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Resumen

El objetivo del presente trabajo es presentar un formalismo geométrico que permita realizar un estudio
global de diversos sistemas termodinámicos fuera del equilibrio. Para ello se realizará una introducción a la
geometŕıa diferencial y se estudiará la aplicación de la misma a la mecánica, tanto a través del formalismo
lagrangiano como del hamiltoniano. Se generalizará este enfoque, partiendo de los postulados de Stückel-
berg, para describir la termodinámica del no equilibrio.

Abstract

The aim of this thesis is to present a geometric formalism allowing the study of non-equilibrium ther-
modynamics. An introduction of differential geometry will be carried out and its application to mechanics
explored both via the Lagrangian and the Hamiltonian formalism. This approach will be generalized,
following Stückelberg’s postulates, to describe non-equilibrium thermodynamics.
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2 PRELIMINARES MATEMÁTICOS

1. Introducción

Los formalismos lagrangiano y hamiltoniano de la mecánica fueron introducidos por Lagrange, Hamil-
ton, Laplace, Euler y Jacobi en los siglos XVIII y XIX. No obstante, fue Poincaré, en el siglo pasado el
que introdujo la formulación moderna de la geometŕıa diferencial y la aplicó a la mecánica, permitiendo
estudiar los problemas de forma global, lo que resultó de gran utilidad para entender la estabilidad de
ciertos sistemas [1]. Este enfoque permitió utilizar métodos topológicos para estudiar la mecánica en el
espacio de las fases, en lugar de disponer solo de los métodos anaĺıticos. Los primeros desarrollos de esta
teoŕıa fueron realizados por Poincaré, Kolmogorov, Arnold y Moser, entre otros, quienes consiguieron pro-
bar la existencia de soluciones periódicas del problema de los tres cuerpos sin necesidad de encontrarlas
expĺıcitamente.

Comenzaremos el trabajo realizando una introducción a las técnicas de la geometŕıa diferencial nece-
sarias para entender el formalismo geométrico de la mecánica. Para ello serán de especial relevancia los
fibrados tangente y cotangente. La mecánica geométrica necesita dotar a las variedades diferenciales de
estructura adicional, dando lugar a las variedades simplécticas. Para poder estudiar sistemas mecánicos
de complejidad creciente introduciremos dos generalizaciones de la estructura simpléctica, las variedades
cosimplécticas y las variedades de contacto.

El objetivo último del trabajo es presentar el formalismo geométrico desarrollado por de León y Bajo
[16] para estudiar la termodinámica del no equilibrio. Para ello presentaremos los postulados de la termo-
dinámica introducidos por Stückelberg [25]. A partir del primero de ellos deduciremos las ecuaciones que
gobiernan los sistemas termodinámicos cerrados. El segundo postulado nos permitirá restringir la forma
funcional de las fuerzas de rozamiento que actúan sobre los sistemas termodinámicos, aśı como la expresión
de la potencia introducida al sistema en forma de calor. Además, el principio de equilibrio nos llevará a
establecer propiedades sobre los valores de algunas funciones de estado de los sistemas termodinámicos en
sus estados de equilibrio.

En la última sección presentaremos dicho formalismo geométrico, basado a su vez en las ecuaciones
establecidas a partir de principios variacionales por Gay-Balmaz y Yoshimura [7]. Para ello estudiaremos
sistemas termodinámicos de complejidad creciente, comenzando con un sistema adiabáticamente cerrado
que puede describirse por una única variable no mecánica (sistema simple), siguiendo por un sistema com-
puesto también adiabáticamente cerrado y finalizando con la descripción de un sistema abierto. Además,
comprobaremos que se puede llevar a cabo el estudio tanto desde el punto de vista hamiltoniano como
desde el lagrangiano. La transformación de Lagrange nos permitirá establecer la equivalencia entre ambos
enfoques.

2. Preliminares matemáticos

En esta primera sección daremos un resumen sobre los conceptos y resultados básicos relativos a la
geometŕıa diferencial, necesarios para realizar un estudio formal de la mecánica y la termodinámica desde
el punto de vista geométrico. Para un estudio detallado de la geometŕıa diferencial nos referimos a las
referencias [15, 27].

En todo el trabajo se asumirá el convenio de sumación de ı́ndices repetidos de Einstein.

2.1. Variedades diferenciables

Comenzamos estudiando el concepto de variedad diferenciable, pues las coordenadas generalizadas que
caracterizan el estado de los sistemas f́ısicos representan puntos de ciertas variedades diferenciables.

Definición 2.1.1. Dado un espacio topológico S, una carta o sistema coordenado en S es un homeomor-
fismo ξ : U ⊂ S −→ ξ(U) ⊂ Rn donde U es un abierto de S y ξ(U) un abierto de Rn. Siendo:

ξ(p) =
(
x1(p), . . . , xn(p)

)
,

las funciones x1, . . . , xn se denominan funciones coordenadas o coordenadas locales de ξ y a n se le denomina
dimensión de ξ.

Se dice que dos cartas ξ, η en S se cortan suavemente si las funciones ξ◦η−1 y η◦ξ−1 son diferenciables,
es decir, de clase C∞ en sus respectivos abiertos de definición.
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2 PRELIMINARES MATEMÁTICOS

Definición 2.1.2. Un atlas n-dimensional en un espacio topológico S es un conjunto de cartas de dimensión
n tales que:

Cada punto de S está contenido en el dominio de alguna carta.

Todo par de cartas en S se cortan suavemente.

Un atlas se dice completo si contiene a cada carta en S que corta suavemente a toda carta del atlas.

El siguiente resultado nos asegura que los atlas completos existen y que no es necesario preocuparnos
de, si al definir una variedad mediante un atlas concreto, este es o no completo.

Teorema 2.1.3. Todo atlas en S está contenido en un único atlas completo.

Definición 2.1.4. Una variedad diferenciable es un espacio de Hausdorff, M con un atlas completo que
cuenta con una base de abiertos numerable. Se define la dimensión de la variedad como la de su atlas.

La condición de que el espacio M posea una base de abiertos numerable, aśı como el hecho de que sea
de Hausdorff, son propiedades matemáticas necesarias para alguna de las demostraciones de los resultados
utilizados en el resto del trabajo. No obstante, la primera de las condiciones no es estrictamente necesaria
para definir una variedad. Algunos autores como [21] deciden no incluirla en la definición y hacen un
tratamiento especial de aquellas variedades que śı la cumplen.

Si bien la definición rigurosa del concepto de variedad diferenciable implica varios tecnicismos ma-
temáticos, intuitivamente éstas son un conjunto que localmente se parece a un espacio eucĺıdeo. Por ello,
v́ıa un atlas, se pueden transportar conceptos del cálculo diferencial e integral a estos espacios más genera-
les. Además, según el teorema de Embebimiento de Whitney, siempre se puede considerar que la variedad
se encuentra dentro de RN para N suficientemente grande.

Ejemplo 2.1.5. 1. El primer ejemplo de variedad diferenciable es el propio espacio eucĺıdeo Rn en el
cual se desarrolla la mecánica newtoniana.

2. Un ejemplo ya no trivial es el de las curvas y superficies suaves contenidas en R3 (sin bordes).

Extendemos ahora el concepto de funciones diferenciables que conocemos para las aplicaciones de Rn

a aplicaciones en variedades diferenciables.

Definición 2.1.6. Sea f :M −→ R una función definida sobre una variedad diferenciable M . Se dice que
f es diferenciable si para todo sistema coordenado ξ : U −→ Rn, f ◦ ξ−1 es diferenciable, en el sentido
habitual. Denotaremos por F(M) al conjunto de todas las funciones diferenciables sobre una variedad.

Definición 2.1.7. Sean M , N variedades diferenciables, no necesariamente de la misma dimensión. Una
aplicación ϕ : M −→ N se dirá diferenciable si para todo sistema coordenado ξ de M y η de N se tiene
que η ◦ ϕ ◦ ξ−1 es diferenciable en el sentido habitual.

Se dirá que ϕ es un difeomorfismo si tiene inversa y también es diferenciable y, en tal caso, se dirá que
M y N son difeomorfas. Se dirá que ϕ es un difeomorfismo local si, alrededor de cada punto, existe un
abierto tal que al restringir ϕ a dicho abierto, es un difeomorfismo.

Observación 2.1.8. Estas definiciones, cuando se trabaja con Rn con su estructura de variedad diferenciable
habitual, se reducen a las de funciones y aplicaciones diferenciables habituales.

2.2. Vectores tangentes, aplicación diferencial y subvariedades

Seguiremos la definición de vectores tangentes presentada en [20]. Para introducir el concepto de vector
tangente, consideremos el caso de R3. Podemos pensar en R3 como el conjunto de puntos dados por tres
coordenadas, pero también podemos considerarlo como un espacio vectorial compuesto por vectores de
tres componentes. Estos vectores los podemos colocar en cada punto de R3, de manera que en cada uno
de estos puntos tendremos un espacio vectorial.

De manera análoga, con los vectores tangentes conseguiremos definir un espacio vectorial en cada punto
de la variedad diferenciable. Estos serán además, de manera natural, una generalización del concepto de
derivada direccional que conocemos en Rn.
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2 PRELIMINARES MATEMÁTICOS

Definición 2.2.1. Una curva en M es una aplicación diferenciable, σ, de un intervalo I ⊂ R en M . Se
dice que σ es una curva en un punto p ∈ M si 0 ∈ I y σ(0) = p. Decimos que dos curvas en p, σ y τ , son
tangentes si existe un sistema coordenado (ξ, U), p ∈ U , con funciones coordenadas xi tal que:(

d(xi ◦ σ)
dt

)
t=0

=

(
d(xi ◦ τ)

dt

)
t=0

, 1 ≤ i ≤ n.

Definición 2.2.2. El conjunto de todas las curvas en p ∈M tangentes en p a una curva σ en p dada (la
clase de equivalencia), se denomina vector tangente a σ en p, y se denota σ̇(0). El conjunto de todos los
vectores tangentes a p se denomina espacio tangente a p, y se denota Tp(M).

En verdad, siendo (ξ, U) un sistema coordenado entorno a p ∈M , podemos identificar el vector tangente
a σ en p con la n-úpla: ((

d(x1 ◦ σ)
dt

)
0

, . . . ,

(
d(xn ◦ σ)

dt

)
0

)
, (1)

la cual no depende del representante σ de la clase de equivalencia tomado. De hecho, por medio de esta
identificación, se dota al espacio tangente de estructura de espacio vectorial. Esta estructura no depende
del sistema coordenado elegido. Aśı vemos que los vectores tangentes dan un sentido a la“velocidad”de las
curvas.

Definición 2.2.3. Si σ : I −→ M es una curva, t ∈ I, se define el vector tangente a σ en t, como
σ̇(t) = τ̇(0), donde τ(s) = σ(s+ t), ∀t ∈ I.

Ejemplo 2.2.4. Sea M una variedad diferenciable, p ∈ M y sea (ξ, U) un sistema coordenado entorno
a p. Denotamos por xi a sus funciones coordenadas. Entonces podemos considerar las curvas σi(t) =
ξ−1(ξ(p) + tei), donde ei es el i-ésimo vector coordenado de Rn. Estas curvas son las que trazaŕıa una
part́ıcula al aumentar su coordenada i-ésima cuando se expresa su posición usando el sistema coordenado
ξ. Denotamos sus vectores tangente por: (

∂

∂xi

)
p

= σ̇i(0).

Estos forman una base de Tp(M).

Definición 2.2.5. Sea F : M −→ N una aplicación diferenciable. Se define su aplicación diferencial en
p ∈M , dF (p) o F∗, como la aplicación lineal dF (p) : Tp(M) −→ TF (p)(N) dada por:

dF (p)(σ̇(0)) =
˙̊ �(F ◦ σ)(0).

Observación 2.2.6. Usando el teorema de la aplicación inversa se puede probar que una aplicación F
entre variedades es un difeomorfismo local si y solo si su aplicación diferencial en cada punto de M es un
isomorfismo lineal.

En particular, cuando consideremos funciones f : M −→ R podemos considerar que los vectores
tangentes actúan sobre f como:

σ̇(0) (f) = df(p) (σ̇(0)) .

De forma que, si consideramos un sistema coordenado ξ con funciones coordenadas xi y σ̇(0) = σi
(

∂
∂xi

)
p
,

entonces se tiene que, identificando Tf(p)R con R por medio del isomorfismo d
dt 7→ 1:

σ̇(0) (f) = σi

(
∂(f ◦ ξ−1)

∂xi

)
ξ(p)

.

Es decir, los vectores tangentes actúan sobre las funciones definidas sobre variedades de forma análoga a
como lo haŕıan las derivadas direccionales en Rn. Se puede probar fácilmente que cumplen las siguientes
propiedades que, de hecho, caracterizan a los vectores tangentes y permiten dar una definición alternativa
de ellos (ver [15, 22]).

Proposición 2.2.7. Sean f, g : M −→ R funciones definidas sobre una variedad y sea p ∈ M . Sean
v ∈ TpM y α ∈ R. Entonces se cumple:
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1. v (f + g) = v(f) + v(g),

2. v(αf) = αv(f),

3. v(fg) = v(f)g(p) + f(p)v(g).

De manera análoga, la diferencial de una función entre variedades actuará de forma análoga a como lo
hace la diferencial de una función de Rn en Rm, como muestra en particular el siguiente resultado:

Proposición 2.2.8. Sean F : M −→ N , G : N −→ P dos aplicaciones diferenciables. Entonces G ◦ F es
diferenciable y se cumple que:

d(G ◦ F )(p) = dG(F (p)) ◦ dF (p), ∀p ∈M.

Definición 2.2.9. Un campo de vectores es una aplicación, X, que a cada punto p de M le asigna un
vector tangente a M en p, X(p).

Dado un sistema coordenado (ξ, U) con coordenadas locales xi , i = 1, . . . ,m, podemos expresar en
cada punto p ∈ U el vector tangente X(p) en la base del espacio tangente definida en el ejemplo previo.
Aśı pues:

X(p) = Xi(p)

(
∂

∂xi

)
p

.

De hecho, se cumple que Xi(p) = X(p)(xi). Si (ϕ, V ) es otro sistema coordenado con coordenadas locales
yj , j = 1, . . . ,m, entonces se tiene que:

X(p) = Y j(p)

(
∂

∂yj

)
p

,

con:

Y j(p) = Xi(p)

(
∂(yj ◦ ξ−1)

∂xi

)
ξ(p)

.

Definición 2.2.10. Diremos que un campo de vectores X es diferenciable o C∞ si, usando la notación
precedente, las funciones Xi son diferenciables para todo sistema coordenado. De ahora en adelante en-
tenderemos que todos los campos de vectores con los que trabajamos son diferenciables. El conjunto de
todos los campos de vectores diferenciables sobre M se denotará X(M).

Definición 2.2.11. Sea X un campo de vectores en una variedad M . Se dice que una curva σ : I −→M
es una curva integral de X si ∀t ∈ I, se cumple que σ̇(t) = X(σ(t)), es decir, si la velocidad de la curva σ
viene dada en cada punto por X.

Usando el teorema de existencia y unicidad de solución de ecuaciones diferenciales, se puede probar el
siguiente resultado trabajando en un sistema coordenado.

Teorema 2.2.12. Dado X un campo de vectores en M y p0 ∈ M , existen ε > 0 y una única curva
σ : (−ε, ε) −→M tales que σ es curva integral de X y σ(0) = p0.

Definición 2.2.13. Sea M una variedad diferenciable. Un grupo de transformaciones 1-paramétrico local
de M es una aplicación:

ϕ : (−ε, ε)× U −→M,

con U ⊂M abierto, tal que:

1. Para todo t ∈ (−ε, ε), ϕt : U −→ ϕ(t, U) dada por ϕt(p) = ϕ(t, p) es un difeomorfismo.

2. Si s, t, s+ t ∈ (−ε, ε), entonces para todo p ∈ U se cumple que ϕs+t(p) = ϕs (ϕt(p)).

La siguiente proposición establece que, si consideramos un abierto de M suficientemente pequeño y lo
evolucionamos siguiendo las curvas integrales de un campo de vectores X, entonces, para cada instante t,
dicha evolución es un difeomorfismo.

Proposición 2.2.14. Sea X un campo de vectores en M y sea p0 ∈ M . Entonces existen un entorno
U de p0, ε > 0 y un grupo de transformaciones 1-paramétrico local de M , ϕ : (−ε, ε) × U −→ M (que
denominaremos grupo 1-paramétrico de transformaciones local generado por X) tales que para cada p ∈ U
X(p) es el vector tangente a la curva t 7−→ ϕ(t, p) en t = 0. Además, en tal caso, las curvas t 7−→ ϕ(t, p)
son curvas integrales de X.
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Observación 2.2.15. De hecho, si la variedad M es compacta, se puede probar fácilmente que dicho grupo
1-paramétrico de transformaciones puede definirse en (−ε, ε)×M para algún ε > 0.

El siguiente concepto será un análogo de lo que las superficies y curvas diferenciales en R3 son al espacio
total.

Definición 2.2.16. Una variedad diferenciable P es una subvariedad de M si:

P es un subespacio topológico de M .

La aplicación inclusión, j : P −→ M es diferenciable y para cada p ∈ P , su aplicación diferencial es
inyectiva.

Esta última condición nos permite identificar el espacio tangente a P en cada punto con un subespacio
vectorial de Tp(M) e ignorar la aplicación inclusión.

2.3. Fibrados tangente y cotangente

Pasamos a construir ahora dos variedades diferenciables a partir de una variedad diferenciable M
dada, las cuales serán vitales en nuestro estudio posterior, pues representarán el espacio de configuración
y velocidades y el espacio de las fases de un sistema cuyas coordenadas generalizadas están descritas por
puntos de la variedad M . Estas estructuras serán casos particulares de una estructura geométrica más
general: las variedades fibradas y, en particular, los fibrados vectoriales.

Definición 2.3.1. Sea M una variedad de dimensión n y consideremos el conjunto TM =
⋃

p∈M TpM
junto con la proyección canónica, τM : TM −→ M dada por τM (v) = p, ∀v ∈ TpM . Entonces la terna
(TM, τM ,M) se denominará fibrado tangente de M . En ocasiones nos referiremos directamente a TM
como el fibrado tangente de M .

Veamos cómo dotar al fibrado tangente a su vez de estructura de variedad diferenciable, dando un
atlas de la misma. Para ello consideremos la notación de la definición anterior y sea (ϕ,U) un sistema
coordenado en M con coordenadas locales (x1, . . . , xn). Definimos, siendo TU =

⋃
p∈U TpM :

Φ : U × Rn −→ TU

(p, a) 7−→ ai
(

∂

∂xi

)
p

,

donde a = (a1, . . . , an).
Esta aplicación es claramente biyectiva lo que permite, usando el lema del pegado, dotar a TM de una

topoloǵıa, que es la única tal que Φ es homeomorfismo.
Consideramos ahora la aplicación:

Φ′ : ϕ(U)× Rn ⊂ R2n −→ TU

(x, a) 7−→ ai
(

∂

∂xi

)
ϕ(x)

.

Si (U, ϕ) y (V, ψ) son dos sistemas coordenados con coordenadas locales (x1, . . . , xn) e (y1, . . . , yn),
respectivamente, haciendo uso de la matriz de cambio de base en cada espacio tangente, si p ∈ U ∩ V y
v ∈ TpM es tal que:

v = vi
(

∂

∂xi

)
p

= wj

(
∂

∂yj

)
p

,

entonces se cumple que:

wj = vi
(
∂(yj ◦ ϕ−1)

∂xi

)
ϕ(p)

.

Con lo que, usando la notación anterior, la aplicación (Ψ′)
−1 ◦ Φ′ es C∞ en R2n, pues sus primeras n

componentes serán las componentes de ψ−1 ◦ ϕ, mientras que las últimas n componentes son las dadas
por wj , de acuerdo con la expresión anterior. Todo esto nos permite comprobar que TM es una variedad
diferenciable y que las aplicaciones Φ−1 : TU −→ ϕ(U) × Rn (la inversa de las definidas anteriormente)
son sistemas coordenados de las mismas. Estos sistemas coordenados se denominan inducidos y son con
los que trabajaremos salvo que se indique lo contrario.
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Observación 2.3.2. Es claro que un campo de vectores (diferenciable), X, sobre una variedad, M , no es
sino una aplicación diferenciable X : M −→ TM , cumpliendo que τM ◦ X = IdM , es decir, una sección
diferenciable de la proyección canónica.

Definimos a continuación una forma de extender las aplicaciones entre variedades diferenciables a sus
fibrados tangentes.

Definición 2.3.3. Sea F : M −→ N una aplicación diferenciable. Definimos la aplicación TF : TM −→
TN dada por:

TF (v) = dF (p)(v), v ∈ TpM.

Pasamos ahora a estudiar las 1-formas y el espacio cotangente. Para ello en primer lugar recordamos
el concepto de espacio dual, propio del álgebra lineal.

Definición 2.3.4. Sea V un espacio vectorial real. Se define el espacio dual de V , V ∗, como el espacio
vectorial de las aplicaciones lineales f : V −→ R.

Definición 2.3.5. Sea M una variedad diferenciable y sea p ∈ M . Se define el espacio cotangente de M
en p, T ∗

pM como el espacio dual de TpM .

Definición 2.3.6. En las condiciones anteriores, una aplicación η tal que a cada p ∈ M le asigna un
elemento η(p) ∈ T ∗

pM se denomina una 1-forma.
Sea η una 1-forma sobreM y X un campo de vectores enM . Entonces η(X) :M −→ R es una función.

Si para todo campo de vectores diferenciable sobre M , X, se cumple que η(X) ∈ F(M), entonces se dirá
que η es una 1-forma diferenciable.

Observación 2.3.7. Sea f ∈ F(M). Entonces la diferencial de f es una 1-forma df dada por df(v) = v(f),
∀v ∈ TM , la cual es diferenciable.

Ejemplo 2.3.8. En las condiciones anteriores consideremos un sistema coordenado (ξ, U) con coordenadas
locales xi, i = 1, . . . , n. Consideremos las n 1-formas dx1, . . . , dxn. En cada punto p ∈ U se tiene que
estas son la base dual de la base considerada en la sección anterior en el espacio tangente pues:

dxi

((
∂

∂xj

)
p

)
=

(
∂(xi ◦ ξ−1)

∂xj

)
p

=

(
∂ui

∂xj

)
p

= δi,j ,

siendo ui la i-ésima proyección canónica de Rn en R.
De hecho, se cumple que para toda 1-forma, η, se puede expresar:

η = ηidx
i, ηi = η

(
∂

∂xi

)
.

Y en particular, sobreentendiendo la composición con ξ−1:

df =
∂f

∂xi
dxi.

Estudiamos ahora las propiedades básicas de la diferencial de una función, las cuales se deducen fácil-
mente de la definición y, en el caso de la última propiedad, trabajando localmente.

Proposición 2.3.9. La aplicación diferencial d cumple las siguientes propiedades:

Es una aplicación R-lineal.

Cumple la regla del producto, es decir, d(fg) = gd(f) + fd(g), ∀f, g ∈ F(M).

Si f ∈ F(M) y h ∈ F(R), entonces d(h(f)) = h′(f)d(f).

Definición 2.3.10. Sea M una variedad diferenciable y sea T ∗M =
⋃

p∈M T ∗
pM y πM : TM −→ M la

proyección canónica, dada por πM (α) = p si α ∈ T ∗
pM . Entonces la terna (T ∗M,πM ,M) se denomina

fibrado cotangente de M . En ocasiones nos referiremos directamente a T ∗M como fibrado cotangente de
M .
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Al igual que ocurre con el fibrado tangente, se puede dotar al fibrado cotangente de una estructura
de variedad diferenciable natural inducida por la variedad base, M . Para ello consideremos (ϕ,U) un
sistema coordenado en M con coordenadas locales (x1, . . . , xn) y, siendo T ∗U =

⋃
p∈U T

∗
pM , definimos la

aplicación:

Φ : U × Rn −→ T ∗U

(p, a) 7−→ aidx
i(p)

donde a = (a1, . . . , an).
Esta aplicación es claramente biyectiva lo que permite, usando el lema del pegado, dotar a T ∗M de

una topoloǵıa, que es la única tal que Φ es homeomorfismo.
Consideramos ahora la aplicación:

Φ′ : ϕ(U)× Rn ⊂ R2n −→ T ∗U

(x, a) 7−→ aidx
i(ϕ(x))

Razonando de manera análoga al caso del fibrado tangente, se comprueba que

{((Φ′)−1, T ∗U) : (ϕ,U) es sistema coordenado de M}

forman un atlas diferenciable sobre T ∗M . A estos sistemas coordenados los denominaremos de nuevo
inducidos.

2.4. Formas diferenciales

En la sección anterior hemos introducido las 1-formas diferenciales. En esta sección, generalizaremos
este concepto para introducir las n-formas diferenciales y sus propiedades fundamentales. Un análisis más
detallado de las formas diferenciales puede leerse en el caṕıtulo 7 de [24].

Para estudiarlas, hemos de comenzar comentando algunos conceptos propios del álgebra lineal.

Definición 2.4.1. Sea V un espacio vectorial n-dimensional sobre R. Una aplicación T :

k︷ ︸︸ ︷
V × · · · × V −→ R

se dice que es k-multilineal si es lineal en cada componente. Además, se dice que T es alternada si:

T (v1, . . . , vi, . . . , vj , . . . , vk) = 0, si vi = vj , i ̸= j.

El conjunto de las aplicaciones k-multilineales alternadas se denotará Ωk(V ).

Definición 2.4.2. Sean V un espacio vectorial de dimensión n sobre R, v1, . . . , vk ∈ V y σ una permutación
de {1, . . . , k}, es decir, σ ∈ Sk. Entonces se define:

σ(v1, . . . , vk) = (vσ(1), . . . , vσ(k)).

Definición 2.4.3. Sea f : V −→ W una aplicación lineal. Entonces se define f∗ : Ωk(W ) −→ Ωk(V )
como:

f∗(T )(v1, . . . , vk) = T (f(v1), . . . , f(vk)),

para todos v1, . . . , vk ∈ V . Esta es de nuevo una aplicación lineal.

Definición 2.4.4. Sea T una aplicación k-multilineal sobre V . Se define el alternado de T por:

Alt(T ) =
1

k!

∑
σ∈Sk

sgn(σ)T ◦ σ,

donde sgn(σ) es la signatura de la permutación, 1 si es par y −1 si es impar.

A partir de la definición se puede comprobar que para toda aplicación k-multilineal, T , se cumple que
Alt(T ) ∈ Ωk(V ) y que si T ∈ Ωk(V ) entonces Alt(T ) = T .

Definición 2.4.5. Sean ω ∈ Ωk(V ) y η ∈ Ωl(V ). Se define el producto vectorial de ω y η como:

ω ∧ η =
(k + l)!

k!l!
Alt(ω ⊗ η),

donde ⊗ denota el producto tensorial.
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Proposición 2.4.6. Usando la notación de la definición anterior, el producto vectorial cumple las siguien-
tes propiedades:

1. Es una aplicación bilineal.

2. Es anticonmutativo en el sentido que η ∧ ω = (−1)klω ∧ η.

3. Dada f :W −→ V se cumple que f∗(ω ∧ η) = f∗ω ∧ f∗η.

Este producto vectorial nos permitirá construir bases de los espacios vectoriales de las aplicaciones
multilineales alternadas.

Teorema 2.4.7. Sea V un R-espacio vectorial de dimensión n y sea {ϕi}ni=1 una base de V ∗. Entonces,
el conjunto de los elementos de la forma:

ϕi1 ∧ · · · ∧ ϕik , 1 ≤ ii < · · · < ik ≤ n,

es una base de Ωk(V ).

Este teorema nos proporciona una caracterización inmediata de los conjuntos de formas lineales inde-
pendientes.

Corolario 2.4.8. Sean ω1, . . . ωk ∈ Ω1(V ). Entonces, dichas formas lineales son independientes si y solo
si:

ω1 ∧ · · · ∧ ωk ̸= 0.

Una vez completado este repaso sobre los preliminares algebraicos, procedemos a definir las formas
diferenciales de manera general.

SeaM una variedad diferenciable y sea p ∈M . Consideramos las aplicaciones k-multilineales alternadas
del espacio tangente a M en p, Ωk(TpM), y definimos Ωk(TM) =

⋃
p∈M Ωk(TpM).

Podemos dotar a este nuevo conjunto de estructura de variedad diferenciable de manera análoga a
como se hizo para el fibrado tangente y el fibrado cotangente, considerando ahora las bases en Ωk(TpM)
dadas a partir de coordenadas locales en M , por:

{dxi1 ∧ · · · ∧ dxik , 1 ≤ i1 < · · · < ik ≤ n}. (2)

Definición 2.4.9. Una k-forma diferencial en M es una sección diferenciable de Ωk(TM) respecto a la
proyección canónica, πk : Ωk(TM) −→ M dada por π(ω) = p si ω ∈ Ωk(TpM). Denotaremos por Λk(M)
al conjunto de todas las k-formas diferenciables sobre M .

Es decir, una k-forma diferencial (o simplemente k-forma) es una aplicación que asigna a cada punto
p ∈M una aplicación k-multilineal alternada que actúa sobre TpM , de manera que los coeficientes en las
bases locales inducidas por las coordenadas locales de M dadas en (2), sean aplicaciones diferenciables
entre variedades.

Estudiemos ahora sus propiedades básicas, las cuales se deducen de forma inmediata trabajando pun-
tualmente, es decir, en Ωk

p(M).

Proposición 2.4.10. Sean ω1, ω2, ω k-formas sobre una variedad diferenciable M , η1, η2, η l-formas sobre
M ; f : N −→M una aplicación entre variedades diferenciables y g ∈ F(M). Entonces:

1. (ω1 + ω2) ∧ η = ω1 ∧ η + ω2 ∧ η.

2. ω ∧ (η1 + η2) = ω ∧ η1 + ω ∧ η2.

3. f∗ (ω ∧ η) = f∗ω ∧ f∗η (se entiende que f∗, llamado pullback de f , es la aplicación (df)∗ en cada
punto de la variedad).

4. (gω) ∧ η = ω ∧ (gη) = g (ω ∧ η).

5. ω ∧ η = (−1)klη ∧ ω.

Nótese que las 1-formas se corresponden con el concepto ya definido en la sección anterior, mientras
que podemos identificar las 0-formas con las funciones diferenciables sobre M .

Pasamos ahora a definir dos operaciones nuevas sobre el conjunto de las formas diferenciales: la dife-
rencial exterior y la derivada de Lie.
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Definición 2.4.11. Sea M una variedad diferenciable, sea un entorno coordenado de M con coordenadas
locales, xi, i = 1, . . . , n, y sea ω la k-forma dada localmente por:

ω =
∑

1≤i1<···<ik≤n

ωi1,...,ikdx
i1 ∧ · · · ∧ dxik .

Se define la k + 1-forma dω, llamada diferencial exterior de ω, a partir de su expresión local:

dω =
∑

1≤i1<···<ik≤n

dωi1,...,ik ∧ dxi1 ∧ · · · ∧ dxik ,

donde dωi1,...,ik es la diferencial de una función.

Nótese que en el caso de f ∈ F(M) una 0-forma, este concepto se reduce al de df definido al estudiar
las 1-formas.

Proposición 2.4.12. Con la notación de la definición anterior, la aplicación diferencial exterior cumple
que para todas ω1, ω2, ω k-formas en M y ω3 una l-forma en M :

1. d (ω1 + ω2) = dω1 + dω2.

2. d (ω1 ∧ ω3) = dω1 ∧ ω3 + (−1)kω1 ∧ dω3.

3. d (dω) = 0.

Se puede probar que la definición de esta aplicación no depende del sistema coordenado elegido, y por
ello está bien definida de forma global y no solo en el dominio del sistema coordenado tomado. También
se puede probar que es la única aplicación que se puede definir entre k-formas cumpliendo las propiedades
anteriores y actuando sobre F(M) de la misma forma que lo hace d.

Proposición 2.4.13. Sean f : M −→ N una aplicación diferenciable entre variedades y ω una k-forma
en N . Entonces:

f∗ (dω) = d (f∗ω) .

Definición 2.4.14. Se dice que una k-forma, ω, en M es cerrada si dω = 0; y se dice que es exacta si
existe una k − 1-forma en M , η tal que ω = dη

Observación 2.4.15. Se puede demostrar que toda k-forma cerrada es localmente exacta, es decir, que dada
ω cerrada, existe un abierto U en M y una k − 1-forma en U , η, tal que en U se cumple que ω = dη,
pero puede que η no se pueda extender de forma diferenciable a toda M . Esto se conoce como Lema de
Poincaré.

Definición 2.4.16. Sea M una variedad diferenciable y X un campo de vectores sobre M . Se define la
derivada de Lie con respecto de X como la única aplicación de Ω(TM) =

⋃
k Ω

k(TM) en śı mismo R lineal
tal que:

1. LXf = Xf ∀f ∈ F(M)

2. Si ω ∈ Ωk(TM) y η ∈ Ωl(TM), entonces, LX (ω ∧ η) = LXω ∧ η + ω ∧ LXη

3. LX conmuta con d

Nótese que efectivamente estas propiedades definen una única aplicación, pues, para calcular la derivada
de Lie de una k-forma, bastará con expresar esta en unas coordenadas locales, usar la propiedad 2 de la
definición en cada sumando, a continuación, la propiedad 3 para conmutar cada d con la derivada de Lie
y, finalmente, usar la propiedad 1.

Definición 2.4.17. Sea M una variedad diferenciable y X un campo de vectores. Se define el producto
interno de una k-forma, ω, por X, iXω, como la (k − 1)-forma:

1. iXω = 0 si k = 0.

2. iXω (Y1, . . . , Yk−1) = ω (X,Y1, . . . , Yk−1) ∀Y1, . . . , Yk−1 campos de vectores sobre M .

Proposición 2.4.18. El producto interno en una variedad M por un campo de vectores, X, cumple que:
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1. (iX)
2
= 0.

2. iX (ω ∧ η) = (iXω) ∧ η + (−1)kω ∧ (iXη) , ∀ω ∈ Ωk(TM), η ∈ Ωl(TM).

El siguiente resultado nos relaciona los tres conceptos previos, dándonos una forma alternativa de
calcular la derivada de Lie:

Proposición 2.4.19. Sea M una variedad diferenciable y X un campo de vectores sobre M . Entonces
LX = iXd+ diX .

Cabe mencionar que las tres operaciones sobre el conjunto de las formas diferenciales sobre una variedad
presentadas previamente son casos particulares de un concepto más general: las derivaciones (ver [20]). La
proposición anterior se prueba de manera rápida haciendo uso de dicho concepto.

2.5. Variedades simplécticas

El estudio de la mecánica desde el punto de vista geométrico se basa en las variedades simplécticas.
Por ello, haremos un estudio de las mismas basándonos en [20, 23].

Comenzamos estudiando los espacios vectoriales simplécticos a modo de introducción.

Definición 2.5.1. Sea V un R-espacio vectorial de dimensión n y ω una forma bilineal antisimétrica sobre
V , ω ∈ Ω2(V ). Se define la aplicación lineal:

Sω : V −→ V ∗

u 7−→ iuω,

siendo iuω(v) = ω(u, v) el producto interior. Denotamos por ImSω,KerSω a la imagen y el núcleo de la
aplicación anterior, respectivamente.

Teorema 2.5.2. Sean V , ω en las condiciones de la definición anterior. Entonces, existe una base de V ,
u1, . . . , uk, e1, . . . , es, f1, . . . , fs, tal que:

ω(ui, v) = 0, ∀i = 1, . . . , k, ∀v ∈ V,

ω(ei, ej) = 0 = ω(fi, fj), ∀i, j = 1, . . . , s,

ω(ei, fj) = δi,j . ∀i, j = 1, . . . , s−

Aśı, la matriz de ω en esta base es: 0k×k 0k×s 0k×s

0s×k 0s×s Ids×s

0s×k −Ids×s 0s×s


Y el rango de ω, es decir, la dimensión de su imagen, es 2s.

Definición 2.5.3. Se dice que una forma bilineal antisimétrica ω sobre un R-espacio vectorial de dimensión
n, V es no degenerada si su rango es n, es decir, si Sω es un isomorfismo. En tal caso, se dice que el par
(V, ω) es una estructura simpléctica sobre V .

Nótese que si existe una estructura simpléctica sobre V , en virtud del teorema anterior, la dimensión
de V ha de ser par.

Definición 2.5.4. Sean (U, ω) y (V, η) estructuras simplécticas sobre los espacios vectoriales U y V ,
respectivamente. Sea h : U −→ V una aplicación lineal. Se dirá que h es una aplicación simpléctica si
h∗η = ω, es decir, si ∀u, v ∈ U , se cumple que η (h(u), h(v)) = ω(u, v).

Definición 2.5.5. Se dice que una 2-forma ω sobre una variedad diferenciable M es simpléctica si es
cerrada y ∀p ∈ M (TpM,ω(p)) es una estructura simpléctica sobre el espacio vectorial TpM . En tal caso,
se dice que el par (M,ω) es una variedad simpléctica.

Nótese que, si existe una 2-forma simpléctica sobre una variedad M , entonces la dimensión de TpM es
par para todo p ∈M y, por ello, la dimensión de la variedad diferenciable ha de ser par.
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Definición 2.5.6. Sean (M,ω1) y (N,ω2) variedades simplécticas 2n-dimensionales y sea ϕ : M −→ N
un difeomorfismo. Se dice que ϕ es un simplectomorfismo si ϕ∗ω2 = ω1. Si M = N se dice que ϕ es una
transformación canónica.

Observación 2.5.7. Si ϕ : M −→ N cumple que ϕ∗ω2 = ω1, aun si ϕ no es un difeomorfismo global entre
las variedades, se puede probar que será un difeomorfismo local.

Para ello consideremos que v ∈ Tp(M) es tal que dϕ(v) = 0, entonces, para todo w ∈ Tp(M),
Sω1(p)(v)(w) = ω1 (v, w) = ω2 (dϕ(v), dϕ(w)) = 0 y Sω1(p)(v) = 0. Como Sω1(p) es isomorfismo, v = 0,
y dϕ es inyectiva, con lo que ϕ es difeomorfismo local.

Los simplectomorfismos son a las variedades simplécticas lo mismo que los isomorfismos a los espacios
vectoriales o las isometŕıas a los espacios con producto interno. Es decir, son la forma natural en que
podemos identificar dos variedades simplécticas.

Definición 2.5.8. Sea (M,ω) una variedad simpléctica. Se define:

♭ : TM −→ T ∗M

v 7−→ iv (ω(p)) = Sω(p)(v), v ∈ TpM,

el cual es un difeomorfismo de variedades diferenciables. Para comprobar que es diferenciable basta trabajar
con coordenadas locales inducidas.

Observación 2.5.9. Podemos entender también ♭ como un F(M)-isomorfismo entre X(M) y Λ1(M), es
decir, un isomorfismo de módulos sobre el álgebra de funciones. Esto quiere decir que si X,Y ∈ X(M) y
f, g ∈ F(M), entonces Sω(fX + gy) = fSω(X) + gSω(Y ) ∈ Λ1(M).

El siguiente teorema nos permitirá trabajar de forma local cómodamente en cualquier variedad simplécti-
ca.

Teorema 2.5.10 (de Darboux). Sea ω una 2-forma de rango 2n sobre una variedad diferenciable M de
dimensión 2n+ r. Entonces ω es cerrada si y solo si ∀p ∈M, ∃ (U, ϕ) sistema coordenado en torno a p con
coordenadas locales (q1, . . . , qn, p1, . . . , pn, z

1, . . . , zr) tales que:

ω = dqi ∧ dpi.

Corolario 2.5.11. Sea (M,ω) una variedad simpléctica de dimensión 2n. Entonces ∀p ∈ M,∃ (U, ϕ)
sistema coordenado en torno a p, con coordenadas locales (q1, . . . , qn, p1, . . . , pn) tal que:

ω = dqi ∧ dpi.

A partir de este resultado, se prueba, trabajando de forma local, la siguiente proposición.

Proposición 2.5.12. Sea (M,ω) una variedad simpléctica. Entonces, siendo ωn = ω∧ n· · · ∧ω el producto
vectorial de ω consigo mismo n veces, ωn ̸= 0 y en particular M es orientable.

Estudiamos ahora el caso de mayor interés entre las variedades simplécticas y que sirve de modelo para
el resto de ellas, como consecuencia del teorema de Darboux. Estas son los fibrados cotangentes de cierta
variedad M de dimensión n. Definiremos de manera global la estructura simpléctica canónica en T ∗M y
comprobaremos que las coordenadas inducidas son coordenadas de Darboux, es decir, en las que la forma
simpléctica tiene la expresión buscada en el teorema de Darboux.

Definición 2.5.13. Se define la 1-forma λM en T ∗M , la cual actuará sobre vectores tangentes v ∈
Tα (T ∗M) con α ∈ TpM , como:

λM (v) = α(p) (dπM (α)v) .

Esta se conoce como 1-forma de Liouville.

Nótese que como πM : T ∗M −→M , entonces, dπM (α) : Tα (T ∗M) −→ TpM , con lo que env́ıa v en un
vector tangente a M sobre el que puede actuar α(p), pues es una 1-forma. Aśı pues, λM es una forma de
actuar sobre los vectores tangentes a T ∗M en α de la manera natural en que actuaŕıa α sobre la componente
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tangente a M . Este hecho queda más claro cuando consideramos coordenadas locales inducidas en T ∗M ,(
q1, . . . , qn, p1, . . . , pn

)
, en las que se cumple que, como localmente α(p) = pjdq

j y dπM (α)
(

∂
∂pi

)
= 0:

λM
(
qj , pj

)( ∂

∂qi

)
=
(
pjdq

j
)( ∂

∂qi

)
= pi,

λM
(
qj , pj

)( ∂

∂pi

)
= 0.

Y por tanto, comprobamos que:
λM = pidq

i.

Definición 2.5.14. Se define la forma simpléctica canónica sobre T ∗M por:

ωM = −dλM .

Es claro, a partir de la expresión local de la forma de Liouville, que localmente:

ωM = dqi ∧ dpi.

En particular se comprueba que es no degenerada pues, en cada punto p ∈M :

SωM (p)

(
∂

∂qi

)
p

= dpi|p,

SωM (p)

(
∂

∂pi

)
p

= −dqi|p,

con lo que SωM (p) transforma una base de TpM en una de T ∗
pM y por ello es isomorfismo. Además, se

tiene que:

♭

(
∂

∂qi

)
= dpi,

♭

(
∂

∂pi

)
= −dqi.

(3)

2.5.1. Construcción de una estructura simpléctica en TM

Procedemos ahora a construir una forma simpléctica sobre el espacio tangente de una variedad diferen-
ciable de dimensión n, M . En TM no existe una forma simpléctica canónica y hace falta definirla a partir
de una función dada, que cumpla ciertas caracteŕısticas.

Para construir esta 2-forma comenzaremos definiendo la estructura casi tangente canónica de TM
siguiendo [20].

Consideremos la proyección canónica τM : TM −→ M . Para cada v ∈ TpM definimos el siguiente
subespacio:

Vv = ker{dτM (v) : Tv(TM) −→ TpM} ⊂ Tv(TM).

Consideramos V = ∪v∈TMVv, el cual llamaremos fibrado vertical.

Definición 2.5.15. Un vector tangente a TM , z, se dirá que es vertical si z ∈ V y un campo de vectores
X ∈ X(TM) se dirá que es vertical si X(v) ∈ V para todo v ∈ TM .

Básicamente, los vectores tangentes verticales son aquellos que solo dan cuenta de variaciones cuando
cambian las coordenadas correspondientes a los vectores tangentes a M , sin importar lo que pase con las
coordenadas correspondientes a M . De hecho, un vector tangente, z, es vertical si y solo si, considerando
un sistema de coordenadas inducido en TM ,

(
qi, vi

)
:

z = zi
∂

∂vi
,

para ciertos valores zi. Es decir, que una base de Vv es { ∂
∂v1 , . . . ,

∂
∂vn }.

Definición 2.5.16. Sea v ∈ TpM y sea u ∈ TpM . Se define el levantamiento vertical de u en v, uv como
el vector tangente en t = 0 de la curva σ : R −→ TpM dada por σ(t) = v + tu.
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Observación 2.5.17. Nótese que, en las condiciones de la definición anterior, como τM (σ(t)) = p para todo

t, entonces dτM

(
˙σ(t)
)

= 0 y uv ∈ Vv. De hecho, considerando coordenadas locales inducidas en TM ,(
qi, vi

)
, si u = ui ∂

∂qi , entonces es inmediato de (1) que:

uv = ui
∂

∂vi
.

Definición 2.5.18. En las condiciones anteriores, para cada v ∈ TM define la aplicación lineal Sv :
Tv(TM) −→ Tv(TM) dada por:

Sv(z) = ((dτM ) z)
v
.

Aśı pues, podemos considerar la aplicación S : T (TM) −→ T (TM), la cual denominaremos estructura
casi tangente canónica de TM .

Nótese que S también se puede interpretar como un F(M)-morfismo de X(TM) en śı mismo. De hecho,
es un ejemplo de una clase de aplicaciones más general, los tensores de tipo (1,1).

Si consideramos coordenadas locales inducidas en TM ,
(
qi, vi

)
, entonces se tiene que:

S

(
∂

∂qi

)
=

∂

∂vi
, S

(
∂

∂vi

)
= 0.

Definición 2.5.19. Se define la derivación vertical sobre TM como la aplicación iS : Λp(TM) −→ Λp(TM)
que, para cada p = 0, 1, . . . , está definida por:

iSf = 0, iSω (X1, · · · , Xp) =

p∑
i=1

ω (X1, · · · , SXi, · · · , Xp) ,

con f ∈ C∞(TM), ω ∈ Λp(TM) y Xi ∈ X(TM), i = 1, . . . , p.

Ejemplo 2.5.20. Consideremos coordenadas locales inducidas en TM ,
(
qi, vi

)
y veamos como actúa iS

sobre las 1-formas:

iS
(
dqi
)( ∂

∂qi

)
= dqi

(
S
∂

∂qi

)
= dqi

(
∂

∂vi

)
= 0, iS

(
dqi
)( ∂

∂vi

)
= dqi

(
S
∂

∂vi

)
= dqi (0) = 0.

Razonando de igual forma para dvi concluimos que:

iS
(
dqi
)
= 0 iS

(
dvi
)
= dqi

Proposición 2.5.21. La derivación vertical cumple las siguientes propiedades:

1. Es F(M)-lineal.

2. iS (ω ∧ η) = (iSω) ∧ η + ω ∧ (iSη) para cada ω ∈ Λp(TM) y η ∈ Λq(TM).

Definición 2.5.22. Se define la diferenciación vertical en TM como la aplicación dS : Λp(TM) −→
Λp+1(TM) para cada p = 0, 1, . . . , dada por:

dS = iSd− diS ,

con d siendo la diferencial exterior e iS la derivación vertical.

Proposición 2.5.23. La diferenciación vertical cumple las siguientes propiedades:

1. dSd = −ddS .

2. d2S = 0.

3. dS (ω ∧ η) = (dSω) ∧ η + (−1)
p
ω ∧ (dSη) , con ω ∈ Λp(TM) y η ∈ Λq(TM).

Definición 2.5.24. Sea L : TM −→ R una función diferenciable. Definimos la 2-forma cerrada siguiente:

ωL = −ddSL.
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Teorema 2.5.25. La forma ωL es simpléctica sobre TM si y solo si, para cada sistema de coordenadas
locales inducidas

(
qi, vi

)
, la matriz hessiana:(

∂2L

∂vi∂vj

)
1≤i,j≤n

,

es invertible.

Demostración. Comencemos expresando localmente ωL en unas coordenadas locales inducidas como las
del enunciado:

dSL = iSdL = iS

(
∂L

∂qi
dqi +

∂L

∂vi
dvi
)

=
∂L

∂vi
dqi,

ωL =
∂2L

∂vi∂qj
dqi ∧ dqj + ∂2L

∂vi∂vj
dqi ∧ dvj . (4)

Aśı pues, al tomar el producto exterior de ω por śı misma n veces, teniendo en cuenta que, si en un
producto exterior se repite una 1-forma, este es nulo, se llega a que:

ωn
L = det

(
∂2L

∂vi∂vj

)
1≤i,j≤n

dq1 ∧ · · · ∧ dqn ∧ dv1 ∧ · · · ∧ dvn,

de donde se concluye el resultado.

El siguiente concepto nos será muy útil a la hora de estudiar sistemas mecánicos desde el punto de
vista lagrangiano, pues nos permitirá definir correctamente la enerǵıa de dichos sistemas.

Definición 2.5.26. Se define el campo de vectores de Liouville ∆ ∈ X(TM) como:

∆(v) = (v)
v
, v ∈ TM.

Considerando coordenadas locales inducidas en TM se tiene que:

∆ = vi
∂

∂vi
.

2.6. Variedades casi cosimplécticas: ejemplos y extensiones

Realizamos ahora una introducción a la geometŕıa casi cosimpléctica, aśı como a casos particulares y a
una generalización suya. En particular, introducimos la geometŕıa cosimpléctica, que es el marco natural
para el estudio de los sistemas hamiltonianos dependientes del tiempo; la geometŕıa de contacto, que lo es
para el estudio de los sistemas con hamiltonianos dependientes de la acción, y la geometŕıa parcialmente
cosimpléctica, que es la base para el estudio de la termodinámica del no equilibrio.

Para un estudio más detallado de la geometŕıa cosimpléctica ver [3].

Definición 2.6.1. Una estructura casi cosimpléctica sobre una variedad diferenciable M de dimensión
2n+ 1, es un par (ω, η), donde ω es una 2-forma sobre M y η una 1-forma, tales que ωn ∧ η es una forma
de volumen, es decir, una (2n + 1)-forma que no es nula en ningún punto de M . La terna (M,ω, η) se
denomina variedad casi cosimpléctica.

La caracteŕıstica fundamental de todas las variedades casi cosimplécticas es la existencia de un isomor-
fismo natural que nos permite relacionar los campos de vectores con las 1-formas de forma natural, como
prueba el siguiente resultado:

Proposición 2.6.2. Sea (M,ω, η) una variedad casi cosimpléctica de dimensión 2n+ 1. La aplicación:

♭ : TM −→ T ∗M

X 7−→ iXω + η(X)η,

es un difeomorfismo. Además, es un isomorfismo entre los espacios tangente y cotangente en cada punto
de M .
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Demostración. Nótese en primer lugar que, si X ∈ TpM , entonces ♭(X) ∈ T ∗
pM , es decir, la aplicación con-

serva las fibras. Aśı pues, bastará con ver ♭|TpM es un isomorfismo lineal (el hecho de que sea diferenciable
se deduce de que ω y η lo sean y basta expresar la aplicación en coordenadas locales para comprobarlo).

Como TpM y T ∗
pM tienen ambos la misma dimensión, basta con ver que ♭|TpM es inyectivo, es decir,

que si ♭(X) = 0, entonces X = 0. Para ello razonemos por reducción al absurdo. Supongamos que existe

X ∈ TpM no nulo con ♭(X) = 0. Entonces ♭(X)(X) = (η(X))
2
= 0.

Pero si η(X) = 0 entonces iω(X) = 0 y se tendŕıa que, extiendo X a una base {X,X2, . . . , X2n+1} de
TpM , ωn∧η (X,X2, . . . , X2n+1) = 0. Absurdo, pues ωn∧η es una forma de volumen y es no nula al actuar
sobre una base.

Nótese que la aplicación anterior también es un F(M)-isomorfismo entre X(M) y Λ1(M), y aśı lo
entenderemos en la mayoŕıa de ocasiones.

Definición 2.6.3. En las condiciones de la proposición anterior, siendo ♯ = ♭−1, se define el campo de
Reeb como R = ♯η.

Proposición 2.6.4. El vector de Reeb cumple que:

iRω = 0, η(R) = 1.

Definición 2.6.5. Una variedad casi cosimpléctica (M,ω, η) se dice que es cosimpléctica si ω y η son
cerradas.

Teorema 2.6.6 (de Darboux para variedades cosimplécticas, [8, 20]). Sea (M,ω, η) una variedad co-
simpléctica. Para todo p ∈ M , existe un sistema coordenado en torno a p con coordenadas locales
{q1, . . . , qn, p1, . . . , pn, z} tales que:

ω = dqi ∧ dpi, η = dz.

En estas coordenadas:

R =
∂

∂z
.

Ejemplo 2.6.7. Consideremos M una variedad diferenciable de dimensión n, y P = T ∗M × R la cual
es una variedad (2n+ 1)-dimensional, que denominaremos fibrado cotangente extendido. Consideremos la
2-forma:

ω = π∗
M (ωM ).

Es decir, la forma simpléctica canónica de T ∗M vista en P . Consideremos además la 1-forma definida
(globalmente) por:

η = dt,

donde t : P −→ R es la proyección de la última componente. Si consideramos coordenadas qi, pi inducidas
sobre T ∗M , entonces {qi, pi, t} son coordenadas locales sobre P y en ellas:

ω = dqi ∧ dpi, η = dt,

con lo que es inmediato probar que (P, ω, η) es una variedad cosimpléctica. Es más, de acuerdo con el teore-
ma de Darboux anterior, estas variedades sirven como modelo local de todas las variedades cosimplécticas.

Pasemos a estudiar ahora las variedades de contacto, de las que se puede leer un estudio más detallado
en [17, 19].

Definición 2.6.8. Una variedad de contacto es un par (M,η) donde M es una variedad (2n + 1)-
dimensional y η es una 1-forma en M tal que:

(dη)
n ∧ η ̸= 0.

Obsérvese que en las condiciones anteriores, la terna (M,dη, η) es una variedad casi cosimpléctica y
por ello se puede considerar el isomorfismo ♭ sobre estas variedades, aśı como el campo de Reeb, R

En este caso se conoce también un teorema de Darboux, análogo al que existe para variedades co-
simplécticas:

Jaime Bajo Da Costa 23
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Teorema 2.6.9 (de Darboux para variedades de contacto). Sea (M,η) una variedad de contacto. Entonces,
alrededor de cada punto p ∈M , existe un sistema coordenado (U, ϕ) entorno a p con coordenadas locales
{q1, . . . , qn, p1, . . . , pn, z} tales que:

η = dz − pidq
i.

Además, en estas coordenadas:

dη = dqi ∧ dpi, R =
∂

∂z
.

Ejemplo 2.6.10. Consideremos una variedad diferenciable n-dimesnional, M , y sea P = T ∗M × R,
variedad (2n+ 1)-dimensional. Consideremos λM la 1-forma de Liouville y definamos:

η = dz − λM ,

donde z : P −→ R es la proyección sobre la última componente. Entonces, usando las coordenadas inducidas
sobre T ∗M y considerando coordenadas locales {qi, pi, z} se tiene que:

η = dz − pidq
i,

con lo que, trabajando localmente, se comprueba que (P, η) es una variedad de contacto y, de hecho, de
acuerdo con el teorema previo, es el prototipo local de todas ellas.

Las últimas estructuras geométricas que estudiaremos en detalle son las variedades parcialmente co-
simplécticas de orden p sobre las que se puede leer un análisis más detallado en [16]. Estas son una
extensión, más débil, de las variedades cosimplécticas que permiten tratar sistemas termodinámicos con
varios compartimentos.

Definición 2.6.11. Una estructura casi cosimpléctica de orden p sobre una variedad M de dimensión
2n+ p es una (p+ 1)-úpla, (ω, η1, · · · , ηp), tal que ω es una 2-forma y η1, · · · , ηp son 1-formas tales que:

ωn ∧ η1 ∧ · · · ∧ ηp ̸= 0.

Si además, ω es cerrada, se dirá que la estructura es parcialmente cosimpléctica de orden p.

El siguiente teorema nos permite generalizar el isomorfismo introducido en el caso de las variedades
casi cosimplécticas. La demostración del teorema es análoga a la expuesta en dicho caso.

Teorema 2.6.12. Sea (ω, η1, · · · , ηp) una estructura casi cosimpléctica de orden p sobre una variedad de
dimensión 2n+p,M . Entonces, la aplicación siguiente es un difeomorfismo, aśı como un isomorfismo entre
el espacio tangente y el espacio cotangente en cada punto de M .

♭ : TM −→ T ∗M

X 7−→ iXω +
∑
k

ηk(X)ηk.

De nuevo en este caso, la aplicación anterior puede entenderse como un F(M)-isomorfismo entre X(M)
y Λ1(M).

3. Mecánica geométrica

La descripción de la mecánica desde el punto de vista lagrangiano y hamiltoniano permite estudiar de
forma sistemática sistemas mecánicos en los que existen restricciones sin necesidad de recurrir a fuerzas de
ligadura. Estos enfoques se basan en estudiar la mecánica de un sistema de part́ıculas considerando que
estas se encuentran sobre una variedad diferenciable, M , que denominaremos variedad de configuración
[26].

3.1. Mecánica simpléctica

Comenzamos estudiando el comportamiento de un sistema de part́ıculas que se encuentran sobre una
variedad diferenciable,M , desde el punto de vista hamiltoniano. Es decir, describimos el estado del sistema
mediante sus coordenadas en el espacio de fases, el cual identificamos con el fibrado cotangente de M . De
esta forma, al considerar coordenadas locales inducidas en T ∗M , {q1, . . . , qn, p1, . . . , pn}, las variables qi

corresponden a lo que se suele denominar coordenadas generalizadas, mientras que las variables pi son sus
momentos conjugados.
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Definición 3.1.1. Sea M una variedad n-dimensional y T ∗M su espacio cotangente. Sea ω la forma
simpléctica canónica sobre T ∗M y ♭ el F(M)-morfismo definido en la sección previa. Sea H : T ∗M −→ R
una función diferenciable. Se define el campo hamiltoniano de H, XH , como el único campo de vectores
sobre M cumpliendo:

♭(XH) = dH,

es decir, el campo hamiltoniano deH es el campo que se identifica de manera natural mediante la estructura
simpléctica de T ∗M con la 1-forma que genera H, dH.

La importancia de estos campos de vectores radica en que sus curvas integrales proporcionan la evo-
lución temporal de un sistema mecánico independiente del tiempo cuyo hamiltoniano venga dado por la
función H, como prueba la siguiente proposición.

Proposición 3.1.2. En las condiciones de la definición anterior, sea σ : I −→ T ∗M una curva. Entonces
σ es una curva integral de XH si y solo si, siendo {q1, . . . , qn, p1, . . . , pn} coordenadas locales inducidas en
T ∗M , σ =

(
qi(t), pi(t)

)
cumple las ecuaciones de Hamilton:

dqi

dt
=
∂H

∂pi
,

dpi
dt

= −∂H
∂.
qi

Demostración. Comencemos calculando en las coordenadas locales del enunciado la expresión de XH .
Sabemos que, como { ∂

∂qi ,
∂

∂pi
} forman una base de los espacios tangentes en cada punto de M , podemos

expresar localmente:

XH = Ai ∂

∂qi
+Bi

∂

∂pi
.

Aśı pues, usando que ♭ es un F(M)-morfismo y (3):

♭ (XH) = −Bidq
i +Aidpi.

Como por otro lado:

dH =
∂H

∂qi
dqi +

∂H

∂pi
dpi,

igualando los coeficientes de {dqi, dpi}, pues estas 1-formas forman una base de los espacios cotangentes,
llegamos a que:

Ai =
∂H

∂pi
, Bi = −∂H

∂qi
.

Teniendo en cuenta la definición de curva integral de un campo de vectores y la expresión en coordenadas
locales del vector tangente a una curva, (1), se concluye el resultado.

Una de las propiedades fundamentales de los sistemas mecánicos cuyo hamiltoniano es independiente
del tiempo, es que su enerǵıa es una constante del movimiento, como demuestran los siguientes resultados.

Definición 3.1.3. Se dice que una 1-forma, α, sobre T ∗M es una integral primera de un campo de vectores
X si:

iXα = 0.

Se dice que una función f sobre T ∗M es una integral primera de X si df lo es.

Observación 3.1.4. Nótese que la definición de integral primera de una función es equivalente a decir que
la función es constante sobre las curvas integrales de X, pues si σ es una de dichas curvas integrales, por
definición de vector tangente a una curva:

iXdf (σ(t)) = X (f) (σ(t)) = σ̇(t)(f) =
d (f ◦ σ)

dt
.

Corolario 3.1.5. SeanM una variedad diferenciable, T ∗M su fibrado cotangente y ω la forma simpléctica
canónica sobre el mismo. Sea H : T ∗M −→ R una función y XH su campo hamiltoniano. Entonces H es
una integral primera de XH .

Demostración. Basta notar que, por definición de campo hamiltoniano dH = iXH
ω y por ello:

iXH
dH = iXH

iXH
ω = ω(XH , XH) = 0.
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Pasamos ahora a estudiar el mismo problema, pero desde el punto de vista lagrangiano. Es decir, ahora
en lugar de describir el estado del sistema por medio de sus coordenadas y momentos generalizados, lo
hacemos a través de sus coordenadas y velocidades generalizadas. Comprobaremos que ambas formulaciones
son localmente equivalentes.

Definición 3.1.6. SeaM una variedad diferenciable y TM su fibrado tangente. Una función diferenciable
L : TM −→ R se denominará función lagrangiana o lagrangiano. Se dirá que el lagrangiano L es regular
si la matriz (

∂2L

∂vi∂vj

)
1≤i,j≤n

,

es invertible. En caso contrario se dirá que el lagrangiano es singular.

Observación 3.1.7. De acuerdo con el desarrollo realizado en la sección 2.5.1, (TM,ωL) es una variedad
simpléctica si y solo si L es un lagrangiano regular. Es por ello que nos centraremos en el estudio de los
lagrangianos regulares. Un estudio detallado de los sistemas lagrangianos singulares, aśı como el desarrollo
de un algoritmo para la resolución de estos sistemas, es decir, para hallar un campo de vectores cuyas
curvas integrales describan la evolución del sistema mecánico, se puede encontrar en [18].

Definición 3.1.8. Sea M una variedad diferenciable de dimensión n y L un lagrangiano regular sobre
TM . Se define la enerǵıa asociada a L como la función:

EL = ∆(L)− L.

Considerando coordenadas locales inducidas en TM ,
(
qi, vi

)
se tiene que:

EL = vi
∂L

∂vi
− L,

con lo que localmente se recupera la definición usual de la enerǵıa a partir del lagrangiano [9].

Definición 3.1.9. En las condiciones de la definición anterior, se define el campo de vectores de Euler-
Lagrange para L como el único campo de vectores ξL tal que:

♭ (ξL) = dEL. (5)

Teorema 3.1.10. En las condiciones anteriores, una curva σ : I −→ TM es una curva integral de ξL si
y solo si, localmente, considerando coordenadas locales inducidas, σ(t) =

(
qi(t), vi(t)

)
es solución de las

ecuaciones:

vi(t) =
dqi

dt
(t),

d

dt

(
∂L

∂vi

)
− ∂L

∂qi
= 0,

es decir, si y solo si su proyección sobre M , σ̃ =
(
qi(t)

)
es solución de las ecuaciones de Euler-Lagrange.

Demostración. Comencemos viendo que, considerando coordenadas locales inducidas
(
qi, vi

)
, ξL está lo-

calmente dado por:

ξL = vi
∂

∂qi
+ ξi

∂

∂vi
,

donde ξi son ciertas funciones sobre TM . Los campos vectoriales con esta expresión local se llaman SODEs
(del inglés Second Order Differential Equations) pues sus curvas integrales son solución de un sistema de
n ecuaciones diferenciales de segundo orden, como comprobaremos más adelante en el caso particular de
ξL.

Para ello comencemos poniendo:

ξL = Ai ∂

∂qi
+ ξi

∂

∂vi
.

De manera que, teniendo en cuenta la expresión local de ωL calculada en (4):

♭(ξL) =

(
∂2L

∂vj∂qi
Aj − ∂2L

∂vi∂qj
Aj − ∂2L

∂vi∂vj
ξj
)
dqi +

∂2L

∂vi∂vj
Ajdvi.

Igualando a la diferencial de la enerǵıa:

dEL =

(
∂2L

∂vj∂qi
vj − ∂L

∂qi

)
dqi +

∂2L

∂vj∂vi
vjdvi.
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Igualando los coeficiente de dvi a ambos lados de (5) se llega a un sistema de ecuaciones lineales homogéneo
para

(
Aj − vj

)
cuya matriz de coeficientes, por ser L regular, es invertible y, por tanto, Aj = vj para

j = 1, . . . , n.
Teniendo esto último en cuenta, igualando los coeficientes de dqi a ambos lados de (5), llegamos al

sistema de ecuaciones que determina a ξj :

∂2L

∂vi∂qj
vj +

∂2L

∂vi∂vj
ξj − ∂L

∂qi
= 0.

Aśı pues, siendo en cada sistema de coordenadas locales inducidas, σ(t) =
(
qi(t), vi(t)

)
, σ es curva integral

de ξL si y solo si:
dqi

dt
= Ai = vi(t),

dvi

dt
= ξi.

Sustituyendo en la ecuación anterior, comprobamos que esto es equivalente a que se cumpla:

∂2L

∂vi∂qj
q̇j +

∂2L

∂vi∂vj
v̇j − ∂L

∂qi
=

d

dt

(
∂L

∂vi

)
− ∂L

∂qi
= 0,

donde se denota como q̇i y v̇i a las derivadas temporales de las coordenadas sobre la trayectoria.

Observación 3.1.11. En [20] se puede encontrar la prueba de que ξL es una SODE sin recurrir al uso de
coordenadas locales.

Proposición 3.1.12. En las condiciones anteriores, la enerǵıa, EL es constante a lo largo de las curvas
integrales de ξL.

Demostración. Basta observar que:

ξLEL = dEL (ξL) = ♭ (ξL) (ξL) = ωL (ξL, ξL) = 0,

y utilizar el mismo razonamiento que en la observación 3.1.4.

Definición 3.1.13. SeaM una variedad n-dimensional y L un lagrangiano regular sobre TM . Se dice que
una 1-forma β es un campo de fuerzas sobre TM si es semibásica, es decir, si y solo si existe otra 1-forma
α ∈ Λ1(TM) tal que:

β(X) = α (SX)

, para cada X ∈ X(TM), siendo S la estructura casi tangente canónica de TM . La terna (M,L, β) se
denomina sistema mecánico.

Observación 3.1.14. De acuerdo con el cálculo realizado en el ejemplo 2.5.20, β es una 1-forma semibásica
si y solo si su expresión en coordenadas locales inducidas es de la forma:

β = F idqi,

siendo F i funciones definidas en TM .

Teorema 3.1.15. Consideremos un sistema mecánico, (M,L, β), como en la definición anterior. Entonces
una curva σ : I −→ TM es una curva integral del campo ξ definido por:

♭(ξ) = dEL + β,

si y solo si localmente, considerando coordenadas locales inducidas y siendo σ(t) =
(
qi(t), vi(t)

)
se tiene

que:
dqi

dt
= vi(t),

d

dt

(
∂L

∂vi

)
− ∂L

∂qi
= −F i.

La demostración de este resultado es muy similar a la del teorema anterior y, por eso, no se incluye.

Definición 3.1.16. Se dice que un sistema mecánico (M,L, β) es conservativo si β es cerrada.

Proposición 3.1.17. Sea (M,L, β) un sistema mecánico conservativo con lo que, localmente, β = dV
para cierta función V . Entonces, la enerǵıa definida como EL + V es constante a lo largo de las curvas
integrales del campo de vectores ξ definido en la proposición anterior, localmente.
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Demostración. Basta notar que la ecuación que define localmente el campo ξ se puede expresar como:

iξω = d (EL + V ) ,

y usar el mismo razonamiento que cuando no se considera la presencia de un campo de fuerzas.

Observación 3.1.18. Si de hecho β = d (V ◦ τM ) para cierta función V : M −→ R, entonces se dirá que
(M,L, β) es un sistema lagrangiano y el sistema se comportará igual que si se considera el lagrangiano
L̃ = L− V ◦ τM definido sobre TM .

Una de las principales ventajas de usar el formalismo geométrico para estudiar los sistemas mecánicos
es la facilidad con la que se pueden estudiar las simetŕıas. En particular, el teorema de Noether tiene una
expresión muy sencilla en este lenguaje. Se puede consultar una demostración recurriendo a coordenadas
locales en [26] y una hecha de forma intŕınseca en [20]. En esta última referencia se pueden encontrar más
resultados que permiten relacionar constantes del movimiento y simetŕıas, generalizando el teorema de
Noether.

Definición 3.1.19. Sea M una variedad n-dimensional y sea L : TM −→ R un lagrangiano regular. Sea
X ∈ X(M). Se dice que L admite X si para todo t para el que esté definido el grupo 1-paramétrico de
transformaciones local que genera X, ϕt, se tiene que L ◦ Tϕt = L.

Teorema 3.1.20 (de Noether). En las condiciones de la definición anterior, si L admite un campo de
vectores X, entonces XvL es constante a lo largo de las curvas integrales del campo vectorial de Euler-
Lagrange de L, ξL, es decir, ξL (XvL) = 0.

Observación 3.1.21. Considerando coordenadas locales inducidas
(
qi, vi

)
, siendo X = Xi ∂

∂qi se tiene que:

XvL = Xi ∂L

∂vi
.

3.1.1. Transformación de Legendre

La transformación de Legendre nos permitirá realizar, para sistemas con lagrangianos regulares, una
identificación local entre TM y T ∗M a través de la cual se comprueba que la evolución del sistema predicha
por los formalismos lagrangiano y hamiltoniano es equivalente (al menos de forma local).

Definición 3.1.22. Sea M una variedad n-dimensional y sea L : TM −→ R un lagrangiano. Se define la
1-forma:

αL = dSL.

Considerando coordenadas locales
(
qi, vi

)
se tiene que:

αL =
∂L

∂vi
dqi,

con lo que comprobamos que se trata de una 1-forma semibásica.

Definición 3.1.23. Sea M una variedad diferenciable de dimensión n y L un lagrangiano regular. Se
define la transformación de Legendre como la aplicación Leg : TM −→ T ∗M dada por:

Leg(X)(v) = αL(X)(v̄),

donde X ∈ TpM , v ∈ TpM y v̄ ∈ TX(TM), con dτM (v̄) = v.

Observación 3.1.24. Consideremos coordenadas locales
(
qi, vi

)
. Entonces vemos que:

Leg

((
∂

∂qi

)
p

)(
∂

∂qj

)
=
∂L

∂vi

((
∂

∂qi

)
p

)
dqi|p

(
∂

∂qj
+Ak ∂

∂vk

)
=
∂L

∂vi

((
∂

∂qi

)
p

)
.

donde hemos explicitado el punto en que se consideran los campos de vectores y las 1-formas, aśı como
el punto en que se evalúa ∂L

∂vi . Este cálculo nos permite ver que, en coordenadas inducidas Leg actúa
conservando las fibras, es decir, sin cambiar el punto sobreM , y mandando las velocidades en los momentos
conjugados a través de L: (

qi, vi
)
7−→

(
qi,

∂L

∂vi

)
.

Además, el cálculo anterior muestra que, gracias a que αL es semibásica, da igual el vector v̄ tomado en
la definición de la transformación de Legendre.
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Proposición 3.1.25. En las condiciones de la definición anterior se cumple que:

Leg∗λM = αL, Leg∗ωM = ωL.

Demostración. Consideremos coordenadas locales {qi} en M y las coordenadas que estas inducen en TM
y T ∗M , {qi, vi} y {qi, pi}, respectivamente. Recordemos que:

λM = pidq
i.

Aśı pues:

λM

(
dLeg

(
∂

∂qi

))
= λM

(
∂

∂qi

)
= pi =

∂L

∂vi
,

λM

(
dLeg

(
∂

∂vi

))
= pjdq

j

(
dLeg

(
∂

∂vi

))
= pi

(
dLeg

(
∂

∂vi

))(
qj
)
= pi

∂
(
qj ◦ Leg

)
∂vi

= 0,

con lo que, trabajando localmente, hemos comprobado la primera igualdad. Como ωM = −dλM y ωL =
−dαL y la diferencial exterior conmuta con los pullbacks de funciones, se tiene la segunda igualdad.

Corolario 3.1.26. La transformación de Legendre es un difeomorfismo local.

Demostración. Basta con notar que Leg es un simplectomorfismo.

Definición 3.1.27. Sea M una variedad diferenciable y L un lagrangiano regular. Si Leg es un difeomor-
fismo global, se dirá que L es hiperregular.

Definición 3.1.28. Sea L un lagrangiano hiperregular sobre una variedad diferenciable M . Se define el
hamiltoniano asociado a L como la aplicación H : T ∗M −→ R dada por H = EL ◦ Leg−1.

Usando las propiedades del producto interno con respecto a los pullbacks de funciones, se pueden probar
los siguientes resultados, que nos permiten comprobar que los formalismos lagrangiano y hamiltoniano son
equivalentes.

Proposición 3.1.29. Sea L un lagrangiano hiperregular y sean ξL el campo de Euler-Lagrange para L y
XH el campo hamiltoniano de H. Entonces:

XH = TLeg ◦ ξL ◦ Leg−1.

Corolario 3.1.30. En las condiciones anteriores, si σ es una curva integral de ξL, entonces γ = Leg ◦ σ
es una curva integral de XH .

3.2. Mecánica cosimpléctica

Presentamos ahora un formalismo para el estudio de los sistemas mecánicos no autónomos. Si bien
existen otros enfoques para estudiar este mismo problema, por ejemplo, basados en 1-jets (ver [20]),
obtendremos las ecuaciones del movimiento a partir del campo de evolución [16]. En [13] se estudia la
forma en que ambos enfoques se relacionan.

Comencemos estudiando el formalismo hamiltoniano cosimpléctico. Consideremos M la variedad n-
dimensional de configuración y sea T ∗M su fibrado cotangente. Consideremos el fibrado cotangente exten-
dido, T ∗M×R, junto con la 2-forma ω y la 1-forma η definidas en la sección 2.6, con lo que (T ∗M × R, ω, η)
es una variedad cosimpléctica. Sea H : T ∗M ×R −→ R una función diferenciable que denominaremos fun-
ción hamiltoniana o hamiltoniano.

Definición 3.2.1. Se define el campo de evolución de H, EH como el único campo de vectores sobre el
fibrado cotangente cumpliendo:

♭ (EH) = dH − (R(H)− 1) η, (6)

donde ♭ es el isomorfismo asociado a la estructura cosimpléctica.

Proposición 3.2.2. Una curva σ : I −→ T ∗M × R es curva integral de EH si y solo si, considerando
coordenadas locales inducidas en el fibrado cotangente extendido

(
qi, pi, z

)
, siendo σ(t) =

(
qi(t), pi(t), z(t)

)
,

se cumple que:
dqi

dt
=
∂H

∂pi
,

dpi
dt

= −∂H
∂qi

,
dz

dt
= 1.

En tal caso, z = t+ const por lo que se pueden identificar ambas coordenadas.

Jaime Bajo Da Costa 29
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Demostración. Nótese en primer lugar que, en coordenadas locales inducidas, el miembro derecho de (6)
se expresa como:

dH − (R(H)− 1) η =
∂H

∂qi
dqi +

∂H

∂pi
dpi +

∂

∂z
.

Aśı pues, usando que:

♭

(
∂

∂qi

)
= dpi, ♭

(
∂

∂pi

)
= −dqi, ♭

(
∂

∂z

)
= dz,

expresando EH = Ai ∂
∂qi +Bi

∂
∂pi

+ C ∂
∂z y, usando la F(M)-linealidad de ♭, concluimos que:

Aidpi −Bidq
i + Cdz =

∂H

∂qi
dqi +

∂H

∂pi
dpi +

∂

∂z
.

Igualando los coeficientes de los elementos de la base del espacio cotangente {dqi, dpi, dz}:

EH =
∂H

∂pi

∂

∂qi
− ∂H

∂qi
∂

∂pi
+

∂

∂z
.

Por tanto, comprobamos que σ(t) =
(
qi(t), pi(t), z(t)

)
es curva integral de EH si y solo si cumple,

localmente, las ecuaciones del enunciado.

Pasamos ahora a considerar el formalismo lagrangiano. Para ello, nos centraremos en el estudio del
fibrado tangente extendido, TM×R, donde es necesario considerar una función lagrangiana L : TM×R −→
R. Se considera de nuevo la estructura casi tangente canónica, S, actuando ahora sobre TM × R de la
misma forma en que se definió en la sección 2.5.1 (considerando ahora τM : TM × R −→ R y definiendo
el levantamiento vertical de un vector tangente a M a T (TM × R) de forma análoga). A partir de ella se
puede definir dS como se haćıa en dicha sección y, con ello las formas diferenciables siguientes:

λL = dSL, ωL = −ddSL.

En coordenadas locales inducidas,
(
qi, vi, z

)
se tiene que:

λL =
∂L

∂vi
dqi, ωL =

∂2L

∂vi∂qj
dqi ∧ dqj + ∂2L

∂vi∂vj
dqi ∧ dvj + ∂2L

∂vi∂z
dqi ∧ dz, (7)

con lo que se comprueba que (TM ×R, ωL, dz) es una variedad cosimpléctica si y solo si el lagrangiano es
regular, en el sentido definido en la sección 2.5.1.

Definición 3.2.3. Supongamos que L es un lagrangiano regular y sea ∆ el campo de vectores de Liouville,
que consideramos ahora como ∆ ∈ X (TM × R) sin más que considerar nula su componente en TR. Se
define la enerǵıa lagrangiana como:

EL = ∆(L)− L.

Definición 3.2.4. En las condiciones anteriores se define el campo de evolución del lagrangiano regular L
como el único campo de vectores que cumple, siendo ♭ el isomorfismo asociado a la estructura cosimpléctica:

♭(EL) = dEL − (R(H)− 1) dz.

Proposición 3.2.5. Una curva σ : I −→ TM × R es una curva integral de EL si y solo si, considerando
coordenadas locales inducidas en el fibrado tangente extendido

(
qi, vi, z

)
, siendo σ(t) =

(
qi(t), vi(t), z(t)

)
,

se cumple que:

q̇i =
dqi

dt
= vi(t),

dz

dt
= 1,

d

dt

(
∂L

∂vi

)
− ∂L

∂qi
= 0,

con lo que, en particular, se pueden identificar las variables z y t.

Demostración. El resultado se prueba siguiendo el mismo esquema de demostración que en el teorema
3.1.10
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Al igual que ocurre en el caso de los sistemas autónomos, estos dos enfoques pueden relacionarse, al
menos de manera local, a través de la transformación de Legendre. Para ello comenzamos definiendo la
1-forma:

αL = dSL,

que, en coordenadas locales inducidas
(
qi, vi, z

)
, se expresa como:

αL =
∂L

∂vi
(q, v, z) dqi.

Definimos la transformación de Legendre entre los espacios tangente y cotangente extendidos como:

Leg : TM × R −→ T ∗M × R
(X, z) 7−→

(
Leg(X, z), z

)
,

donde Leg(X, z) actúa sobre un vector tangente v ∈ TpM como Leg(X, z)(v) = αL (X|p, z) (v), con
v ∈ T (TM × R) y dπM (v) = v, siendo πM : TM × R −→ M la proyección canónica. Al igual que en el
caso autónomo, se puede comprobar que esta definición no depende del vector v tomado gracias a que αL

es semibásica. En coordenadas locales inducidas
(
qi, vi, z

)
se expresa la transformación de Legendre como:

Leg
(
qi, vi, z

)
=

(
qi,

∂L

∂vi
, z

)
.

Es claro que, definida entre los fibrados extendidos, la transformación de Legendre seguirá siendo un
difeomorfismo local. Si además es un difeomorfismo global, se dirá que L es hiperregular. En este último
caso se define a partir de la enerǵıa lagrangiana, la función hamiltoniana, H, en T ∗M × R como:

H = EL ◦ Leg−1.

Proposición 3.2.6. En las condiciones anteriores se cumple que:

λL = Leg∗λM , ωL = Leg∗ω, dz = Leg∗dz,

considerando λM actuando sobre T ∗M × R y λL sobre TM × R.

Esta proposición se demuestra de forma análoga a la proposición 3.1.25. De ella se obtienen los siguientes
corolarios que establecen la conexión entre las formulaciones hamiltoniana y lagrangiana.

Observación 3.2.7. También se podŕıa demostrar el resultado, sin tener que repetir los cálculos locales,
haciendo uso de algunas propiedades de las variedades producto y los levantamientos de vectores tangentes
en las mismas [22].

Corolario 3.2.8. Sea L un lagrangiano hiperregular y EL su campo de evolución. Sea EH el campo de
evolución para el hamiltoniano asociado a L. Entonces:

EH = TLeg ◦ EL ◦ Leg−1.

Además, σ es una curva integral de EL si y solo si γ = Leg ◦ σ lo es de EH .

3.3. Mecánica de contacto

Procedemos a tratar ahora con sistemas mecánicos en que aparecen fuerzas disipativas a través de
hamiltonianos o lagrangianos que dependen de la acción.

Estos sistemas comenzaron estudiándose partiendo de un enfoque variacional. Para ello, se parte de
una función lagrangiana definida sobre el fibrado tangente extendido de la variedad de configuración
L : TQ× R −→ R. Se consideran las curvas σ : [a, b] −→ M tales que tienen inicio y final fijos, σ(a) = p1
y σ(b) = p2. Dado c ∈ R, para cada curva σ diferenciable, se define z(t) como la solución de la ecuación
diferencial:

dz

dt
= L (σ(t), σ̇(t), z) , z(a) = c,

y se busca la curva σ que haga extremo z(b). Nótese que z es la acción a lo largo de la trayectoria, pues su
derivada temporal es el lagrangiano. El Principio de Herglotz nos dice que tal curva, describirá la evolución
del sistema mecánico.
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Por medio de técnicas de cálculo variacional, se concluye que dicha curva σ ha de ser solución de las
ecuaciones de Herglotz (ver [12, 19]):

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
=
∂L

∂q̇i
∂L

∂z
. (8)

Nótese que este principio es una generalización del Principio de Mı́nima Acción de Hamilton, el cual
se recupera en el caso en que L no dependa de la acción.

Estos sistemas también se pueden tratar de forma geométrica utilizando la geometŕıa de contacto [14].
Comenzamos estudiando el formalismo hamiltoniano dentro de este enfoque.

Sea M una variedad diferenciable y sea su fibrado cotangente extendido T ∗M × R y consideremos la
1-forma η definida en el ejemplo 2.6.10, con lo que (T ∗M × R, η) es una variedad de contacto. Como en
particular es una variedad casi cosimpléctica, podemos considerar el isomorfismo canónico ♭. Consideremos
H : T ∗M × R −→ R una función hamiltoniana.

Definición 3.3.1. En las condiciones anteriores se define el campo hamiltoniano de H como el único
campo de vectores, XH , tal que:

♭ (XH) = dH − (R(H) +H) η (9)

Proposición 3.3.2. Una curva σ : I −→ T ∗M × R es una curva integral de XH si y solo si, consi-
derando coordenadas locales inducidas en el fibrado cotangente extendido,

(
qi, pi, z

)
, y, siendo σ(t) =(

qi(t), pi(t), z(t)
)
, se cumple que:

dqi

dt
=
∂H

∂pi
,

dpi
dt

= −
(
∂H

∂qi
+ pi

∂H

∂z

)
,

dz

dt
= pi

∂H

∂pi
−H.

Demostración. Comenzamos expresando el miembro derecho de (9) en coordenadas locales inducidas:

dH − (R(H) +H) η =
∂H

∂qi
dqi +

∂H

∂pi
dpi + pi

∂H

∂z
dqi −Hη.

Por otro lado, se tiene que:

♭

(
∂

∂qi

)
= dpi − piη, ♭

(
∂

∂pi

)
= −dqi, ♭

(
∂

∂z

)
= η.

Aśı pues, usando la F(M)-linealidad de ♭ y poniendo XH = Ai ∂
∂qi +Bi

∂
∂pi

+ C ∂
∂z , se tiene que:

♭ (XH) = −Bidq
i +Aidpi +

(
C − piA

i
)
η =

(
∂H

∂qi
+ pi

∂H

∂z

)
dqi +

∂H

∂pi
dpi −Hη.

Nótese que {dqi, dpi, η} forman una base de los espacios cotangentes del fibrado cotangente extendido. Aśı
pues, igualando los coeficientes de dichas 1-formas, concluimos que:

XH =
∂H

∂pi

∂

∂qi
−
(
∂H

∂qi
+ pi

∂H

∂z

)
∂

∂pi
+

(
pi
∂H

∂pi
−H

)
∂

∂z
.

El resultado se concluye de forma inmediata.

La siguiente proposición nos demuestra que los sistemas con los que tratamos ahora son no conserva-
tivos.

Proposición 3.3.3. Sea H : T ∗M × R −→ R una función hamiltoniana. Entonces:

XH(H) = −R (H)H.

Demostración. Haciendo uso de coordenadas locales inducidas, teniendo en cuenta la expresión local de
XH obtenida en la demostración previa, el resultado es trivial. Para ver una demostración intŕınseca,
consúltese [19].
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Al igual que hicimos en las secciones precedentes, pasamos ahora a estudiar el mismo problema pero
desde el punto de vista lagrangiano. Para ello partimos de una función lagrangiana, L : TM × R −→ R
regular, es decir, tal que

(Aij)1≤i,j≤n =

(
∂2L

∂vi∂vj

)
1≤i,j≤n

,

es invertible. Consideremos la 1-forma λL actuando sobre el fibrado tangente extendido como en la sección
previa y definamos:

ηL = dz − λL,

donde z : TM × R −→ R es la proyección sobre R. Es inmediato comprobar, usando coordenadas locales
inducidas, que (TM × R, ηL) es una estructura de contacto, gracias a que L es regular.

Definición 3.3.4. Siendo ∆ el campo de vectores de Liouville, se define la enerǵıa asociada al lagrangiano
L como:

EL = ∆(L)− L.

Definición 3.3.5. En las condiciones anteriores, se define el campo de Euler-Lagrange, ξL, como el único
campo de vectores cumpliendo:

♭ (ξL) = dEL − (R (EL) + EL) ηL. (10)

Proposición 3.3.6. El campo de vectores de Reeb de la estructura (TM × R, ηL) está dado, en coorde-
nadas locales inducidas

(
qi, vi, z

)
, por:

RL =
∂

∂z
−W ij ∂2L

∂vj∂z

∂

∂vi
,

donde
(
W ij

)
1≤i,j≤n

es la matriz inversa de la hessiana, (Aij)1≤i,j≤n.

Demostración. Sabemos que el campo de vectores de Reeb existe y es único. Aśı pues, basta con ver que
si la expresión local de RL es la del enunciado, ♭ (RL) = ηL

Para ello, nótese que:

dηL = −dλL,

por lo que su expresión en coordenadas locales es la dada por (7). Aśı pues, es inmediato que:

♭

(
∂

∂z

)
= − ∂2L

∂vi∂z
dqi + η, ♭

(
∂

∂vj

)
= − ∂2L

∂vi∂vj
dqi.

Usando la linealidad de ♭ se tiene que:

♭ (RL) = − ∂2L

∂vi∂z
dqi + η +W kj ∂2L

∂vj∂z

∂2L

∂vi∂vk
dqi = − ∂2L

∂vi∂z
dqi + η + δij

∂2L

∂vj∂z
dqi = η.

Teorema 3.3.7. Con la notación de las proposiciones precedentes, una curva σ : I −→ TM × R es
una curva integral de ξL si y solo si, para todas coordenadas locales inducidas,

(
qi, vi, z

)
, siendo σ(t) =(

qi(t), vi(t), z(t)
)
, se cumple que:

dqi

dt
= vi,

dz

dt
= L(qi, vi, z),

d

dt

(
∂L

∂vi

)
− ∂L

∂qi
=
∂L

∂vi
∂L

∂z
.

Es decir, si y solo si la proyección sobre M de σ es solución de las ecuaciones de Herglotz (8).

Demostración. Basta usar la representación en coordenadas inducidas del campo de vectores de Reeb dada
en la proposición anterior para expresar el miembro derecho de (10) de forma local.

Para concluir el resultado se razona como en la demostración del teorema 3.1.10.

Si consideramos ahora la transformación de Legendre definida en la sección anterior, usando la linealidad
de Leg∗, aśı como la proposición 3.2.6, se deduce de forma directa el siguiente resultado.
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Proposición 3.3.8. Sea L : TM × R −→ R un lagrangiano hiperregular y sea la función hamiltoniana
asociada a L, H = EL ◦ Leg−1 : T ∗M × R −→ R. Entonces se cumple que:

ηL = Leg∗η.

De la proposición anterior se deduce, haciendo uso de las propiedades de los pullbacks de funciones
y de las extensiones de aplicaciones al fibrado tangente, el siguiente corolario, que permite relacionar las
formulaciones lagrangiana y hamiltoniana, al menos localmente.

Corolario 3.3.9. Sea L un lagrangiano hiperregular y ξL su campo de Euler-Lagrange. Sea XH el campo
hamiltoniano para la función hamiltoniana asociada a L. Entonces:

XH = TLeg ◦ ξL ◦ Leg−1.

Además, una curva σ es curva integral de ξL si y solo γ = Leg ◦ σ lo es de XH .

Ejemplo 3.3.10. [12] Consideremos como variedad de configuración M = R y definamos el lagrangiano
L : TM × R −→ R dado por:

L(x, v, z) =
1

2
mv2 − 1

2
kx2 − αz.

Nótese que en este caso (x, v, z) son coordenadas locales inducidas en TM ×R que de hecho son globales.
Aśı se tiene que la transformada de Legendre viene dada por:

Leg : TM × R −→ T ∗M × R

(x, v, z) 7−→
(
x,
∂L

∂v
, z

)
= (x,mv, z) ,

y, en particular, Leg es biyectiva y por ello L es hiperregular. La enerǵıa asociada a este sistema vendrá
dada por:

EL =
1

2
mv2 +

1

2
kx2 + αz,

y, por ello, el hamiltoniano será:

H =
p2

2m
+

1

2
kx2 + αz.

Trabajando en el formalismo lagrangiano, vemos que el sistema ha de cumplir la ecuación de Herglotz:

d

dt
(mẋ) + kx = −mẋα,

donde las derivadas temporales sobre la trayectoria se han indicado con un punto sobre la coordenada.
Trabajando en el formalismo hamiltoniano, se cumplen las ecuaciones siguientes:

dx

dt
=

p

m
,

dp

dt
= −kx− αp,

dz

dt
=

p2

2m
− 1

2
kx2 − αz.

En cualquiera de los dos casos, las ecuaciones son equivalentes a las de un oscilador armónico amortiguado:

mẍ+mαẋ+ kx = 0.

Por tanto, comprobamos con un ejemplo cómo este formalismo nos permite estudiar correctamente los
sistemas disipativos.

4. Termodinámica del no equilibrio

Antes de pasar a estudiar una descripción geométrica de los sistemas termodinámicos, análoga a la
que se ha presentado en la sección anterior para los sistemas mecánicos, presentamos los postulados de la
termodinámica del no equilibrio introducidos por Stückelberg en 1960 [25]. Stückelberg consiguió extender
la teoŕıa ya existente de la termodinámica del equilibrio a una teoŕıa dinámica, en la que la evolución de
los sistemas termodinámicos viene dictada por una serie de ecuaciones diferenciales. Para ello, introduce
dos funciones de estado, la entroṕıa y la enerǵıa, a través de dos postulados. Si bien en la obra original, al
trabajar con sistemas discretos, Stückelberg solo considera el caso en que estos están cerrados, posteriores
trabajos (ver [11]) han generalizado los postulados para que sean válidos en sistemas abiertos.
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Definición 4.0.1. Una variable ξ en un sistema termodinámico se dice que es extensiva si su valor es
igual al resultado de la suma de la misma variable definida sobre cada subsistema que forma el sistema
termodinámico.

Postulado 4.0.2 (Primera ley). Para todo sistema termodinámico, existe una función de estado extensiva,
es decir, que solo depende de las variables que describen el sistema, y que no depende de forma expĺıcita
del tiempo, H, que denominaremos enerǵıa, tal que:

dH

dt
= P ext

W + P ext
Q + P ext

M ,

donde P ext
W es la potencia debida a las fuerzas externas que actúan modificando las variables mecánicas

del sistema; P ext
Q , la potencia debida a la variación de las variables no mecánicas, es decir, la debida al

intercambio de calor; y P ext
M la debida al intercambio de materia con el exterior.

Un sistema se dice cerrado si P ext
M = 0 ; adiabáticamente cerrado, si es cerrado y P ext

Q = 0; y aislado,

si es adiabáticamente cerrado y P ext
W = 0. En este último caso se conservará la enerǵıa del sistema.

Definición 4.0.3. Consideremos que el sistema está descrito por unas variables mecánicas qi. Entonces
se definen las fuerzas generalizadas externas a partir de la igualdad:

P ext
W = F ext

i

dqi

dt
.

Postulado 4.0.4 (Segunda ley). Para todo sistema termodinámico existe una función de estado extensiva,
denominada entroṕıa, S, que cumple las siguientes dos condiciones:

a) Principio de evolución: Si el sistema es adiabáticamente cerrado, la entroṕıa es una función no
decreciente del tiempo, es decir:

dS

dt
≥ 0.

b) Principio de equilibrio: Si el sistema está aislado, la entroṕıa tenderá, cuando t→ ∞, a un máximo
local, compatible con las restricción de sistema aislado y posibles restricciones internas.

Observación 4.0.5. Las ecuaciones que obtendremos mediante el formalismo geométrico en la siguiente
sección son consecuencia exclusivamente de la primera de las leyes introducidas por Stückelberg. La segunda
ley se encarga de establecer restricciones sobre la expresión de las potencias que actúan sobre el sistema,
permitiéndonos definir conceptos como los coeficientes de rozamiento o las conductividades térmicas y
establecer sus signos. Cabe mencionar que el principio de equilibrio es necesario para que la teoŕıa no sea
invariante ante inversión temporal y, por ello, dé lugar a la flecha del tiempo (ver [25]).

4.1. Sistemas simples adiabáticamente cerrados

Definición 4.1.1. Se dirá que un sistema termodinámico es simple si para describirlo es necesario el uso
de una única variable no mecánica. Postularemos que esta variable puede tomarse como su entroṕıa, SA.

Observación 4.1.2. Consideramos un sistema termodinámico, siendo E y S su enerǵıa y entroṕıa, com-
puesto por P subsistemas simples de enerǵıa EA y entroṕıa SA. Entonces, se ha de cumplir que:

E =

P∑
A=1

EA, S =

P∑
A=1

SA.

Nótese que el estado total del sistema vendrá determinado por las variables mecánicas junto con las P
entroṕıas de cada subsistema (pues esto determina el estado de cada subsistema). Además, el estado del
subsistema A vendrá descrito por SA, aśı como un subconjunto de las variables mecánicas del sistema
global, pero estas últimas pueden usarse para describir varios subsistemas simultáneamente, reflejando las
interconexiones entre ellos.

Comencemos estudiando las consecuencias que pueden extraerse de los dos postulados para sistemas
simples, adaptando lo presentado en [25] al caso en que, en lugar de velocidades, consideramos los momentos
conjugados como variables mecánicas.
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Consideramos un sistema termodinámico simple adiabáticamente cerrado, descrito por las variables
mecánicas (qi, pi), siendo pi el momento conjugado de qi, es decir, tal que:

∂H

∂pi
=
dqi

dt
,

en la evolución del sistema. Sea S su entroṕıa. Entonces sabemos que, por ser su enerǵıa, H, una función
de estado:

H(t) = H
(
qi(t), pi(t), S(t)

)
,

con lo que podemos calcular su derivada temporal fácilmente. Siendo F ext
i las fuerzas generalizadas externas

que actúan sobre el sistema:

F ext
i

dqi

dt
= P ext

W =
dH

dt
=
∂H

∂qi
dqi

dt
+
∂H

∂pi

dpi
dt

+
∂H

∂S

dS

dt
. (11)

Por comodidad, denotaremos de ahora en adelante a las derivadas temporales mediante un punto encima
de la variable. Definimos las fuerzas elásticas generalizadas y las fuerzas de inercia generalizadas por:

F el
i = −∂H

∂qi
, F in

i = −ṗi.

Introducimos las fuerzas de rozamiento generalizadas a partir de imponer la ecuación del balance de fuerzas
para el sistema total:

F el
i + F in

i + F ext
i + F roz

i = 0, ∀i.

Concluimos que estas serán las fuerzas que actúan sobre el sistema pero sin producir un trabajo, como
por ejemplo, fuerzas cuyo punto de aplicación no se mueve o lo hace de forma perpendicular a la acción
de la fuerza [4]. Reescribiendo esta ecuación de balance de fuerzas, podemos llegar a las ecuaciones que
proporcionan la evolución de la parte mecánica del sistema:

ṗi = F el
i + F ext

i + F roz
i . (12)

Además, utilizando la ecuación (11), podemos obtener la evolución de la entroṕıa:

Ṡ = I = − 1
∂H
∂S

F roz
i q̇i. (13)

Esto nos permite definir siempre para un sistema simple una temperatura, la cual de nuevo será una
función de estado al ser una derivada parcial de la enerǵıa, como:

T =
∂H

∂S
,

aunque en cierto sentido seŕıa más natural trabajar con la temperatura natural del sistema τ = − 1
T , pues

usando la escala de temperaturas dada por τ los sistemas serán más calientes cuando mayor sea τ de
forma continua, mientras que la escala dada por T presenta una discontinuidad en T = 0 y, de hecho, las
temperaturas negativas se corresponden con sistemas más calientes que las positivas (en el sentido en que,
al poner en contacto un sistema con temperatura negativa y uno con temperatura positiva, habŕıa una
transferencia de enerǵıa en forma de calor del primero al segundo).

En general, ambas ecuaciones están acopladas, puesto que F roz
i , F ext

i , F el
i y T dependerán tanto de las

variables mecánicas, como de la termodinámica. Cuando la dependencia de las fuerzas generalizadas con
la variable termodinámica se pueda despreciar, se podrán resolver las ecuaciones mecánicas del sistema de
manera independiente, lo que conduce al formalismo t́ıpicamente usado en mecánica.

De acuerdo con el principio de evolución de la segunda ley, Ṡ ≥ 0 para cualquier valor de las velocidades
que consideremos. Aśı pues, considerando que se puede dar cualquier valor de las mismas y recordando
que q̇j = ∂H

∂pj
, ha de poderse escribir en la forma:

F roz
i = λi,j

(
qi, pi, S, t

)
q̇j ,

donde los coeficientes
λi,j

T en cada instante de tiempo dan lugar a una forma bilineal (que podemos tomar
simétrica) semidefinida positiva. En particular, los coeficientes λi,i, que serán los coeficientes de rozamiento,
habrán de tener el mismo signo que la temperatura.
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Un razonamiento análogo, partiendo del principio de equilibrio, nos permite concluir que las derivadas
primeras respecto de las variables mecánicas de la enerǵıa se habrán de anular en los estados de equilibrio,

aśı como que los coeficientes ∂2H
∂(qi)2

y ∂2H
∂p2

i
han de tener el mismo signo que la temperatura en dichos estados.

Estos coeficientes se corresponderán en sistemas concretos con la masa, la constante elástica,...
Cuando consideramos el sistema cerrado, pero admitimos la presencia de una potencia P ext

Q transmitida
en forma de calor, razonando de manera análoga a como se ha hecho hasta ahora, concluimos que el único
cambio que es necesario introducir es que la ecuación de evolución de la entroṕıa está dada por:

Ṡ = I +
P ext
Q

T
,

siendo I la variación de la entroṕıa si el sistema se encontrara adiabáticamente cerrado. Por tanto, como
sabemos que I ≥ 0, concluimos que:

Ṡ ≥
P ext
Q

T
,

lo que da lugar a la desigualdad conocida en la termodinámica del equilibrio para la evolución de la entroṕıa
en los procesos termodinámicos (que, escrita de manera rigurosa, es la ecuación previa):

dS ≥ δQ

T
.

Ejemplo 4.1.3. Estudiemos, a modo de ejemplo de aplicación de esta teoŕıa, un oscilador unidimensional
de masa M adiabáticamente cerrado, el cual será un sistema simple [25]. Consideraremos las variables
mecánicas posición y momento, r y p, aśı como una única variable no mecánica, la entroṕıa S. La enerǵıa
del sistema vendrá dada por una función:

H = H (S, r, p) =
p2

2M
+ U (S, r) ,

la cual consideramos que se puede descomponer en enerǵıa cinética y enerǵıa potencial. Consideremos que
está sometido a unas fuerzas externas, F ext, de tal forma que la potencia mecánica que se introduce al
sistema es:

P ext
W = F extṙ.

Aśı pues, si además, existe una fuerza de rozamiento, F roz, usando la ecuación (12) para el balance de
fuerzas en el sistema, teniendo en cuenta que ∂H

∂p = ṙ en la evolución del sistema, llegamos a la ecuación
de evolución de la parte mecánica:

ṗ = F ext + F roz − ∂H

∂r
.

Además, la ecuación de evolución de la entroṕıa vendrá dada por (13):

Ṡ = − 1

T
F roz ṙ.

De acuerdo con el principio de evolución, Ṡ ≥ 0, con lo que podemos introducir un coeficiente de rozamiento,
λ, de forma que:

F roz = −λ (r, p, S) ṙ,

y deducir que el coeficiente de rozamiento ha de tener el mismo signo que la temperatura.
Además, a partir del principio de equilibrio, podemos deducir que, en los estados de equilibrio, las

siguientes magnitudes tendrán el mismo signo que la temperatura:

∂2H

∂r2
=
∂2U

∂r2
,

∂2H

∂p2
=

1

M
.

Aplicamos ahora la aproximación armónica del oscilador entorno a un equilibrio del sistema aproximando:

H (S, r, p) =
p2

2M
+

1

2
k0 (r − r0)

2
+ U0(S),

y suponemos que los coeficientesM,k0, λ son constantes. El principio de equilibrio nos permite concluir que
tanto la masaM del sistema como su constante elástica k0 han de tener el mismo signo que la temperatura.
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De esta forma, la ecuación de evolución mecánica se convierte en la de un oscilador armónico amortiguado
forzado:

Mr̈ = −k0 (r − r0)− λṙ + F ext.

Nótese que, si bien este sistema ya fue estudiado en el ejemplo 3.3.10, gracias a este nuevo formalismo,
podemos también conocer cómo evolucionan las variables termodinámicas hacia el equilibrio y cómo la
dependencia de los parámetros del problema con la temperatura (o, equivalentemente, con la entroṕıa)
puede ser tenida en cuenta.

Otros ejemplos de aplicación de estas leyes para estudiar la evolución de diversos sistemas simples en
presencia de rozamiento se pueden encontrar en [4, 10].

4.2. Sistemas compuesto adiabáticamente cerrado sin transferencia interna de
masa

Pasamos ahora a considerar un sistema adiabáticamente cerrado compuesto por P subsistemas simples,
cada uno de ellos cerrado, es decir, que no intercambian materia entre śı. Aśı pues, describiremos este
sistema por las variables (qi, pi, S

1, . . . , SP ) siguiendo la notación anterior. Nótese que, si bien el sistema
global está adiabáticamente cerrado, cada uno de los subsistemas individuales no lo está, pues puede existir
transferencia de enerǵıa en forma de calor entre los subsistemas. Denotamos por PBA

Q la potencia transferida

en forma de calor desde el subsistema B al subsistema A, la cual ha de cumplir que PBA
Q = −PAB

Q . Aśı,

la potencia en forma de calor recibida por el subsistema A, definiendo PAA
Q = 0, será:

PA
Q =

P∑
B=1

PBA
Q .

Además, sabemos que la enerǵıa del sistema se podrá expresar como:

H
(
qi, pi, S

1, . . . , SP
)
=

P∑
A=1

HA

(
qi, pi, S

A
)

Estudiemos el subsistema simple A-ésimo. Para ello definamos las fuerzas de inercia generalizadas para
este subsistema:

F in
A,i = − 1

q̇i

∂HA

∂pi
ṗi..

La evolución de la enerǵıa de cada subsistema vendrá dada por:

F ext
A,i q̇

i + PA
Q = ḢA =

∂HA

∂qi
q̇i − F in

A,iq̇
i +

∂HA

∂SA
ṠA, (14)

donde consideramos que, sobre cada subsistema, actúan fuerzas externas, F ext
A,i . Consideramos la acción de

fuerzas de rozamiento, F roz
A,i , actuando sobre cada subsistema y definimos F roz

i =
∑P

A=1 F
roz
A,i , de manera

que la ecuación del balance de fuerzas dará lugar a las ecuaciones siguientes:

F in
A,i −

∂HA

∂qi
+ F ext

A,i + F roz
A,i = 0, ∀i, ∀A. (15)

Para cada i, sumamos las ecuaciones anteriores para todos los valores de A, con lo que, definiendo F ext
i =∑P

A=1 F
ext
A,i y teniendo en cuenta que

∑P
A=1 F

in
A,i = −ṗi, llegamos a la ecuación de evolución de la parte

mecánica del sistema:

ṗi = F ext
i + F roz

i − ∂H

∂qi
. (16)

Por otro lado, a partir de la ecuación (14), podemos obtener la ecuación de evolución de la entroṕıa de
cada subsistema, donde TA = ∂H

∂SA
= ∂HA

∂SA
:

ṠA = − 1

TA
F roz
A,i q̇

i +
1

TA
PA
Q = IA +

1

TA
PA
Q , (17)
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donde IA es la variación de la entroṕıa que sufriŕıa cada uno de dichos subsistemas si, estando adiabática-
mente cerrado, estuviera sometido a las mismas fuerzas externas y de rozamiento y, por tanto, es positiva.
Sumando estas ecuaciones, obtenemos la ecuación de la variación de la enerǵıa total del sistema:

Ṡ =

P∑
A=1

IA +
1

2

P∑
A=1

P∑
B=1

(
1

TA
− 1

TB

)
PBA
Q ,

la cual hemos reescrito, de forma que el segundo sumando sea simétrico. Nótese que la transferencia
de entroṕıa debida a las fuerzas de rozamiento entre los subsistemas, resumida en los términos IA, es
independiente de si los subsistemas se encuentran adiabáticamente cerrados o no y, por tanto, no puede
verse afectada por la transferencia de calor, es decir, por el segundo sumando. Por tanto, es razonable
suponer que ambos sumandos son independientes y, por tanto, dado que Ṡ ≥ 0 pues el sistema total es
adiabáticamente cerrado, entonces ha de tenerse que:

P∑
A=1

P∑
B=1

(
1

TA
− 1

TB

)
PBA
Q ≥ 0.

Por tanto, dicho sumatorio ha de provenir de una forma bilineal simétrica semidefinida positiva y
podemos expresar:

PBA
Q =

P∑
C=1

P∑
D=1

κ̄BA,DC

(
1

TC
− 1

TD

)
,

donde los coeficientes κ̄BA,DC son funciones de estado que forman dicha forma bilineal simétrica semidefi-
nida positiva. Se suele realizar la aproximación de que la transferencia de calor entre los subsistemas A y B
depende solo del estado de dichos subsistemas y que, por tanto, solo son no nulos, los coeficientes κ̄BA,BA

que denotaremos simplemente por κ̄BA. Nótese que en particular κ̄BA = κ̄AB y que además, serán siempre
positivos. Bajo esta aproximación, podemos definir las conductividades térmicas, las cuales habrán de ser
positivas si TA y TB tienen el mismo signo, como:

κAB =
κ̄BA

TATB
.

Este cambio de constantes, es equivalente a pasar de utilizar la escala natural de temperatura, τ , a
usar la usual, T , de manera que la transferencia de potencia en forma de calor entre dos subsistemas la
podremos expresar también por:

PBA
Q = −κAB

(
TA − TB

)
Los coeficientes JAB = −

(
κAB − δAB

∑P
C=1 κ

AC
)
se utilizarán en las posteriores secciones, en lugar de

las conductividades térmicas, para utilizar la misma nomenclatura que se encuentra en la literatura. Nótese
que estos cumplen que JAB = JBA, pues las conductividades térmicas son simétricas por construcción, y,
además,

∑
A JAB = 0.

A partir de este análisis es sencillo estudiar el caso de transferencia de potencia en forma de calor con
el exterior, considerando el sistema global formado por el sistema en estudio, más las fuentes de calor [25].

En [11] se puede ver una demostración, para un sistema simple en el caso en que la enerǵıa puede
descomponerse como suma de una parte cinética (dependiente solo de las velocidades y de la entroṕıa) y
una parte potencial (dependiente solo de las coordenadas generalizadas y la entroṕıa), de cómo la ecuación
mecánica que se deduce de la primera ley es equivalente a la ecuación de Euler-Lagrange de la parte
mecánica del sistema.

5. Descripción geométrica de la Termodinámica del no equilibrio

En una serie de recientes art́ıculos [5, 6, 7], Gay-Balmaz y Yoshimura proponen una formulación va-
riacional de la termodinámica del no equilibrio basada en una generalización del principio de Hamilton.
Para ello, introducen la producción de entroṕıa mediante una restricción no lineal no holonómica, aśı co-
mo mediante una restricción variacional. Esto permite obtener las ecuaciones de evolución, tanto de la
parte termodinámica, como de la parte mecánica, para sistemas de complejidad creciente, de forma sis-
temática. Esta formulación permite en particular generalizar las ecuaciones de evolución de los sistemas
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termodinámicos presentados en la sección anterior al caso en que existe transferencia de materia, tanto
entre los subsistemas que conforman el subsistema global, como con el exterior.

En esta sección, siguiendo [16], nos propondremos dar un formalismo geométrico, análogo al presentado
en el caso mecánico en la sección 3, para explicar la evolución de los sistemas termodinámicos discretos,
es decir, aquellos que pueden ser descritos por un número finito de variables, que sea equivalente a las
ecuaciones deducidas por Gay-Balmaz y Yoshimura, para lo cual trataremos con sistemas de complejidad
creciente.

5.1. Sistemas simples adiabáticamente cerrados

Consideremos en primer lugar un sistema simple adiabáticamente cerrado. Estudiaremos su comporta-
miento desde el punto de vista hamiltoniano. Para ello, consideraremos que las coordenadas generalizadas
del sistema se encuentran sobre una variedad diferenciable M . Consideremos T ∗M su fibrado cotangente,
el cual describirá el conjunto de todas las variables mecánicas, las coordenadas generalizadas y sus mo-
mentos conjugados. Como consideramos un sistema termodinámico simple, es necesaria una única variable
no mecánica, la entroṕıa, S, para describir su estado. Como S puede tomar cualquier valor real, tomamos
P = T ∗M × R como variedad que describe el estado del sistema.

Consideremos una función hamiltoniana (que identificamos con la enerǵıa descrita en la sección previa):

H : P −→ R,

y sean F ext, F roz : P −→ T ∗M aplicaciones que conservan las fibras, es decir, tales que F ext (α, S) ∈
T ∗
αM, ∀α ∈ T ∗M e igual para F roz. Estas representarán las fuerzas externas y de rozamientos que se

ejercen sobre el sistema en estudio. Considerando coordenadas locales (qi, pi, S) en P :

F ext = F ext
i (q, p, S) dqi, F roz = F roz

i (q, p, S) dqi.

Definimos la 1-forma sobre P :

η = −∂H
∂S

dS − F roz.

Consideramos además la 2-forma definida sobre P por:

ω = π∗
MωM ,

donde ωM es la forma simpléctica canónica de T ∗M y πM : P −→ T ∗M es la proyección canónica. En
coordenadas locales inducidas

(
qi, pi, S

)
:

ω = dqi ∧ dpi.
De esta forma, el par (ω, η) define una estructura parcialmente cosimpléctica de orden 1 sobre P . Consi-
deremos el isomorfismo ♭ definido en el teorema 2.6.12. Considerando coordenadas locales inducidas este
cumple:

♭

(
∂

∂qi

)
= dpi − F roz

i η, ♭

(
∂

∂pi

)
= −dqi, ♭

(
∂

∂S

)
= −∂H

∂S
η.

Definición 5.1.1. Se define el campo de evolución de H sujeto a las fuerzas externas F ext como el único
campo de vectores, EH que cumple:

♭ (EH) = dH + η − F ext. (18)

El siguiente resultado muestra que las curvas integrales de este campo de vectores proporcionan la
evolución temporal del sistema termodinámico, pues cumplen las ecuaciones diferenciales obtenidas en
[28]. Nótese que estas son equivalentes a las ecuaciones (12) y (13) obtenidas en la sección 4.1.

Proposición 5.1.2. Una curva σ : I −→ P es una curva integral del campo de evolución de H sujeto a las
fuerzas externas F ext si y solo si, en coordenadas locales adaptadas

(
qi, pi, S

)
, σ(t) = σ

(
qi(t), pi(t), S(t)

)
es solución de las siguientes ecuaciones diferenciales:

dqi

dt
=
∂H

∂pi
,

dpi
dt

= −∂H
∂qi

+ F ext
i + F roz

i ,
dS

dt
= − 1

∂H
∂S

∂H

∂pi
F roz
i . (19)

En particular, definiendo la temperatura del sistema como T = ∂H
∂S , al igual que en la sección 4.1, se tiene

que:

T
dS

dt
= −F roz

i

dqi

dt
.
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Demostración. Consideremos coordenadas locales inducidas como en el enunciado y expresemos el campo
EH en estas coordenadas locales como:

EH = Ai ∂

∂qi
+Bi

∂

∂pi
+ C

∂

∂S
.

Aplicando el isomorfismo ♭ a EH , usando su F(P )-linealidad:

♭ (EH) = −Bidq
i +Aidpi −

(
AiF roz

i + C
∂H

∂S

)
η. (20)

Por otro lado, expresando el lado derecho de (18) en coordenadas locales:

dH + η − F ext =

(
∂H

∂qi
− F roz

i − F ext
i

)
dqi +

∂H

∂pi
dpi. (21)

Teniendo en cuenta que las 1-formas {dqi, dpi, η} forman una base de cada espacio cotangente en los puntos
de un abierto de P , concluimos, igualando los coeficientes de dichas 1-formas en (20) y (21):

Ai =
∂H

∂pi
, Bi = −∂H

∂qi
+ F roz

i + F ext
i qquad AiF roz

i + C
∂H

∂S
= 0.

de donde se deduce de forma inmediata el resultado.

Observación 5.1.3. Cabe destacar que, en la definición de ♭, los dos sumandos que aparecen tienen dimen-
siones distintas, pues ω tiene dimensiones de acción, mientras que η ⊗ η tiene dimensiones de enerǵıa al
cuadrado. No obstante, se puede probar que es posible realizar una descomposición del fibrado cotangente,
T ∗P , como la suma de Whitney W ⊕ ⟨η⟩. Por tanto, cada uno de los sumandos de dicha definición se
encuentra en un espacio distinto y, por tanto, no surge ninguna incompatibilidad f́ısica en la definición
debida al análisis dimensional.

Este mismo sistema se puede estudiar también desde el punto de vista lagrangiano. Para ello, conside-
ramos M la variedad de configuración de la parte mecánica del sistema y TM el espacio de coordenadas
y velocidades generalizadas. Consideremos como única variable no mecánica la entroṕıa, S, con lo que
el sistema termodinámico vendrá descrito por la variedad Q = TM × R. Sea L : Q −→ R una función
lagrangiana regular, tal como se definió en la sección 2.5.1.

Definimos la enerǵıa del lagrangiano por:

EL = ∆(L)− L,

donde ∆ es el campo de vectores de Liouville. Consideremos que, de hecho, el lagrangiano es hiperregular, es
decir, que la transformación de Legendre, Leg : Q −→ P , es un difeomorfismo global. Entonces, definimos
la función hamiltoniana como H = EL ◦ Leg−1. En coordenadas locales inducidas se tiene que:

H(q, p, S) = piq̇
i(q, p, S)− L (q, q̇(q, p, S), S) .

Es inmediato, trabajando en coordenadas, comprobar a partir de la definición de la transformación de
Legendre que:

∂H

∂S
= −∂L

∂S
= T.

Se definen las 1-formas en Q dadas por F̃ ext = Leg∗F ext y F̃ roz = Leg∗F roz, las cuales se corresponden
con las fuerzas externas y de rozamiento que actúan sobre el sistema, vistas en Q. Se definen la 1-forma
ηL y la 2-forma ωL por:

ηL =
∂L

∂S
dS − F̃ roz, ωL = −ddSL.

Se tiene que Leg∗ω = ωL y Leg∗η = ηL, por lo que es inmediato comprobar que (ωL, ηL) es una estructura
parcialmente cosimpléctica sobre Q. Definimos el campo de evolución de EL sujeto a las fuerzas externas
F̃ ext como el único campo de vectores, ξL, que cumple:

♭ (ξL) = dEL + ηL − F̃ ext

. La siguiente proposición nos permite establecer la relación entre los campos de evolución definidos desde el
punto de vista hamiltoniano y lagrangiano y, a partir de ella, deducir que la evolución del sistema descrita
por ambos métodos es equivalente y coincide con la obtenida por Gay-Balmaz y Yoshimura en [7].
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Proposición 5.1.4. En las condiciones anteriores se cumple que:

EH = TLeg ◦ ξL ◦ Leg−1.

En particular, γ es una curva integral de ξL si y solo si, σ = Leg−1 ◦ γ es una curva integral de EH .

Corolario 5.1.5. Una curva γ : I −→ Q es una curva integral de ξL si y solo si, en coordenadas locales,(
qi, vi, S

)
, se cumple que, siendo γ(t) = γ

(
qi(t), vi(t), S(t)

)
:

dqi

dt
= vi,

d

dt

(
∂L

∂vi

)
− ∂L

∂qi
= F̃ roz

i + F̃ ext
i ,

∂L

∂S

dS

dt
= F̃ roz

i

dqi

dt
,

donde F̃ roz = F̃ roz
i dqi y F̃ ext = F̃ ext

i dqi.

Demostración. Comencemos notando que, si (q, v, S), (q, p, S) son coordenadas locales inducidas en Q y
P , respectivamente, entonces la transformación de Legendre se expresa de forma trivial localmente. En
particular, es inmediato observar que:

F̃ ext
i = F ext

i ◦ Leg, F̃ roz
i = F roz

i ◦ Leg.

Aśı pues, teniendo en cuenta que Leg−1◦γ es una curva integral de EH , esta habrá de cumplir las ecuaciones

(19). Como además, Leg−1 (q, p, S) =
(
q, ∂H∂pi

, S
)
y pi =

∂L
∂vi , entonces vemos que se ha de cumplir:

dqi

dt
=
∂H

∂pi
= vi,

dpi
dt

=
d

dt

(
∂L

∂vi

)
=
∂L

∂qi
+ F̃ roz

i + F̃ ext
i ,

∂L

∂S

dS

dt
= F̃ roz

i

dqi

dt
.

Hemos usado que trabajando con la expresión en coordenadas de H en función de L es fácil deducir que:

∂H

∂qi
= − ∂L

∂qi
.

Observación 5.1.6. Trabajos previos propońıan estudiar la evolución de algunos ejemplos de sistemas
termodinámicos por medio de la geometŕıa de contacto. Estos resultados pueden entenderse como un caso
particular de nuestro estudio. En el caso concreto de [2], basta tomar F roz

i = −R(H)pi y F
ext = 0 para

que el campo de evolución que ah́ı se define sea el mismo que consideramos en este trabajo.

5.2. Sistemas compuestos adiabáticamente cerrados

Consideremos ahora un sistema adiabáticamente cerrado, compuesto por P subsistemas simples, cerra-
dos, es decir, tales que no intercambian materia entre śı, pero śı pueden intercambiar enerǵıa en forma de
calor. Sea M la variedad de configuración y T ∗M su espacio cotangente, que representa el espacio de fases
de las variables mecánicas. Cada uno de los subsistemas estará caracterizado por una única variable no
mecánica, su entroṕıa, SA. Aśı pues, el sistema termodinámico puede describirse por medio de la variedad
P1 = T ∗M×RP . Para poder desarrollar el formalismo correcto, hemos de considerar, para cada subsistema,
una variable auxiliar, ΣA, que, sobre la evolución del sistema, coincidirá con la entroṕıa (no ocurrirá aśı en
generalizaciones de este estudio para sistemas abiertos como veremos en la sección 5.3). Además, considera-
remos unas nuevas variables, ΓA, que llamaremos desplazamientos térmicos, tales que, sobre la trayectoria,
su derivada será la temperatura del sistema. Aśı pues, SA será el momento conjugado de la coordenada
generalizada ΓA, usando la nomenclatura t́ıpica de la mecánica. Sea P2 = T ∗M×RP ×RP ×RP , donde las
primeras P variables no mecánicas serán los desplazamientos térmicos, las segundas las entroṕıas de cada
subsistema y las últimas, las variables auxiliares ΣA. Consideramos la proyección canónica π : P2 −→ P1.

Sobre cada subsistema simple actuarán tanto fuerzas de rozamiento como externas, las cuales introdu-
ciremos mediante sendas 1-formas F roz

A , F ext
A : P1 −→ T ∗M , que identificaremos con sus pullbacks por π.

Si consideramos coordenadas locales inducidas, (q, p,Γ, S,Σ):

F roz
A = F roz

A,i dq
i, F ext

A = F ext
A,i dq

i.

Sean además F roz =
∑P

A=1 F
roz
A = F roz

i dqi y, análogamente, F ext =
∑P

A=1 F
ext
A = F ext

i dqi. Consideremos
una función hamiltoniana, H : P1 −→ R, que de nuevo identificaremos con su pullback por π, y funciones
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JAB : P1 −→ R, que también identificaremos con sus pullbacks a P2 y que cumplen
∑P

A=1 JAB = 0, ∀B y
JAB = JBA. Estas últimas se corresponderán con las funciones de estado JAB introducidas en sección 4.2.

Definimos las P 1-formas ηA, A = 1, . . . P , y la 2-forma ω por:

ηA = − ∂H

∂SA
dΣA − F roz

A − JABdΓ
B , ω = ωM + dΓA ∧ d (SA − ΣA) ,

donde ωM es el pullback a través de la proyección π2 : P2 −→ T ∗M de la forma simpléctica canónica a P2.
Nótese que, en la definición de ηA, no se suma sobre el ı́ndice A en el primer sumando. En coordenadas
locales inducidas:

ω = dqi ∧ dpi + dΓA ∧ d (SA − ΣA) .

Con estas definiciones, (ω, η1, · · · , ηP ) es una estructura parcialmente cosimpléctica de orden P sobre P2.
Consideremos el isomorfismo ♭ canónico introducido para estas estructuras en el teorema 2.6.12.

Definición 5.2.1. Se define el campo de evolución de H sujeto a las fuerzas externas F ext como el único
campo de vectores, EH , que cumple:

♭ (EH) = dH +

P∑
A=1

ηA − F ext. (22)

El siguiente resultado nos muestra cómo las curvas integrales del campo de evolución cumplen las
ecuaciones de evolución del sistema termodinámico deducidas por Stückelberg (16) y (17), siendo la trans-
ferencia de enerǵıa en forma de calor entre los subsistemas:

PA
Q = −

P∑
B=1

JAB

(
TB − TA

)
.

Proposición 5.2.2. Una curva σ : I −→ P2 es una curva integral de EH si y solo si, en coordenadas
locales inducidas, (q, p,Γ, S,Σ), siendo σ(t) = σ (q(t), p(t),Γ(t), S(t),Σ(t)), se cumple que:

dqi

dt
=
∂H

∂pi
,

dpi
dt

= −∂H
∂qi

+ F roz
i + F ext

i ,
dΓA

dt
=

∂H

∂SA
,

dSA

dt
=
dΣA

dt
,

dSA

dt
= − 1

∂H
∂SA

(
∂H

∂pi
F roz
i +

∂H

∂SB
JAB

)
.

En particular, definiendo la temperatura de cada subsistema como TA = ∂H
∂SA

, teniendo en cuenta que∑
B JABT

A = 0 pues
∑

B JAB = 0, entonces se cumplirá:

−TA dSA

dt
= F roz

i

dqi

dt
+

P∑
B=1

JAB

(
TB − TA

)
.

Demostración. Comencemos calculando cómo actúa el isomorfismo ♭ sobre la base de vectores tangentes
asociada a las coordenadas elegidas:

♭

(
∂

∂qi

)
= dpi−F roz

A,i ηA, ♭

(
∂

∂pi

)
= dqi, ♭

(
∂

∂ΓA

)
= d (SA − ΣA)−

P∑
A=1

JBAηB ,

♭

(
∂

∂SA

)
= dΓA qquad ♭

(
∂

∂ΣA

)
= dΓA − ∂H

∂SA
ηA.

Aśı pues, si escribimos de forma local EH = Ai ∂
∂qi + Bi

∂
∂pi

+ CA ∂
∂ΓA + DA

∂
∂SA

+ EA
∂

∂ΣA
, entonces se

cumplirá que:

♭ (EH) = −Bidq
i +Aidpi + (EA −DA) dΓ

A + CAd (SA − ΣA)−
P∑

A=1

(
AiF roz

A,i + CBJAB + EA
∂H

∂SA

)
.
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Por otro lado, escribiendo de forma local el miembro derecho de (22):

dH +

P∑
A=1

ηA − F ext =

(
∂H

∂qi
− F roz

i − F ext
i

)
dqi +

∂H

∂pi
+
∂H

∂SA
d (SA − ΣA) .

Teniendo en cuenta que {dqi, dpi, dΓA, d (SA − ΣA) , ηA} forman una base del espacio cotangente de P2 en
cada punto de un abierto, igualando los coeficientes de dichas 1-formas se obtiene:

Ai =
∂H

∂pi
, Bi = −∂H

∂qi
+ F roz

i + F ext
i , CA =

∂H

∂SA
, EA −DA = 0,

AiF roz
A,i + CBJAB + EA

∂H

∂SA
= 0.

Teniendo en cuenta que σ(t) es curva integral de EH si y solo si:

Ai =
dqi

dt
, Bi =

dpi
dt
, CA =

dΓA

dt
, DA =

dSA

dt
, EA =

dΣA

dt
,

se concluye el resultado.

Al igual que en la sección precedente, se puede establecer un formalismo análogo, basado en una
función lagrangiana. Mediante la transformación de Legendre se puede establecer la equivalencia entre
ambos formalismos, en el caso regular, localmente, y en el caso hiperregular, globalmente.

5.3. Sistemas abiertos

Estudiaremos ahora la extensión de este formalismo para sistemas termodinámicos abiertos. Al igual que
en [7, 16], por simplicidad de la notación, nos restringiremos al caso de un sistema termodinámico simple
con una sola especie qúımica y no tendremos en cuenta la enerǵıa mecánica de la especie qúımica, aunque
el estudio puede hacerse en casos más generales, tanto desde el punto de vista variacional (ver [6]), como
desde el punto de vista geométrico (en [16] se encuentra el estudio hecho para un sistema termodinámico
cerrado simple con varias especies qúımicas, aśı como para un sistema termodinámico cerrado compuesto
con una especie qúımica por subsistema).

Sea M la variedad de configuración, de manera que T ∗M será el espacio de fases del sistema. Denota-
remos por N al número de moles del sistema termodinámico y consideraremos que está en contacto con A
fuentes de materia externas y con B fuentes de calor. Para describir los sistemas abiertos, será necesario
introducir una nueva variable auxiliar, análoga a los desplazmientos térmicos, W , que denominaremos
desplazamiento termodinámico y cuya derivada temporal en la evolución del sistema será el potencial
qúımico. Aśı pues, W será el momento canónico conjugado del número de moles, N . Denotaremos por
Γ al desplazamiento térmico del sistema, que tendrá la misma interpretación que los introducidos en la
sección anterior, por S, a la entroṕıa y por Σ, a la variable auxiliar introducida en la sección previa, que
ya no será igual a la entroṕıa sobre la trayectoria. Consideraremos que todas estas variables pueden tomar
cualquier valor real. Aśı pues, definimos las variedades P1 = T ∗M × R× R, donde la primera variable no
mecánica será N y la segunda S, y P2 = T ∗M × R5 considerando las variables no mecánicas ordenadas
como W,N,Γ, S,Σ. Sea π : P2 −→ P1 la proyección canónica.

Consideramos que sobre el sistema actúan fuerzas externas y de rozamiento dadas por las 1-formas
F ext, F roz : P1 −→ T ∗M , que identificamos con sus pullbacks a P2 a través de π. También consideraremos
A funciones J a : P1 −→ R, que identificaremos con sus pullbacks a P2 y que representan los flujos molares
desde las fuentes de materia al sistema. Definimos de manera análoga las funciones µa, T a, Sa, T b, Jb

S :
P1 −→ R para a = 1, . . . , A y b = 1, . . . , B, que identificamos con sus pullbacks por π. Estas representarán,
respectivamente, el potencial qúımico de la a-ésima fuente de materia, su temperatura, su entroṕıa molar,
la temperatura de la b-ésima fuente de calor y el flujo de entroṕıa desde dicha fuente de calor al sistema.
Finalmente consideramos J a

S = J aSa el flujo de entroṕıa desde la fuente de materia a-ésima al sistema.
Definimos la 1-forma η y la 2-forma ω siguientes:

η = −∂H
∂S

dΣ− F roz −
A∑

a=1

(J adW + J a
S dΓ)−

B∑
b=1

Jb
SdΓ,

ω = ωM + dW ∧ dN + dΓ ∧ d (S − Σ) ,
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donde ωM es el pullback de la forma simpléctica canónica de T ∗M a través de la proyección π2 : P2 −→
T ∗M . Es fácil comprobar, trabajando con coordenadas locales, que (ω, η) es una estructura parcialmente
cosimpléctica de orden 1en P2. Por tanto podemos considerar el isomorfismo ♭ definido en el teorema 2.6.12.

Definición 5.3.1. En las condiciones anteriores, se define el campo evolución sometido a las fuerzas
externas F ext, EH , como el único campo de vectores que cumple:

♭ (EH) = dH + η − F ext −

(
A∑

a=1

(J aµa + J a
S T

a) +

B∑
b=1

Jb
ST

b

)
η. (23)

De nuevo será el campo evolución el que dictamine la evolución del sistema termodinámico, a través
de sus curvas integrales.

Proposición 5.3.2. Una curva σ : I −→ P2 es una curva integral de EH si y solo si, considerando
coordenadas locales inducidas, (q, p,W,N,Γ, S,Σ), siendo σ(t) = (q(t), p(t),W (t), N(t),Γ(t), S(t),Σ(t)), se
cumple que:

dqi

dt
=
∂H

∂pi
,

dpi
dt

= −∂H
∂qi

+ F roz
i + F ext

i ,
dW

dt
=
∂H

∂N
,

dN

dt
=

A∑
a=1

J a,

dΓ

dt
=
∂H

∂S
,

dS

dt
=
dΣ

dt
+

(
A∑

a=1

J a
S +

B∑
b=1

Jb
S

)
,

−∂H
∂S

dΣ

dt
= F roz

i

dqi

dt
+

A∑
a=1

J a dW

dt
+

(
A∑

a=1

J a
S +

B∑
b=1

Jb
S

)
dΓ

dt
−

(
A∑

a=1

(J aµa + J a
S T

a) +

B∑
b=1

Jb
ST

b

)
.

Demostración. Comencemos viendo cómo actúa el isomorfismo ♭ sobre los vectores tangentes asociados a
las coordenadas locales consideradas en el enunciado:

♭

(
∂

∂qi

)
= dpi−F roz

i η, ♭

(
∂

∂pi

)
= −dqi, ♭

(
∂

∂W

)
= dN−

A∑
a=1

J aη, ♭

(
∂

∂N

)
= −dW,

♭

(
∂

∂Γ

)
= d (S − Σ)−

(
A∑

a=1

J a
S +

B∑
b=1

Jb
S

)
η, ♭

(
∂

∂S

)
= −dΓ, ♭

(
∂

∂Σ

)
= dΓ− ∂H

∂S
η.

Por tanto, expresando de forma local EH = Ai ∂
∂qi +Bi

∂
∂pi

+ C ∂
∂W +D ∂

∂N +E ∂
∂Γ + F ∂

∂S +G ∂
∂Σ , se tiene

que:
♭ (EH) = Aidpi −Bidq

i + CdN −DdW + Ed (S − Σ) + (G− F ) dΓ−

−

(
AiF roz

i +

A∑
a=1

CJ a +

(
A∑

a=1

J a
S +

B∑
b=1

Jb
S

)
E +G

∂H

∂S

)
η.

Por otro lado, el lado derecho de (23) se puede expresar localmente como:(
∂H

∂qi
− F roz

i − F ext
i

)
dqi +

∂H

∂pi
dpi −

A∑
a=1

J adW +
∂H

∂N
dN −

(
A∑

a=1

J a
S +

B∑
b=1

Jb
S

)
dΓ +

∂H

∂S
d (S − Σ)−

−

(
A∑

a=1

(J aµa + J a
S T

a)

B∑
b=1

Jb
ST

b

)
η.

Teniendo en cuenta que {dqi, dpi, dW, dN, dΓ, d(S−Σ), η} forman una base de los espacios cotangentes de
P2 para todos los puntos de un abierto e igualando los coeficientes de dichas 1-formas a ambos lados de
(23), se tiene que:

Ai =
∂H

∂pi
, Bi = −∂H

∂qi
+F roz

i +F ext
i , C =

∂H

∂N
, D =

A∑
a=1

J a, E =
∂H

∂S
,

F = G+

A∑
a=1

J a
S+

B∑
b=1

Jb
S , AiF roz

i +

A∑
a=1

(J a (C − µa) + J a
S (E − T a))+

B∑
b=1

Jb
S

(
E − T b

)
+G

∂H

∂S
= 0.

lo que permite concluir el resultado de la misma forma que en las secciones anteriores.
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A partir de:

dΣ

dt
=
dS

dt
−

A∑
a=1

J a
S −

B∑
b=1

Jb
S =

dS

dt
+
dSM

dt
+
dSQ

dt
,

podemos concluir que la variación de la entroṕıa del sistema global compuesto por las fuentes y el sistema
es la derivada temporal de Σ. Como el sistema total estará aislado, de acuerdo con el principio de evolución
de Stuckelberg, se tendrá que dΣ

dt ≥ 0, [7].
De nuevo se puede hacer un estudio de estos sistemas basado en una función lagrangiana (ver [16]).

Haciendo uso de la transformada de Legendre se consigue establecer la equivalencia entre dicha formula-
ción y la que se ha presentado en esta sección (de forma local si la función lagrangiana es regular y de
forma global si es hiperregular), con lo que se comprueba que las ecuaciones anteriores son el equivalente
hamiltoniano de las utilizadas por Gay-Balmaz y Yoshimura en [7].

6. Conclusiones

En este trabajo hemos introducido el concepto de variedad diferenciable, prestando especial atención
a los fibrados tangentes y cotangentes.

Hemos hecho énfasis en un tipo especial de variedades, con una estructura adicional, las variedades
simplécticas y diversas generalizaciones suyas. Gracias a esta estructura adicional, las variedades simplécti-
cas y sus generalizaciones nos han permitido estudiar la dinámica de un sistema mecánico de forma global,
sin necesidad de recurrir al uso de coordenadas, tanto en el caso de sistemas autónomos, como en los
no autónomos. Además, utilizando variedades de contacto, hemos podido estudiar sistemas en que el la-
grangiano depende expĺıcitamente de la acción, lo que nos ha permitido introducir en una formulación
hamiltoniana/lagrangiana por primera vez en el trabajo, fuerzas disipativas proporcionales a la velocidad.
Además, hemos enunciado el teorema de Noether dentro de este formalismo, el cual nos permite establecer
integrales primeras del movimiento de forma sencilla.

Para establecer una estructura geométrica de la termodinámica análoga a la que existe en mecánica,
hemos partido de los dos postulados de Stückelberg, a partir de los cuales hemos deducido las ecuaciones
de evolución de los sistemas cerrados, basándonos en el concepto de sistemas simples. Además, el segundo
postulado nos ha permitido introducir funciones de estado como las conductividades térmicas y establecer
el signo que estas han de tener en los estados de equilibrio termodinámico. Más tarde, se ha comprobado
cómo, en el caso en el que las fuerzas que se aplican sobre el sistema no dependan de la variable entroṕıa
las ecuaciones mecánicas y termodinámicas se desacoplan, recuperándose para las primeras los resultados
conocidos de mecánica.

Finalmente, hemos utilizado las estructuras parcialmente cosimplécticas de orden P para establecer un
formalismo geométrico global de la termodinámica del no equilibrio en sistemas de complejidad creciente,
tanto cerrados como abiertos. Además, hemos comprobado como este se puede establecer tanto desde el
punto de vista hamiltoniano, como desde el punto de vista lagrangiano y que, cuando la función lagrangiana
es regular o hiperregular, se consigue establecer una equivalencia entre ambas descripciones por medio de
la transformación de Legendre.

En general, en este formalismo hemos introducido 1-formas que recogen las variaciones de la entroṕıa,
aśı como las potencias internas mecánica, de calor y másica, de forma análoga a como lo hacen las restric-
ciones variacionales utilizadas por Gay-Balmaz y Yoshimura. La definición del campo evolución, permite
introducir las fuerzas externas, aśı como el resto de contribuciones a la enerǵıa del sistema que no aparecen
en las 1-formas.

Este nuevo formalismo abre la posibilidad de establecer nuevos métodos numéricos que permitan realizar
simulaciones de sistemas termodinámicos, asegurando que ciertas de sus propiedades no se ven afectadas
por errores en la discretización del problema como ocurriŕıa con métodos generales [2]. Además, se podŕıan
desarrollar resultados que generalicen el teorema de Noether para sistemas termodinámicos fuera del
equilibrio, o introducir corchetes análogos a los corchetes de Poisson, muy utilizados en mecánica.
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[17] M. de León y M. Lainz Valcázar. “Contact Hamiltonian systems”. En: Journal of Mathematical
Physics 60.10 (oct. de 2019), pág. 102902. issn: 0022-2488. doi: 10.1063/1.5096475.
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