
tamano n X n y entradas en I, es decir,

1 a2 a1z ... QA1n
0 1 ass3 ... aon

UT(n,p) = € Mysn(Fp) 2,

]
(an)
=
Q
w
3

o 0 o0 ... 1
y la operacién producto usual de matrices.

Recuérdese que el producto de matrices es no conmutativo, y ndtese que si n > 3 este caso no es
distinto.

Observemos también que las matrices de este grupo tienen todas determinante 1, de modo que
(UT(n,p),-) es un subgrupo de (SL(n,p),-), y por tanto también de (GL(n,p),-). Ademas, el orden
de (UT(n,p),-) es precisamente

n(n—1)

\UT(n,p)| =p™ 2

Entonces, este grupo (UT'(n,p),-) si es un p-grupo, que ademds es no conmutativo si n > 3. Este
hecho nos confirma que, a pesar de que ni GL(n,p), ni SL(n,p) son p-grupos, siempre se puede
encontrar un subgrupo suyo que si lo es.

En las siguientes secciones aportaremos mas informacion respecto a este p-grupo.

5.3. Exponente en UT(n,p)

Por la informacién curiosa que aporta sobre la estructura interna de los grupos y las simplificaciones
que permitirdan después en las operaciones que nos requerirdn algunos ejemplos, vamos a comenzar
especificando algunos resultados que ligan con el concepto de exponente.

Lema 51. Si p > 3, entonces todo elemento distinto del neutro en UT'(3,p) tiene orden p. Es decir,
el exponente del grupo es p.

Demostracién. Tomamos una matriz M cualquiera de UT'(3, p) distinta de la identidad,

M:

S O =
o = 2

b
c )
1
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y comprobaremos que multiplicancandola por si misma, es a la p-ésima potencia la primera vez que
llegamos a la matriz identidad. Notése que:

1 2a 2b+ac
M2 =10 1 2
0 0 1

1 3a 3b+ 3ac
M2=10 1 3c
0 0 1

1 4a 4b+ 6ac
M*=|0 1 de
0 0 1

1

MP=10 1 5¢

5a 5b+ 10ac>

0 0 1

Podemos observar que la recurrencia que se deduce para el cdlculo de la j-ésima potencia para cada
7 € N es precisamente:
{ 1 ja jb+ (%) ac
M =10 1 je
0 0 1

Notemos que el orden de M no puede ser estrictamente menor que p, porque como al menos una
de las varibles a, b o ¢ ha de ser no nula para que M no sea la identidad, se tiene que al menos ja # 0,
0 jb# 0, 0 jc # 0 para j < p recordando que estamos trabajando en %.

Para asegurar que el orden es realmente p, confirmemos que pa, pcy pb+ (g) ac son cero. Ahora
p) _ p(p=1)

bien, es inmediato que pa = pb = pc = 0. Y como (2 5— es multiplo de p, también se anula

(5)ac.

Hemos comprobado entonces lo que necesitdbamos y podemos asegurar que todos los elementos
de UT(3,p) son de orden p.
Ademas, el exponente de UT(3,p) es p por la propia definicién de exponente (definicién .
|

Generalicemos el lema anterior a una condicién que relacione el tamafio de las matrices para
cualquier n con el orden del cuerpo en el que tienen las entradas. La naturaleza del resultado es la
misma y por tanto el modus operandi también. Sin embargo, la detallaré porque las herramientas
técnicas son distintas, aportando una bonita mezcla de combinatoria y algebra bésica.

Proposicién 52. Sea UT(n,p) con p > n. Entonces todo elemento distinto del neutro tiene orden p
y por tanto se trata de un grupo de exponente p.

Demostracién. Sea A € UT'(n,p) distinta de la identidad. Entonces A = I + N siendo I la matriz
identidad y N triangular superior estricta no nula.
En esta ocasién recurriremos al binomio de Newton,

" m
(I+N) +k§::1(k>

Noétese que (TIZ) = k;'(lek)" y se puede ver que si m = p, entonces (TIZ) es multiplo de p para
0 < k < p. Ademas, las matrices triangulares estrictamente superiores de tamano n son nilpotentes, y
N"™ = 0. As{ pues, como p > n también NP =0 . De modo que es AP = 1.
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Veamos ahora que p es el primer natural para el que esto sucede. Asegurémoslo razonando por
reduccion al absurdo suponiendo que existe j < p tal que A7 = 1.
En esta situaciéon tenemos que

T=A=(I+N)y =1+ G)z\u <‘;>N2+ (;>N3+--'+ (jil>Nj—1+Nj,

o= ("\N+ (2 )N24+ (2 N3+ () NI N
1 2 3 j—1

Sacando factor comtun N, esto se ve como

oo (1 () (s (7 )wre o),

donde notemos que la expresiéon matricial del paréntesis ha de ser invertible. Esto es porque el producto
de matrices estrictamente superiores es estrictamente superior, de modo que el primer sumando es el
unico que interviene en la diagonal y nos permite conocer facilmente que su determinante es ({)n = 4",
que no es nulo porque 0 < 7 < py n < p. Que una matriz sea invertible equivale a que sea regular por

la derecha, lo cual entra en contradiccién con que N no es nula.

equivalentemente,

Por 1ultimo, nos centramos en los 2-grupos. Nétese que la proposicién previa no entra en conflicto
con la siguiente.

Proposicién 53. Sea G un 2-grupo en el que todo elemento distinto del neutro tiene orden 2 (grupo
de exponente 2). Entonces G es un grupo conmutativo.

Demostracién. Deseamos ver que dados a,b € G entonces ab = ba. Nétese que por ser un grupo,
ab € G. Por ser todos los elementos de orden dos, en particular (ab)? = 1. Es decir, abab = 1. Ademss,
que cada elemento sea de orden dos, nos aporta que el inverso de cada elemento es él mismo. Entonces,
si multiplicamos en ambos lados de la igualdad anterior por a por la izquierda y por b por la derecha,
se sigue que ba = ab. Justo lo que desedbamos probar.

Recordando la definicién [26] esto nos garantiza que simplemente con ser 2-grupo de exponente 2
se cumple la condicién de conmutatividad y por tanto es un grupo elemental, que ya afirmamos que

es isomorfo al grupo % X % X oo X % dotado de la operacién suma.

5.4. Subgrupos de UT(n,p)

La mayor parte de esta seccion se dedicard a dar ejemplos. Sin embargo, el primer resultado se
centra en garantizar la relacién de isomorfia entre grupos con matrices de distintos tamanos sobre el
mismo cuerpo. El motivo es que esto nos permite conocer directamente subgrupos que son p-grupos
para casos de grupos de orden mayor, lo que puede ser ttil al estudiar la estructura de grupos mas
grandes.

Lema 54. Si n < m se tiene que UT'(n,p) es isomorfo a un subgrupo de UT(m, p)

No lo demostraremos, pero podemos poner un ejemplo cuando n = 3 y m = 4 que ilustra claramente
un modo constructivo de proceder. Basta con definir el isomorfismo siguiente:

i:UT3,p) — UT(4,p)

1 a ¢ 1 a ¢ O
01 b — 0150
00 1 0 01 0

0 0 01
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Ahora ya si pasamos a los ejemplos. Cabe remarcar primero que los grupos de UT(n,p) tienen
muchos subgrupos que son p-grupos.

Expongamos algunos ejemplos curiosos partiendo del grupo UT'(4,p). Consideraremos casos con
p > 4, ya que por el lema [52] conocemos que el exponente de estos subgrupos es p. Como adelantamos
al introducir la seccion previa, esto simplificard partes tediosas y poco interesantes del estudio de estos
ejemplos.

1 a b ¢ 1 0 0 a
01 0 d 01 b ¢
Hl— 00 1 e GUT(4,p) Hg— 00 1 d 6UT(4,p)
L \0 0 0 1 ) 0 0 0 1
1 a 0 b Nétese que:
010 ¢ |Hy| = p°
H2=91¢0 0 1 af| VTP |Hy| = p*
000 1 |Hs| = p*.

La matriz identidad pertenece evidentemente a todos los conjuntos. Asi pues, para asegurar que
realmente son subgrupos es suficiente con ver que dadas dos matrices cualesquiera en el conjunto, su
producto continua siendo una matriz del conjunto. Como es una sencilla comprobacién ver que cada
Hy, Hy, H3 es cerrado para el producto, no lo detallaremos.

Notese que ver la clausura para el producto es suficiente, porque en particular esto obliga a que
las potencias de un elemento estén en el conjunto, y como el exponente es p tenemos garantizada la
pertenencia del inverso al conjunto.

Ademsds, aunque gracias a la proposicién ya sabemos que si p > 5 el exponente es p y hemos
contado con las ventajas que esto ofrece, por reafirmar el interés que puede tener la manera de trabajar
del lema noétese que es sencillo asegurar que el orden de cualquier elemento es p si se conoce la
forma de la j-ésima potencia.

1 a b c
. 01 0d .
Tomemos una matriz M = 00 1 e € Hp \ I y calculemos algunas potencias:
0 0 01

1 2a 2b 2c+ ad+ be 1 4a 4b 4c+ 6ad + 6be
s> |0 1 0 2d 4 (0 1 0 4d
M= 0 0 1 2e M= 0 0 1 4e
0O 0 O 1 0O 0 O 1
1 3a 3b 3c+ 3ad+ 3be 1 5a 5b 5¢+ 10ad + 10be
0O 1 0 3d 0O 1 0 5d
3 _ 5 _
M= 0 0 1 3e M= 0O 0 1 5e
0O 0 O 1 0O 0 O 1

Esto nos permite reconocer la recurrencia para la j-ésima potencia,

1 ja jb je+ (3)ad+ (})be
;o 1 0 jd
Mi=10 0 1 je ’
00 0 1
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y argumentando analogamente al lema [51] se concluye de igual forma que el exponente es p.

Exponemos también algunos ejemplos partiendo del grupo UT'(5,p) con p > 5, que nos permite
dar subgrupos de mayor orden manteniendo que p sea el exponente del grupo:

(/1 a b 0 c 1 a b ¢ d
01000 010ce f
Bi={|00 10 d|euresy B;={|0 0 1 0 g|eUT®,p)
0001 e 0001 h
00001 ) 0000 1

1 a b ¢ d

0100 e Noétese que:
Bo={|0o 0 10 f|ecUurey 1By = p°

0001y |Ba| = p’

00001 | B3| = p®.

Por razonamientos anélogos a los realizados para los ejemplos de UT(4, p), para asegurar que real-
mente son subgrupos basta ver que son conjuntos cerrados para la operacién. Tampoco lo detallaremos,
porque comprobar que cada Bi, By, Bs es cerrado para el producto es sencillo.

Nétese que, como hemos ilustrado, esta es una manera bastante mécanica de trabajar para construir
gran cantidad de p-grupos. De todos modos, obsérvese que no hemos asegurado en ningin momento
que no nos conduzcan a grupos no isomorfos. No hay mayor problema, es parte de lo que augurdbamos
en la introduccidn, se puede llegar al mismo lugar por varios caminos.

5.5. El grupo de Heisenberg

Dentro de estos grupos de matrices UT'(n, p) con el producto matricial usual, hacemos una mencién
especial a

H, =UT(3,p) = € Msy3(F)p)

S O =
o = Q2
_ S0

A este grupo (H,, -) de orden p? se le denota de manera especial y se le llama grupo de Heisenberg
en honor al fisico Werner Heisenberg, ya que esta estructura estd estrechamente relacionada con la
mecanica cuantica a la que él se dedicaba.

Para este texto el caso de interés es el discreto por ser el que liga con los p-grupos, pero realmente
en fisica el que tiene mas importancia es el caso continuo con coeficientes en R. Aun asi, el estudio de
unos invita al estudio de los otros y por su peso en la ciencia el grupo de Heisenberg merece destacarse,
ademads de que nos serd de utilidad en capitulos posteriores.

Ya hemos adelantado en la seccion que si p > 3 el exponente de H, es p, y cerraremos el
contenido sobre este grupo describiendo su centro:

1 0 c
Z(Hp) =Z(UT(3,p)) = 01 0] € f)ﬁng(IF'p)
0 0 1
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5.6. Otro ejemplo de producto semidirecto

En esta seccién mezclaremos las ideas propias de este capitulo con las del capitulo @] Vamos a
definir un producto semidirecto
(&) =%
-— d’ e [ ] .
(3) (3)

3
Notese que en esta situacién el homomorfismo ¢ va de % a Aut <<(§Z)> ), y recuérdese que los

3
automorfismos de (%) se pueden escribir como matrices 3 x 3. De este modo la operacién de la

pareja que forma el producto semidirecto se pude definir de la siguiente forma:
b

1 10
((a1,a2,a3),b) ® ((c1,¢2,¢3),d) = | (a1,a2,a3) + (c1,¢2,¢3) |0 1 1| ,b+d
0 0 1

Con la notaciéon que hemos estado utilizando para las cuestiones sobre el producto semidirecto se
identifica claramente que

siendo ¢y el homomorfismo
Z\° Z\°
o (5) — (&)

1 1
(a1,a2,a3) — (ai,a2,a3) [0 1
00

== O

Obsérvese que en el caso b = 0 tenemos el homomorfismo identidad.
Notése que esta misma construccién es valida para cada primo p > 3.

Ademss, la construccion previa también puede generalizarse a otras dimensiones. Si p es un primo
7
tal que p > 5, entonces se puede construir el producto semidirecto

(&) )

considerando la operacion

1 1 0 0

01 10
((a17a27a37a4)7b)®((017627C3ac4)ad) = (a17a27a37a4)+(61762ac3764) 00 1 1 7b+d

00 0 1

Remarcamos el interés de esta seccién por la manera en la que permite fusionar dos herramientas
distintas para la construccion de p-grupos.
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7
")

5.7. p-grupos de matrices sobre (

Esta seccion es algo mas delicada porque hasta ahora hemos trabajado con cuerpos, pero (;Ln)
solamente es un anillo, de modo que hay que ser cuidadosos con las limitaciones que impone.

Si consideramos el conjunto

TZ{(lJBap l17> ;ae{o,l,_..,p—l},bE(pZé)}

con el producto usual de matrices obtenemos un p-grupo de orden p>.

En T la operacion de dos elementos resulta

<1—{E)ap 117> <1+Oap f>:<1+(a0+oz)p (1+a11))ﬁ+b>.

Recordemos que en (pZ—Q) se tiene que p? = 0. Precisamente por ello para cada a,« € {0,1,...,p—1},

se tiene que (1 +ap)(1+ ap) =1+ (a+ a)p + aap? =1+ (a + a)p.

Remarcamos la importancia de tener cuidado con los inversos, una de esas limitaciones que impone
no tener todas las ventajas de trabajar con cuerpos. En este caso, para cada a € {0,1,...,p — 1}, se
obtiene que (1+ap)(1—ap) = 1—a?p? = 1. Esto es, paracadaa € {0,1,...,p—1}, (1+ap) ™' =1—ap
en %, donde —ap = (p — a)p .

Ademss, es interesante reconocer que este grupo es isomorfo a nuestro conocido (pZ—2) b %.

Para demostrarlo basta con definir el isomorfismo adecuado.

Concretamente, si consideramos la apliacion

p: T — —< X
l+ap b
(157 1) — e

asegurar la isomorfia es casi inmediato.
La sobreyectividad es evidente, y por cardinalidad la biyectividad queda garantizada. Ademas, es
simplemente cuestion de operar el deducir que

(p<1t)ap l;)@<1+0ap f):(b+(1+ap)ﬂ,a+a)

Yy que

<1+ (a0+ a)p (1—|—a]17)5+b> = (b+ (14 ap)B,a+ o),

asegurando que ¢ es homomorfismo.

De una manera similar, tomando en el conjunto

} 1+ap d e 7
T = 0 1+bp f ra,byce{0,1,...,p—1},d,e, f € —5
0 0 1+cp (r?)
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con el producto usual de matrices obtenemos un p-grupo de orden p°.

En este caso podemos llegar a otra conclusién intersante, y es que hemos llegado a un grupo

que tiene como subgrupo a UT (3, (pZ—Q)), una generalizaciéon del mismo concepto que el grupo de

Heisenberg, pero ahora para algo mas alla del cuerpo finito de p elementos.

HENAR MARTIN MARTIN



Capitulo 6

Sobre la clasificacion de p-grupos finitos

En este capitulo hablaremos a titulo informativo sobre la evolucién en la clasificacion de los p-
grupos finitos. No cabe duda de que se han dado grandes pasos, pero también es evidente que queda
mucho camino.

En los preliminares del capitulo [2] ya obtuvimos una informacién muy intersante sobre los grupos
de orden p? gracias a la proposicién que nos garantizaba que todos eran abelianos. Una informa-
ciéon que quedaba muy bien complementada en el capitulo [3) donde detallamos la existencia de una
clasificacién de los p-grupos finitos abelianos. Ese capitulo cerraba de manera precisa una parte muy
interesante, nos permitia el control del caso conmutativo.

Con los ejemplos de los capitulos siguientes se aportaron nuevos casos que se salian de la conforta-
ble zona de los grupos abelianos, pero podemos notar que por muchos ejemplos que dimos, no hemos
aportado una clasificacién cerrada.

El motivo de ello es, precisamente, el gran camino que ain queda en la clasificacién de los p-grupos
finitos y que se sale de los objetivos de este texto. A lo largo de los anos, ha habido ciertos avances
en la clasificacién de los grupos de orden p” cuando n es pequeno, pero la tarea se ha ido volviendo
progresivamente mas dificil conforme aumenta el valor del exponente. El primer paso importante en
este objetivo ocurrié en 1882, cuando el matematico aleman Eugen Netto logrd clasificar los grupos
de orden p?. Fue el primer intento serio de avanzar en este campo. Apenas un afo después, en 1883,
un grupo de matematicos, compuesto por Cole y Glover, Holder y Young, consiguié avanzar en la
clasificacién de los grupos de orden p?, y mas tarde los dos tltimos continuaron trabajando y obtuvie-
ron resultados en la clasificacién de los grupos de orden p*. Sin embargo, después de estos primeros
avances, pasaron cinco anos hasta que, en 1898, el matematico Bagnera logré dar un gran paso al
clasificar los grupos de orden p° [I]. A partir de este momento, el ritmo de los avances disminuyé
considerablemente. Fue necesario esperar hasta el afio 2004, cuando, después de varios intentos infruc-
tuosos, un equipo de matemaéticos formado por Newman, O’Brien y Vaughan-Lee, finalmente logré la
clasificacién de los grupos de orden p° [9]. Este logro se considerd un avance significativo, y a estos dos
dltimos matematicos también se les debe el mérito de haber logrado clasificar los grupos de orden p”
[11], en 2005, solo un ano més tarde. Desde entonces, han transcurrido ya 20 afios, y aunque no se han
producido avances tan rapidos ni tan significativos como en el pasado, la clasificacién de los p-grupos
finitos sigue siendo un area activa de investigacién. En la actualidad, incluso los avances alcanzados en
la clasificacién de aquellos de orden pequefio se estan incorporando a bases de datos computacionales
especializadas.

Por todo el trabajo que ha llevado detras y el interés que tiene, incluimos a continuacién una tabla
que muestra el nimero de grupos que hay, salvo isomorfismo, de orden p" para n < 5:
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p |23 pP=5

pl|1]1 1

P2l 2|2 2

PPl 5|5 5

pt 14|15 15

p> |51 |67 | 2p+61 +2ged(p —1,3) +ged(p — 1,4)

Hemos adelantado que también se conocen los datos para n = 6 y n = 7, asi que los incluimos
también. Como era de esperar, las expresiones se complican en cuanto crece el exponente n del orden
a estudiar p”, y por ello los casos n =6 y n = 7 los listamos:

= Caso pb:

e Existen 267 grupos de orden 26
e Existen 504 grupos de orden 3°.

e Para p > 5, el ntimero de grupos de orden p® viene dado por
3p® 4 39p + 344 + 24 ged(p — 1,3) + 11 ged(p — 1,4) + 2ged(p — 1,5).
= Caso p”:

Existen 2328 grupos de orden 27

Existen 9310 grupos de orden 37.
Existen 34297 grupos de orden 5°.

Para p > 5, el ntimero de grupos de orden p’ viene dado por

3p° + 12p* + 44p> + 170p? + 707p + 2455
+(4p® + 44p + 291) ged(p — 1,3) + (p* + 19p + 135) ged(p — 1,4)
+Bp+31)ged(p—1,5) +4ged(p—1,7) + 5ged(p — 1,8)
+gcd(p — 1,9).
Dar expresiones cerradas y exactas de la cantidad de grupos de cada orden es, como se puede

notar, terriblemente costoso. Sin embargo, ya en 1965 Charles C. Sims [4] hall una aproximacion al
numero de grupos de orden p™ para cualquier primo p y natural n:

o)

Destacamos que en este trabajo hemos aportado una cantidad ingente de p-grupos que avalan tal
crecimiento.

6.1. Grupos de orden 2"

Como hemos podido observar con los datos previos, la cantidad de grupos de orden p™ sigue una
regla independiente cuando p = 2. En los iltimos afios no ha habido avances para p génerico, sin
embargo en el caso de p = 2 si se ha cerrado la clasificacion para algunas potencias més. Gracias de
nuevo a O’Brien se determinaron los 56092 grupos de orden 2% [I0], y su colaboracién con Besche y
Eick demostré que de orden 2% hay 10494213 grupos [2]. Ellos mismos demostraron que de orden 20
hay 49487367289 grupos no isomorfos.
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Recogemos en la siguiente tabla todos los datos conocidos:

G| [1]2|4[8]16]32| 64 | 128 | 256 | 512 | 1024
Ntmero de grupos | 1| 1|2 ] 5| 14 | 51 | 267 | 2328 | 56092 | 10494213 | 49487367289

Se deconoce el niimero de grupos que hay de orden 21 = 2048, pero gracias al resultado de Charles
C. Sims [4] si que se sabe que el niimero de grupos de orden 2" se aproxima a

o)

6.2. Grupos de orden 3"

También se observa que el caso para p = 3 sigue, como para p = 2, sus propias reglas. Como
venimos remarcando, segun se incrementa el orden el trabajo es mas costoso. Sin embargo, como bien
refleja [OEIS] es conocido el nimero de grupos no isomorfos cuyos ordenes son potencias de 3 hasta
3% = 19683. La siguiente tabla recoge esos datos:

G| [1]3]9]27]81[243[ 7292187 | 6561 | 19683
Ntimero de grupos |1 [ 1|2 | 5 [ 15| 67 | 504 | 9310 | 1396077 | 5937876645

De hecho, esta seccién estd ampliamente motivada por ese ultimo descubrimiento, del niimero de
grupos no isomorfos de orden 3?, ya que la clasificacién de los grupos de orden 3? es uno de los més
novedosos avances en el campo. De este logro es responsable David Burrel, que en 2023 mostré que
hay 5937876645 grupos de tal orden [3].

6.3. Grupos de orden p* con p > 3

Ya se han presentado los 5 grupos que existen, salvo isomorfismo, de orden p? cuando p > 3. Re-
capitularemos ahora todos ellos, pues es una buena manera de reafirmar el interés de las herramientas
que hemos ido describiendo.

En el capitulo [3| confirmamos que hay 3 posibles grupos abelianos no isomorfos de orden p?, y son:

Z Z Z Z Z Z

— — X, ¥V — X -—~X-—.
@) @) () ®) ()  (p)
Después, en el capitulo 4] con la potente aportacion que supone el producto semidirecto para la
construccién de nuevos grupos mostramos la existencia del grupo no conmutativo

7 Z
— X —.
2
®*) ()
Dimos todos los pasos necesarios para llegar a confirmar los requisitos que nos intersaban en la pro-
posicion asegurando entonces que es no conmutativo de orden p.

Por tltimo, el quinto grupo de orden p? protagonizé una seccién completa, la seccién sobre el
grupo de Heisemberg

1 a c
H, =UT(3,p) = 0 1 b)) €Msxs(Fp)
0 0 1
Observacion. Notese que la exigencia de p > 3 para poder presentar los 5 grupos de la manera

elegida radica en que la construccién matricial no aporta nada nuevo cuando p = 2, ya que Hy =
UT(3,2) es conmutativo.
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6.4. Grupos de orden 8

Esta seccién es importante para cerrar el estudio completo de los grupos de orden p3. Como aca-
bamos de mencionar, el caso p = 2 hay que abordarlo de manera algo distinta.

Sin embargo, para los grupos abelianos no cambia nada, es decir, tenemos:

Z Z Z Z Z Z
— X — — X — X —

® @We T wre e

También la construccién del producto semidirecto

Z y Z
®*) ()
sigue siendo valida para p = 2.
Sin embargo, como bien adelantamos,
1 a c
Hy = UT(3, 2) = 0 1 b)) e 9R3X3(IE‘2) s
0 01

es abeliano. De hecho, es isomorfo a % X %. Por tanto no lo consideramos.

Pero, si disponemos de otro grupo no conmutativo de orden 8: el grupo cuaternio de Hamilton.
Este grupo, debido al matemético dublinés que le dio el nombre en 1843, se descibe como el conjunto

Qs ={1,i,5,k,—1,—i,—j,—k}
con la operacién producto y las relaciones
w jj=—ji=k
w —tk=ki=3j
w jk=—kj=1

Este grupo es bastante peculiar y bien conocido. Curiosamente, solo puede ser definido en el
contexto de 2-grupos. Tiene propiedades intersantes, como que todos sus subgrupos son normales,
algo que se dice, precisamente, ser hamiltoniano.

Con el grupo cuaternio cerramos la seccion, asi como el iltimo hilo suelto de la clasificacién de los
grupos de orden p3.
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Capitulo 7

Grupos extraespeciales

Este capitulo entra en un tema bastante especializado de la teoria de grupos y supone un buen
cierre del trabajo, recopilando algunos de los puntos que hemos ido exponiendo.

Definicién 55. Un grupo extraespecial es un p-grupo G tal que:
= Su centro Z(G) es un grupo ciclico de orden p.

» El cociente G/Z(G) es un p-grupo abeliano elemental no trivial.

Notese que no hay grupos extraespeciales de orden p porque incumplen la segunda condicién de
la definicién previa. Tampoco hay grupos extraespeciales de orden p? por la proposicién ya que al
ser abelianos su centro es todo el grupo y por tanto incumplen la primera condicién de la definicion
de extraespecial.

Encontrar los grupos extraespeciales de orden p? es sencillo con todo el material visto, precisamen-
te son los no abelianos. De hecho son los tinicos por una argumentacién similar a la de los grupos de
orden p?: en los grupos conmutativos su centro coincide con todo el grupo, de modo que la primera
condicién para ser extraespecial es imposible que la cumplan.

Con lo que hemos trabajado ya podemos verificar que los no abelianos de orden p3 si cumplen
ambas condiciones. Recordemos que por la proposicion [41| sabemos que el centro de cualquier grupo
G no conmutativo de orden p? tiene orden p. Esto también garantiza que |G/Z(G)| = % = p?. Por
la proposicién cualquier grupo con p? elementos es abeliano. Ademés, G/Z(G) ha de ser elemental,
porque solo puede ser (pz—2) o) % X (%), y si fuera ciclico entonces por la proposicion [12]el grupo deberia

ser abeliano, en contra de nuestras condiciones.

De este modo y gracias a las secciones y aseguramos que:

= Sip > 3, los grupos extraespeciales de orden p3 son % X % y el grupo de Heisemberg H, =

UT(3,p).
= Si p =2, los grupos extraespeciales de orden p> son (z%) X % y el grupo cuaternio de Hamilton.

La obtencién de los grupos extraespeciales cuando la potencia de p es mayor que tres se logra
definiendo otra construccion: el producto central. Entramos en detalles en la siguiente seccién.
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7.1. Producto central

El producto central es una construccién que guarda cierta relaciéon con el producto directo, y
considerando la importancia que ha tenido en esta memoria la vuelta de tuerca que le da el producto
semidirecto, su definicién ya no presentard grandes dificultades.

Hay dos posibilidades para el producto central, pero concretamente nos interesa la definicién del
producto central externo.

Definicién 56. Dados dos grupos Gy H con el mismo centro Z = Z(G) = Z(H) definimos el
conjunto

J={(a,b):a,b€ Z,ab=1} = {(a,a™') :a € Z}.
Entonces, decimos que el producto central externo de G y H es

GxH
H = .
G® 7

Observacion. No hay convenio para la notacion del producto externo, pero aqui consideraremos ®.

Nétese que siendo Z = Z(G) = Z(H), el centro de G x H es Z x Z. Ademas, al ser J un subgrupo
de Z x Z tenemos que J es normal, lo que garantiza la correcion de la definicién

Respecto a cardinalidad tenemos que si |Z| = m, entonces |Z x Z| = m? y que |J| = m.

Es mas,
X Z X7

J J
Volviendo al punto por el que nos interesaba el producto central, para la construcciéon de grupos
extraespeciales de orden p" con n > 3, demostramos la siguiente proposicién:

~7 vy Z(GRH) =7 =7Z(G)=Z(H).

Proposicién 57. El producto central de dos p-grupos extraespeciales es extraespecial.

Demostracién. Sean G y H dos grupos extraespeciales con el mismo centro Z = Z(G) = Z(H), el
cual es ciclico de orden p.
Veamos el cociente de G ® H por su centro:

GoH @H GxH G H

2GeH) B2~ ZxZ 77

donde la primera relacién de isomorfia es consecuencia del segundo teorema de isomorfia.
Noétese que la expresion a la que hemos llegado es ya un producto de dos p-grupos abelianos

elementales, luego
G H

Z(G® H)
es también un p-grupo abeliano elemental.
|

Asi pues, finalizaremos el trabajo detallando algunos ejemplos de construccién de grupos extraes-
peciales de orden p™ con n > 3. Sin embargo, antes cabe mencionar el siguiente resultado:

Proposicion 58. Si G es un grupo extraespecial de orden p™ con n > 3, entonces puede escribirse
como producto central de grupos extraespeciales de orden p3.
En particular, el orden de tal G serd p>™*! para algiin m natural.

La demostracién no se detallara porque se sale de la linea de trabajo que sigue esta memoria, pero
se puede consultar en la referencia bibiogréfica [13]. Aun asi, es curioso concretar que, dado un natural
n, hay exactamente 2 grupos extraespeciales de orden 2n + 1, de modo que a continuacion resumimos
cuales son. Noétese, que, como cabia esperar, se vuelve a distinguir entre el caso con p =2y p > 3:
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= p=>3:
e El producto central de n grupos extraespeciales de orden p® y exponente p.
En este caso el grupo resultante tiene también exponente p.

e El producto central de n grupos extraespeciales de orden p? con al menos un factor de
exponente p2.
En este caso el grupo resultante tiene exponente p?.

Ip:2:

e El producto central de n grupos extraespeciales de orden 8, siendo un nimero impar de
factores el grupo cuaternio de Hamilton.

e El producto central de n grupos extraespeciales de orden 8, siendo un niimero par de factores
el grupo cuaternio de Hamilton.

A continuacién ya si vamos a dar un ejemplo de como construir un grupo extraespecial de orden
p° basdndonos en el grupo de Heisenberg H, = UT'(3,p). Recordemos que su centro es

10
Z=2ZM,) =ZUT3,p) =4 |0 1 € M3 (Fp)
00

= OO0

Ahora, siguiendo la misma notacién que en la definicién el conjunto

1 0 ¢ 1 0 —c
J = 01 0),]/0 1 0 ccelF,
0 0 1 0 0 1
nos permite construir el producto central
H, x H
H,®H, = —2"—2
P ® J
Noétese que su orden es
H, x H p® - p3 5
‘Hp@Hp’:‘ pJ P = p :p

Se debe apreciar que este no es el tinico camino para construir grupos extraespeciales. Ya habiamos
construido un grupo isomorfo a este H, ® H,, anteriormente, el ejemplo H; de la paglna Recordamos
su definicién:

1 a b ¢
01 0 d

H1 = 00 1 e S UT(4,p)
0 0 0 1

Su exponente confirmamos que era p, y su centro es es sencillo de asegurar que es

Z(Hy) =

0
0
1 eUT(4,p) ¢,
0

SO O =
[ e )
— O OO

que tiene orden p.
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Podemos proseguir y conseguimos de esta forma grupos extraespeciales de orden p?"t!

p. Veamos el ejemplo de orden p’, ya construido en el ejemplo By de la pégina

y exponente

1 a b ¢ d
01 00 e
By = 0 01 0 f|leUT(5,p)
0001y
00001
En este caso también es facil ver que
1 00 0 d
01000
Z(By) = 0010 0feUT(5,p),,

00010
00000

lo que nos permite identificar un patrén que invita a declarar otro mecanismo para definir ciertos
p-grupos extraespeciales con herramientas presentadas previamente.
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