

FACULTAD DE CIENCIAS

TRABAJO FIN DE GRADO

Grado en Física

Influencia del medio urbano en la distribución de las variables meteorológicas

Autora: Paula Carnero Morán

Tutores: Isidro Alberto Pérez Bartolomé y María Angeles García Pérez

Año: 2025

Índice general

	Resu	ımen/A	bstract	2
1.	Intr	oducci	ón	4
	1.1.	Descri	pción de la isla urbana de calor	4
		1.1.1.	Definición y procesos que originan la isla urbana de calor	4
		1.1.2.	Escala de interacciones	5
		1.1.3.	Clasificación de las zonas climáticas locales y método de estudio de las islas de calor	6
		1.1.4.	Cambio climático y clima urbano	10
	1.2.		pción de la ciudad de Atenas	10
		1.2.1.	Atenas	10
		1.2.2.	Clima	11
		1.2.3.	Desarrollo y estructura urbana	12
		1.2.4.	Zonas climáticas locales de Atenas	13
	1.3.		Vos	15
		3		
2 .	Des		n experimental	16
	2.1.	Materi	al: EMO-1	16
	2.2.	Metod	ología	16
	2.3.	Clasifie	cación de Lamb en los tipos de tiempo sinópticos	17
	2.4.	Proceed	limiento de cálculos	18
3.	Res	ultados	S	20
	3.1.	Distrib	oución espacial de la temperatura	20
		3.1.1.	Temperatura media	20
	3.2.	Parám	etros estadísticos	25
	3.3.	Evolue	ción temporal de la UHI	26
	3.4.		de tiempos sinópticos	31
4.	Con	clusion	nes	37
Bi	bliog	rafía		39
Fig	guras	s y Tal	olas	42

Resumen

Las temperaturas tienden a ser más elevadas en las zonas urbanas en comparación con las zonas rurales, y este fenómeno es conocido como isla urbana de calor (UHI). En este trabajo analizamos la intensidad de la UHI en la ciudad de Atenas mediante datos del conjunto EMO-1 (European Meteorological Observations) para el periodo comprendido entre 1990 y 2022 y su relación con los tipos de tiempo de Lamb que se den.

Los resultados muestran que la UHI diurna presenta su mayor intensidad durante los meses de invierno, alcanzando valores promedio de 7,9 °C, aunque el resto de las estaciones presenta una intensidad similar. Durante las noches de invierno se da la mayor intensidad de la UHI, con una media de hasta 8,9 °C, y disminuye en los meses de verano. Durante todas las estaciones del año se verifica que la intensidad de la isla de calor es mayor durante la noche. Además, desde el año 2000 podemos ver un aumento de la UHI en cada mes del año, lo que evidencia la influencia de la urbanización y el cambio climático en la intensificación del fenómeno UHI en Atenas a lo largo de las últimas décadas.

Palabras clave: isla urbana de calor, Atenas, temperatura media, EMO-1, cambio climático urbano.

Abstract

Temperatures tend to be higher in urban areas compared to rural ones, and this phenomenon can be defined as the Urban Heat Island (UHI). In this study, we analyze the intensity of the UHI in the city of Athens using data from the EMO-1 (European Meteorological Observations) dataset for the period between 1990 and 2022, and its relationship with the Lamb weather types observed.

The results show that daytime UHI reaches its highest intensity during the winter months, with average values of up to 7.9 °C, although the other seasons show similar intensities. During winter nights, the UHI reaches its maximum intensity, with an average of up to 8.9 °C, and decreases in the summer months. Across all seasons, it is observed that UHI intensity is higher during the night. Furthermore, since the year 2000, an increase in UHI intensity can be seen in every month of the year, highlighting the influence of urbanization and climate change on the intensification of the UHI phenomenon in Athens over recent decades.

Keywords: urban heat island, Athens, average temperature, EMO-1, urban climate change.

Capítulo 1

Introducción

1.1. Descripción de la isla urbana de calor

1.1.1. Definición y procesos que originan la isla urbana de calor

La isla de calor urbano (UHI, por sus siglas en inglés) se manifiesta como un aumento de la temperatura en las áreas urbanas construidas en comparación con las áreas rurales circundantes. Esto se debe principalmente a la mayor proporción de energía solar incidente que es absorbida y almacenada por los materiales fabricados por el ser humano. El impacto directo de la UHI puede ser significativo tanto en las temperaturas diurnas como nocturnas. [25]

Las ciudades desde el punto de vista meteorológico pueden considerarse objetos pequeños en comparación con los sistemas de gran escala que influyen en el clima y el tiempo (océanos, continentes, cadenas montañosas, anticiclones y ciclones) y los sistemas locales (zonas costeras con brisas marinas/terrestres, bosques, características de montañas y valles, etc.). Sin embargo, su extensa modificación de las características superficiales y atmosféricas a escala local significa que las ciudades alteran casi todas las variables atmosféricas en su proximidad. Así, las ciudades influyen de manera significativa en el clima local, especialmente modificando e intensificando los fenómenos meteorológicos de alto impacto. Se pueden ver diferencias en las siguientes variables atmosféricas con respecto a las de las zonas rurales [16]:

- Temperaturas más cálidas: Las temperaturas del aire en las ciudades, especialmente por la noche y en condiciones anticiclónicas, pueden ser mucho más altas que en el campo, llegando a diferir hasta 10 °C en ciudades grandes. Estas diferencias constituyen la UHI. Este calor se extiende hacia una capa atmosférica de aproximadamente 1 km de profundidad y se transporta con el viento. Las temperaturas de la superficie también son típicamente más altas en comparación con las áreas rurales, salvo en ciudades con climas desérticos. Estas temperaturas superficiales más cálidas generan una isla de calor urbano superficial (SUHI).
- Vientos: En condiciones de vientos moderados o fuertes, las superficies urbanas ralentizan el viento y lo desvían ligeramente hacia la dirección del gradiente de presión. Esto puede generar áreas de convergencia y divergencia que provocan

movimientos verticales. En condiciones de viento ligero, la UHI induce un flujo de aire hacia la ciudad desde el campo. Este viento también puede hacer recircular las partículas contaminantes en suspensión.

• Nubes y precipitaciones: Los flujos de viento alterados y las circulaciones inducidas por las ciudades generan áreas de movimiento ascendente sobre ellas, lo que puede aumentar la cobertura nubosa y las precipitaciones, especialmente asociadas a eventos de precipitación convectiva en verano. Las ciudades también pueden dividir tormentas en dos alrededor de ellas. La convergencia del flujo y una capa límite urbana ligeramente más alta también pueden formar cúmulos de nubes y aumentar la cobertura nubosa durante el verano en grandes áreas urbanas.

1.1.2. Escala de interacciones

A continuación describiremos las relaciones entre las escalas espaciales y las redes climáticas, de mayor a menor extensión territorial. [20]

- Global ($> 10^8$ m): Red global de redes más pequeñas. Algunas aplicaciones son el estudio del cambio climático global o la calibración de satélites.
- Macroescala $(10^5 10^7 m)$: Redes de estaciones meteorológicas nacionales, ubicadas en todo el país, generalmente en áreas rurales. Se utilizan para examinar eventos sinópticos a nivel regional y nacional. Uno de sus propósitos principales es el pronóstico del tiempo nacional (ciclones extratropicales, vaguadas y crestas baroclínicas).
- Mesoescala (10⁴ − 10⁶ m): Áreas urbanas, periurbanas y rurales. Los eventos meteorológicos meso-escala son a menudo peligrosos y podrían pasar desapercibidos sin observaciones meteorológicas densamente espaciadas. Se utiliza para analizar tormentas eléctricas, ráfagas descendentes, líneas de chubascos, variaciones de temperatura sobre áreas urbanas y rurales o circulaciones oceánicas.
- Escala urbana $(10^4 10^5 m)$: tanto la microescala como la escala local dependen del clima de la ciudad en su conjunto, así como de la forma y tamaño de la metrópoli. Debido al gran tamaño del área metropolitana, las medidas de estaciones meteorológicas individuales no son representativas del conjunto total. A escala urbana, los fenómenos meteorológicos y la orografía de la zona determinan notablemente el clima urbano.
- Escala local (10² − 10⁴ m): estudia efectos de características menores del paisaje (parques, estanques, pequeñas características topográficas), barrios con tipos similares de desarrollo urbano (cobertura superficial, tamaño y espaciamiento de los edificios). Los monitores se ubican para ser representativos del vecindario (a una altura determinada, con cobertura superficial representativa). Esta escala puede utilizarse también para el estudio de las islas de calor urbana, variaciones con el uso del suelo, cobertura superficial, contaminación del aire o tornados.
- Microescala ($\leq 10^2 \, m$): se producen fenómenos micrometeorológicos que estan influenciados por las áreas urbanas y los elementos componentes de la zona

(edificios absorben la radiación solar, árboles que proyectan sombras sobre las superficies urbanas, carreteras, calles, patios, jardines). Algunos de los procesos atmosféricos y aplicaciones que tienen esta escala son los estudios de turbulencia y dispersión, impacto de los edificios y meteorología agrícola.

1.1.3. Clasificación de las zonas climáticas locales y método de estudio de las islas de calor

La modelización numérica se ha convertido en una herramienta útil para analizar detalladamente la meteorología urbana y diseñar servicios climáticos urbanos. Para simular el clima urbano, los modelos atmosféricos necesitan una representación adecuada de la influencia de la ciudad en los intercambios con la atmósfera superior. Esto se realiza utilizando Modelos de Capas Urbanas (Urban Canopy Models, UCMs). Estos UCMs son esquemas de superficie que buscan representar los intercambios de energía, agua y momento entre la superficie urbana y la atmósfera. A menudo se basan en una descripción simplificada de la forma tridimensional de la ciudad, por ejemplo, para la modelización a mesoescala, se utiliza con frecuencia la aproximación del cañón urbano.

Existen modelos de predicción meteorológica que cubren áreas a nivel nacional utilizando UCMs ya operativos. Actualmente es más común el uso de modelos atmosféricos en estudios de clima urbano, e incluso recientemente se han desarrollado modelos climáticos regionales y globales que integran UCMs.

Por tanto, se necesitan descripciones homogéneas y métodos estandarizados para producir parámetros urbanos a una resolución fina, generalmente de una o unas pocas manzanas urbanas. Existe una categorización general de cinco tipos principales de parámetros que son útiles para homogeneizar y clasificar las variables: [15]

Uso del suelo y cobertura del suelo:

Las heterogeneidades espaciales drásticas en el uso del suelo, como las que ocurren en ciudades costeras en condiciones de brisa marina, pueden influir significativamente en toda la capa límite sobre una ciudad en comparación con una ciudad continental. Por lo tanto, es esencial mapear la cobertura urbana, de vegetación y de agua, y este mapeo puede refinarse aún más según los requisitos del modelo.

Generalmente es imposible tener una descripción tan detallada para todos los parámetros de los UCMs en cualquier ciudad específica de investigación. Por lo tanto, se deben emplear mapas de cobertura terrestre. Los productos existentes de cobertura terrestre, generados automáticamente a partir de imágenes de teledetección, son de gran interés porque suelen identificar áreas urbanas. A mesoescala, la información mínima necesaria es tener al menos una clase llamada *urbana* dentro del mapa de cobertura terrestre y asignar valores uniformes a esta clase para todos los parámetros del modelo urbano a nivel global.

Parámetros morfológicos:

Los parámetros morfológicos permiten describir el aspecto tridimensional de la ciudad e influyen tanto en el intercambio de momento como en el intercambio radiativo, incluyendo el sombreado y las múltiples reflexiones entre edificios, lo que conduce a un atrapamiento de radiación infrarroja. Además, el carácter tridimensional de los edificios incrementa la cantidad de superficie que está en contacto

directo con la atmósfera. Estas características, junto con las propiedades térmicas de los materiales de construcción, favorecen el almacenamiento de calor dentro de la estructura urbana. Ambos aspectos son las principales razones físicas que conducen al desarrollo de la isla de calor urbano nocturna.

Los parámetros morfológicos relevantes incluyen la configuración tridimensional de los edificios, es decir, información sobre qué volúmenes de la cuadrícula están ocupados por estructuras construidas, incluyendo calles y puentes, así como de la configuración de superficies en términos de áreas impermeables y permeables.

Parámetros arquitectónicos:

Los parámetros arquitectónicos describen la manera en que se construyen los edificios. La elección de materiales y estructuras modifica la conducción de calor, mientras que la cubierta y las paredes influyen en el intercambio de calor con la atmósfera. Por lo tanto, estos factores pueden modificar significativamente la isla urbana de calor. Muchas estrategias de adaptación se basan en modificar estas características porque son relativamente fáciles de implementar, ya que se realizan a escala de edificio. Un ejemplo son los techos o paredes blancas, que reflejan la energía solar hacia el cielo. Muchas aldeas tradicionales alrededor del mar Mediterráneo están construidas de esta manera.

Dependiendo de si el aislamiento está en el interior o en el exterior, la energía total almacenada durante el día en la estructura del edificio será diferente y, por ende, también lo será la UHI. Los parámetros arquitectónicos incluyen materiales de construcción, espesor, conductividad térmica y capacidad calorífica de todas las paredes o de cada capa de estas, así como de los techos. La presencia de ventanas también es importante, ya que modifica el balance energético interno de los edificios y las posteriores emisiones de calor debido a la calefacción doméstica o el aire acondicionado. En resumen, los parámetros más importantes incluyen el albedo y emisividad de paredes y techos, propiedades térmicas y grosor de las capas de materiales que constituyen los techos y paredes, fracción de ventanas en las fachadas externas y las características térmicas de las ventanas.

Parámetros socioeconómicos y uso de los edificios:

Las actividades humanas en las ciudades generan emisiones directas de calor y vapor de agua hacia la atmósfera. La calefacción doméstica libera calor directamente a través de chimeneas y dentro de los edificios. Los sistemas de aire acondicionado extraen el calor del interior y lo liberan al exterior. El calor de combustión de los automóviles suele ser menor que el de los edificios, pero puede ser significativo en las inmediaciones de carreteras principales.

Los flujos de calor debido al tráfico y las actividades industriales deben especificarse, generalmente a través de inventarios de emisiones, aunque estos solo proporcionan estimaciones iniciales de las emisiones reales. El tráfico también puede influir en la temperatura de las carreteras o la turbulencia del aire generada por los vehículos. Estos procesos pueden ser parametrizados en modelos de cubiertas urbanas (UCMs) o estudiados en modelos a escala microscópica.

Parámetros más importantes incluyen la densidad de población, la fracción de cada uso en el edificio (por ejemplo, para describir patrones complejos como el

uso comercial en la planta baja y oficinas o apartamentos residenciales en los pisos superiores), los horarios de ocupación de los edificios durante el día, la noche y días festivos, el tipo de calefacción doméstica, la temperaturas objetivo de calefacción doméstica y del uso de aire acondicionado.

Vegetación urbana:

Las ciudades son entornos muy heterogéneos, compuestos por superficies artificiales y naturales. Se sabe que el suelo desnudo y la vegetación presentes en las ciudades influyen en el microclima urbano mediante diversos procesos físicos: enfriamiento del aire por retención de agua y evaporación del suelo desnudo; modificación del flujo de aire en los cañones urbanos en el caso de los árboles urbanos; disminución del flujo de calor emitido por edificios cubiertos con envolturas verdes. Sin embargo, la vegetación alta también puede tener un efecto adverso, ya que puede reducir la ventilación a nivel de la calle y aumentar las concentraciones de contaminantes cerca de la superficie.

Por lo tanto, considerar las superficies naturales y sus heterogeneidades espaciales en los UCMs permite una simulación más realista de las condiciones microclimáticas. Estos modelos requieren una descripción detallada de los sistemas de vegetación, lo que implica conocer al menos los siguientes parámetros: proporciones respectivas de suelo cubierto por suelo desnudo y por diferentes estratos de vegetación (herbáceo, arbustivo y arbóreo), así como de superficies de edificios cubiertas por envolturas verdes; las profundidades y texturas de las capas estructurales de los suelos urbanos y las características fisiológicas de la vegetación. Para el estrato arbóreo, es importante conocer el tipo de árbol y características geométricas, como altura del árbol, tamaño de la copa, forma y diámetro del tronco.

En la figura (1.1) se muestra la clasificación de las zonas climáticas locales (LCZ) realizada por Stewart y Oke [29].

Built types	Definition	Land cover types	Definition				
I. Compact high-rise	Dense mix of tall buildings to tens of stories. Few or no trees. Land cover mostly paved. Concrete, steel, stone, and glass construction materials.	A. Dense trees	Heavily wooded landscape of deciduous and/or evergreen trees. Land cover mostly pervious (low plants). Zone function is natural forest, tree cultivation, or urban park.				
2. Compact midrise	Dense mix of midrise buildings (3–9 stories). Few or no trees. Land cover mostly paved. Stone, brick, tile, and concrete construction materials.	B. Scattered trees	Lightly wooded landscape of deciduous and/or evergreen trees. Land cover mostly pervious (low plants). Zone function is natural forest, tree cultivation, or urban park.				
3. Compact low-rise	Dense mix of low-rise buildings (1–3 stories). Few or no trees. Land cover mostly paved. Stone, brick, tile, and concrete construction materials.	C. Bush, scrub	Open arrangement of bushes, shrubs, and short, woody trees. Land cover mostly pervious (bare soil or sand). Zone function is natural scrubland or agriculture.				
4. Open high-rise	Open arrangement of tall buildings to tens of stories. Abundance of pervious land cover (low plants, scattered trees). Concrete, steel, stone, and glass construction materials.	D. Low plants	Featureless landscape of grass or herbaceous plants/crops. Few or no trees. Zone function is natural grassland, agriculture, or urban park.				
5. Open midrise	Open arrangement of midrise buildings (3–9 stories). Abundance of pervious land cover (low plants, scattered trees). Concrete, steel, stone, and glass construction materials.	E. Bare rock or paved	Featureless landscape of rock or paved cover. Few or no trees or plants. Zone function is natural desert (rock) or urban transportation.				
6. Open low-rise	Open arrangement of low-rise buildings (1–3 stories). Abundance of pervious land cover (low plants, scattered trees). Wood, brick, stone, tile, and concrete construction materials.	F. Bare soil or sand	Featureless landscape of soil or sand cover. Few or no trees or plants. Zone function is natural desert or agriculture.				
7. Lightweight low-rise	Dense mix of single-story buildings. Few or no trees. Land cover mostly hard-packed. Lightweight construction materials (e.g., wood, thatch, corrugated metal).	G. Water	Large, open water bodies such as seas and lakes, or small bodies such as rivers, reservoirs, and lagoons.				
8. Large low-rise	Open arrangement of large low-rise buildings (1–3 stories). Few or no trees. Land cover mostly paved. Steel, concrete, metal, and stone construction materials.		ER PROPERTIES cover properties that change veather patterns, agricultural practices,				
9. Sparsely built	Sparse arrangement of small or medium-sized buildings in a natural setting. Abundance of pervious land	b. bare trees	Leafless deciduous trees (e.g., winter). Increased sky view factor. Reduced albedo.				
9996	cover (low plants, scattered trees).	s. snow cover	Snow cover >10 cm in depth. Low admittance. High albedo.				
10. Heavy industry	Low-rise and midrise industrial struc- tures (towers, tanks, stacks). Few or no trees. Land cover mostly paved	d. dry ground	Parched soil. Low admittance. Large Bowen ratio. Increased albedo.				
LEL	or hard-packed. Metal, steel, and concrete construction materials.	w. wet ground	Waterlogged soil. High admittance. Small Bowen ratio. Reduced albedo.				

Figura 1.1: Clasificación de las zonas climáticas locales (LCZ). Fuente: Stewart y Oke (2012) [29]

1.1.4. Cambio climático y clima urbano

Durante los últimos 65 años, ha habido un cambio sustancial en el clima global, y se anticipan cambios adicionales en el siglo XXI debido al calentamiento global.

Las consecuencias del calentamiento global están empeorando, la emisión de calor antropogénico está aumentando y las necesidades de refrigeración de las ciudades se elevan debido al aumento de las temperaturas vinculado al cambio climático. La urbanización rápida también incrementa la posibilidad de cambios en el uso del suelo, lo cual puede tener un gran impacto en el UHI. [11] Sin embargo, las ciudades pueden mitigar el efecto de isla de calor urbana, mejorar la habitabilidad y fomentar la movilidad peatonal. Muchas ciudades visionarias están adoptando diversas estrategias, como el desarrollo de espacios verdes y la integración de vegetación urbana para contrarrestar el efecto de isla de calor, así como la promoción del uso de superficies reflectantes y permeables. [5] Comprender la vulnerabilidad urbana es crucial para el control del cambio climático. Se prevé que las olas de calor se vuelvan más frecuentes, intensas y prolongadas en las ciudades que se están calentando debido al aumento de las temperaturas en la superficie y en el aire cercano.

1.2. Descripción de la ciudad de Atenas

1.2.1. Atenas

Atenas es la capital y el centro político, económico, marítimo y cultural de Grecia, además de uno de los mayores centros económicos del sudeste de Europa. Cuenta con un gran sector financiero y su puerto, El Pireo, es el mayor puerto de pasajeros y el quinto puerto de contenedores de Europa. Con una población cercana a los cuatro millones de habitantes, es la mayor conglomeración urbana de Grecia y una de las diez ciudades más grandes de la Unión Europea. La ciudad de Atenas es también la capital de la Unidad Regional de Atenas Central y de la región del Ática, con una superficie de 39 km² y una población de 996.283 habitantes.

El área urbana de Atenas se extiende más allá de los límites administrativos de su municipio, con una población de 3.041.131 (en 2021) en un área de 412 km², a lo largo de la llanura central de una cuenca que a menudo se denomina Cuenca del Ática.

La ciudad está delimitada por el monte Egaleo al oeste, el monte Parnitha al norte, el monte Pentélico al noreste, el monte Hymettus al este y el golfo Sarónico al suroeste. La zona industrial de Atenas se encuentra en la parte occidental de la cuenca (llanura de Thriassion), mientras que la llanura de Mesogeia domina la parte sureste de la península. [6]

Finalmente, el Area Metropolitana de Atenas se extiende por 2.928,717 km² dentro de la región del Ática e incluye un total de 58 municipios densamente poblados, que se extienden alrededor del Municipio de Atenas (el Centro de la Ciudad) en prácticamente todas las direcciones. Estos últimos están organizados en seis unidades regionales (Atenas del Norte, Atenas del Oeste, Atenas Central, Atenas del Sur, junto con Ática del Este y Ática del Oeste), habiendo alcanzado una población de 3.722.544 según los resultados preliminares del censo de 2021. Los municipios de Atenas y El Pireo sirven como los dos centros metropolitanos del Área Metropolitana de Atenas. En la figura (1.2) se muestra la evolución de la población de Atenas hasta el año 2024.

Población de Atenas, Grecia

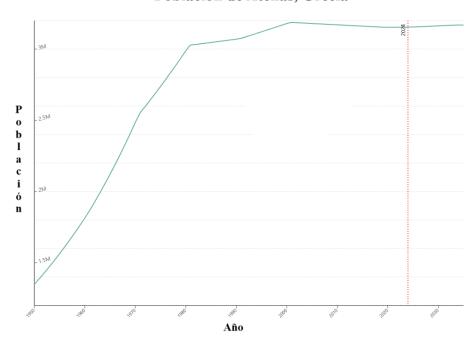


Figura 1.2: Población en Atenas [24]

1.2.2. Clima

Grecia está situada en la parte más sudoriental de Europa, confinada entre los paralelos 34 y 42 N, con una extensión meridional de 19 a 28 E y limitando con el mar Egeo, el mar Jónico y el mar Mediterráneo oriental.

El clima de Grecia es típicamente mediterráneo, con inviernos suaves y lluviosos, veranos cálidos y secos y, en general, una gran cantidad de horas de sol durante casi todo el año. En varias regiones de Grecia se encuentran una gran variedad de subtipos climáticos, siempre dentro del marco del clima mediterráneo. Esto se debe a la influencia de la topografía (grandes cadenas montañosas a lo largo de la parte central y otros cuerpos montañosos) en el aire que proviene de las fuentes de humedad del mar Mediterráneo central.

Durante la estación invernal, Atenas experimenta una mayor cantidad de precipitaciones en comparación con los meses de verano. La clasificación climática Köppen-Geiger identifica este patrón meteorológico específico como perteneciente a la categoría de Csa. La temperatura media anual es de 17,5 °C, y la precipitación anual es al rededor de 378 mm. En la figura (1.3) se muestra el climograma de la ciudad de Atenas.

La precipitación más baja es en agosto, con un promedio de 5 mm. Por término medio, la mayor cantidad de precipitaciones se produce durante diciembre con un valor medio de 60 mm. Entre los meses más secos y más húmedos, la diferencia en las precipitaciones es 55 mm. La fluctuación de las temperaturas a lo largo de las estaciones es de 19,5 °C. El mes con mayor humedad relativa es diciembre y el mes con menor humedad relativa es julio.

Por otro lado, otro rasgo característico del clima en Atenas son los vientos etesios. Los vientos etesios son fuertes vientos del sector norte de la atmósfera baja que soplan

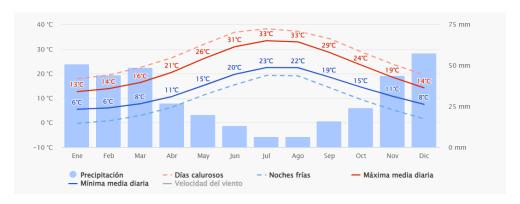


Figura 1.3: Climograma en Atenas. Fuente: Datos climáticos y meteorológicos históricos Meteoblue [17]

sobre el mar Egeo durante el verano y principios del otoño. Estos vientos ayudan a moderar las temperaturas estivales y a regular la concentración de contaminantes en el sureste del Mediterráneo [26].

1.2.3. Desarrollo y estructura urbana

El proyecto titulado "2004, otra Ática, otra Atenas", apostó por un modelo de desarrollo disperso, basado en dos ideas clave: la primera se centraba en la exitosa organización de los Juegos Olímpicos, mientras que la segunda consistía en la reestructuración y remodelación general de la ciudad, con el objetivo de alcanzar un mayor nivel de eficiencia como centro regional emergente en el sureste de Europa y el Mediterráneo. Este enfoque se sustentaba en que el 95 % de los proyectos planificados no consistían en estructuras temporales, sino en instalaciones permanentes que serían reconstruidas y reutilizadas tras el evento de 2004.

Inicialmente, la organización de los Juegos Olímpicos se concibió como un catalizador para la transformación de la aglomeración urbana de Atenas, impulsando la mejora del entorno, el desarrollo de un sistema de transporte estratégico e integrado, y la modernización de la infraestructura. Para ello, se estructuró un plan basado en cuatro polos con distintas funciones, interconectados a través de un anillo. Estos polos incluían: el pueblo olímpico en el Monte Parnés, el complejo deportivo y olímpico de Atenas, el centro histórico y la zona costera de Paleo Faliro.

Entre 1996 y 2004, se llevaron a cabo sesenta proyectos urbanos en el centro histórico de Atenas con el objetivo de mejorar la movilidad y el medioambiente. Estos proyectos pueden agruparse en tres categorías principales. La primera abarca iniciativas enfocadas en la optimización del espacio urbano, como la expansión de la red de metro y tranvía. La segunda comprende intervenciones destinadas a la conservación y mejora del patrimonio construido. Finalmente, la tercera categoría incluye proyectos orientados al diseño innovador del espacio a escala arquitectónica.

El Paseo Arqueológico consiste en la integración de los yacimientos arqueológicos a través de una red de espacios peatonales y zonas verdes en plena ciudad contemporánea. Su diseño transforma el área en un lugar de descanso, ocio y cultura dentro del centro urbano. Este modelo de desarrollo, pionero a nivel mundial, ofrece una nueva forma de gestionar las ciudades con un extenso patrimonio arqueológico y arquitectónico [8]. En

la figura (1.4) se muestra la evolución urbana de la ciudad de Atenas entre 1992 hasta 2021.

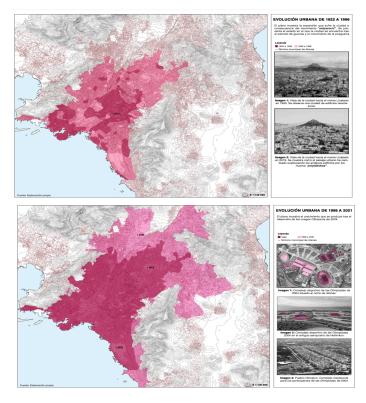


Figura 1.4: Evolución urbana entre 1992 y 2021 [8]

1.2.4. Zonas climáticas locales de Atenas

Estudios realizados por Oliveira et al. [23] han permitido clasificar las zonas climáticas locales (LCZ) de cinco ciudades europeas situadas en el mar Mediterráneo, descritas por Stewart y Oke [29], en particular se han clasificado las LCZ de la ciudad de Atenas.

Los datos utilizados en ese estudio incluyen varios conjuntos de datos europeos y locales, disponibles desde el Copernicus Land Monitoring Service (CLMS). Se utilizaron los archivos shapefile del Urban Atlas (UA) (Agencia Europea de Medio Ambiente (EEA)) y Corine Land Cover (CLC) (Agencia Europea de Medio Ambiente (EEA)) de las cinco ciudades como características base para la reclasificación. Además, para probar la utilidad de los resultados de la clasificación LCZ, se utilizaron datos satelitales de Landsat 8.

El mapa de clasificación LCZ muestra que el tipo morfológico predominante en Atenas es el de edificaciones compactas de altura media (LCZ 2), cubriendo casi por completo el centro de la ciudad y gran parte de la región alrededor del municipio central.

La clase LCZ 2 también prevalece en las áreas centrales de El Pireo y aparece en algunas zonas suburbanas recientemente urbanizadas. La menor altura general de los edificios en la periferia occidental de Atenas da lugar a una alta cobertura de la categoría de edificaciones compactas de baja altura (LCZ 3), mientras que en los distritos

de menor densidad—en los suburbios noreste y sureste—predominan las clases de edificaciones abiertas de altura media (LCZ 5) y abiertas de baja altura (LCZ 6).

La extensa zona de edificaciones grandes y de baja altura (LCZ 8) entre los centros urbanos de Atenas y El Pireo fue un importante centro industrial hasta la década de 1970; en la actualidad, funciona como un área de industria ligera que incluye edificios abandonados y terrenos degradados. Las restricciones históricas en la altura de los edificios impiden la presencia de la categoría de edificaciones compactas de gran altura (LCZ 1), típicamente asociada a los centros urbanos [1]. En la figura (1.5) podemos ver la distribución de las distintas zonas climáticas locales en Atenas.

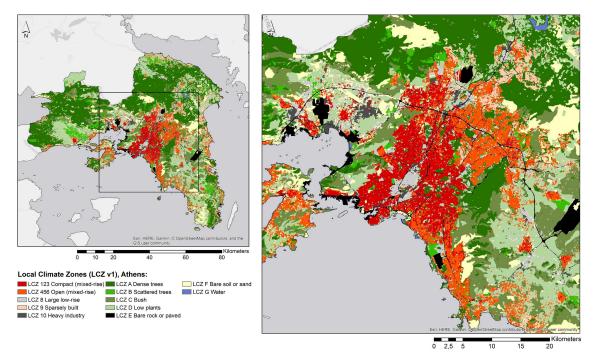


Figura 1.5: Distribución de las zonas climáticas locales (LCZ) en Atenas. Fuente: Urban Climate (2020) [23]

El análisis del uso del suelo en Atenas reveló que el 45,61 % del área estudiada está cubierta por tejido urbano denso, mientras que solo un 15,53 % corresponde a zonas verdes. Esta distribución influye directamente en la generación de islas de calor, con sectores altamente urbanizados y con escasa vegetación registrando temperaturas significativamente más altas.

En cuanto a los patrones de vegetación, los árboles densos (LCZ A) son la clase no urbana dominante en Atenas. Aunque en el paisaje mediterráneo, la vegetación baja y seca y los suelos agrícolas desnudos en verano son comunes. Por lo tanto, existen también numerosas zonas de las clases LCZ B (árboles dispersos) y LCZ D (vegetación baja) [22]

En la figura (1.6) se muestran algunos ejemplos de las principales zonas climáticas locales de la ciudad de Atenas y su área metropolitana.

Figura 1.6: Ejemplos de las diferentes LCZ en Atenas. Arriba a la izquierda: LCZ 2, edificaciones compactas de altura media. Arriba a la derecha: LCZ A, árboles densos. Abajo a la izquierda: LCZ B y D, vegetación baja y árboles dispersos. Abajo a la derecha: Zona industrial, puerto del Pireo. Fuente: elaboración propia.

1.3. Objetivos

Los objetivos de este trabajo son los siguientes:

- Estudiar las temperaturas medias, máximas y mínimas de la ciudad de Atenas y sus zonas rurales circundantes: a través del análisis de datos de temperaturas, se buscarán patrones mensuales y estacionales, con el fin de identificar cómo las temperaturas cambian en distintas áreas geográficas y cómo las características urbanas impactan en estos patrones.
- Estudiar la intensidad de la isla de calor urbana (UHI) en Atenas: Para ello, utilizaremos los datos de temperaturas provenientes de satélites y estaciones meteorológicas para analizar la magnitud y variabilidad de este fenómeno a lo largo del tiempo.
- Determinar los tipos de clima y las temperaturas asociadas en la región de Atenas: para alcanzar este objetivo, el tamaño de la base de datos utilizada abarcará 33 años. Analizaremos también la distribución de los centros de presión alrededor de la ciudad de Atenas, así como los patrones climáticos según los campos de presión y temperatura y la comparación de estos.

Capítulo 2

Descripción experimental

2.1. Material: EMO-1

EMO (Observaciones Meteorológicas Europeas) es un conjunto de datos meteorológicos europeos en rejilla, de alta resolución y frecuencia (subdiaria y diaria), multivariable, basado en observaciones históricas y en tiempo real. EMO es un producto del Servicio de Gestión de Emergencias de Copernicus, y proporciona, a resolución diaria: precipitación total, temperaturas mínimas y máximas, velocidad del viento, radiación solar y presión de vapor de agua. Además, este conjunto de datos ofrece también precipitación y temperatura media cada 6 horas.

Las observaciones en bruto, provenientes de estaciones meteorológicas en tierra, fueron sometidas a una serie de controles de calidad, antes de aplicar los métodos de interpolación SPHEREMAP y Yamamoto, para estimar el valor de cada variable y su incertidumbre asociada en cada celda de la rejilla, respectivamente.

Actualmente, EMO está disponible en dos resoluciones espaciales: EMO-5, con rejillas con una resolución espacial de 5 km x 5 km, cubriendo el período 1990 a 2019 y EMO-1, con rejillas con una resolución espacial de 1 minuto de arco x 1 minuto de arco (aproximadamente 1.5 km) y cubriendo el período 1990 a 2022. En este caso se han tomado lo datos procedentes de EMO-1.

2.2. Metodología

Los datos registrados muestran las temperaturas máximas y mínimas diarias de la ciudad de Atenas. Para nuestro análisis, tomaremos la temperatura más alta de las coordenadas registradas en nuestro estudio como T_{urb} , y la temperatura más baja como T_{rural} . La diferencia entre la temperatura urbana y la temperatura rural es lo que se define como intensidad de la isla urbana de calor.

Intensidad de la UHI =
$$T_{urb} - T_{rural}$$
 (2.1)

A través de un programa de Matlab hemos realizado mapas que representan la distribución de las temperaturas, y por tanto de la UHI, para diferentes épocas del año. Por otro lado, se ha utilizado Excel para realizar el tratamiento y el análisis de los datos, así como los diagramas de cajas.

2.3. Clasificación de Lamb en los tipos de tiempo sinópticos

El flujo de aire tiene una influencia significativa tanto en las variables meteorológicas como en las concentraciones de contaminantes atmosféricos. Los vientos provenientes de zonas frías pueden provocar precipitaciones intensas al entrar en contacto con masas de aire cálido y húmedo. Además, los contaminantes atmosféricos son arrastrados por el viento y transportados a lugares distantes de sus fuentes. La evolución de los mapas meteorológicos también muestra que ciertos patrones tienden a repetirse con el tiempo, lo que contribuye a la formación de tipos climáticos particulares [28].

La clasificación de Lamb evalúa los patrones de circulación diaria del flujo del viento y la presencia o ausencia de circulación ciclónica o anticiclónica con el objetivo de encontrar un método capaz de clasificarlos. Podemos dividir los 27 tipos de tiempos en tres grupos principales:

- Direccionales: basados en la dirección del viento predominante.
- Ciclónicos y anticiclónicos: basados en la circulación de los sistemas de presión.
- Indeterminado: sin dirección dominante.

Durante todo el período de estudio, cada día fue caracterizado por un tipo de tiempo específico. En la figura (2.1) se muestra la clasificación de los 27 tipos de tiempos de Lamb, enumerando primero los tipos de tiempos anticiclónicos, direccionales y por último los ciclónicos.

Synoptic conditions							
A (anticyclone)	E (eastern flow)	CE (eastern cyclone)					
AE (eastern anticyclone)	N (north flow)	CN (north cyclone)					
ANW (northwest anticyclone)	NE (northern flow)	CNE (northwest cyclone)					
AN (north anticyclone)	NW (northwest flow)	CNW (northwest cyclone)					
ANE (northeast anticyclone)	S (southern flow)	CS (southern cyclone)					
AS (southern anticyclone)	SE (southeast flow)	CSE (southeast cyclone)					
ASE (southeast anticyclone)	SW (southwest flow)	CSW (southwest cyclone)					
ASW (southwest anticyclone)	W (west flow)	CW (west cyclone)					
AW (west anticyclone)	C (cyclone)	U (unclassified)					

Figura 2.1: Clasificación de Lamb en los tipos de tiempo [27]

2.4. Procedimiento de cálculos

Los tipos de tiempo de Lamb se calcularon siguiendo a Jones et al. (2013), tomando las presiones a nivel del mar en los puntos señalados en la figura. Los datos de dichas presiones se han tomado de la base de datos de la NOAA (National Oceanic and Atmospheric Administration) con una resolución de 2.5 grados. La región analizada está centrada en la región de Atenas, el punto rojo, como se muestra en la figura (2.2), junto con los puntos necesarios para el cálculo.

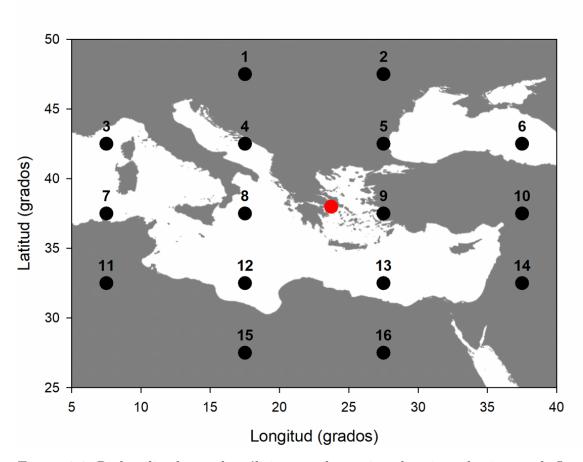


Figura 2.2: Red utilizada en el análisis para determinar los tipos de tiempo de Lamb.

Para calcularlos se utilizan las siguientes expresiones

• Flujo del oeste:

$$W = \frac{1}{2}(P12 + P13) - \frac{1}{2}(P4 + P5)$$
 (2.2)

• Flujo del sur

$$S = C1 \left[\frac{1}{4} (P5 + 2 \times P9 + P13) - \frac{1}{4} (P4 + 2 \times P8 + P12) \right]$$
 (2.3)

Flujo resultante

$$F = (S^2 + W^2)^{1/2} (2.4)$$

Vorticidad de cizalladura del oeste

$$ZW = C2\left[\frac{1}{2}(P15 + P16) - \frac{1}{2}(P8 + P9)\right] - C3\left[\frac{1}{2}(P8 + P9) - \frac{1}{2}(P1 + P2)\right]$$
(2.5)

Vorticidad de cizalladura del sur

$$ZS = C4 \left[\frac{1}{4} (P6 + 2 \times P10 + P14) - \frac{1}{4} (P5 + 2 \times P9 + P13) - \frac{1}{4} (P4 + 2 \times P8 + P12) + \frac{1}{4} (P3 + 2 \times 7 + P11) \right]$$
(2.6)

• Vorticidad total de cizalladura

$$Z = ZW + ZS \tag{2.7}$$

donde

$$C1 = 1/\cos(latitud)$$

$$C2 = sen(latitud)/sen(latitud - 5)$$

$$C2 = sen(latitud)/sen(latitud + 5)$$

$$C4 = \frac{1}{2\cos^2(latitud)}$$

Dirección del viento =
$$\tan^{-1}(W/S) = \begin{cases} \text{si } W > 0 \text{ y } S < 0, \text{ añadimos } 360^{\circ} \\ \text{si } S > 0, \text{ añadimos } 180^{\circ} \end{cases}$$
 (2.8)

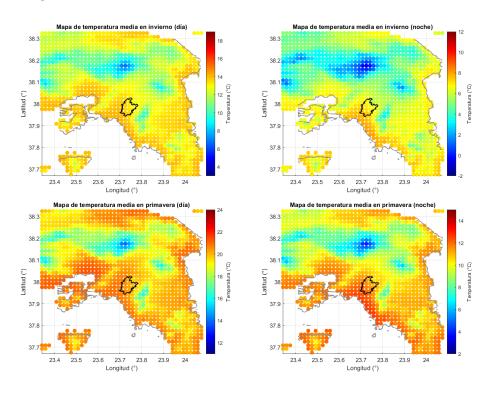
La dirección del viento adecuada se determina en sectores de 45°.

Cuando |Z| < F se tiene un tipo de tiempo de Lamb puramente direccional, norte, N, noreste, NE, este, E, sureste, SE, sur, S, suroeste, SW, oeste, W y noroeste, NW.

Cuando |Z| > 2F, tenemos un patrón ciclónico, C, (Z > 0) o anticiclónico, A, (Z < 0).

Cuando F < |Z| < 2F, es un tipo de tiempo de Lamb híbrido. Cuando F < 6 y |Z| < 6, es un flujo sin clasificar, U. Se calculó cada tipo sinóptico todos los días, y para presentar los resultados, se calcularon promedios en cada punto de la red para cada tipo de clima y se trazaron isobaras cada 4 hPa. Además aplicaremos un procedimiento similar para los datos de temperatura, trazando isotermas cada 2 °C.

La red original tiene 165 nodos, y a través del software Surfer generamos una red secundaria de mayor resolución, 7200 nodos, para trazar las isobaras, isotermas y centros de presión con mayor precisión. Para investigar la evolución de los tipos de tiempo, se analizó el periodo completo de 33 años.


Capítulo 3

Resultados

3.1. Distribución espacial de la temperatura

3.1.1. Temperatura media

En la figura (3.1) mostraremos una serie de mapas que muestran la distribución espacial de las temperaturas medias en distintas escalas temporales. Aquí se incluyen mapas correspondientes a las temperaturas anuales y estacionales, tanto diurnas como nocturnas. Podemos localizar Atenas alrededor de las coordenada 37,98 de latitud N y 23,72 de longitud E.

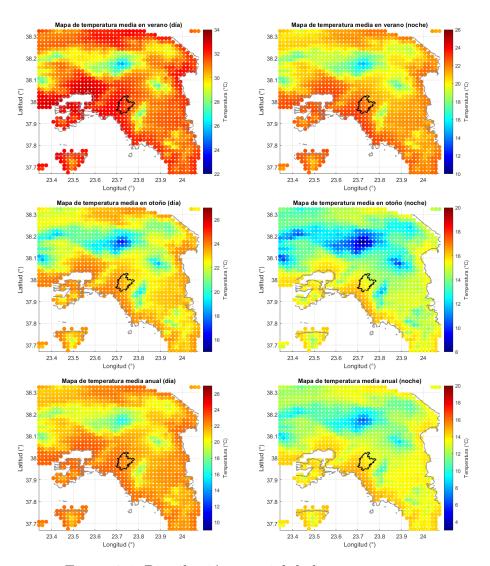


Figura 3.1: Distribución espacial de las temperaturas.

Las zonas más cálidas se concentran principalmente en el sector occidental de Atenas, caracterizado por una alta densidad urbana y la presencia de antiguas áreas industriales y destacan como focos de calor urbanos persistentes. Además, algunas áreas en el centro histórico de la ciudad también presentan elevadas temperaturas debido a la intensa actividad turística, la alta concentración de edificaciones y la falta de vegetación. Las zonas más frías se ubican mayormente en la parte sureste del municipio, como puede verse en los mapas anteriores, donde predominan los espacios verdes y las construcciones son menos densas. Estas áreas presentan temperaturas significativamente más bajas, lo que resalta la influencia de la vegetación en la mitigación del calor urbano.

Resulta evidente que la compleja topografía del área metropolitana de Atenas , la proximidad al mar, la diferente cobertura del suelo y la situación sinóptica introducen una variedad de procesos interactivos a distintas escalas (por ejemplo, circulaciones locales, brisas marinas, brisas de montaña, etc.) que controlan la magnitud de la UHI en la ciudad. Esto subraya aún más la importancia de la selección de sitios en los estudios sobre UHI. [2]

En la tabla (3.1) mostraremos las temperaturas medias urbana y rural, así como la intensidad de la isla de calor urbana (UHI) para cada época del año.

Tabla 3.1: Temperaturas medias diurnas, nocturnas y la UHI correspondiente.

Temperatura media	Diurna			Nocturna		
$(^{\circ}C)$	Urbana	Rural	UHI	Urbana	Rural	UHI
Invierno	14,7	6,7	7,9	8,2	-0,6	8,8
Primavera	21,7	14	7,7	12,8	4,1	8,7
T 7	00.4	05.0	7.0	00.5	140	0.5
Verano	33,4	25,6	7,8	23,5	14,9	8,5
Otoño	24.6	16 0	7 0	16.9	0 1	07
Otolio	24,0	16,8	7,8	16,8	8,1	8,7

Podemos ver que la isla de calor urbana diurna de menor intensidad tiene lugar en los meses de primavera, aunque la diferencia con el resto de estaciones es relativamente pequeña. Sin embargo, durante la noche la UHI alcanza una mayor intensidad durante todas las estaciones del año, aumentando la UHI hasta 1 °C de diferencia entre el día y la noche. La UHI es más significativa en la noche debido a la acumulación de calor y radiación solar en los materiales urbanos durante las horas del día. La época del año en la que hay menos diferencia entre la UHI diurna y nocturna es en verano.

En la tabla (3.2) mostraremos la información relativa a las temperaturas medias urbanas y rurales, así como la intensidad de la isla urbana de calor correspondiente a cada mes.

Tabla 3.2: Temperaturas medias diurnas, nocturnas y la UHI correspondiente por meses.

Temperatura media	Diurna			Nocturna		
$(^{\circ}C)$	Urbana	Rural	UHI	Urbana	Rural	UHI
Enero	13,9	6,0	7,9	7,5	-1,3	8,8
Febrero	14,8	6,9	7,9	7,8	-0,9	8,7
Marzo	17,2	9,4	7,8	9,4	0,7	8,7
Abril	21,3	13,6	7,6	12,3	3,5	8,8
Mayo	26,6	18,9	7,7	16,8	8,0	8,8
Junio	31,7	23,9	7,7	21,4	12,7	8,6
Julio	34,2	26,4	7,8	24,3	15,8	8,5
Agosto	34,1	26,3	7,8	24,6	16,1	8,5
Septiembre	29,7	22,0	7,7	20,8	12,0	8,7
Octubre	24,5	16,7	7,8	16,8	8,1	8,7
Noviembre	19,5	11,6	7,9	12,9	4,1	8,8
Diciembre	15,3	7,3	8,0	9,4	0,4	8,9

En la tabla (3.2) vemos que la mayor intensidad de la isla urbana de calor tiene lugar durante las noches de invierno, cuando las temperaturas urbanas son 8,9 °C (diciembre), 8,8 °C (enero) y 8,7 °C (febrero), más altas que las temperaturas de las zonas rurales, aunque la intensidad de la isla de calor no difiere más de 0,4 °C en ninguna estación del año. En los meses de abril y mayo, durante el día, se registró la menor intensidad de la UHI. Además como vimos en la tabla (3.1), en los meses de verano la intensidad de la UHI durante la noche es ligeramente menor que en el resto de estaciones, debido a la gran cantidad radiación absorbida por los materiales urbanos durante el día.

La posición geográfica del área de Atenas, caracterizada por la presencia de montañas circundantes que superan los 1000 m, contribuye al desarrollo de altas temperaturas del aire en verano. La aparición de altas temperaturas también se ve reforzada por la mayor urbanización e industrialización, el aumento del calor antropogénico y la falta de vegetación. En particular, durante los meses de julio y agosto, las temperaturas medias y máximas del aire en el centro de la ciudad y en la parte occidental de la ciudad son mucho más altas que los valores correspondientes para la parte norte y noreste del área. [7]

En la figura (3.2), se disponen los diagramas de cajas de las temperaturas urbana y rural desde enero de 1990 hasta enero de 2020. En este gráfico, la altura de cada caja representa el rango intercuartílico (IQR), que es la diferencia entre el tercer cuartil (Q3), el valor donde el 75 % de los datos es menor o igual a él, y el primer cuartil (Q1), el valor donde el 25 % de los datos es menor o igual a él. La línea dentro de la caja indica el valor de la mediana, y la x en el centro de las cajas indica el valor de la media. Las líneas que se extienden desde la caja se llaman bigotes y representan la varianza esperada de los datos. Estos bigotes se extienden 1,5 veces el IQR desde los extremos superior e inferior de la caja. Para realizar este gráfico se ha tomado la coordenada con la temperatura más alta para cada fecha como temperatura urbana y la coordenada con la temperatura más baja como temperatura rural.

Podemos ver que los valores más altos corresponden a las temperaturas urbanas diurnas mientras que los valores más bajos corresponden a las temperaturas rurales durante la noche.

Durante el día se tiene que la media y la mediana de la temperatura urbana se diferencian 0,7 °C, y 0,6 °C la temperatura rural, siendo mayor la media en los dos casos. Para las temperaturas nocturnas urbanas y rurales, la diferencia entre la media y la mediana es similar, 0,5 °C y 0,6 °C respectivamente, por lo que existe una distribución igual de simétrica en las temperaturas.

Atendiendo a la dispersión de los datos, se tiene que las temperaturas urbanas cuentan con IQR de 15,4 °C (día) y 11,8 °C (noche), mientras que los IQR de las temperaturas rurales son de 15,6 °C (día) y 12,0 °C (noche). Por tanto, durante la noche los datos están más concentrados cerca de la mediana, mientras que durante el día los datos de temperaturas están más dispersos.

En la figura (3.3) se muestran los diagramas de cajas de las temperaturas diurnas y nocturnas para cada estación del año. Se observa que, en todas las estaciones, las temperaturas en las zonas urbanas son sistemáticamente más altas que en las rurales, lo que sugiere la presencia del efecto de isla de calor urbana. Esta diferencia es particularmente pronunciada en invierno, donde la mediana de la temperatura urbana es notablemente superior a la de la zona rural.

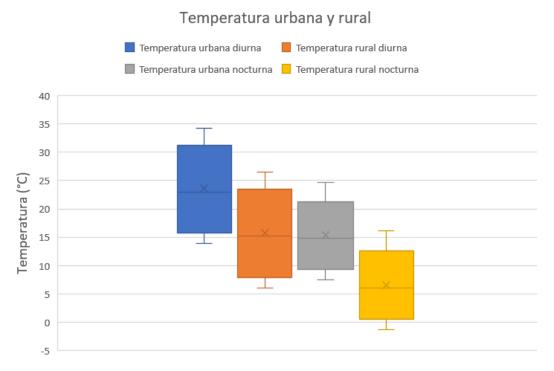


Figura 3.2: Diagrama de cajas de temperaturas urbanas y rurales diurnas y nocturnas.

Además, en el gráfico podemos ver diferencias en la variabilidad de las temperaturas. En verano, la dispersión de los datos en la zona urbana es mayor que en la rural, lo que indica fluctuaciones térmicas más amplias dentro del entorno urbano. En invierno, aunque las temperaturas urbanas siguen siendo más elevadas, se identifican valores extremos más bajos, lo que sugiere eventos de frío aislados en ciertas ocasiones. También se destacan valores atípicos en varias estaciones, especialmente en verano, donde algunas temperaturas superan ampliamente el rango intercuartil, lo cual podría estar asociado a eventos de calor extremo.

En general, el análisis del diagrama de cajas confirma que las temperaturas urbanas no solo son más elevadas que las rurales en todas las estaciones, sino que también presentan una mayor variabilidad, especialmente en las estaciones más extremas del año. Por tanto, las áreas urbanas experimentan fluctuaciones térmicas más pronunciadas debido a la combinación de factores como la densidad de edificios, menor presencia de vegetación y la absorción y liberación de calor por parte de los materiales urbanos.

Keramitsoglou et al. [10] realizaron un estudio de la UHI en el Área Metropolitana de Atenas. Se analizaron más de 3000 imágenes LST de la zona, adquiridas por el sensor MODIS durante una década. Se identificaron y estudiaron tres zonas de altas temperaturas diurnas (Megara, Elefsina-Aspropyrgos y Mesogeia), las cuales mostraron un comportamiento similar, aumentando gradualmente su temperatura máxima durante el verano y alcanzando su punto máximo a mediados de julio.

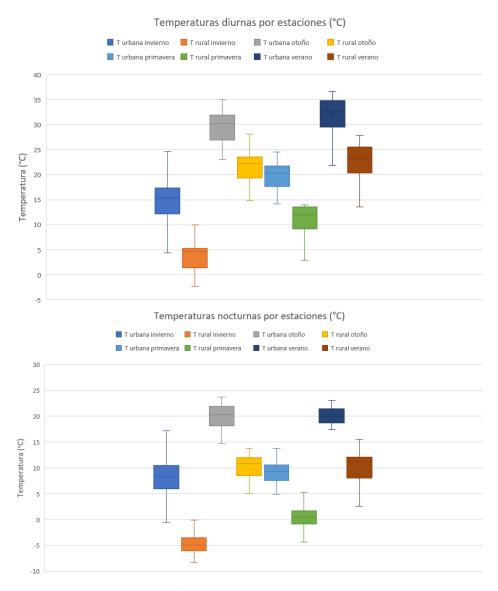


Figura 3.3: Diagrama de cajas de las temperaturas por estaciones.

3.2. Parámetros estadísticos

Las tablas (3.3) y (3.4) recogen los parámetros estadísticos mostrados en la figura (3.3).

Durante el día, las temperaturas urbanas muestran una media superior a las rurales en todas las estaciones, siendo el verano la estación más cálida, con una media urbana de 32 °C. En contraste, la estación más fría corresponde al invierno rural, con una media de apenas 4,2 °C. La variabilidad térmica destaca en primavera y otoño, especialmente en entornos rurales, como lo indican tanto el rango intercuartílico (IQR) como la desviación estándar. En cambio, el verano presenta temperaturas más estables y menos dispersas, con una desviación estándar más baja, en torno a 3 °C, tanto en áreas urbanas como rurales.

Durante la noche, se mantiene la tendencia de temperaturas urbanas superiores a las rurales en todas las estaciones, pero las diferencias son más pronunciadas, especialmente en invierno. La estación más cálida durante la noche es el verano, con una media urbana

Tabla 3.3: Estadísticos de las estaciones del año para el día: Median, Q_1 y Q_3 son los valores que representan el primer y tercer cuartil, IQR el rango intercuantílico, y s la desviación estándar.

Diurna	Primavera		Verano		Otoño		Invierno	
$(^{\circ}C)$	Urbana	Rural	Urbana	Rural	Urbana	Rural	Urbana	Rural
Media	19,3	10,9	32,0	22,8	29,7	21,6	14,7	4,2
Mediana	20,3	12,0	32,6	23,3	30,2	22,2	15,4	4,7
Q_1	17,7	9,1	29,5	20,3	26,9	19,3	12,2	1,4
Q_3	21,7	13,5	34,8	25,5	31,9	23,5	17,4	5,3
IQR	4,0	4,3	5,3	5,2	5,0	4,2	5,2	3,9
S	5,2	5,4	3,0	3,1	5,3	5,5	3,7	3,9

Tabla 3.4: Estadísticos de las estaciones del año para la noche: Media, Mediana, Q_1 y Q_3 son los valores que representan el primer y tercer cuartil, IQR el rango intercuantílico, y s la desviación estándar.

Nocturna	Primavera		Verano		Otoño		Invierno	
$(^{\circ}C)$	Urbana	Rural	Urbana	Rural	Urbana	Rural	Urbana	Rural
Media	9,3	0,6	19,7	9,9	19,9	10,3	8,2	-4,5
Mediana	9,4	0,5	20,0	11,2	20,3	10,9	8,3	-4,9
Q_1	7,57	-0,9	18,7	8,0	18,1	8,5	6,0	-6,1
Q_3	10,6	1,7	21,5	12,1	21,9	12,0	10,5	-3,5
IQR	3,0	2,6	2,8	4,1	3,8	3,4	4,5	2,5
\mathbf{s}	4,0	4,1	2,7	2,9	4,1	4,3	3,4	3,4

de 19,7 °C y rural de 9,9 °C, mientras que el valor más bajo se registra en invierno en zonas rurales, con una media de -4,5 °C. La diferencia térmica entre zonas urbanas y rurales es especialmente evidente en invierno, con más de 12 °C de diferencia, lo que refuerza la presencia del efecto isla de calor urbana por la noche. En cuanto a la variabilidad, los valores del IQR y la desviación estándar indican que las temperaturas son más estables durante el verano, al igual que durante el día, con una dispersión más reducida (alrededor de 2,7 °C - 2,9 °C). De nuevo, en primavera y otoño existe una mayor dispersión, especialmente en las zonas rurales, donde la desviación estándar alcanza hasta 4,3 °C.

3.3. Evolución temporal de la UHI

En la figura (3.4) se representa la evolución de la intensidad media de la isla de calor urbana a lo largo del año. La amplitud de la oscilación anual de la UHI nocturna y diurna es similar, aunque la intensidad de la UHI es mayor durante la noche para todos los meses del año. Podemos observar que la UHI nocturna menos intensa, de nuevo, se da en el mes de julio (8,4 °C), y la diurna, en el mes de abril (7,6 °C). Mientras la

mayor intensidad de la UHI durante la noche y el día se dan ambas en diciembre, (8,9 °C) y (8,0 °C) respectivamente. De hecho, cuando la intensidad de la UHI diurna es máxima, la nocturna es mínima, y viceversa, a excepción de diciembre donde se alcanza un máximo en ambos casos.

Además, vemos que la UHI nocturna presenta una disminución en verano, con un mínimo en julio. Esto puede explicarse por varios factores: mayor duración del día, noches más cortas, y una homogeneización de las temperaturas mínimas urbanas y rurales durante los meses más cálidos, por lo que el contraste entre ambos entornos se reduce durante el verano. Por otro lado, la intensidad diurna de la UHI muestra un descenso en primavera, alcanzando los valores mínimos entre abril y mayo, y un aumento progresivo en los últimos meses del año. Esta variabilidad podría estar relacionada con condiciones meteorológicas más estables y menor radiación solar en los meses primaverales.

Según el estudio de Keramitsoglou et al. [10] donde estudiaron el fenómeno de la isla de calor urbana en Atenas, se observó que mostraba una mayor intensidad principalmente durante la noche. Los puntos calientes diurnos de la ciudad mostraron un comportamiento similar, aumentando gradualmente su temperatura durante la temporada de verano, alcanzando su máximo a mediados de julio. En este estudio, utilizando datos correspondientes a fechas anteriores a 2010, se registró una intensidad máxima de 12,3 °C en septiembre de 2004, y una intensidad media de la UHI diurna de 5.6 °C.

En resumen, la figura (3.4) muestra que el fenómeno de la isla de calor urbana se mantiene durante todo el año en Atenas, con una intensidad más elevada por la noche. Notemos también que, aunque exista un patrón estacional, las diferencias entre estaciones no son extremas, lo que indica una constancia de la isla urbana de calor en el clima de la ciudad.

Figura 3.4: Evolución de la intensidad de la isla de calor urbana durante los meses del año.

En el estudio realizado por Georgakis y Santamouris [4] se determinó que la variación diaria de la temperatura del aire entre las zonas más cálidas y más frescas del centro de la ciudad, osciló entre 5 °C y 8 °C. La variación de temperatura dependió en gran medida de las condiciones meteorológicas del momento. Este hallazgo concuerda con

los resultados de estudios anteriores, donde las diferencias máximas de temperatura del aire entre las estaciones urbanas más centrales y las rurales alcanzaban hasta 10 °C.

La figura (3.5) muestra la evolución mensual de la intensidad de la isla de calor urbana (UHI) en Atenas entre 1990 y 2022, diferenciando entre los valores nocturnos (línea azul) y diurnos (línea naranja). Se observa que la UHI nocturna es sistemáticamente más intensa que la diurna, con una mayor variabilidad estacional y una tendencia ascendente especialmente a partir de los años 2000.

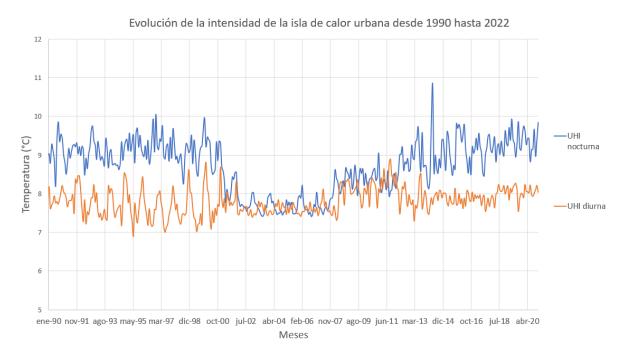


Figura 3.5: Evolución de la intensidad de la isla de calor urbana entre 1990 y 2022.

En el estudio realizado por Founda y Santamouris [3] se exploró la variabilidad interdecadal y estacional de la intensidad de la isla de calor urbano en la ciudad de Atenas y demostraron que las olas de calor intensifican la UHI tanto durante el día como durante la noche. En la figura (3.5) podemos ver cómo aumenta la intensidad de la UHI de forma constante durante las dos últimas décadas, donde también se ha incrementado la frecuencia de las olas de calor. Algunos estudios reportan una intensificación mayor (del orden de 2 °C) en la magnitud de la UHI nocturna frente a la diurna durante las olas de calor.

En el estudio de Founda y Santamouris se verificó que la diferencia de la temperatura media anual del aire entre las estaciones urbanas y rurales mostró un aumento progresivo y estadísticamente significativo a lo largo del período estudiado, con una tasa de +0.2 °C por década. Al igual que en otras zonas mediterráneas, Atenas ha experimentado un fuerte calentamiento durante las últimas décadas. Basándose en los archivos climáticos del Observatorio Nacional de Atenas (NOA), situado en una pequeña colina en el centro de la ciudad, Founda y Santamouris informan de tasas de calentamiento del orden de 1 °C por década desde mediados de los años 70, en lo que respecta a la temperatura máxima diaria del aire en verano (Tmax).

Esta tendencia positiva de la temperatura media del aire en Atenas va acompañada de un aumento simultáneo en la frecuencia de días calurosos, así como en la frecuencia,

duración e intensidad de las olas de calor en la zona [2]. El aumento observado en la temperatura del aire en Atenas es posiblemente el efecto combinado del calentamiento regional en la zona del Mediterráneo oriental y Grecia, junto con la urbanización. Kostopoulou et al. [13] informan de una tasa de calentamiento de 0.4–0.5 °C por década en muchas zonas del Mediterráneo oriental y el análisis hecho por Nastos y Matzarakis [21] señalan tendencias de calentamiento en la mayoría de las regiones griegas durante el verano.

En la figura (3.6) se muestran las evoluciones de las UHIs diurna y nocturna según el mes desde el año 1990 a 2022. Se puede observar que la UHI nocturna siempre es más intensa que la diurna salvo en los meses de verano. El patrón a lo largo de las décadas de las intensidades de la UHI diurna y nocturna es similar durante todos los meses del año. En el estudio de Founda et al. [2] se centran en las sinergias entre la isla de calor urbana y las olas de calor en Atenas (Grecia), durante un verano extremadamente cálido (2012) que incluyó cinco episodios de olas de calor.

Se encontró una retroalimentación positiva entre UHI y las olas de calor, observándose una intensificación de la magnitud media de la isla de calor urbana de hasta 3,5 °C durante las olas de calor, en comparación con las condiciones promedio del verano. Por otro lado, en la figura (3.6) podemos ver un incremento de la intensidad de la UHI en los meses de mayo y junio de más de dos grados entre 2012 y 2013, que puede estar relacionado con las olas de calor mencionadas.

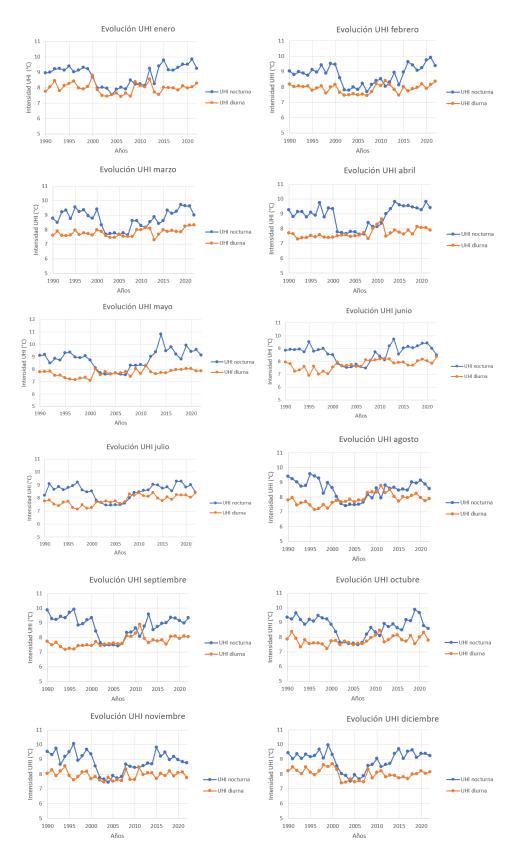


Figura 3.6: Evolución de la UHI, diurna y nocturna, por meses desde 1990 hasta 2022.

3.4. Tipos de tiempos sinópticos

Las figuras (3.7) y (3.8) muestran la clasificación de los tipos de tiempo analizados. Los nueve primeros corresponden a situaciones de tipo anticiclónico, seguidos por otros nueve tipos de carácter ciclónico. Por último se representan los tipos direccionales puros, completando así el conjunto de patrones atmosféricos.

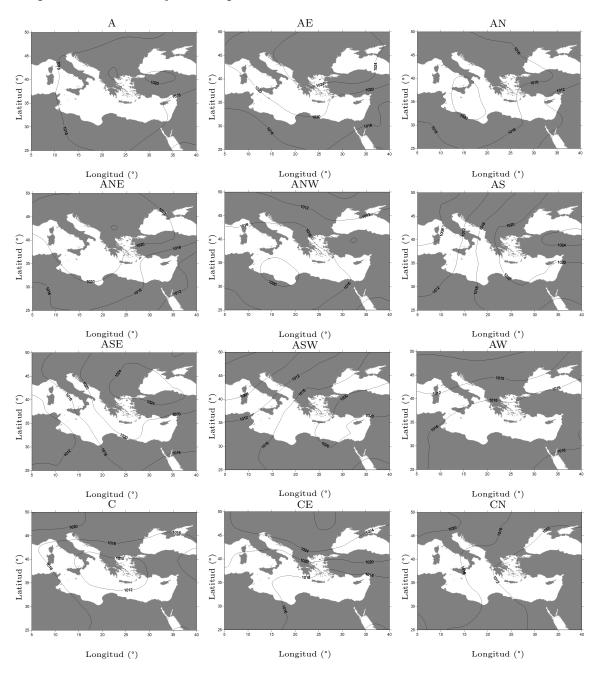


Figura 3.7: Tipos de tiempos de Lamb 1990–2022.

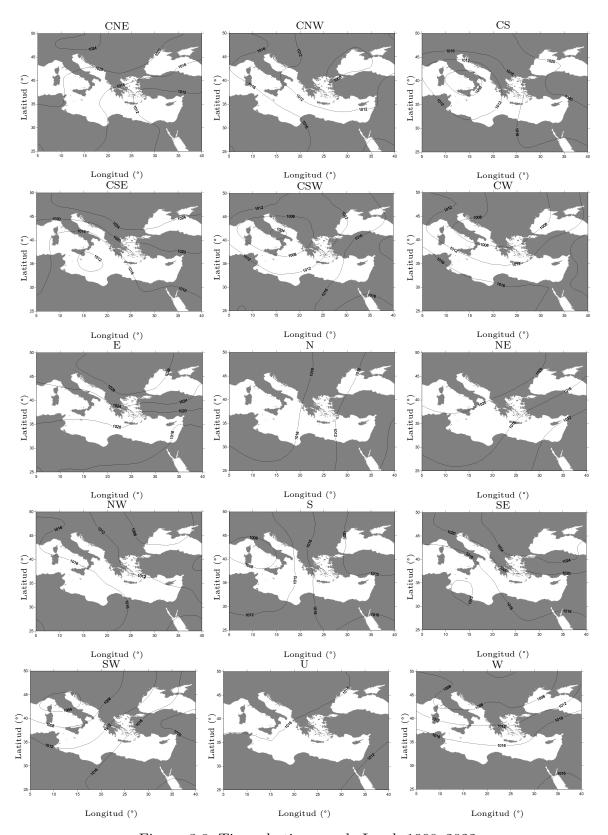


Figura 3.8: Tipos de tiempos de Lamb 1990–2022.

En la mayoría de los casos se observa un reducido número de isobaras, lo cual sugiere la presencia de un campo de presión relativamente uniforme sobre la región. Esta configuración atmosférica se asocia, en general a vientos suaves y condiciones meteorológicas estables.

La figura (3.9) muestra que el tipo de tiempo más frecuente fue el no clasificado, U, con una frecuencia de 33,6%. El segundo tipo más frecuente fue el ciclónico, C, que tuvo una frecuencia del 11,6%. Además, los tipos direccionales representaron cerca del 30% de los casos. Entre estos, el tipo NE fue el más común, con una frecuencia aproximada del 8,5%, seguido por el tipo N, con una frecuencia de 6,5%. Esta alta predominancia de los tipos NE y N se puede deber a la usual presencia de los vientos etesios durante los meses de verano.

Por otro lado, los tipos híbridos con componente anticiclónica representaron un 5.8% de la frecuencia total. Los de tipo híbridos con componente ciclónica representaron un 11.3%. Esta distribución sugiere una predominancia de situaciones atmosféricas no claramente definidas, junto con una presencia significativa de patrones direccionales y ciclónicos.

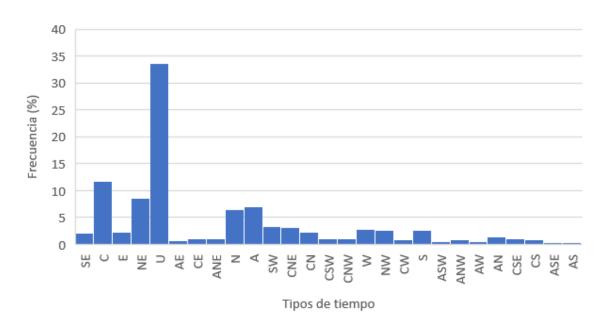


Figura 3.9: Frecuencia de tipos de tiempos de Lamb para la región de Atenas durante el período 1990–2022.

En las tablas (3.5) y (3.6) se muestran las frecuencias relativas de cada uno de los tipos de tiempo de Lamb para cada uno de los meses del año desde 1990 a 2022. De nuevo en esta tabla podemos ver que los dos tiempos más frecuentes son U y C. Se verifica que en los meses de verano (julio, agosto y septiembre) predominan situaciones sinópticas de N y NE.

En diciembre (23,07%) y enero (23,09%) se registra la mayor frecuencia del tipo ciclónico, lo que refleja una marcada influencia de sistemas inestables durante el invierno, vinculados a áreas de baja presión, favoreciendo la formación de nubes y precipitaciones.

Los tipos de tiempo anticiclónicos (A) muestran su mayor frecuencia durante los meses de primavera, especialmente en abril (14,55%), mayo (12,90%) y marzo (10,75%), esto sugiere condiciones atmosféricas estables, cielos despejados y una baja probabilidad de precipitaciones. También se observan valores moderados en junio y julio (ambos con 7,88%), aunque en agosto la frecuencia desciende hasta 0,49%, debido a influencias locales como los vientos etesios en la región.

En contraste, durante el invierno (diciembre, enero y febrero), las frecuencias son más bajas, con valores entre 4,31 % y 5,47 %, lo que indica una menor influencia anticiclónica y una mayor probabilidad de tiempo inestable. De forma general, el tipo A representa el 7,01 % del total anual, reflejando que no es el régimen climático predominante de la región.

Tabla 3.5: Frecuencia tipos de tiempo de Lamb por mes (parte 1: A-CNW).

Mes	A	AE	AN	ANE	ANW	AS	ASE	ASW	AW	С	CE	CN	CNE	CNW
Enero	4.31	0.59	0.88	0.98	0.98	0.39	0.59	0.88	0.39	23.09	1.47	2.54	3.23	1.57
Febrero	5.47	0.64	0.97	0.86	0.43	0.54	0.54	0.97	1.18	21.35	1.39	1.93	3.22	1.39
Marzo	10.75	0.78	1.66	1.95	1.47	0.78	0.29	1.37	1.17	13.59	0.88	1.66	2.74	1.76
Abril	14.55	1.41	1.11	0.81	2.02	0.71	0.81	0.91	1.01	8.69	0.40	1.92	1.52	1.62
Mayo	12.90	0.39	2.64	0.88	1.76	0.00	0.20	0.10	0.98	5.47	0.59	1.96	2.05	1.08
Junio	7.88	0.20	3.03	1.52	1.41	0.10	0.00	0.10	0.30	3.64	0.20	1.82	1.62	0.30
Julio	1.37	0.00	2.35	1.66	0.10	0.00	0.00	0.00	0.10	4.11	0.00	4.40	4.30	0.88
Agosto	0.49	0.00	0.59	0.29	0.29	0.00	0.00	0.00	0.00	5.08	0.20	5.08	6.94	0.59
Septiembre	6.16	0.61	1.82	1.62	0.81	0.00	0.00	0.20	0.10	8.28	1.62	1.31	3.23	0.91
Octubre	8.02	0.88	1.17	1.27	0.39	0.98	0.49	0.59	0.20	10.75	2.44	0.78	1.76	0.59
Noviembre	7.88	0.91	0.61	0.61	0.40	0.71	0.40	1.52	0.40	13.03	1.52	1.11	2.22	1.01
Diciembre	4.50	0.98	0.39	0.49	0.39	0.78	0.20	0.39	0.49	23.07	1.17	1.66	4.50	1.17
Total (%)	7.01	0.61	1.44	1.08	0.87	0.41	0.29	0.58	0.52	11.64	0.99	2.19	3.12	1.07

Tabla 3.6: Frecuencia de tipos de tiempo de Lamb por mes (parte 2: CS-W).

Mes	CS	CSE	CSW	CW	Е	N	NE	NW	S	SE	SW	U	W
Enero	1.66	1.37	2.25	2.25	3.91	4.21	6.56	2.74	3.23	3.23	5.19	16.44	5.09
Febrero	1.61	1.61	2.47	1.93	2.58	5.69	6.97	3.43	3.76	1.82	4.83	17.06	5.36
Marzo	0.78	1.37	1.37	1.86	3.23	4.40	5.22	4.20	3.23	3.62	4.89	20.04	4.89
Abril	1.11	0.81	0.71	1.11	1.62	5.35	3.84	4.55	5.66	4.04	3.03	26.46	4.24
Mayo	0.59	0.39	0.29	0.49	1.66	5.87	4.01	4.11	2.05	1.76	1.37	44.57	1.86
Junio	0.20	0.20	0.20	0.10	0.30	11.01	9.80	4.24	0.30	0.10	0.10	51.31	0.00
Julio	0.00	0.00	0.00	0.10	0.00	20.43	18.87	1.27	0.00	0.00	0.00	39.88	0.20
Agosto	0.00	0.00	0.00	0.00	0.10	10.17	17.69	1.47	0.10	0.00	0.00	50.83	0.10
Septiembre	0.20	0.81	0.20	0.20	2.42	4.24	9.80	1.41	0.51	0.40	1.01	50.81	1.31
Octubre	0.59	1.66	1.66	0.49	4.40	2.25	9.09	1.08	2.83	2.05	2.35	39.59	1.66
Noviembre	1.41	2.42	1.92	0.91	2.63	1.62	5.86	1.11	6.06	4.65	8.69	26.46	3.94
Diciembre	2.25	1.86	2.44	1.66	4.11	2.74	3.91	1.27	3.23	3.71	7.82	19.65	5.08
Total (%)	0.86	1.04	1.12	0.92	2.25	6.51	8.50	2.56	2.57	2.12	3.26	33.66	2.80

Según Mihalakakou et al. [18], a escala sinóptica, predomina la circulación anticiclónica sobre el área metropolitana de Atenas en la baja troposfera durante todo el año, con una ocurrencia máxima en junio, mientras que las situaciones de tipo ciclónico dominan en febrero y marzo.

Mihalakakou et al. [18] y Morris y Simmons [19] demostraron que la menor magnitud del UHI no ocurre bajo condiciones ciclónicas, sino más bien durante un régimen de flujo del noroeste, resultado de una circulación anticiclónica, como es el caso de Atenas, lo cual coincide con los resultados obtenidos.

La figura (3.10) presenta un diagrama de caja y bigotes correspondiente a las presiones medias según el tiempo de Lamb. En cuanto a los tipos de circulación, podemos observar que los tipos puros o híbridos con componente de viento del este y sureste, E y SE, están asociados a presiones medias más altas. Por el contrario, los tipos puros o híbridos con componente de viento del suroeste, oeste y noroeste, SW, W y NW, presentan presiones más bajas.

Además, algunos tipos como AS, E, SE, SW o ASW muestran una alta dispersión en los datos, lo que sugiere una mayor variabilidad en la presión atmosférica.

Otro aspecto destacable es que el tipo de tiempo U representa el tiempo con menor dispersión de los datos dentro del rango intercuartílico, ya que podemos ver que es la caja más pequeña, lo cual indica mayor homogeneidad en las presiones que se registran en estos tipos de tiempo, seguido de los tiempos A y C que presentan también una dispersión de datos muy pequeña en comparación con el resto de tipos de tiempo. También se observa que el tipo ASW y SW alcanza valores mínimos, por debajo de los 1005 hPa, mientras que el tipo E alcanza valores máximos por encima de los 1030 hPa.

Podemos ver que los tipos de tiempos ciclónicos están vinculados a bajas presiones, que favorecen la formación de nubosidad, precipitaciones y mayor actividad atmosférica, como tormentas o frentes fríos. En resumen, el gráfico muestra una relación entre la dirección del flujo atmosférico y el comportamiento de la presión media en Atenas.

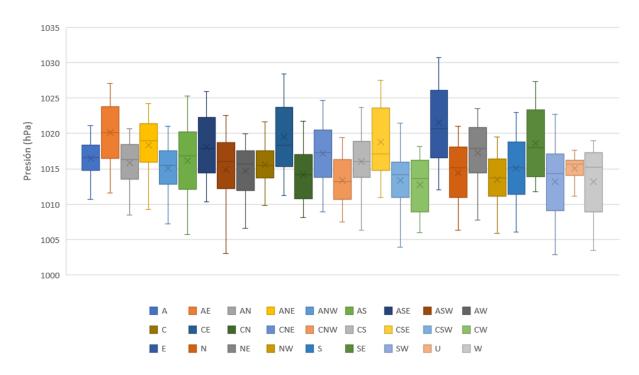


Figura 3.10: Diagrama de caja y bigotes de las presiones medias diarias para la región de Atenas durante el período 1990–2022.

Asimismo, algunos estudios han investigado el efecto de las condiciones meteorológicas a gran escala (sinópticas) en el desarrollo y la evolución de la UHI. Estudios anteriores han utilizado dos enfoques básicos de clasificación climatológica sinóptica: las

clasificaciones de patrones de circulación (CPC) y las clasificaciones de tipos de tiempo (WT) o de masas de aire [14]. Los estudios realizados con CPC han observado que las condiciones anticiclónicas (asociadas con cielos despejados y vientos ligeros) se relacionan con un aumento de la intensidad de la UHI. En cambio, las condiciones ciclónicas (asociadas con enfriamiento urbano) se vinculan con una disminución de la intensidad de la UHI [12, 9].

Cabe señalar que la circulación anticiclónica favorece principalmente el desarrollo de brisa marina sobre el área metropolitana de Atenas, lo que reduce la temperatura en los suburbios del sur y del oeste durante el día, desempeñando un papel importante en la evolución del evento UHI.

La literatura científica muestra resultados diversos sobre la relación entre los patrones sinópticos y la intensidad de la isla de calor urbana (UHI) en el área metropolitana de Atenas. Estas discrepancias podrían explicarse por diferencias en los tipos de clasificación de tiempos, la metodología utilizada o la localización de las estaciones. En cualquier caso, los resultados resaltan la complejidad del sistema climático urbano y la necesidad de estudios comparativos que integren enfoques múltiples.

Capítulo 4

Conclusiones

En este estudio hemos analizado las temperaturas medias, máximas y mínimas de las zonas urbanas y rurales de Atenas, mensuales y estacionales, a partir del conjunto de datos EMO-1. Además se han presentado los resultados más relevantes en relación con la distribución espacial y la evolución temporal de la isla urbana de calor, destacando las diferencias térmicas entre áreas urbanas y rurales entre los años 1990 y 2022.

En este análisis, se consideró como temperatura urbana $(T_{\rm urb})$ el valor más alto registrado dentro del conjunto de coordenadas, y como temperatura rural $(T_{\rm rural})$ el valor más bajo. La intensidad de la isla de calor urbana (UHI) se definió como la diferencia entre ambas temperaturas. Este enfoque, al centrarse en los extremos del área estudiada, registra las máximas expresiones del fenómeno, lo que explica las elevadas intensidades medias obtenidas durante todo el período de estudio, en comparación con algunos trabajos previamente citados que obtienen promedios inferiores.

Las UHI más intensas tienen lugar durante los días de invierno (7,9 °C) y durante las noches de invierno (8,8 °C), mientras que las más débiles ocurren en las noches de verano (8,5 °C). La intensidad de la UHI a lo largo del año es siempre mayor durante la noche, hasta 1 °C más intensa que durante el día. La UHI nocturna tiene oscilaciones anuales ligeramente mayores: la intensidad es máxima en el mes de diciembre (8,9 °C) y es mínima en el mes de julio (8,5 °C). Por otro lado, la UHI diurna es máxima también en diciembre (8,0 °C) y mínima en abril (7,6 °C).

En los mapas hemos visto que las zonas más cálidas se concentran principalmente en la parte occidental de Atenas, donde existe una alta densidad urbana y presencia de antiguas áreas industriales.

La ciudad de Atenas se caracteriza por un fuerte efecto de isla de calor, causado principalmente por la acelerada industrialización y urbanización en los últimos años. Este efecto se manifiesta tanto en verano como en invierno, con una intensidad media de 8,7 °C durante la noche y 7,7 °C durante el día, según los datos del EMO-1.

El tipo sinóptico determina en gran medida el desarrollo o no de la brisa marina en las estaciones costeras, lo que influye en la amplitud de la UHI. Algunos de los tipos de vientos más frecuentes durante el periodo de estudio fueron los de tipo N y NE, correspondientes siempre a direcciones del norte (lo que sugiere el dominio del patrón sinóptico de los etesios), bloqueando el desarrollo de circulaciones de brisa marina y manteniendo la UHI al mínimo, lo cual se corresponde con la intensidad de la UHI mínima en los meses de verano donde predominan estos vientos.

Como hemos visto, el tipo de tiempo más frecuente fue el no clasificado, U, con una

frecuencia de 33,6 %. El segundo fue el ciclónico, C, con una frecuencia de 11,6 %, y entre los tipos direccionales, el tipo NE fue el más común seguido por el tipo N. En diciembre y enero se registra la mayor frecuencia del tipo ciclónico, que coincide con la intensidad de UHI más elevada.

Por otro lado, los tipos de tiempo anticiclónicos destacan especialmente en primavera, mientras que su frecuencia desciende en agosto hasta un mínimo del 0,49 %, debido a la influencia de los vientos etesios. Asimismo, en los meses estivales en los que predominan los tipos anticiclónicos, se observa el mínimo de intensidad de la UHI durante el día, lo cual coincide con estudios citados previamente.

Como hemos mencionado, una de las principales limitaciones de este estudio es la definición de temperaturas urbanas y rurales a partir de valores extremos, en lugar de promedios espaciales, podría estar sobredimensionando la intensidad de la isla de calor urbana en comparación con otros enfoques. Además, el análisis no tuvo en cuenta variables clave como la cobertura del suelo, la vegetación o la morfología urbana, factores que influyen en la intensidad de este fenómeno. Futuras investigaciones podrían profundizar en este tema integrando datos de uso del suelo, además de explorar la evolución horaria de la UHI para captar con mayor detalle sus variaciones diarias.

Bibliografía

- 1. I. Agathangelidis, C. Cartalis y M. Santamouris. Integrating urban form, function, and energy fluxes in a heat exposure indicator in view of intra-urban heat island assessment and climate change adaptation. *Climate*, 7:75, 2019.
- 2. D. Founda, F. Pierros, M. Petrakis y C. Zerefos. Interdecadal variations and trends of the urban heat island in Athens (Greece) and its response to heat waves. *Atmospheric Research*, 161-162:1–13, 2015.
- 3. D. Founda y M. Santamouris. Synergies between urban heat island and heat waves in Athens (Greece). *Scientific Reports*, 7, 2017.
- 4. C. Georgakis y M. Santamouris. Determination of the surface and canopy urban heat island in Athens Central Zone using advanced monitoring. *Climate*, 5:97, 2017.
- 5. A. Ghuraiya. Adaptation to Climate Change Urban Heat Island Effect and Its Challenges in Urban Settlement, pages 403–410. 2024.
- 6. T. M. Giannaros, D. Melas, I. A. Daglis, I. Keramitsoglou y K. Kourtidis. Numerical study of the urban heat island over Athens (Greece) with the WRF model. *Atmospheric Environment*, 73:103–111, 2013.
- 7. K. Giannopoulou, I. Livada, M. Santamouris, M. Saliari, M. Assimakopoulos y Y. G. Caouris. On the characteristics of the summer urban heat island in Athens, Greece. Sustainable Cities and Society, 1:16–28, 2011.
- 8. P. Gomez-Carpintero. Evolución urbana de Atenas (1834-2021): de la capitalidad a la metrópolis. No Publicado, 2022.
- 9. P. Kassomenos, G. Kissas, I. Petrou, P. Begou, H. S. Khan y M. Santamouris. The influence of daily weather types on the development and intensity of the urban heat island in two Mediterranean coastal metropolises. *Science of The Total Environment*, 819:153071, 2022.
- I. Keramitsoglou, C. T. Kiranoudis, G. Ceriola, Q. Weng y U. Rajasekar. Identification and a nalysis of urban surface temperature patterns in Greater Athens, Greece, using MODIS imagery. Remote Sensing of Environment, 115:3080–3090, 2011.
- 11. F. Khelifa, I. E. Khelfa y A. Djamel. Research dynamics on climate change and urban heat island effect in cities: a bibliometric analysis. South Florida Journal of Development, 5:e4809, 2024.

- 12. A. Kircsi y S. Szegedi. The development of the urban heat island studied on temperature profiles in D ebrecen. A cta Climatologica et Chorologica Universitatis Szegediensis, 36-37, 2003.
- 13. E. Kostopoulou, C. Giannakopoulos, M. Hatzaki, A. Karali, P. Hadjinicolaou, J. Lelieveld y M. A. Lange. Spatio-temporal patterns of recent and future climate extremes in the eastern Mediterranean and Middle East region. *Natural Hazards and Earth System Sciences*, 14:1565–1577, 2014.
- 14. C. Lee. The gridded weather typing classification version 2: A global-scale expansion. *International Journal of Climatology*, 40, 2019.
- 15. V. Masson, W. Heldens, E. Bocher, M. Bonhomme, B. Bucher, C. Burmeister, C. de Munck, T. Esch, J. Hidalgo, F. Kanani-Sühring, Y. T. Kwok, A. Lemonsu, J. P. L'evy, B. Maronga, D. Pavlik, G. Petit, L. See, R. Schoetter, N. Tornay, A. Votsis y J. Zeidler. City-descriptive input data for urban climate models: Model requirements, data sources and challenges. *Urban Climate*, 31, 2020
- 16. V. Masson, A. Lemonsu, J. Hidalgo y J. Voogt. Urban climates and climate change. *Annu Rev Environ Resour*, 45:411–444. doi:10.1146/annurev-environ-012320-083623, 2020.
- 17. Meteoblue. Datos climáticos y meteorológicos históricos para Atenas. https://www.meteoblue.com, 2025.
- 18. G. Mihalakakou, H. Flocas, M. Santamouris y C. Helmis. Application of neural networks to the simulation of the heat island over Athens, Greece, using synoptic types as a predictor. *Journal of Applied Meteorology*, 41:519–527, 2002.
- 19. C. Morris y I. Simmonds. Associations between varying magnitudes of the urban heat island and the synoptic climatology in Melbourne, Australia. *International Journal of Climatology*, 20:1931–1954, 2000.
- 20. C. Muller, L. Chapman, S. Grimmond, D. Young y X. Cai. Sensors and the city: A review of urban meteorological networks. *International Journal of Climatology*, 2013.
- 21. P. Nastos y A. Matzarakis. The effect of air temperature and human thermal indices on mortality in Athens, Greece. *Theoretical and Applied Climatology*, 108:591–599, 2011.
- 22. A. Oliveira, A. Lopes y S. Niza. Local climate zones datasets from five southern european cities: Copernicus based classification maps of Athens, Barcelona, Lisbon, Marseille and Naples. *Data in Brief*, 31:105802, 2020.
- 23. A. Oliveira, A. Lopes y S. Niza. Local climate zones in five southern european cities: An improved gis-based classification method based on Copernicus data. *Urban Climate*, 33:100631, 2020.
- 24. G. Papanikos. The great recession and its effect on greek education spending. *The Athens Institute*, 2017.

- 25. P. Phelan, K. Kaloush, M. Miner, J. Golden, B. Phelan y R. Taylor. Urban heat island: Mechanisms, implications, and possible remedies. *Annu Rev Environ Resour*, 40:285–307. doi:10.1146/annurev-environ-102014-021155, 2015.
- 26. N. Prezerakos. Etesian winds outbursts over the Greek Seas and their linkage with larger-scale atmospheric circulation features: Two real time data case studies. *Journal of Geophysical Research*, 35:89–111, 2021.
- 27. I. A. Pérez, M. García y M. A. Hernández-Ceballos. Heatwave events and concurrent ozone concentrations between 2006-2022 at two sites in southern and northern Spain. *Environmental Science and Pollution Research*, 2024.
- 28. I. A. Pérez y M. A. García. Climate change in the Iberian Peninsula by weather types and temperature. *Atmospheric Research*, 284, 2023.
- 29. I. D. Stewart y T. Oke. Local climate zones for urban temperature studies. Bulletin of the American Meteorological Society, 93:1879–1900, 2012.

Figuras y Tablas

Figuras

■ Figura 1.1. Clasificación de las zonas climáticas locales (LCZ)	.9
■ Figura 1.2. Población en Atenas	11
■ Figura 1.3. Climograma en Atenas	12
■ Figura 1.4. Evolución urbana entre 1992 y 2021	13
\blacksquare Figura 1.5. Distribución de las zonas climáticas locales (LCZ) en Atenas	14
■ Figura 1.6. Ejemplos de las diferentes LCZ en Atenas	15
■ Figura 2.1. Clasificación de Lamb en los tipos de tiempo	17
■ Figura 2.2. Red utilizada en el análisis para determinar los tipos de tiempo Lamb	
■ Figura 3.1. Distribución espacial de las temperaturas	21
■ Figura 3.2. Diagrama de cajas de temperaturas urbanas y rurales diurnas y no turnas	
■ Figura 3.3. Diagrama de cajas de las temperaturas por estaciones	25
■ Figura 3.4. Evolución de la intensidad de la isla de calor urbana durante los mes del año	
 Figura 3.5. Evolución de la intensidad de la isla de calor urbana entre 1990 y 20 28 	22
■ Figura 3.6. Evolución de la UHI, diurna y nocturna, por meses desde 1990 has 2022.	
■ Figura 3.7. Tipos de tiempos de Lamb 1990–2022	31
■ Figura 3.8. Tipos de tiempos de Lamb 1990–2022	32
■ Figura 3.9. Frecuencia de tipos de tiempos de Lamb para la región de Atendurante el periodo 1990–2022	
■ Figura 3.10. Diagrama de caja y bigotes de las presiones medias diarias para región de Atenas durante el periodo 1990–2022	

Tablas

-	Tabla 3.1. Temperaturas medias diurnas, nocturnas y la UHI correspondiente 22
	Tabla 3.2. Temperaturas medias diurnas, nocturnas y la UHI correspondiente por meses
•	Tabla 3.3. Estadísticos de las estaciones del año para el día
•	Tabla 3.4. Estadísticos de las estaciones del a˜no para la noche
	Tabla 3.5. Frecuencia tipos de tiempo de Lamb por mes (parte 1: A–CNW) 34
-	Tabla 3.6. Frecuencia de tipos de tiempo de Lamb por mes (parte 2: CS-W) .34