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ARTICLE INFO ABSTRACT

Keywords: Achieving carbon neutrality in wastewater treatment plants (WWTPs) presents a significant challenge, as
Carbon emissions reducing greenhouse gas (GHG) emissions must not compromise pollutant removal efficiency. This study in-
Heterogeneity

troduces a novel Carbon and Pollutant Efficiency Index (CPEI) to benchmark the environmental performance of
WWTPs by integrating GHG emissions and pollutant removal efficiency into a single metric. To address limi-
tations in previous studies, which primarily relied on Data Envelopment Analysis (DEA), this research employs
Latent Class Stochastic Frontier Analysis within a metafrontier framework to account for unobservable hetero-
geneities among WWTPs. A case study of 109 WWTPs in Spain identified three distinct operational classes, with
average CPEI scores of 0.595, 0.586, and 0.506 for Classes 1, 2, and 3, respectively. Results indicate that
chemical oxygen demand (COD) removal is the primary driver of GHG emissions, reflecting the energy-intensive
nature of aerobic treatment processes. None of the WWTPs achieved full efficiency (CPEI = 1), suggesting
substantial room for improvement. Policy implications include the need for tailored regulatory strategies that
balance carbon reduction with pollutant removal targets. The proposed CPEI provides a robust decision-support
tool for benchmarking WWTPs and guiding policies towards sustainable and decarbonized wastewater
management.

Latent class analysis
Stochastic frontier analysis
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Performance

1. Introduction that environmental protection remains a priority.

To support decision-making in the context of multiple objectives and

Access to sanitation is crucial for human well-being, environmental
sustainability, and economic development (Hu et al., 2019). In
high-income countries, the primary challenge is not ensuring access to
sanitation, as coverage is nearly universal and approximately 70 % of
generated wastewater is treated (UN, 2017). Instead, the focus lies on
addressing emerging challenges in urban wastewater treatment such as
climate change, demographic shifts, and newly emerging pollutants
(European Environment Agency, 2019). Regarding climate change, the
European Union Directive 2024/3019 concerning urban wastewater
treatment mandates that wastewater treatment plants (WWTPs) pro-
gressively reduce their greenhouse gas (GHG) emissions in alignment
with the EU’s 2050 Climate Neutrality objective. However, this reduc-
tion must not compromise the efficiency of pollutant removal, ensuring

challenges, multi-criteria decision-making (MCDM) methods have been
widely applied in wastewater treatment for various purposes. These
include selecting appropriate technologies for WWTP improvements in
specific scenarios (Eseoglu et al., 2022), assessing the sustainability of
wastewater treatment technologies (Gherghel et al., 2020; Ling et al.,
2021; Attri et al., 2022), and benchmarking WWTP performance by
integrating multiple key performance indicators (KPIs) into a single
synthetic index (Henriques et al., 2022; Pereira et al., 2023; Wu et al.,
2019). Within this category, given the growing emphasis on reducing
GHG emissions in wastewater treatment, several studies have incorpo-
rated GHG emissions as a key KPI alongside others for WWTP perfor-
mance assessment (Chen et al., 2023; Goémez et al., 2018;
Ramirez-Melgarejo et al., 2021; Sala-Garrido et al., 2023; Xi et al.,
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2023). These studies revealed the importance of incorporating carbon
emissions alongside pollutant removal efficiency into a single index to
holistically benchmark WWTP performance. Such an approach provides
a comprehensive assessment that facilitates the identification of current
performance levels and improvement opportunities at the WWTP level.

Despite significant contributions to the literature and knowledge on
the carbon performance of WWTPs, previous studies (Chen et al., 2023;
Gomez et al., 2018; Ramirez-Melgarejo et al., 2021; Sala-Garrido et al.,
2023; Xi et al., 2023) present two main limitations that need to be
addressed. Firstly, all these studies employ Data Envelopment Analysis
(DEA) as the MCDM method. DEA is a non-parametric technique that
uses linear programming to construct a piecewise convex efficiency
frontier (Ozcan, 2014) based on multiple inputs and outputs. Its primary
advantage is that it does not require the specification of a functional
form for the production frontier (Yang and Chen, 2021). However, DEA
is highly sensitive to outliers, noise, and data errors, and as a deter-
ministic approach, it does not distinguish between inefficiency and
statistical noise, potentially leading to misclassification of efficiency.
Additionally, Basic DEA models assume either constant returns to scale
or variable returns to scale. However, these assumptions may not always
reflect real-world production technologies (Ferreira et al., 2023). Sec-
ondly, previous studies that integrate GHG emissions into WWTP per-
formance assessment assume that all facilities operate under the same
production frontier (Gomez et al., 2018; Ramirez-Melgarejo et al., 2021;
Xi et al., 2023). However, this assumption may not hold in practice due
to variability in influent quality, wastewater treatment technologies,
ownership structures, and other latent or unobservable differences
among WWTPs. While a common production frontier can provide
meaningful efficiency benchmarks under uniform technological condi-
tions, it may oversimplify performance evaluations in contexts like
wastewater treatment, where unobserved operational heterogeneity can
significantly influence environmental performance(Alvarez et al.,
2012).

To address the limitations of previous studies—namely, their reli-
ance on DEA methods and the assumption of homogenous production
frontiers—this study introduces two key innovations. First, we propose a
novel Carbon and Pollutant Efficiency Index (CPEI) that integrates GHG
emissions and pollutant removal efficiency into a single, synthetic
benchmark metric. Second, the CPEI was estimated using a novel
methodology which integrates latent class stochastic frontier analysis
(LCSFA) within a metafrontier framework allowing to account for un-
observable heterogeneities in assessed WWTPs. The specific research
objectives are: i) to construct and estimate the CPEI for benchmarking
WWTP environmental performance; and ii) to classify WWTPs into
latent operational categories based on their efficiency patterns to inform
more targeted policy interventions.

Within the framework of the transition to carbon-neutral WWTPs,
this study makes several key contributions to the literature. It proposes
and applies a novel synthetic index, CPEI, which integrates carbon
emissions and pollutant removal efficiency into a single metric,
providing a holistic approach to benchmarking WWTP performance.
While existing studies rely exclusively on DEA, this research addresses
its key limitations, including sensitivity to outliers, the assumption of a
common production frontier, and the inability to distinguish in-
efficiency from statistical noise. Unlike previous studies that assume all
WWTPs operate under a common production frontier, this study
explicitly accounts for unobservable heterogeneities, enabling a more
nuanced and context-specific efficiency analysis and improving the
reliability of benchmarking results. From a policy perspective, this
research provides a decision-support framework for designing tailored
policies that promote decarbonization without compromising environ-
mental protection.

2. Methodology

This section outlines the methodological approach used to develop
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the proposed CPEI and also to assess and classify WWTPs based on this
synthetic index. The proposed methodological approach integrates two
key concepts such as metafrontier and LCSFA. The metafrontier frame-
work provides a unified reference (the metafrontier) to compare the
performance of decision-making units (WWTPs in this study) that
operate under different conditions or belong to distinct groups (Dakpo
et al., 2024). The metafrontier envelopes all group-specific frontiers and
represents the global best practice technology available across all
groups. It serves as a common benchmark for assessing the relative
performance of all WWTPs, regardless of their group membership
(Afsharian, 2017). On the other hand, LCSFA (Ananda and Oh, 2023) is
used to analyze efficiency and heterogeneity within a dataset, particu-
larly in cases where the population under study consists of distinct,
unobservable (latent) subgroups (Renner et al., 2021).' LCSFA identifies
unobservable (latent) subgroups of WWTPs based on their data (input
and outputs). As such, the classification reflects underlying operational
patterns that may not be directly capture by observable attributes.

In this case study, three main stages were subsequently applied as it
is shown in Fig. 1.

Stochastic frontier analysis (SFA) is a parametric technique that
models the functional relationship between GHG emissions and outputs
generation (Eq. (1)). This approach, unlike non-parametric techniques,
integrates two error components: noise (v;) and inefficiency (u;):

InGHG; =f (y; &) +vi + 1 @

where In denotes logarithm, f denotes function, i is the WWTP under
assessment, y is the set of outputs, and « is the set of parameters that the
model estimates. The noise terms, v;, accounts for measurement error
and other stochastic influences. It follows the standard normal distri-
bution. The inefficiency term, u;, reflects the deviations from the effi-
cient frontier follows the half normal distribution.

Eq. (1) assumes that all units (WWTPs) operate under a common
frontier, implying the use of a uniform production technology. However,
WWTPs are often heterogenous due to differences in operating charac-
teristics, regulatory frameworks, and access to resources (Ananda and
Oh, 2023). Ignoring such technological differences in production pro-
cesses can result in less robust and potentially biased efficiency scores
(Kumbhakar et al., 2012). In this context, latent class approach assumes
that the population consists of unobservable (latent) subgroups, each
with distinct characteristics. This technique identifies these subgroups
by clustering WWTPs based on their data patterns, which influence both
the functional form and the parameters of the SFA model (Llorca et al.,
2017).

In LCSFA, both the functional form of the stochastic frontier and the
inefficiency distribution can vary across classes, i.e., WWTPs with
different characteristics. The estimation process involves maximizing
the likelihood function simultaneously for the latent class probabilities
and the parameters of the stochastic frontier for each class (Eq. (2))
(Lattufe et al., 2023; Stetter et al., 2023). The specific LCSFA functional
form applied in this study is detailed as follows:

M M N
1
lnGHGiU = y; -+ Z Q) In Ymi + 5 Z Z amnvlnymilnyni + Vijj + Uyjj (2)

m=1 m=1 n=1

where j represents the class, i is the WWTP, and m and n correspond to
the different outputs that influence GHG emissions. As a parametric
approach, the estimated parameters of Eq. (2), i.e., Qpjj, Qmnjj, are the
weights of each variable (pollutant and carbon emissions) integrated the
CPEL It involves that weights are endogenously estimated and do not are
acllocated by the analysit or decision-maker, reducing the subjectiviety

1 To enhance the transparency and robustness of our analysis, we also esti-
mated the CPEI using a traditional DEA model whose formulation and results
are shown in Supplemental Material.
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Stage 1
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e Estimation of overall log-likehood parameters

(Egs. 1-8)

Stage 2

e Definition of water companies’ classes (Eq. 9)

Stage 3

e Estimation of the CPEI for each water company

(Egs. 10-12)

Fig. 1. Methodological stages of the study.

in the assessment.

Eq. (2) is estimated using maximum likelihood estimation techniques
(Greene, 2005). The likelihood function of each WWTP i for each class j
is defined as follows (Barros, 2011):

d)(/ljsi|j/0'j) 1 gi‘j
LFy=—— 2t — (2 ®)
(D(O) Oj Oj
In Eq. (3), the likelihood function (LF) is defined as follows:
ei|j = lTlGHGl‘J — a;yi (4)
1
oj= [aﬁj + ofj] 2 5)
y=24 )
0y
where ¢;|; represents the residual term for WWTP i in class j, [nGHG;|; is

the logarithm of GHG emissions, ¢,y is the estimated production frontier
for class j, oj is the composite error term, and J; is the ratio of the in-
efficiency standard deviation (o) to the noise standard deviation (o,;).
Additionally, ¢ represents the standard normal density function, and &
denotes the cumulative distribution function (Barros, 2011).

The likelihood function for each WWTP was computed using Eq. (3),
weighted by the prior probabilities of membership in class j, denoted as
Pj; (Barros, 2009):

J
LF;= ) PjLFy;,0 <P; <1, Pj=1 )
j=1 J
Thus, the overall likelihood function was calculated as follows (Lin
and Du, 2014):

K
logLF =) " log LF; ®
i=1

The determination of the optimal number of classes (j) that capture
technological heterogeneity was carried out using statistical measures
such as the log-likelihood ratio test and Akaike Information Criterion
(AIC) (Cullmann and Zloczysti, 2014; Frisvold and Atla, 2024). The
optimal number of classes corresponds to the model with the lowest AIC
values (Cullmann, 2012):

AIC = — 2logLF(j) + 20 ©)

where logLF(j) represents the value of the log-likelihood function for j
class and 6 denotes the number of estimated parameters.

After estimating the parameters of the overall log-likelihood in Eq.
(8) enables the calculation of the CPEI for each WWTP, accounting for
the specific production technology associated with each class j by
solving Egs. 10-12:

GHGi|j:E[exp (7ui|j)

e 10

The posterior probabilities for each class j, based on Bayes’ theorem,
were derived from the estimated parameters of the likelihood function
(Greene, 2005; Alvarez and del Corral, 2010):

P;LF::
P(jli) =5~ an
> PyLF;
j=1

Using the posterior probabilities, the CPEI for each WWTP (CPEIL)

was calculated as:

J
CPEL =) _ (P;*GHGyj)
j=1

(12a)

CPEI; ranges from O to 1. A value of 1 indicates that the WWTP
operates at full efficiency, leaving no room for improvement.
Conversely, a value below 1 suggests that there is potential for
improvement, with the ultimate goal of achieving a score of 1.

3. Data sample and variables selection

The case study conducted in this research is based on a sample of 109
WWTPs located in the northeast of Spain. All facilities process urban
wastewater through a series of treatments, including pretreatment,
primary treatment, and biological secondary treatment, aimed at
removing four main pollutants such as suspended solids (SS), organic
matter, nitrogen (N), and phosphorus (P). All WWTPs ensure that their
discharged wastewater complies with the legal thresholds established by
the European Urban Wastewater Directive (91/271/ECC). The WWTPs
are managed by a mix of public and private operators, with their envi-
ronmental performance closely monitored by a public regulator.” Data
for all variables used in this study were obtained from the public

2 See more information in Supplemental Material. Dataset used in this study
is available from the corresponding author upon reasonable request.
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regulator and correspond to the year 2022.

The identification of outliers and atypical observations is a critical
step in benchmarking the performance of WWTPs (Longo et al., 2023). A
peer index approach (De Witte and Marques, 2010) was applied to the
original dataset comprising 147 WWTPs to detect atypical observations.
Consequently, 38 WWTPs were identified as outliers and removed from
the dataset. This process resulted in a final sample of 109 WWTPs, for
which the CPEI was estimated.

The selection of variables was guided by the primary objective of the
study—assessing the carbon and pollutant removal efficiency of
WWTPs—and by the availability of data, which is a significant
constraint in large-sample assessments using real-world datasets
(Amaral et al., 2022). Regarding GHG emissions, statistical data on
direct emissions was not available for the analyzed WWTPs. Conse-
quently, following previous research (Gemar et al., 2018; Sala-Garrido
et al., 2011), this study considers only indirect GHG emissions associ-
ated with electricity consumption at the WWTPs, i.e., Scope 2 carbon
emissions. At present, none of the 109 WWTPs assessed systematically
monitor or report direct emissions (Scope 1), such as methane (CH4) and
nitrous oxide (N2O) from biological processes and sludge treatment, nor
indirect emissions from supply chains or infrastructure (Scope 3). As
such, the lack of available data constrained the scope of this analysis.
However, the recent adoption of the Urban Wastewater Treatment
Directive (EU) 2024/3019 is expected to improve the availability of
GHG emissions data in the near future. The Directive encourages
member states to monitor and reduce methane emissions in line with the
Global Methane Pledge, and to enhance transparency by making key
information—such as treatment costs and environmental perform-
ance—publicly accessible, particularly for agglomerations above 10,000
population equivalents. This regulatory shift will likely support the in-
clusion of Scope 1 and Scope 3 emissions in future benchmarking
studies. Consequently, the CPEI values presented in this study should be
interpreted as partial indicators of carbon efficiency, reflecting opera-
tional energy-related emissions.

To estimate indirect emissions, the average GHG emission factor for
Catalonia in 2022 was applied, which is 273 gCOzeq/kWh (Catalan Of-
fice of Climate Change, 2022).

With regard to pollutants removed from wastewater, both the con-
centration of the main pollutants in the influent and effluent, as well as
the volume of wastewater treated by each WWTP, were taken into ac-
count (Maziotis and Molinos-Senante, 2023). To achieve this, Eq. (12)
was applied to each pollutant included in the assessment, namely SS,
organic matter (measured as chemical oxygen demand, COD), N, and P:

PRV, = WWV, * (Pollutant;, — Pollutant,;) (12b)

where PRV, presents the quantity of pollutant z removed annually from
wastewater by WWTP i, expressed in grams per year (g/year); WWV;
denotes the volume of wastewater treated by the WWTP i measured in
cubic meters per year (ms/year). Pollutant;;, and Pollutant,;, refer to the
concentrations of pollutants z in the influent and effluent of WWTP i,
respectively, measured in grams per cubic meter (g/m®).

Table 1 reports the descriptive statistics of the variables used in this
study.
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4. Results and discussion

4.1. Parameters of the latent class stochastic frontier analysis (LCSFA)
functional form

According to the methodological framework applied in this study,
the LCSFA functional form (Eq. (2)) was estimated to define classes of
WWTPs and calculate the CPEI for each WWTP. Based on the AIC pa-
rameters estimation, the optimal number of classes for the 109 assessed
WWTPs was determined to be three. The AIC for one class was —474.2
(logLF = 241.5), for two classes was —615 (logLF = 311.5) and for three
classes was —942.2 (logLF = 475.1). Moreover, a LCSFA model with four
classes did not converge, confirming that the optimal number of classes
is three.

The results of the LCSFA functional form for each defined class are
presented in Table 2. Regarding pollutants removed from wastewater,
the estimated coefficients for the three classes and four pollutants are
positive and statistically significant. This indicates that higher volumes
of pollutants removed from wastewater are associated with higher levels
of indirect GHG emissions. However, the impact of pollutant removal on
GHG emissions varies among the classes. As shown in Table 2, the
removal of chemical oxygen demand (COD) is the most influential
pollutant on carbon emissions across the three defined classes of
WWTPs. Specifically, a 1 % increase in the quantity of COD removed
leads to an increase in indirect GHG emissions by 0.717 %, 0.497 %, and
0.572 % for classes 1, 2, and 3, respectively. This is because all 109
assessed WWTPs rely on aerobic processes to remove organic matter,
which are considered energy-intensive processes(Molinos-Senante and
Maziotis, 2023; Paraschiv et al., 2023).

Unlike the removal of COD, there is a notable discrepancy among the
three identified classes regarding the pollutant that contributes the least
to indirect carbon emissions. For WWTPs grouped in class 1, N removal
is the least significant contributor, with a 1 % increase in N removal
resulting in a 0.077 % increase in indirect GHG emissions. In class 2, P
removal has the smallest impact, contributing 0.091 % for a 1 % increase
in P removal. Finally, in class 3, SS removal contributes the least, with a
1 % increase in SS removal leading to a 0.049 % increase in indirect GHG
emissions. From a policy perspective, these findings evidence the
importance of adopting tailored energy-efficiency measures to the spe-
cific characteristics of each WWTP class and prioritizing interventions to
balance pollutant removal efficiency with carbon emission reduction
goals. The results presented in Table 2 highlight that latent heteroge-
neity among WWTPs can have a differential impact on environmental
performance. For comparison purposes, the supplementary material
includes the results of the standard SFA model (Eq. (1)), which assumes
that all WWTPs operate under a common production technology.
Although the standard SFA model similarly reveals that COD removal is
the primary determinant of carbon emissions, it fails to capture the
differences among classes regarding the contributions of other pollut-
ants. These class-specific variations, which are critical for understanding
the nuanced relationship between pollutant removal and GHG emis-
sions, remain hidden under the assumption of homogeneous production
technology.

Lambda (1) refers to the ratio of the standard deviation of the in-
efficiency term (ou) to the standard deviation of the random noise term
(ov). It is higher than zero and statistically significant in all three classes,

Table 1

Descriptive statistics of the wastewater treatment plants assessed.
Variable Unit of measurement Mean Std. Dev. Minimum Max
Indirect greenhouse gas emissions kgCOaeqy/year 411,307 1,275,428 2338 10,039,318
Organic matter removed (COD) g/year 2,791,539 11,680,492 2567 10,6021,387
Suspended solids removed g/year 1,504,366 6,932,355 893 67,171,650
Nitrogen removed g/year 149,680 536,491 163 4,152,857
Phosphorus removed g/year 35,558 164,284 16 1,506,131
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Table 2

Estimates of the latent class stochastic frontier analysis production function.
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Variables Model parameters of latent class 1 Model parameters of latent class 2 Model parameters of latent class 3

Coeff. Std. Err. T-stat St.Err. Coeff. Std. Err. T-stat St.Err. Coeff. Std. Err. T-stat St.Err.
Constant 0.138 0.014 9.608 0.000 0.093 0.054 1.700 0.089 0.084 0.126 0.666 0.506
P removed 0.113 0.017 6.551 0.000 0.091 0.018 4.969 0.000 0.218 0.073 2.987 0.003
N removed 0.077 0.014 5.373 0.000 0.233 0.043 5.405 0.000 0.128 0.032 3.984 0.000
SS removed 0.122 0.013 9.066 0.000 0.213 0.020 10.792 0.000 0.039 0.013 3.041 0.003
COD removed 0.717 0.026 27.317 0.000 0.497 0.029 17.295 0.000 0.572 0.116 4.933 0.000
c 0.274 0.049 5.633 0.000 0.390 0.089 4.363 0.000 0.053 0.013 4.034 0.000
A 0.599 0.110 5.450 0.000 0.483 0.068 7.147 0.000 0.286 0.053 5.353 0.000
Estimated prior probabilities for class membership Coeff. Std. Err. T-stat St.Err.
Classl 0.540 0.084 6.435 0.000
Class2 0.364 0.083 4.377 0.000
Class3 0.096 0.030 3.205 0.001
Log-likelihood 475.1

indicating the presence of inefficiency among WWTPs and confirming
that efficiency analysis is relevant and appropriate in this context.

4.2. Classes of wastewater treatment plants defined

According to the results presented in Table 2, the 109 assessed
WWTPs were classified into three categories, whose main statistical
characteristics, in terms of pollutant removal and GHG emissions, are
detailed in Table 3. The distribution of WWTPs across these categories is
notably uneven, with 73 facilities in Class 1, 22 in Class 2, and 11 in
Class 3. On average, Class 1 WWTPs exhibit the highest performance in
terms of pollutant removal and carbon emissions reduction. These fa-
cilities also process the largest volumes of wastewater. However, sig-
nificant variability within this category highlights the need to enhance
the performance of certain facilities. Conversely, Class 3 WWTPs, which
treat intermediate volumes of wastewater, demonstrate moderate
pollutant removal efficiency but exhibit the highest carbon emissions
per cubic meter of treated water. This finding underscores the need for
targeted interventions to improve their carbon footprint. Lastly, Class 2
WWTPs represent a middle ground, offering a balance between perfor-
mance and consistency, though they still fall short of Class 1 in pollutant
removal efficiency.

The coefficient of variation (CV) was computed as the ratio of the
standard deviation to the average. Pollutant-related indicators show CV
values greater than 100 %, reflecting substantial variability in pollutant
load and removal performance among WWTPs within the same class. In
contrast, GHG emissions per cubic meter treated exhibit CV values
below 100 % across all classes, indicating more consistent emission
patterns.

Table 3
Statistics of the classes of WWTPs.

4.3. Carbon and pollutants efficiency index (CPEI)

Focusing on the CPEI estimated for each WWTP, Fig. 2 presents the
statistics for each class. The average CPEI for WWTPs in classes 1, 2, and
3 was 0.595, 0.586, and 0.506, respectively. This indicates that WWTPs
in Class 1 are the best performers in terms of pollutant removal effi-
ciency and carbon emissions. However, it is important to note that none
of the WWTPs in any of the three classes achieved a CPEI of 1, signifying
that all 109 WWTPs have room for improvement in both carbon and
pollutant removal efficiency. The maximum CPEI values for WWTPs in
classes 1, 2, and 3 were 0.719, 0.718, and 0.559, respectively.

To provide insights into the practical potential for improvement, the
CPEI gap between each WWTP’s current performance and the maximum
CPEI observed within its respective latent class was estimated. This
benchmarking approach reflects realistic, achievable efficiency targets,
rather than theoretical optima. For instance, in Class 1, the highest-
performing WWTP reached a CPEI of 0.719, indicating that other fa-
cilities in this class could potentially improve their efficiency up to this
level. Summary statistics on the potential efficiency gains across all
classes are presented in Fig. 3.

To better understand the distribution of estimated CPEI across clas-
ses, Fig. 4 depicts the number of facilities falling within each CPEI range.
Fig. 4 shows that none of the WWTPs have a CPEI lower than 0.2 or
higher than 0.8, indicating that the 109 assessed facilities exhibit
moderate levels of carbon and pollutant removal efficiency. Focusing on
individual classes, 69 out of 73 WWTPs in Class 1 (94.5 %) have a CPEI
ranging between 0.41 and 0.80. A similar pattern is observed for Class 2,
where 24 out of 25 WWTPs (96.0 %) fall within the same CPEI range. In
contrast, the 11 WWTPs in Class 3 show a more limited range of per-
formance, with CPEI values exclusively between 0.41 and 0.60, and no

Statistical parameter Class of GHG emitted (kg/ COD removed (g/ SS removed (g/ N removed (g/ P removed (g/ Volume treated (m®/
WWTP m®) m®) m%) m®) m®) year)
Average Class 1 0.158 1418.385 583.348 102.259 15.299 4,626,609
Class 2 0.180 989.925 546.070 75.355 11.127 3,188,083
Class 3 0.168 357.487 188.319 32.796 4.521 2,471,536
Std. Dev Class 1 0.099 5244.221 1897.472 349.771 53.535 16,724,011
Class 2 0.153 2518.575 1318.610 186.192 28.243 5,301,253
Class 3 0.068 232.316 126.304 16.211 2.936 3,278,035
Coefficient of variation Class 1 63 370 325 342 350 361
(%) Class 2 85 254 241 247 254 166
Class 3 40 65 67 49 65 133
Minimum Class 1 0.002 6.355 2.755 0.499 0.149 38,844
Class 2 0.003 5.254 2.954 0.769 0.118 7844
Class 3 0.098 36.396 13.659 5.285 0.145 73,540
Maximum Class 1 0.600 38789.143 13381.272 2394.819 373.862 121,095,795
Class 2 0.566 13000.168 6767.127 963.344 145.815 18,647,592
Class 3 0.268 705.394 381.166 61.560 8.001 8,505,353
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Class 2 Class 3

Fig. 2. Statistics of the carbon and pollution efficiency index for each class of wastewater treatment plants.
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Fig. 3. Statistics of potential carbon and pollutant efficiency index improvement based on maximum score within each class.

facilities achieving higher performance levels.

These class-level differences in CPEI are consistent with the opera-
tional and performance profiles identified in Section 4.2. Class 1
WWTPs, which treat the highest volumes and remove the largest
amounts of pollutants, also show the highest average CPEI (0.595),
though still far from the efficiency frontier (CPEI = 1). This suggests that
size and throughput alone do not guarantee high carbon-pollutant effi-
ciency. Class 2 plants, with more balanced performance, show slightly
lower average CPEI (0.586), while Class 3 facilities lag behind signifi-
cantly (CPEI = 0.506), highlighting the operational challenges faced by
medium-scale WWTPs with higher GHG emissions per unit of pollutant
removed. These findings underscore the need for tailored regulatory and
managerial strategies for each WWTP class.

Regarding technology or secondary treatment processes, it is
important to note that these factors do not determine the classification
of WWTPs into three classes. Instead, the LCSFA methodological
approach groups WWTPs based on unobservable or latent differences
related to their operational performance. Fig. 5 presents the average
CPEI for each type of secondary treatment across the three WWTP

classes. Regardless of classification, facilities utilizing biofilters as sec-
ondary treatment exhibit the highest average CPEIL, with values of 0.609,
0.664, and 0.558 for classes 1, 2, and 3, respectively. Conversely,
WWTPs employing a complete mix scheme demonstrate the lowest
average CPEIL, with values of 0.588, 0.536, and 0.468 for classes 1, 2, and
3. Biofilters operate as an attached-growth process, where microorgan-
isms adhere to a medium, whereas complete mix systems rely on
suspended-growth microorganisms. In this context, previous studies (An
et al., 2018; Molinos-Senante et al., 2015) have reported that secondary
wastewater treatment technologies based on attached-growth processes
offer superior sustainability. In terms of variability within each WWTP
class, Class 1 exhibits minimal differences across secondary treatment
types, suggesting that this variable has little influence on CPEL In
contrast, Class 2 displays the highest variability, with a difference of
0.129 between the maximum and minimum average values.

The results presented have significant policy and managerial impli-
cations for optimizing the performance of WWTPs. Notably, no WWTPs
achieved CPEI values below 0.2 or above 0.8, indicating that current
operational and technological configurations largely fall within a
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moderate efficiency range. Consequently, policymakers should priori-
tize strategies that foster incremental efficiency improvements, partic-
ularly within the 0.41-0.80 range observed in WWTPs classified under
Classes 1 and 2. For WWTPs categorized under Class 3, where perfor-
mance is worst, a more targeted approach is necessary. Specific funding
mechanisms, technical assistance programs, and regulatory support
should be developed to address operational bottlenecks, upgrade aging
infrastructure, and enhance process control measures. Implementing
best practices from high-performing WWTPs could also provide valuable
insights for improving these facilities. Moreover, the absence of WWTPs
attaining a CPEI above 0.8 highlights a critical gap in achieving high-
efficiency, low-carbon wastewater treatment. This underscores the

need to establish ambitious yet realistic performance benchmarks that
align with broader climate and water quality policies. Setting stringent
but achievable carbon reduction and pollutant removal targets could
serve as a catalyst for advancing technological innovation and encour-
aging the adoption of energy-efficient and resource-recovery-oriented
treatment processes.

The CPEI can serve as a practical decision-support tool in several
ways. For policymakers, the index enables the classification of WWTPs
by performance tier, providing an empirical basis for differentiated
regulatory strategies. For example, WWTPs in Class 3, with lower CPEI
scores, could be prioritized for funding programs, technical assistance,
or mandated performance audits. In contrast, WWTPs in Classes 1 and 2



R. Sala-Garrido et al.

might be encouraged to voluntarily adopt advanced energy-efficiency
measures or pursue performance-based incentives.

For WWTP operators, the CPEI provides a concise, quantifiable
measure of integrated environmental performance. This enables
benchmarking across similar facilities, tracking improvements over
time, and identifying specific operational practices associated with
higher carbon-pollutant efficiency. The classification into latent per-
formance groups can also guide investment decisions—for instance, by
showing which technology upgrades are most impactful within each
operational context. Moreover, as data availability expands (e.g.,
through the EU Directive, 2024/3019), the CPEI framework can be
adapted to incorporate Scope 1 and Scope 3 emissions and increasing its
value as a regulatory and management tool.

From a broader sustainability perspective, the observed moderate
CPEI levels suggest that attaining carbon neutrality in wastewater
management will require a paradigm shift in both technology and
operational practices. This entails the integration of advanced treatment
technologies, such as anaerobic digestion with biogas recovery,
enhanced nutrient recycling, and the incorporation of renewable energy
sources within WWTP operations (Kanchanamala Delanka-Pedige et al.,
2021; Obaideen et al., 2022). To ensure coherence with broader sus-
tainability goals, policymakers and wastewater managers should align
WWTP improvement efforts with regional and national climate change
mitigation strategies. Embedding wastewater treatment advancements
within circular economy frameworks, carbon pricing mechanisms, and
green infrastructure planning will be essential for enhancing long-term
environmental and economic resilience (Moslinger et al., 2023; Raga-
zou et al., 2024; Soo and Shon, 2024).

5. Conclusions

Reducing carbon emissions from wastewater treatment is particu-
larly challenging, as it must not compromise pollutant removal effi-
ciency, ensuring that environmental protection remains a priority.
Consequently, WWTPs must address multiple environmental objectives
simultaneously. This study introduces and estimates a synthetic index-
—CPEI—which integrates GHG emissions and pollutant removal effi-
ciency into a single metric. By employing an innovative methodological
approach that combines LCSFA with a metafrontier framework, this
study overcomes key limitations of previous studies that relied solely on
DEA. The findings offer a more nuanced and context-sensitive efficiency
assessment, recognizing latent heterogeneities among WWTPs and
enhancing the reliability of benchmarking results.

The case study of 109 WWTPs revealed the presence of three distinct
latent classes, each characterized by differences in operational efficiency
and pollutant removal performance. The results indicate that COD
removal is the primary driver of GHG emissions across all classes,
underscoring the energy-intensive nature of aerobic biological treat-
ment processes. The CPEI analysis revealed that no WWTP achieved full
efficiency (CPEI = 1), and the highest observed scores in Classes 1 and 2
remain below 0.72. This consistent underperformance across all classes
reflects systemic inefficiencies that may stem from outdated technology,
insufficient process control, or scale mismatches. The average CPEI
values — 0.595 (Class 1), 0.586 (Class 2), and 0.506 (Class 3) — align
with the operational patterns identified in Section 4.2 and provide
empirical support for differentiated policy responses. For instance, while
large-scale WWTPs (Class 1) exhibit the best pollutant removal perfor-
mance, their high energy use for COD treatment impacts on their carbon
footprint, indicating a trade-off that regulators must address. In contrast,
Class 3 WWTPs show uniformly low efficiency, calling for prioritized
intervention. Thus, the CPEI not only quantifies performance but also
provides relevant information to define targeted and evidence-based
strategies for decarbonizing wastewater treatment operations.

From a policy and regulatory perspective, these findings offer valu-
able insights for developing targeted strategies to promote carbon
neutrality in wastewater treatment. Since no WWTPs achieved high
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efficiency (CPEI >0.8), policy measures should prioritize incremental
efficiency improvements through energy optimization, process control
enhancements, and infrastructure upgrades. Specific inter-
ventions—such as targeted funding mechanisms, technical assistance
programs, and performance-based incentives—should be implemented
to support underperforming WWTPs, particularly those in Class 3.
Additionally, the study underscores the need for more ambitious carbon
reduction and pollutant removal benchmarks in the wastewater sector.
Establishing stringent yet realistic targets can drive technological
innovation and encourage the adoption of energy-efficient and resource-
recovery-oriented treatment processes. The proposed CPEI offers con-
crete value for improving the environmental regulation of WWTPs. It
provides regulators with a robust tool for performance-based policy
targeting and provides WWTP operators with a single, interpretable
benchmark for tracking and improving integrated environmental per-
formance. As wastewater utilities face increasing decarbonization
pressure, such tools will be essential to meet climate and water quality
goals simultaneously.

Although the use of LCSFA within a metafrontier framework offers a
nuanced approach that captures latent operational differences among
WWTPs, it also introduces methodological complexity. The estimation
of latent class models relies on model selection criteria and assumptions
that may affect reproducibility and interpretability. Moreover, the ag-
gregation of multiple environmental indicators into a single index-
—while useful for synthesis—can obscure trade-offs among pollutants if
not complemented by disaggregated analysis. The CPEI, as proposed,
focuses on Scope 2 carbon emissions and does not include Scope 1 and
Scope 3 emissions. Future work could refine the index to integrate
broader emissions profiles and test alternative aggregation strategies.

CRediT authorship contribution statement

Ramon Sala-Garrido: Writing — review & editing, Methodology.
Alexandros Maziotis: Writing — original draft, Methodology, Formal
analysis, Conceptualization. Maria Molinos-Senante: Writing — review
& editing, Validation, Methodology, Formal analysis,
Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.jclepro.2025.146413.

Data availability

Data will be made available on request.

References

Afsharian, M., 2017. Metafrontier efficiency analysis with convex and non-convex
metatechnologies by stochastic nonparametric envelopment of data. Econ. Lett. 160,
1-3.

Alvarez, A., del Corral, J., Tauer, L.W., 2012. Modeling unobserved heterogeneity in New
York dairy farms: One-Stage versus two-stage models. Agric. Resour. Econ. Rev. 41
(3), 275-285.

Amaral, A.L., Martins, R., Dias, L.C., 2022. Efficiency benchmarking of wastewater
service providers: an analysis based on the Portuguese case. J. Environ. Manag. 321,
115914.

An, D, Xi, B., Ren, J., Ren, X., Zhang, W., Wang, Y., Dong, L., 2018. Multi-criteria
sustainability assessment of urban sludge treatment technologies: method and case
study. Resour. Conserv. Recycl. 128, 546-554.


https://doi.org/10.1016/j.jclepro.2025.146413
https://doi.org/10.1016/j.jclepro.2025.146413
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref1
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref1
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref1
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref2
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref2
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref2
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref3
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref3
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref3
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref4
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref4
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref4

R. Sala-Garrido et al.

Ananda, J., Oh, D., 2023. Assessing environmentally sensitive productivity growth:
incorporating externalities and heterogeneity into water sector evaluations. J. Prod.
Anal. 59 (1), 45-60.

Attri, S.D., Singh, S., Dhar, A., Powar, S., 2022. Multi-attribute sustainability assessment
of wastewater treatment technologies using combined fuzzy multi-criteria decision-
making techniques. J. Clean. Prod. 357, 131849.

Barros, C.P., 2009. The measurement of efficiency of UK airports, using a stochastic
latent class frontier model. Transp. Rev.: Transnational Transdisciplinary J. 29 (4),
479-498.

Barros, C.P., 2011. Cost efficiency of African airports using a finite mixture model.
Transp. Policy 18, 807-813.

Catalan Office of Climate Change, 2022. Emission factor. https://canviclimatic.gencat.
cat/es/ambits/mitigacio/drets_demissio/factors/index.html.

Chen, H., Zheng, Y., Zhou, K., Cheng, R., Zheng, X., Ma, Z., Shi, L., 2023. Carbon
emission efficiency evaluation of wastewater treatment plants: evidence from China.
Environ. Sci. Pollut. Control Ser. 30 (31), 76606-76616.

Cullman, A., 2012. Benchmarking and firm heterogeneity: a latent class analysis for
German electricity distribution companies. Empir. Econ. 42, 147-169.

Cullmann, A., Zloczysti, P., 2014. R&D efficiency and heterogeneity — a latent class
application for the OECD. Appl. Econ. 46 (30), 3750-3762.

Dakpo, K.H., Latruffe, L., Desjeux, Y., Jeanneaux, P., 2024. Measuring productivity when
technology is heterogeneous using a latent class stochastic frontier model. Empir.
Econ. 67 (5), 2175-2205.

De Witte, K., Marques, R.C., 2010. Incorporating heterogeneity in non-parametric
models: a methodological comparison. Int. J. Oper. Res. 9 (2), 188-204.

European Environment Agency, 2019. New challenges facing Europe’s waste water
treatment plants present opportunities for improving sustainability. https://www.
eea.europa.eu/highlights/new-challenges-facing-europe2019s-wastewater.

Eseoglu, G., Yapsakli, K., Tozan, H., Vayvay, O., 2022. A novel fuzzy framework for
technology selection of sustainable wastewater treatment plants based on TODIM
methodology in developing urban areas. Sci. Rep. 12 (1), 8800.

Ferreira, D.C., Figueira, J.R., Greco, S., Marques, R.C., 2023. Data envelopment analysis
models with imperfect knowledge of input and output values: an application to
Portuguese public hospitals. Expert Syst. Appl. 231, 120543.

Frisvold, G.B., Atla, J., 2024. Agricultural economic water productivity differences across
counties in the colorado River Basin. Hydrology 11 (8). Article 8.

Gémar, G., Gomez, T., Molinos-Senante, M., Caballero, R., Sala-Garrido, R., 2018.
Assessing changes in eco-productivity of wastewater treatment plants: the role of
costs, pollutant removal efficiency, and greenhouse gas emissions. Environ. Impact
Assess. Rev. 69, 24-31.

Gherghel, A., Teodosiu, C., Notarnicola, M., De Gisi, S., 2020. Sustainable design of large
wastewater treatment plants considering multi-criteria decision analysis and
stakeholders’ involvement. J. Environ. Manag. 261, 110158.

Gomez, T., Gémar, G., Molinos-Senante, M., Sala-Garrido, R., Caballero, R., 2018.
Measuring the eco-efficiency of wastewater treatment plants under data uncertainty.
J. Environ. Manag. 226, 484-492.

Greene, W.H., 2005. Reconsidering heterogeneity in panel data estimators of the
stochastic frontier model. J. Econom. 126, 269-303.

Henriques, A.A., Fontes, M., Camanho, A.S., D’Inverno, G., Amorim, P., Silva, J.G., 2022.
Performance evaluation of problematic samples: a robust nonparametric approach
for wastewater treatment plants. Ann. Oper. Res. 315 (1), 193-220.

Hu, W., Guo, Y., Tian, J., Chen, L., 2019. Eco-efficiency of centralized wastewater
treatment plants in industrial parks: a slack-based data envelopment analysis.
Resour. Conserv. Recycl. 141, 176-186.

Kanchanamala Delanka-Pedige, H.M., Munasinghe-Arachchige, S.P., Abeysiriwardana-
Arachchige, I.S.A., Nirmalakhandan, N., 2021. Evaluating wastewater treatment
infrastructure systems based on UN sustainable development goals and targets.

J. Clean. Prod. 298, 126795.

Kumbhakar, S.C., Ortega-Argilés, R., Potters, L., 2012. Corporate R&D and firm
efficiency: evidence from Europe’s top R&D investors. J. Prod. Anal. 37, 125-140.

Latruffe, L., Niedermayr, A., Desjeux, Y., Ryan, M., O’Donoghue, C., 2023. Identifying
and assessing intensive and extensive technologies in European dairy farming. Eur.
Rev. Agric. Econ. 50 (4), 1482-1519.

Journal of Cleaner Production 523 (2025) 146413

Lin, B., Du, K., 2014. Measuring energy efficiency under heterogeneous technologies
using a latent class stochastic frontier approach: an application to Chinese energy
economy. Energy 76, 884-890.

Ling, J., Germain, E., Murphy, R., Saroj, D., 2021. Designing a sustainability assessment
tool for selecting sustainable wastewater treatment technologies in corporate asset
decisions. Sustainability (Switzerland) 13 (7), 3831.

Llorca, M., Banos, J., Jose, S., Arbues, P., 2017. A stochastic frontier analysis approach
for estimating energy demand and efficiency in the transport sector of Latin America
and the Caribbean. Energy J. 38 (5), 153-174.

Longo, S., Hospido, A., Mauricio-Iglesias, M., 2023. Energy efficiency in wastewater
treatment plants: a framework for benchmarking method selection and application.
J. Environ. Manag. 344, 118624.

Maziotis, A., Molinos-Senante, M., 2023. A comprehensive eco-efficiency analysis of
wastewater treatment plants: estimation of optimal operational costs and
greenhouse gas emissions. Water Res. 243, 120354.

Molinos-Senante, M., Gomez, T., Caballero, R., Hernandez-Sancho, F., Sala-Garrido, R.,
2015. Assessment of wastewater treatment alternatives for small communities: an
analytic network process approach. Sci. Total Environ. 532, 676-687.

Moslinger, M., Ulpiani, G., Vetters, N., 2023. Circular economy and waste management
to empower a climate-neutral urban future. J. Clean. Prod. 421, 138454.

Obaideen, K., Shehata, N., Sayed, E.T., Abdelkareem, M.A., Mahmoud, M.S., Olabi, A.G.,
2022. The role of wastewater treatment in achieving sustainable development goals
(SDGs) and sustainability guideline. Energy Nexus 7, 100112.

Ozcan, Y.A., 2014. Performance measurement using Data Envelopment Analysis (DEA).
In: Health Care Benchmarking and Performance Evaluation, vol 210. Springer US,
pp. 15-47. En Y. A. Ozcan.

Paraschiv, S., Paraschiv, L.S., Serban, A., 2023. An overview of energy intensity of
drinking water production and wastewater treatment. Energy Rep. 9, 118-123.

Pereira, M.A., Vilarinho, H., D’Inverno, G., Camanho, A.S., 2023. A regulatory robust
conditional approach to measuring the efficiency of wholesale water supply and
wastewater treatment services. Util. Policy 83, 101594.

Ragazou, K., Zournatzidou, G., Sklavos, G., Sariannidis, N., 2024. Integration of circular
economy and urban metabolism for a resilient waste-based sustainable urban
environment. Urban Sci. 8 (4). Article 4.

Ramirez-Melgarejo, M., Giiereca, L.P., Gass6-Domingo, S., Salgado, C.D., Reyes-
Figueroa, A.D., 2021. Eco-efficiency evaluation in wastewater treatment plants
considering greenhouse gas emissions through the data envelopment analysis-
tolerance model. Environ. Monit. Assess. 193 (5), 301.

Renner, S., Sauer, J., El Benni, N., 2021. Why considering technological heterogeneity is
important for evaluating farm performance? Eur. Rev. Agric. Econ. 48 (2), 415-445.

Sala-Garrido, R., Maziotis, A., Mocholi-Arce, M., Molinos-Senante, M., 2023. Assessing
eco-efficiency of wastewater treatment plants: a cross-evaluation strategy. Sci. Total
Environ. 900, 165839.

Sala-Garrido, R., Molinos-Senante, M., Hernandez-Sancho, F., 2011. Comparing the
efficiency of wastewater treatment technologies through a DEA metafrontier model.
Chem. Eng. J. 173 (3), 766-772.

Soo, A., Shon, H.K., 2024. A nutrient circular economy framework for wastewater
treatment plants. Desalination 592, 118090.

Stetter, C., Wimmer, S., Sauer, J., 2023. Are intensive farms more emission-efficient?
Evidence from German dairy farms. J. Agric. Resour. Econ. 48 (1), 136-157.

UN (United Nations), 2017. Global wastewater status. https://unu.edu/inweh/tools
-and-resources/global-wastewater-status.

Wu, G., Hong, J., Li, D., Wu, Z., 2019. Efficiency assessment of pollutants discharged in
urban wastewater treatment: evidence from 68 key cities in China. J. Clean. Prod.
233, 1437-1450.

Xi, J., Gong, H., Guo, R., Chen, L., Dai, X., 2023. Characteristics of greenhouse gases
emission from wastewater treatment plants operation in China (2009-2016): a case
study using operational data integrated method (ODIM). J. Clean. Prod. 402,
136829.

Yang, J., Chen, B., 2021. Energy efficiency evaluation of wastewater treatment plants
(WWTPs) based on data envelopment analysis. Appl. Energy 289, 116680.


http://refhub.elsevier.com/S0959-6526(25)01763-9/sref5
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref5
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref5
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref6
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref6
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref6
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref7
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref7
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref7
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref8
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref8
https://canviclimatic.gencat.cat/es/ambits/mitigacio/drets_demissio/factors/index.html
https://canviclimatic.gencat.cat/es/ambits/mitigacio/drets_demissio/factors/index.html
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref10
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref10
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref10
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref11
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref11
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref12
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref12
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref13
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref13
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref13
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref14
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref14
https://www.eea.europa.eu/highlights/new-challenges-facing-europe2019s-wastewater
https://www.eea.europa.eu/highlights/new-challenges-facing-europe2019s-wastewater
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref16
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref16
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref16
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref17
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref17
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref17
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref18
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref18
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref19
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref19
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref19
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref19
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref20
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref20
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref20
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref21
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref21
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref21
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref22
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref22
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref23
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref23
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref23
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref24
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref24
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref24
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref25
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref25
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref25
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref25
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref26
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref26
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref27
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref27
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref27
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref28
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref28
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref28
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref29
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref29
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref29
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref30
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref30
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref30
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref31
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref31
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref31
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref33
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref33
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref33
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref34
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref34
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref34
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref35
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref35
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref36
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref36
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref36
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref37
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref37
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref37
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref38
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref38
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref39
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref39
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref39
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref40
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref40
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref40
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref41
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref41
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref41
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref41
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref42
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref42
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref43
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref43
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref43
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref44
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref44
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref44
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref45
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref45
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref46
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref46
https://unu.edu/inweh/tools-and-resources/global-wastewater-status
https://unu.edu/inweh/tools-and-resources/global-wastewater-status
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref48
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref48
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref48
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref49
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref49
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref49
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref49
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref50
http://refhub.elsevier.com/S0959-6526(25)01763-9/sref50

	Assessing carbon and pollutant efficiency in wastewater treatment plants: A data-driven benchmarking framework using latent ...
	1 Introduction
	2 Methodology
	3 Data sample and variables selection
	4 Results and discussion
	4.1 Parameters of the latent class stochastic frontier analysis (LCSFA) functional form
	4.2 Classes of wastewater treatment plants defined
	4.3 Carbon and pollutants efficiency index (CPEI)

	5 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Appendix A Supplementary data
	Data availability
	References


