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Production and distribution of drinking water is an energy intensive process. Understanding the energy efficiency
of drinking water services and what drives efficiency could improve sustainability of water cycle. In this study,
we use the Efficiency Analysis Trees (EAT) method to benchmark the energy efficiency of several water utilities
in England and Wales based on their energy consumption. Unlike traditional parametric and non-parametric
methods previously used to assess the performance of water utilities, EAT does not suffer from overfitting. We
further employ bootstrap truncated regression techniques to understand what drives energy performance. The
results showed that the average energy efficiency of the English and Welsh water industry during the 2011-2020
period was 0.767. This means that energy consumption could be reduced by 23.3% while delivering the same
level of water to customers. Equivalently, on average water utilities could potentially save 63,479 MWh per year.
Water treatment complexity, source of raw water and population density were factors that influenced energy
efficiency of drinking water supply processes. Conclusions of this study are useful to water regulators and water

companies for informed decisions towards a low-carbon urban water cycle.

1. Introduction

Water is vital for humans and the environment. Ensuring that potable
water is provided to all people at all times is part of United Nations’
sustainability agenda (UN, 2015). Abstracting water from natural or
artificial water bodies and treating it on drinking water treatment fa-
cilities to produce potable water requires high level of energy (Plappally
and Leinhard, 2012; Majid et al., 2020; Khalkhali et al., 2021). Both the
published literature and policy concur that a better understanding of the
water-energy nexus is a priority (Chini et al., 2016).

Sustainable use of energy during the provision of water services
could have economic and environmental benefits. An efficient use of
energy could reduce energy costs which is the major determinant of
operational costs of water utilities (Wilson et al., 2021). Evaluating the
energy efficiency of the water processes and getting a good under-
standing of what drives energy performance of water companies could
be a valuable tool for policy makers to provide drinking water services in
a sustainable manner (Rodriguez-Merchan et al., 2021).

There were several studies in the past that investigated the water-
energy nexus pointing out that society and policy makers need to
ensure that energy should be used in a sustainable way when providing
water services (e.g., Mercedes Garcia et al., 2021; Yang et al., 2022).
However, as found in the literature reviews by Ahmad et al. (2020) and
Zaman et al. (2021) most of past research on this topic focused on
assessing the energy characteristics of water systems employing a set of
performance indicators. Another group of studies focused on quanti-
fying the energy used by water companies to provide drinking water
(expressed in kWh/h) (Majid et al., 2021; Kiziltan, 2021; Alresheedi
et al., 2022). Thus, the main limitation of past research is that energy
efficiency of the water services was not evaluated. By contrast, energy
efficiency assessment allows comparing the energy performance of a
sample of water utilities through the development of a synthetic indi-
cator embracing multiple variables (Molinos-Senante and Sala-Garrido,
2018).

While previous studies evaluated the energy efficiency of drinking
water treatment plants (Sala-Garrido and Molinos-Senante, 2020;
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Molinos-Senante and Maziotis, 2022a) and wastewater treatment plants
(Hernandez-Sancho et al., 2011; Molinos-Senante and Maziotis, 2022b),
to best of our knowledge only the recent studies by Molinos-Senante
etal. (2022a; 2022b) and Sala-Garrido et al. (2023) focused on assessing
the energetic performance of water companies, i.e., including the stages
of water abstraction, treatment and supply. Both studies estimated en-
ergy cost efficiency, i.e., they used energy costs as input variable rather
than the volume of energy used by the water companies to evaluate their
energetic performance. Because water companies might have different
energy tariffs, energy costs might not be directly correlated with energy
use. Moreover, past research (Molinos-Senante et al., 2022a; 2022b;
Sala-Garrido et al., 2023) used the data envelopment analysis (DEA)
method to estimate energy cost efficiency.

Despite the novelty of these previous studies, it should be noted that
DEA just like Free Disposal Hull (FDH) are deterministic methods
meaning that deviations from the efficiency frontier are due to in-
efficiency only. However, no functional form for the production tech-
nology is required and the efficient frontier is constructed using
observed data. In the case of DEA, the efficient frontier takes the form of
piecewise linear and convex, whereas the FDH frontier takes the form of
a step function (Xiao et al., 2022). Both DEA and FDH suffer from
overfitting (Esteve et al., 2020; 2021) making the efficiency scores less
robust. Machine learning techniques such as Random Forests (Breiman,
2001), Gradient Boosting (Friedman, 2001), and Efficiency Analysis
Trees (EAT) (Esteve et al., 2020) allow mitigating overfitting. Gradient
Boosting and Random Forests primarily aim to minimize prediction
error by aggregating results across multiple decision trees (El Baida
et al., 2025; Matyukira and Mhangara, 2023). In contrast, EAT in-
tegrates machine learning with efficiency analysis by constructing an
empirical production frontier based on the principle of free dis-
posability—a fundamental assumption in production economics (Esteve
et al., 2021). This ensures adherence to the axioms of efficiency analysis,
making EAT particularly well-suited for benchmarking purposes. Unlike
DEA, which assumes a convex production frontier, EAT constructs a non-
parametric step-function frontier. This feature is particularly advanta-
geous in the water utility context, where energy consumption does not
necessarily follow smooth, continuous patterns. For instance, utilities
serving small populations may exhibit abrupt shifts in energy re-
quirements due to infrastructure constraints, treatment intensity, or
topographical factors. EAT accommodates these discontinuities by seg-
menting the input space without enforcing convexity, leading to more
accurate benchmarking across heterogeneous water utilities.

Unlike Random Forests and Gradient Boosting methods, EAT is
specifically designed to evaluate performance relative to best-practice
frontiers, which is essential in our application focused on bench-
marking energy efficiency. The EAT approach is based on linear pro-
gramming (non-parametric) techniques and Classification and
Regression Trees (CART) (Breiman et al., 1984). More specifically, the
EAT approach uses regression trees, separates observations into regions
using different thresholds to measure maximum output (i.e., energy use
for the purposes of our study). For instance, it can measure the
maximum energy use if the number of customers is higher or lower than
a particular threshold. The EAT approach, therefore, imposes the free
disposability assumption and adjusts the regression tree to estimate
production frontiers and efficiency (Esteve et al., 2023a). To overcome
overfitting problems, EAT applies a pruning procedure based upon
cross-validation (Esteve et al., 2020; 2021).

Within this context, the main objective of this study is to estimate the
energy efficiency in the provision of drinking water services by water
companies using the newly developed technique, the EAT. Moreover,
energy efficiency scores using DEA and FDH approaches are also esti-
mated. Thus, we compare energy efficiency scores among these non-
parametric techniques. Finally, to get a better insight what drives en-
ergy efficiency for the provision of water services, bootstrap truncated
regression techniques are employed to regress energy efficiency scores
against a set of environmental factors related to source of raw water,
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treatment complexity and population density. This novel piece of work
is applied to the water industry in England and Wales over the
2011-2020 period.

This study contributes to the current strand of literature as follows.
First, we estimate energy efficiency of drinking water services provided
by water companies based on the energy consumed instead of energy
costs. This approach allowed us to quantify potential energy savings in
physical units, i.e., megawatt hour per year (MWh/year). Second, from a
methodological perspective this study uses for the first time a newly
developed approach that brings together machine learning and effi-
ciency analysis techniques to accurately measure the energy efficiency
of water services. This is a novel approach because, to the best of our
knowledge, the EAT approach has not been applied to measure the en-
ergy efficiency of drinking water supply processes. Moreover, as we
want to better understand how water services can be more energy effi-
cient, we use bootstrap regression techniques to explore the relationship
between energy performance and environmental factors.

2. Material and methods
2.1. Methodology to estimate energy efficiency scores

Energy efficiency of water utilities is estimated using the EAT
method, which combines regression (decision) trees and efficiency
analysis techniques (James et al., 2013; Rebai et al., 2019). The EAT
method is used to estimate energy efficiency scores because it overcomes
the issue of overfitting that other non-parametric techniques may suffer
from. Thus, we use a robust method to generate energy efficiency scores
and inform decision-making process. The EAT technique allows
measuring energy efficiency scores for each water utility which allows
identifying less and more energy efficient units and more importantly,
quantifying the energy savings that could be achieved by each water
utility. An important methodological advantage of EAT is its ability to
model step changes in energy use associated with scale effects and
operational heterogeneity. While DEA enforces a convex frontier-
—thereby assuming smooth substitution between inputs and out-
puts—EAT’s tree-based algorithm detects and preserves discontinuities
in the data. This results in a step-function frontier that better reflects the
non-linear and non-convex nature of energy use patterns in water util-
ities, particularly where economies or diseconomies of scale and local-
ized operational practices exist (Sala-Garrido et al., 2025). In other
words, EAT offers a closer representation of operational realities in
water utilities compared to the smooth, convex frontier imposed by
DEA. Water utilities often experience discrete jumps in energy con-
sumption due to infrastructure upgrades, treatment thresholds, or reg-
ulatory compliance, which are not well captured by convex
approximations. By allowing discontinuities and local splits in the input
space, EAT can reflect scale effects and segmentation more accurately.
However, this approach is not without limitations. Because the EAT
method relies on recursive partitioning, it may be sensitive to data
granularity and sample distribution. For instance, sparsely populated
regions of the input space may lead to unstable splits or underfitting.
Although the pruning and cross-validation steps mitigate overfitting,
EAT results can still be influenced by sample size and variable resolution
(Guillen et al., 2025).

The starting point of a decision tree under the EAT approach is to use
all observations, then advances through intermediate nodes, which
break up the dataset. The decision tree finishes at leaves (terminal
nodes) which show the estimated output of the production process
(energy consumption in our case) (Esteve et al., 2022; 2023a; 2023b).
Under the EAT approach, the estimated output is not the average output
but the frontier output (i.e., frontier energy consumption in our case).
This is because the EAT approach imposes the condition of free
disposability, i.e., incorporates production economics theory with de-
cision tree analysis. Furthermore, the efficient frontier that the EAT
method constructs is a step frontier which is like the step function
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frontier constructed by the FDH (Deprins et al., 1984; Esteve et al.,
2021).

According to Esteve et al. (2020), the underlying technology pro-
duced by EAT meets free disposability and therefore, in our case study,
the multi-output EAT method is applied. Let’s suppose that the dataset
has several predictors defined as x1, -+, X, with x; € R™. These predictors
are employed to predict a vector of response variables denoted as y, -+,
¥ with y; € R". The EAT method selects a predictor variable j and a
threshold s; € S; where S; denotes the set of likely thresholds for the
variable j to separate the data into two nodes, tg and t; (Esteve et al.,
2021). The algorithm employs the sum of the mean squared of error
(MSE) to make this split. The mathematical expression is provided
below:

RO) 4R =1 3 Gi-y@)P D iyt M

(Xz yl) €ty (Xx v.Vi) €tr

where n is the sample size; t is the node of the tree (i.e., left and right,t;
and tg, respectively);R(t) captures the MSE of each node t;y(t;) and y(tg)
are the estimated output (e.g., energy consumption in this study) for the
data in nodes t; and tg, respectively (Esteve et al., 2022; 2023a; 2023b).
Under the EAT method the estimated outputs are derived as follows:

y(t) = max{max{y; : (x;,y:) € }:}'(If(k\zutL,tR)(tL)) } (2)

Y(tr) = max{max{yi (%)) € tr }7y(IT(k\FArL,rR)(tR)) }

where T is the sub-tree that is generated with the EAT method; k denotes
the number of splits, ¥ (I -t ) (1) ) a0 Y (I .y ) (tr) ) is the set of
leaf nodes of the tree produced after executing the k — th split that
Pareto-dominates node ¢, and tg, respectively (Esteve et al., 2020;
2023a; 2023b).

The Pareto-dominance concept is the contribution of the EAT
method to the CART approach in two ways. In particular, the estimated
output under the EAT method is the maximum output. Moreover, the
data in each node is split based on the free disposability assumption.
Finally, the estimated production frontier takes the form of a step
function (Esteve et al., 2021).

To avoid any overfitting issues, we use cross-validation techniques to
get the best regression (Breiman et al., 1984; Esteve et al., 2023a).
Hence, EAT method estimates the following production technology:

PT;, = {(x.y) € R™' .y <dy,(x) } ®)

where dr, (x) is the predictor estimator associated with the sub-tree Tj.
Because this study focuses on evaluating energy efficiency of water
companies in the provision of drinking water, an input orientation is
adopted. It should be noted that water companies cannot define by
themselves the number of water connected properties and drinking
water demand. The efficiency score under the EAT method is recovered
from the following non-parametric (linear programming) model:

@™ (xi, y) = ming 4

subjectto :

> hd < pxp,j=1,-,m

teT*
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where ¢fT is the efficiency score, (a’,d;-(a')) are points in the
input-output space for all t € T* where * defines the final sub-tree and A
are intensity variables employed to build the efficient frontier. A unit
(water utility in this study) is efficient when its efficiency score is one
(@PAT =1).

For comparison purposes, we also estimate energy efficiency scores
under two other non-parametric approaches namely: i) FDH and ii) DEA.
FDH estimates a step function production frontier, whereas DEA con-
structs a convex piecewise linear production frontier. The non-
parametric method solved to derive the efficiency score under the
DEA is as follows:

"™ (X, k) = ming 5)

subjectto :

n
Zﬂixji < X, j =1, -,m

i=1
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In the case of FDH method, the model to be solved to estimate energy
efficiency for each unit is as follows:

@™ (X, yx) = ming )
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n
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2.2. Methodology to identify and quantify variables influencing energy
efficiency scores

To better understand factors impacting the energy performance of
water utilities, we regress the energy efficiency score obtained from the
EAT method against a set of environmental factors that are related to
topography, water treatment complexity and density (for more details
on these variables please see next section). We use a bootstrap truncated
regression developed by Simar and Wilson (2007). We use this approach
because the dependent variable takes a value between zero and one.
Moreover, the traditional Tobit regression may result in biased estimates
because of serial correlation among efficiency scores, error term and
environmental variables (Simar and Wilson, 2007). The regression
model takes the following form:

@i = Bo+ P+t +e @)
where T is the energy efficiency score recovered from the EAT

method (Eq. (4); f, is the constant term; #; is the set of environmental
variables of any water utility i; t is time and f; are the parameters that
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the regression model estimates. Finally, ¢; is the error (noise) term and
follows the standard normal distribution.

2.3. Case Study: Data and sample selection

The empirical application conducted in this study focused on eval-
uating the energy efficiency in the provision of drinking water services
by several English and Welsh Water and Sewerage Companies (WaSCs)
and Water only Companies (WoCs) over the years 2011-2020. The
sample embraces 160 observations being 100 WaSCs and 60 WoCs. Both
types of companies operate under private ownership and are natural
monopolies. To ensure that customers receive the best quality of service
at an affordable price and companies are financially stable to deliver
benefits to the environment as well, the regulator is present. Every five
years, the Water Services Regulation Authority (Ofwat) determines the
future revenue allowance for the sector after reviewing water com-
panies’ business plans (price review process). More information about
water regulation in England and Wales is available on the webpage of
Ofwat.!

The selection of the variables to estimate energy efficiency of water
companies, i.e., inputs, outputs and environmental variables, was based
on past research assessing the performance of water sector in England
and Wales and elsewhere (e.g., Berg and Marques, 2011; See, 2015;
Pinto et al., 2017; Cetrulo et al., 2019; Goh and See, 2021) and also on
statistical data availability for the period evaluated. The response vari-
able (or input) is defined as the energy consumption by water companies
measured in MWh per year (Rodriguez-Garcia et al., 2011; Bodik and
Kubaska, 2013; Longo et al., 2016; Molinos-Senante et al., 2018; Niu
et al., 2019). Two predictor variables (or outputs) are used. The first one
is the volume of drinking water delivered measured in megalitres per
year (Brea-Solis et al., 2017; Walker et al., 2021). The second predictor
variable is the number water connected properties measured in thou-
sands per year (Guerrini et al., 2018; Walker et al., 2019, 2020).

Previous work on the water industry (e.g., Pinto et al., 2017;
Molinos-Senante and Maziotis, 2022a; Maziotis and Molinos-Senante,
2022) evidenced that there might be several operating characteristics
that could affect the performance of water utilities. As a result, we
include the following environmental variables when analysing energy
efficiency of water services. To capture the source of raw water, two
variables are integrated in the model, i.e., the percentage of water that is
taken from rivers and boreholes. Santana et al. (2014) and Molinos-
Senante and Sala-Garrido (2017) evidenced that the quality of the raw
water influences the energy efficiency of water treatment plants. Hence,
the next variables considered in our study are related to water treatment
complexity. These are defined as the number of treatment works taken
place when water is taken from surface and groundwater (Walker,
2019). We also use the variable “water receiving high levels of treat-
ment” which is defined by Ofwat (2019a, 2019b) as the percentage of
water receiving advanced treatment such as activated carbon treatments
and pesticide removals. The density variable is defined as the number of
population divided by water area and therefore, it is expressed in 000 s/
km2 (Sala-Garrido et al., 2021a, 2021b).

To account for temporal effects that could influence the energy ef-
ficiency of water companies, the variable “year” is included as a co-
variate in the bootstrap truncated regression model. The inclusion of this
variable aims to capture potential temporal dynamics—such as regula-
tory adjustments, infrastructure aging, or improvements in operational
practices—that may occur throughout the 2011-2020 period. Although
time-series or dynamic panel models, such as autoregressive specifica-
tions (Lee, 2012), could offer deeper insights into temporal behavior, the
structure of the dataset available for this study limits the feasibility of
such methods in the current analysis. Instead, the Simar and Wilson
(2007) bootstrap truncated regression employed, allows handling

! https://www.ofwat.gov.uk/.
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bounded dependent variables and accounts for bias and serial correla-
tion in the energy efficiency scores. Future research could extend this
work by applying dynamic efficiency models to more richly structured
longitudinal datasets.

All data was collected from annual reports by Ofwat and water
companies. Although these sources adhere to regulatory standards, the
potential for reporting bias and inconsistencies in data collection across
utilities cannot be entirely ruled out. To enhance the robustness of future
analyses, it is recommended to triangulate self-reported figures with
independent sources—such as high-frequency smart meter data or third-
party energy audits—which could provide more accurate and objective
measurements of energy consumption. Table 1 gathers the descriptive
statistics of the variables employed in the study.

3. Results and discussion
3.1. Optimal levels of energy use

Fig. 1 shows the regression tree from the EAT method. It is under-
stood as follows. In each node, the identification number and the
number observations are reported. Moreover, it is also shown the pre-
dictor that the split was based on the predicted value of the response
variable. In our case this is the energy consumption whose predicted
value is the frontier value.

According to Fig. 1, it is evidenced that the number of customers of
water companies plays an important role on its energy performance. In
particular, it was found that on the delivery of drinking water to more
than 2.074 million water connected properties requires the frontier use
of 561,564 MWh of energy per year. This means that the maximum
energy consumption per water connected property is 0.27 MWh/year
(561,564 / 2,074,000 = 0.27). For those water companies serving to less
than 2.074 million customers, the total energy consumption could be
lower but larger per customer. When the number of connected proper-
ties is between 885 thousands and 2.074 million the maximum energy
consumption could reach the level of 237,212 MWh per year. It means
that the maximum energy consumption per property is 268.04 MWh/
year. When the number of properties is between 885 and 510 thousands,
the frontier energy consumption is estimated at 128,144 MWh per year.
This implies that maximum energy consumption per property is
2,388.52 MWh/year. Finally, for those water companies supplying
drinking water to less than 510 water connected properties, the
maximum use of energy required could be 62,358 MWh per year. Hence,
the minimum energy consumption per property is 122.27 MWh/year.
Overall, it can be concluded that the levels of maximum use of energy
consumption vary depending on the number of connected properties
that a water company has. According to past research (Carvalho and
Marques, 2016; Guerrini et al., 2018; Walker et al., 2021), economies of
scale were found revealing that larger water companies, in terms of
water connected properties, are those whose energy consumption per
customer could be the lowest.

3.2. Energy efficiency and potential energy savings

The next step of our analysis is to discuss the energy efficiency scores
and energy savings potential derived from the EAT approach at water
industry level. Table 2 shows that the English and Welsh water industry
reported an average energy efficiency of 0.767. This means that on
average water companies could cut down energy consumption by 23.3
% while delivering the same level of water to customers. Equivalently,
each water company, on average, has the potential to cut down energy
use by 63,479 MWh per year.

Looking at the type of water company, i.e., WaSCs and WoCs, on
average, WoCs were found to be more energy efficient than WaSCs. The
level of energy efficiency over the period of study was 0.709 for an
average WaSC and 0.863 for an average WoC. The findings suggest that
an average WoC could reduce its energy consumption by 13.7 % while
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Table 1

Descriptive statistics of the variables to estimate energy efficiency scores of English and Welsh water companies.
Variables Unit of measurement Mean Std. Dev. Minimum Maximum
Energy consumption MWh /year 217,339 146,675 21,971 561,564
Water connected properties 000 s/year 1,578 1,115 279 4,047
Volumes of water delivered Ml/year 750 548 140 2169
Water taken from rivers % 24.8 21.2 0.0 73.2
Water taken from boreholes % 41.8 30.1 0.5 92.1
Number of surface water treatment works nr 17 15 1 54
Number of groundwater treatment works nr 53 39 7 127
Water receiving high levels of treatment % 57.0 22.0 22.0 99.0
Population density 000 s/km2 0.48 0.29 0.15 1.26

Observations: 160.

Id: 1
n(t): 160

y = 561564.4

Id: 3
n(t): 50

Id: 2
n(t): 110
y=237212.2
WC >885 ———— wc <885
Id: 5 Id: 4
n(t): 54 n(t): 56
y=237212.2 y=128144.5

WC >2.074 WC <2.074

y = 561564.4

WC <510

Id: 7
n(t): 36
y=128144.5

wWC =510

Fig. 1. Regression tree to estimate energy efficiency scores based on Efficiency
Analysis Trees method. where: Id represents the node; n(t) is the number of ob-
servations; y is the optimal energy use in MWh/year and WC is the number of water
connected properties.

Table 2
Summary statistics of estimated energy efficiency and energy savings for English
and Welsh water companies (2011-2020).

Energy efficiency score Potential energy savings

(MWh/year)
All WaSCs  WoCs  All WaSCs WoCs
Mean 0.767 0.709 0.863 63,479 90,692 22,632
Std. Dev. 0.174  0.165 0.145 72,890 79,259 31,316
Minimum 0.430  0.437 0.581 0 7,381 0
Maximum 1.000 1.000 1.000 270,112 270,112 96,279
Energy efficient 3.125 3125 6.667

units (%)

maintaining the same level of water output. This is equivalent to a
reduction in energy use by 22,632 MWh per year. Higher levels of en-
ergy savings were reported for an average WaSC. Thus, the potential
savings in energy among WaSCs were at the level of 90,692 MWh per
year on average. The results showed that the worst performer among
WoCs reported an average energy efficiency of 0.580. The most ineffi-
cient company among WaSCs showed a lower energy efficiency, 0.430.
This means that the most inefficient companies need to substantially
reduce energy consumption to catch-up with the most energy efficient
ones in the sector. The worst performer within the WaSC group should
cut down energy use by 57 %, whereas the most inefficient WoC should
reduce energy consumption by 42 % to deliver the same level of water
services. It is also revealed the limited number of energy efficient water
companies (3.125 %). Nevertheless, most of the efficient companies are

WoCs (6.667 %) whereas only 1 out of 100 WaSCs observations was
identified as energy efficient.

While the results (Table 2) indicate that WoCs are, on average, more
energy efficient than WaSCs, this observation should be interpreted with
caution. The comparison may be confounded by unobserved heteroge-
neity across companies. Factors such as differences in infrastructure age,
geographical conditions, or service area characteristics may influence
energy performance but are not explicitly accounted for in the present
analysis. The main objective of this study is to benchmark energy effi-
ciency using the EAT methodology rather than to establish causal re-
lationships between company type and energy efficiency. However,
alternative methods—such as fixed-effects regression models or pro-
pensity score matching—could provide more robust insights by con-
trolling for such confounding variables. Future research could benefit
from incorporating these techniques, especially with access to more
longitudinal datasets that allow for stronger causal inference.

For comparison purposes, we report the energy efficiency scores
derived by the other deterministic approaches, i.e., FDH and DEA. It is
found that under the FDH approach, the average energy efficiency was
0.917, whereas under DEA the energy efficiency score was lower, 0.656
(Table 3). There was also a significant difference in the number of water
companies being energy efficient. According to Aparicio et al. (2021),
the problem of overfitting suffered by DEA and FDH manifests itself in
the fact of observing many evaluated units with an efficiency score of
one. In other words, the performance assessment is overly optimistic.
This conclusion is empirically evidenced in this case study where the
lowest percentage of energy efficient water companies was reported for
EAT estimations. When efficiency scores were computed based on FDH,
a notably larger number of water companies was identified as energy
efficient.

The difference in energy efficiency scores between the three ap-
proaches is because EAT and FDH estimate a frontier that takes the form
of a step function. In contrast, DEA generates a convex piecewise fron-
tier. Differences in energy efficiency estimations also impact the pre-
diction power of FDH reporting bad results (Aparicio et al., 2021).
Because one of the objectives of this study is to predict the optimal use of
energy in the provision of drinking water, EAT estimations are more
suitable for this purpose. The reported divergence in energy efficiency
estimations, based on the methodological approach used to compute
scores, demonstrates the relevance of using reliable and robust methods
to benchmark the performance of water companies. Otherwise,
misleading conclusions and therefore, inadequate policy implications
might be drawn.

Table 3
Comparison of energy efficiency scores estimated using efficiency analysis trees
(EAT), free disposal hull (FDH) and data envelopment analysis (DEA).

Method  Mean  Std. Minimum  Maximum  Energy efficient
Dev. observations (%)

EAT 0.767  0.174 0.430 1.000 3.125

FDH 0917  0.109 0.657 1.000 31.875

DEA 0.656  0.195 0.346 1.000 8.125
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The objective of this study is to evaluate the energy performance of
water services using the EAT approach and therefore, the results dis-
cussion focuses on the estimated energy efficiency scores from the EAT
approach. To get a better understanding of the distribution of energy
efficiency over the period of study, Fig. 2 gathers a histogram of the
estimated energy efficiency scores. It is found that there were not any
cases where energy efficiency score was less than 0.40 on average
(2011-2020). Over the years 2011-2020, there were 7 and 11 obser-
vations only among WoCs where energy efficiency score was between
0.41 and 0.60 and between 0.61 and 0.80, respectively. In contrast,
energy efficiency scores among WaSCs were more symmetric. There
were 30 observations related to WaSCs who reported an average energy
efficiency score between 0.41 and 0.60. Like WoCs, there were several
observations associated with WaSCs where the average energy effi-
ciency was higher than 0.81.

Figs. 3 and 4 report the trend in energy efficiency and potential en-
ergy savings based on the type of the company during the years
2011-2020. We also split the results into two sub-periods to link them
with the regulatory cycle. The first sub-period, 2011-15 refers to the
2009 price review, whereas the second sub-period, 2016-20 refers to the
2014 price review. We note that during the 2009 price review the water
regulator introduced several incentive schemes to incentivise companies
to reduce their operational costs. One of these schemes was related to a
rolling mechanism on operating costs where the companies were
allowed to keep these savings regardless of the period these occurred
(Villegas et al., 2019). As part of the 2014 price review, the companies
were obliged to bear the risk of any underperformance on expenditure
and share with customers any savings from outperformance on expen-
diture. The results indicated that during the 2011-15 period industry
energy performance was at high levels, 0.799. This means that the po-
tential energy savings could reach the level of 20 % which was equiv-
alent to an annual reduction in energy use by 51,356 MWh/year.
However, industry energy performance slightly reduced in the following
sub-period. It reached the level of 0.773 on average which means that
the potential energy savings could be higher and could reach the level of
59,222 MWh/year.

It is shown that energy efficiency for an average WoC was at high
levels at the first years of the sample (Fig. 4); 0.918 and 0.914 in 2011
and 2012, respectively. However, a downward trend is reported for the
rest of the years. This means that energy efficiency of WoCs deteriorated
over time. Average WoC did not manage to maintain the initial high
levels of energy standards. In 2011, an average WoC could cut down its
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energy consumption by less than 8 % to become more efficient. How-
ever, the level of energy efficiency dropped to 0.852 in 2015. This means
that WoCs could reduce energy use by 96,899 MWh/year to catch-up
with the most efficient ones in the industry (Fig. 4). During the period
2011-15 energy efficiency reduced at an annual rate of 1.86 % on
average. The potential savings in energy could reach the level of 73,682
MWh/year on average during this period. From 2016 onwards average
WoC’s energy efficiency continued to go down but at a lower rate.
Average energy efficiency reduced to the level of 0.829 in 2020. During
the 2016-20 energy could go down by 108,327 MWh/year to deliver the
same level of water services.

The evolution over time of energetic performance of WaSCs was
similar to the reported levels of WoCs. The results showed that during
the first sub-period, average energy efficiency was 0.713 whereas it
slightly reduced to 0.706 in the next sub-period. Like WoCs, WaSCs’
energy efficiency was at high levels in the first years of study, however, a
downward trend was apparent in the following years. During the
2011-15 period, average potential savings in energy for WaSCs were
790,082 MWh/year (Fig. 4). These savings could be considerably higher
in the next sub-period because in general energy efficiency scores
continued to decline. We noted that in 2020 on average energy effi-
ciency was 0.699 which means that WaSC could further cut down its
energy consumption by 30 % to become more efficient. This is equiva-
lent to a substantial saving of 860,175 MWh/year in energy use.

Overall, the results indicated that both WoCs and WaSCs have
become less energy efficient over time. Thus, the English and Welsh
water companies need to make efforts to improve energy performance.
This could have both economic and environmental benefits. For
example, annual potential energy savings for 2020 were estimated to be
976,235 MWh/year if English and Welsh water companies were energy
efficient. According to the Department of Business, Energy and Indus-
trial Strategy (2021), the mean domestic electricity consumption in
Great Britain in 2020 was 3,748 kWh per year per meter. Hence, the
estimated potential energy savings from water companies is equivalent
to the annual electricity consumed by 260,468 households in Great
Britain. Lower energy use could lead to lower energy costs which could
lead to savings in operational practices. These operational savings could
pass to customers in terms of lower bills. Moreover, the use of less energy
would involve a reduction on the greenhouse gas emissions improving
therefore, the environmental performance of water companies.

As climate change intensifies hydrological variability and water
quality deterioration, water utilities may increasingly rely on energy-
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Fig. 2. Histogram of the distribution of energy efficiency scores for English and Welsh water companies (2011-2020).
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Fig. 3. Temporal evolution of estimated energy efficiency for English and Welsh water companies (2011-2020).
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Fig. 4. Temporal evolution of potential energy savings for English and Welsh water companies (2011-2020).

intensive treatment processes to ensure potable water standards. This
suggests a potential upward pressure on baseline energy demand to the
provision of drinking water in urban settings. However, this trend could
be counterbalanced by the adoption of emerging technologies and
practices aimed at improving energy performance. For instance, ad-
vancements in real-time monitoring, smart water networks, and data-
driven decision-making systems are expected to optimize operational
processes and reduce unnecessary energy use (Moazeni and Khazaei,
2021; Gu and Sioshansi, 2025). Additionally, greater integration of
renewable energy sources, such as solar photovoltaic systems and biogas
recovery from wastewater treatment, offers a pathway to decarbonize
energy consumption across the water cycle (Kadam et al., 2023; Parraga
etal., 2024). Policy and regulatory frameworks will play a pivotal role in
guiding these transitions. The increasing emphasis on carbon neutrality
and net-zero targets across the water sector—exemplified by initiatives
such as Water UK’s Net Zero 2030 Routemap—will necessitate
comprehensive energy audits, benchmarking, and efficiency in-
terventions (Water UK, 2025). In this context, robust methodologies like
the EAT approach used in this study can support utilities and regulators
in tracking progress, identifying outliers, and prioritizing investments in
energy optimization.

3.3. Factors influencing energy efficiency of water companies

The energetic performance of water companies may be influenced by
external factors (environmental variables) which are not under the
managerial control of firms. These factors are analysed in Table 4. The
results indicate that the higher the proportion of water taken from
boreholes and rivers the lower the levels of energy efficiency could be.
This could be explained by the fact that the abstraction of more water
from these sources could require high levels of energy use putting
therefore pressure on energy efficiency. Moreover, the higher the pro-
portion of water receiving higher treatment, the lower the levels of
energy efficiency might be. This is because the more complex the
treatment of water is, the higher the use of energy would be which could
negatively influence energy performance. Furthermore, as population
density increases more water may be required to be abstracted, treated
and delivered. This could require high levels of energy which could put
pressure on energy efficiency. Based on the magnitude of the estimated
coefficients, water treatment complexity, density and water abstracted
from rivers and boreholes had the major impact on energy efficiency.

Table 4 illustrates that a 1 % increase in the high treatment of water
could lead to a decrease in energy efficiency by 0.271 % on average. This
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Table 4
External factors influencing energy efficiency of water companies: estimates of
bootstrap truncated regression.

Variables Coefficient ~ Bootstrap Std. z-stat p-
Err. value

Constant 5.097 1.062 4.799  0.000

% of water taken from —0.241 0.090 —2.684  0.007
boreholes

% of water taken from rivers —0.247 0.091 —2.716  0.007

Density —0.154 0.075 —2.061  0.039

Number of treatment works —0.003 0.001 —2.127  0.033
for surface water

Number of treatment works —0.002 0.001 —4.027  0.000
for groundwater

% of water receiving high -0.271 0.109 —2.507 0.012
treatment

Year —-0.011 0.005 —2.094 0.036

Sigma 0.152 0.013 11.890 0.000

X2 77.53

p-value 0

Energy efficiency score is the dependent variable.
Bold indicates that coefficients are statistically significant at 5% significance
level.

means that higher levels of treatment require high levels of energy to
ensure that water is potable before it is delivered to end users. This result
supports the conclusions by Santana (2014) and Molinos-Senante and
Sala-Garrido (2017) who evidenced that energy intensity on drinking
water treatment facilities is influenced by the quality of raw water to be
treated. From a policy perspective, this result confirms the importance of
improving the environmental management of watersheds to minimize
energy consumption in the provision of drinking water services.

The results showed that treatment works from surface and ground-
water sources increase energy consumption (Table 4). The abstraction of
water from rivers and boreholes are energy intensive activities which
push up energy use and may have a negative impact on performance.
Finally, more densely populated areas might require higher levels of
water to be delivered to more customers. This could increase energy
requirements which might have a negative influence on energy
efficiency.

Based on the analysis of energy efficiency and its key determinants
across the evaluated water companies, several policy recommendations
are proposed to support energy performance improvements and broader
decarbonization objectives for the English and Welsh water industry. As
a national regulator, OFWAT should develop standardized energy effi-
ciency benchmarks using robust methodologies—such as the EAT
approach—tailored to specific asset categories including pumping sta-
tions, drinking water treatment plants, and distribution networks. These
benchmarks should inform a performance-based regulatory framework,
whereby utilities are rewarded for exceeding targets and penalized for
underperformance. In addition, OFWAT should mandate comprehensive
energy audits covering components such as pump efficiency testing,
process energy balances, and the identification of high-consumption
assets. These audits should culminate in time-bound action plans, sub-
ject to regulatory oversight. Furthermore, OFWAT should require utili-
ties to publicly report annually on key energy metrics, including energy
intensity (e.g., kWh/m® treated), greenhouse gas (GHG) emissions per
unit of service, and progress toward net-zero goals. To accelerate the
adoption of digital energy management systems, the regulator could
offer co-funding or fast-track approval mechanisms for smart infra-
structure investments.

Focusing on water companies, they should be required to formulate
detailed energy strategies with measurable targets focused on reducing
total electricity consumption, lowering process-level energy intensity,
and increasing the share of renewable energy in their supply mix. To
enhance operational efficiency, companies should adopt advanced
process control systems, including artificial intelligence-based pump
scheduling, variable frequency drives, and SCADA-integrated energy
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dashboards. Regular training in energy-efficient practices for opera-
tional staff can help foster a culture of continuous improvement. In
addition, water companies should pilot and scale up emerging low-
energy technologies with demonstrated success. The integration of en-
ergy key performance indicators (KPIs) into capital expenditure plan-
ning and asset management strategies is essential to embed energy
efficiency as a core operational priority.

From a water resources management perspective, the significant
influence of water quality on energy performance highlights the
importance of integrated water resource management. Policies aimed at
improving upstream water quality can substantially reduce the need for
energy-intensive downstream treatments. Key measures include the
enforcement of stricter controls on agricultural runoff—such as vege-
tated buffer zones along waterways and limitations on fertilizer and
pesticide use near catchment areas. Complementary to this, green
infrastructure solutions—such as constructed wetlands, riparian buffers,
and sustainable drainage systems—can serve as effective pre-treatment
buffers by intercepting and filtering pollutants before they enter raw
water sources (Mmachaka et al., 2023). Advancing integrated catchment
management and land-use planning that explicitly prioritizes water
quality protection (Cerutti et al., 2019) will further reduce the energy
burden of treatment processes. Collectively, these strategies promote
both environmental sustainability and enhanced energy efficiency in the
delivery of drinking water services.

4. Conclusions

The move to a sustainable water industry from an economic and
environmental perspective requires the assessment of energy efficiency
of water services. Understanding the levels of energy efficiency and how
it evolves over time can help regulators and companies to make
informed decisions. In doing so, it is fundamental to use reliable and
robust approaches to avoid misleading conclusions. Traditionally, the
assessment of performance in the water industry was conducted using
linear programming methods such as DEA and FDH. These approaches
could suffer from over-optimistic efficiency scores due to small sample
size potentially generating less reliable results. To overcome this issue,
this study uses the EAT method to estimate energy efficiency scores of a
sample of water companies based on the energy consumed by them.

The main findings can be summarized as follows. The average energy
efficiency of the English and Welsh water industry for the 2011-2020
period was 0.767. This means that on average water companies could
save 23.3 % of their energy consumption if they were energy efficient.
Based on the energy used by water companies, on average they could
save 63,479 MWh/year. On average, energy efficiency of WoCs was
0.863 and potential energy savings were estimated at 22,632 MWh/
year. By contrast, the average energy efficiency of WaSCs was 0.709
which involves 90,692 MWh/year as potential energy savings. The re-
sults from the bootstrapped truncated regression showed that water
treatment complexity, source of raw water and population density were
the main factors that affected energy performance.

Based on the results of energy efficiency assessment, policy makers
could identify how well water companies are doing in terms of energy
performance and how much energy needs to be saved so that water
services are provided in an efficient and sustainable way. Our results
showed that industry’s energy performance deteriorated over time and a
more efficient use of energy is recommended. It has also evidenced that
the higher level of water treatment could lead to higher levels of energy
consumption. There are several reasons behind the need of using
advanced levels of treatment to produce drinking water. In the last
years, the drinking water supply regulations in England and Wales have
been amended several times establishing more restrictive thresholds for
different pollutants (DWI, 2023). Moreover, river quality in catchments
with intensive agriculture is likely to remain worse now than before the
1960 s (Whelan et al., 2022) which involves advanced water treatment
process to produce potable water. Hence, improving the quality of the
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natural water bodies, i.e., raw water, for example, banning water dis-
charges into them will generate positive impacts from an economic and
environmental perspective.

Building upon the methodological and empirical contributions of
this study, several avenues for future research are proposed to further
advance the understanding of energy efficiency assessments in the water
sector. One promising direction involves linking energy efficiency scores
with GHG emissions, enabling a joint evaluation of energy and envi-
ronmental performance. Such integration would enhance the usefulness
of efficiency assessments for supporting the development of decarbon-
ization strategies. In addition to estimate energy savings, future studies
should also incorporate economic dimensions—such as cost-
effectiveness or life cycle costs—thereby facilitating a more compre-
hensive framework for evaluating and prioritizing investments in
infrastructure modernization. While this study examines the influence of
selected exogenous variables on the energy efficiency of water com-
panies, further research could expand this analysis to include additional
factors, such as the age of infrastructure, the integration of renewable
energy systems, and the adoption of digital technologies. Including such
variables would provide deeper insights into the drivers of energy per-
formance and support more informed policy and management decisions
in the water sector. Finally, alternative methods—such as fixed-effects
regression models or propensity score matching—could be employed
to better isolate the effects of organizational structure, infrastructure
age, and geographical conditions on energy efficiency. These ap-
proaches would enable more robust causal inference between energy
efficiency scores and the key characteristics of WoCs and WaSCs.
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