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 A B S T R A C T

Large Language Models have recently emerged as a powerful tool for generating flexible and context-aware 
robotic behavior. However, adapting to unforeseen events and ensuring robust task completion remain 
significant challenges. This paper presents a novel system that leverages LLMs and Behavior Trees to enable 
robots to generate, execute, and adapt task plans based on natural language commands. The system employs 
ChatGPT to process user instructions, generating initial Behavior Trees that encapsulate the required task 
steps. A modular architecture, combining the BT planner and a Failure Interpreter module, allows the system 
to dynamically adjust Behavior Trees when execution challenges or environmental changes arise.

Unlike conventional methods that rely on static Behavior Trees or predefined state machines, our approach 
ensures adaptability by integrating a Failure Interpreter capable of identifying execution issues and proposing 
alternative plans or user clarifications in real time. This adaptability makes the system robust to disturbances 
and allows for seamless human–robot interaction. We validate the proposed methodology using experiments 
on a social robot across various scenarios in our workplace, demonstrating its effectiveness in generating 
executable Behavior Trees and responding to execution failures. The approach achieves an 89.6% success rate 
in a realistic home environment, highlighting the effectiveness of LLM-powered Behavior Trees in enabling 
robust and flexible robot behavior from natural language input.
1. Introduction

Task control and sequencing has always been a major challenge in 
any type of autonomous system, especially in robots. As these systems 
become increasingly complex, the need for robust, flexible, and inter-
pretable control mechanisms has grown, and early approaches such 
as Hierarchical Finite State Machines (HFSMs) [1], which provided 
a structured way to define robot behaviors, have fallen short due to 
their difficulties of modification and scalability. The primary distinc-
tion between them lies in their degree of reactivity and the manner 
in which complex behaviors are represented. Behavior Trees provide 
a more structured and semantically transparent graphical formalism, 
which enhances human interpretability and facilitates the analysis of 
decision-making processes. This increased clarity is especially benefi-
cial when modeling intricate control strategies, as it supports improved 
modularity, reusability, and maintainability [2].

Behavior Trees (BTs) have emerged as a powerful tool for repre-
senting robot behaviors, offering modularity, reusability, and trans-
parency [3]. Originally developed in the gaming industry, BTs have 
been increasingly adopted in robotics due to their ability to manage 
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complex tasks through a hierarchical structure of conditions and ac-
tions. Despite the advantages over hierarchical finite state machines in 
terms of modularity and reusability, their programming can be complex 
and tedious. Meanwhile, Large Language Models (LLMs) [4], such as 
OpenAI’s ChatGPT [5,6], have demonstrated remarkable capabilities 
in understanding natural language and reasoning through complex 
problems. The convergence of these technologies opens new avenues 
for human–robot interaction, where natural language commands can be 
transformed into executable task plans avoiding the task of manually 
defining and programming BTs.

Despite the potential of BTs and LLMs, their combination presents 
significant challenges. While BTs are robust and flexible, adapting 
them to all kinds of unexpected situations requires careful and detailed 
programming, which requires a great deal of knowledge and effort. On 
the other hand, although LLMs can generate tasks to a high degree of 
detail with the appropriate prompt, they still generate text based on 
previous data patterns and do not understand the content as a human 
does, so they are not inherently equipped to manage real-time feedback 
or adapt dynamically during task execution. This limitation restricts the 
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applicability of these methods in real-world dynamic scenarios where 
robots must be both reactive and resilient.

In this paper, we propose a novel framework that combines the 
flexibility of BTs with the reasoning capabilities of LLMs to create an 
adaptive system for robotic task execution. Our method uses ChatGPT 
to interpret user commands and generate a BT, which is executed by 
the robot. A key component of our approach is its adaptability to 
unforeseen situations, thanks to the Clarifier module, telling the user 
whenever the LLM does not understand the instruction or the requested 
actions cannot be executed, and the Failure Interpreter module, which 
with the occurrence of any issue while on the BT execution, helps 
the LLM modify the BT in real time to ensure task completion. This 
integration enables robots to handle external disturbances, adapt to 
environmental changes, and interact effectively with users.

Although some research have addressed similar systems, the pri-
mary contributions of this work are as follows:

• The combination of LLMs and Behavior Trees emerged from 
the need to balance flexibility and structure in robot behavior 
generation: LLMs offer the ability to interpret diverse natural 
language inputs, while BTs provide a robust, transparent, and 
reactive control framework. Existing methods often rely on either 
static templates, model training or fine-tuning or opaque neural 
policies, limiting adaptability and interpretability.

• We introduced the Clarifier and Failure Interpreter modules to 
address two critical gaps: (i) handling ambiguous or incorrect user 
input, which is frequently ignored in prior work, and (ii) enabling 
BT modification in response to execution failures, ensuring run-
time adaptability—something missing in systems where BTs are 
generated once and remain static.

• We emphasized experimental validation in real-world conditions, 
using a social robot in domestic-like scenarios, unlike prior studies 
which rely heavily on simulators or constrained robotic arms. 
This not only demonstrates feasibility but highlights the rele-
vance of our system for assistive applications in non-controlled 
environments, such as eldercare.

The remainder of the paper is organized as follows: Section 2 
reviews related work on BTs and LLMs in robotics. Section 3 details the 
proposed methodology, including the BT generation process. Section 4 
presents the experimental results and an example of a complex action 
such as searching for a fallen person, Section 5 discusses the contribu-
tions and advantages of the system as well as areas for improvement 
and Section 6 completes with conclusions and future work.

2. Background and related works

2.1. Behavior trees

A Behavior Tree (BT), is a hierarchical inverted tree structure used 
to represent tasks at an abstract level and the switch between them [7], 
offering an alternative to Hierarchical Finite State Machines. To enable 
high-level control of a robot’s behavior, SMACH [8] is a task-level 
architecture for robot control implemented within the Robot Operating 
System (ROS) ecosystem [9]. It is based on the Finite State Machine 
(FSM) [10] paradigm and provides a Python-based framework for 
defining and executing hierarchical and concurrent state machines. In 
contrast, Behavior Trees offer a different formalism that emphasizes 
reactivity, modularity, and readability. While SMACH relies on prede-
fined state transitions and often leads to tightly coupled logic, BTs use 
a tree-based execution model that naturally supports fallbacks, parallel 
execution, and dynamic behavior switching. This makes BTs generally 
more scalable and transparent when dealing with large and evolving 
behavior sets. Furthermore, the graphical representation of BTs tends 
2 
to be more intuitive and easier to interpret, especially in collaborative 
or interdisciplinary contexts where clarity of control logic is essential.

Initially developed for computer games [11], BTs have spread to 
other fields such as robotics due to their reactivity in changing envi-
ronments, readability and modular nature, which made them easy to 
modify or expand. All these features make them a significant improve-
ment over finite state machines, which, due to their nature, are less 
adaptable to situations not contemplated during programming and their 
modification is difficult and tedious.

In the bottom-right corner of Fig.  1, the LLM’s response illustrates 
both the identified components and a structured representation of a 
Behavior Tree. The execution begins at the root node (the one on top), 
propagating a ‘‘tick’’ signal to its child nodes, the ones on the lower 
branches. Each ticked node evaluates its logic or executes its task and 
then returns one of three statuses to its parent: Success, Failure, or
Running. The simple structure from this example contains the basic 
nodes to build almost every BT:

1. Control Flow nodes: These nodes manage their child branches 
execution based on a predefined logic.

• Sequence Node (→): Ticks child nodes from left to right, executing 
(Running) next if previous returned Success. If one of its child 
nodes returns Failure, the sequence node stops ticking and returns
Failure. It only returns Success if all child nodes return Success.

• Fallback or Selector Node (?): Ticks child nodes from left to right, 
executing (Running) next if previous returned Failure. If one of its 
child nodes returns Success, the fallback node stops ticking and 
returns Success. It only returns Failure if all child nodes fail.

2. Execution Nodes: These nodes represent the actionable compo-
nents of a BT:

• Action Nodes: Perform specific tasks or robot actions designed by 
the user. They return Success when the task is completed, Failure
if it cannot be performed, or Running if still in progress.

• Condition Nodes: Evaluate Boolean conditions, such as checking 
sensory data or environmental states. These nodes return Success
if the condition is true or Failure otherwise.

Behavior Trees are increasingly employed to design flexible and 
reactive control systems for robots, offering greater modularity, trans-
parency, and scalability compared to traditional finite state machines
[12]. Their structured hierarchy facilitates the integration of new be-
haviors without disrupting existing logic, making them particularly ef-
fective in dynamic contexts such as mobile robotics, manipulation, and 
Human-Robot Interaction (HRI) [13,14]. Building on these foundations, 
recent studies have demonstrated the versatility of BTs in increasingly 
complex domains. For example, Sprague et al. (2022) [15] proposed 
a method to integrate neural network controllers into Behavior Trees 
while preserving formal performance guarantees, bridging data-driven 
control with hybrid system stability. Wu et al. (2025) [16] proposed 
EffBT, a synthesis framework for correct and efficient BTs from formal 
GR(1) specifications, while our system bypasses formal models and 
allows real-time generation from user input. Albi (2023) [17] designed 
a BT-based mission management system for UAVs with strong execution 
reliability, though without interactive or language-based design. Scherf 
et al. (2023) [18] enabled BT learning from human demonstrations 
using visual input and web interaction, whereas our method relies 
solely on natural language, simplifying the process.

2.2. LLMs for robotic tasks

The integration of Large Language Models (LLMs) into robotics has 
opened new avenues for enhancing task planning, execution, and adapt-
ability. LLMs, such as GPT models [19], are pretrained on vast datasets 
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Fig. 1. Graphic representation of our method. The orange frame shows the part of the system executed by the social robot, while the blue one represents the modules in the 
computer. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
encompassing diverse human knowledge, allowing them to interpret 
natural language commands, reason about tasks, and generate struc-
tured outputs. This capability makes them particularly promising for 
generating Behavior Trees to control robots in dynamic environments.

Early approaches laid the groundwork for combining vision, lan-
guage, and action, paving the way for advanced control systems in 
robotics. For instance, Palm-E, an embodied multimodal language 
model, was among the first to extend LLMs for embodied tasks by incor-
porating vision and sensor data to ground natural language reasoning 
in physical environments [20]. Similarly, RT-2 introduced Vision-
Language-Action (VLA) models that successfully transferred web-scale 
knowledge into robotic control systems, enabling robots to perform 
tasks informed by extensive online information [21].

In order to complete complex tasks in dynamic environments, the 
generation of Behavior Trees took over and became the most used 
method, especially focused on robotic arms. LLM-BRAIn was one of the 
very first, a transformer-based Large Language Model fine-tuned from 
the Stanford Alpaca 7B model to generate static robot Behavior Trees 
from textual descriptions [22]. BTGenBot presented a novel approach 
to generating Behavior Trees for robots using lightweight Large Lan-
guage Models with a maximum of 7 billion parameters, trained with 
a fine-tuning dataset based on existing Behavior Trees [23]. LLM-BT 
achieved robotic adaptive tasks based on LLMs and Behavior Trees 
using ChatGPT and semantic maps are constructed by an object recog-
nition algorithm to understand the environment, having been tested in 
simulation [24]. LLM as BT-Planner leveraged LLMs for BT generation 
in robotic assembly task planning and execution where four in-context 
learning methods are introduced via natural language [25].

2.3. Social robots

The control of social robots focuses on enabling systems to interact 
effectively with humans in a variety of social contexts. These robots 
require advanced control architectures to interpret social cues, engage 
in natural communication, and adapt to human dynamics. Behavior 
Trees have emerged as a perfect method to deal with human–robot 
interactions, due to their adaptability to dynamic environments and 
unexpected situations, as it is human behavior. Cooper et al. introduced 
a Behavior Tree based design of long-term social robot behavior, where 
a human approaches and begins the interaction or the robot actively 
navigates and searches for a specific user to deliver a reminder [26].
3 
On the other hand, LLMs offer significant human–robot interaction 
via natural language, with advanced conversational skills and versa-
tility in managing diverse, open-ended user requests in various tasks 
and domains [27]. Hanschmann et al. developed Saleshat based on 
a commercial social robot and ChatPGT, which emphasizes refined 
natural language processing and dynamic control of robot physical 
appearance through the LLM [28].

However, Behavior Trees cannot comprehend the full range of 
human behavior and are therefore often limited in the control of social 
robots. LLMs, on the other hand, have generally been used to interact 
verbally to follow human behavior and interact with them, but without 
performing physical actions. This is where our proposal comes from, 
where we put together the advantages of BTs and LLMs and combine 
them to create a system where the person can interact with the robot 
through natural language and the robot is able to carry out actions in 
a structured way, beyond just having a conversation.

3. Methodology

The proposed method integrates natural language processing to 
handle user commands. These commands are used to generate Behavior 
Trees based on a Large Language Model. The resulting BTs are then 
executed by a robot, which performs the requested actions. The system 
also allows the behavior to be adapted or modified, either by the user 
or to ensure task completion.

This approach is intended to be broadly applicable across diverse 
contexts. A key application area under consideration is its deployment 
in the homes of elderly individuals, where a social robot offers compan-
ionship and executes tasks as directed by the residents. The full source 
code and prompt details are available on our GitHub repository.1

The integration of Large Language Models with Behavior Trees of-
fers a powerful framework for robot behavior generation by combining 
the linguistic expressiveness and generalization capabilities of LLMs 
with the modularity, reactivity, and interpretability of BTs. BTs provide 
a structured and human-readable representation of robotic decision-
making, enabling intuitive debugging, runtime adaptation, and explicit 
control flow. When paired with LLMs, this representation becomes 
dynamically generable from natural language, empowering non-expert 
users to author complex behaviors through simple verbal commands.

1 https://github.com/sergifiUVa/Behavior-Tree-Generation-and-
Adaptation-for-a-Social-Robot-Control-with-LLMs.git

https://github.com/sergifiUVa/Behavior-Tree-Generation-and-Adaptation-for-a-Social-Robot-Control-with-LLMs.git
https://github.com/sergifiUVa/Behavior-Tree-Generation-and-Adaptation-for-a-Social-Robot-Control-with-LLMs.git
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Table 1
Qualitative comparison of LLM-based BT generation systems.
 System Input HR interaction Pre-testing Adaptation Real-world validation 
 LLM-BRAIn [22] NL tuned Limited (one-shot) No No No (sim)  
 BTGenBot [23] NL + prompts No Yes (static + sim) No Yes (TurtleBot3)  
 LLM-BT [24] NL + sem. map Partial (parser only) No Yes (BT update) No (sim)  
 LLM-as-BT-Planner [25] NL + RDF No Partial (sim) Partial Yes (Franka Panda)  
 Ours NL Yes (NL + Clarifier) Yes (BT Tester) Yes (Clarif. + Fail. Int.) Yes (Temi robot)  
Although a direct quantitative comparison is not feasible – due to 
differences in experimental setups, domains, and evaluation criteria – 
we provide here a qualitative assessment based on key system capa-
bilities. LLM-as-BT-Planner emphasizes hierarchical planning for struc-
tured assembly tasks, integrating in-context learning and simulation 
feedback, but lacks real-time error handling or user interaction during 
execution. LLM-BRAIn enables fast generation of Behavior Trees using 
a fine-tuned lightweight model, yet produces static plans and offers 
no runtime adaptation or clarification mechanisms. BTGenBot achieves 
robust syntactic and semantic correctness using compact LLMs, but 
is limited to offline generation and cannot respond to task failure or 
user queries. LLM-BT introduces adaptability through BT expansion 
based on semantic maps and a BERT-based parser, but it depends on 
predefined templates and does not support user feedback or execu-
tion in real-world social contexts. In contrast, our approach uniquely 
combines natural language understanding, user clarification, structural 
validation, execution-time repair, and task prioritization, all within a 
unified and fully deployed system on a real social robot. This makes it 
particularly well-suited for dynamic, open-ended environments – such 
as eldercare – where transparency, reactivity, and ease of interaction 
for non-expert users are critical. Table  1 summarizes the key features 
of the LLM-based BT generation methods.

Unlike prior works, our approach explicitly considers robust user-
in-the-loop adaptation, error handling, and interactivity, all within a 
unified framework. Furthermore, those previous studies either do not 
report BT generation times, or present significantly longer processing 
durations, limiting their applicability in real-time or user-facing sce-
narios. Finally, while most existing approaches have been validated 
exclusively in simulated or narrowly defined domains, our method 
has been tested in a real-world robotic platform. Additionally, the 
envisioned application scenario is domestic environments, particularly 
in assistive contexts such as eldercare.

Our method is designed to be integrated into a research line to 
improve the lives of elderly people who live alone in their homes. 
The home setup includes a home automation system with distributed 
sensors that monitor the environment and resident activity. A local 
computer manages devices, a voice assistant, and a social robot, while 
also handling notifications and communication with caregivers. All 
data is sent to a remote server, where caregivers and coordinators can 
access real-time information through a web application.

3.1. System architecture

The proposed system architecture to generate and execute Behavior 
Trees is illustrated in Fig.  1. The system integrates a robot, a PC, and 
a Large Language Model accessed via API. Each component interacts 
through a structured pipeline that facilitates natural language under-
standing, BT generation, and task execution. The main modules are 
described as follows:
1. Natural Language Interaction

The process begins with the user issuing a task command in natural 
language. This input is processed in the robot through a Speech-to-Text 
module, which converts the spoken command into a textual format. 
This text is then passed to the Message Treatment module for pre-
processing and structuring, creating a json structured message that with 
all the information needed to create and execute the task.
2. Task Interpretation and Behavior Tree Planning
4 
The pre-processed message is sent to the PC via MQTT protocol, as 
it is the communication method between the robot and the computer. 
The message is received by the Message Reception module. This block 
extracts the message’s information and sends it to the LLM via API. We 
use ChatGPT with a well designed prompt, which consists of three main 
parts:

• A basic part that defines the behavior of the LLM. The model is 
expected to: (i) generate the structure of Behavior Trees using 
the py_trees library, leveraging its built-in control nodes such as
Sequence, Fallback, and Parallel to ensure structural validity and 
(ii) request clarification from the user when the instruction is 
ambiguous, unrecognizable, or infeasible.

• A description of the environment which consists of the rooms 
the robot can go to, the actions the robot can perform, and the 
interaction between the system and the robot. This information 
gives context to the LLM to obtain better outputs and to know 
when something is wrong.

• Must follow rules, where we define key aspects of the Behavior 
Trees, such as fixed structures for a specific node, details of action 
nodes or when the BT ends. Additionally, an example output is 
provided to improve the LLM behavior.

Thanks to this prompt, the LLM can generate BTs from all kinds of 
instructions, from simple ones that specify the actions to be performed 
by the robot (‘‘Go to my bedroom and call Mary’’) to more complex 
inputs such as ‘‘Tell me if there is someone in the kitchen, I want to do 
the dishes’’ in which ChatGPT extracts the actions to be performed by 
the robot (go to the kitchen, look for someone there to later come back 
and tell if there is a person or not) and generates the BT or, if it did not 
understand, asks the user for clarification. Execution logic is not needed 
to be included in the instructions, because the LLM is able to understand 
it from natural language and translate it into the BT structure.

In the design of the system, we deliberately kept the prompt as 
simple and focused as possible, avoiding unnecessary complexity that 
could distract the model from its primary objective: generating the logic 
of the BT as effectively as possible. Reactivity, which is an intrinsic 
feature of BTs, is intentionally delegated to the predefined actions, 
which have been carefully designed to autonomously handle unusual 
situations that may arise during execution. This ensures the robustness 
and reliability of the overall behavior, preventing the BT from getting 
stuck in any action under any circumstance.

Next, we explain every module of the system involved after the LLM 
generates an output.

Clarifier: This module receives and analyzes the generated reply 
from the LLM. If the output begins with ChatGPT’s code block identifier 
(‘‘‘python) or directly with a function definition (def ), it is assumed to 
be BT code, and this module sends it to the BT Planner. However, if 
the LLM returns that it did not understand what the user wants, it is 
ambiguous, or the requested task is impossible to perform, the Clar-
ifier sends a json message to request clarification or suggest possible 
interpretations from the user in natural language thanks to robot’s Text-
to-Speech module. This ensures that the generated BT corresponds to 
the user’s intent. In case the LLM returns a BT that syntactically appears 
valid but contains semantic or execution errors, the system will detect 
the failure at runtime. In such cases, the execution is interrupted and 
passed to the Failure Interpreter module.
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BT Tester: To evaluate the structural soundness of the generated 
Behavior Trees, we developed a module called BT Tester. This module 
analyzes the BT code to extract all actions and the connections between 
nodes. It then generates a simplified copy of the original BT, in which 
each action node is replaced with a lightweight version that only 
returns either Success or Failure. Using the pytest testing framework, 
BT Tester exhaustively executes all possible combinations of return 
values across the tree. After completing every run, it records which 
nodes were ticked and compares this to the full set of nodes. This 
exhaustive approach ensures that the structure and logic of the BT are 
valid—that all nodes are reachable and can be executed under at least 
one condition. If any node is found to have never been ticked in any 
combination, the system logs the error, identifies the unreachable node, 
and forwards this information to the Failure Interpreter module for 
further analysis and correction.

BT Planner: The BT Planner receives the code of the Behavior Tree 
from the BT Tester. It is embedded into a generalized structure common 
to all BTs and saved in a file. This structure includes the necessary calls 
to predefined actions and libraries, an error logging mechanism in case 
failures occur, and a main function to execute the Behavior Tree. In 
addition, it identifies who requested the BT to extract the execution 
priority. For this purpose, each agent able to request the execution of a 
BT has a value associated with it. This value completes the file’s name, 
so the system knows when the plan has to be executed. Finally, the 
module notifies the BT Executor about the new plan.

BT Executor: Whenever this module receives a message with the 
name of a new plan from the BT Planner, the plan is added to an 
execution queue based on its priority. If no action is running, the BT 
Executor starts the execution of the Behavior Tree from the execution 
queue as a subprocess. If a high-priority emergency task is received, 
the system immediately interrupts the currently running action and 
switches to executing the emergency behavior. The actions to be per-
formed by the robot are sent via MQTT messages, just as the robot 
sends back information about whether it has finished an action, the 
position where it is, or the user’s answer to a question. When the 
Behavior Tree execution is finished, the BT Executor terminates and 
deletes the subprocess, and remains ready to execute the next task. In 
case it receives multiple plans to be executed, the module queues them 
according to the priority of the actions and the order of arrival. If the 
execution of the Behavior Tree fails, either because of an error in the 
code or because during runtime it has returned Failure, the BT Executor 
stops the subprocess and sends the error to the Failure Interpreter 
module.

Failure Interpreter: This block ensures the robustness and adaptability 
of the system during task execution. Addresses one of the fundamental 
challenges in robotics: the ability to recover and adapt when a robot 
encounters situations where it cannot complete a task as planned. 
Through its integration with a Large Language Model, the system 
combines reasoning and creativity to propose solutions. When a node 
cannot be ticked or a Behavior Tree execution returns Failure, the 
Failure Interpreter module automatically retrieves the error from the 
log file and queries the LLM with a structured behavior prompt, the 
failure description (e.g., ‘‘GoToKitchen node cannot be ticked’’, ‘‘Robot 
cannot reach target location’’, ‘‘Target location does not exist’’, or 
‘‘Missing argument on action Go’’) along with the original BT code. 
The LLM then outputs a modified version of the BT, which is passed to 
the Clarifier module for validation and, if necessary, further refinement 
before execution.

The input to the LLM consists of a prompt that is essentially identical 
to the one used for BT generation, with the exception that the initial 
section is modified to specify that its purpose is to correct errors. It 
also includes the reported error and the code of the BT that failed. 
This ability to dynamically revise plans using natural language to help 
the LLM solve the problem and high-level task understanding gives the 
robot human-like problem solving capabilities.
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Finally, robot actions are performed by the Actions Executor mod-
ule, which executes the primitive robotic actions defined in the BT, 
such as navigation or videoconference. These actions are the result 
of the BT execution process, sent in a json format where the topic 
specifies the type of action to perform and the payload the necessary 
information to carry it out, such as the destination location and the 
speed to send the robot somewhere. This module returns information 
from the robot to the BT Executor module in order to execute the 
Behavior Tree successfully.

The process of generation of a BT and clarification whenever the 
LLM does not understand the instruction can be described as follows 
in pseudo-code from Algorithm 1, where 𝜙 stores generation prompt, 
𝛿 is LLM input, 𝜇 is LLM output, 𝑀 is our LLM model, 𝑄 is execution 
queue, 𝜖 is the agent who requested the order and 𝜏 is priority. The 
user introduces an instruction as an input for the LLM, that along 
with the prompt, generates an output who reaches the Clarifier. If LLM 
output is not a BT (because ChatGPT did not understand the instruction 
or the robot cannot perform the task), the system asks the user for 
clarification. Otherwise, the system assigns the priority to the BT and 
introduces it in the execution queue, sorting it by priority.
Algorithm 1: BT generation and clarification

Input: inputSTT()
1 𝛿 ← inputSTT();
2 while True do
3 𝜇 ← 𝑀(𝜙 ∪ 𝛿);
4 if notBT(𝜇) then
5 𝑎𝑠𝑘𝐶𝑙𝑎𝑟𝑖𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛();
6 break;
7 else
8 𝜏(𝜇) ← 𝜏(𝜖);
9 𝑎𝑑𝑑(𝑄, 𝜇);
10 𝑠𝑜𝑟𝑡(𝑄, 𝜏);

The execution and failure handling process is shown in pseudo-
code of Algorithm 2, where 𝛿 is LLM input, 𝜇𝑖 is LLM output stored 
in execution queue, 𝑄 is execution queue and 𝜆 is the BT Executor. If 
the BT Executor module is idle and the execution queue contains any 
plans, 𝜆 executes the first BT of the queue. When the BT ends, if it 
returns Failure the Failure Interpreter module gets the error, which is 
saved as a new input for the LLM to modify the BT. If the execution 
return Success, the BT Executor module removes finished BT, ready to 
execute next.
Algorithm 2: BT execution and failure handling
1 while True do
2 if idle(𝜆) and 𝑛𝑜𝑡𝐸𝑚𝑝𝑡𝑦(𝑄) then
3 𝜆(𝜇1);
4 if 𝑠𝑡𝑎𝑡𝑢𝑠(𝜇1) = 𝐹𝑎𝑖𝑙𝑢𝑟𝑒 then
5 𝑒𝑟𝑟𝑜𝑟 ← 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝐼𝑛𝑡𝑒𝑟𝑝𝑟𝑒𝑡𝑒𝑟();
6 𝛿 ← 𝑒𝑟𝑟𝑜𝑟;
7 else if 𝑠𝑡𝑎𝑡𝑢𝑠(𝜇1) = 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 then
8 𝑒𝑚𝑝𝑡𝑦(𝜆);
9 break;

To provide a comprehensive understanding of how our method 
operates, we present an example of a complete interaction with the 
system. The process begins with a user issuing a natural language 
instruction to the robot: ‘‘Temi, go to the kitchen and say ‘Hello, my name 
is Temi’.’’ The spoken sentence is transcribed on the robot and sent via 
MQTT to the PC; the Message Reception module packages it with a 
system prompt and forwards it to the LLM. ChatGPT parses the order, 
infers the two actions GoToKitchen and SayHello, and replies with a 
function which contains the logic and nodes of a Behavior Tree, as 
shown in the code below:
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def create_behavior_tree(mqtt):
try:

# Behavior Tree Nodes
root = py_trees.composites.Sequence(name="Root",

memory=True)
sequence1 = py_trees.composites.Sequence(name="

sequence1", memory=True)
move_destination = MoveToDestination(name="

GoToKitchen", destination="kitchen", mqtt=
mqtt)

speak_message = SpeakMessage(name="SayHello",
message="Hello, my name is Temi", mqtt=mqtt)

reminder = Reminder(name="Reminder", mqtt=mqtt)

# Nodes children’s
sequence1.add_children([move_destination,

speak_message])
failure_is_success = py_trees.decorators.

FailureIsSuccess(name = "failure_is_success",
child = sequence1)

# Add branches to root
root.add_children([failure_is_success, reminder])

return root
except Exception as e:

logging.error(f"Error in create_behavior_tree: {e
}")

The Clarifier inspects that reply, requesting clarification if the LLM
is unable to generate correct BT code due to an ambiguous or invalid
instruction: if it is a BT code, the BT Tester analyzes its structure
and logic looking for a non-tickable node. Because it is a valid BT
structure, the module passes it to the BT Planner, which builds the
full executable BT code, stamps the file with the user’s priority and
notifies the BT Executor about this new task. This module receives
the message and queues the new plan based on its priority. When the
BT Executor becomes free, it dequeues the plan and executes it as a
subprocess. This ticks the tree node-by-node, and for every action node
publishes MQTT messages that steer the robot’s navigation stack or
speech engine. If all nodes return Success, execution ends with a friendly
reminder node and the subprocess is finalized and the plan file erased;
if any node returns Failure – for instance the robot cannot reach the
kitchen – the BT Executor ends the execution and calls the Failure
Interpreter. That module retrieves the relevant log fragment which
contains the failure, sends both the error context and the original BT
back to the LLM, receives a patched or clarified tree, and routes it again
through the Clarifier to make sure the LLM response is valid, so the
updated plan is replanned and re-executed—closing a fully autonomous
sense–plan–act–repair loop.

4. Experiments and results

Experiments have been carried out in a laboratory to show that it
can be implemented in elderly homes. Temi robot [29] was deployed
in our work environment, which was divided into rooms to recreate a
house distribution, and we tried multiple natural language instructions.

The system is planned to be integrated into a home automation
setup (Fig.  2) consisting of a network of small sensors distributed
throughout the house to monitor environmental conditions and the
resident’s activities. Data from these sensors is processed by a local
computer, which also manages actuators, a voice assistant (e.g., Alexa),
and a social robot that interacts with the resident. This computer
handles notifications and calls to the caregiver’s mobile phone and
communicates with a server-side web application. The server stores
all relevant data, which is accessible to caregivers and coordinators
through a web interface that provides real-time updates on the home
and the resident’s status [30].

To verify our proposal, we ran several experiments divided into two
parts: the generation of Behavior Trees after introducing a natural lan-
guage order and the final test including task execution and modification
on a real social robot, as shown in Fig.  3.
6 
Fig. 2. General overview of the environment.

For the experiments, we selected six different actions that the Temi 
robot is capable of performing. Speak allows the robot to deliver a 
spoken message; Go commands it to navigate to a specified location; 
Ask prompts the user with a question and stores the response; Video-
conference initiates a video call with one of the pre-configured contacts; 
and Alert is used to notify the caregiver by sending a message to their 
mobile phone whenever the system detects an issue or requires atten-
tion; The FallCheck action is designed to detect whether a person has 
fallen by capturing an image of the surrounding environment, analyzing 
it using a trained computer vision model, and returning the result in 
terms of the number of people identified as fallen versus those who are 
standing or in a normal posture. This action is integrated into the BT as 
a perception module and can be triggered periodically or in response to 
specific events. The output includes structured information ({fallen: 1, 
not_fallen: 0}), which can be used by subsequent decision-making nodes 
to trigger appropriate actions, such as alerting a caregiver, approaching 
the person, or initiating a safety verification sequence.

In order to detect fallen people in an image, a methodology based 
on deep learning and image processing has been implemented. The 
image captured by the Temi robot’s camera is sent to the fall detection 
model via MQTT. Once the image has been received, the next step is 
to process it using a model specialized in object and person detection. 
For the proposed methodology, an approach using YOLOv8s. YOLO is 
a model for detecting objects in the image; for this purpose, it returns 
the bounding box of these objects, which are 4 coordinates that define 
the location of the element in the image. The idea is to use YOLO to 
obtain an image of the person cropped from the coordinates of the 
bounding box of the person, as well as to obtain the coordinates of other 
objects of interest. Chairs, beds and sofas have been defined as elements 
of interest, since it has been considered that they could influence in 
detecting whether the person is down or in another position. When 
performing this detection, a confidence threshold was established for 
the identification of the different classes of objects.

To help the network distinguish whether a person is fallen or lying 
on a bed or sofa, a function was integrated to detect the level of 
overlap between the person and the object in the image by applying 
the IoU metric [31]. For this purpose, it is checked whether the area 
of the rectangle that forms the bounding box of the segmented person 
intersects with the area of the bounding box of each object of interest 
detected. If there is a significant overlap, above a certain threshold, the 
coordinates of the persons in the image and the objects that overlap 
with them are preserved. With these we assume a possible interaction 
of the person with the object. If the object of interest is not detected or 
is not overlapping with the person, then we indicate that the bounding 
box is null. Thus, after detection we will obtain the image of the 
person cropped with respect to the original image and four sets of four 
coordinates, by combining the bounding box of the person and the three 
bounding boxes of the objects present or not.
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Fig. 3. Temi robot performing different tasks.
Fig. 4. Graphic representation of BT generated from first command.

Once the model has detected the people in the image and the objects 
that are overlapping their area, the cropped images and corresponding 
coordinate data are fed into a neural network to perform the fall detec-
tion process [32]. This architecture is composed of multiple submodels 
trained using the Cross Validation Voting (CVV) method [33], which 
enhances generalization and robustness. During training, the dataset is 
divided into multiple slots, and a separate model is trained for each 
one. All models share the same structure, consisting of a ConvNeXt 
network and a Fully Connected (FC) layer. The FC layer processes 
a 16-dimensional vector derived from the bounding boxes, one for 
the person and up to three for nearby objects of interest (sofa, bed, 
chair), while the ConvNeXt network processes the cropped image of the 
person. The outputs of both branches are concatenated and passed to a 
final dense layer, which produces a single output value representing the 
binary classification: fallen or not fallen. This system was trained using 
an extended version of the Fallen People Detection Dataset (FPDS) [34], 
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which consists of 6982 images, including 5023 images of falls and 
2275 images of non-falls, depicting individuals in various everyday 
scenarios such as standing, sitting, lying on a sofa or bed, or walking. 
The dataset encompasses a wide range of indoor environments, poses, 
occlusions, and lighting conditions, contributing to the model’s strong 
generalization capability in real-world conditions. The trained system 
achieved an accuracy of 92.95%, a recall of 89.67%, and an F1-score 
of 90.52%, as shown in the confusion matrix provided in the orig-
inal article. These metrics demonstrate a well-balanced performance 
between sensitivity and specificity, which is an essential requirement 
for emergency applications. Moreover, when tested in 118 real-world 
scenarios using the Temi social robot, the system reached up to 96% 
accuracy, outperforming other architectures such as ResNet and earlier 
segmentation-based models.

For the priorities associated with the BTs for their execution order, 
we defined three agents: the user who is the elder person who directly 
interacts with the robot, the caregiver who sends the written instruction 
and is received by the Message Reception module and a local service 
with predefined BTs for daily tasks or emergency situations, such as 
sending the robot to the bedroom and saying good morning when 
the user wakes up or calling the caregiver if the person leaves home 
at 3 a.m., respectively. These predefined actions are directly sent 
to the BT Executor to be added to the execution queue, securing a 
quick and robust execution. The highest priority belongs to predefined 
emergency tasks, followed by user’s orders, caregiver’s instructions and 
autonomous routine plans.

We also defined in the prompt the locations where the robot can 
navigate in the house and the contacts saved for videoconference, so if 
a requested task includes the action Go to a non-available location or 
the user wants to call a non-saved contact, the system will inform the 
user about this issue.

4.1. Natural language recognition and BT generation

In this phase, we evaluated the ability of the system to generate 
accurate and interpretable BTs from natural language commands. The 
process began with the user providing a task description, for this test, 
a written order, which was processed by the LLM to generate the code 
of a Behavior Tree. Some of the introduced commands were:

Temi, go to the kitchen and say ‘‘Hello, my name is Temi’’
Can you please go to the garage and, if there’s someone, call David?
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Fig. 5. Initial and modified BT after added nodes (in red). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 
article.)
Bring me my mobile phone, it’s in my bedroom
The results demonstrated the system’s capability to generate BTs 

efficiently, with all clarifications resolved within two iterations on aver-
age. For example, first command was quickly identified and generated 
in BT in a fast and correct way, whose code was perfectly executable. 
Fig.  4 shows the representation of the generated BT.

The sequence of actions in the bottom represents the task from the 
command, first goes to the kitchen, to later reproduces the message. 
FailureIsSuccess node returns Success if childs return Failure, which 
guarantees the execution of the Reminder node, both being a standard 
in every BT. This structure is designed to maintain control over the 
outcome, regardless of the specific structure generated by the LLM. 
Specifically, we define a blackboard that serves as a shared memory 
space. In each action node, if an error occurs or the node returns
Failure, this event is recorded on the blackboard. The FailureIsSuccess 
decorator is used to ensure that the final node – the Reminder node – 
is always executed, regardless of the outcome of the preceding nodes. 
This Reminder node checks the blackboard, and if any failure has been 
recorded during execution, it forces the entire BT to return Failure.

This last node reproduces a useful message for the user, like a tip on 
how to use the robot, when the actions part was executed successfully. 
If not, this node sends the error (saved by the node where it occurred) 
to the Failure Interpreter module.

For the second command, we introduced a location that was not 
registered in the house information, so the robot cannot navigate to 
it. Therefore, LLM reported this problem to the Clarifier module and 
then communicated to the user the message ‘‘The requested location does 
not exist ’’. After selecting the ‘‘living room’’ as the new target location, 
ChatGPT generated the black nodes shown in Fig.  5, which was queued 
and executed by the BT Executor. However, the PersonDetected condi-
tion returned an error because no FallCheck action had been executed 
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beforehand. The Failure Interpreter module identified this issue and 
reported it to the LLM, which then corrected the behavior. As a result, 
the modified code included the DetectPerson node (highlighted in red), 
allowing the BT to execute successfully.

The last example includes an action the robot cannot perform (pick 
up and bring objects), so LLM replied through the Clarifier module 
pointing out this issue. And as long as it is something the robot cannot 
carry out, no BT was generated.

The BTs generated to perform simple tasks (one or two actions) were 
successful 97.3% times, using 30 different instructions 5 times each, 
which resulted in 146 success out of 150 attempts. For complex tasks 
(more than two actions or more control nodes needed), the percentage 
reached 92.7%, following the same evaluating method and obtaining 
139 correct outputs.

Additionally, we conducted a test in which an experienced user 
manually built the BT code for the first two instructions. This manually 
created BT was then compared with the versions generated by the 
system (LLM-based). The comparison revealed several key differences. 
In terms of time, the LLM-generated BTs were produced within sec-
onds, whereas the manual implementation required several minutes 
per task, depending on complexity. Manually created BTs often used 
shorter or less descriptive variable names to save programming time, 
while the LLM-generated BTs consistently produced more explicit and 
self-explanatory names. Regarding validation, manual BTs were in-
crementally reviewed and tested by the user during the development 
process, adding to the overall programming time. In contrast, the LLM-
based generation does not include an inherent validation step. Instead, 
validation is performed post-generation by the BT Tester module. If 
execution failures are detected, they are subsequently handled and 
corrected by the Failure Interpreter module. Overall, although expert 
users are more likely to successfully develop very complex tasks, this 
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Fig. 6. Initial and modified BT after added nodes (in red). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 
article.)
LLM-based system reduces development time by generating executable 
BTs directly from natural language input. This enables non-expert users 
to define complex robot behaviors without programming knowledge, 
making human–robot interaction more accessible and intuitive.

4.2. Real robot experiments

To evaluate the performance and success rate of the system, 25 
users with no prior experience were asked to give the robot five types 
of instructions: a simple task (e.g., two sequential actions), a complex 
conditional task (involving multiple actions and decision-making), an 
ambiguous request (not explicitly stating the required actions), an in-
correct instruction (with invalid parameters, such as unknown locations 
or contacts), and an impossible task (requesting actions beyond the 
robot’s capabilities, like grabbing objects).

To test robustness and adaptability, 5 unexpected situations were 
introduced in each set of 25 trials, including environmental changes 
(e.g., blocked paths), missing user responses, and third-party interfer-
ence. These scenarios aimed to simulate realistic conditions and assess 
the system’s response to unforeseen events.

We now provide an example of the system behavior in one of these 
situations. We executed a plan (represented by the black nodes in) 
Fig.  6 where the robot, initially located in the hallway, was instructed 
to go to the bathroom and remind the user to take their medication. 
However, during execution, an unforeseen situation was introduced: 
the hallway door – part of the robot’s shortest route – was found 
closed. As the robot cannot open doors and always selects the most 
efficient path, the plan returned Failure because the robot could not 
reach the location. At this point, the Failure Interpreter module queried 
the LLM and it inferred that since the bathroom is also accessible via 
the bedroom, the plan could be modified to take this alternate route. 
The added node in red finally allowed the robot to complete the task.

In another trial, the robot was unable to reach the kitchen due to a 
closed door and lack of alternative paths. The system detected the issue 
and informed the user: ‘‘I’m sorry, I cannot reach the kitchen’’.

The results from the experiments are presented in Table  2. Clarified 
column shows the successful applications of the clarification feature 
per instruction out of the total uses, which means that if a user input 
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Table 2
Results by type of task.
 Task Clarified Adapted Overall  
 Simple Task 2/2 3/3 25/25  
 Complex Task 9/11 13/15 21/25  
 Ambiguous Task 18/22 8/9 20/25  
 Wrong Task 23/25 6/8 22/25  
 Impossible Task 24/25 0/0 24/25  
 Total 76/83 30/34 112/125 

needed to be clarified three times, if the LLM finally generated a BT, 
the table displayed 1/1. The Adapted column indicates the same two 
parameters but when the BT needed to be modified due to a wrong 
coding or because a node returned Failure. Finally, the Overall column 
illustrates the successful tests of each kind of instruction out of the 25 
total.

The success rate of the general system was 89.6% after 125 tests. 
In total, there were 13 failures, 6 of them caused by repeated wrong 
and impossible instructions, which led the system to stop asking for 
clarification and not generating a BT. Three more failures occurred 
when the task logic expressed by the user was unclear or difficult to 
understand, causing the system to execute BTs that did not meet the 
user request. Another two failures were caused by the robot not being 
able to reach the target location, and the last one was caused by an 
unexpected videoconference malfunction.

To further assess the subjective user experience, we administered 
the QUESI questionnaire [35,36] to 10 participants, comprising both 
men and women aged between 25 and 65 years. All participants had a 
university-level education but no prior experience with the system. This 
evaluation was conducted as a separate experiment from the perfor-
mance assessment previously described, with a different group of users. 
While the earlier study focused on measuring execution success and 
system reliability, this experiment aimed to qualitatively assess how 
intuitive and user-friendly the system is from the user’s perspective.

Before starting the experiment, participants were informed about 
the robot’s capabilities, including the actions it can perform, the avail-
able locations, and the list of known contacts. They were also given a 
few example instructions. During the session, users were encouraged to 
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explore different ways of expressing instructions and testing the robot’s 
understanding.

Each participant was then asked to provide between 3 and 5 in-
structions for the robot to perform, including at least one involving 
unavailable actions or locations. For instance, some participants used 
complex and natural language instructions such as: ‘‘There is a cup at 
the living room and a bottle at the kitchen. Go to the location where the cup 
is and say that you have located it.’’ The success rate of the requested 
task executions was similar to the prior experiment, reaching 88%. 
The analysis of their responses revealed a generally high perception of 
intuitive use. The average scores across the five subscales were notably 
high: Subjective Mental Workload (M = 4.47, SD = 0.55), Perceived 
Achievement of Goals (M = 4.17, SD = 0.39), Perceived Effort of 
Learning (M = 4.47, SD = 0.67), Familiarity (M = 4.37, SD = 0.29), and 
Perceived Error Rate (M = 4.05, SD = 0.64). These results suggest that 
users found the system easy to understand and operate, requiring little 
effort to learn and interact with, while encountering few errors during 
use. Overall, the high QUESI scores align with the system’s performance 
and indicate strong support for its intuitive usability.

5. Discussion

The proposed system demonstrates a novel approach to generating 
and executing robot Behavior Trees by leveraging a Large Language 
Model for both initial task planning and real-time adaptation. This 
integration of natural language understanding, BT planning, and failure 
interpretation highlights several strengths and introduces new perspec-
tives on the use of BTs in robotics and artificial intelligence. Natural 
language as input simplifies the use of the system, especially when it 
comes to a non-expert person such as elderly people. A meticulously 
designed prompt based on strict rules and restricted to some of the 
actions the robot can perform ensures a highly reliable LLM output. 
The inclusion of the Clarifier module whenever the system does not 
understand what the user wants and especially the Failure Interpreter 
module, as it ensures that the system can handle unforeseen situations 
with minimal disruption, raises the robustness of the system.

Our approach achieves a 89.6% success rate in a real scenario, 
where a physical robot executes BTs generated from natural lan-
guage commands in a real-world environment recreating a real house. 
Nonetheless, it is important to recognize that direct comparisons are 
inherently difficult, given the significant differences in system archi-
tectures, experimental methodologies, and deployment contexts across 
existing works. Compared to mentioned prior work, our system offers 
a competitive success rate while requiring no training or fine-tuning. 
Nonetheless, it is important to recognize that direct comparisons are 
inherently difficult, given the significant differences in system archi-
tectures, experimental methodologies, and deployment contexts across 
existing works. BTGenBot reports 88.9% success on a real robot but 
depends on fine-tuned LLMs trained on BT datasets, limiting gener-
ality. LLM-BT reaches 85% success but only in a specific task in a 
simulated environment. LLM-BRAIn and LLM as BT-Planner focus on 
BT generation without reporting any success rate from execution trials.

While the success rate is slightly lower than manually built BTs, 
our approach offers significant practical advantages. It allows untrained 
users to generate BTs from natural language, without requiring pro-
gramming or BT design expertise. The system supports arbitrary, flexi-
ble commands, enabling rapid behavior creation and adaptation, which 
greatly reduces development time. Unlike prior approaches – which 
include methods based on pre-trained or domain-specific models, those 
that do not support Behavior Tree adaptation upon failure, and others 
that have not been tested in real-world environments –, our method 
requires no model training or fine-tuning, relying solely on general-
purpose LLMs via prompt engineering, which makes it lightweight and 
easily deployable. It includes a built-in clarification mechanism that 
prompts the user when input is ambiguous or unfeasible, and enables 
BT modification in response to execution failures. Furthermore, it is 
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designed for deployment in real-world environments such as eldercare, 
where ease of use and adaptability are critical. We have clarified these 
benefits in the revised manuscript (see Section 3).

However, it also presents certain challenges and areas for future 
exploration. The performance of the system is highly dependent on the 
quality and precision of the LLM’s responses. While the LLM excels at 
generating BTs for well-structured tasks thanks to the well-designed 
prompt, it may occasionally produce plans that are suboptimal or in-
consistent. The integration of an LLM such as ChatGPT for task planning 
and failure interpretation introduces latency, particularly when the 
robot operates in environments requiring frequent plan revisions. This 
issue could result in short delays until the execution of the requested 
order. In this first approach we used some of the actions the robot can 
perform, but as tasks become more complex and with the addition of 
more robot actions, the size and depth of the BTs increase, potentially 
making them harder to execute and interpret, which would require a 
redesign of the generating prompt.

6. Conclusions and future work

In this paper, we presented a novel framework for generating and 
executing Behavior Trees using Large Language Models for robotic task 
execution. Our approach combines the interpretability and modularity 
of BTs with the reasoning capabilities of LLMs, enabling robots to per-
form complex dynamic tasks with a high degree of adaptability. Using 
a Failure Interpreter module, the system not only responds effectively 
to task failures, but also dynamically updates BTs to overcome unfore-
seen obstacles. Experimental validation demonstrated the robustness 
and flexibility of the proposed method across a variety of scenarios, 
highlighting its potential for real-world applications in robotics.

Future work will focus on several key areas. First, we aim to inte-
grate multimodal input sources, such as home sensors data, to enhance 
robot situational awareness. Second, we plan to explore techniques 
for optimizing the BT generation process while adding more actions 
to execute more complex tasks and improve scalability. In order to 
improve the performance of our method, the entire action queue can 
be embedded within a reactive sequence in a higher-level BT, where 
emergency-relevant actions are placed alongside their corresponding 
conditions—forming a teleo-reactive structure. In this configuration, 
the system can dynamically update the condition, allowing the robot 
to immediately interrupt its current action and execute the appropriate 
emergency response. This approach leverages the inherent reactivity of 
BTs, enabling timely and context-sensitive behavior adaptation. Finally, 
we plan to install and evaluate the system in real environments, with 
supervised deployment of the system in multiple real homes of elderly 
people to verify its real performance.
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