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RESUMEN

El objetivo del presente trabajo es presentar un formalismo geométrico que permita realizar un estudio
global de diversos sistemas termodinamicos fuera del equilibrio. Para ello se realizara una introducciéon a la
geometria diferencial y se estudiard la aplicacién de la misma a la mecanica, tanto a través del formalismo
lagrangiano como del hamiltoniano. Se generalizara este enfoque, partiendo de los postulados de Stiickel-
berg, para describir la termodinamica del no equilibrio.

ABSTRACT

The aim of this thesis is to present a geometric formalism allowing the study of non-equilibrium ther-
modynamics. An introduction of differential geometry will be carried out and its application to mechanics
explored both via the Lagrangian and the Hamiltonian formalism. This approach will be generalized,
following Stiickelberg’s postulates, to describe non-equilibrium thermodynamics.
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2 PRELIMINARES MATEMATICOS

1. Introducciéon

Los formalismos lagrangiano y hamiltoniano de la mecénica fueron introducidos por Lagrange, Hamil-
ton, Laplace, Euler y Jacobi en los siglos XVIII y XIX. No obstante, fue Poincaré, en el siglo pasado el
que introdujo la formulacién moderna de la geometria diferencial y la aplicé a la mecanica, permitiendo
estudiar los problemas de forma global, lo que resulté de gran utilidad para entender la estabilidad de
ciertos sistemas [1]. Este enfoque permitié utilizar métodos topoldgicos para estudiar la mecdnica en el
espacio de las fases, en lugar de disponer solo de los métodos analiticos. Los primeros desarrollos de esta
teoria fueron realizados por Poincaré, Kolmogorov, Arnold y Moser, entre otros, quienes consiguieron pro-
bar la existencia de soluciones periédicas del problema de los tres cuerpos sin necesidad de encontrarlas
explicitamente.

Comenzaremos el trabajo realizando una introduccién a las técnicas de la geometria diferencial nece-
sarias para entender el formalismo geométrico de la mecanica. Para ello serdn de especial relevancia los
fibrados tangente y cotangente. La mecédnica geométrica necesita dotar a las variedades diferenciales de
estructura adicional, dando lugar a las variedades simplécticas. Para poder estudiar sistemas mecanicos
de complejidad creciente introduciremos dos generalizaciones de la estructura simpléctica, las variedades
cosimplécticas y las variedades de contacto.

El objetivo tdltimo del trabajo es presentar el formalismo geométrico desarrollado por de Ledn y Bajo
[16] para estudiar la termodindmica del no equilibrio. Para ello presentaremos los postulados de la termo-
dindmica introducidos por Stiickelberg [25]. A partir del primero de ellos deduciremos las ecuaciones que
gobiernan los sistemas termodinamicos cerrados. El segundo postulado nos permitird restringir la forma
funcional de las fuerzas de rozamiento que actiian sobre los sistemas termodinamicos, asi como la expresién
de la potencia introducida al sistema en forma de calor. Adem4s, el principio de equilibrio nos llevara a
establecer propiedades sobre los valores de algunas funciones de estado de los sistemas termodindmicos en
sus estados de equilibrio.

En la ultima seccién presentaremos dicho formalismo geométrico, basado a su vez en las ecuaciones
establecidas a partir de principios variacionales por Gay-Balmaz y Yoshimura [7]. Para ello estudiaremos
sistemas termodinamicos de complejidad creciente, comenzando con un sistema adiabaticamente cerrado
que puede describirse por una tnica variable no mecénica (sistema simple), siguiendo por un sistema com-
puesto también adiabaticamente cerrado y finalizando con la descripciéon de un sistema abierto. Ademads,
comprobaremos que se puede llevar a cabo el estudio tanto desde el punto de vista hamiltoniano como
desde el lagrangiano. La transformacién de Lagrange nos permitira establecer la equivalencia entre ambos
enfoques.

2. Preliminares matematicos

En esta primera secciéon daremos un resumen sobre los conceptos y resultados béasicos relativos a la
geometria diferencial, necesarios para realizar un estudio formal de la mecanica y la termodindmica desde
el punto de vista geométrico. Para un estudio detallado de la geometria diferencial nos referimos a las
referencias [15, 27].

En todo el trabajo se asumira el convenio de sumacién de indices repetidos de Einstein.

2.1. Variedades diferenciables

Comenzamos estudiando el concepto de variedad diferenciable, pues las coordenadas generalizadas que
caracterizan el estado de los sistemas fisicos representan puntos de ciertas variedades diferenciables.

Definicién 2.1.1. Dado un espacio topolégico S, una carta o sistema coordenado en S es un homeomor-
fismo £: U C S — £(U) C R™ donde U es un abierto de S y £(U) un abierto de R™. Siendo:

£p) = (z'(p),-..,2"(p)),

las funciones z', ..., 2" se denominan funciones coordenadas o coordenadas locales de ¢ y a n se le denomina
dimension de &.

Se dice que dos cartas &, 7 en S se cortan suavemente si las funciones £on~! y no&~! son diferenciables,
es decir, de clase C* en sus respectivos abiertos de definicién.
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2 PRELIMINARES MATEMATICOS

Definicién 2.1.2. Un atlas n-dimensional en un espacio topolégico S es un conjunto de cartas de dimensién
n tales que:

= Cada punto de S estd contenido en el dominio de alguna carta.
= Todo par de cartas en S se cortan suavemente.
Un atlas se dice completo si contiene a cada carta en S que corta suavemente a toda carta del atlas.

El siguiente resultado nos asegura que los atlas completos existen y que no es necesario preocuparnos
de, si al definir una variedad mediante un atlas concreto, este es o no completo.

Teorema 2.1.3. Todo atlas en S estéd contenido en un tinico atlas completo.

Definicién 2.1.4. Una variedad diferenciable es un espacio de Hausdorff, M con un atlas completo que
cuenta con una base de abiertos numerable. Se define la dimensién de la variedad como la de su atlas.

La condicion de que el espacio M posea una base de abiertos numerable, asi como el hecho de que sea
de Hausdorff, son propiedades matemaéticas necesarias para alguna de las demostraciones de los resultados
utilizados en el resto del trabajo. No obstante, la primera de las condiciones no es estrictamente necesaria
para definir una variedad. Algunos autores como [21] deciden no incluirla en la definicién y hacen un
tratamiento especial de aquellas variedades que si la cumplen.

Si bien la definicién rigurosa del concepto de variedad diferenciable implica varios tecnicismos ma-
tematicos, intuitivamente éstas son un conjunto que localmente se parece a un espacio euclideo. Por ello,
via un atlas, se pueden transportar conceptos del célculo diferencial e integral a estos espacios més genera-
les. Ademas, segun el teorema de Embebimiento de Whitney, siempre se puede considerar que la variedad
se encuentra dentro de RY para N suficientemente grande.

Ejemplo 2.1.5. 1. El primer ejemplo de variedad diferenciable es el propio espacio euclideo R™ en el
cual se desarrolla la mecanica newtoniana.

2. Un ejemplo ya no trivial es el de las curvas y superficies suaves contenidas en R? (sin bordes).

Extendemos ahora el concepto de funciones diferenciables que conocemos para las aplicaciones de R™
a aplicaciones en variedades diferenciables.

Definicién 2.1.6. Sea f: M — R una funcién definida sobre una variedad diferenciable M. Se dice que
f es diferenciable si para todo sistema coordenado £ : U — R”, f o £~ ! es diferenciable, en el sentido
habitual. Denotaremos por F(M) al conjunto de todas las funciones diferenciables sobre una variedad.

Definicién 2.1.7. Sean M, N variedades diferenciables, no necesariamente de la misma dimensién. Una
aplicacién ¢ : M — N se dird diferenciable si para todo sistema coordenado £ de M y i de N se tiene
que no ¢ o &1 es diferenciable en el sentido habitual.

Se dird que ¢ es un difeomorfismo si tiene inversa y también es diferenciable y, en tal caso, se dird que
M y N son difeomorfas. Se dird que ¢ es un difeomorfismo local si, alrededor de cada punto, existe un
abierto tal que al restringir ¢ a dicho abierto, es un difeomorfismo.

Observacion 2.1.8. Estas definiciones, cuando se trabaja con R™ con su estructura de variedad diferenciable
habitual, se reducen a las de funciones y aplicaciones diferenciables habituales.

2.2. Vectores tangentes, aplicacién diferencial y subvariedades

Seguiremos la definicién de vectores tangentes presentada en [20]. Para introducir el concepto de vector
tangente, consideremos el caso de R3. Podemos pensar en R3 como el conjunto de puntos dados por tres
coordenadas, pero también podemos considerarlo como un espacio vectorial compuesto por vectores de
tres componentes. Estos vectores los podemos colocar en cada punto de R3, de manera que en cada uno
de estos puntos tendremos un espacio vectorial.

De manera andloga, con los vectores tangentes conseguiremos definir un espacio vectorial en cada punto
de la variedad diferenciable. Estos seran ademads, de manera natural, una generalizacién del concepto de
derivada direccional que conocemos en R".

10 =



2 PRELIMINARES MATEMATICOS

Definicién 2.2.1. Una curva en M es una aplicacién diferenciable, o, de un intervalo I C R en M. Se
dice que o es una curva en un punto p € M si 0 € I y o(0) = p. Decimos que dos curvas en p, ¢ y 7, son
tangentes si existe un sistema coordenado (£,U), p € U, con funciones coordenadas z* tal que:

d(z' o o) _ d(z' o) l<i<n
dt =0 dt —0 -

Definicién 2.2.2. El conjunto de todas las curvas en p € M tangentes en p a una curva o en p dada (la
clase de equivalencia), se denomina vector tangente a o en p, y se denota ¢(0). El conjunto de todos los
vectores tangentes a p se denomina espacio tangente a p, y se denota T,,(M).

En verdad, siendo (£, U) un sistema coordenado entorno a p € M, podemos identificar el vector tangente

a o en p con la n-upla:
d(z! o o0) d(z™ o o) (1)
dt o dt o)

la cual no depende del representante o de la clase de equivalencia tomado. De hecho, por medio de esta
identificacion, se dota al espacio tangente de estructura de espacio vectorial. Esta estructura no depende
del sistema coordenado elegido. Asi vemos que los vectores tangentes dan un sentido a la“velocidad” de las
curvas.

Definicién 2.2.3. Si 0 : [ — M es una curva, t € I, se define el vector tangente a o en t, como
o(t) = 7(0), donde 7(s) = o(s+1t), Vt € I.

Ejemplo 2.2.4. Sea M una variedad diferenciable, p € M y sea (£,U) un sistema coordenado entorno
a p. Denotamos por x' a sus funciones coordenadas. Entonces podemos considerar las curvas o'(t) =
E71(&(p) + te;), donde e; es el i-ésimo vector coordenado de R™. Estas curvas son las que trazarfa una
particula al aumentar su coordenada i-ésima cuando se expresa su posicién usando el sistema coordenado
£. Denotamos sus vectores tangente por:
s, ) ¥
- | =¢c"(0).
(ax’ v 0)

Definicién 2.2.5. Sea F': M — N una aplicacién diferenciable. Se define su aplicacién diferencial en
p € M, dF(p) o F, como la aplicacién lineal dF'(p) : T,(M) — Tp)(N) dada por:

Estos forman una base de T,,(M).

4F (p)(5(0)) = (F 0 0)(0).

Observacion 2.2.6. Usando el teorema de la aplicacién inversa se puede probar que una aplicacién F
entre variedades es un difeomorfismo local si y solo si su aplicacién diferencial en cada punto de M es un
isomorfismo lineal.

En particular, cuando consideremos funciones f : M — R podemos considerar que los vectores
tangentes actian sobre f como:

6(0) (f) = df (p) (6(0)) -

De forma que, si consideramos un sistema coordenado & con funciones coordenadas z* y a(0) = ot ( 821- )p,

entonces se tiene que, identificando T't(,)R con R por medio del isomorfismo % — 1:

50) (1) =o' (4 ;xfl))g(p) |

Es decir, los vectores tangentes actian sobre las funciones definidas sobre variedades de forma andloga a
como lo harian las derivadas direccionales en R™. Se puede probar ficilmente que cumplen las siguientes
propiedades que, de hecho, caracterizan a los vectores tangentes y permiten dar una definicion alternativa
de ellos (ver [15, 22]).

Proposicion 2.2.7. Sean f,g : M — R funciones definidas sobre una variedad y sea p € M. Sean
veT,M y o cR. Entonces se cumple:
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2 PRELIMINARES MATEMATICOS

L v (f+g)=v(f)+v(g),
2. v(af) = av(f),
3. v(fg) = v(f)g(p) + f(p)v(g)-

De manera andloga, la diferencial de una funcién entre variedades actuard de forma analoga a como lo
hace la diferencial de una funcién de R™ en R™, como muestra en particular el siguiente resultado:

Proposicion 2.2.8. Sean F': M — N, G : N — P dos aplicaciones diferenciables. Entonces G o F' es
diferenciable y se cumple que:

d(G o F)(p) = dG(F(p)) o dF(p), Vp€ M.

Definicién 2.2.9. Un campo de vectores es una aplicaciéon, X, que a cada punto p de M le asigna un
vector tangente a M en p, X (p).

Dado un sistema coordenado (&,U) con coordenadas locales x° ,i = 1,...,m, podemos expresar en
cada punto p € U el vector tangente X (p) en la base del espacio tangente definida en el ejemplo previo.
Asi pues:

X@X@(QQA

De hecho, se cumple que X*(p) = X (p)(z?). Si (¢, V) es otro sistema coordenado con coordenadas locales
v, j=1,...,m, entonces se tiene que:

X(p) =Y’ (p) <8ayj)p7

con: -
Vi) =X (M)

Definicién 2.2.10. Diremos que un campo de vectores X es diferenciable o C* si, usando la notacién
precedente, las funciones X* son diferenciables para todo sistema coordenado. De ahora en adelante en-
tenderemos que todos los campos de vectores con los que trabajamos son diferenciables. El conjunto de
todos los campos de vectores diferenciables sobre M se denotard X(M).

Definicién 2.2.11. Sea X un campo de vectores en una variedad M. Se dice que una curva o : [ — M
es una curva integral de X si Vt € I, se cumple que ¢(t) = X (o(t)), es decir, si la velocidad de la curva o
viene dada en cada punto por X.

Usando el teorema de existencia y unicidad de solucién de ecuaciones diferenciales, se puede probar el
siguiente resultado trabajando en un sistema coordenado.

Teorema 2.2.12. Dado X un campo de vectores en M y pg € M, existen € > 0 y una tunica curva
o:(—e,e) — M tales que o es curva integral de X y o(0) = po.

Definicién 2.2.13. Sea M una variedad diferenciable. Un grupo de transformaciones 1-paramétrico local
de M es una aplicacion:
¢ (—e,e) xU — M,

con U C M abierto, tal que:
1. Para todo t € (—¢,¢), ¢ : U — ¢(t,U) dada por ¢.(p) = ¢(¢,p) es un difeomorfismo.
2. Si s t,s+t € (—¢,¢), entonces para todo p € U se cumple que ¢s1¢(p) = ¢s (¢1(p)).

La siguiente proposicion establece que, si consideramos un abierto de M suficientemente pequeno y lo
evolucionamos siguiendo las curvas integrales de un campo de vectores X, entonces, para cada instante t,
dicha evolucion es un difeomorfismo.

Proposicién 2.2.14. Sea X un campo de vectores en M y sea pg € M. Entonces existen un entorno
U de pg, € > 0 y un grupo de transformaciones 1-paramétrico local de M, ¢ : (—¢,e) x U — M (que
denominaremos grupo 1-paramétrico de transformaciones local generado por X) tales que para cada p € U
X (p) es el vector tangente a la curva t — ¢(¢,p) en t = 0. Ademds, en tal caso, las curvas t — ¢(¢,p)
son curvas integrales de X.
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2 PRELIMINARES MATEMATICOS

Observacion 2.2.15. De hecho, si la variedad M es compacta, se puede probar ficilmente que dicho grupo
1-paramétrico de transformaciones puede definirse en (—e,e) x M para algin & > 0.

El siguiente concepto serd un anslogo de lo que las superficies y curvas diferenciales en R? son al espacio
total.

Definicion 2.2.16. Una variedad diferenciable P es una subvariedad de M si:
= P es un subespacio topologico de M.

= La aplicacion inclusién, j : P — M es diferenciable y para cada p € P, su aplicacion diferencial es
inyectiva.

Esta ultima condicién nos permite identificar el espacio tangente a P en cada punto con un subespacio
vectorial de T,,(M) e ignorar la aplicacién inclusién.

2.3. Fibrados tangente y cotangente

Pasamos a construir ahora dos variedades diferenciables a partir de una variedad diferenciable M
dada, las cuales seran vitales en nuestro estudio posterior, pues representaran el espacio de configuracién
y velocidades y el espacio de las fases de un sistema cuyas coordenadas generalizadas estan descritas por
puntos de la variedad M. Estas estructuras serdn casos particulares de una estructura geométrica mas
general: las variedades fibradas y, en particular, los fibrados vectoriales.

Definicién 2.3.1. Sea M una variedad de dimensién n y consideremos el conjunto TM = Upe v oM
junto con la proyeccién canénica, 7y : TM — M dada por 7ar(v) = p, Vv € T,M. Entonces la terna
(TM,Tp, M) se denominard fibrado tangente de M. En ocasiones nos referiremos directamente a TM
como el fibrado tangente de M.

Veamos como dotar al fibrado tangente a su vez de estructura de variedad diferenciable, dando un
atlas de la misma. Para ello consideremos la notacién de la definicién anterior y sea (¢, U) un sistema

coordenado en M con coordenadas locales (z!,...,z"). Definimos, siendo TU = UpeU T,M:

O:UXxR* —TU

(p.a) — a' <a> ,
oxt »

donde a = (at,...,a").

Esta aplicacion es claramente biyectiva lo que permite, usando el lema del pegado, dotar a T'M de una
topologia, que es la tnica tal que ® es homeomorfismo.

Consideramos ahora la aplicacién:

' :p(U) xR C R — TU

(z,a) — a’ (361) :
T o(w)

Si (U,¢) y (V,%) son dos sistemas coordenados con coordenadas locales (z!,...,2") e (y',...,y"),
respectivamente, haciendo uso de la matriz de cambio de base en cada espacio tangente, sip €e UNV y

v € T,M es tal que:
o) (3)
ozt ) oy ),

oo (W)
Oz #(p)

Con lo que, usando la notacién anterior, la aplicacién (¥’ )71 o ® es C™ en R?", pues sus primeras n
componentes seran las componentes de 1! o ¢, mientras que las dltimas n componentes son las dadas
por w/, de acuerdo con la expresién anterior. Todo esto nos permite comprobar que TM es una variedad
diferenciable y que las aplicaciones @1 : TU — ¢(U) x R™ (la inversa de las definidas anteriormente)
son sistemas coordenados de las mismas. Estos sistemas coordenados se denominan inducidos y son con
los que trabajaremos salvo que se indique lo contrario.

entonces se cumple que:

JAIME BaJjo DA Costa 13



2 PRELIMINARES MATEMATICOS

Observacion 2.3.2. Es claro que un campo de vectores (diferenciable), X, sobre una variedad, M, no es
sino una aplicacién diferenciable X : M — T'M, cumpliendo que 7p; o X = Idys, es decir, una seccién
diferenciable de la proyeccién candnica.

Definimos a continuacién una forma de extender las aplicaciones entre variedades diferenciables a sus
fibrados tangentes.

Definicién 2.3.3. Sea F': M — N una aplicacién diferenciable. Definimos la aplicacién TF : TM —
TN dada por:
TF(v) =dF(p)(v), veT,M.

Pasamos ahora a estudiar las 1-formas y el espacio cotangente. Para ello en primer lugar recordamos
el concepto de espacio dual, propio del algebra lineal.

Definicién 2.3.4. Sea V un espacio vectorial real. Se define el espacio dual de V', V*, como el espacio
vectorial de las aplicaciones lineales f: V — R.

Definicién 2.3.5. Sea M una variedad diferenciable y sea p € M. Se define el espacio cotangente de M
en p, Ty M como el espacio dual de T}, M.

Definicién 2.3.6. En las condiciones anteriores, una aplicacién n tal que a cada p € M le asigna un
elemento 7(p) € T, M se denomina una 1-forma.

Sea n una 1-forma sobre M y X un campo de vectores en M. Entonces n(X) : M — R es una funcién.
Si para todo campo de vectores diferenciable sobre M, X, se cumple que n(X) € F(M), entonces se dird
que 7 es una 1-forma diferenciable.

Observacion 2.3.7. Sea f € F(M). Entonces la diferencial de f es una 1-forma df dada por df (v) = v(f),
Vv € TM, la cual es diferenciable.

Ejemplo 2.3.8. En las condiciones anteriores consideremos un sistema coordenado (£, U) con coordenadas
locales z°, 4 = 1,...,n. Consideremos las n 1-formas dxz!,...,dz". En cada punto p € U se tiene que
estas son la base dual de la base considerada en la seccién anterior en el espacio tangente pues:

i 9 _ (0 o) _ [ou _ -
() () - (%) o

siendo u; la i-ésima proyeccién canénica de R™ en R.
De hecho, se cumple que para toda 1-forma, 7, se puede expresar:

, 0
n = nida’, ni =1 (W) :
Y en particular, sobreentendiendo la composicién con £ 1:

_of
78xidx.

df

Estudiamos ahora las propiedades béasicas de la diferencial de una funcién, las cuales se deducen facil-
mente de la definicién y, en el caso de la ultima propiedad, trabajando localmente.

Proposicion 2.3.9. La aplicacién diferencial d cumple las siguientes propiedades:
= Es una aplicacion R-lineal.
= Cumple la regla del producto, es decir, d(fg) = gd(f) + fd(g), Vf,g€ F(M).
» Si feF(M)yhe FR), entonces d(h(f)) = h'(f)d(f).

Definicién 2.3.10. Sea M una variedad diferenciable y sea T*M = UpeM TyMymy : TM — M la
proyeccién canénica, dada por mp(a) = p si a € T;M. Entonces la terna (T*M, mpr, M) se denomina
fibrado cotangente de M. En ocasiones nos referiremos directamente a 7*M como fibrado cotangente de
M.

u =



2 PRELIMINARES MATEMATICOS

Al igual que ocurre con el fibrado tangente, se puede dotar al fibrado cotangente de una estructura
de variedad diferenciable natural inducida por la variedad base, M. Para ello consideremos (¢,U) un
sistema coordenado en M con coordenadas locales (z!,...,2") y, siendo T*U = |J Ty M, definimos la
aplicacion:

peU

O:UXxR* —T"U
(p, @) — a;dz* (p)
donde a = (ay,...,an).
Esta aplicacién es claramente biyectiva lo que permite, usando el lema del pegado, dotar a T*M de

una topologia, que es la tnica tal que ® es homeomorfismo.
Consideramos ahora la aplicacién:

' p(U) x R* C R*" — T*U
(z,a) — a;dz’ (¢(x))
Razonando de manera andloga al caso del fibrado tangente, se comprueba que
{((®)"1,T*U) : (¢,U) es sistema coordenado de M}

forman un atlas diferenciable sobre T*M. A estos sistemas coordenados los denominaremos de nuevo
inducidos.

2.4. Formas diferenciales

En la seccién anterior hemos introducido las 1-formas diferenciales. En esta seccién, generalizaremos
este concepto para introducir las n-formas diferenciales y sus propiedades fundamentales. Un andlisis mas
detallado de las formas diferenciales puede leerse en el capitulo 7 de [24].

Para estudiarlas, hemos de comenzar comentando algunos conceptos propios del dlgebra lineal.

k

—
Definicién 2.4.1. Sea V un espacio vectorial n-dimensional sobre R. Una aplicacién T : V x --- x V — R
se dice que es k-multilineal si es lineal en cada componente. Ademas, se dice que T es alternada si:

T(v1, .. 3 Viyeeny Ujyen,v) =0, siv, =v5, ©# 7]
El conjunto de las aplicaciones k-multilineales alternadas se denotara QF (V).

Definicién 2.4.2. Sean V un espacio vectorial de dimension n sobre R, vy, ..., v € V y 0 una permutacién
de {1,...,k}, es decir, o € Si. Entonces se define:

a(vl,...,vk) = (va(l),...,vg(k)).

Definicién 2.4.3. Sea f : V — W una aplicacién lineal. Entonces se define f* : Q¥(W) — QF(V)
como:

f*(T)(Ula s ’Uk) = T(f(?ﬂ), IR f(vk))7

para todos vy, ...,v; € V. Esta es de nuevo una aplicacién lineal.
Definicién 2.4.4. Sea T una aplicacion k-multilineal sobre V. Se define el alternado de T por:
1
Alt(T) = o Z sgn(o) T oo,
o€Sk
donde sgn(o) es la signatura de la permutacion, 1 si es par y —1 si es impar.

A partir de la definicién se puede comprobar que para toda aplicacién k-multilineal, T', se cumple que
Alt(T) € Q¥(V) y que si T € QF(V) entonces Alt(T) =T.

Definicién 2.4.5. Sean w € QF(V) y n € Q4(V). Se define el producto vectorial de w y 1 como:

|
WAN= (kkJQ'l)'Alt(w ®n),

donde ® denota el producto tensorial.
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Proposicién 2.4.6. Usando la notacion de la definicién anterior, el producto vectorial cumple las siguien-
tes propiedades:

1. Es una aplicacion bilineal.
2. Es anticonmutativo en el sentido que n A w = (—1)*w A 7.
3. Dada f: W — V se cumple que f*(wAn) = f*w A f*n.

Este producto vectorial nos permitird construir bases de los espacios vectoriales de las aplicaciones
multilineales alternadas.

Teorema 2.4.7. Sea V un R-espacio vectorial de dimensién n y sea {¢?}"_; una base de V*. Entonces,
el conjunto de los elementos de la forma:

d)il/\.../\¢ik7 1< <00 < <,
es una base de QF(V).

Este teorema nos proporciona una caracterizaciéon inmediata de los conjuntos de formas lineales inde-
pendientes.

Corolario 2.4.8. Sean w!,...w* € Q}(V). Entonces, dichas formas lineales son independientes si y solo
si:
WA AW A£0.

Una vez completado este repaso sobre los preliminares algebraicos, procedemos a definir las formas
diferenciales de manera general.

Sea M una variedad diferenciable y sea p € M. Consideramos las aplicaciones k-multilineales alternadas
del espacio tangente a M en p, Q¥(T,M), y definimos Q*(TM) = Upenr QF(T,M).

Podemos dotar a este nuevo conjunto de estructura de variedad diferenciable de manera andloga a
como se hizo para el fibrado tangente y el fibrado cotangente, considerando ahora las bases en Q*(T}, M)
dadas a partir de coordenadas locales en M, por:

{dzt Ao Ndz™, 1<y <o <idp <nb (2)

Definicién 2.4.9. Una k-forma diferencial en M es una seccién diferenciable de Q% (T M) respecto a la
proyeccién canénica, 7y : QF(TM) — M dada por m(w) = p si w € Q¥(T,M). Denotaremos por A*(M)
al conjunto de todas las k-formas diferenciables sobre M.

Es decir, una k-forma diferencial (o simplemente k-forma) es una aplicacién que asigna a cada punto
p € M una aplicacién k-multilineal alternada que acttia sobre T),M, de manera que los coeficientes en las
bases locales inducidas por las coordenadas locales de M dadas en (2), sean aplicaciones diferenciables
entre variedades.

Estudiemos ahora sus propiedades basicas, las cuales se deducen de forma inmediata trabajando pun-
tualmente, es decir, en QF (M).

Proposicion 2.4.10. Sean wi,ws,w k-formas sobre una variedad diferenciable M, 1,12, n I-formas sobre
M; f: N — M una aplicacién entre variedades diferenciables y g € F(M). Entonces:

1. (wi+w) Anp=wi1 An+wa An.
2. WA (M +m) =wAn +wAn.

3. ff(wAn) = f*w A f*n (se entiende que f*, llamado pullback de f, es la aplicacién (df)* en cada
punto de la variedad).

4. (gw) An=wA(gn) =g(wAn).
5. wAn=(-1kFnAw.

Notese que las 1-formas se corresponden con el concepto ya definido en la seccién anterior, mientras
que podemos identificar las O-formas con las funciones diferenciables sobre M.

Pasamos ahora a definir dos operaciones nuevas sobre el conjunto de las formas diferenciales: la dife-
rencial exterior y la derivada de Lie.
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Definicién 2.4.11. Sea M una variedad diferenciable, sea un entorno coordenado de M con coordenadas
locales, z*, i=1,...,n,y sea w la k-forma dada localmente por:

w = E Wiy, i dz™ Ao Ada'.
1<i1 < <ip<n
Se define la k + 1-forma dw, llamada diferencial exterior de w, a partir de su expresion local:
_ i i
dw = E dwiy i ANdZ Ao Adat,
1<i1<-<ip<n
_____ i, €s la diferencial de una funcién.

Nétese que en el caso de f € F(M) una O-forma, este concepto se reduce al de df definido al estudiar
las 1-formas.

Proposicion 2.4.12. Con la notacién de la definicién anterior, la aplicacién diferencial exterior cumple
que para todas w1, ws,w k-formas en M y w3 una [-forma en M:

1. d(wl + (UQ) = dwl + doJQ.
2. d(w1 /\wg) = dwi N w3 + (—1)’%01 A dws.
3. d(dw) =0.

Se puede probar que la definicién de esta aplicacién no depende del sistema coordenado elegido, y por
ello estd bien definida de forma global y no solo en el dominio del sistema coordenado tomado. También
se puede probar que es la tinica aplicacién que se puede definir entre k-formas cumpliendo las propiedades
anteriores y actuando sobre F (M) de la misma forma que lo hace d.

Proposicion 2.4.13. Sean f : M — N una aplicacion diferenciable entre variedades y w una k-forma
en N. Entonces:

[P (dw) = d(fw).

Definicién 2.4.14. Se dice que una k-forma, w, en M es cerrada si dw = 0; y se dice que es exacta si
existe una k — 1-forma en M, n tal que w = dn

Observacion 2.4.15. Se puede demostrar que toda k-forma cerrada es localmente exacta, es decir, que dada
w cerrada, existe un abierto U en M y una k — 1-forma en U, 7, tal que en U se cumple que w = dp,
pero puede que n no se pueda extender de forma diferenciable a toda M. Esto se conoce como Lema de
Poincaré.

Definicién 2.4.16. Sea M una variedad diferenciable y X un campo de vectores sobre M. Se define la
derivada de Lie con respecto de X como la tinica aplicacién de Q(T'M) = |, Q*(TM) en sf mismo R lineal
tal que:

1. Lxf=Xf VfeFM)
2. Siw e Q¥(TM) yneQ(TM), entonces, Lx (wAn) = LxwAn+wA Lxn
3. Lx conmuta con d

Notese que efectivamente estas propiedades definen una tnica aplicacién, pues, para calcular la derivada
de Lie de una k-forma, bastard con expresar esta en unas coordenadas locales, usar la propiedad 2 de la
definicién en cada sumando, a continuacién, la propiedad 3 para conmutar cada d con la derivada de Lie
y, finalmente, usar la propiedad 1.

Definiciéon 2.4.17. Sea M una variedad diferenciable y X un campo de vectores. Se define el producto
interno de una k-forma, w, por X, ixw, como la (k — 1)-forma:

1. ixw=0sik=0.
2. ixw (Y1, Ye1) =w (X, Y7,..., Y1) VYi,...,Yy_1 campos de vectores sobre M.

Proposicion 2.4.18. El producto interno en una variedad M por un campo de vectores, X, cumple que:
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1. (ix)*=0.
2. ix (wWAN) = (ixw) An+ (=D w A (ixn), Yw e QMTM),n € QUTM).

El siguiente resultado nos relaciona los tres conceptos previos, ddndonos una forma alternativa de
calcular la derivada de Lie:

Proposicion 2.4.19. Sea M una variedad diferenciable y X un campo de vectores sobre M. Entonces
Ly =ixd+dix.

Cabe mencionar que las tres operaciones sobre el conjunto de las formas diferenciales sobre una variedad
presentadas previamente son casos particulares de un concepto més general: las derivaciones (ver [20]). La
proposicién anterior se prueba de manera rapida haciendo uso de dicho concepto.

2.5. Variedades simplécticas

El estudio de la mecdnica desde el punto de vista geométrico se basa en las variedades simplécticas.
Por ello, haremos un estudio de las mismas basdndonos en [20, 23].
Comenzamos estudiando los espacios vectoriales simplécticos a modo de introduccion.

Definicién 2.5.1. Sea V' un R-espacio vectorial de dimensién n y w una forma bilineal antisimétrica sobre
V,w € Q%(V). Se define la aplicacién lineal:

S,:V—V*

U — W,

siendo i,w(v) = w(u,v) el producto interior. Denotamos por ImS,,, KerS,, a la imagen y el nicleo de la
aplicacién anterior, respectivamente.

Teorema 2.5.2. Sean V, w en las condiciones de la definicién anterior. Entonces, existe una base de V,
ULy .-y Uk, €1,---5€Es, f1,-.., fs, tal que:

w(ui,v) =0, Vi=1,....,k, YveV,
wleisej) =0=w(fi, fj), Vi, j=1,...,8,
w(ei, fj) = 6ij. Vi,j=1,...,5—

Asi, la matriz de w en esta base es:

Okxt  Okxs  Okxs
Osxk Osxs Idsxs
Osxk *Idsxs Osxs

Y el rango de w, es decir, la dimensién de su imagen, es 2s.

Definicién 2.5.3. Se dice que una forma bilineal antisimétrica w sobre un R-espacio vectorial de dimensién
n, V es no degenerada si su rango es n, es decir, si S, es un isomorfismo. En tal caso, se dice que el par
(V,w) es una estructura simpléctica sobre V.

Noétese que si existe una estructura simpléctica sobre V', en virtud del teorema anterior, la dimension
de V ha de ser par.

Definicién 2.5.4. Sean (U,w) y (V,n) estructuras simplécticas sobre los espacios vectoriales U y V,
respectivamente. Sea h : U — V una aplicacién lineal. Se dird que h es una aplicaciéon simpléctica si
h*n = w, es decir, si Vu,v € U, se cumple que 7 (h(u), h(v)) = w(u,v).

Definicién 2.5.5. Se dice que una 2-forma w sobre una variedad diferenciable M es simpléctica si es
cerrada y Vp € M (T,M,w(p)) es una estructura simpléctica sobre el espacio vectorial T, M. En tal caso,
se dice que el par (M, w) es una variedad simpléctica.

Nétese que, si existe una 2-forma simpléctica sobre una variedad M, entonces la dimensién de T, M es
par para todo p € M vy, por ello, la dimensién de la variedad diferenciable ha de ser par.
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Definicién 2.5.6. Sean (M,w;) y (N,ws) variedades simplécticas 2n-dimensionales y sea ¢ : M — N
un difeomorfismo. Se dice que ¢ es un simplectomorfismo si ¢*ws = wi. Si M = N se dice que ¢ es una
transformacién canénica.

Observacion 2.5.7. Si ¢ : M — N cumple que ¢*ws = wy, aun si ¢ no es un difeomorfismo global entre
las variedades, se puede probar que sera un difeomorfismo local.

Para ello consideremos que v € T,(M) es tal que d¢(v) = 0, entonces, para todo w € T,(M),
S (py (V) (W) = w1 (v,w) = wa (do(v),dp(w)) = 0y S, (p(v) = 0. Como S, (, es isomorfismo, v = 0,
y d¢ es inyectiva, con lo que ¢ es difeomorfismo local.

Los simplectomorfismos son a las variedades simplécticas lo mismo que los isomorfismos a los espacios
vectoriales o las isometrias a los espacios con producto interno. Es decir, son la forma natural en que
podemos identificar dos variedades simplécticas.

Definicién 2.5.8. Sea (M,w) una variedad simpléctica. Se define:

b:TM — T*M
v iy (W(p)) = Sup)(v), veTM,

el cual es un difeomorfismo de variedades diferenciables. Para comprobar que es diferenciable basta trabajar
con coordenadas locales inducidas.

Observacion 2.5.9. Podemos entender también b como un F(M)-isomorfismo entre X(M) y A'(M), es
decir, un isomorfismo de mddulos sobre el dlgebra de funciones. Esto quiere decir que si X, Y € X(M) y
f,g € F(M), entonces S, (fX + gy) = fSu(X) + gS.(Y) € AL(M).

El siguiente teorema nos permitira trabajar de forma local comodamente en cualquier variedad simplécti-
ca.

Teorema 2.5.10 (de Darboux). Sea w una 2-forma de rango 2n sobre una variedad diferenciable M de
dimensién 2n + r. Entonces w es cerrada si y solo si Vp € M, 3 (U, ¢) sistema coordenado en torno a p con

coordenadas locales (q',...,q", p1,...,Pn, 2%, ..., 2") tales que:

w = dq"' A dp;.
Corolario 2.5.11. Sea (M,w) una variedad simpléctica de dimensién 2n. Entonces Vp € M,3 (U, ¢)
sistema coordenado en torno a p, con coordenadas locales (q',...,¢", p1,...,pn) tal que:

w = dq" A dp;.

A partir de este resultado, se prueba, trabajando de forma local, la siguiente proposicién.

Proposicién 2.5.12. Sea (M, w) una variedad simpléctica. Entonces, siendo w”™ = w A MAwel producto
vectorial de w consigo mismo n veces, w™ # 0 y en particular M es orientable.

Estudiamos ahora el caso de mayor interés entre las variedades simplécticas y que sirve de modelo para
el resto de ellas, como consecuencia del teorema de Darboux. Estas son los fibrados cotangentes de cierta
variedad M de dimensién n. Definiremos de manera global la estructura simpléctica canénica en T*M y
comprobaremos que las coordenadas inducidas son coordenadas de Darboux, es decir, en las que la forma
simpléctica tiene la expresién buscada en el teorema de Darboux.

Definicién 2.5.13. Se define la 1-forma Ay, en T*M, la cual actuara sobre vectores tangentes v €
To (T*M) con a € T,M, como:
Am(v) = a(p) (dmp(a)v).

Esta se conoce como 1-forma de Liouville.
Nétese que como mpy : T*M — M, entonces, dmps(a) : To (T*M) — T, M, con lo que envia v en un

vector tangente a M sobre el que puede actuar «(p), pues es una 1-forma. Asf pues, A\js es una forma de
actuar sobre los vectores tangentes a 7% M en « de la manera natural en que actuaria a sobre la componente
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tangente a M. Este hecho queda mas claro cuando consideramos coordenadas locales inducidas en T* M,

(ql, e g, ,pn), en las que se cumple que, como localmente a(p) = pjdg’ y dmp(c) (a%) =0:

A (¢ p;) (;}i) = (pjdq’) (azi) = pi,
At (¢, pj) (%) =0.

Y por tanto, comprobamos que:

Av = pidg'.
Definicién 2.5.14. Se define la forma simpléctica candnica sobre T*M por:
wyp = —dApy.
Es claro, a partir de la expresion local de la forma de Liouville, que localmente:
wy = dgt A dp;.

En particular se comprueba que es no degenerada pues, en cada punto p € M:

0
S, - | = dpil,,
M(p) (8(]1):0 P ‘P
o .
S, = —dq'|,,
M (p) (api>p q |P
con lo que S, () transforma una base de T, M en una de T;M y por ello es isomorfismo. Ademds, se

tiene que:
0
b - | =d 75
<3q’> P

9 i
’ (8171') -

2.5.1. Construccion de una estructura simpléctica en T M

Procedemos ahora a construir una forma simpléctica sobre el espacio tangente de una variedad diferen-
ciable de dimensién n, M. En T M no existe una forma simpléctica candnica y hace falta definirla a partir
de una funcién dada, que cumpla ciertas caracteristicas.

Para construir esta 2-forma comenzaremos definiendo la estructura casi tangente canénica de T M
siguiendo [20].

Consideremos la proyeccién canénica 7p7 : TM — M. Para cada v € T, M definimos el siguiente
subespacio:

Vo =ker{dry(v) : T,(TM) — T,M} C T,(TM).

Consideramos V = U,ern Ve, €l cual llamaremos fibrado vertical.

Definicién 2.5.15. Un vector tangente a T'M, z, se dird que es vertical si z € V' y un campo de vectores
X € X(TM) se dird que es vertical si X (v) € V para todo v € TM.

Béasicamente, los vectores tangentes verticales son aquellos que solo dan cuenta de variaciones cuando
cambian las coordenadas correspondientes a los vectores tangentes a M, sin importar lo que pase con las
coordenadas correspondientes a M. De hecho, un vector tangente, z, es vertical si y solo si, considerando
un sistema de coordenadas inducido en T'M, (qi7 vi):

; 0
ST B
para ciertos valores z*. Es decir, que una base de V,, es {%, ceey 62” }.

Definicién 2.5.16. Sea v € T,M y sea u € T, M. Se define el levantamiento vertical de u en v, u” como
el vector tangente en t = 0 de la curva o : R — T, M dada por o(t) = v + tu.
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Observacion 2.5.17. Nétese que, en las condiciones de la definicién anterior, como 7as (o(t)) = p para todo
t, entonces drs (a(t)) =0y u’ € V,. De hecho, considerando coordenadas locales inducidas en TM,
(¢%,v%), siu= uia%i, entonces es inmediato de (1) que:

v .0

K2
w =u'—.
v’

Definiciéon 2.5.18. En las condiciones anteriores, para cada v € T'M define la aplicacion lineal S, :
T,(TM) — T,(TM) dada por:
Su(2) = ((drar) 2)" .

Asi pues, podemos considerar la aplicacién S : T(TM) — T(TM), la cual denominaremos estructura
casi tangente candnica de T'M.

Nétese que S también se puede interpretar como un F (M )-morfismo de X(T'M) en si mismo. De hecho,
es un ejemplo de una clase de aplicaciones mds general, los tensores de tipo (1,1).
Si consideramos coordenadas locales inducidas en T'M, (qi, vi), entonces se tiene que:

9] 0 0
S(aqz) = o S(avz—) =0

Definicién 2.5.19. Se define la derivacién vertical sobre TM como la aplicacién ig : AP(TM) — AP(TM)
que, para cada p = 0,1,..., esta definida por:

p
iSfZO, isw(X17"' 7Xp) :ZW(X]_, aSXiv"' 7Xp);

i=1
con f €C®(TM),we AP(TM)y X; € X(TM),i=1,...,p.

Ejemplo 2.5.20. Consideremos coordenadas locales inducidas en T'M, (qi, vi) y veamos como actia ig
sobre las 1-formas:

. i 9 i 9 i 0 . i g i 0 i
is (dq") <8qi> =dq <S8q’3> =dg <8vi> =0, is (dq") (81}1) =dq (Savl) =dq' (0) =0.

Razonando de igual forma para dv® concluimos que:

is (dqi) =0 is (dvi) =dq’
Proposicion 2.5.21. La derivacion vertical cumple las siguientes propiedades:
1. Es F(M)-lineal.
2. ig(wAN) = (isw) An+wA (ign) para cada w € AP(TM) y n € AY(TM).

Definicién 2.5.22. Se define la diferenciacién vertical en T'M como la aplicacién dg : AP(TM) —
APHL(T M) para cada p =0, 1,..., dada por:

dg =igd —dig,
con d siendo la diferencial exterior e ig la derivacién vertical.
Proposicion 2.5.23. La diferenciacién vertical cumple las siguientes propiedades:
1. dgd = —dds.
2. d% =0.
3. ds (wAn) = (dsw) An+ (=1)Y wA (dsn), con w € AP(TM) yn e AY(TM).
Definicién 2.5.24. Sea L : TM — R una funcién diferenciable. Definimos la 2-forma cerrada siguiente:

Wy, = 7ddsL.
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Teorema 2.5.25. La forma wy, es simpléctica sobre T'M si y solo si, para cada sistema de coordenadas
locales inducidas (qz, vz), la matriz hessiana:

0%L
OvtovJ 1<ij<n ’

Demostracion. Comencemos expresando localmente wy, en unas coordenadas locales inducidas como las
del enunciado:

es invertible.

oL . . OL OL .
L — s L — N . 2 i 3 — . X3
ds igd is (8ql dq* + 500 dv ) 90 dq*,
’L |, 9L A
= ———dq' Nd¢’ ——dqg" N\ dv?. 4
wr o0v*oqJ ¢ Nag ovtovI g Nav )

Asi pues, al tomar el producto exterior de w por si misma n veces, teniendo en cuenta que, si en un
producto exterior se repite una 1-forma, este es nulo, se llega a que:

0*L
wp =det | ——— dgt A~ Ndg™ Advt A A do,
ovtovI 1<ij<n

de donde se concluye el resultado. O

El siguiente concepto nos serd muy util a la hora de estudiar sistemas mecédnicos desde el punto de
vista lagrangiano, pues nos permitira definir correctamente la energia de dichos sistemas.

Definicién 2.5.26. Se define el campo de vectores de Liouville A € X(TM) como:

Aw) = (v)7, veTM.

2.6. Variedades casi cosimplécticas: ejemplos y extensiones

Realizamos ahora una introduccién a la geometria casi cosimpléctica, asi como a casos particulares y a
una generalizacién suya. En particular, introducimos la geometria cosimpléctica, que es el marco natural
para el estudio de los sistemas hamiltonianos dependientes del tiempo; la geometria de contacto, que lo es
para el estudio de los sistemas con hamiltonianos dependientes de la accién, y la geometria parcialmente
cosimpléctica, que es la base para el estudio de la termodindmica del no equilibrio.

Para un estudio més detallado de la geometria cosimpléctica ver [3].

Definiciéon 2.6.1. Una estructura casi cosimpléctica sobre una variedad diferenciable M de dimensién
2n + 1, es un par (w,n), donde w es una 2-forma sobre M y n una 1-forma, tales que w™ A 7 es una forma
de volumen, es decir, una (2n + 1)-forma que no es nula en ningtin punto de M. La terna (M,w,n) se
denomina variedad casi cosimpléctica.

La caracteristica fundamental de todas las variedades casi cosimplécticas es la existencia de un isomor-
fismo natural que nos permite relacionar los campos de vectores con las 1-formas de forma natural, como
prueba el siguiente resultado:

Proposicién 2.6.2. Sea (M,w,n) una variedad casi cosimpléctica de dimensién 2n + 1. La aplicacién:

b:TM — T*M
X —ixw+n(X)n,

es un difeomorfismo. Ademads, es un isomorfismo entre los espacios tangente y cotangente en cada punto
de M.
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Demostracion. Nétese en primer lugar que, si X € T, M, entonces b(X) € T,y M, es decir, la aplicacién con-
serva las fibras. Asi pues, bastara con ver b|r, s es un isomorfismo lineal (el hecho de que sea diferenciable
se deduce de que w y 7 lo sean y basta expresar la aplicacién en coordenadas locales para comprobarlo).

Como T, M y Ty M tienen ambos la misma dimensién, basta con ver que b|7, 1 es inyectivo, es decir,
que si b(X) = 0, entonces X = 0. Para ello razonemos por reduccién al absurdo. Supongamos que existe
X € T,M no nulo con b(X) = 0. Entonces b(X)(X) = (n(X))* = 0.

Pero si n(X) = 0 entonces i,(X) = 0 y se tendria que, extiendo X a una base {X, Xs,..., Xo,11} de
T,M, w" An(X,Xa,...,Xony1) = 0. Absurdo, pues w™ A7 es una forma de volumen y es no nula al actuar
sobre una base. O

Nétese que la aplicacién anterior también es un F(M)-isomorfismo entre X(M) y A*(M), y asf lo
entenderemos en la mayoria de ocasiones.

Definicién 2.6.3. En las condiciones de la proposicién anterior, siendo f = b~!, se define el campo de
Reeb como R = #n.

Proposicion 2.6.4. El vector de Reeb cumple que:
irw =0, n(R)=1.

Definicién 2.6.5. Una variedad casi cosimpléctica (M,w,n) se dice que es cosimpléctica si w y 1 son
cerradas.

Teorema 2.6.6 (de Darboux para variedades cosimplécticas, [3, 20]). Sea (M,w,n) una variedad co-
simpléctica. Para todo p € M, existe un sistema coordenado en torno a p con coordenadas locales

{q%, ..., q", 1, pn, 2} tales que:
w = dq" A dp;, n=dz.

En estas coordenadas:

_9
-0z
Ejemplo 2.6.7. Consideremos M una variedad diferenciable de dimensién n, y P = T*M x R la cual

es una variedad (2n + 1)-dimensional, que denominaremos fibrado cotangente extendido. Consideremos la
2-forma:

R

w=my(wpr).

Es decir, la forma simpléctica canénica de T*M vista en P. Consideremos ademas la 1-forma definida
(globalmente) por:
n = dt,

donde t : P — R es la proyeccién de la tltima componente. Si consideramos coordenadas ¢*, p; inducidas
sobre T* M, entonces {¢*, p;,t} son coordenadas locales sobre P y en ellas:

w:dqz/\dp’u n:dtu

con lo que es inmediato probar que (P,w, n) es una variedad cosimpléctica. Es mas, de acuerdo con el teore-
ma de Darboux anterior, estas variedades sirven como modelo local de todas las variedades cosimplécticas.

Pasemos a estudiar ahora las variedades de contacto, de las que se puede leer un estudio mas detallado
en [17, 19].

Definicién 2.6.8. Una variedad de contacto es un par (M,n) donde M es una variedad (2n + 1)-
dimensional y n es una 1-forma en M tal que:

(dn)" An #0.

Obsérvese que en las condiciones anteriores, la terna (M, dn,n) es una variedad casi cosimpléctica y
por ello se puede considerar el isomorfismo b sobre estas variedades, asi como el campo de Reeb, R

En este caso se conoce también un teorema de Darboux, andlogo al que existe para variedades co-
simplécticas:
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Teorema 2.6.9 (de Darboux para variedades de contacto). Sea (M, n) una variedad de contacto. Entonces,
alrededor de cada punto p € M, existe un sistema coordenado (U, ¢) entorno a p con coordenadas locales
{q*, ..., q", p1,- .., pn, 2} tales que: .

n=dz —pdq’.

Ademas, en estas coordenadas:
; 0
dn = dq" N dp;, R=4.
0z
Ejemplo 2.6.10. Consideremos una variedad diferenciable n-dimesnional, M, y sea P = T*M x R,
variedad (2n + 1)-dimensional. Consideremos Aps la 1-forma de Liouville y definamos:

n:dz_)\M7

donde z : P — R es la proyeccién sobre la tltima componente. Entonces, usando las coordenadas inducidas
sobre T*M y considerando coordenadas locales {q*, p;, z} se tiene que:

n=dz —pidg’,

con lo que, trabajando localmente, se comprueba que (P,7) es una variedad de contacto y, de hecho, de
acuerdo con el teorema previo, es el prototipo local de todas ellas.

Las ultimas estructuras geométricas que estudiaremos en detalle son las variedades parcialmente co-
simplécticas de orden p sobre las que se puede leer un andlisis méas detallado en [1(]. Estas son una
extensién, méas débil, de las variedades cosimplécticas que permiten tratar sistemas termodindmicos con
varios compartimentos.

Definiciéon 2.6.11. Una estructura casi cosimpléctica de orden p sobre una variedad M de dimensién
2n + p es una (p + 1)-tpla, (w,m1,---,7p), tal que w es una 2-forma y 71, -- , 7, son l-formas tales que:

WA A Ay # 0.
Si ademds, w es cerrada, se dird que la estructura es parcialmente cosimpléctica de orden p.

El siguiente teorema nos permite generalizar el isomorfismo introducido en el caso de las variedades
casi cosimplécticas. La demostracion del teorema es analoga a la expuesta en dicho caso.

Teorema 2.6.12. Sea (w,n1,--- ,1np,) una estructura casi cosimpléctica de orden p sobre una variedad de
dimensién 2n + p, M. Entonces, la aplicacion siguiente es un difeomorfismo, asi como un isomorfismo entre
el espacio tangente y el espacio cotangente en cada punto de M.

b:TM — T*M
X — ixw+2ﬂk(X)T]k.
k

De nuevo en este caso, la aplicacién anterior puede entenderse como un F (M )-isomorfismo entre X(M)

y AY(M).

3. Mecanica geométrica

La descripcién de la mecanica desde el punto de vista lagrangiano y hamiltoniano permite estudiar de
forma sistemédtica sistemas mecdnicos en los que existen restricciones sin necesidad de recurrir a fuerzas de
ligadura. Estos enfoques se basan en estudiar la mecénica de un sistema de particulas considerando que
estas se encuentran sobre una variedad diferenciable, M, que denominaremos variedad de configuracién

[26]-

3.1. Mecanica simpléctica

Comenzamos estudiando el comportamiento de un sistema de particulas que se encuentran sobre una
variedad diferenciable, M, desde el punto de vista hamiltoniano. Es decir, describimos el estado del sistema
mediante sus coordenadas en el espacio de fases, el cual identificamos con el fibrado cotangente de M. De
esta forma, al considerar coordenadas locales inducidas en T*M, {q',...,q",p1,-..,Pn}, las variables ¢*
corresponden a lo que se suele denominar coordenadas generalizadas, mientras que las variables p; son sus
momentos conjugados.
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3 MECANICA GEOMETRICA

Definicién 3.1.1. Sea M una variedad n-dimensional y T*M su espacio cotangente. Sea w la forma
simpléctica candnica sobre T*M y b el F(M)-morfismo definido en la seccién previa. Sea H : T*M — R
una funcién diferenciable. Se define el campo hamiltoniano de H, X g, como el tinico campo de vectores
sobre M cumpliendo:

(Xw) = dH,

es decir, el campo hamiltoniano de H es el campo que se identifica de manera natural mediante la estructura
simpléctica de T*M con la 1-forma que genera H, dH.

La importancia de estos campos de vectores radica en que sus curvas integrales proporcionan la evo-
luciéon temporal de un sistema mecanico independiente del tiempo cuyo hamiltoniano venga dado por la
funciéon H, como prueba la siguiente proposicién.

Proposicion 3.1.2. En las condiciones de la definicién anterior, sea ¢ : I — T* M una curva. Entonces
o es una curva integral de Xy si y solo si, siendo {q',...,¢", p1,...,pn} coordenadas locales inducidas en
T*M, o = (q'(t),pi(t)) cumple las ecuaciones de Hamilton:

dqiiaH dpiiiﬁiHi
at ~ op;’ a -~ 9.1

Demostracion. Comencemos calculando en las coordenadas locales del enunciado la expresiéon de Xp.
Sabemos que, como { 6%,;, 8%1_} forman una base de los espacios tangentes en cada punto de M, podemos

expresar localmente:

0 0

B2
oq' " Ipi
Asf pues, usando que b es un F(M)-morfismo y (3):

Xy = A

Como por otro lado:
0H OH
dq' Ipi
igualando los coeficientes de {dq’, dp;}, pues estas 1-formas forman una base de los espacios cotangentes,
llegamos a que:

dH = ~—dq' +

dp;,

w00 o
op;’ ' oq
Teniendo en cuenta la definicién de curva integral de un campo de vectores y la expresién en coordenadas
locales del vector tangente a una curva, (1), se concluye el resultado. O

Una de las propiedades fundamentales de los sistemas mecanicos cuyo hamiltoniano es independiente
del tiempo, es que su energia es una constante del movimiento, como demuestran los siguientes resultados.

Definicién 3.1.3. Se dice que una 1-forma, «, sobre T* M es una integral primera de un campo de vectores
X si:
iXa = 0.
Se dice que una funcién f sobre T*M es una integral primera de X si df lo es.
Observacion 3.1.4. Notese que la definicién de integral primera de una funcién es equivalente a decir que

la funcién es constante sobre las curvas integrales de X, pues si o es una de dichas curvas integrales, por
definicién de vector tangente a una curva:

bxdf (0(0) = X (1) (o(0)) = o)1) = L2

Corolario 3.1.5. Sean M una variedad diferenciable, T* M su fibrado cotangente y w la forma simpléctica
canonica sobre el mismo. Sea H : T*M — R una funcién y Xy su campo hamiltoniano. Entonces H es
una integral primera de Xy .

Demostracion. Basta notar que, por definicién de campo hamiltoniano dH = ix,w y por ello:

iXHdH = z'XHiXHw = W(XH,XH) =0.
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Pasamos ahora a estudiar el mismo problema, pero desde el punto de vista lagrangiano. Es decir, ahora
en lugar de describir el estado del sistema por medio de sus coordenadas y momentos generalizados, lo
hacemos a través de sus coordenadas y velocidades generalizadas. Comprobaremos que ambas formulaciones
son localmente equivalentes.

Definicién 3.1.6. Sea M una variedad diferenciable y T'M su fibrado tangente. Una funcién diferenciable
L:TM — R se denominara funcién lagrangiana o lagrangiano. Se dird que el lagrangiano L es regular

( 82 )
av'av‘j <i,j<n

es invertible. En caso contrario se dirad que el lagrangiano es singular.

Observacion 3.1.7. De acuerdo con el desarrollo realizado en la seccién 2.5.1, (T'M,wy,) es una variedad
simpléctica si y solo si L es un lagrangiano regular. Es por ello que nos centraremos en el estudio de los
lagrangianos regulares. Un estudio detallado de los sistemas lagrangianos singulares, asi como el desarrollo
de un algoritmo para la resolucién de estos sistemas, es decir, para hallar un campo de vectores cuyas
curvas integrales describan la evolucién del sistema mecénico, se puede encontrar en [18].

Definicién 3.1.8. Sea M una variedad diferenciable de dimensién n y L un lagrangiano regular sobre
TM. Se define la energia asociada a L como la funcién:

Ep=A(L)— L.

Considerando coordenadas locales inducidas en T M, (qi7 vi) se tiene que:

; OL
EL :Ula’l}i 7L,

con lo que localmente se recupera la definicién usual de la energfa a partir del lagrangiano [9].

Definicién 3.1.9. En las condiciones de la definicién anterior, se define el campo de vectores de Euler-
Lagrange para L como el tinico campo de vectores £, tal que:

b(&r) = dEy. (5)

Teorema 3.1.10. En las condiciones anteriores, una curva ¢ : I — T'M es una curva integral de &, si
y solo si, localmente, considerando coordenadas locales inducidas, o(t) = (¢*(t),v*(t)) es solucién de las
ecuaciones:

s g d (0L 9L _
vi() = ), i (o)~ o=

es decir, si y solo si su proyeccién sobre M, ¢ = (qz(t)) es solucion de las ecuaciones de Euler-Lagrange.

Demostracion. Comencemos viendo que, considerando coordenadas locales inducidas (q’,vl), &1 estd lo-
calmente dado por:

.0 . 0
— ot + i .
§L aq § 90
donde &7 son ciertas funciones sobre TM. Los campos vectoriales con esta expresién local se llaman SODEs
(del inglés Second Order Differential Equations) pues sus curvas integrales son solucién de un sistema de
n ecuaciones diferenciales de segundo orden, como comprobaremos mas adelante en el caso particular de
&L

Para ello comencemos poniendo:

0 0
oq’ ovt’

De manera que, teniendo en cuenta la expresién local de wy, calculada en (4):

L=A"—+¢

Ly L PL N L
= ) — J— J % G
b(gL) (avjanA aviaqj A aviang ) dq + RN Aldvt.

Igualando a la diferencial de la energia:

o*L . 9L\  , 0L
E == ~ =~ ] - . v - . j 71-
dEr, (81)?8(111} 8q’> dq" + S0 Dui" dv
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Igualando los coeficiente de dv® a ambos lados de (5) se llega a un sistema de ecuaciones lineales homogéneo
para (A9 —v7) cuya matriz de coeficientes, por ser L regular, es invertible y, por tanto, A7 = v’ para
j=1...,n. ‘
Teniendo esto tltimo en cuenta, igualando los coeficientes de dg* a ambos lados de (5), llegamos al
sistema de ecuaciones que determina a &7:
0’L 0’L . OL

J j_ 92 _
ovtog v oviovI & oq’

Asi pues, siendo en cada sistema de coordenadas locales inducidas, o(t) = (qi (1), vi(t)), o es curva integral
de &, siy solo si:

dq' ; ; dv? .
= Al =" t s = Z.
dt o) T
Sustituyendo en la ecuacién anterior, comprobamos que esto es equivalente a que se cumpla:
0L . 0’L .. 0L d (0L oL
—— ¢+ — - — = — - | —— =0,
ov*oqI ovtovI dqt  dt \ ov* oq*
donde se denota como ¢* y ¥ a las derivadas temporales de las coordenadas sobre la trayectoria. O
Observacion 3.1.11. En [20] se puede encontrar la prueba de que &1, es una SODE sin recurrir al uso de

coordenadas locales.

Proposicion 3.1.12. En las condiciones anteriores, la energia, E; es constante a lo largo de las curvas
integrales de &;,.

Demostracion. Basta observar que:

LB =dEr (§0) =b(§r) (§n) = wr (§0,€1) =0,
y utilizar el mismo razonamiento que en la observacién 3.1.4. O

Definicién 3.1.13. Sea M una variedad n-dimensional y L un lagrangiano regular sobre T'M. Se dice que
una 1-forma [ es un campo de fuerzas sobre T'M si es semibésica, es decir, si y solo si existe otra 1-forma
a € AY(TM) tal que:

B(X) = a(5X)

, para cada X € X(TM), siendo S la estructura casi tangente canénica de TM. La terna (M, L, ) se
denomina sistema mecanico.

Observacion 3.1.14. De acuerdo con el célculo realizado en el ejemplo 2.5.20, 8 es una 1-forma semibésica
si y solo si su expresion en coordenadas locales inducidas es de la forma:

B =F'dq,
siendo F'* funciones definidas en T M.

Teorema 3.1.15. Consideremos un sistema mecdnico, (M, L, §), como en la definicién anterior. Entonces
una curva o : I — T'M es una curva integral del campo £ definido por:

b(§) = dEL + B,

si y solo si localmente, considerando coordenadas locales inducidas y siendo o(t) = (¢*(t),v'(t)) se tiene
que: ‘
dq*

i d oL\ oL
dt = (1), dt(@vi)_aqi_ .

La demostracién de este resultado es muy similar a la del teorema anterior y, por eso, no se incluye.

Definicién 3.1.16. Se dice que un sistema mecénico (M, L, ) es conservativo si 8 es cerrada.

Proposicién 3.1.17. Sea (M, L, ) un sistema mecanico conservativo con lo que, localmente, § = dV
para cierta funcién V. Entonces, la energia definida como Ej 4+ V es constante a lo largo de las curvas
integrales del campo de vectores £ definido en la proposiciéon anterior, localmente.
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Demostracion. Basta notar que la ecuacion que define localmente el campo £ se puede expresar como:
igw = d(EL+V),
y usar el mismo razonamiento que cuando no se considera la presencia de un campo de fuerzas. O

Observacion 3.1.18. Si de hecho 8 = d(V o 7yy) para cierta funcién V : M — R, entonces se dird que
(M, L, 8) es un sistema lagrangiano y el sistema se comportard igual que si se considera el lagrangiano

L =L —V o7y definido sobre T M.

Una de las principales ventajas de usar el formalismo geométrico para estudiar los sistemas mecénicos
es la facilidad con la que se pueden estudiar las simetrias. En particular, el teorema de Noether tiene una
expresion muy sencilla en este lenguaje. Se puede consultar una demostracion recurriendo a coordenadas
locales en [26] y una hecha de forma intrinseca en [20]. En esta ultima referencia se pueden encontrar més
resultados que permiten relacionar constantes del movimiento y simetrias, generalizando el teorema de
Noether.

Definicién 3.1.19. Sea M una variedad n-dimensional y sea L : TM — R un lagrangiano regular. Sea
X € X(M). Se dice que L admite X si para todo t para el que esté definido el grupo 1-paramétrico de
transformaciones local que genera X, ¢, se tiene que L o T'¢, = L.

Teorema 3.1.20 (de Noether). En las condiciones de la definicién anterior, si L admite un campo de

vectores X, entonces XYL es constante a lo largo de las curvas integrales del campo vectorial de Euler-
Lagrange de L, {1, es decir, £, (XVL) = 0.

Observacion 3.1.21. Considerando coordenadas locales inducidas (q"7 vi), siendo X = X* 8‘?1,- se tiene que:
- OL
X'L=X"—.
o'

3.1.1. Transformacion de Legendre

La transformacién de Legendre nos permitird realizar, para sistemas con lagrangianos regulares, una
identificacion local entre TM y T* M a través de la cual se comprueba que la evolucion del sistema predicha
por los formalismos lagrangiano y hamiltoniano es equivalente (al menos de forma local).

Definicién 3.1.22. Sea M una variedad n-dimensional y sea L : TM — R un lagrangiano. Se define la
1-forma:

ayp = dsL.

Considerando coordenadas locales (qi, vi) se tiene que:
oL |,
OLL = 8'Ui dq’L?

con lo que comprobamos que se trata de una 1-forma semibasica.

Definiciéon 3.1.23. Sea M una variedad diferenciable de dimensién n y L un lagrangiano regular. Se
define la transformacién de Legendre como la aplicacién Leg : TM — T*M dada por:

Leg(X)(v) = ar(X)(v),
donde X e Ty,M,veT,MyveTx(TM), condr (v) =v.

Observacion 3.1.24. Consideremos coordenadas locales (qi, vi). Entonces vemos que:

0 0 oL 0 i 0 i 0 oL 0

aq’ » ol ovt aq’ » ol v ovt oq’ »
donde hemos explicitado el punto en que se consideran los campos de vectores y las 1-formas, asi como
el punto en que se evalia ng Este cdlculo nos permite ver que, en coordenadas inducidas Leg actua

conservando las fibras, es decir, sin cambiar el punto sobre M, y mandando las velocidades en los momentos
conjugados a través de L:

(qw)H(q,avi)-

Ademas, el cdlculo anterior muestra que, gracias a que «y, es semibdsica, da igual el vector v tomado en
la definicién de la transformacién de Legendre.
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Proposiciéon 3.1.25. En las condiciones de la definicién anterior se cumple que:
Leg* Ay = ay, Leg*wp = wr..

Demostracion. Consideremos coordenadas locales {¢'} en M y las coordenadas que estas inducen en T'M
y T*M, {¢",v'} y {¢*, pi}, respectivamente. Recordemos que:

A = pidg’.

0 0 oL
. (dLeg (861">) A (8611') T
0 , 0 0] , 0 (¢’ o Leg
AM (dLeg (W)) = p;dq’ (dLeg (W)) =Di (dLeg <8vi)) (qj) :Pi% =0,

con lo que, trabajando localmente, hemos comprobado la primera igualdad. Como wy; = —dA\y y wp =
—day, y la diferencial exterior conmuta con los pullbacks de funciones, se tiene la segunda igualdad. O

Asi pues:

Corolario 3.1.26. La transformacién de Legendre es un difeomorfismo local.

Demostracion. Basta con notar que Leg es un simplectomorfismo. O

Definicién 3.1.27. Sea M una variedad diferenciable y L un lagrangiano regular. Si Leg es un difeomor-
fismo global, se dird que L es hiperregular.

Definicién 3.1.28. Sea L un lagrangiano hiperregular sobre una variedad diferenciable M. Se define el

hamiltoniano asociado a L como la aplicacién H : T*M — R dada por H = E, o Leg™*.

Usando las propiedades del producto interno con respecto a los pullbacks de funciones, se pueden probar
los siguientes resultados, que nos permiten comprobar que los formalismos lagrangiano y hamiltoniano son
equivalentes.

Proposicion 3.1.29. Sea L un lagrangiano hiperregular y sean £;, el campo de Euler-Lagrange para L y
Xy el campo hamiltoniano de H. Entonces:

Xy =TLego&p o Leg™t.

Corolario 3.1.30. En las condiciones anteriores, si ¢ es una curva integral de &, entonces v = Leg o o
es una curva integral de Xp.

3.2. Mecanica cosimpléctica

Presentamos ahora un formalismo para el estudio de los sistemas mecdnicos no auténomos. Si bien
existen otros enfoques para estudiar este mismo problema, por ejemplo, basados en 1-jets (ver [20]),
obtendremos las ecuaciones del movimiento a partir del campo de evolucién [16]. En [13] se estudia la
forma en que ambos enfoques se relacionan.

Comencemos estudiando el formalismo hamiltoniano cosimpléctico. Consideremos M la variedad n-
dimensional de configuracién y sea T* M su fibrado cotangente. Consideremos el fibrado cotangente exten-
dido, T* M xR, junto con la 2-forma w y la 1-forma 7 definidas en la seccién 2.6, con lo que (T*M x R, w,n)
es una variedad cosimpléctica. Sea H : T*M x R — R una funcién diferenciable que denominaremos fun-
cién hamiltoniana o hamiltoniano.

Definicién 3.2.1. Se define el campo de evoluciéon de H, £y como el tinico campo de vectores sobre el
fibrado cotangente cumpliendo:

b (€n) = dH — (R(H) — 1), (6)
donde b es el isomorfismo asociado a la estructura cosimpléctica.

Proposicion 3.2.2. Una curva o : I — T*M x R es curva integral de £y si y solo si, considerando
coordenadas locales inducidas en el fibrado cotangente extendido (qi, Dis z), siendo o (t) = (qi(t),pi (1), z(t)),
se cumple que:

dq’ _OH dp;  OH dz 1
dt — Op;’ dt — 9¢t’ dt

En tal caso, z =t 4+ const por lo que se pueden identificar ambas coordenadas.
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Demostracion. Nétese en primer lugar que, en coordenadas locales inducidas, el miembro derecho de (6)
se expresa como:
O0H | .
dH — (R(H) —1)n = —dq"' + —
(RUH) ~1)n =5 cdd' +

OH, 0
Pi 92

Asi pues, usando que:

0 0 i 9\ _
b (W) = dp;, b <3pi> = —dq’, b (82’) = dz,

expresando £y = A’ 6?1" + Biaip- +C % y, usando la F(M)-linealidad de b, concluimos que:

0H ., OH 0
dq' + dp; + —.
0z

Aldp; — B;dq* dz = . —
Di idg’ + Cdz aqt ap;

Igualando los coeficientes de los elementos de la base del espacio cotangente {dq’, dp;,dz}:

OH 0 O0H 0 0

Ea = - — — + .

" Opiogi 9qiop; | 02
Por tanto, comprobamos que o(t) = (qi(t),pi(t),z(t)) es curva integral de £y si y solo si cumple,
localmente, las ecuaciones del enunciado. O

Pasamos ahora a considerar el formalismo lagrangiano. Para ello, nos centraremos en el estudio del
fibrado tangente extendido, M xR, donde es necesario considerar una funcién lagrangiana L : TM xR —
R. Se considera de nuevo la estructura casi tangente candnica, S, actuando ahora sobre TM x R de la
misma forma en que se definié en la seccién 2.5.1 (considerando ahora 7as : TM X R — R y definiendo
el levantamiento vertical de un vector tangente a M a T(TM x R) de forma andloga). A partir de ella se
puede definir dg como se hacia en dicha seccién y, con ello las formas diferenciables siguientes:

>\L = dsL, wy, = 7ddsL.
En coordenadas locales inducidas, (qi, v, z) se tiene que:

0?L 0?L 0’L

oL i p o ip i
Ovtogd da’ 1 dg’ o+ vt Ovi dq’ A dv? Ovidz

= 81}" dqza wr =

AL dq' A dz, (7)

con lo que se comprueba que (T'M x R,wr,,dz) es una variedad cosimpléctica si y solo si el lagrangiano es
regular, en el sentido definido en la seccién 2.5.1.

Definicién 3.2.3. Supongamos que L es un lagrangiano regular y sea A el campo de vectores de Liouville,
que consideramos ahora como A € X (T'M x R) sin més que considerar nula su componente en TR. Se
define la energia lagrangiana como:

Definicién 3.2.4. En las condiciones anteriores se define el campo de evoluciéon del lagrangiano regular L
como el inico campo de vectores que cumple, siendo b el isomorfismo asociado a la estructura cosimpléctica:

b(Er) = dEg, — (R(H) — 1) d=.

Proposicién 3.2.5. Una curva o : I — T'M x R es una curva integral de &, si y solo si, considerando
coordenadas locales inducidas en el fibrado tangente extendido (¢*,v%, z), siendo o (t) = (¢*(¢), v*(t), 2(t)),
se cumple que:

_87qi_ ,

L dg dz d (OL\ 0L
¢ = =0 b dt(&)

con lo que, en particular, se pueden identificar las variables z y ¢.

Demostracion. El resultado se prueba siguiendo el mismo esquema de demostracién que en el teorema
3.1.10 O
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3 MECANICA GEOMETRICA

Al igual que ocurre en el caso de los sistemas auténomos, estos dos enfoques pueden relacionarse, al
menos de manera local, a través de la transformacion de Legendre. Para ello comenzamos definiendo la
1-forma:

ayp = dsL,

que, en coordenadas locales inducidas (q’7 v, 2)7 se expresa como:

0L
L

Definimos la transformacién de Legendre entre los espacios tangente y cotangente extendidos como:

(g,v,2) dq.

ar

Leg: TM xR — T"M xR
(X,2) — (Leg(X,2),2),

donde Leg(X,z) acttia sobre un vector tangente v € T,M como Leg(X,z)(v) = ar (X|p, 2) (v), con
7€ T(TM x R) y drp (D) = v, siendo mpr : TM x R — M la proyeccién candnica. Al igual que en el
caso auténomo, se puede comprobar que esta definicién no depende del vector v tomado gracias a que ay,
es semibdsica. En coordenadas locales inducidas (qi, v, z) se expresa la transformacién de Legendre como:

oL

Leg (qiaviwz) = (q77 81}7’72:) .

Es claro que, definida entre los fibrados extendidos, la transformacién de Legendre seguira siendo un
difeomorfismo local. Si ademés es un difeomorfismo global, se dird que L es hiperregular. En este tltimo
caso se define a partir de la energia lagrangiana, la funcién hamiltoniana, H, en T*M x R como:

H = Ey o Leg™ .
Proposicion 3.2.6. En las condiciones anteriores se cumple que:
AL = Leg™ My, wr, = Leg*w, dz = Leg*dz,
considerando A\j; actuando sobre T*M x Ry A, sobre TM x R.

Esta proposicién se demuestra de forma analoga a la proposicién 3.1.25. De ella se obtienen los siguientes
corolarios que establecen la conexién entre las formulaciones hamiltoniana y lagrangiana.

Observacion 3.2.7. También se podria demostrar el resultado, sin tener que repetir los calculos locales,
haciendo uso de algunas propiedades de las variedades producto y los levantamientos de vectores tangentes
en las mismas [22].

Corolario 3.2.8. Sea L un lagrangiano hiperregular y £ su campo de evolucién. Sea £y el campo de
evolucién para el hamiltoniano asociado a L. Entonces:

Ey =TLego & o Leg™ .

Ademas, o es una curva integral de £, siy solo si v = Legoo lo es de Ep.

3.3. Mecanica de contacto

Procedemos a tratar ahora con sistemas mecanicos en que aparecen fuerzas disipativas a través de
hamiltonianos o lagrangianos que dependen de la accién.

Estos sistemas comenzaron estudidandose partiendo de un enfoque variacional. Para ello, se parte de
una funcién lagrangiana definida sobre el fibrado tangente extendido de la variedad de configuracién
L:TQ xR — R. Se consideran las curvas o : [a,b] — M tales que tienen inicio y final fijos, o(a) = p;
y o(b) = p2. Dado ¢ € R, para cada curva o diferenciable, se define z(t) como la solucién de la ecuacién
diferencial:

dz )

i L(o(t),c(t),2), z(a) = ¢,
y se busca la curva o que haga extremo z(b). Né6tese que z es la accién a lo largo de la trayectoria, pues su
derivada temporal es el lagrangiano. El Principio de Herglotz nos dice que tal curva, describira la evolucién
del sistema mecanico.
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3 MECANICA GEOMETRICA

Por medio de técnicas de célculo variacional, se concluye que dicha curva ¢ ha de ser solucién de las
ecuaciones de Herglotz (ver [12, 19]):

d (0L oL oL OL
o ( ) (8)

0¢')  9q"  0q' 0z

Notese que este principio es una generalizacién del Principio de Minima Acciéon de Hamilton, el cual
se recupera en el caso en que L no dependa de la accion.

Estos sistemas también se pueden tratar de forma geométrica utilizando la geometria de contacto [14].
Comenzamos estudiando el formalismo hamiltoniano dentro de este enfoque.

Sea M una variedad diferenciable y sea su fibrado cotangente extendido T*M x R y consideremos la
1-forma 7 definida en el ejemplo 2.6.10, con lo que (T*M x R,7n) es una variedad de contacto. Como en
particular es una variedad casi cosimpléctica, podemos considerar el isomorfismo canénico b. Consideremos
H :T*M x R — R una funcién hamiltoniana.

Definiciéon 3.3.1. En las condiciones anteriores se define el campo hamiltoniano de H como el nico
campo de vectores, Xy, tal que:

> (Xu) =dH — (R(H) + H) 7 (9)

Proposicién 3.3.2. Una curva ¢ : I — T*M x R es una curva integral de Xy si y solo si, consi-
derando coordenadas locales inducidas en el fibrado cotangente extendido, (ql,pi,z), y, siendo o(t) =

(qi(t),pi (t), Z(t)), se cumple que:

WM dn_ (0H oW = oH
dt — Op;’ dt oq’ bi 0z )’ at P Ip;

Demostracion. Comenzamos expresando el miembro derecho de (9) en coordenadas locales inducidas:

OH
aq’

o, oH

dH — (R(H) + H)n = —dq’ dp; + p;—dq* — Hn.
(R(H)+ H)n q+apl_p+pazq n

Por otro lado, se tiene que:

0 0 1o}
b(@q’) = dp; — pin, b(@m) = —dgi, b(@z) =1.

Asf pues, usando la F(M)-linealidad de b y poniendo Xy = A° 8?11' + Bia%,- + Ca%, se tiene que:

, . , O0H OH . OH
b (Xu) = —Bidg' + Aldp; + (C — piA') n = ( +pi> dq" + .

: dp; — Hr.
o7 pi — Hn

Nétese que {dq’, dp;,n} forman una base de los espacios cotangentes del fibrado cotangente extendido. Asf
pues, igualando los coeficientes de dichas 1-formas, concluimos que:

X73H37 8H+437H 0 _5‘H7H2
2= 9p; gt gt Py, Op; pi Opi 0z’
El resultado se concluye de forma inmediata. O

La siguiente proposicién nos demuestra que los sistemas con los que tratamos ahora son no conserva-
tivos.

Proposicion 3.3.3. Sea H : T*M x R — R una funcién hamiltoniana. Entonces:
Xy(H)=-R(H)H.
Demostracion. Haciendo uso de coordenadas locales inducidas, teniendo en cuenta la expresion local de

Xy obtenida en la demostraciéon previa, el resultado es trivial. Para ver una demostracion intrinseca,
consultese [19]. O
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3 MECANICA GEOMETRICA

Al igual que hicimos en las secciones precedentes, pasamos ahora a estudiar el mismo problema pero
desde el punto de vista lagrangiano. Para ello partimos de una funcién lagrangiana, L : TM x R — R

regular, €es deCir7 ‘al que
(‘ 11 )
J 1<i,j<n 6'[}781]‘7 ]<i,j<n 7

es invertible. Consideremos la 1-forma Ay, actuando sobre el fibrado tangente extendido como en la seccion
previa y definamos:
np = dz — )\L,

donde z : TM x R — R es la proyeccién sobre R. Es inmediato comprobar, usando coordenadas locales
inducidas, que (T'M x R, n.,) es una estructura de contacto, gracias a que L es regular.

Definicién 3.3.4. Siendo A el campo de vectores de Liouville, se define la energia asociada al lagrangiano
L como:
E,=A(L)- L.

Definicién 3.3.5. En las condiciones anteriores, se define el campo de Euler-Lagrange, &1, como el tinico
campo de vectores cumpliendo:

(L) =dEL — (R(EL) + EL)ne. (10)

Proposicién 3.3.6. El campo de vectores de Reeb de la estructura (TM x R,np) estd dado, en coorde-
nadas locales inducidas (¢*,v*, z), por:

0 i 9L 0

R = 9z Ovidz Ovt’

donde (WH), _. j<n © la matriz inversa de la hessiana, (Aij)1<ijcn:

Demostracion. Sabemos que el campo de vectores de Reeb existe y es uinico. Asi pues, basta con ver que
si la expresion local de Ry, es la del enunciado, b (Rp) = 0,
Para ello, nétese que:
dnr = —dAr,

por lo que su expresién en coordenadas locales es la dada por (7). Asf pues, es inmediato que:

B 2L . 0 PL
b(m) I S A b(am) = " viaw -

Usando la linealidad de b se tiene que:

8L 82Ldi_ 82Ldi+ +6~82Ldi—
0010z 0viouk 1 T T apia, 1 T T %ig,e, 41 T

0*L
Ovtdz

b(Rp) = — dq' +n+ Wk

Teorema 3.3.7. Con la notacién de las proposiciones precedentes, una curva o : I —> TM X R es
una curva integral de £, si y solo si, para todas coordenadas locales inducidas, (q’, ', z), siendo o(t) =
(¢'(t),v'(t), 2(t)), se cumple que:

dgt @—L(ii) d (OL\ 9L _JLIL
a0 at A dt \ Ovt dgt  Ovi 9z’

Es decir, si y solo si la proyeccién sobre M de o es solucién de las ecuaciones de Herglotz ().

Demostracion. Basta usar la representacion en coordenadas inducidas del campo de vectores de Reeb dada
en la proposicién anterior para expresar el miembro derecho de (10) de forma local.
Para concluir el resultado se razona como en la demostracién del teorema 3.1.10. O

Si consideramos ahora la transformacién de Legendre definida en la seccion anterior, usando la linealidad
de Leg*, asi como la proposicion 3.2.6, se deduce de forma directa el siguiente resultado.

JAIME BaJjo DA Costa 33



4 TERMODINAMICA DEL NO EQUILIBRIO

Proposiciéon 3.3.8. Sea L : TM x R — R un lagrangiano hiperregular y sea la funcién hamiltoniana
asociada a L, H = E o Leg™' : T*M x R — R. Entonces se cumple que:

n. = Leg™.

De la proposicion anterior se deduce, haciendo uso de las propiedades de los pullbacks de funciones
y de las extensiones de aplicaciones al fibrado tangente, el siguiente corolario, que permite relacionar las
formulaciones lagrangiana y hamiltoniana, al menos localmente.

Corolario 3.3.9. Sea L un lagrangiano hiperregular y £;, su campo de Euler-Lagrange. Sea Xy el campo
hamiltoniano para la funcién hamiltoniana asociada a L. Entonces:

Xy =TLego&r o Leg™t.
Ademads, una curva o es curva integral de £, si y solo v = Lego o lo es de Xy

Ejemplo 3.3.10. [12] Consideremos como variedad de configuracién M = R y definamos el lagrangiano
L:TM xR — R dado por:

1 1
L(z,v,z) = §mv2 - §ka:2 - az.

Noétese que en este caso (z,v, z) son coordenadas locales inducidas en TM x R que de hecho son globales.
Asi se tiene que la transformada de Legendre viene dada por:

Leg: TM xR —T"M xR

(ar0.2) > (0. 552) = (@),

y, en particular, Leg es biyectiva y por ello L es hiperregular. La energia asociada a este sistema vendra
dada por:

1 1
Ep, = gmv2 + §kx2 + az,

y, por ello, el hamiltoniano sera:
2
1
H= 2pim +§km2+az.

Trabajando en el formalismo lagrangiano, vemos que el sistema ha de cumplir la ecuacién de Herglotz:

d
— (mz) + kxr = —mza,
5 (M)
donde las derivadas temporales sobre la trayectoria se han indicado con un punto sobre la coordenada.
Trabajando en el formalismo hamiltoniano, se cumplen las ecuaciones siguientes:
de p dp i dz  p? 1 o
— ==, — = —kx — ap, — =— — —kz* — az.
it~ m dt P it~ 2m 2
En cualquiera de los dos casos, las ecuaciones son equivalentes a las de un oscilador arménico amortiguado:
mi + max + kx = 0.

Por tanto, comprobamos con un ejemplo como este formalismo nos permite estudiar correctamente los
sistemas disipativos.

4. Termodinamica del no equilibrio

Antes de pasar a estudiar una descripciéon geométrica de los sistemas termodinamicos, andloga a la
que se ha presentado en la seccién anterior para los sistemas mecanicos, presentamos los postulados de la
termodindmica del no equilibrio introducidos por Stiickelberg en 1960 [25]. Stiickelberg consiguié extender
la teoria ya existente de la termodinamica del equilibrio a una teoria dindmica, en la que la evolucién de
los sistemas termodindmicos viene dictada por una serie de ecuaciones diferenciales. Para ello, introduce
dos funciones de estado, la entropia y la energia, a través de dos postulados. Si bien en la obra original, al
trabajar con sistemas discretos, Stiickelberg solo considera el caso en que estos estan cerrados, posteriores
trabajos (ver [11]) han generalizado los postulados para que sean vélidos en sistemas abiertos.
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4 TERMODINAMICA DEL NO EQUILIBRIO

Definicién 4.0.1. Una variable £ en un sistema termodinamico se dice que es extensiva si su valor es
igual al resultado de la suma de la misma variable definida sobre cada subsistema que forma el sistema
termodindmico.

Postulado 4.0.2 (Primera ley). Para todo sistema termodindmico, existe una funcién de estado extensiva,
es decir, que solo depende de las variables que describen el sistema, y que no depende de forma explicita
del tiempo, H, que denominaremos energia, tal que:

dH ext ext ext
E = I'w + PQ + PM 5
donde PgF' es la potencia debida a las fuerzas externas que actian modificando las variables mecdnicas
del sistema; cht, la potencia debida a la variacion de las variables no mecanicas, es decir, la debida al

intercambio de calor; y Pgr! la debida al intercambio de materia con el exterior.

Un sistema se dice cerrado si P{y* = 0 ; adiabdticamente cerrado, si es cerrado y Pg”t = 0; y aislado,
ext

si es adiabdticamente cerrado y Pjj7* = 0. En este dltimo caso se conservara la energfa del sistema.
Definicién 4.0.3. Consideremos que el sistema estd descrito por unas variables mecénicas ¢*. Entonces
se definen las fuerzas generalizadas externas a partir de la igualdad:

dq

ext __ prext
Pt = Ff*t—.

dt
Postulado 4.0.4 (Segunda ley). Para todo sistema termodindmico existe una funcién de estado extensiva,
denominada entropia, S, que cumple las siguientes dos condiciones:

a) Principio de evolucién: Si el sistema es adiabdticamente cerrado, la entropia es una funcién no
decreciente del tiempo, es decir:
ds
— > 0.
dt
b) Principio de equilibrio: Si el sistema estd aislado, la entropia tenderd, cuando ¢ — 0o, a un maximo
local, compatible con las restriccion de sistema aislado y posibles restricciones internas.

Observacion 4.0.5. Las ecuaciones que obtendremos mediante el formalismo geométrico en la siguiente
seccién son consecuencia exclusivamente de la primera de las leyes introducidas por Stiickelberg. La segunda
ley se encarga de establecer restricciones sobre la expresiéon de las potencias que actian sobre el sistema,
permitiéndonos definir conceptos como los coeficientes de rozamiento o las conductividades térmicas y
establecer sus signos. Cabe mencionar que el principio de equilibrio es necesario para que la teoria no sea
invariante ante inversién temporal y, por ello, dé lugar a la flecha del tiempo (ver [25]).

4.1. Sistemas simples adiabaticamente cerrados

Definicién 4.1.1. Se dird que un sistema termodindmico es simple si para describirlo es necesario el uso
de una tnica variable no mecénica. Postularemos que esta variable puede tomarse como su entropia, S4.

Observacion 4.1.2. Consideramos un sistema termodindmico, siendo F y S su energia y entropia, com-
puesto por P subsistemas simples de energia F4 y entropia S4. Entonces, se ha de cumplir que:

P P
E=Y"Ey, S=> Sa.
A=1 A=1

Notese que el estado total del sistema vendrda determinado por las variables mecanicas junto con las P
entropfas de cada subsistema (pues esto determina el estado de cada subsistema). Ademads, el estado del
subsistema A vendréd descrito por Sy, asi como un subconjunto de las variables mecédnicas del sistema
global, pero estas tltimas pueden usarse para describir varios subsistemas simultdneamente, reflejando las
interconexiones entre ellos.

Comencemos estudiando las consecuencias que pueden extraerse de los dos postulados para sistemas
simples, adaptando lo presentado en [25] al caso en que, en lugar de velocidades, consideramos los momentos
conjugados como variables mecanicas.
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Consideramos un sistema termodindmico simple adiabdticamente cerrado, descrito por las variables
mecanicas (¢, p;), siendo p; el momento conjugado de ¢*, es decir, tal que:
OH dq’
8pi N dt’

en la evolucion del sistema. Sea S su entropia. Entonces sabemos que, por ser su energia, H, una funcién
de estado:

H(t) = H (¢'(t), pi(t), S(1)) ,
con lo que podemos calcular su derivada temporal facilmente. Siendo Ff** las fuerzas generalizadas externas
que actian sobre el sistema:
g’ _

Fiert o — Pﬁ;&t —

dH 0H d¢*  OH dp; 67H§
dt — Oq¢t dt ~ Op; dt  0S dt’

(11)

Por comodidad, denotaremos de ahora en adelante a las derivadas temporales mediante un punto encima
de la variable. Definimos las fuerzas eldsticas generalizadas y las fuerzas de inercia generalizadas por:

Fel _ 8H

=5 Fi" = —j,.

Introducimos las fuerzas de rozamiento generalizadas a partir de imponer la ecuacién del balance de fuerzas
para el sistema total: _
Fiel + Fizn + Fie:ct + Firoz _ 0, Vi.

Concluimos que estas seran las fuerzas que actian sobre el sistema pero sin producir un trabajo, como
por ejemplo, fuerzas cuyo punto de aplicacién no se mueve o lo hace de forma perpendicular a la accién
de la fuerza [4]. Reescribiendo esta ecuacién de balance de fuerzas, podemos llegar a las ecuaciones que
proporcionan la evolucién de la parte mecanica del sistema:

pi — Fiel + Fiert 4 Firoz~ (12)
Ademsds, utilizando la ecuacién (11), podemos obtener la evolucién de la entropfia:
1

[e2:4
oS

S=1=———Frozg. (13)

Esto nos permite definir siempre para un sistema simple una temperatura, la cual de nuevo serd una
funcién de estado al ser una derivada parcial de la energia, como:

OH
T=—,
oS
aunque en cierto sentido seria mas natural trabajar con la temperatura natural del sistema 7 = —%, pues

usando la escala de temperaturas dada por 7 los sistemas seran mas calientes cuando mayor sea 7 de
forma continua, mientras que la escala dada por T' presenta una discontinuidad en T' = 0 y, de hecho, las
temperaturas negativas se corresponden con sistemas mds calientes que las positivas (en el sentido en que,
al poner en contacto un sistema con temperatura negativa y uno con temperatura positiva, habria una
transferencia de energfa en forma de calor del primero al segundo).

En general, ambas ecuaciones estdn acopladas, puesto que F/°% F*t Fel v T dependerdn tanto de las
variables mecéanicas, como de la termodindamica. Cuando la dependencia de las fuerzas generalizadas con
la variable termodinamica se pueda despreciar, se podran resolver las ecuaciones mecanicas del sistema de
manera independiente, lo que conduce al formalismo tipicamente usado en mecanica.

De acuerdo con el principio de evolucién de la segunda ley, S > 0 para cualquier valor de las velocidades
que consideremos. Asi pues, considerando que se puede dar cualquier valor de las mismas y recordando
que ¢ = ng, ha de poderse escribir en la forma:

Firoz = )‘i,j (qivpia Sa t) qj’
donde los coeficientes /\%" en cada instante de tiempo dan lugar a una forma bilineal (que podemos tomar
simétrica) semidefinida positiva. En particular, los coeficientes ), ;, que seran los coeficientes de rozamiento,
habran de tener el mismo signo que la temperatura.
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Un razonamiento anédlogo, partiendo del principio de equilibrio, nos permite concluir que las derivadas

primeras respecto de las variables mecanicas de la energia se habran de anular en los estados de equilibrio,
o°H . 9°H
a(q)? ¥ op?
Estos coeficientes se corresponderan en sistemas concretos con la masa, la constante elastica,...

Cuando consideramos el sistema cerrado, pero admitimos la presencia de una potencia Pfft transmitida
en forma de calor, razonando de manera andloga a como se ha hecho hasta ahora, concluimos que el tinico

cambio que es necesario introducir es que la ecuacién de evolucién de la entropia esta dada por:

asi como que los coeficientes han de tener el mismo signo que la temperatura en dichos estados.

exrt

S=T+-2-
+

siendo I la variacién de la entropia si el sistema se encontrara adiabaticamente cerrado. Por tanto, como

sabemos que I > 0, concluimos que:
exrt

527,
lo que da lugar a la desigualdad conocida en la termodinamica del equilibrio para la evolucién de la entropia
en los procesos termodindmicos (que, escrita de manera rigurosa, es la ecuacién previa):

0Q

ds > —.

T
Ejemplo 4.1.3. Estudiemos, a modo de ejemplo de aplicacién de esta teoria, un oscilador unidimensional
de masa M adiabdticamente cerrado, el cual serd un sistema simple [25]. Consideraremos las variables
mecanicas posiciéon y momento, r y p, asi como una unica variable no mecanica, la entropia S. La energia
del sistema vendra dada por una funcién:

»?

H=H(Snrp =-—+U(Sr),

2M
la cual consideramos que se puede descomponer en energia cinética y energia potencial. Consideremos que
estd sometido a unas fuerzas externas, F¢*, de tal forma que la potencia mecdnica que se introduce al
sistema es:

P&t = Fevty

Asf pues, si ademds, existe una fuerza de rozamiento, F"°*, usando la ecuacién (12) para el balance de
fuerzas en el sistema, teniendo en cuenta que %—Ig = 7 en la evolucién del sistema, llegamos a la ecuacion
de evolucion de la parte mecédnica:
OH
or

Ademsds, la ecuacién de evolucién de la entropia vendra dada por (13):

p — Fe:rt + Froz _

. 1
S = —mezv*.

De acuerdo con el principio de evolucién, S > 0, con lo que podemos introducir un coeficiente de rozamiento,
A, de forma que:
Fro2 = —X(r,p,5) 7,

y deducir que el coeficiente de rozamiento ha de tener el mismo signo que la temperatura.
Ademids, a partir del principio de equilibrio, podemos deducir que, en los estados de equilibrio, las
siguientes magnitudes tendran el mismo signo que la temperatura:

0*H 90U 0*H 1

or? or?’ Op? M’
. . ., L. . ey . . :
Aplicamos ahora la aproximacién armdnica del oscilador entorno a un equilibrio del sistema aproximando

2
1
H(S,r,p) = Qpﬂ + 5760 (r —10)% + Uo(S),

y suponemos que los coeficientes M, kg, A son constantes. El principio de equilibrio nos permite concluir que
tanto la masa M del sistema como su constante elastica kg han de tener el mismo signo que la temperatura.
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De esta forma, la ecuacién de evolucién mecénica se convierte en la de un oscilador arménico amortiguado
forzado:

Mf:—ko(’f’—To)—)\f"-l-Femt.

Nétese que, si bien este sistema ya fue estudiado en el ejemplo 3.3.10, gracias a este nuevo formalismo,
podemos también conocer como evolucionan las variables termodinamicas hacia el equilibrio y cémo la
dependencia de los pardmetros del problema con la temperatura (o, equivalentemente, con la entropia)
puede ser tenida en cuenta.

Otros ejemplos de aplicacién de estas leyes para estudiar la evolucién de diversos sistemas simples en
presencia de rozamiento se pueden encontrar en [4, 10].

4.2. Sistemas compuesto adiabaticamente cerrado sin transferencia interna de
masa

Pasamos ahora a considerar un sistema adiabaticamente cerrado compuesto por P subsistemas simples,
cada uno de ellos cerrado, es decir, que no intercambian materia entre si. Asi pues, describiremos este
sistema por las variables (¢%,p;, S1,...,ST) siguiendo la notacién anterior. Nétese que, si bien el sistema
global esta adiabaticamente cerrado, cada uno de los subsistemas individuales no lo esté, pues puede existir
transferencia de energia en forma de calor entre los subsistemas. Denotamos por PQ B4 la potencia transferida

en forma de calor desde el subsistema B al subsistema A, la cual ha de cumplir que PQ = —PSB . Asi,

la potencia en forma de calor recibida por el subsistema A, definiendo PSA =0, sera:

P
A BA
Py=3% P
B=1

Ademaés, sabemos que la energia del sistema se podré expresar como:
P
H (qzvpiv Slv RN SP) = Z HA (qlaph SA)
A=1

Estudiemos el subsistema simple A-ésimo. Para ello definamos las fuerzas de inercia generalizadas para
este subsistema:

in _ 1 0H,

Ay Qi 8]% - Di--

La evolucién de la energia de cada subsistema vendra dada por:

. 0H 4 OH4
Fea:t - PA:H Z_FZ’I’L % 14
+ P =Ha=—7Td A1Q+8SASA7 (14)

donde consideramos que, sobre cada subsistema, actian fuerzas externas, F'5*f. Consideramos la accién de
P .

fuerzas de rozamiento, F}°7, actuando sobre cada subsistema y definimos F ror =31 F°%, de manera

= ;

que la ecuacion del balance de fuerzas dard lugar a las ecuaciones siguientes:

. H,
Fir, — aa A L F§T 4 FR7 =0, Vi, VA. (15)

Para cada 4, sumamos las ecuaciones anteriores para todos los valores de A, con lo que, definiendo Ff*! =

Zi:l Fg* y teniendo en cuenta que Zi:l Fg”l = —p;, llegamos a la ecuacién de evolucién de la parte
mecdnica del sistema:
o0H
_ ext roz
="+ F arra (16)

Por otro lado, a partir de la ecuacién (14), podemos obtener la ecuacién de evolucién de la entropia de

A _ OH _ OHa.
cada subsistema, donde T = 55, = 332'
- 1 T0Z 1 A 1
SA:—W Az +ﬁPQ_I +TAPQ, (17)
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donde I es la variacién de la entropia que sufrirfa cada uno de dichos subsistemas si, estando adiabética-
mente cerrado, estuviera sometido a las mismas fuerzas externas y de rozamiento y, por tanto, es positiva.
Sumando estas ecuaciones, obtenemos la ecuacién de la variacién de la energia total del sistema:

S_PIA 1P P 1 1 PBA
=2 5> 74 78 )"
1

la cual hemos reescrito, de forma que el segundo sumando sea simétrico. Nétese que la transferencia
de entropia debida a las fuerzas de rozamiento entre los subsistemas, resumida en los términos 14, es
independiente de si los subsistemas se encuentran adiabaticamente cerrados o no y, por tanto, no puede
verse afectada por la transferencia de calor, es decir, por el segundo sumando. Por tanto, es razonable
suponer que ambos sumandos son independientes y, por tanto, dado que S >0 pues el sistema total es
adiabdaticamente cerrado, entonces ha de tenerse que:

P P 1 1

BA
> (TA_TB>PQ 2 0.
A=1B=1

Por tanto, dicho sumatorio ha de provenir de una forma bilineal simétrica semidefinida positiva y
podemos expresar:

P P 1 1
BA _BA,DC
PGt=) > & (Tc - TD) v
C=1D=1

donde los coeficientes £84P¢ son funciones de estado que forman dicha forma bilineal simétrica semidefi-

nida positiva. Se suele realizar la aproximacion de que la transferencia de calor entre los subsistemas A y B
depende solo del estado de dichos subsistemas y que, por tanto, solo son no nulos, los coeficientes 752454
que denotaremos simplemente por #Z4. Nétese que en particular &84 = 48 y que ademds, serdn siempre
positivos. Bajo esta aproximacion, podemos definir las conductividades térmicas, las cuales habran de ser

positivas si T4 y TP tienen el mismo signo, como:
gBA

~ TATB"

HAB

Este cambio de constantes, es equivalente a pasar de utilizar la escala natural de temperatura, 7, a
usar la usual, T', de manera que la transferencia de potencia en forma de calor entre dos subsistemas la

podremos expresar también por:
PQBA — 7,{143 (TA o TB)

: P e . .
Los coeficientes Jag = — (FcAB — 0B 20:1 I{AC) se utilizaran en las posteriores secciones, en lugar de

las conductividades térmicas, para utilizar la misma nomenclatura que se encuentra en la literatura. Notese
que estos cumplen que Jap = Jpa, pues las conductividades térmicas son simétricas por construccién, y,
ademds, Y , Jap = 0.

A partir de este anélisis es sencillo estudiar el caso de transferencia de potencia en forma de calor con
el exterior, considerando el sistema global formado por el sistema en estudio, mds las fuentes de calor [25].

En [11] se puede ver una demostracién, para un sistema simple en el caso en que la energia puede
descomponerse como suma de una parte cinética (dependiente solo de las velocidades y de la entropia) y
una parte potencial (dependiente solo de las coordenadas generalizadas y la entropfa), de cémo la ecuacién
mecanica que se deduce de la primera ley es equivalente a la ecuacién de Euler-Lagrange de la parte
mecéanica del sistema.

5. Descripcién geométrica de la Termodinamica del no equilibrio

En una serie de recientes articulos [5, 6, 7], Gay-Balmaz y Yoshimura proponen una formulacién va-
riacional de la termodinamica del no equilibrio basada en una generalizacién del principio de Hamilton.
Para ello, introducen la produccién de entropia mediante una restriccion no lineal no holonémica, asi co-
mo mediante una restricciéon variacional. Esto permite obtener las ecuaciones de evolucién, tanto de la
parte termodindmica, como de la parte mecanica, para sistemas de complejidad creciente, de forma sis-
tematica. Esta formulacién permite en particular generalizar las ecuaciones de evolucién de los sistemas
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termodindmicos presentados en la seccion anterior al caso en que existe transferencia de materia, tanto
entre los subsistemas que conforman el subsistema global, como con el exterior.

En esta seccién, siguiendo [16], nos propondremos dar un formalismo geométrico, andlogo al presentado
en el caso mecanico en la seccién 3, para explicar la evolucién de los sistemas termodindmicos discretos,
es decir, aquellos que pueden ser descritos por un numero finito de variables, que sea equivalente a las
ecuaciones deducidas por Gay-Balmaz y Yoshimura, para lo cual trataremos con sistemas de complejidad
creciente.

5.1. Sistemas simples adiabaticamente cerrados

Consideremos en primer lugar un sistema simple adiabaticamente cerrado. Estudiaremos su comporta-
miento desde el punto de vista hamiltoniano. Para ello, consideraremos que las coordenadas generalizadas
del sistema se encuentran sobre una variedad diferenciable M. Consideremos T*M su fibrado cotangente,
el cual describird el conjunto de todas las variables mecdanicas, las coordenadas generalizadas y sus mo-
mentos conjugados. Como consideramos un sistema termodinamico simple, es necesaria una unica variable
no mecanica, la entropia, S, para describir su estado. Como S puede tomar cualquier valor real, tomamos
P =T*M x R como variedad que describe el estado del sistema.

Consideremos una funcién hamiltoniana (que identificamos con la energia descrita en la seccién previa):

H:P—R,

y sean €%t FTroz . P — T*M aplicaciones que conservan las fibras, es decir, tales que F¢* (a,S) €
TXM, Va € T*M e igual para F"°%. Estas representaran las fuerzas externas y de rozamientos que se
ejercen sobre el sistema en estudio. Considerando coordenadas locales (¢, p;,S) en P:

Feact _ Fieact (q7p7 S) dqi, FTo% — Firoz (q’p7 S) dqi'

Definimos la 1-forma sobre P:

aH TOZ

Consideramos ademas la 2-forma definida sobre P por:
— *
W= MW,

donde wys es la forma simpléctica canénica de T*M y wp : P — T*M es la proyeccién candnica. En
coordenadas locales inducidas (¢’ p;, S):
w = dq" A dp;.

De esta forma, el par (w,n) define una estructura parcialmente cosimpléctica de orden 1 sobre P. Consi-
deremos el isomorfismo b definido en el teorema 2.6.12. Considerando coordenadas locales inducidas este

cumple:
a TOZ a I 2 7787}‘[
ag) = o) = o {Gg) =G

Definicién 5.1.1. Se define el campo de evolucién de H sujeto a las fuerzas externas F'*** como el tinico
campo de vectores, £y que cumple:

b (E) = dH +n — Fet. (18)

El siguiente resultado muestra que las curvas integrales de este campo de vectores proporcionan la
evolucion temporal del sistema termodinamico, pues cumplen las ecuaciones diferenciales obtenidas en
[28]. Nétese que estas son equivalentes a las ecuaciones (12) y (13) obtenidas en la seccién 4.1.

Proposicion 5.1.2. Una curva o : I — P es una curva integral del campo de evolucién de H sujeto a las
fuerzas externas F'°“* si y solo si, en coordenadas locales adaptadas (qz,pi, S), olt)y=0 (ql(t),p,; (1), S(t))
es solucién de las siguientes ecuaciones diferenciales:

dq _OH dp;  OH

i Fiezt + FZ-TOZ7

_ s 1 0H _,,.
dt — Op;’ dt g b

1 T T 8H 5.t
dt W(9]31

(19)

En particular, definiendo la temperatura del sistema como T' = aa—g, al igual que en la seccion 4.1, se tiene
que: ,
s roz 44"

. Y dt

0 =
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Demostracion. Consideremos coordenadas locales inducidas como en el enunciado y expresemos el campo
€y en estas coordenadas locales como:

;0 13} 13}
EH_A@qi—’—Ba —I—C%
Aplicando el isomorfismo b a Ex, usando su F(P)-linealidad:
) . OH
b(Ex) = —B;dq* + A'dp; — (A’F"’Z +C 8S> (20)

Por otro lado, expresando el lado derecho de (18) en coordenadas locales:

oH
aq’

., OH
dH +n— F* = ( — F]°% — Ff“) dgt + 2 ap,. (21)

Opi
Teniendo en cuenta que las 1-formas {dq’, dp;,n} forman una base de cada espacio cotangente en los puntos
de un abierto de P, concluimos, igualando los coeficientes de dichas 1-formas en (20) y (21):

0H 0H 0H

B, = — Feol gquad  ATFT* + 022 — .
ap; o tHT gqua tC%s

i

de donde se deduce de forma inmediata el resultado. O

Observacion 5.1.3. Cabe destacar que, en la definicién de b, los dos sumandos que aparecen tienen dimen-
siones distintas, pues w tiene dimensiones de accién, mientras que 7 ® 1 tiene dimensiones de energia al
cuadrado. No obstante, se puede probar que es posible realizar una descomposicién del fibrado cotangente,
T*P, como la suma de Whitney W @ (n). Por tanto, cada uno de los sumandos de dicha definicién se
encuentra en un espacio distinto y, por tanto, no surge ninguna incompatibilidad fisica en la definicién
debida al analisis dimensional.

Este mismo sistema se puede estudiar también desde el punto de vista lagrangiano. Para ello, conside-
ramos M la variedad de configuracién de la parte mecédnica del sistema y T M el espacio de coordenadas
y velocidades generalizadas. Consideremos como tnica variable no mecanica la entropia, S, con lo que
el sistema termodindmico vendrd descrito por la variedad Q = TM x R. Sea L : ) — R una funcién
lagrangiana regular, tal como se definié en la seccién 2.5.1.

Definimos la energia del lagrangiano por:

donde A es el campo de vectores de Liouville. Consideremos que, de hecho, el lagrangiano es hiperregular, es
decir, que la transformacién de Legendre, Leg : Q@ — P, es un difeomorfismo global. Entonces, definimos
la funcién hamiltoniana como H = Ej, o Leg~!. En coordenadas locales inducidas se tiene que:

H(q,p,S) =piq'(q.p.S) — L(g,d(q,p, 5), 5).

Es inmediato, trabajando en coordenadas, comprobar a partir de la definicion de la transformaciéon de
Legendre que:

OH oL

s 0S8
Se definen las 1-formas en Q dadas por F¢*' = Leg* Fe*t y F"°% = Leg*F"°% las cuales se corresponden
con las fuerzas externas y de rozamiento que actian sobre el sistema, vistas en (). Se definen la 1-forma
nr y la 2-forma wy, por:

nrL = %ds Froz, wy, = —ddsL.

Se tiene que Leg*w = wy, y Leg*n = 1y, por lo que es inmediato comprobar que (wy,,nr) es una estructura
parcialmente cosimpléctica sobre (). Definimos el campo de evolucién de Ef, sujeto a las fuerzas externas
F¢®t como el tinico campo de vectores, £1,, que cumple:

b (&r) = dEL +np — Fo!

. La siguiente proposicién nos permite establecer la relacién entre los campos de evolucién definidos desde el
punto de vista hamiltoniano y lagrangiano y, a partir de ella, deducir que la evolucién del sistema descrita
por ambos métodos es equivalente y coincide con la obtenida por Gay-Balmaz y Yoshimura en [7].
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Proposicion 5.1.4. En las condiciones anteriores se cumple que:

Ey =TLego&r o Leg ™.

1

En particular, v es una curva integral de £, si y solo si, 0 = Leg™" o~ es una curva integral de &p.

Corolario 5.1.5. Una curva v : I — @ es una curva integral de &, si y solo si, en coordenadas locales,
(¢°,v%,S), se cumple que, siendo y(t) = v (¢*(t), v’ (t), S(t)):

dql i % (8L> oL Firoz + Fiext’ oL dS _ Froz dq

ar ovt _8qi: oS dt ¢ at’

donde ﬁ'roz — F’Lroqui y ﬁ'ext _ ﬁ'iextdqi.

Demostracion. Comencemos notando que, si (g, v,S), (¢,p,S) son coordenadas locales inducidas en Q y
P, respectivamente, entonces la transformacién de Legendre se expresa de forma trivial localmente. En
particular, es inmediato observar que:

Fiext — Fiext o Leg, Firoz _ Firoz ° Leg.
Asf pues, teniendo en cuenta que Leg~!oy es una curva integral de £, esta habrd de cumplir las ecuaciones
(19). Como ademéds, Leg~! (¢,p, S) = (q7 %’ S’) V pi = %, entonces vemos que se ha de cumplir:
dq’ _ OH i dp; _ d (0L _ OL Fro= 4 fext oL dS _ ~mzd7qi
dt  Op; ’ dt  dt \ Ov? oqt ' R oS dt Coodt
Hemos usado que trabajando con la expresion en coordenadas de H en funcién de L es facil deducir que:
OH 0L
dqt  0qt

O

Observacion 5.1.6. Trabajos previos proponian estudiar la evolucién de algunos ejemplos de sistemas
termodinamicos por medio de la geometria de contacto. Estos resultados pueden entenderse como un caso
particular de nuestro estudio. En el caso concreto de [2], basta tomar F]°* = —R(H)p; y F*** = 0 para
que el campo de evoluciéon que ahi se define sea el mismo que consideramos en este trabajo.

5.2. Sistemas compuestos adiabaticamente cerrados

Consideremos ahora un sistema adiabdticamente cerrado, compuesto por P subsistemas simples, cerra-
dos, es decir, tales que no intercambian materia entre si, pero si pueden intercambiar energia en forma de
calor. Sea M la variedad de configuracion y T* M su espacio cotangente, que representa el espacio de fases
de las variables mecdnicas. Cada uno de los subsistemas estara caracterizado por una tnica variable no
mecdanica, su entropia, S4. Asi pues, el sistema termodindmico puede describirse por medio de la variedad
P, = T*M xRF. Para poder desarrollar el formalismo correcto, hemos de considerar, para cada subsistema,
una variable auxiliar, ¥4, que, sobre la evolucién del sistema, coincidird con la entropia (no ocurrira asi en
generalizaciones de este estudio para sistemas abiertos como veremos en la seccién 5.3). Ademds, considera-
remos unas nuevas variables, I'*, que llamaremos desplazamientos térmicos, tales que, sobre la trayectoria,
su derivada serd la temperatura del sistema. Asi pues, S4 serd el momento conjugado de la coordenada
generalizada T'4, usando la nomenclatura tipica de la mecénica. Sea Py = T*M x RY x R x RP, donde las
primeras P variables no mecédnicas seran los desplazamientos térmicos, las segundas las entropias de cada
subsistema y las ultimas, las variables auxiliares > 4. Consideramos la proyeccién canénica w: Py — Pj.

Sobre cada subsistema simple actuardn tanto fuerzas de rozamiento como externas, las cuales introdu-
ciremos mediante sendas 1-formas F}°%, F§** : P; — T*M, que identificaremos con sus pullbacks por 7.
Si consideramos coordenadas locales inducidas, (¢,p, T, S, X):

Fio* = Fidg', gt = Fittdg'

. P ; . P ; .
Sean ademds F"%% =3, | F°* = F/°*dq" y, andlogamente, F**' =Y, | F§*" = Ff*'dg'. Consideremos
una funciéon hamiltoniana, H : P) — R, que de nuevo identificaremos con su pullback por 7, y funciones

0 =
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Jap : P — R, que también identificaremos con sus pullbacks a P, y que cumplen Zi:l Jap=0,VBy
Jap = Jpa. Estas ultimas se corresponderan con las funciones de estado J4p introducidas en seccién 4.2.
Definimos las P 1-formas na, A =1,... P, y la 2-forma w por:

OH
Na = ——=dXa — F}%% — Japdl'®, w=wy +dl'* Nd(Sa—3a),
0S4
donde wyy es el pullback a través de la proyeccién mo : Po — T* M de la forma simpléctica candnica a Ps.
Nétese que, en la definicién de 14, no se suma sobre el indice A en el primer sumando. En coordenadas
locales inducidas:

w=dq" Ndp;+dT"* Nd(Sx —X4).
Con estas definiciones, (w,n1, -+ ,np) es una estructura parcialmente cosimpléctica de orden P sobre Ps.

Consideremos el isomorfismo b canénico introducido para estas estructuras en el teorema 2.6.12.

Definicién 5.2.1. Se define el campo de evolucién de H sujeto a las fuerzas externas F'¢** como el tnico
campo de vectores, £, que cumple:

P

b(gH):dH—FZT]A—FGH. (22)
A=1

El siguiente resultado nos muestra cémo las curvas integrales del campo de evoluciéon cumplen las
ecuaciones de evolucién del sistema termodindmico deducidas por Stiickelberg (16) y (17), siendo la trans-
ferencia de energia en forma de calor entre los subsistemas:

P
= " Jap (TP - T%).
B=1

Proposicién 5.2.2. Una curva o : I — P, es una curva integral de £y si y solo si, en coordenadas
locales inducidas, (¢,p,T", S, %), siendo o(t) = o (¢(t), p(t),['(t), S(t), X(t)), se cumple que:

dg' _ OH dpi _ OH | prow s art _ 0H a4 _ dxa
dt — op;’ dt g i dt — 9S,’ dt — dt’
dSa 1 OH OH
Dt R Froz J
at <8pl T 955 AB)

En particular, definiendo la temperatura de cada subsistema como T4 = as , teniendo en cuenta que
>on JagT? = 0 pues > pJap =0, entonces se cumplira:

4dSa

=T
dt

’roz
= F

-7).

Demostracion. Comencemos calculando cémo actia el isomorfismo b sobre la base de vectores tangentes
asociada a las coordenadas elegidas:

9 8 } P F
() = v Fion () = (o) =450 = 20- 3 Jmann

A=1
0 A 0 oA OH
b (85,4) = dI'* qquad b (82,4) =dI —aSAnA

A
wp +C FA +DA6SA +EA62 , entonces se

Asi pues, si escribimos de forma local £ = AZ
cumplird que:

P
S , H
b (En) = —Bidq' + A'dp; + (Ea — Da)dT™ + CAd (Sa — Sa) = Y (AZF;;?f +CBsp + EASS> .
A
A=1
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Por otro lado, escribiendo de forma local el miembro derecho de (22):

P
OH . OH OH
dH — Fert — _ _ Fror — et ) dgt ——d(Sa—224).
+AE:177A (8(]1 § p ) q + o, + 95, (Sa—%4)

Teniendo en cuenta que {dq’, dp;, d'*,d (S4 — £4),1m4} forman una base del espacio cotangente de P, en
cada punto de un abierto, igualando los coeficientes de dichas 1-formas se obtiene:

. OH OH 0H
Al = B, = ——— + F/" + Ff™t, A= ——, Eys—Ds=0,
op:” o T 952 AT
. OH
A'FRF + CPJap + Eazg = 0.
’ 85,4
Teniendo en cuenta que o(t) es curva integral de Ep si y solo si:
. dqt dp; 4 dr4 dSa dXa
dt’ T ¢ dt AT Ta AT Td
se concluye el resultado. O

Al igual que en la seccién precedente, se puede establecer un formalismo andlogo, basado en una
funcién lagrangiana. Mediante la transformacion de Legendre se puede establecer la equivalencia entre
ambos formalismos, en el caso regular, localmente, y en el caso hiperregular, globalmente.

5.3. Sistemas abiertos

Estudiaremos ahora la extensién de este formalismo para sistemas termodindmicos abiertos. Al igual que
en [7, 16], por simplicidad de la notacién, nos restringiremos al caso de un sistema termodindmico simple
con una sola especie quimica y no tendremos en cuenta la energia mecénica de la especie quimica, aunque
el estudio puede hacerse en casos més generales, tanto desde el punto de vista variacional (ver [6]), como
desde el punto de vista geométrico (en [16] se encuentra el estudio hecho para un sistema termodindmico
cerrado simple con varias especies quimicas, asi como para un sistema termodindmico cerrado compuesto
con una especie quimica por subsistema).

Sea M la variedad de configuracién, de manera que T*M serd el espacio de fases del sistema. Denota-
remos por N al nimero de moles del sistema termodindmico y consideraremos que esté en contacto con A
fuentes de materia externas y con B fuentes de calor. Para describir los sistemas abiertos, serd necesario
introducir una nueva variable auxiliar, andloga a los desplazmientos térmicos, W, que denominaremos
desplazamiento termodindmico y cuya derivada temporal en la evoluciéon del sistema sera el potencial
quimico. Asi pues, W serd el momento canénico conjugado del nimero de moles, N. Denotaremos por
I' al desplazamiento térmico del sistema, que tendra la misma interpretaciéon que los introducidos en la
seccién anterior, por S, a la entropia y por X, a la variable auxiliar introducida en la seccién previa, que
ya no serd igual a la entropia sobre la trayectoria. Consideraremos que todas estas variables pueden tomar
cualquier valor real. Asi pues, definimos las variedades P = T*M x R x R, donde la primera variable no
mecénica serd N y la segunda S, y P, = T*M x R® considerando las variables no mecénicas ordenadas
como W, N,I', S| ¥. Sea m : P, — P; la proyeccién candnica.

Consideramos que sobre el sistema actian fuerzas externas y de rozamiento dadas por las 1-formas
Fext [roz . pp — T*M, que identificamos con sus pullbacks a P, a través de 7. También consideraremos
A funciones J% : P — R, que identificaremos con sus pullbacks a P> y que representan los flujos molares
desde las fuentes de materia al sistema. Definimos de manera analoga las funciones u®, 7¢, S, T°?, Jg :
P — Rparaa=1,...,Ayb=1,...,B, que identificamos con sus pullbacks por 7. Estas representaran,
respectivamente, el potencial quimico de la a-ésima fuente de materia, su temperatura, su entropia molar,
la temperatura de la b-ésima fuente de calor y el flujo de entropia desde dicha fuente de calor al sistema.
Finalmente consideramos J§ = J%S° el flujo de entropia desde la fuente de materia a-ésima al sistema.

Definimos la 1-forma n y la 2-forma w siguientes:

ol A B
n=—gods — F - > (JUdW + Jé&dr) =Y | Jdr,
b=1

a=1

w=wy +dW AIN +dl ANd(S — %),

" =
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donde wj; es el pullback de la forma simpléctica candénica de T*M a través de la proyeccion mo : Py —
T*M. Es facil comprobar, trabajando con coordenadas locales, que (w,n) es una estructura parcialmente
cosimpléctica de orden len P,. Por tanto podemos considerar el isomorfismo b definido en el teorema 2.6.12.

Definiciéon 5.3.1. En las condiciones anteriores, se define el campo evolucién sometido a las fuerzas
externas F¢*t, £, como el tinico campo de vectores que cumple:

A B
b(Ex) = dH + 1 — F&t — (Z (Tu" + JET) + > J};Tb> 7. (23)
a=1 b=1
De nuevo sera el campo evolucién el que dictamine la evolucién del sistema termodindamico, a través
de sus curvas integrales.

Proposicion 5.3.2. Una curva ¢ : I — P, es una curva integral de £y si y solo si, considerando
coordenadas locales inducidas, (¢, p, W, N,T', S, X), siendo o(t) = (q(t), p(t), W(¢t), N(t),T'(¢), S(t), X(t)), se
cumple que:

/ A
d¢* 0oH dp; 0H . aw  0H dN
= = ——_ fF* 4 [ A & a

dt  dp;’ dt g’ PR dt  ON’ dt ZJ ’
a'  O0H ds dZ
@~ 95" @i (ZJNZ%)

A A B
OH dx _ 'roqu a a b dr a, a ara b b

Demostracion. Comencemos viendo cémo actia el isomorfismo b sobre los vectores tangentes asociados a
las coordenadas locales consideradas en el enunciado:

9 r0Z 0 _ i 0 _ - a 0 —
b (aql> - dpz_Fl 7, b (apz> - _dq 9 b <8VV> == dN_;j m, b (8]\[) = —dW;
i 0 ) oH
b(ar)ds %) (ZJSJFZJs)??, b<85>dr, b(82>dras

Por tanto, expresando de forma local & = A2 o T B; 2 opr T C’% + Da% + Ea% + F% + Ga%, se tiene
que:

b (Ex) = Aldp; — Bydg' + CAN — DAW + Ed (S — ¥) + (G — F)dI'—

A oH
- (AiF;“JrZCJH (ZJS+ZJS>E+GGS>

a=1
Por otro lado, el lado derecho de (23) se puede expresar localmente como:

A
o0H ; OH
, F["ZFf”>dl - j“dW+—dN T+ JL dl + =d(S—%
(52 | > (3t (59

A B

- (Z (Tu" + T¢T") > JgTb> "
a=1 b=1

Teniendo en cuenta que {dq’, dp;, dW,dN,dl,d(S — %), n} forman una base de los espacios cotangentes de

P, para todos los puntos de un abierto e igualando los coeficientes de dichas 1-formas a ambos lados de

(23), se tiene que:

A
i:gg, Bi:—gl; 7%+ FET ng—ﬁ, D=>"J°, E:Z—Z,
B . A B OH
F=G+)_ J§+Z JL, AZFiTOZ+(; (T (C —p) + J& (E - T“))+b§_:1 J4 (B - Tb)+G£
lo que permite concluir el resultado de la misma forma que en las secciones angeriores. O
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A partir de:

A B
%ZQ*ZJ§*2Jg1§+dS7M+@,
t dt dt dt dt
a=1 b=1
podemos concluir que la variacién de la entropia del sistema global compuesto por las fuentes y el sistema
es la derivada temporal de 3. Como el sistema total estara aislado, de acuerdo con el principio de evolucién
de Stuckelberg, se tendré que 2= >0, [7].

De nuevo se puede hacer un estudio de estos sistemas basado en una funcién lagrangiana (ver [L0]).
Haciendo uso de la transformada de Legendre se consigue establecer la equivalencia entre dicha formula-
cién y la que se ha presentado en esta seccién (de forma local si la funcién lagrangiana es regular y de
forma global si es hiperregular), con lo que se comprueba que las ecuaciones anteriores son el equivalente
hamiltoniano de las utilizadas por Gay-Balmaz y Yoshimura en [7].

6. Conclusiones

En este trabajo hemos introducido el concepto de variedad diferenciable, prestando especial atencién
a los fibrados tangentes y cotangentes.

Hemos hecho énfasis en un tipo especial de variedades, con una estructura adicional, las variedades
simplécticas y diversas generalizaciones suyas. Gracias a esta estructura adicional, las variedades simplécti-
cas y sus generalizaciones nos han permitido estudiar la dindmica de un sistema mecanico de forma global,
sin necesidad de recurrir al uso de coordenadas, tanto en el caso de sistemas auténomos, como en los
no auténomos. Ademads, utilizando variedades de contacto, hemos podido estudiar sistemas en que el la-
grangiano depende explicitamente de la accién, lo que nos ha permitido introducir en una formulacién
hamiltoniana/lagrangiana por primera vez en el trabajo, fuerzas disipativas proporcionales a la velocidad.
Ademaés, hemos enunciado el teorema de Noether dentro de este formalismo, el cual nos permite establecer
integrales primeras del movimiento de forma sencilla.

Para establecer una estructura geométrica de la termodinamica andloga a la que existe en mecanica,
hemos partido de los dos postulados de Stiickelberg, a partir de los cuales hemos deducido las ecuaciones
de evolucién de los sistemas cerrados, basandonos en el concepto de sistemas simples. Ademas, el segundo
postulado nos ha permitido introducir funciones de estado como las conductividades térmicas y establecer
el signo que estas han de tener en los estados de equilibrio termodinamico. Mas tarde, se ha comprobado
c6mo, en el caso en el que las fuerzas que se aplican sobre el sistema no dependan de la variable entropia
las ecuaciones mecénicas y termodinamicas se desacoplan, recuperandose para las primeras los resultados
conocidos de mecénica.

Finalmente, hemos utilizado las estructuras parcialmente cosimplécticas de orden P para establecer un
formalismo geométrico global de la termodinamica del no equilibrio en sistemas de complejidad creciente,
tanto cerrados como abiertos. Ademas, hemos comprobado como este se puede establecer tanto desde el
punto de vista hamiltoniano, como desde el punto de vista lagrangiano y que, cuando la funcién lagrangiana
es regular o hiperregular, se consigue establecer una equivalencia entre ambas descripciones por medio de
la transformacion de Legendre.

En general, en este formalismo hemos introducido 1-formas que recogen las variaciones de la entropia,
asi como las potencias internas mecanica, de calor y masica, de forma andloga a como lo hacen las restric-
ciones variacionales utilizadas por Gay-Balmaz y Yoshimura. La definicién del campo evolucién, permite
introducir las fuerzas externas, asi como el resto de contribuciones a la energia del sistema que no aparecen
en las 1-formas.

Este nuevo formalismo abre la posibilidad de establecer nuevos métodos numeéricos que permitan realizar
simulaciones de sistemas termodinamicos, asegurando que ciertas de sus propiedades no se ven afectadas
por errores en la discretizacién del problema como ocurrirfa con métodos generales [2]. Ademds, se podrian
desarrollar resultados que generalicen el teorema de Noether para sistemas termodindamicos fuera del
equilibrio, o introducir corchetes andlogos a los corchetes de Poisson, muy utilizados en mecanica.
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