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A B S T R A C T

Achieving carbon neutrality in wastewater treatment plants (WWTPs) presents a significant challenge, as 
reducing greenhouse gas (GHG) emissions must not compromise pollutant removal efficiency. This study in
troduces a novel Carbon and Pollutant Efficiency Index (CPEI) to benchmark the environmental performance of 
WWTPs by integrating GHG emissions and pollutant removal efficiency into a single metric. To address limi
tations in previous studies, which primarily relied on Data Envelopment Analysis (DEA), this research employs 
Latent Class Stochastic Frontier Analysis within a metafrontier framework to account for unobservable hetero
geneities among WWTPs. A case study of 109 WWTPs in Spain identified three distinct operational classes, with 
average CPEI scores of 0.595, 0.586, and 0.506 for Classes 1, 2, and 3, respectively. Results indicate that 
chemical oxygen demand (COD) removal is the primary driver of GHG emissions, reflecting the energy-intensive 
nature of aerobic treatment processes. None of the WWTPs achieved full efficiency (CPEI = 1), suggesting 
substantial room for improvement. Policy implications include the need for tailored regulatory strategies that 
balance carbon reduction with pollutant removal targets. The proposed CPEI provides a robust decision-support 
tool for benchmarking WWTPs and guiding policies towards sustainable and decarbonized wastewater 
management.

1. Introduction

Access to sanitation is crucial for human well-being, environmental 
sustainability, and economic development (Hu et al., 2019). In 
high-income countries, the primary challenge is not ensuring access to 
sanitation, as coverage is nearly universal and approximately 70 % of 
generated wastewater is treated (UN, 2017). Instead, the focus lies on 
addressing emerging challenges in urban wastewater treatment such as 
climate change, demographic shifts, and newly emerging pollutants 
(European Environment Agency, 2019). Regarding climate change, the 
European Union Directive 2024/3019 concerning urban wastewater 
treatment mandates that wastewater treatment plants (WWTPs) pro
gressively reduce their greenhouse gas (GHG) emissions in alignment 
with the EU’s 2050 Climate Neutrality objective. However, this reduc
tion must not compromise the efficiency of pollutant removal, ensuring 

that environmental protection remains a priority.
To support decision-making in the context of multiple objectives and 

challenges, multi-criteria decision-making (MCDM) methods have been 
widely applied in wastewater treatment for various purposes. These 
include selecting appropriate technologies for WWTP improvements in 
specific scenarios (Eseoglu et al., 2022), assessing the sustainability of 
wastewater treatment technologies (Gherghel et al., 2020; Ling et al., 
2021; Attri et al., 2022), and benchmarking WWTP performance by 
integrating multiple key performance indicators (KPIs) into a single 
synthetic index (Henriques et al., 2022; Pereira et al., 2023; Wu et al., 
2019). Within this category, given the growing emphasis on reducing 
GHG emissions in wastewater treatment, several studies have incorpo
rated GHG emissions as a key KPI alongside others for WWTP perfor
mance assessment (Chen et al., 2023; Gómez et al., 2018; 
Ramírez-Melgarejo et al., 2021; Sala-Garrido et al., 2023; Xi et al., 

* Corresponding author. Institute of Sustainable Processes, Universidad de Valladolid, C/ Mergelina 4, Valladolid, Spain.
E-mail address: maria.molinos@uva.es (M. Molinos-Senante). 

Contents lists available at ScienceDirect

Journal of Cleaner Production

journal homepage: www.elsevier.com/locate/jclepro

https://doi.org/10.1016/j.jclepro.2025.146413
Received 20 April 2025; Received in revised form 21 July 2025; Accepted 12 August 2025  

Journal of Cleaner Production 523 (2025) 146413 

Available online 16 August 2025 
0959-6526/© 2025 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by- 
nc-nd/4.0/ ). 

https://orcid.org/0000-0002-6689-6861
https://orcid.org/0000-0002-6689-6861
mailto:maria.molinos@uva.es
www.sciencedirect.com/science/journal/09596526
https://www.elsevier.com/locate/jclepro
https://doi.org/10.1016/j.jclepro.2025.146413
https://doi.org/10.1016/j.jclepro.2025.146413
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jclepro.2025.146413&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


2023). These studies revealed the importance of incorporating carbon 
emissions alongside pollutant removal efficiency into a single index to 
holistically benchmark WWTP performance. Such an approach provides 
a comprehensive assessment that facilitates the identification of current 
performance levels and improvement opportunities at the WWTP level.

Despite significant contributions to the literature and knowledge on 
the carbon performance of WWTPs, previous studies (Chen et al., 2023; 
Gómez et al., 2018; Ramírez-Melgarejo et al., 2021; Sala-Garrido et al., 
2023; Xi et al., 2023) present two main limitations that need to be 
addressed. Firstly, all these studies employ Data Envelopment Analysis 
(DEA) as the MCDM method. DEA is a non-parametric technique that 
uses linear programming to construct a piecewise convex efficiency 
frontier (Ozcan, 2014) based on multiple inputs and outputs. Its primary 
advantage is that it does not require the specification of a functional 
form for the production frontier (Yang and Chen, 2021). However, DEA 
is highly sensitive to outliers, noise, and data errors, and as a deter
ministic approach, it does not distinguish between inefficiency and 
statistical noise, potentially leading to misclassification of efficiency. 
Additionally, Basic DEA models assume either constant returns to scale 
or variable returns to scale. However, these assumptions may not always 
reflect real-world production technologies (Ferreira et al., 2023). Sec
ondly, previous studies that integrate GHG emissions into WWTP per
formance assessment assume that all facilities operate under the same 
production frontier (Gómez et al., 2018; Ramírez-Melgarejo et al., 2021; 
Xi et al., 2023). However, this assumption may not hold in practice due 
to variability in influent quality, wastewater treatment technologies, 
ownership structures, and other latent or unobservable differences 
among WWTPs. While a common production frontier can provide 
meaningful efficiency benchmarks under uniform technological condi
tions, it may oversimplify performance evaluations in contexts like 
wastewater treatment, where unobserved operational heterogeneity can 
significantly influence environmental performance(Alvarez et al., 
2012).

To address the limitations of previous studies—namely, their reli
ance on DEA methods and the assumption of homogenous production 
frontiers—this study introduces two key innovations. First, we propose a 
novel Carbon and Pollutant Efficiency Index (CPEI) that integrates GHG 
emissions and pollutant removal efficiency into a single, synthetic 
benchmark metric. Second, the CPEI was estimated using a novel 
methodology which integrates latent class stochastic frontier analysis 
(LCSFA) within a metafrontier framework allowing to account for un
observable heterogeneities in assessed WWTPs. The specific research 
objectives are: i) to construct and estimate the CPEI for benchmarking 
WWTP environmental performance; and ii) to classify WWTPs into 
latent operational categories based on their efficiency patterns to inform 
more targeted policy interventions.

Within the framework of the transition to carbon-neutral WWTPs, 
this study makes several key contributions to the literature. It proposes 
and applies a novel synthetic index, CPEI, which integrates carbon 
emissions and pollutant removal efficiency into a single metric, 
providing a holistic approach to benchmarking WWTP performance. 
While existing studies rely exclusively on DEA, this research addresses 
its key limitations, including sensitivity to outliers, the assumption of a 
common production frontier, and the inability to distinguish in
efficiency from statistical noise. Unlike previous studies that assume all 
WWTPs operate under a common production frontier, this study 
explicitly accounts for unobservable heterogeneities, enabling a more 
nuanced and context-specific efficiency analysis and improving the 
reliability of benchmarking results. From a policy perspective, this 
research provides a decision-support framework for designing tailored 
policies that promote decarbonization without compromising environ
mental protection.

2. Methodology

This section outlines the methodological approach used to develop 

the proposed CPEI and also to assess and classify WWTPs based on this 
synthetic index. The proposed methodological approach integrates two 
key concepts such as metafrontier and LCSFA. The metafrontier frame
work provides a unified reference (the metafrontier) to compare the 
performance of decision-making units (WWTPs in this study) that 
operate under different conditions or belong to distinct groups (Dakpo 
et al., 2024). The metafrontier envelopes all group-specific frontiers and 
represents the global best practice technology available across all 
groups. It serves as a common benchmark for assessing the relative 
performance of all WWTPs, regardless of their group membership 
(Afsharian, 2017). On the other hand, LCSFA (Ananda and Oh, 2023) is 
used to analyze efficiency and heterogeneity within a dataset, particu
larly in cases where the population under study consists of distinct, 
unobservable (latent) subgroups (Renner et al., 2021).1 LCSFA identifies 
unobservable (latent) subgroups of WWTPs based on their data (input 
and outputs). As such, the classification reflects underlying operational 
patterns that may not be directly capture by observable attributes.

In this case study, three main stages were subsequently applied as it 
is shown in Fig. 1.

Stochastic frontier analysis (SFA) is a parametric technique that 
models the functional relationship between GHG emissions and outputs 
generation (Eq. (1)). This approach, unlike non-parametric techniques, 
integrates two error components: noise (νi) and inefficiency (ui): 

lnGHGi = f
(
yi; αʹ

i
)
+ νi + ui (1) 

where ln denotes logarithm, f denotes function, i is the WWTP under 
assessment, y is the set of outputs, and α is the set of parameters that the 
model estimates. The noise terms, νi, accounts for measurement error 
and other stochastic influences. It follows the standard normal distri
bution. The inefficiency term, ui, reflects the deviations from the effi
cient frontier follows the half normal distribution.

Eq. (1) assumes that all units (WWTPs) operate under a common 
frontier, implying the use of a uniform production technology. However, 
WWTPs are often heterogenous due to differences in operating charac
teristics, regulatory frameworks, and access to resources (Ananda and 
Oh, 2023). Ignoring such technological differences in production pro
cesses can result in less robust and potentially biased efficiency scores 
(Kumbhakar et al., 2012). In this context, latent class approach assumes 
that the population consists of unobservable (latent) subgroups, each 
with distinct characteristics. This technique identifies these subgroups 
by clustering WWTPs based on their data patterns, which influence both 
the functional form and the parameters of the SFA model (Llorca et al., 
2017).

In LCSFA, both the functional form of the stochastic frontier and the 
inefficiency distribution can vary across classes, i.e., WWTPs with 
different characteristics. The estimation process involves maximizing 
the likelihood function simultaneously for the latent class probabilities 
and the parameters of the stochastic frontier for each class (Eq. (2)) 
(Lattufe et al., 2023; Stetter et al., 2023). The specific LCSFA functional 
form applied in this study is detailed as follows: 

lnGHGi|j = αoj +
∑M

m=1
αm|j ln ymi +

1
2
∑M

m=1

∑N

n=1
αmn|jlnymilnyni + vi|j + ui|j (2) 

where j represents the class, i is the WWTP, and m and n correspond to 
the different outputs that influence GHG emissions. As a parametric 
approach, the estimated parameters of Eq. (2), i.e., αm|j, αmn|j, are the 
weights of each variable (pollutant and carbon emissions) integrated the 
CPEI. It involves that weights are endogenously estimated and do not are 
acllocated by the analysit or decision-maker, reducing the subjectiviety 

1 To enhance the transparency and robustness of our analysis, we also esti
mated the CPEI using a traditional DEA model whose formulation and results 
are shown in Supplemental Material.
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in the assessment.
Eq. (2) is estimated using maximum likelihood estimation techniques 

(Greene, 2005). The likelihood function of each WWTP i for each class j 
is defined as follows (Barros, 2011): 

LFi|j =
Φ
(

λjεi|j

/
σj

)

Φ(0)
1
σj

ϕ
(εi|j

σj

)

(3) 

In Eq. (3), the likelihood function (LF) is defined as follows: 

εi|j = lnGHGi|j − αʹ
jyi (4) 

σj =
[
σ2

uj + σ2
νj

]1
2 (5) 

λj =
σuj

σνj
(6) 

where εi|j represents the residual term for WWTP i in class j, lnGHGi|j is 
the logarithm of GHG emissions, αj́yi is the estimated production frontier 
for class j, σj is the composite error term, and λj is the ratio of the in
efficiency standard deviation (σuj) to the noise standard deviation (σνj). 
Additionally, ϕ represents the standard normal density function, and Φ 
denotes the cumulative distribution function (Barros, 2011).

The likelihood function for each WWTP was computed using Eq. (3), 
weighted by the prior probabilities of membership in class j, denoted as 
Pij (Barros, 2009): 

LFi =
∑J

j=1
PijLFi|j,0 ≤ Pij ≤ 1,

∑

j
Pij = 1 (7) 

Thus, the overall likelihood function was calculated as follows (Lin 
and Du, 2014): 

logLF=
∑K

i=1
log LFi (8) 

The determination of the optimal number of classes (j) that capture 
technological heterogeneity was carried out using statistical measures 
such as the log-likelihood ratio test and Akaike Information Criterion 
(AIC) (Cullmann and Zloczysti, 2014; Frisvold and Atla, 2024). The 
optimal number of classes corresponds to the model with the lowest AIC 
values (Cullmann, 2012): 

AIC= − 2logLF(j) + 2θ (9) 

where logLF(j) represents the value of the log-likelihood function for j 
class and θ denotes the number of estimated parameters.

After estimating the parameters of the overall log-likelihood in Eq. 
(8) enables the calculation of the CPEI for each WWTP, accounting for 
the specific production technology associated with each class j by 
solving Eqs. 10–12: 

GHGi|j =E
[
exp

(
− ui|j

)⃒
⃒
⃒εi|j

]
(10) 

The posterior probabilities for each class j, based on Bayes’ theorem, 
were derived from the estimated parameters of the likelihood function 
(Greene, 2005; Alvarez and del Corral, 2010): 

P(j|i)=
PijLFi|j

∑J

j=1
PijLFi|j

(11) 

Using the posterior probabilities, the CPEI for each WWTP (CPEIi) 
was calculated as: 

CPEIi =
∑J

j=1

(
Pj|i*GHGi|j

)
(12a) 

CPEIi ranges from 0 to 1. A value of 1 indicates that the WWTP 
operates at full efficiency, leaving no room for improvement. 
Conversely, a value below 1 suggests that there is potential for 
improvement, with the ultimate goal of achieving a score of 1.

3. Data sample and variables selection

The case study conducted in this research is based on a sample of 109 
WWTPs located in the northeast of Spain. All facilities process urban 
wastewater through a series of treatments, including pretreatment, 
primary treatment, and biological secondary treatment, aimed at 
removing four main pollutants such as suspended solids (SS), organic 
matter, nitrogen (N), and phosphorus (P). All WWTPs ensure that their 
discharged wastewater complies with the legal thresholds established by 
the European Urban Wastewater Directive (91/271/ECC). The WWTPs 
are managed by a mix of public and private operators, with their envi
ronmental performance closely monitored by a public regulator.2 Data 
for all variables used in this study were obtained from the public 

Fig. 1. Methodological stages of the study.

2 See more information in Supplemental Material. Dataset used in this study 
is available from the corresponding author upon reasonable request.
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regulator and correspond to the year 2022.
The identification of outliers and atypical observations is a critical 

step in benchmarking the performance of WWTPs (Longo et al., 2023). A 
peer index approach (De Witte and Marques, 2010) was applied to the 
original dataset comprising 147 WWTPs to detect atypical observations. 
Consequently, 38 WWTPs were identified as outliers and removed from 
the dataset. This process resulted in a final sample of 109 WWTPs, for 
which the CPEI was estimated.

The selection of variables was guided by the primary objective of the 
study—assessing the carbon and pollutant removal efficiency of 
WWTPs—and by the availability of data, which is a significant 
constraint in large-sample assessments using real-world datasets 
(Amaral et al., 2022). Regarding GHG emissions, statistical data on 
direct emissions was not available for the analyzed WWTPs. Conse
quently, following previous research (Gemar et al., 2018; Sala-Garrido 
et al., 2011), this study considers only indirect GHG emissions associ
ated with electricity consumption at the WWTPs, i.e., Scope 2 carbon 
emissions. At present, none of the 109 WWTPs assessed systematically 
monitor or report direct emissions (Scope 1), such as methane (CH4) and 
nitrous oxide (N2O) from biological processes and sludge treatment, nor 
indirect emissions from supply chains or infrastructure (Scope 3). As 
such, the lack of available data constrained the scope of this analysis. 
However, the recent adoption of the Urban Wastewater Treatment 
Directive (EU) 2024/3019 is expected to improve the availability of 
GHG emissions data in the near future. The Directive encourages 
member states to monitor and reduce methane emissions in line with the 
Global Methane Pledge, and to enhance transparency by making key 
information—such as treatment costs and environmental perform
ance—publicly accessible, particularly for agglomerations above 10,000 
population equivalents. This regulatory shift will likely support the in
clusion of Scope 1 and Scope 3 emissions in future benchmarking 
studies. Consequently, the CPEI values presented in this study should be 
interpreted as partial indicators of carbon efficiency, reflecting opera
tional energy-related emissions.

To estimate indirect emissions, the average GHG emission factor for 
Catalonia in 2022 was applied, which is 273 gCO2eq/kWh (Catalan Of
fice of Climate Change, 2022).

With regard to pollutants removed from wastewater, both the con
centration of the main pollutants in the influent and effluent, as well as 
the volume of wastewater treated by each WWTP, were taken into ac
count (Maziotis and Molinos-Senante, 2023). To achieve this, Eq. (12) 
was applied to each pollutant included in the assessment, namely SS, 
organic matter (measured as chemical oxygen demand, COD), N, and P: 

PRViz =WWVi * (Pollutantiiz − Pollutanteiz) (12b) 

where PRViz presents the quantity of pollutant z removed annually from 
wastewater by WWTP i, expressed in grams per year (g/year); WWVi 
denotes the volume of wastewater treated by the WWTP i measured in 
cubic meters per year (m3/year). Pollutantiiz and Pollutanteiz refer to the 
concentrations of pollutants z in the influent and effluent of WWTP i, 
respectively, measured in grams per cubic meter (g/m3).

Table 1 reports the descriptive statistics of the variables used in this 
study.

4. Results and discussion

4.1. Parameters of the latent class stochastic frontier analysis (LCSFA) 
functional form

According to the methodological framework applied in this study, 
the LCSFA functional form (Eq. (2)) was estimated to define classes of 
WWTPs and calculate the CPEI for each WWTP. Based on the AIC pa
rameters estimation, the optimal number of classes for the 109 assessed 
WWTPs was determined to be three. The AIC for one class was − 474.2 
(logLF = 241.5), for two classes was − 615 (logLF = 311.5) and for three 
classes was − 942.2 (logLF = 475.1). Moreover, a LCSFA model with four 
classes did not converge, confirming that the optimal number of classes 
is three.

The results of the LCSFA functional form for each defined class are 
presented in Table 2. Regarding pollutants removed from wastewater, 
the estimated coefficients for the three classes and four pollutants are 
positive and statistically significant. This indicates that higher volumes 
of pollutants removed from wastewater are associated with higher levels 
of indirect GHG emissions. However, the impact of pollutant removal on 
GHG emissions varies among the classes. As shown in Table 2, the 
removal of chemical oxygen demand (COD) is the most influential 
pollutant on carbon emissions across the three defined classes of 
WWTPs. Specifically, a 1 % increase in the quantity of COD removed 
leads to an increase in indirect GHG emissions by 0.717 %, 0.497 %, and 
0.572 % for classes 1, 2, and 3, respectively. This is because all 109 
assessed WWTPs rely on aerobic processes to remove organic matter, 
which are considered energy-intensive processes(Molinos-Senante and 
Maziotis, 2023; Paraschiv et al., 2023).

Unlike the removal of COD, there is a notable discrepancy among the 
three identified classes regarding the pollutant that contributes the least 
to indirect carbon emissions. For WWTPs grouped in class 1, N removal 
is the least significant contributor, with a 1 % increase in N removal 
resulting in a 0.077 % increase in indirect GHG emissions. In class 2, P 
removal has the smallest impact, contributing 0.091 % for a 1 % increase 
in P removal. Finally, in class 3, SS removal contributes the least, with a 
1 % increase in SS removal leading to a 0.049 % increase in indirect GHG 
emissions. From a policy perspective, these findings evidence the 
importance of adopting tailored energy-efficiency measures to the spe
cific characteristics of each WWTP class and prioritizing interventions to 
balance pollutant removal efficiency with carbon emission reduction 
goals. The results presented in Table 2 highlight that latent heteroge
neity among WWTPs can have a differential impact on environmental 
performance. For comparison purposes, the supplementary material 
includes the results of the standard SFA model (Eq. (1)), which assumes 
that all WWTPs operate under a common production technology. 
Although the standard SFA model similarly reveals that COD removal is 
the primary determinant of carbon emissions, it fails to capture the 
differences among classes regarding the contributions of other pollut
ants. These class-specific variations, which are critical for understanding 
the nuanced relationship between pollutant removal and GHG emis
sions, remain hidden under the assumption of homogeneous production 
technology.

Lambda (λ) refers to the ratio of the standard deviation of the in
efficiency term (σᵤ) to the standard deviation of the random noise term 
(σᵥ). It is higher than zero and statistically significant in all three classes, 

Table 1 
Descriptive statistics of the wastewater treatment plants assessed.

Variable Unit of measurement Mean Std. Dev. Minimum Max

Indirect greenhouse gas emissions kgCO2eq/year 411,307 1,275,428 2338 10,039,318
Organic matter removed (COD) g/year 2,791,539 11,680,492 2567 10,6021,387
Suspended solids removed g/year 1,504,366 6,932,355 893 67,171,650
Nitrogen removed g/year 149,680 536,491 163 4,152,857
Phosphorus removed g/year 35,558 164,284 16 1,506,131
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indicating the presence of inefficiency among WWTPs and confirming 
that efficiency analysis is relevant and appropriate in this context.

4.2. Classes of wastewater treatment plants defined

According to the results presented in Table 2, the 109 assessed 
WWTPs were classified into three categories, whose main statistical 
characteristics, in terms of pollutant removal and GHG emissions, are 
detailed in Table 3. The distribution of WWTPs across these categories is 
notably uneven, with 73 facilities in Class 1, 22 in Class 2, and 11 in 
Class 3. On average, Class 1 WWTPs exhibit the highest performance in 
terms of pollutant removal and carbon emissions reduction. These fa
cilities also process the largest volumes of wastewater. However, sig
nificant variability within this category highlights the need to enhance 
the performance of certain facilities. Conversely, Class 3 WWTPs, which 
treat intermediate volumes of wastewater, demonstrate moderate 
pollutant removal efficiency but exhibit the highest carbon emissions 
per cubic meter of treated water. This finding underscores the need for 
targeted interventions to improve their carbon footprint. Lastly, Class 2 
WWTPs represent a middle ground, offering a balance between perfor
mance and consistency, though they still fall short of Class 1 in pollutant 
removal efficiency.

The coefficient of variation (CV) was computed as the ratio of the 
standard deviation to the average. Pollutant-related indicators show CV 
values greater than 100 %, reflecting substantial variability in pollutant 
load and removal performance among WWTPs within the same class. In 
contrast, GHG emissions per cubic meter treated exhibit CV values 
below 100 % across all classes, indicating more consistent emission 
patterns.

4.3. Carbon and pollutants efficiency index (CPEI)

Focusing on the CPEI estimated for each WWTP, Fig. 2 presents the 
statistics for each class. The average CPEI for WWTPs in classes 1, 2, and 
3 was 0.595, 0.586, and 0.506, respectively. This indicates that WWTPs 
in Class 1 are the best performers in terms of pollutant removal effi
ciency and carbon emissions. However, it is important to note that none 
of the WWTPs in any of the three classes achieved a CPEI of 1, signifying 
that all 109 WWTPs have room for improvement in both carbon and 
pollutant removal efficiency. The maximum CPEI values for WWTPs in 
classes 1, 2, and 3 were 0.719, 0.718, and 0.559, respectively.

To provide insights into the practical potential for improvement, the 
CPEI gap between each WWTP’s current performance and the maximum 
CPEI observed within its respective latent class was estimated. This 
benchmarking approach reflects realistic, achievable efficiency targets, 
rather than theoretical optima. For instance, in Class 1, the highest- 
performing WWTP reached a CPEI of 0.719, indicating that other fa
cilities in this class could potentially improve their efficiency up to this 
level. Summary statistics on the potential efficiency gains across all 
classes are presented in Fig. 3.

To better understand the distribution of estimated CPEI across clas
ses, Fig. 4 depicts the number of facilities falling within each CPEI range. 
Fig. 4 shows that none of the WWTPs have a CPEI lower than 0.2 or 
higher than 0.8, indicating that the 109 assessed facilities exhibit 
moderate levels of carbon and pollutant removal efficiency. Focusing on 
individual classes, 69 out of 73 WWTPs in Class 1 (94.5 %) have a CPEI 
ranging between 0.41 and 0.80. A similar pattern is observed for Class 2, 
where 24 out of 25 WWTPs (96.0 %) fall within the same CPEI range. In 
contrast, the 11 WWTPs in Class 3 show a more limited range of per
formance, with CPEI values exclusively between 0.41 and 0.60, and no 

Table 2 
Estimates of the latent class stochastic frontier analysis production function.

Variables Model parameters of latent class 1 Model parameters of latent class 2 Model parameters of latent class 3

Coeff. Std. Err. T-stat St.Err. Coeff. Std. Err. T-stat St.Err. Coeff. Std. Err. T-stat St.Err.

Constant 0.138 0.014 9.608 0.000 0.093 0.054 1.700 0.089 0.084 0.126 0.666 0.506
P removed 0.113 0.017 6.551 0.000 0.091 0.018 4.969 0.000 0.218 0.073 2.987 0.003
N removed 0.077 0.014 5.373 0.000 0.233 0.043 5.405 0.000 0.128 0.032 3.984 0.000
SS removed 0.122 0.013 9.066 0.000 0.213 0.020 10.792 0.000 0.039 0.013 3.041 0.003
COD removed 0.717 0.026 27.317 0.000 0.497 0.029 17.295 0.000 0.572 0.116 4.933 0.000
σ 0.274 0.049 5.633 0.000 0.390 0.089 4.363 0.000 0.053 0.013 4.034 0.000
λ 0.599 0.110 5.450 0.000 0.483 0.068 7.147 0.000 0.286 0.053 5.353 0.000

Estimated prior probabilities for class membership Coeff. Std. Err. T-stat St.Err.

Class1 0.540 0.084 6.435 0.000
Class2 0.364 0.083 4.377 0.000
Class3 0.096 0.030 3.205 0.001
Log-likelihood 475.1 ​ ​ ​

Table 3 
Statistics of the classes of WWTPs.

Statistical parameter Class of 
WWTP

GHG emitted (kg/ 
m3)

COD removed (g/ 
m3)

SS removed (g/ 
m3)

N removed (g/ 
m3)

P removed (g/ 
m3)

Volume treated (m3/ 
year)

Average Class 1 0.158 1418.385 583.348 102.259 15.299 4,626,609
Class 2 0.180 989.925 546.070 75.355 11.127 3,188,083
Class 3 0.168 357.487 188.319 32.796 4.521 2,471,536

Std. Dev Class 1 0.099 5244.221 1897.472 349.771 53.535 16,724,011
Class 2 0.153 2518.575 1318.610 186.192 28.243 5,301,253
Class 3 0.068 232.316 126.304 16.211 2.936 3,278,035

Coefficient of variation 
(%)

Class 1 63 370 325 342 350 361
Class 2 85 254 241 247 254 166
Class 3 40 65 67 49 65 133

Minimum Class 1 0.002 6.355 2.755 0.499 0.149 38,844
Class 2 0.003 5.254 2.954 0.769 0.118 7844
Class 3 0.098 36.396 13.659 5.285 0.145 73,540

Maximum Class 1 0.600 38789.143 13381.272 2394.819 373.862 121,095,795
Class 2 0.566 13000.168 6767.127 963.344 145.815 18,647,592
Class 3 0.268 705.394 381.166 61.560 8.001 8,505,353
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facilities achieving higher performance levels.
These class-level differences in CPEI are consistent with the opera

tional and performance profiles identified in Section 4.2. Class 1 
WWTPs, which treat the highest volumes and remove the largest 
amounts of pollutants, also show the highest average CPEI (0.595), 
though still far from the efficiency frontier (CPEI = 1). This suggests that 
size and throughput alone do not guarantee high carbon-pollutant effi
ciency. Class 2 plants, with more balanced performance, show slightly 
lower average CPEI (0.586), while Class 3 facilities lag behind signifi
cantly (CPEI = 0.506), highlighting the operational challenges faced by 
medium-scale WWTPs with higher GHG emissions per unit of pollutant 
removed. These findings underscore the need for tailored regulatory and 
managerial strategies for each WWTP class.

Regarding technology or secondary treatment processes, it is 
important to note that these factors do not determine the classification 
of WWTPs into three classes. Instead, the LCSFA methodological 
approach groups WWTPs based on unobservable or latent differences 
related to their operational performance. Fig. 5 presents the average 
CPEI for each type of secondary treatment across the three WWTP 

classes. Regardless of classification, facilities utilizing biofilters as sec
ondary treatment exhibit the highest average CPEI, with values of 0.609, 
0.664, and 0.558 for classes 1, 2, and 3, respectively. Conversely, 
WWTPs employing a complete mix scheme demonstrate the lowest 
average CPEI, with values of 0.588, 0.536, and 0.468 for classes 1, 2, and 
3. Biofilters operate as an attached-growth process, where microorgan
isms adhere to a medium, whereas complete mix systems rely on 
suspended-growth microorganisms. In this context, previous studies (An 
et al., 2018; Molinos-Senante et al., 2015) have reported that secondary 
wastewater treatment technologies based on attached-growth processes 
offer superior sustainability. In terms of variability within each WWTP 
class, Class 1 exhibits minimal differences across secondary treatment 
types, suggesting that this variable has little influence on CPEI. In 
contrast, Class 2 displays the highest variability, with a difference of 
0.129 between the maximum and minimum average values.

The results presented have significant policy and managerial impli
cations for optimizing the performance of WWTPs. Notably, no WWTPs 
achieved CPEI values below 0.2 or above 0.8, indicating that current 
operational and technological configurations largely fall within a 

Fig. 2. Statistics of the carbon and pollution efficiency index for each class of wastewater treatment plants.

Fig. 3. Statistics of potential carbon and pollutant efficiency index improvement based on maximum score within each class.
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moderate efficiency range. Consequently, policymakers should priori
tize strategies that foster incremental efficiency improvements, partic
ularly within the 0.41–0.80 range observed in WWTPs classified under 
Classes 1 and 2. For WWTPs categorized under Class 3, where perfor
mance is worst, a more targeted approach is necessary. Specific funding 
mechanisms, technical assistance programs, and regulatory support 
should be developed to address operational bottlenecks, upgrade aging 
infrastructure, and enhance process control measures. Implementing 
best practices from high-performing WWTPs could also provide valuable 
insights for improving these facilities. Moreover, the absence of WWTPs 
attaining a CPEI above 0.8 highlights a critical gap in achieving high- 
efficiency, low-carbon wastewater treatment. This underscores the 

need to establish ambitious yet realistic performance benchmarks that 
align with broader climate and water quality policies. Setting stringent 
but achievable carbon reduction and pollutant removal targets could 
serve as a catalyst for advancing technological innovation and encour
aging the adoption of energy-efficient and resource-recovery-oriented 
treatment processes.

The CPEI can serve as a practical decision-support tool in several 
ways. For policymakers, the index enables the classification of WWTPs 
by performance tier, providing an empirical basis for differentiated 
regulatory strategies. For example, WWTPs in Class 3, with lower CPEI 
scores, could be prioritized for funding programs, technical assistance, 
or mandated performance audits. In contrast, WWTPs in Classes 1 and 2 

Fig. 4. Distribution of carbon and pollution efficiency index across classes of wastewater treatment plants.

Fig. 5. Average carbon and performance index for each type of secondary treatment and class.
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might be encouraged to voluntarily adopt advanced energy-efficiency 
measures or pursue performance-based incentives.

For WWTP operators, the CPEI provides a concise, quantifiable 
measure of integrated environmental performance. This enables 
benchmarking across similar facilities, tracking improvements over 
time, and identifying specific operational practices associated with 
higher carbon-pollutant efficiency. The classification into latent per
formance groups can also guide investment decisions—for instance, by 
showing which technology upgrades are most impactful within each 
operational context. Moreover, as data availability expands (e.g., 
through the EU Directive, 2024/3019), the CPEI framework can be 
adapted to incorporate Scope 1 and Scope 3 emissions and increasing its 
value as a regulatory and management tool.

From a broader sustainability perspective, the observed moderate 
CPEI levels suggest that attaining carbon neutrality in wastewater 
management will require a paradigm shift in both technology and 
operational practices. This entails the integration of advanced treatment 
technologies, such as anaerobic digestion with biogas recovery, 
enhanced nutrient recycling, and the incorporation of renewable energy 
sources within WWTP operations (Kanchanamala Delanka-Pedige et al., 
2021; Obaideen et al., 2022). To ensure coherence with broader sus
tainability goals, policymakers and wastewater managers should align 
WWTP improvement efforts with regional and national climate change 
mitigation strategies. Embedding wastewater treatment advancements 
within circular economy frameworks, carbon pricing mechanisms, and 
green infrastructure planning will be essential for enhancing long-term 
environmental and economic resilience (Möslinger et al., 2023; Raga
zou et al., 2024; Soo and Shon, 2024).

5. Conclusions

Reducing carbon emissions from wastewater treatment is particu
larly challenging, as it must not compromise pollutant removal effi
ciency, ensuring that environmental protection remains a priority. 
Consequently, WWTPs must address multiple environmental objectives 
simultaneously. This study introduces and estimates a synthetic index
—CPEI—which integrates GHG emissions and pollutant removal effi
ciency into a single metric. By employing an innovative methodological 
approach that combines LCSFA with a metafrontier framework, this 
study overcomes key limitations of previous studies that relied solely on 
DEA. The findings offer a more nuanced and context-sensitive efficiency 
assessment, recognizing latent heterogeneities among WWTPs and 
enhancing the reliability of benchmarking results.

The case study of 109 WWTPs revealed the presence of three distinct 
latent classes, each characterized by differences in operational efficiency 
and pollutant removal performance. The results indicate that COD 
removal is the primary driver of GHG emissions across all classes, 
underscoring the energy-intensive nature of aerobic biological treat
ment processes. The CPEI analysis revealed that no WWTP achieved full 
efficiency (CPEI = 1), and the highest observed scores in Classes 1 and 2 
remain below 0.72. This consistent underperformance across all classes 
reflects systemic inefficiencies that may stem from outdated technology, 
insufficient process control, or scale mismatches. The average CPEI 
values — 0.595 (Class 1), 0.586 (Class 2), and 0.506 (Class 3) — align 
with the operational patterns identified in Section 4.2 and provide 
empirical support for differentiated policy responses. For instance, while 
large-scale WWTPs (Class 1) exhibit the best pollutant removal perfor
mance, their high energy use for COD treatment impacts on their carbon 
footprint, indicating a trade-off that regulators must address. In contrast, 
Class 3 WWTPs show uniformly low efficiency, calling for prioritized 
intervention. Thus, the CPEI not only quantifies performance but also 
provides relevant information to define targeted and evidence-based 
strategies for decarbonizing wastewater treatment operations.

From a policy and regulatory perspective, these findings offer valu
able insights for developing targeted strategies to promote carbon 
neutrality in wastewater treatment. Since no WWTPs achieved high 

efficiency (CPEI >0.8), policy measures should prioritize incremental 
efficiency improvements through energy optimization, process control 
enhancements, and infrastructure upgrades. Specific inter
ventions—such as targeted funding mechanisms, technical assistance 
programs, and performance-based incentives—should be implemented 
to support underperforming WWTPs, particularly those in Class 3. 
Additionally, the study underscores the need for more ambitious carbon 
reduction and pollutant removal benchmarks in the wastewater sector. 
Establishing stringent yet realistic targets can drive technological 
innovation and encourage the adoption of energy-efficient and resource- 
recovery-oriented treatment processes. The proposed CPEI offers con
crete value for improving the environmental regulation of WWTPs. It 
provides regulators with a robust tool for performance-based policy 
targeting and provides WWTP operators with a single, interpretable 
benchmark for tracking and improving integrated environmental per
formance. As wastewater utilities face increasing decarbonization 
pressure, such tools will be essential to meet climate and water quality 
goals simultaneously.

Although the use of LCSFA within a metafrontier framework offers a 
nuanced approach that captures latent operational differences among 
WWTPs, it also introduces methodological complexity. The estimation 
of latent class models relies on model selection criteria and assumptions 
that may affect reproducibility and interpretability. Moreover, the ag
gregation of multiple environmental indicators into a single index
—while useful for synthesis—can obscure trade-offs among pollutants if 
not complemented by disaggregated analysis. The CPEI, as proposed, 
focuses on Scope 2 carbon emissions and does not include Scope 1 and 
Scope 3 emissions. Future work could refine the index to integrate 
broader emissions profiles and test alternative aggregation strategies.
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