
Robotics and Autonomous Systems 194 (2025) 105165

A
0
n

Contents lists available at ScienceDirect

Robotics and Autonomous Systems

journal homepage: www.elsevier.com/locate/robot

Behavior tree generation and adaptation for a social robot control with LLMs
Sergio Merino-Fidalgo a ,∗, Celia Sánchez-Girón a, Eduardo Zalama a,b,
Jaime Gómez-García-Bermejo a,b, Jaime Duque-Domingo a
a ITAP-DISA, Universidad de Valladolid, Doctor Mergelina St., 3-5, Valladolid, 47011, Spain
b CARTIF, 4 Francisco Vallés Av., Boecillo, 47151, Spain

A R T I C L E I N F O

Keywords:
Planning and execution
Networks of robots and intelligent sensors
Mobile robots
Cognitive aspects of automation systems and
humans
Large language models

 A B S T R A C T

Large Language Models have recently emerged as a powerful tool for generating flexible and context-aware
robotic behavior. However, adapting to unforeseen events and ensuring robust task completion remain
significant challenges. This paper presents a novel system that leverages LLMs and Behavior Trees to enable
robots to generate, execute, and adapt task plans based on natural language commands. The system employs
ChatGPT to process user instructions, generating initial Behavior Trees that encapsulate the required task
steps. A modular architecture, combining the BT planner and a Failure Interpreter module, allows the system
to dynamically adjust Behavior Trees when execution challenges or environmental changes arise.

Unlike conventional methods that rely on static Behavior Trees or predefined state machines, our approach
ensures adaptability by integrating a Failure Interpreter capable of identifying execution issues and proposing
alternative plans or user clarifications in real time. This adaptability makes the system robust to disturbances
and allows for seamless human–robot interaction. We validate the proposed methodology using experiments
on a social robot across various scenarios in our workplace, demonstrating its effectiveness in generating
executable Behavior Trees and responding to execution failures. The approach achieves an 89.6% success rate
in a realistic home environment, highlighting the effectiveness of LLM-powered Behavior Trees in enabling
robust and flexible robot behavior from natural language input.
1. Introduction

Task control and sequencing has always been a major challenge in
any type of autonomous system, especially in robots. As these systems
become increasingly complex, the need for robust, flexible, and inter-
pretable control mechanisms has grown, and early approaches such
as Hierarchical Finite State Machines (HFSMs) [1], which provided
a structured way to define robot behaviors, have fallen short due to
their difficulties of modification and scalability. The primary distinc-
tion between them lies in their degree of reactivity and the manner
in which complex behaviors are represented. Behavior Trees provide
a more structured and semantically transparent graphical formalism,
which enhances human interpretability and facilitates the analysis of
decision-making processes. This increased clarity is especially benefi-
cial when modeling intricate control strategies, as it supports improved
modularity, reusability, and maintainability [2].

Behavior Trees (BTs) have emerged as a powerful tool for repre-
senting robot behaviors, offering modularity, reusability, and trans-
parency [3]. Originally developed in the gaming industry, BTs have
been increasingly adopted in robotics due to their ability to manage

∗ Corresponding author.
E-mail address: sergio.merino.fidalgo@uva.es (S. Merino-Fidalgo).

complex tasks through a hierarchical structure of conditions and ac-
tions. Despite the advantages over hierarchical finite state machines in
terms of modularity and reusability, their programming can be complex
and tedious. Meanwhile, Large Language Models (LLMs) [4], such as
OpenAI’s ChatGPT [5,6], have demonstrated remarkable capabilities
in understanding natural language and reasoning through complex
problems. The convergence of these technologies opens new avenues
for human–robot interaction, where natural language commands can be
transformed into executable task plans avoiding the task of manually
defining and programming BTs.

Despite the potential of BTs and LLMs, their combination presents
significant challenges. While BTs are robust and flexible, adapting
them to all kinds of unexpected situations requires careful and detailed
programming, which requires a great deal of knowledge and effort. On
the other hand, although LLMs can generate tasks to a high degree of
detail with the appropriate prompt, they still generate text based on
previous data patterns and do not understand the content as a human
does, so they are not inherently equipped to manage real-time feedback
or adapt dynamically during task execution. This limitation restricts the
https://doi.org/10.1016/j.robot.2025.105165

vailable online 19 August 2025
921-8890/© 2025 The Authors. Published by Elsevier B.V. This is an open access art
c-nd/4.0/).
icle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

https://www.elsevier.com/locate/robot
https://www.elsevier.com/locate/robot
https://orcid.org/0009-0001-5392-7606
mailto:sergio.merino.fidalgo@uva.es
https://doi.org/10.1016/j.robot.2025.105165
https://doi.org/10.1016/j.robot.2025.105165
http://crossmark.crossref.org/dialog/?doi=10.1016/j.robot.2025.105165&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

S. Merino-Fidalgo et al. Robotics and Autonomous Systems 194 (2025) 105165
applicability of these methods in real-world dynamic scenarios where
robots must be both reactive and resilient.

In this paper, we propose a novel framework that combines the
flexibility of BTs with the reasoning capabilities of LLMs to create an
adaptive system for robotic task execution. Our method uses ChatGPT
to interpret user commands and generate a BT, which is executed by
the robot. A key component of our approach is its adaptability to
unforeseen situations, thanks to the Clarifier module, telling the user
whenever the LLM does not understand the instruction or the requested
actions cannot be executed, and the Failure Interpreter module, which
with the occurrence of any issue while on the BT execution, helps
the LLM modify the BT in real time to ensure task completion. This
integration enables robots to handle external disturbances, adapt to
environmental changes, and interact effectively with users.

Although some research have addressed similar systems, the pri-
mary contributions of this work are as follows:

• The combination of LLMs and Behavior Trees emerged from
the need to balance flexibility and structure in robot behavior
generation: LLMs offer the ability to interpret diverse natural
language inputs, while BTs provide a robust, transparent, and
reactive control framework. Existing methods often rely on either
static templates, model training or fine-tuning or opaque neural
policies, limiting adaptability and interpretability.

• We introduced the Clarifier and Failure Interpreter modules to
address two critical gaps: (i) handling ambiguous or incorrect user
input, which is frequently ignored in prior work, and (ii) enabling
BT modification in response to execution failures, ensuring run-
time adaptability—something missing in systems where BTs are
generated once and remain static.

• We emphasized experimental validation in real-world conditions,
using a social robot in domestic-like scenarios, unlike prior studies
which rely heavily on simulators or constrained robotic arms.
This not only demonstrates feasibility but highlights the rele-
vance of our system for assistive applications in non-controlled
environments, such as eldercare.

The remainder of the paper is organized as follows: Section 2
reviews related work on BTs and LLMs in robotics. Section 3 details the
proposed methodology, including the BT generation process. Section 4
presents the experimental results and an example of a complex action
such as searching for a fallen person, Section 5 discusses the contribu-
tions and advantages of the system as well as areas for improvement
and Section 6 completes with conclusions and future work.

2. Background and related works

2.1. Behavior trees

A Behavior Tree (BT), is a hierarchical inverted tree structure used
to represent tasks at an abstract level and the switch between them [7],
offering an alternative to Hierarchical Finite State Machines. To enable
high-level control of a robot’s behavior, SMACH [8] is a task-level
architecture for robot control implemented within the Robot Operating
System (ROS) ecosystem [9]. It is based on the Finite State Machine
(FSM) [10] paradigm and provides a Python-based framework for
defining and executing hierarchical and concurrent state machines. In
contrast, Behavior Trees offer a different formalism that emphasizes
reactivity, modularity, and readability. While SMACH relies on prede-
fined state transitions and often leads to tightly coupled logic, BTs use
a tree-based execution model that naturally supports fallbacks, parallel
execution, and dynamic behavior switching. This makes BTs generally
more scalable and transparent when dealing with large and evolving
behavior sets. Furthermore, the graphical representation of BTs tends
2
to be more intuitive and easier to interpret, especially in collaborative
or interdisciplinary contexts where clarity of control logic is essential.

Initially developed for computer games [11], BTs have spread to
other fields such as robotics due to their reactivity in changing envi-
ronments, readability and modular nature, which made them easy to
modify or expand. All these features make them a significant improve-
ment over finite state machines, which, due to their nature, are less
adaptable to situations not contemplated during programming and their
modification is difficult and tedious.

In the bottom-right corner of Fig. 1, the LLM’s response illustrates
both the identified components and a structured representation of a
Behavior Tree. The execution begins at the root node (the one on top),
propagating a ‘‘tick’’ signal to its child nodes, the ones on the lower
branches. Each ticked node evaluates its logic or executes its task and
then returns one of three statuses to its parent: Success, Failure, or
Running. The simple structure from this example contains the basic
nodes to build almost every BT:

1. Control Flow nodes: These nodes manage their child branches
execution based on a predefined logic.

• Sequence Node (→): Ticks child nodes from left to right, executing
(Running) next if previous returned Success. If one of its child
nodes returns Failure, the sequence node stops ticking and returns
Failure. It only returns Success if all child nodes return Success.

• Fallback or Selector Node (?): Ticks child nodes from left to right,
executing (Running) next if previous returned Failure. If one of its
child nodes returns Success, the fallback node stops ticking and
returns Success. It only returns Failure if all child nodes fail.

2. Execution Nodes: These nodes represent the actionable compo-
nents of a BT:

• Action Nodes: Perform specific tasks or robot actions designed by
the user. They return Success when the task is completed, Failure
if it cannot be performed, or Running if still in progress.

• Condition Nodes: Evaluate Boolean conditions, such as checking
sensory data or environmental states. These nodes return Success
if the condition is true or Failure otherwise.

Behavior Trees are increasingly employed to design flexible and
reactive control systems for robots, offering greater modularity, trans-
parency, and scalability compared to traditional finite state machines
[12]. Their structured hierarchy facilitates the integration of new be-
haviors without disrupting existing logic, making them particularly ef-
fective in dynamic contexts such as mobile robotics, manipulation, and
Human-Robot Interaction (HRI) [13,14]. Building on these foundations,
recent studies have demonstrated the versatility of BTs in increasingly
complex domains. For example, Sprague et al. (2022) [15] proposed
a method to integrate neural network controllers into Behavior Trees
while preserving formal performance guarantees, bridging data-driven
control with hybrid system stability. Wu et al. (2025) [16] proposed
EffBT, a synthesis framework for correct and efficient BTs from formal
GR(1) specifications, while our system bypasses formal models and
allows real-time generation from user input. Albi (2023) [17] designed
a BT-based mission management system for UAVs with strong execution
reliability, though without interactive or language-based design. Scherf
et al. (2023) [18] enabled BT learning from human demonstrations
using visual input and web interaction, whereas our method relies
solely on natural language, simplifying the process.

2.2. LLMs for robotic tasks

The integration of Large Language Models (LLMs) into robotics has
opened new avenues for enhancing task planning, execution, and adapt-
ability. LLMs, such as GPT models [19], are pretrained on vast datasets

S. Merino-Fidalgo et al. Robotics and Autonomous Systems 194 (2025) 105165
Fig. 1. Graphic representation of our method. The orange frame shows the part of the system executed by the social robot, while the blue one represents the modules in the
computer. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
encompassing diverse human knowledge, allowing them to interpret
natural language commands, reason about tasks, and generate struc-
tured outputs. This capability makes them particularly promising for
generating Behavior Trees to control robots in dynamic environments.

Early approaches laid the groundwork for combining vision, lan-
guage, and action, paving the way for advanced control systems in
robotics. For instance, Palm-E, an embodied multimodal language
model, was among the first to extend LLMs for embodied tasks by incor-
porating vision and sensor data to ground natural language reasoning
in physical environments [20]. Similarly, RT-2 introduced Vision-
Language-Action (VLA) models that successfully transferred web-scale
knowledge into robotic control systems, enabling robots to perform
tasks informed by extensive online information [21].

In order to complete complex tasks in dynamic environments, the
generation of Behavior Trees took over and became the most used
method, especially focused on robotic arms. LLM-BRAIn was one of the
very first, a transformer-based Large Language Model fine-tuned from
the Stanford Alpaca 7B model to generate static robot Behavior Trees
from textual descriptions [22]. BTGenBot presented a novel approach
to generating Behavior Trees for robots using lightweight Large Lan-
guage Models with a maximum of 7 billion parameters, trained with
a fine-tuning dataset based on existing Behavior Trees [23]. LLM-BT
achieved robotic adaptive tasks based on LLMs and Behavior Trees
using ChatGPT and semantic maps are constructed by an object recog-
nition algorithm to understand the environment, having been tested in
simulation [24]. LLM as BT-Planner leveraged LLMs for BT generation
in robotic assembly task planning and execution where four in-context
learning methods are introduced via natural language [25].

2.3. Social robots

The control of social robots focuses on enabling systems to interact
effectively with humans in a variety of social contexts. These robots
require advanced control architectures to interpret social cues, engage
in natural communication, and adapt to human dynamics. Behavior
Trees have emerged as a perfect method to deal with human–robot
interactions, due to their adaptability to dynamic environments and
unexpected situations, as it is human behavior. Cooper et al. introduced
a Behavior Tree based design of long-term social robot behavior, where
a human approaches and begins the interaction or the robot actively
navigates and searches for a specific user to deliver a reminder [26].
3
On the other hand, LLMs offer significant human–robot interaction
via natural language, with advanced conversational skills and versa-
tility in managing diverse, open-ended user requests in various tasks
and domains [27]. Hanschmann et al. developed Saleshat based on
a commercial social robot and ChatPGT, which emphasizes refined
natural language processing and dynamic control of robot physical
appearance through the LLM [28].

However, Behavior Trees cannot comprehend the full range of
human behavior and are therefore often limited in the control of social
robots. LLMs, on the other hand, have generally been used to interact
verbally to follow human behavior and interact with them, but without
performing physical actions. This is where our proposal comes from,
where we put together the advantages of BTs and LLMs and combine
them to create a system where the person can interact with the robot
through natural language and the robot is able to carry out actions in
a structured way, beyond just having a conversation.

3. Methodology

The proposed method integrates natural language processing to
handle user commands. These commands are used to generate Behavior
Trees based on a Large Language Model. The resulting BTs are then
executed by a robot, which performs the requested actions. The system
also allows the behavior to be adapted or modified, either by the user
or to ensure task completion.

This approach is intended to be broadly applicable across diverse
contexts. A key application area under consideration is its deployment
in the homes of elderly individuals, where a social robot offers compan-
ionship and executes tasks as directed by the residents. The full source
code and prompt details are available on our GitHub repository.1

The integration of Large Language Models with Behavior Trees of-
fers a powerful framework for robot behavior generation by combining
the linguistic expressiveness and generalization capabilities of LLMs
with the modularity, reactivity, and interpretability of BTs. BTs provide
a structured and human-readable representation of robotic decision-
making, enabling intuitive debugging, runtime adaptation, and explicit
control flow. When paired with LLMs, this representation becomes
dynamically generable from natural language, empowering non-expert
users to author complex behaviors through simple verbal commands.

1 https://github.com/sergifiUVa/Behavior-Tree-Generation-and-
Adaptation-for-a-Social-Robot-Control-with-LLMs.git

https://github.com/sergifiUVa/Behavior-Tree-Generation-and-Adaptation-for-a-Social-Robot-Control-with-LLMs.git
https://github.com/sergifiUVa/Behavior-Tree-Generation-and-Adaptation-for-a-Social-Robot-Control-with-LLMs.git

S. Merino-Fidalgo et al. Robotics and Autonomous Systems 194 (2025) 105165
Table 1
Qualitative comparison of LLM-based BT generation systems.
 System Input HR interaction Pre-testing Adaptation Real-world validation
 LLM-BRAIn [22] NL tuned Limited (one-shot) No No No (sim)
 BTGenBot [23] NL + prompts No Yes (static + sim) No Yes (TurtleBot3)
 LLM-BT [24] NL + sem. map Partial (parser only) No Yes (BT update) No (sim)
 LLM-as-BT-Planner [25] NL + RDF No Partial (sim) Partial Yes (Franka Panda)
 Ours NL Yes (NL + Clarifier) Yes (BT Tester) Yes (Clarif. + Fail. Int.) Yes (Temi robot)
Although a direct quantitative comparison is not feasible – due to
differences in experimental setups, domains, and evaluation criteria –
we provide here a qualitative assessment based on key system capa-
bilities. LLM-as-BT-Planner emphasizes hierarchical planning for struc-
tured assembly tasks, integrating in-context learning and simulation
feedback, but lacks real-time error handling or user interaction during
execution. LLM-BRAIn enables fast generation of Behavior Trees using
a fine-tuned lightweight model, yet produces static plans and offers
no runtime adaptation or clarification mechanisms. BTGenBot achieves
robust syntactic and semantic correctness using compact LLMs, but
is limited to offline generation and cannot respond to task failure or
user queries. LLM-BT introduces adaptability through BT expansion
based on semantic maps and a BERT-based parser, but it depends on
predefined templates and does not support user feedback or execu-
tion in real-world social contexts. In contrast, our approach uniquely
combines natural language understanding, user clarification, structural
validation, execution-time repair, and task prioritization, all within a
unified and fully deployed system on a real social robot. This makes it
particularly well-suited for dynamic, open-ended environments – such
as eldercare – where transparency, reactivity, and ease of interaction
for non-expert users are critical. Table 1 summarizes the key features
of the LLM-based BT generation methods.

Unlike prior works, our approach explicitly considers robust user-
in-the-loop adaptation, error handling, and interactivity, all within a
unified framework. Furthermore, those previous studies either do not
report BT generation times, or present significantly longer processing
durations, limiting their applicability in real-time or user-facing sce-
narios. Finally, while most existing approaches have been validated
exclusively in simulated or narrowly defined domains, our method
has been tested in a real-world robotic platform. Additionally, the
envisioned application scenario is domestic environments, particularly
in assistive contexts such as eldercare.

Our method is designed to be integrated into a research line to
improve the lives of elderly people who live alone in their homes.
The home setup includes a home automation system with distributed
sensors that monitor the environment and resident activity. A local
computer manages devices, a voice assistant, and a social robot, while
also handling notifications and communication with caregivers. All
data is sent to a remote server, where caregivers and coordinators can
access real-time information through a web application.

3.1. System architecture

The proposed system architecture to generate and execute Behavior
Trees is illustrated in Fig. 1. The system integrates a robot, a PC, and
a Large Language Model accessed via API. Each component interacts
through a structured pipeline that facilitates natural language under-
standing, BT generation, and task execution. The main modules are
described as follows:
1. Natural Language Interaction

The process begins with the user issuing a task command in natural
language. This input is processed in the robot through a Speech-to-Text
module, which converts the spoken command into a textual format.
This text is then passed to the Message Treatment module for pre-
processing and structuring, creating a json structured message that with
all the information needed to create and execute the task.
2. Task Interpretation and Behavior Tree Planning
4
The pre-processed message is sent to the PC via MQTT protocol, as
it is the communication method between the robot and the computer.
The message is received by the Message Reception module. This block
extracts the message’s information and sends it to the LLM via API. We
use ChatGPT with a well designed prompt, which consists of three main
parts:

• A basic part that defines the behavior of the LLM. The model is
expected to: (i) generate the structure of Behavior Trees using
the py_trees library, leveraging its built-in control nodes such as
Sequence, Fallback, and Parallel to ensure structural validity and
(ii) request clarification from the user when the instruction is
ambiguous, unrecognizable, or infeasible.

• A description of the environment which consists of the rooms
the robot can go to, the actions the robot can perform, and the
interaction between the system and the robot. This information
gives context to the LLM to obtain better outputs and to know
when something is wrong.

• Must follow rules, where we define key aspects of the Behavior
Trees, such as fixed structures for a specific node, details of action
nodes or when the BT ends. Additionally, an example output is
provided to improve the LLM behavior.

Thanks to this prompt, the LLM can generate BTs from all kinds of
instructions, from simple ones that specify the actions to be performed
by the robot (‘‘Go to my bedroom and call Mary’’) to more complex
inputs such as ‘‘Tell me if there is someone in the kitchen, I want to do
the dishes’’ in which ChatGPT extracts the actions to be performed by
the robot (go to the kitchen, look for someone there to later come back
and tell if there is a person or not) and generates the BT or, if it did not
understand, asks the user for clarification. Execution logic is not needed
to be included in the instructions, because the LLM is able to understand
it from natural language and translate it into the BT structure.

In the design of the system, we deliberately kept the prompt as
simple and focused as possible, avoiding unnecessary complexity that
could distract the model from its primary objective: generating the logic
of the BT as effectively as possible. Reactivity, which is an intrinsic
feature of BTs, is intentionally delegated to the predefined actions,
which have been carefully designed to autonomously handle unusual
situations that may arise during execution. This ensures the robustness
and reliability of the overall behavior, preventing the BT from getting
stuck in any action under any circumstance.

Next, we explain every module of the system involved after the LLM
generates an output.

Clarifier: This module receives and analyzes the generated reply
from the LLM. If the output begins with ChatGPT’s code block identifier
(‘‘‘python) or directly with a function definition (def), it is assumed to
be BT code, and this module sends it to the BT Planner. However, if
the LLM returns that it did not understand what the user wants, it is
ambiguous, or the requested task is impossible to perform, the Clar-
ifier sends a json message to request clarification or suggest possible
interpretations from the user in natural language thanks to robot’s Text-
to-Speech module. This ensures that the generated BT corresponds to
the user’s intent. In case the LLM returns a BT that syntactically appears
valid but contains semantic or execution errors, the system will detect
the failure at runtime. In such cases, the execution is interrupted and
passed to the Failure Interpreter module.

S. Merino-Fidalgo et al. Robotics and Autonomous Systems 194 (2025) 105165
BT Tester: To evaluate the structural soundness of the generated
Behavior Trees, we developed a module called BT Tester. This module
analyzes the BT code to extract all actions and the connections between
nodes. It then generates a simplified copy of the original BT, in which
each action node is replaced with a lightweight version that only
returns either Success or Failure. Using the pytest testing framework,
BT Tester exhaustively executes all possible combinations of return
values across the tree. After completing every run, it records which
nodes were ticked and compares this to the full set of nodes. This
exhaustive approach ensures that the structure and logic of the BT are
valid—that all nodes are reachable and can be executed under at least
one condition. If any node is found to have never been ticked in any
combination, the system logs the error, identifies the unreachable node,
and forwards this information to the Failure Interpreter module for
further analysis and correction.

BT Planner: The BT Planner receives the code of the Behavior Tree
from the BT Tester. It is embedded into a generalized structure common
to all BTs and saved in a file. This structure includes the necessary calls
to predefined actions and libraries, an error logging mechanism in case
failures occur, and a main function to execute the Behavior Tree. In
addition, it identifies who requested the BT to extract the execution
priority. For this purpose, each agent able to request the execution of a
BT has a value associated with it. This value completes the file’s name,
so the system knows when the plan has to be executed. Finally, the
module notifies the BT Executor about the new plan.

BT Executor: Whenever this module receives a message with the
name of a new plan from the BT Planner, the plan is added to an
execution queue based on its priority. If no action is running, the BT
Executor starts the execution of the Behavior Tree from the execution
queue as a subprocess. If a high-priority emergency task is received,
the system immediately interrupts the currently running action and
switches to executing the emergency behavior. The actions to be per-
formed by the robot are sent via MQTT messages, just as the robot
sends back information about whether it has finished an action, the
position where it is, or the user’s answer to a question. When the
Behavior Tree execution is finished, the BT Executor terminates and
deletes the subprocess, and remains ready to execute the next task. In
case it receives multiple plans to be executed, the module queues them
according to the priority of the actions and the order of arrival. If the
execution of the Behavior Tree fails, either because of an error in the
code or because during runtime it has returned Failure, the BT Executor
stops the subprocess and sends the error to the Failure Interpreter
module.

Failure Interpreter: This block ensures the robustness and adaptability
of the system during task execution. Addresses one of the fundamental
challenges in robotics: the ability to recover and adapt when a robot
encounters situations where it cannot complete a task as planned.
Through its integration with a Large Language Model, the system
combines reasoning and creativity to propose solutions. When a node
cannot be ticked or a Behavior Tree execution returns Failure, the
Failure Interpreter module automatically retrieves the error from the
log file and queries the LLM with a structured behavior prompt, the
failure description (e.g., ‘‘GoToKitchen node cannot be ticked’’, ‘‘Robot
cannot reach target location’’, ‘‘Target location does not exist’’, or
‘‘Missing argument on action Go’’) along with the original BT code.
The LLM then outputs a modified version of the BT, which is passed to
the Clarifier module for validation and, if necessary, further refinement
before execution.

The input to the LLM consists of a prompt that is essentially identical
to the one used for BT generation, with the exception that the initial
section is modified to specify that its purpose is to correct errors. It
also includes the reported error and the code of the BT that failed.
This ability to dynamically revise plans using natural language to help
the LLM solve the problem and high-level task understanding gives the
robot human-like problem solving capabilities.
5
Finally, robot actions are performed by the Actions Executor mod-
ule, which executes the primitive robotic actions defined in the BT,
such as navigation or videoconference. These actions are the result
of the BT execution process, sent in a json format where the topic
specifies the type of action to perform and the payload the necessary
information to carry it out, such as the destination location and the
speed to send the robot somewhere. This module returns information
from the robot to the BT Executor module in order to execute the
Behavior Tree successfully.

The process of generation of a BT and clarification whenever the
LLM does not understand the instruction can be described as follows
in pseudo-code from Algorithm 1, where 𝜙 stores generation prompt,
𝛿 is LLM input, 𝜇 is LLM output, 𝑀 is our LLM model, 𝑄 is execution
queue, 𝜖 is the agent who requested the order and 𝜏 is priority. The
user introduces an instruction as an input for the LLM, that along
with the prompt, generates an output who reaches the Clarifier. If LLM
output is not a BT (because ChatGPT did not understand the instruction
or the robot cannot perform the task), the system asks the user for
clarification. Otherwise, the system assigns the priority to the BT and
introduces it in the execution queue, sorting it by priority.
Algorithm 1: BT generation and clarification

Input: inputSTT()
1 𝛿 ← inputSTT();
2 while True do
3 𝜇 ← 𝑀(𝜙 ∪ 𝛿);
4 if notBT(𝜇) then
5 𝑎𝑠𝑘𝐶𝑙𝑎𝑟𝑖𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛();
6 break;
7 else
8 𝜏(𝜇) ← 𝜏(𝜖);
9 𝑎𝑑𝑑(𝑄, 𝜇);
10 𝑠𝑜𝑟𝑡(𝑄, 𝜏);

The execution and failure handling process is shown in pseudo-
code of Algorithm 2, where 𝛿 is LLM input, 𝜇𝑖 is LLM output stored
in execution queue, 𝑄 is execution queue and 𝜆 is the BT Executor. If
the BT Executor module is idle and the execution queue contains any
plans, 𝜆 executes the first BT of the queue. When the BT ends, if it
returns Failure the Failure Interpreter module gets the error, which is
saved as a new input for the LLM to modify the BT. If the execution
return Success, the BT Executor module removes finished BT, ready to
execute next.
Algorithm 2: BT execution and failure handling
1 while True do
2 if idle(𝜆) and 𝑛𝑜𝑡𝐸𝑚𝑝𝑡𝑦(𝑄) then
3 𝜆(𝜇1);
4 if 𝑠𝑡𝑎𝑡𝑢𝑠(𝜇1) = 𝐹𝑎𝑖𝑙𝑢𝑟𝑒 then
5 𝑒𝑟𝑟𝑜𝑟 ← 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝐼𝑛𝑡𝑒𝑟𝑝𝑟𝑒𝑡𝑒𝑟();
6 𝛿 ← 𝑒𝑟𝑟𝑜𝑟;
7 else if 𝑠𝑡𝑎𝑡𝑢𝑠(𝜇1) = 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 then
8 𝑒𝑚𝑝𝑡𝑦(𝜆);
9 break;

To provide a comprehensive understanding of how our method
operates, we present an example of a complete interaction with the
system. The process begins with a user issuing a natural language
instruction to the robot: ‘‘Temi, go to the kitchen and say ‘Hello, my name
is Temi’.’’ The spoken sentence is transcribed on the robot and sent via
MQTT to the PC; the Message Reception module packages it with a
system prompt and forwards it to the LLM. ChatGPT parses the order,
infers the two actions GoToKitchen and SayHello, and replies with a
function which contains the logic and nodes of a Behavior Tree, as
shown in the code below:

S. Merino-Fidalgo et al.

Robotics and Autonomous Systems 194 (2025) 105165
def create_behavior_tree(mqtt):
try:

Behavior Tree Nodes
root = py_trees.composites.Sequence(name="Root",

memory=True)
sequence1 = py_trees.composites.Sequence(name="

sequence1", memory=True)
move_destination = MoveToDestination(name="

GoToKitchen", destination="kitchen", mqtt=
mqtt)

speak_message = SpeakMessage(name="SayHello",
message="Hello, my name is Temi", mqtt=mqtt)

reminder = Reminder(name="Reminder", mqtt=mqtt)

Nodes children’s
sequence1.add_children([move_destination,

speak_message])
failure_is_success = py_trees.decorators.

FailureIsSuccess(name = "failure_is_success",
child = sequence1)

Add branches to root
root.add_children([failure_is_success, reminder])

return root
except Exception as e:

logging.error(f"Error in create_behavior_tree: {e
}")

The Clarifier inspects that reply, requesting clarification if the LLM
is unable to generate correct BT code due to an ambiguous or invalid
instruction: if it is a BT code, the BT Tester analyzes its structure
and logic looking for a non-tickable node. Because it is a valid BT
structure, the module passes it to the BT Planner, which builds the
full executable BT code, stamps the file with the user’s priority and
notifies the BT Executor about this new task. This module receives
the message and queues the new plan based on its priority. When the
BT Executor becomes free, it dequeues the plan and executes it as a
subprocess. This ticks the tree node-by-node, and for every action node
publishes MQTT messages that steer the robot’s navigation stack or
speech engine. If all nodes return Success, execution ends with a friendly
reminder node and the subprocess is finalized and the plan file erased;
if any node returns Failure – for instance the robot cannot reach the
kitchen – the BT Executor ends the execution and calls the Failure
Interpreter. That module retrieves the relevant log fragment which
contains the failure, sends both the error context and the original BT
back to the LLM, receives a patched or clarified tree, and routes it again
through the Clarifier to make sure the LLM response is valid, so the
updated plan is replanned and re-executed—closing a fully autonomous
sense–plan–act–repair loop.

4. Experiments and results

Experiments have been carried out in a laboratory to show that it
can be implemented in elderly homes. Temi robot [29] was deployed
in our work environment, which was divided into rooms to recreate a
house distribution, and we tried multiple natural language instructions.

The system is planned to be integrated into a home automation
setup (Fig. 2) consisting of a network of small sensors distributed
throughout the house to monitor environmental conditions and the
resident’s activities. Data from these sensors is processed by a local
computer, which also manages actuators, a voice assistant (e.g., Alexa),
and a social robot that interacts with the resident. This computer
handles notifications and calls to the caregiver’s mobile phone and
communicates with a server-side web application. The server stores
all relevant data, which is accessible to caregivers and coordinators
through a web interface that provides real-time updates on the home
and the resident’s status [30].

To verify our proposal, we ran several experiments divided into two
parts: the generation of Behavior Trees after introducing a natural lan-
guage order and the final test including task execution and modification
on a real social robot, as shown in Fig. 3.
6
Fig. 2. General overview of the environment.

For the experiments, we selected six different actions that the Temi
robot is capable of performing. Speak allows the robot to deliver a
spoken message; Go commands it to navigate to a specified location;
Ask prompts the user with a question and stores the response; Video-
conference initiates a video call with one of the pre-configured contacts;
and Alert is used to notify the caregiver by sending a message to their
mobile phone whenever the system detects an issue or requires atten-
tion; The FallCheck action is designed to detect whether a person has
fallen by capturing an image of the surrounding environment, analyzing
it using a trained computer vision model, and returning the result in
terms of the number of people identified as fallen versus those who are
standing or in a normal posture. This action is integrated into the BT as
a perception module and can be triggered periodically or in response to
specific events. The output includes structured information ({fallen: 1,
not_fallen: 0}), which can be used by subsequent decision-making nodes
to trigger appropriate actions, such as alerting a caregiver, approaching
the person, or initiating a safety verification sequence.

In order to detect fallen people in an image, a methodology based
on deep learning and image processing has been implemented. The
image captured by the Temi robot’s camera is sent to the fall detection
model via MQTT. Once the image has been received, the next step is
to process it using a model specialized in object and person detection.
For the proposed methodology, an approach using YOLOv8s. YOLO is
a model for detecting objects in the image; for this purpose, it returns
the bounding box of these objects, which are 4 coordinates that define
the location of the element in the image. The idea is to use YOLO to
obtain an image of the person cropped from the coordinates of the
bounding box of the person, as well as to obtain the coordinates of other
objects of interest. Chairs, beds and sofas have been defined as elements
of interest, since it has been considered that they could influence in
detecting whether the person is down or in another position. When
performing this detection, a confidence threshold was established for
the identification of the different classes of objects.

To help the network distinguish whether a person is fallen or lying
on a bed or sofa, a function was integrated to detect the level of
overlap between the person and the object in the image by applying
the IoU metric [31]. For this purpose, it is checked whether the area
of the rectangle that forms the bounding box of the segmented person
intersects with the area of the bounding box of each object of interest
detected. If there is a significant overlap, above a certain threshold, the
coordinates of the persons in the image and the objects that overlap
with them are preserved. With these we assume a possible interaction
of the person with the object. If the object of interest is not detected or
is not overlapping with the person, then we indicate that the bounding
box is null. Thus, after detection we will obtain the image of the
person cropped with respect to the original image and four sets of four
coordinates, by combining the bounding box of the person and the three
bounding boxes of the objects present or not.

S. Merino-Fidalgo et al. Robotics and Autonomous Systems 194 (2025) 105165
Fig. 3. Temi robot performing different tasks.
Fig. 4. Graphic representation of BT generated from first command.

Once the model has detected the people in the image and the objects
that are overlapping their area, the cropped images and corresponding
coordinate data are fed into a neural network to perform the fall detec-
tion process [32]. This architecture is composed of multiple submodels
trained using the Cross Validation Voting (CVV) method [33], which
enhances generalization and robustness. During training, the dataset is
divided into multiple slots, and a separate model is trained for each
one. All models share the same structure, consisting of a ConvNeXt
network and a Fully Connected (FC) layer. The FC layer processes
a 16-dimensional vector derived from the bounding boxes, one for
the person and up to three for nearby objects of interest (sofa, bed,
chair), while the ConvNeXt network processes the cropped image of the
person. The outputs of both branches are concatenated and passed to a
final dense layer, which produces a single output value representing the
binary classification: fallen or not fallen. This system was trained using
an extended version of the Fallen People Detection Dataset (FPDS) [34],
7
which consists of 6982 images, including 5023 images of falls and
2275 images of non-falls, depicting individuals in various everyday
scenarios such as standing, sitting, lying on a sofa or bed, or walking.
The dataset encompasses a wide range of indoor environments, poses,
occlusions, and lighting conditions, contributing to the model’s strong
generalization capability in real-world conditions. The trained system
achieved an accuracy of 92.95%, a recall of 89.67%, and an F1-score
of 90.52%, as shown in the confusion matrix provided in the orig-
inal article. These metrics demonstrate a well-balanced performance
between sensitivity and specificity, which is an essential requirement
for emergency applications. Moreover, when tested in 118 real-world
scenarios using the Temi social robot, the system reached up to 96%
accuracy, outperforming other architectures such as ResNet and earlier
segmentation-based models.

For the priorities associated with the BTs for their execution order,
we defined three agents: the user who is the elder person who directly
interacts with the robot, the caregiver who sends the written instruction
and is received by the Message Reception module and a local service
with predefined BTs for daily tasks or emergency situations, such as
sending the robot to the bedroom and saying good morning when
the user wakes up or calling the caregiver if the person leaves home
at 3 a.m., respectively. These predefined actions are directly sent
to the BT Executor to be added to the execution queue, securing a
quick and robust execution. The highest priority belongs to predefined
emergency tasks, followed by user’s orders, caregiver’s instructions and
autonomous routine plans.

We also defined in the prompt the locations where the robot can
navigate in the house and the contacts saved for videoconference, so if
a requested task includes the action Go to a non-available location or
the user wants to call a non-saved contact, the system will inform the
user about this issue.

4.1. Natural language recognition and BT generation

In this phase, we evaluated the ability of the system to generate
accurate and interpretable BTs from natural language commands. The
process began with the user providing a task description, for this test,
a written order, which was processed by the LLM to generate the code
of a Behavior Tree. Some of the introduced commands were:

Temi, go to the kitchen and say ‘‘Hello, my name is Temi’’
Can you please go to the garage and, if there’s someone, call David?

S. Merino-Fidalgo et al. Robotics and Autonomous Systems 194 (2025) 105165
Fig. 5. Initial and modified BT after added nodes (in red). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
Bring me my mobile phone, it’s in my bedroom
The results demonstrated the system’s capability to generate BTs

efficiently, with all clarifications resolved within two iterations on aver-
age. For example, first command was quickly identified and generated
in BT in a fast and correct way, whose code was perfectly executable.
Fig. 4 shows the representation of the generated BT.

The sequence of actions in the bottom represents the task from the
command, first goes to the kitchen, to later reproduces the message.
FailureIsSuccess node returns Success if childs return Failure, which
guarantees the execution of the Reminder node, both being a standard
in every BT. This structure is designed to maintain control over the
outcome, regardless of the specific structure generated by the LLM.
Specifically, we define a blackboard that serves as a shared memory
space. In each action node, if an error occurs or the node returns
Failure, this event is recorded on the blackboard. The FailureIsSuccess
decorator is used to ensure that the final node – the Reminder node –
is always executed, regardless of the outcome of the preceding nodes.
This Reminder node checks the blackboard, and if any failure has been
recorded during execution, it forces the entire BT to return Failure.

This last node reproduces a useful message for the user, like a tip on
how to use the robot, when the actions part was executed successfully.
If not, this node sends the error (saved by the node where it occurred)
to the Failure Interpreter module.

For the second command, we introduced a location that was not
registered in the house information, so the robot cannot navigate to
it. Therefore, LLM reported this problem to the Clarifier module and
then communicated to the user the message ‘‘The requested location does
not exist ’’. After selecting the ‘‘living room’’ as the new target location,
ChatGPT generated the black nodes shown in Fig. 5, which was queued
and executed by the BT Executor. However, the PersonDetected condi-
tion returned an error because no FallCheck action had been executed
8
beforehand. The Failure Interpreter module identified this issue and
reported it to the LLM, which then corrected the behavior. As a result,
the modified code included the DetectPerson node (highlighted in red),
allowing the BT to execute successfully.

The last example includes an action the robot cannot perform (pick
up and bring objects), so LLM replied through the Clarifier module
pointing out this issue. And as long as it is something the robot cannot
carry out, no BT was generated.

The BTs generated to perform simple tasks (one or two actions) were
successful 97.3% times, using 30 different instructions 5 times each,
which resulted in 146 success out of 150 attempts. For complex tasks
(more than two actions or more control nodes needed), the percentage
reached 92.7%, following the same evaluating method and obtaining
139 correct outputs.

Additionally, we conducted a test in which an experienced user
manually built the BT code for the first two instructions. This manually
created BT was then compared with the versions generated by the
system (LLM-based). The comparison revealed several key differences.
In terms of time, the LLM-generated BTs were produced within sec-
onds, whereas the manual implementation required several minutes
per task, depending on complexity. Manually created BTs often used
shorter or less descriptive variable names to save programming time,
while the LLM-generated BTs consistently produced more explicit and
self-explanatory names. Regarding validation, manual BTs were in-
crementally reviewed and tested by the user during the development
process, adding to the overall programming time. In contrast, the LLM-
based generation does not include an inherent validation step. Instead,
validation is performed post-generation by the BT Tester module. If
execution failures are detected, they are subsequently handled and
corrected by the Failure Interpreter module. Overall, although expert
users are more likely to successfully develop very complex tasks, this

S. Merino-Fidalgo et al. Robotics and Autonomous Systems 194 (2025) 105165
Fig. 6. Initial and modified BT after added nodes (in red). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
LLM-based system reduces development time by generating executable
BTs directly from natural language input. This enables non-expert users
to define complex robot behaviors without programming knowledge,
making human–robot interaction more accessible and intuitive.

4.2. Real robot experiments

To evaluate the performance and success rate of the system, 25
users with no prior experience were asked to give the robot five types
of instructions: a simple task (e.g., two sequential actions), a complex
conditional task (involving multiple actions and decision-making), an
ambiguous request (not explicitly stating the required actions), an in-
correct instruction (with invalid parameters, such as unknown locations
or contacts), and an impossible task (requesting actions beyond the
robot’s capabilities, like grabbing objects).

To test robustness and adaptability, 5 unexpected situations were
introduced in each set of 25 trials, including environmental changes
(e.g., blocked paths), missing user responses, and third-party interfer-
ence. These scenarios aimed to simulate realistic conditions and assess
the system’s response to unforeseen events.

We now provide an example of the system behavior in one of these
situations. We executed a plan (represented by the black nodes in)
Fig. 6 where the robot, initially located in the hallway, was instructed
to go to the bathroom and remind the user to take their medication.
However, during execution, an unforeseen situation was introduced:
the hallway door – part of the robot’s shortest route – was found
closed. As the robot cannot open doors and always selects the most
efficient path, the plan returned Failure because the robot could not
reach the location. At this point, the Failure Interpreter module queried
the LLM and it inferred that since the bathroom is also accessible via
the bedroom, the plan could be modified to take this alternate route.
The added node in red finally allowed the robot to complete the task.

In another trial, the robot was unable to reach the kitchen due to a
closed door and lack of alternative paths. The system detected the issue
and informed the user: ‘‘I’m sorry, I cannot reach the kitchen’’.

The results from the experiments are presented in Table 2. Clarified
column shows the successful applications of the clarification feature
per instruction out of the total uses, which means that if a user input
9
Table 2
Results by type of task.
 Task Clarified Adapted Overall
 Simple Task 2/2 3/3 25/25
 Complex Task 9/11 13/15 21/25
 Ambiguous Task 18/22 8/9 20/25
 Wrong Task 23/25 6/8 22/25
 Impossible Task 24/25 0/0 24/25
 Total 76/83 30/34 112/125

needed to be clarified three times, if the LLM finally generated a BT,
the table displayed 1/1. The Adapted column indicates the same two
parameters but when the BT needed to be modified due to a wrong
coding or because a node returned Failure. Finally, the Overall column
illustrates the successful tests of each kind of instruction out of the 25
total.

The success rate of the general system was 89.6% after 125 tests.
In total, there were 13 failures, 6 of them caused by repeated wrong
and impossible instructions, which led the system to stop asking for
clarification and not generating a BT. Three more failures occurred
when the task logic expressed by the user was unclear or difficult to
understand, causing the system to execute BTs that did not meet the
user request. Another two failures were caused by the robot not being
able to reach the target location, and the last one was caused by an
unexpected videoconference malfunction.

To further assess the subjective user experience, we administered
the QUESI questionnaire [35,36] to 10 participants, comprising both
men and women aged between 25 and 65 years. All participants had a
university-level education but no prior experience with the system. This
evaluation was conducted as a separate experiment from the perfor-
mance assessment previously described, with a different group of users.
While the earlier study focused on measuring execution success and
system reliability, this experiment aimed to qualitatively assess how
intuitive and user-friendly the system is from the user’s perspective.

Before starting the experiment, participants were informed about
the robot’s capabilities, including the actions it can perform, the avail-
able locations, and the list of known contacts. They were also given a
few example instructions. During the session, users were encouraged to

S. Merino-Fidalgo et al. Robotics and Autonomous Systems 194 (2025) 105165
explore different ways of expressing instructions and testing the robot’s
understanding.

Each participant was then asked to provide between 3 and 5 in-
structions for the robot to perform, including at least one involving
unavailable actions or locations. For instance, some participants used
complex and natural language instructions such as: ‘‘There is a cup at
the living room and a bottle at the kitchen. Go to the location where the cup
is and say that you have located it.’’ The success rate of the requested
task executions was similar to the prior experiment, reaching 88%.
The analysis of their responses revealed a generally high perception of
intuitive use. The average scores across the five subscales were notably
high: Subjective Mental Workload (M = 4.47, SD = 0.55), Perceived
Achievement of Goals (M = 4.17, SD = 0.39), Perceived Effort of
Learning (M = 4.47, SD = 0.67), Familiarity (M = 4.37, SD = 0.29), and
Perceived Error Rate (M = 4.05, SD = 0.64). These results suggest that
users found the system easy to understand and operate, requiring little
effort to learn and interact with, while encountering few errors during
use. Overall, the high QUESI scores align with the system’s performance
and indicate strong support for its intuitive usability.

5. Discussion

The proposed system demonstrates a novel approach to generating
and executing robot Behavior Trees by leveraging a Large Language
Model for both initial task planning and real-time adaptation. This
integration of natural language understanding, BT planning, and failure
interpretation highlights several strengths and introduces new perspec-
tives on the use of BTs in robotics and artificial intelligence. Natural
language as input simplifies the use of the system, especially when it
comes to a non-expert person such as elderly people. A meticulously
designed prompt based on strict rules and restricted to some of the
actions the robot can perform ensures a highly reliable LLM output.
The inclusion of the Clarifier module whenever the system does not
understand what the user wants and especially the Failure Interpreter
module, as it ensures that the system can handle unforeseen situations
with minimal disruption, raises the robustness of the system.

Our approach achieves a 89.6% success rate in a real scenario,
where a physical robot executes BTs generated from natural lan-
guage commands in a real-world environment recreating a real house.
Nonetheless, it is important to recognize that direct comparisons are
inherently difficult, given the significant differences in system archi-
tectures, experimental methodologies, and deployment contexts across
existing works. Compared to mentioned prior work, our system offers
a competitive success rate while requiring no training or fine-tuning.
Nonetheless, it is important to recognize that direct comparisons are
inherently difficult, given the significant differences in system archi-
tectures, experimental methodologies, and deployment contexts across
existing works. BTGenBot reports 88.9% success on a real robot but
depends on fine-tuned LLMs trained on BT datasets, limiting gener-
ality. LLM-BT reaches 85% success but only in a specific task in a
simulated environment. LLM-BRAIn and LLM as BT-Planner focus on
BT generation without reporting any success rate from execution trials.

While the success rate is slightly lower than manually built BTs,
our approach offers significant practical advantages. It allows untrained
users to generate BTs from natural language, without requiring pro-
gramming or BT design expertise. The system supports arbitrary, flexi-
ble commands, enabling rapid behavior creation and adaptation, which
greatly reduces development time. Unlike prior approaches – which
include methods based on pre-trained or domain-specific models, those
that do not support Behavior Tree adaptation upon failure, and others
that have not been tested in real-world environments –, our method
requires no model training or fine-tuning, relying solely on general-
purpose LLMs via prompt engineering, which makes it lightweight and
easily deployable. It includes a built-in clarification mechanism that
prompts the user when input is ambiguous or unfeasible, and enables
BT modification in response to execution failures. Furthermore, it is
10
designed for deployment in real-world environments such as eldercare,
where ease of use and adaptability are critical. We have clarified these
benefits in the revised manuscript (see Section 3).

However, it also presents certain challenges and areas for future
exploration. The performance of the system is highly dependent on the
quality and precision of the LLM’s responses. While the LLM excels at
generating BTs for well-structured tasks thanks to the well-designed
prompt, it may occasionally produce plans that are suboptimal or in-
consistent. The integration of an LLM such as ChatGPT for task planning
and failure interpretation introduces latency, particularly when the
robot operates in environments requiring frequent plan revisions. This
issue could result in short delays until the execution of the requested
order. In this first approach we used some of the actions the robot can
perform, but as tasks become more complex and with the addition of
more robot actions, the size and depth of the BTs increase, potentially
making them harder to execute and interpret, which would require a
redesign of the generating prompt.

6. Conclusions and future work

In this paper, we presented a novel framework for generating and
executing Behavior Trees using Large Language Models for robotic task
execution. Our approach combines the interpretability and modularity
of BTs with the reasoning capabilities of LLMs, enabling robots to per-
form complex dynamic tasks with a high degree of adaptability. Using
a Failure Interpreter module, the system not only responds effectively
to task failures, but also dynamically updates BTs to overcome unfore-
seen obstacles. Experimental validation demonstrated the robustness
and flexibility of the proposed method across a variety of scenarios,
highlighting its potential for real-world applications in robotics.

Future work will focus on several key areas. First, we aim to inte-
grate multimodal input sources, such as home sensors data, to enhance
robot situational awareness. Second, we plan to explore techniques
for optimizing the BT generation process while adding more actions
to execute more complex tasks and improve scalability. In order to
improve the performance of our method, the entire action queue can
be embedded within a reactive sequence in a higher-level BT, where
emergency-relevant actions are placed alongside their corresponding
conditions—forming a teleo-reactive structure. In this configuration,
the system can dynamically update the condition, allowing the robot
to immediately interrupt its current action and execute the appropriate
emergency response. This approach leverages the inherent reactivity of
BTs, enabling timely and context-sensitive behavior adaptation. Finally,
we plan to install and evaluate the system in real environments, with
supervised deployment of the system in multiple real homes of elderly
people to verify its real performance.

CRediT authorship contribution statement

Sergio Merino-Fidalgo: Writing – original draft, Validation, Super-
vision, Software, Methodology, Investigation, Conceptualization. Celia
Sánchez-Girón: Writing – original draft, Software, Methodology, In-
vestigation. Eduardo Zalama: Writing – review & editing, Supervi-
sion, Project administration, Conceptualization. Jaime Gómez-García-
Bermejo: Writing – review & editing, Supervision, Investigation, Con-
ceptualization. Jaime Duque-Domingo: Writing – review & editing,
Supervision, Methodology, Investigation, Conceptualization.

Declaration of Generative AI and AI-assisted technologies in the
writing process

During the preparation of this work the author(s) used ChatGPT in
order to improve language and readability. After using this tool/service,
the author(s) reviewed and edited the content as needed and take(s) full
responsibility for the content of the publication.

S. Merino-Fidalgo et al. Robotics and Autonomous Systems 194 (2025) 105165
Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

The research presented in this paper has received funding from
ROSOGAR project PID2021-123020OBI00 funded by MCIN/AEI/10.13
039/501100011033 /FEDER, EU, and from the EIAROB project funded
by Consejería de Familia de la Junta de Castilla y León - Next Genera-
tion EU IN./22/M/01.

Data availability

No data was used for the research described in the article.

References

[1] A. Girault, B. Lee, E.A. Lee, Hierarchical finite state machines with multiple
concurrency models, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 18
(6) (1999) 742–760, http://dx.doi.org/10.1109/43.766725.

[2] M. Colledanchise, P. Ögren, Behavior Trees in Robotics and AI: An Introduction,
CRC Press, 2018, http://dx.doi.org/10.1201/9780429489105.

[3] P. Ögren, C.I. Sprague, Behavior trees in robot control systems, Annu. Rev. Con-
trol. Robot. Auton. Syst. 5 (2022) 81–107, http://dx.doi.org/10.1146/ANNUREV-
CONTROL-042920-095314/CITE/REFWORKS.

[4] Y. Chang, X. Wang, J. Wang, Y. Wu, L. Yang, K. Zhu, H. Chen, X. Yi, C. Wang,
Y. Wang, W. Ye, Y. Zhang, Y. Chang, P.S. Yu, Q. Yang, X. Xie, A survey on
evaluation of large language models, ACM Trans. Intell. Syst. Technol. 15 (2024)
39, http://dx.doi.org/10.1145/3641289.

[5] OpenAI, Introducing chatgpt | openai, 2024, https://openai.com/index/chatgpt/.
(Accessed 26 December 2024).

[6] J. Deng, Y. Lin, The benefits and challenges of chatgpt: An overview, Front.
Comput. Intell. Syst. 2 (2022) 81–83, http://dx.doi.org/10.54097/FCIS.V2I2.
4465.

[7] M. Colledanchise, P. Ögren, Behavior trees in robotics and ai: An introduction,
Behav. Trees Robot. AI (2017) http://dx.doi.org/10.1201/9780429489105, http:
//arxiv.org/abs/1709.00084.

[8] J. Bohren, S. Cousins, The SMACH high-level executive [ROS news], IEEE
Robot. Autom. Mag. 17 (4) (2010) 18–20, http://dx.doi.org/10.1109/MRA.2010.
938836.

[9] A. Koubaa, et al., Robot Operating System (ROS), vol. 1, Springer, 2017.
[10] M. Ben-Ari, F. Mondada, Finite state machines, Elements Robot. (2018) 55–61,

http://dx.doi.org/10.1007/978-3-319-62533-1_4.
[11] D. Isla, Handling complexity in the halo2 ai, in: Game Developers Conference,

2005.
[12] M. Iovino, E. Scukins, J. Styrud, P. Ögren, C. Smith, A survey of behavior trees

in robotics and ai, Robot. Auton. Syst. 154 (2022) 104096, http://dx.doi.org/
10.1016/J.ROBOT.2022.104096.

[13] C. Pezzato, C.H. Corbato, S. Bonhof, M. Wisse, Active inference and behavior
trees for reactive action planning and execution in robotics, IEEE Trans. Robot.
39 (2023) 1050–1069, http://dx.doi.org/10.1109/TRO.2022.3226144.

[14] N. Axelsson, G. Skantze, Modelling adaptive presentations in human–robot
interaction using behaviour trees, in: SIGDIAL 2019-20th Annual Meeting of the
Special Interest Group Discourse Dialogue - Proceedings of the Conference, 2019,
pp. 345–352, http://dx.doi.org/10.18653/V1/W19-5940.

[15] C.I. Sprague, P. Ögren, Adding neural network controllers to behavior trees
without destroying performance guarantees, in: Proc. of the 2022 IEEE 61st
Conference on Decision and Control, CDC, 2022, pp. 3989–3996, http://dx.doi.
org/10.1109/CDC51059.2022.9992501.

[16] Z. Wu, Y. Huang, P. Huang, S. Wen, M. Li, J. Wang, Effbt: An efficient behavior
tree reactive synthesis and execution framework, in: Proc. of the 2025 IEEE/ACM
47th Int. Conf. on Software Engineering, ICSE, 2025, http://dx.doi.org/10.1109/
ICSE55347.2025.00225, 761–761.

[17] M. Albi, Onboard Mission- and Contingency Management Based on Behavior
Trees for Unmanned Aerial Vehicles (Master’s thesis), Aalto University, 2023,
Available: https://aaltodoc.aalto.fi/handle/123456789/124063.

[18] L. Scherf, A. Schmidt, S. Pal, D. Koert, Interactively learning behavior trees from
imperfect human demonstrations, Front. Robot. AI 10 (2023) http://dx.doi.org/
10.3389/frobt.2023.1152595, art. 1152595.

[19] K.S. Kalyan, A survey of gpt-3 family large language models including chatgpt
and gpt-4, Nat. Lang. Process. J. 6 (2024) 100048, http://dx.doi.org/10.1016/j.
nlp.2023.100048.
11
[20] D. Driess, F. Xia, M.S. Sajjadi, C. Lynch, A. Chowdhery, B. Ichter, A. Wahid, J.
Tompson, Q. Vuong, T. Yu, W. Huang, Y. Chebotar, P. Sermanet, D. Duckworth,
S. Levine, V. Vanhoucke, K. Hausman, M. Toussaint, K. Greff, A. Zeng, I.
Mordatch, P. Florence, Palm-e: An embodied multimodal language model, Proc.
Mach. Learn. Res. 202 (2023) 8469–8488.

[21] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, X. Chen, K. Choromanski, T. Ding,
D. Driess, A. Dubey, C. Finn, P. Florence, C. Fu, M.G. Arenas, K. Gopalakrishnan,
K. Han, K. Hausman, A. Herzog, J. Hsu, B. Ichter, A. Irpan, N. Joshi, R. Julian,
D. Kalashnikov, Y. Kuang, I. Leal, L. Lee, T.W.E. Lee, S. Levine, Y. Lu, H.
Michalewski, I. Mordatch, K. Pertsch, K. Rao, K. Reymann, M. Ryoo, G. Salazar,
P. Sanketi, P. Sermanet, J. Singh, A. Singh, R. Soricut, H. Tran, V. Vanhoucke,
Q. Vuong, A. Wahid, S. Welker, P. Wohlhart, J. Wu, F. Xia, T. Xiao, P. Xu, S. Xu,
T. Yu, B. Zitkovich, Rt-2: Vision-language-action models transfer web knowledge
to robotic control, Proc. Mach. Learn. Res. 229 (2023).

[22] A. Lykov, D. Tsetserukou, A. Lykov, D. Tsetserukou, Llm-brain: Ai-driven fast
generation of robot behaviour tree based on large language model, 2023, http:
//dx.doi.org/10.48550/ARXIV.2305.19352, arXiv arXiv:2305.19352.

[23] R.A. Izzo, G. Bardaro, M. Matteucci, Btgenbot: behavior tree generation for
robotic tasks with lightweight llms, 2024, arXiv.

[24] H. Zhou, Y. Lin, L. Yan, J. Zhu, H. Min, Llm-bt: Performing robotic adaptive
tasks based on large language models and behavior trees, in: Proceedings - IEEE
International Conference on Robotics and Automation, 2024, pp. 16655–16661,
http://dx.doi.org/10.1109/ICRA57147.2024.10610183.

[25] J. Ao, F. Wu, Y. Wu, A. Swikir, S. Haddadin, Llm as bt-planner: leveraging llms
for behavior tree generation in robot task planning, 2024, arXiv.

[26] S. Cooper, S. Lemaignan, Towards using behaviour trees for long-term social
robot behaviour, in: ACM/IEEE International Conference on Human-Robot In-
teraction 2022-March, 2022, pp. 737–741, http://dx.doi.org/10.1109/HRI53351.
2022.9889662.

[27] C.Y. Kim, C.P. Lee, B. Mutlu, Understanding large-language model (llm)-powered
human–robot interaction, in: ACM/IEEE International Conference on Human-
Robot Interaction, 2024, pp. 371–380, http://dx.doi.org/10.1145/3610977.
3634966.

[28] L. Hanschmann, U. Gnewuch, A. Maedche, Saleshat: A llm-based social robot
for human-like sales conversations, in: Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), vol. 14524 LNCS, 2024, pp. 61–76, http://dx.doi.org/10.1007/
978-3-031-54975-5_4.

[29] Temi, Introducing temi robot v3, 2024, https://www.robotemi.com/product/
temi-sales-contact/. (Accessed 03 January 2025).

[30] S. Merino-Fidalgo, E. Zalama, J. Gómez-García-Bermejo, J. Duque-Domingo, R.
Gómez, P. Viñas, D. García, H. Urueña, Sistema de monitorización no intrusiva
para vivienda de personas mayores, Jornadas Nac. Robótica Bioingeniería 2023:
Libr. Actas (2023) 115–121, http://dx.doi.org/10.20868/UPM.BOOK.74896.

[31] H. Zhang, C. Xu, S. Zhang, Inner-iou: more effective intersection over union loss
with auxiliary bounding box, 2023, arXiv, https://arxiv.org/abs/2311.02877v4.

[32] C. Sánchez-Girón, M.G. Gómez, J.D. Domingo, J.G. García-Bermejo, E.Z.
Casanova, Integración convnext-yolo mediante cvv para detectar caídas en robot
social, Jornadas Automática (2024) http://dx.doi.org/10.17979/ja\-cea.2024.45.
10788.

[33] J.D. Domingo, R.M. Aparicio, L.M.G. Rodrigo, Cross validation voting for
improving cnn classification in grocery products, IEEE Access 10 (2022)
20913–20925.

[34] S. Maldonado-Bascón, C. Iglesias-Iglesias, P. Martín-Martín, S. Lafuente-Arroyo,
Fallen people detection capabilities using assistive robot, Electronics 8 (9) (2019)
http://dx.doi.org/10.3390/electronics8090915, article 915.

[35] J. Hurtienne, A. Naumann, QUESI – A questionnaire for measuring the subjective
consequences of intuitive use, in: Interdisciplinary College 2010. Focus Theme:
Play, Act and Learn, Fraunhofer Gesellschaft, Sankt Augustin, 2010, p. 539.

[36] A. Naumann, J. Hurtienne, Benchmarks for intuitive interaction with mobile
devices, in: Proceedings of the 12th IFIP TC 13 International Conference on
Human-Computer Interaction, INTERACT 2010, in: ACM International Confer-
ence Proceeding Series, 2010, pp. 401–402, http://dx.doi.org/10.1145/1851600.
1851685.

Sergio Merino-Fidalgo received the degree in Industrial
Electronic and Automatic Engineering from the University
of Valladolid (Spain) in 2021, the M.S. degree in Industrial
Engineering from the University of Valladolid in 2023. He is
a Ph.D. student in Industrial Engineering in the University
of Valladolid and works as a researcher at the Institute
for Advanced Production Technologies (ITAP), from the
University of Valladolid since 2023. His field of research
focuses on task planning in robotics.

http://dx.doi.org/10.1109/43.766725
http://dx.doi.org/10.1201/9780429489105
http://dx.doi.org/10.1146/ANNUREV-CONTROL-042920-095314/CITE/REFWORKS
http://dx.doi.org/10.1146/ANNUREV-CONTROL-042920-095314/CITE/REFWORKS
http://dx.doi.org/10.1146/ANNUREV-CONTROL-042920-095314/CITE/REFWORKS
http://dx.doi.org/10.1145/3641289
https://openai.com/index/chatgpt/
http://dx.doi.org/10.54097/FCIS.V2I2.4465
http://dx.doi.org/10.54097/FCIS.V2I2.4465
http://dx.doi.org/10.54097/FCIS.V2I2.4465
http://dx.doi.org/10.1201/9780429489105
http://arxiv.org/abs/1709.00084
http://arxiv.org/abs/1709.00084
http://arxiv.org/abs/1709.00084
http://dx.doi.org/10.1109/MRA.2010.938836
http://dx.doi.org/10.1109/MRA.2010.938836
http://dx.doi.org/10.1109/MRA.2010.938836
http://refhub.elsevier.com/S0921-8890(25)00262-3/sb9
http://dx.doi.org/10.1007/978-3-319-62533-1_4
http://refhub.elsevier.com/S0921-8890(25)00262-3/sb11
http://refhub.elsevier.com/S0921-8890(25)00262-3/sb11
http://refhub.elsevier.com/S0921-8890(25)00262-3/sb11
http://dx.doi.org/10.1016/J.ROBOT.2022.104096
http://dx.doi.org/10.1016/J.ROBOT.2022.104096
http://dx.doi.org/10.1016/J.ROBOT.2022.104096
http://dx.doi.org/10.1109/TRO.2022.3226144
http://dx.doi.org/10.18653/V1/W19-5940
http://dx.doi.org/10.1109/CDC51059.2022.9992501
http://dx.doi.org/10.1109/CDC51059.2022.9992501
http://dx.doi.org/10.1109/CDC51059.2022.9992501
http://dx.doi.org/10.1109/ICSE55347.2025.00225
http://dx.doi.org/10.1109/ICSE55347.2025.00225
http://dx.doi.org/10.1109/ICSE55347.2025.00225
https://aaltodoc.aalto.fi/handle/123456789/124063
http://dx.doi.org/10.3389/frobt.2023.1152595
http://dx.doi.org/10.3389/frobt.2023.1152595
http://dx.doi.org/10.3389/frobt.2023.1152595
http://dx.doi.org/10.1016/j.nlp.2023.100048
http://dx.doi.org/10.1016/j.nlp.2023.100048
http://dx.doi.org/10.1016/j.nlp.2023.100048
http://refhub.elsevier.com/S0921-8890(25)00262-3/sb20
http://refhub.elsevier.com/S0921-8890(25)00262-3/sb20
http://refhub.elsevier.com/S0921-8890(25)00262-3/sb20
http://refhub.elsevier.com/S0921-8890(25)00262-3/sb20
http://refhub.elsevier.com/S0921-8890(25)00262-3/sb20
http://refhub.elsevier.com/S0921-8890(25)00262-3/sb20
http://refhub.elsevier.com/S0921-8890(25)00262-3/sb20
http://refhub.elsevier.com/S0921-8890(25)00262-3/sb20
http://refhub.elsevier.com/S0921-8890(25)00262-3/sb20
http://refhub.elsevier.com/S0921-8890(25)00262-3/sb21
http://refhub.elsevier.com/S0921-8890(25)00262-3/sb21
http://refhub.elsevier.com/S0921-8890(25)00262-3/sb21
http://refhub.elsevier.com/S0921-8890(25)00262-3/sb21
http://refhub.elsevier.com/S0921-8890(25)00262-3/sb21
http://refhub.elsevier.com/S0921-8890(25)00262-3/sb21
http://refhub.elsevier.com/S0921-8890(25)00262-3/sb21
http://refhub.elsevier.com/S0921-8890(25)00262-3/sb21
http://refhub.elsevier.com/S0921-8890(25)00262-3/sb21
http://refhub.elsevier.com/S0921-8890(25)00262-3/sb21
http://refhub.elsevier.com/S0921-8890(25)00262-3/sb21
http://refhub.elsevier.com/S0921-8890(25)00262-3/sb21
http://refhub.elsevier.com/S0921-8890(25)00262-3/sb21
http://refhub.elsevier.com/S0921-8890(25)00262-3/sb21
http://refhub.elsevier.com/S0921-8890(25)00262-3/sb21
http://refhub.elsevier.com/S0921-8890(25)00262-3/sb21
http://refhub.elsevier.com/S0921-8890(25)00262-3/sb21
http://dx.doi.org/10.48550/ARXIV.2305.19352
http://dx.doi.org/10.48550/ARXIV.2305.19352
http://dx.doi.org/10.48550/ARXIV.2305.19352
http://refhub.elsevier.com/S0921-8890(25)00262-3/sb23
http://refhub.elsevier.com/S0921-8890(25)00262-3/sb23
http://refhub.elsevier.com/S0921-8890(25)00262-3/sb23
http://dx.doi.org/10.1109/ICRA57147.2024.10610183
http://refhub.elsevier.com/S0921-8890(25)00262-3/sb25
http://refhub.elsevier.com/S0921-8890(25)00262-3/sb25
http://refhub.elsevier.com/S0921-8890(25)00262-3/sb25
http://dx.doi.org/10.1109/HRI53351.2022.9889662
http://dx.doi.org/10.1109/HRI53351.2022.9889662
http://dx.doi.org/10.1109/HRI53351.2022.9889662
http://dx.doi.org/10.1145/3610977.3634966
http://dx.doi.org/10.1145/3610977.3634966
http://dx.doi.org/10.1145/3610977.3634966
http://dx.doi.org/10.1007/978-3-031-54975-5_4
http://dx.doi.org/10.1007/978-3-031-54975-5_4
http://dx.doi.org/10.1007/978-3-031-54975-5_4
https://www.robotemi.com/product/temi-sales-contact/
https://www.robotemi.com/product/temi-sales-contact/
https://www.robotemi.com/product/temi-sales-contact/
http://dx.doi.org/10.20868/UPM.BOOK.74896
https://arxiv.org/abs/2311.02877v4
http://dx.doi.org/10.17979/jacea.2024.45.10788
http://dx.doi.org/10.17979/jacea.2024.45.10788
http://dx.doi.org/10.17979/jacea.2024.45.10788
http://refhub.elsevier.com/S0921-8890(25)00262-3/sb33
http://refhub.elsevier.com/S0921-8890(25)00262-3/sb33
http://refhub.elsevier.com/S0921-8890(25)00262-3/sb33
http://refhub.elsevier.com/S0921-8890(25)00262-3/sb33
http://refhub.elsevier.com/S0921-8890(25)00262-3/sb33
http://dx.doi.org/10.3390/electronics8090915
http://refhub.elsevier.com/S0921-8890(25)00262-3/sb35
http://refhub.elsevier.com/S0921-8890(25)00262-3/sb35
http://refhub.elsevier.com/S0921-8890(25)00262-3/sb35
http://refhub.elsevier.com/S0921-8890(25)00262-3/sb35
http://refhub.elsevier.com/S0921-8890(25)00262-3/sb35
http://dx.doi.org/10.1145/1851600.1851685
http://dx.doi.org/10.1145/1851600.1851685
http://dx.doi.org/10.1145/1851600.1851685

S. Merino-Fidalgo et al. Robotics and Autonomous Systems 194 (2025) 105165
Celia Sánchez-Girón received the degree in Industrial
Electronic and Automatic Engineering from the University
of Valladolid (Spain) in 2021, the degree in Biomedical
Engineering from the University of Valladolid in 2022, the
M.S. degree in Biomedical Engineering from the University
of Valladolid in 2024. She is a Ph.D. student in Industrial
Engineering in the University of Valladolid and works
as a researcher at the Institute for Advanced Production
Technologies (ITAP), from the University of Valladolid since
2023. Her field of research includes computer vision and
robotics.

Eduardo Zalama received the Ph. D. Degree in Control En-
gineering from the University of Valladolid (Spain) in 1994.
He is full professor in the school of Industrial Engineering
in the University of Valladolid. He is author and co-author
of over 100 papers in the field of robotics and computer
vision. Nowadays he is the director of Industrial and Digital
Systems at Cartif Technological Center, leading a group of
25 research engineers. From the industrial point of view,
he has been involved in a wide range of industrial projects
for the development of mobile robots, control systems and
manufacturing.
12
Jaime Gómez-García-Bermejo received the B.S. degree
in electronics and automatic control engineering from the
University of Valladolid (Spain), in 1990, the M.S. degree
in image processing from the École Nationale Supérieure
des Telecommunications of Paris (France), in 1991; and the
Ph.D. degree in industrial engineering from said University,
in 1995. He is currently full professor at the Dep. of Systems
Engineering and Automatic Control at this University, and
leads the Computer Vision Laboratory at CARTIF Tech.
Center where he has lead about two hundred research
projects and contracts. He is also the coordinator of a Ph.D.
Program in his University. His research interests computer
vision and robotics.

Jaime Duque-Domingo received the B.S. degree in Com-
puter Engineering from the University of Valladolid (Spain),
in 2011, the M.S. degree in Software and IT Systems
Engineering from the UNED of Madrid (Spain), in 2014;
and the Ph.D. degree in Control and Systems Engineering
from said University, in 2018. He has combined his aca-
demic career with a professional career of over 20 years
working on IT projects in various fields, including projects
at the European Commission in Brussels. He is currently an
associate professor at the University of Valladolid. His field
of research includes artificial intelligence, computer vision
and robotics.

	Behavior tree generation and adaptation for a social robot control with LLMs
	Introduction
	Background and related works
	Behavior Trees
	LLMs for robotic tasks
	Social Robots

	Methodology
	System Architecture

	Experiments and Results
	Natural language recognition and BT generation
	Real robot experiments

	Discussion
	Conclusions and future work
	CRediT authorship contribution statement
	Declaration of Generative AI and AI-assisted technologies in the writing process
	Declaration of competing interest
	Acknowledgments
	Data availability
	References

