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A B S T R A C T

Production and distribution of drinking water is an energy intensive process. Understanding the energy efficiency 
of drinking water services and what drives efficiency could improve sustainability of water cycle. In this study, 
we use the Efficiency Analysis Trees (EAT) method to benchmark the energy efficiency of several water utilities 
in England and Wales based on their energy consumption. Unlike traditional parametric and non-parametric 
methods previously used to assess the performance of water utilities, EAT does not suffer from overfitting. We 
further employ bootstrap truncated regression techniques to understand what drives energy performance. The 
results showed that the average energy efficiency of the English and Welsh water industry during the 2011–2020 
period was 0.767. This means that energy consumption could be reduced by 23.3% while delivering the same 
level of water to customers. Equivalently, on average water utilities could potentially save 63,479 MWh per year. 
Water treatment complexity, source of raw water and population density were factors that influenced energy 
efficiency of drinking water supply processes. Conclusions of this study are useful to water regulators and water 
companies for informed decisions towards a low-carbon urban water cycle.

1. Introduction

Water is vital for humans and the environment. Ensuring that potable 
water is provided to all people at all times is part of United Nations’ 
sustainability agenda (UN, 2015). Abstracting water from natural or 
artificial water bodies and treating it on drinking water treatment fa
cilities to produce potable water requires high level of energy (Plappally 
and Leinhard, 2012; Majid et al., 2020; Khalkhali et al., 2021). Both the 
published literature and policy concur that a better understanding of the 
water-energy nexus is a priority (Chini et al., 2016).

Sustainable use of energy during the provision of water services 
could have economic and environmental benefits. An efficient use of 
energy could reduce energy costs which is the major determinant of 
operational costs of water utilities (Wilson et al., 2021). Evaluating the 
energy efficiency of the water processes and getting a good under
standing of what drives energy performance of water companies could 
be a valuable tool for policy makers to provide drinking water services in 
a sustainable manner (Rodríguez-Merchan et al., 2021).

There were several studies in the past that investigated the water- 
energy nexus pointing out that society and policy makers need to 
ensure that energy should be used in a sustainable way when providing 
water services (e.g., Mercedes Garcia et al., 2021; Yang et al., 2022). 
However, as found in the literature reviews by Ahmad et al. (2020) and 
Zaman et al. (2021) most of past research on this topic focused on 
assessing the energy characteristics of water systems employing a set of 
performance indicators. Another group of studies focused on quanti
fying the energy used by water companies to provide drinking water 
(expressed in kWh/h) (Majid et al., 2021; Kiziltan, 2021; Alresheedi 
et al., 2022). Thus, the main limitation of past research is that energy 
efficiency of the water services was not evaluated. By contrast, energy 
efficiency assessment allows comparing the energy performance of a 
sample of water utilities through the development of a synthetic indi
cator embracing multiple variables (Molinos-Senante and Sala-Garrido, 
2018).

While previous studies evaluated the energy efficiency of drinking 
water treatment plants (Sala-Garrido and Molinos-Senante, 2020; 
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Molinos-Senante and Maziotis, 2022a) and wastewater treatment plants 
(Hernandez-Sancho et al., 2011; Molinos-Senante and Maziotis, 2022b), 
to best of our knowledge only the recent studies by Molinos-Senante 
et al. (2022a; 2022b) and Sala-Garrido et al. (2023) focused on assessing 
the energetic performance of water companies, i.e., including the stages 
of water abstraction, treatment and supply. Both studies estimated en
ergy cost efficiency, i.e., they used energy costs as input variable rather 
than the volume of energy used by the water companies to evaluate their 
energetic performance. Because water companies might have different 
energy tariffs, energy costs might not be directly correlated with energy 
use. Moreover, past research (Molinos-Senante et al., 2022a; 2022b; 
Sala-Garrido et al., 2023) used the data envelopment analysis (DEA) 
method to estimate energy cost efficiency.

Despite the novelty of these previous studies, it should be noted that 
DEA just like Free Disposal Hull (FDH) are deterministic methods 
meaning that deviations from the efficiency frontier are due to in
efficiency only. However, no functional form for the production tech
nology is required and the efficient frontier is constructed using 
observed data. In the case of DEA, the efficient frontier takes the form of 
piecewise linear and convex, whereas the FDH frontier takes the form of 
a step function (Xiao et al., 2022). Both DEA and FDH suffer from 
overfitting (Esteve et al., 2020; 2021) making the efficiency scores less 
robust. Machine learning techniques such as Random Forests (Breiman, 
2001), Gradient Boosting (Friedman, 2001), and Efficiency Analysis 
Trees (EAT) (Esteve et al., 2020) allow mitigating overfitting. Gradient 
Boosting and Random Forests primarily aim to minimize prediction 
error by aggregating results across multiple decision trees (El Baida 
et al., 2025; Matyukira and Mhangara, 2023). In contrast, EAT in
tegrates machine learning with efficiency analysis by constructing an 
empirical production frontier based on the principle of free dis
posability—a fundamental assumption in production economics (Esteve 
et al., 2021). This ensures adherence to the axioms of efficiency analysis, 
making EAT particularly well-suited for benchmarking purposes. Unlike 
DEA, which assumes a convex production frontier, EAT constructs a non- 
parametric step-function frontier. This feature is particularly advanta
geous in the water utility context, where energy consumption does not 
necessarily follow smooth, continuous patterns. For instance, utilities 
serving small populations may exhibit abrupt shifts in energy re
quirements due to infrastructure constraints, treatment intensity, or 
topographical factors. EAT accommodates these discontinuities by seg
menting the input space without enforcing convexity, leading to more 
accurate benchmarking across heterogeneous water utilities.

Unlike Random Forests and Gradient Boosting methods, EAT is 
specifically designed to evaluate performance relative to best-practice 
frontiers, which is essential in our application focused on bench
marking energy efficiency. The EAT approach is based on linear pro
gramming (non-parametric) techniques and Classification and 
Regression Trees (CART) (Breiman et al., 1984). More specifically, the 
EAT approach uses regression trees, separates observations into regions 
using different thresholds to measure maximum output (i.e., energy use 
for the purposes of our study). For instance, it can measure the 
maximum energy use if the number of customers is higher or lower than 
a particular threshold. The EAT approach, therefore, imposes the free 
disposability assumption and adjusts the regression tree to estimate 
production frontiers and efficiency (Esteve et al., 2023a). To overcome 
overfitting problems, EAT applies a pruning procedure based upon 
cross-validation (Esteve et al., 2020; 2021).

Within this context, the main objective of this study is to estimate the 
energy efficiency in the provision of drinking water services by water 
companies using the newly developed technique, the EAT. Moreover, 
energy efficiency scores using DEA and FDH approaches are also esti
mated. Thus, we compare energy efficiency scores among these non- 
parametric techniques. Finally, to get a better insight what drives en
ergy efficiency for the provision of water services, bootstrap truncated 
regression techniques are employed to regress energy efficiency scores 
against a set of environmental factors related to source of raw water, 

treatment complexity and population density. This novel piece of work 
is applied to the water industry in England and Wales over the 
2011–2020 period.

This study contributes to the current strand of literature as follows. 
First, we estimate energy efficiency of drinking water services provided 
by water companies based on the energy consumed instead of energy 
costs. This approach allowed us to quantify potential energy savings in 
physical units, i.e., megawatt hour per year (MWh/year). Second, from a 
methodological perspective this study uses for the first time a newly 
developed approach that brings together machine learning and effi
ciency analysis techniques to accurately measure the energy efficiency 
of water services. This is a novel approach because, to the best of our 
knowledge, the EAT approach has not been applied to measure the en
ergy efficiency of drinking water supply processes. Moreover, as we 
want to better understand how water services can be more energy effi
cient, we use bootstrap regression techniques to explore the relationship 
between energy performance and environmental factors.

2. Material and methods

2.1. Methodology to estimate energy efficiency scores

Energy efficiency of water utilities is estimated using the EAT 
method, which combines regression (decision) trees and efficiency 
analysis techniques (James et al., 2013; Rebai et al., 2019). The EAT 
method is used to estimate energy efficiency scores because it overcomes 
the issue of overfitting that other non-parametric techniques may suffer 
from. Thus, we use a robust method to generate energy efficiency scores 
and inform decision-making process. The EAT technique allows 
measuring energy efficiency scores for each water utility which allows 
identifying less and more energy efficient units and more importantly, 
quantifying the energy savings that could be achieved by each water 
utility. An important methodological advantage of EAT is its ability to 
model step changes in energy use associated with scale effects and 
operational heterogeneity. While DEA enforces a convex frontier
—thereby assuming smooth substitution between inputs and out
puts—EAT’s tree-based algorithm detects and preserves discontinuities 
in the data. This results in a step-function frontier that better reflects the 
non-linear and non-convex nature of energy use patterns in water util
ities, particularly where economies or diseconomies of scale and local
ized operational practices exist (Sala-Garrido et al., 2025). In other 
words, EAT offers a closer representation of operational realities in 
water utilities compared to the smooth, convex frontier imposed by 
DEA. Water utilities often experience discrete jumps in energy con
sumption due to infrastructure upgrades, treatment thresholds, or reg
ulatory compliance, which are not well captured by convex 
approximations. By allowing discontinuities and local splits in the input 
space, EAT can reflect scale effects and segmentation more accurately. 
However, this approach is not without limitations. Because the EAT 
method relies on recursive partitioning, it may be sensitive to data 
granularity and sample distribution. For instance, sparsely populated 
regions of the input space may lead to unstable splits or underfitting. 
Although the pruning and cross-validation steps mitigate overfitting, 
EAT results can still be influenced by sample size and variable resolution 
(Guillen et al., 2025).

The starting point of a decision tree under the EAT approach is to use 
all observations, then advances through intermediate nodes, which 
break up the dataset. The decision tree finishes at leaves (terminal 
nodes) which show the estimated output of the production process 
(energy consumption in our case) (Esteve et al., 2022; 2023a; 2023b). 
Under the EAT approach, the estimated output is not the average output 
but the frontier output (i.e., frontier energy consumption in our case). 
This is because the EAT approach imposes the condition of free 
disposability, i.e., incorporates production economics theory with de
cision tree analysis. Furthermore, the efficient frontier that the EAT 
method constructs is a step frontier which is like the step function 
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frontier constructed by the FDH (Deprins et al., 1984; Esteve et al., 
2021).

According to Esteve et al. (2020), the underlying technology pro
duced by EAT meets free disposability and therefore, in our case study, 
the multi-output EAT method is applied. Let’s suppose that the dataset 
has several predictors defined as x1,⋯, xm with xi ∈ Rm. These predictors 
are employed to predict a vector of response variables denoted as y,⋯,

yn with yi ∈ Rn. The EAT method selects a predictor variable j and a 
threshold sj ∈ Sj where Sj denotes the set of likely thresholds for the 
variable j to separate the data into two nodes, tR and tL (Esteve et al., 
2021). The algorithm employs the sum of the mean squared of error 
(MSE) to make this split. The mathematical expression is provided 
below: 

R(tL)+R(tR) =
1
n

∑

(xi ,yi)∈tL

(yi − y(tL) )2
+

1
n

∑

(xi ,yi)∈tR

(yi − y(tR) )2 (1) 

where n is the sample size; t is the node of the tree (i.e., left and right,tL 
and tR, respectively);R(t) captures the MSE of each node t;y(tL) and y(tR)
are the estimated output (e.g., energy consumption in this study) for the 
data in nodes tL and tR, respectively (Esteve et al., 2022; 2023a; 2023b). 
Under the EAT method the estimated outputs are derived as follows: 

y(tL) = max
{
max{yi : (xi, yi) ∈ tL }, y

(
IT(k|t*→tL ,tR)(tL)

) }
(2) 

y(tR) = max
{
max{yi : (xi, yi) ∈ tR }, y

(
IT(k|t*→tL ,tR)(tR)

) }

where T is the sub-tree that is generated with the EAT method; k denotes 
the number of splits, y

(
IT(k|t*→tL ,tR)(tL)

)
and y

(
IT(k|t*→tL ,tR)(tR)

)
is the set of 

leaf nodes of the tree produced after executing the k − th split that 
Pareto-dominates node tL and tR, respectively (Esteve et al., 2020; 
2023a; 2023b).

The Pareto-dominance concept is the contribution of the EAT 
method to the CART approach in two ways. In particular, the estimated 
output under the EAT method is the maximum output. Moreover, the 
data in each node is split based on the free disposability assumption. 
Finally, the estimated production frontier takes the form of a step 
function (Esteve et al., 2021).

To avoid any overfitting issues, we use cross-validation techniques to 
get the best regression (Breiman et al., 1984; Esteve et al., 2023a). 
Hence, EAT method estimates the following production technology: 

P̂TTk =
{
(x, y) ∈ Rm+1 : y ≤ dTk (x)

}
(3) 

where dTk (x) is the predictor estimator associated with the sub-tree Tk.

Because this study focuses on evaluating energy efficiency of water 
companies in the provision of drinking water, an input orientation is 
adopted. It should be noted that water companies cannot define by 
themselves the number of water connected properties and drinking 
water demand. The efficiency score under the EAT method is recovered 
from the following non-parametric (linear programming) model: 

φEAT(xk, yk) = minφ (4) 

subjectto :

∑

t∈T̃*

λtat
j ≤ φxjk, j = 1,⋯,m 

∑

t∈T̃*

λtdt
rT* (at) ≥ yjk, r = 1,⋯, p 

∑

t∈T̃*

λt = 1 

λt ∈ {0,1}, i = 1,⋯, n 

where φEAT is the efficiency score, (at , dT* (at)) are points in the 
input–output space for all t ∈ T* where * defines the final sub-tree and λ 
are intensity variables employed to build the efficient frontier. A unit 
(water utility in this study) is efficient when its efficiency score is one 
(φEAT = 1).

For comparison purposes, we also estimate energy efficiency scores 
under two other non-parametric approaches namely: i) FDH and ii) DEA. 
FDH estimates a step function production frontier, whereas DEA con
structs a convex piecewise linear production frontier. The non- 
parametric method solved to derive the efficiency score under the 
DEA is as follows: 

φDEA(xk, yk) = minφ (5) 

subjectto :

∑n

i=1
λixji ≤ φxjk, j = 1,⋯,m 

∑n

i=1
λiyri ≥ yrk, r = 1,⋯, p 

∑n

i=1
λi = 1 

λi ≥ 0, i = 1,⋯, n 

In the case of FDH method, the model to be solved to estimate energy 
efficiency for each unit is as follows: 

φFDH(xk, yk) = minφ (6) 

subjectto :

∑n

i=1
λixji ≤ φxjk, j = 1,⋯,m 

∑n

i=1
λiyri ≥ yrk, r = 1,⋯, p 

∑n

i=1
λi = 1 

λi ∈ {0,1}, i = 1,⋯, n 

2.2. Methodology to identify and quantify variables influencing energy 
efficiency scores

To better understand factors impacting the energy performance of 
water utilities, we regress the energy efficiency score obtained from the 
EAT method against a set of environmental factors that are related to 
topography, water treatment complexity and density (for more details 
on these variables please see next section). We use a bootstrap truncated 
regression developed by Simar and Wilson (2007). We use this approach 
because the dependent variable takes a value between zero and one. 
Moreover, the traditional Tobit regression may result in biased estimates 
because of serial correlation among efficiency scores, error term and 
environmental variables (Simar and Wilson, 2007). The regression 
model takes the following form: 

φEAT
i = β0 + βiηʹ

i + t+ εi (7) 

where φEAT
i is the energy efficiency score recovered from the EAT 

method (Eq. (4); β0 is the constant term; ήi is the set of environmental 
variables of any water utility i; t is time and βi are the parameters that 
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the regression model estimates. Finally, εi is the error (noise) term and 
follows the standard normal distribution.

2.3. Case Study: Data and sample selection

The empirical application conducted in this study focused on eval
uating the energy efficiency in the provision of drinking water services 
by several English and Welsh Water and Sewerage Companies (WaSCs) 
and Water only Companies (WoCs) over the years 2011–2020. The 
sample embraces 160 observations being 100 WaSCs and 60 WoCs. Both 
types of companies operate under private ownership and are natural 
monopolies. To ensure that customers receive the best quality of service 
at an affordable price and companies are financially stable to deliver 
benefits to the environment as well, the regulator is present. Every five 
years, the Water Services Regulation Authority (Ofwat) determines the 
future revenue allowance for the sector after reviewing water com
panies’ business plans (price review process). More information about 
water regulation in England and Wales is available on the webpage of 
Ofwat.1

The selection of the variables to estimate energy efficiency of water 
companies, i.e., inputs, outputs and environmental variables, was based 
on past research assessing the performance of water sector in England 
and Wales and elsewhere (e.g., Berg and Marques, 2011; See, 2015; 
Pinto et al., 2017; Cetrulo et al., 2019; Goh and See, 2021) and also on 
statistical data availability for the period evaluated. The response vari
able (or input) is defined as the energy consumption by water companies 
measured in MWh per year (Rodríguez-García et al., 2011; Bodik and 
Kubaska, 2013; Longo et al., 2016; Molinos-Senante et al., 2018; Niu 
et al., 2019). Two predictor variables (or outputs) are used. The first one 
is the volume of drinking water delivered measured in megalitres per 
year (Brea-Solis et al., 2017; Walker et al., 2021). The second predictor 
variable is the number water connected properties measured in thou
sands per year (Guerrini et al., 2018; Walker et al., 2019, 2020).

Previous work on the water industry (e.g., Pinto et al., 2017; 
Molinos-Senante and Maziotis, 2022a; Maziotis and Molinos-Senante, 
2022) evidenced that there might be several operating characteristics 
that could affect the performance of water utilities. As a result, we 
include the following environmental variables when analysing energy 
efficiency of water services. To capture the source of raw water, two 
variables are integrated in the model, i.e., the percentage of water that is 
taken from rivers and boreholes. Santana et al. (2014) and Molinos- 
Senante and Sala-Garrido (2017) evidenced that the quality of the raw 
water influences the energy efficiency of water treatment plants. Hence, 
the next variables considered in our study are related to water treatment 
complexity. These are defined as the number of treatment works taken 
place when water is taken from surface and groundwater (Walker, 
2019). We also use the variable “water receiving high levels of treat
ment” which is defined by Ofwat (2019a, 2019b) as the percentage of 
water receiving advanced treatment such as activated carbon treatments 
and pesticide removals. The density variable is defined as the number of 
population divided by water area and therefore, it is expressed in 000 s/ 
km2 (Sala-Garrido et al., 2021a, 2021b).

To account for temporal effects that could influence the energy ef
ficiency of water companies, the variable “year” is included as a co
variate in the bootstrap truncated regression model. The inclusion of this 
variable aims to capture potential temporal dynamics—such as regula
tory adjustments, infrastructure aging, or improvements in operational 
practices—that may occur throughout the 2011–2020 period. Although 
time-series or dynamic panel models, such as autoregressive specifica
tions (Lee, 2012), could offer deeper insights into temporal behavior, the 
structure of the dataset available for this study limits the feasibility of 
such methods in the current analysis. Instead, the Simar and Wilson 
(2007) bootstrap truncated regression employed, allows handling 

bounded dependent variables and accounts for bias and serial correla
tion in the energy efficiency scores. Future research could extend this 
work by applying dynamic efficiency models to more richly structured 
longitudinal datasets.

All data was collected from annual reports by Ofwat and water 
companies. Although these sources adhere to regulatory standards, the 
potential for reporting bias and inconsistencies in data collection across 
utilities cannot be entirely ruled out. To enhance the robustness of future 
analyses, it is recommended to triangulate self-reported figures with 
independent sources—such as high-frequency smart meter data or third- 
party energy audits—which could provide more accurate and objective 
measurements of energy consumption. Table 1 gathers the descriptive 
statistics of the variables employed in the study.

3. Results and discussion

3.1. Optimal levels of energy use

Fig. 1 shows the regression tree from the EAT method. It is under
stood as follows. In each node, the identification number and the 
number observations are reported. Moreover, it is also shown the pre
dictor that the split was based on the predicted value of the response 
variable. In our case this is the energy consumption whose predicted 
value is the frontier value.

According to Fig. 1, it is evidenced that the number of customers of 
water companies plays an important role on its energy performance. In 
particular, it was found that on the delivery of drinking water to more 
than 2.074 million water connected properties requires the frontier use 
of 561,564 MWh of energy per year. This means that the maximum 
energy consumption per water connected property is 0.27 MWh/year 
(561,564 / 2,074,000 = 0.27). For those water companies serving to less 
than 2.074 million customers, the total energy consumption could be 
lower but larger per customer. When the number of connected proper
ties is between 885 thousands and 2.074 million the maximum energy 
consumption could reach the level of 237,212 MWh per year. It means 
that the maximum energy consumption per property is 268.04 MWh/ 
year. When the number of properties is between 885 and 510 thousands, 
the frontier energy consumption is estimated at 128,144 MWh per year. 
This implies that maximum energy consumption per property is 
2,388.52 MWh/year. Finally, for those water companies supplying 
drinking water to less than 510 water connected properties, the 
maximum use of energy required could be 62,358 MWh per year. Hence, 
the minimum energy consumption per property is 122.27 MWh/year. 
Overall, it can be concluded that the levels of maximum use of energy 
consumption vary depending on the number of connected properties 
that a water company has. According to past research (Carvalho and 
Marques, 2016; Guerrini et al., 2018; Walker et al., 2021), economies of 
scale were found revealing that larger water companies, in terms of 
water connected properties, are those whose energy consumption per 
customer could be the lowest.

3.2. Energy efficiency and potential energy savings

The next step of our analysis is to discuss the energy efficiency scores 
and energy savings potential derived from the EAT approach at water 
industry level. Table 2 shows that the English and Welsh water industry 
reported an average energy efficiency of 0.767. This means that on 
average water companies could cut down energy consumption by 23.3 
% while delivering the same level of water to customers. Equivalently, 
each water company, on average, has the potential to cut down energy 
use by 63,479 MWh per year.

Looking at the type of water company, i.e., WaSCs and WoCs, on 
average, WoCs were found to be more energy efficient than WaSCs. The 
level of energy efficiency over the period of study was 0.709 for an 
average WaSC and 0.863 for an average WoC. The findings suggest that 
an average WoC could reduce its energy consumption by 13.7 % while 1 https://www.ofwat.gov.uk/.
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maintaining the same level of water output. This is equivalent to a 
reduction in energy use by 22,632 MWh per year. Higher levels of en
ergy savings were reported for an average WaSC. Thus, the potential 
savings in energy among WaSCs were at the level of 90,692 MWh per 
year on average. The results showed that the worst performer among 
WoCs reported an average energy efficiency of 0.580. The most ineffi
cient company among WaSCs showed a lower energy efficiency, 0.430. 
This means that the most inefficient companies need to substantially 
reduce energy consumption to catch-up with the most energy efficient 
ones in the sector. The worst performer within the WaSC group should 
cut down energy use by 57 %, whereas the most inefficient WoC should 
reduce energy consumption by 42 % to deliver the same level of water 
services. It is also revealed the limited number of energy efficient water 
companies (3.125 %). Nevertheless, most of the efficient companies are 

WoCs (6.667 %) whereas only 1 out of 100 WaSCs observations was 
identified as energy efficient.

While the results (Table 2) indicate that WoCs are, on average, more 
energy efficient than WaSCs, this observation should be interpreted with 
caution. The comparison may be confounded by unobserved heteroge
neity across companies. Factors such as differences in infrastructure age, 
geographical conditions, or service area characteristics may influence 
energy performance but are not explicitly accounted for in the present 
analysis. The main objective of this study is to benchmark energy effi
ciency using the EAT methodology rather than to establish causal re
lationships between company type and energy efficiency. However, 
alternative methods—such as fixed-effects regression models or pro
pensity score matching—could provide more robust insights by con
trolling for such confounding variables. Future research could benefit 
from incorporating these techniques, especially with access to more 
longitudinal datasets that allow for stronger causal inference.

For comparison purposes, we report the energy efficiency scores 
derived by the other deterministic approaches, i.e., FDH and DEA. It is 
found that under the FDH approach, the average energy efficiency was 
0.917, whereas under DEA the energy efficiency score was lower, 0.656 
(Table 3). There was also a significant difference in the number of water 
companies being energy efficient. According to Aparicio et al. (2021), 
the problem of overfitting suffered by DEA and FDH manifests itself in 
the fact of observing many evaluated units with an efficiency score of 
one. In other words, the performance assessment is overly optimistic. 
This conclusion is empirically evidenced in this case study where the 
lowest percentage of energy efficient water companies was reported for 
EAT estimations. When efficiency scores were computed based on FDH, 
a notably larger number of water companies was identified as energy 
efficient.

The difference in energy efficiency scores between the three ap
proaches is because EAT and FDH estimate a frontier that takes the form 
of a step function. In contrast, DEA generates a convex piecewise fron
tier. Differences in energy efficiency estimations also impact the pre
diction power of FDH reporting bad results (Aparicio et al., 2021). 
Because one of the objectives of this study is to predict the optimal use of 
energy in the provision of drinking water, EAT estimations are more 
suitable for this purpose. The reported divergence in energy efficiency 
estimations, based on the methodological approach used to compute 
scores, demonstrates the relevance of using reliable and robust methods 
to benchmark the performance of water companies. Otherwise, 
misleading conclusions and therefore, inadequate policy implications 
might be drawn.

Table 1 
Descriptive statistics of the variables to estimate energy efficiency scores of English and Welsh water companies.

Variables Unit of measurement Mean Std. Dev. Minimum Maximum

Energy consumption MWh /year 217,339 146,675 21,971 561,564
Water connected properties 000 s/year 1,578 1,115 279 4,047
Volumes of water delivered Ml/year 750 548 140 2169
Water taken from rivers % 24.8 21.2 0.0 73.2
Water taken from boreholes % 41.8 30.1 0.5 92.1
Number of surface water treatment works nr 17 15 1 54
Number of groundwater treatment works nr 53 39 7 127
Water receiving high levels of treatment % 57.0 22.0 22.0 99.0
Population density 000 s/km2 0.48 0.29 0.15 1.26

Observations: 160.

Fig. 1. Regression tree to estimate energy efficiency scores based on Efficiency 
Analysis Trees method. where: Id represents the node; n(t) is the number of ob
servations; y is the optimal energy use in MWh/year and WC is the number of water 
connected properties.

Table 2 
Summary statistics of estimated energy efficiency and energy savings for English 
and Welsh water companies (2011–2020).

Energy efficiency score Potential energy savings 
(MWh/year)

All WaSCs WoCs All WaSCs WoCs

Mean 0.767 0.709 0.863 63,479 90,692 22,632
Std. Dev. 0.174 0.165 0.145 72,890 79,259 31,316
Minimum 0.430 0.437 0.581 0 7,381 0
Maximum 1.000 1.000 1.000 270,112 270,112 96,279
Energy efficient 

units (%)
3.125 3.125 6.667 ​

Table 3 
Comparison of energy efficiency scores estimated using efficiency analysis trees 
(EAT), free disposal hull (FDH) and data envelopment analysis (DEA).

Method Mean Std. 
Dev.

Minimum Maximum Energy efficient 
observations (%)

EAT 0.767 0.174 0.430 1.000 3.125
FDH 0.917 0.109 0.657 1.000 31.875
DEA 0.656 0.195 0.346 1.000 8.125
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The objective of this study is to evaluate the energy performance of 
water services using the EAT approach and therefore, the results dis
cussion focuses on the estimated energy efficiency scores from the EAT 
approach. To get a better understanding of the distribution of energy 
efficiency over the period of study, Fig. 2 gathers a histogram of the 
estimated energy efficiency scores. It is found that there were not any 
cases where energy efficiency score was less than 0.40 on average 
(2011–2020). Over the years 2011–2020, there were 7 and 11 obser
vations only among WoCs where energy efficiency score was between 
0.41 and 0.60 and between 0.61 and 0.80, respectively. In contrast, 
energy efficiency scores among WaSCs were more symmetric. There 
were 30 observations related to WaSCs who reported an average energy 
efficiency score between 0.41 and 0.60. Like WoCs, there were several 
observations associated with WaSCs where the average energy effi
ciency was higher than 0.81.

Figs. 3 and 4 report the trend in energy efficiency and potential en
ergy savings based on the type of the company during the years 
2011–2020. We also split the results into two sub-periods to link them 
with the regulatory cycle. The first sub-period, 2011–15 refers to the 
2009 price review, whereas the second sub-period, 2016–20 refers to the 
2014 price review. We note that during the 2009 price review the water 
regulator introduced several incentive schemes to incentivise companies 
to reduce their operational costs. One of these schemes was related to a 
rolling mechanism on operating costs where the companies were 
allowed to keep these savings regardless of the period these occurred 
(Villegas et al., 2019). As part of the 2014 price review, the companies 
were obliged to bear the risk of any underperformance on expenditure 
and share with customers any savings from outperformance on expen
diture. The results indicated that during the 2011–15 period industry 
energy performance was at high levels, 0.799. This means that the po
tential energy savings could reach the level of 20 % which was equiv
alent to an annual reduction in energy use by 51,356 MWh/year. 
However, industry energy performance slightly reduced in the following 
sub-period. It reached the level of 0.773 on average which means that 
the potential energy savings could be higher and could reach the level of 
59,222 MWh/year.

It is shown that energy efficiency for an average WoC was at high 
levels at the first years of the sample (Fig. 4); 0.918 and 0.914 in 2011 
and 2012, respectively. However, a downward trend is reported for the 
rest of the years. This means that energy efficiency of WoCs deteriorated 
over time. Average WoC did not manage to maintain the initial high 
levels of energy standards. In 2011, an average WoC could cut down its 

energy consumption by less than 8 % to become more efficient. How
ever, the level of energy efficiency dropped to 0.852 in 2015. This means 
that WoCs could reduce energy use by 96,899 MWh/year to catch-up 
with the most efficient ones in the industry (Fig. 4). During the period 
2011–15 energy efficiency reduced at an annual rate of 1.86 % on 
average. The potential savings in energy could reach the level of 73,682 
MWh/year on average during this period. From 2016 onwards average 
WoC’s energy efficiency continued to go down but at a lower rate. 
Average energy efficiency reduced to the level of 0.829 in 2020. During 
the 2016–20 energy could go down by 108,327 MWh/year to deliver the 
same level of water services.

The evolution over time of energetic performance of WaSCs was 
similar to the reported levels of WoCs. The results showed that during 
the first sub-period, average energy efficiency was 0.713 whereas it 
slightly reduced to 0.706 in the next sub-period. Like WoCs, WaSCs’ 
energy efficiency was at high levels in the first years of study, however, a 
downward trend was apparent in the following years. During the 
2011–15 period, average potential savings in energy for WaSCs were 
790,082 MWh/year (Fig. 4). These savings could be considerably higher 
in the next sub-period because in general energy efficiency scores 
continued to decline. We noted that in 2020 on average energy effi
ciency was 0.699 which means that WaSC could further cut down its 
energy consumption by 30 % to become more efficient. This is equiva
lent to a substantial saving of 860,175 MWh/year in energy use.

Overall, the results indicated that both WoCs and WaSCs have 
become less energy efficient over time. Thus, the English and Welsh 
water companies need to make efforts to improve energy performance. 
This could have both economic and environmental benefits. For 
example, annual potential energy savings for 2020 were estimated to be 
976,235 MWh/year if English and Welsh water companies were energy 
efficient. According to the Department of Business, Energy and Indus
trial Strategy (2021), the mean domestic electricity consumption in 
Great Britain in 2020 was 3,748 kWh per year per meter. Hence, the 
estimated potential energy savings from water companies is equivalent 
to the annual electricity consumed by 260,468 households in Great 
Britain. Lower energy use could lead to lower energy costs which could 
lead to savings in operational practices. These operational savings could 
pass to customers in terms of lower bills. Moreover, the use of less energy 
would involve a reduction on the greenhouse gas emissions improving 
therefore, the environmental performance of water companies.

As climate change intensifies hydrological variability and water 
quality deterioration, water utilities may increasingly rely on energy- 

Fig. 2. Histogram of the distribution of energy efficiency scores for English and Welsh water companies (2011–2020).
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intensive treatment processes to ensure potable water standards. This 
suggests a potential upward pressure on baseline energy demand to the 
provision of drinking water in urban settings. However, this trend could 
be counterbalanced by the adoption of emerging technologies and 
practices aimed at improving energy performance. For instance, ad
vancements in real-time monitoring, smart water networks, and data- 
driven decision-making systems are expected to optimize operational 
processes and reduce unnecessary energy use (Moazeni and Khazaei, 
2021; Gu and Sioshansi, 2025). Additionally, greater integration of 
renewable energy sources, such as solar photovoltaic systems and biogas 
recovery from wastewater treatment, offers a pathway to decarbonize 
energy consumption across the water cycle (Kadam et al., 2023; Parraga 
et al., 2024). Policy and regulatory frameworks will play a pivotal role in 
guiding these transitions. The increasing emphasis on carbon neutrality 
and net-zero targets across the water sector—exemplified by initiatives 
such as Water UK’s Net Zero 2030 Routemap—will necessitate 
comprehensive energy audits, benchmarking, and efficiency in
terventions (Water UK, 2025). In this context, robust methodologies like 
the EAT approach used in this study can support utilities and regulators 
in tracking progress, identifying outliers, and prioritizing investments in 
energy optimization.

3.3. Factors influencing energy efficiency of water companies

The energetic performance of water companies may be influenced by 
external factors (environmental variables) which are not under the 
managerial control of firms. These factors are analysed in Table 4. The 
results indicate that the higher the proportion of water taken from 
boreholes and rivers the lower the levels of energy efficiency could be. 
This could be explained by the fact that the abstraction of more water 
from these sources could require high levels of energy use putting 
therefore pressure on energy efficiency. Moreover, the higher the pro
portion of water receiving higher treatment, the lower the levels of 
energy efficiency might be. This is because the more complex the 
treatment of water is, the higher the use of energy would be which could 
negatively influence energy performance. Furthermore, as population 
density increases more water may be required to be abstracted, treated 
and delivered. This could require high levels of energy which could put 
pressure on energy efficiency. Based on the magnitude of the estimated 
coefficients, water treatment complexity, density and water abstracted 
from rivers and boreholes had the major impact on energy efficiency.

Table 4 illustrates that a 1 % increase in the high treatment of water 
could lead to a decrease in energy efficiency by 0.271 % on average. This 

Fig. 3. Temporal evolution of estimated energy efficiency for English and Welsh water companies (2011–2020).

Fig. 4. Temporal evolution of potential energy savings for English and Welsh water companies (2011–2020).
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means that higher levels of treatment require high levels of energy to 
ensure that water is potable before it is delivered to end users. This result 
supports the conclusions by Santana (2014) and Molinos-Senante and 
Sala-Garrido (2017) who evidenced that energy intensity on drinking 
water treatment facilities is influenced by the quality of raw water to be 
treated. From a policy perspective, this result confirms the importance of 
improving the environmental management of watersheds to minimize 
energy consumption in the provision of drinking water services.

The results showed that treatment works from surface and ground
water sources increase energy consumption (Table 4). The abstraction of 
water from rivers and boreholes are energy intensive activities which 
push up energy use and may have a negative impact on performance. 
Finally, more densely populated areas might require higher levels of 
water to be delivered to more customers. This could increase energy 
requirements which might have a negative influence on energy 
efficiency.

Based on the analysis of energy efficiency and its key determinants 
across the evaluated water companies, several policy recommendations 
are proposed to support energy performance improvements and broader 
decarbonization objectives for the English and Welsh water industry. As 
a national regulator, OFWAT should develop standardized energy effi
ciency benchmarks using robust methodologies—such as the EAT 
approach—tailored to specific asset categories including pumping sta
tions, drinking water treatment plants, and distribution networks. These 
benchmarks should inform a performance-based regulatory framework, 
whereby utilities are rewarded for exceeding targets and penalized for 
underperformance. In addition, OFWAT should mandate comprehensive 
energy audits covering components such as pump efficiency testing, 
process energy balances, and the identification of high-consumption 
assets. These audits should culminate in time-bound action plans, sub
ject to regulatory oversight. Furthermore, OFWAT should require utili
ties to publicly report annually on key energy metrics, including energy 
intensity (e.g., kWh/m3 treated), greenhouse gas (GHG) emissions per 
unit of service, and progress toward net-zero goals. To accelerate the 
adoption of digital energy management systems, the regulator could 
offer co-funding or fast-track approval mechanisms for smart infra
structure investments.

Focusing on water companies, they should be required to formulate 
detailed energy strategies with measurable targets focused on reducing 
total electricity consumption, lowering process-level energy intensity, 
and increasing the share of renewable energy in their supply mix. To 
enhance operational efficiency, companies should adopt advanced 
process control systems, including artificial intelligence-based pump 
scheduling, variable frequency drives, and SCADA-integrated energy 

dashboards. Regular training in energy-efficient practices for opera
tional staff can help foster a culture of continuous improvement. In 
addition, water companies should pilot and scale up emerging low- 
energy technologies with demonstrated success. The integration of en
ergy key performance indicators (KPIs) into capital expenditure plan
ning and asset management strategies is essential to embed energy 
efficiency as a core operational priority.

From a water resources management perspective, the significant 
influence of water quality on energy performance highlights the 
importance of integrated water resource management. Policies aimed at 
improving upstream water quality can substantially reduce the need for 
energy-intensive downstream treatments. Key measures include the 
enforcement of stricter controls on agricultural runoff—such as vege
tated buffer zones along waterways and limitations on fertilizer and 
pesticide use near catchment areas. Complementary to this, green 
infrastructure solutions—such as constructed wetlands, riparian buffers, 
and sustainable drainage systems—can serve as effective pre-treatment 
buffers by intercepting and filtering pollutants before they enter raw 
water sources (Mmachaka et al., 2023). Advancing integrated catchment 
management and land-use planning that explicitly prioritizes water 
quality protection (Cerutti et al., 2019) will further reduce the energy 
burden of treatment processes. Collectively, these strategies promote 
both environmental sustainability and enhanced energy efficiency in the 
delivery of drinking water services.

4. Conclusions

The move to a sustainable water industry from an economic and 
environmental perspective requires the assessment of energy efficiency 
of water services. Understanding the levels of energy efficiency and how 
it evolves over time can help regulators and companies to make 
informed decisions. In doing so, it is fundamental to use reliable and 
robust approaches to avoid misleading conclusions. Traditionally, the 
assessment of performance in the water industry was conducted using 
linear programming methods such as DEA and FDH. These approaches 
could suffer from over-optimistic efficiency scores due to small sample 
size potentially generating less reliable results. To overcome this issue, 
this study uses the EAT method to estimate energy efficiency scores of a 
sample of water companies based on the energy consumed by them.

The main findings can be summarized as follows. The average energy 
efficiency of the English and Welsh water industry for the 2011–2020 
period was 0.767. This means that on average water companies could 
save 23.3 % of their energy consumption if they were energy efficient. 
Based on the energy used by water companies, on average they could 
save 63,479 MWh/year. On average, energy efficiency of WoCs was 
0.863 and potential energy savings were estimated at 22,632 MWh/ 
year. By contrast, the average energy efficiency of WaSCs was 0.709 
which involves 90,692 MWh/year as potential energy savings. The re
sults from the bootstrapped truncated regression showed that water 
treatment complexity, source of raw water and population density were 
the main factors that affected energy performance.

Based on the results of energy efficiency assessment, policy makers 
could identify how well water companies are doing in terms of energy 
performance and how much energy needs to be saved so that water 
services are provided in an efficient and sustainable way. Our results 
showed that industry’s energy performance deteriorated over time and a 
more efficient use of energy is recommended. It has also evidenced that 
the higher level of water treatment could lead to higher levels of energy 
consumption. There are several reasons behind the need of using 
advanced levels of treatment to produce drinking water. In the last 
years, the drinking water supply regulations in England and Wales have 
been amended several times establishing more restrictive thresholds for 
different pollutants (DWI, 2023). Moreover, river quality in catchments 
with intensive agriculture is likely to remain worse now than before the 
1960 s (Whelan et al., 2022) which involves advanced water treatment 
process to produce potable water. Hence, improving the quality of the 

Table 4 
External factors influencing energy efficiency of water companies: estimates of 
bootstrap truncated regression.

Variables Coefficient Bootstrap Std. 
Err.

z-stat p- 
value

Constant 5.097 1.062 4.799 0.000
% of water taken from 

boreholes
− 0.241 0.090 ¡2.684 0.007

% of water taken from rivers − 0.247 0.091 ¡2.716 0.007
Density − 0.154 0.075 ¡2.061 0.039
Number of treatment works 

for surface water
− 0.003 0.001 ¡2.127 0.033

Number of treatment works 
for groundwater

− 0.002 0.001 ¡4.027 0.000

% of water receiving high 
treatment

− 0.271 0.109 ¡2.507 0.012

Year − 0.011 0.005 ¡2.094 0.036
Sigma 0.152 0.013 11.890 0.000
X2 77.53 ​ ​ ​
p-value 0 ​ ​ ​

Energy efficiency score is the dependent variable.
Bold indicates that coefficients are statistically significant at 5% significance 
level.
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natural water bodies, i.e., raw water, for example, banning water dis
charges into them will generate positive impacts from an economic and 
environmental perspective.

Building upon the methodological and empirical contributions of 
this study, several avenues for future research are proposed to further 
advance the understanding of energy efficiency assessments in the water 
sector. One promising direction involves linking energy efficiency scores 
with GHG emissions, enabling a joint evaluation of energy and envi
ronmental performance. Such integration would enhance the usefulness 
of efficiency assessments for supporting the development of decarbon
ization strategies. In addition to estimate energy savings, future studies 
should also incorporate economic dimensions—such as cost- 
effectiveness or life cycle costs—thereby facilitating a more compre
hensive framework for evaluating and prioritizing investments in 
infrastructure modernization. While this study examines the influence of 
selected exogenous variables on the energy efficiency of water com
panies, further research could expand this analysis to include additional 
factors, such as the age of infrastructure, the integration of renewable 
energy systems, and the adoption of digital technologies. Including such 
variables would provide deeper insights into the drivers of energy per
formance and support more informed policy and management decisions 
in the water sector. Finally, alternative methods—such as fixed-effects 
regression models or propensity score matching—could be employed 
to better isolate the effects of organizational structure, infrastructure 
age, and geographical conditions on energy efficiency. These ap
proaches would enable more robust causal inference between energy 
efficiency scores and the key characteristics of WoCs and WaSCs.
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Parraga, M., Vuelvas, J., González-Díaz, B., Rodríguez-Urrego, L., & Fajardo, A. (2024). 
A Systematic Review of Isolated Water and Energy Microgrids: Infrastructure, 
Optimization of Management strategies, and Future Trends. Energies, 17(12), 2864.

Pinto, F. S., Simoes, P., & Marques, R. C. (2017). Water services performance: Do 
operational environment and quality factors count? Urban Water Journal, 14(8), 
773–781.

Plappally, A., & Leinhard, J. (2012). Energy requirements for water production, 
treatment, end use, reclamation, and disposal. Renewable and Sustainable Energy 
Reviews, 16, 4818–4848.

Rebai, S., Yahia, F. B., & Essid, H. (2019). A graphically based machine learning 
approach to predict secondary schools performance in Tunisia. Socio-Economic 
Planning Sciences, 70, Article 100724.

Rodríguez-García, R., Molinos-Senante, M., Hospido, A., Hernandez-Sancho, F., 
Moreira, M. T., & Feijoo, G. (2011). Environmental and economic profile of six 
typologies of wastewater treatment plants. Water Research, 45, 5997–6010.

Rodríguez-Merchan, V., Ulloa-Tesser, C., Baeza, C., & Casas-Ledon, Y. (2021). Evaluation 
of the Water–Energy nexus in the treatment of urban drinking water in Chile through 
exergy and environmental indicators. Journal of Cleaner Production, 317, Article 
128494.

Sala-Garrido, R., Maziotis, A., & Molinos-Senante, M. (2025). Assessing eco-efficiency of 
drinking water treatment plants: A synthetic index approach within water-energy- 
carbon nexus. Journal of Cleaner Production, 495, Article 145067.

Sala-Garrido, R., Mocholi-Arce, M., Maziotis, A., & Molinos-Senante, M. (2023). The 
carbon and production performance of water utilities: Evidence from the English and 
Welsh water industry. Structural Change and Economic Dynamics, 64, 292–300.

Sala-Garrido, R., Mocholi-Arce, M., Molinos-Senante, M., & Maziotis, A. (2021a). 
Marginal abatement cost of carbon dioxide emissions in the provision of urban 
drinking water. Sustainable Production and Consumption, 25, 439–449.

Sala-Garrido, R., Mocholi-Arce, M., Molinos-Senante, M., Smyrnakis, M., & Maziotis, A. 
(2021b). Eco-Efficiency of the English and Welsh Water companies: A Cross 
Performance Assessment. International Journal of Environmental Research and Public 
Health, 18, 2831.

Sala-Garrido, R., & Molinos-Senante, M. (2020). Benchmarking energy efficiency of 
water treatment plants: Effects of data variability. Science of the Total Environment, 
701, Article 134960.

Santana, M. V. E., Zhang, Q., & Mihelcic, J. R. (2014). Influence of water quality on the 
embodied energy of drinking water treatment. Environmental Science and Technology, 
48(5), 3084–3091.

See, K. F. (2015). Exploring and analysing sources of technical efficiency in water supply 
services: Evidence from Southeast asian public water utilities. Water Resources 
Economics, 9, 23–44.

Simar, L., & Wilson, P. W. (2007). Estimation and inference in two-stage, semiparametric 
models of production processes. Journal of Economics, 136(1), 31–64.

UN (United Nations) (2015). Sustainable development goals. Available at: https://susta 
inabledevelopment.un.org/?menu=1300.

Villegas, A., Molinos-Senante, M., & Maziotis, A. (2019). Impact of environmental 
variables on the efficiency of water companies in England and Wales: A double- 
bootstrap approach. Environmental Science and Pollution Research, 26, 31014–31025.

Walker, N. L., Norton, A., Harris, I., Williams, A. P., & Styles, D. (2019). Economic and 
environmental efficiency of UK and Ireland water companies: Influence of exogenous 
factors and rurality. Journal of Environmental Management, 241, 363–373.

Walker, N. L., Williams, A. P., & Styles, D. (2020). Key performance indicators to explain 
energy & economic efficiency across water utilities, and identifying suitable proxies. 
Journal of Environmental Management, 269, Article 110810.

Walker, N. L., Styles, D., Gallagher, J., & Williams, A. P. (2021). Aligning efficiency 
benchmarking with sustainable outcomes in the United Kingdom water sector. 
Journal of Environmental Management, 287, Article 112317.

Water UK (2025). Net Zero 2030 Routemap. Available at: https://www.water.org.uk/site 
s/default/files/2023-08/Water-UK-Net-Zero-2030-Routemap.pdf.

Whelan, M.J., Linstead, C., Worrall, F., Ormerod, S.J., Durance, I., Johnson, A.C., Owen, 
M., Wiik, E., Howden, N.J.K., Burt, T.P., Bo, D Oliver, D.M., Tickner,. (2022). Is 
water quality in British rivers “better than at any time since the end of the industrial 
revolution”?. Science of the Total Environment, 843, 157014.

Wilson, L., Lichinga, K. N., Kilindu, A. B., & Masse, A. A. (2021). Water utilities’ 
improvement: The need for water and energy management techniques and skills. 
Water Cycle, 2, 32–37.

Xiao, H., Zhou, Z., Ren, T., & Liu, W. (2022). Estimation of portfolio efficiency in non- 
convex settings: A free disposal hull estimator with non-increasing returns to scale. 
Omega (United Kingdom), 111, Article 102672.

Yang, L., Li, Y., Wang, D., Wang, Z., Yang, Y., Lv, H., & Zhang, X. (2022). Relieving the 
water-energy nexus pressure through whole supply chain management: Evidence 
from the provincial-level analysis in China. Science of the Total Environment, 807(Part 
2), Article 150809.

Zaman, D., Tiwari, M. K., Gupta, A. K., & Sen, D. (2021). Performance indicators-based 
energy sustainability in urban water distribution networks: A state-of-art review and 
conceptual framework. Sustainable Cities and Society, 72, Article 103036.

M. Molinos-Senante et al.                                                                                                                                                                                                                     Computers & Industrial Engineering 209 (2025) 111457 

10 

http://refhub.elsevier.com/S0360-8352(25)00603-5/h0185
http://refhub.elsevier.com/S0360-8352(25)00603-5/h0185
http://refhub.elsevier.com/S0360-8352(25)00603-5/h0185
http://refhub.elsevier.com/S0360-8352(25)00603-5/h0190
http://refhub.elsevier.com/S0360-8352(25)00603-5/h0190
http://refhub.elsevier.com/S0360-8352(25)00603-5/h0190
http://refhub.elsevier.com/S0360-8352(25)00603-5/h0195
http://refhub.elsevier.com/S0360-8352(25)00603-5/h0195
http://refhub.elsevier.com/S0360-8352(25)00603-5/h0195
http://refhub.elsevier.com/S0360-8352(25)00603-5/h0200
http://refhub.elsevier.com/S0360-8352(25)00603-5/h0200
http://refhub.elsevier.com/S0360-8352(25)00603-5/h0200
http://refhub.elsevier.com/S0360-8352(25)00603-5/h0205
http://refhub.elsevier.com/S0360-8352(25)00603-5/h0205
http://refhub.elsevier.com/S0360-8352(25)00603-5/h0205
http://refhub.elsevier.com/S0360-8352(25)00603-5/h0210
http://refhub.elsevier.com/S0360-8352(25)00603-5/h0210
http://refhub.elsevier.com/S0360-8352(25)00603-5/h0210
http://refhub.elsevier.com/S0360-8352(25)00603-5/h0210
http://refhub.elsevier.com/S0360-8352(25)00603-5/h0215
http://refhub.elsevier.com/S0360-8352(25)00603-5/h0215
http://refhub.elsevier.com/S0360-8352(25)00603-5/h0215
http://refhub.elsevier.com/S0360-8352(25)00603-5/h0220
http://refhub.elsevier.com/S0360-8352(25)00603-5/h0220
http://refhub.elsevier.com/S0360-8352(25)00603-5/h0225
http://refhub.elsevier.com/S0360-8352(25)00603-5/h0225
http://refhub.elsevier.com/S0360-8352(25)00603-5/h0225
http://refhub.elsevier.com/S0360-8352(25)00603-5/h0230
http://refhub.elsevier.com/S0360-8352(25)00603-5/h0230
http://refhub.elsevier.com/S0360-8352(25)00603-5/h0230
http://refhub.elsevier.com/S0360-8352(25)00603-5/h0235
http://refhub.elsevier.com/S0360-8352(25)00603-5/h0235
http://refhub.elsevier.com/S0360-8352(25)00603-5/h0250
http://refhub.elsevier.com/S0360-8352(25)00603-5/h0250
http://refhub.elsevier.com/S0360-8352(25)00603-5/h0250
http://refhub.elsevier.com/S0360-8352(25)00603-5/h0255
http://refhub.elsevier.com/S0360-8352(25)00603-5/h0255
http://refhub.elsevier.com/S0360-8352(25)00603-5/h0255
http://refhub.elsevier.com/S0360-8352(25)00603-5/h0260
http://refhub.elsevier.com/S0360-8352(25)00603-5/h0260
http://refhub.elsevier.com/S0360-8352(25)00603-5/h0260
http://refhub.elsevier.com/S0360-8352(25)00603-5/h0265
http://refhub.elsevier.com/S0360-8352(25)00603-5/h0265
http://refhub.elsevier.com/S0360-8352(25)00603-5/h0265
http://refhub.elsevier.com/S0360-8352(25)00603-5/h0270
http://refhub.elsevier.com/S0360-8352(25)00603-5/h0270
http://refhub.elsevier.com/S0360-8352(25)00603-5/h0270
http://refhub.elsevier.com/S0360-8352(25)00603-5/h0275
http://refhub.elsevier.com/S0360-8352(25)00603-5/h0275
http://refhub.elsevier.com/S0360-8352(25)00603-5/h0275
http://refhub.elsevier.com/S0360-8352(25)00603-5/h0275
http://refhub.elsevier.com/S0360-8352(25)00603-5/h0280
http://refhub.elsevier.com/S0360-8352(25)00603-5/h0280
http://refhub.elsevier.com/S0360-8352(25)00603-5/h0280
http://refhub.elsevier.com/S0360-8352(25)00603-5/h0285
http://refhub.elsevier.com/S0360-8352(25)00603-5/h0285
http://refhub.elsevier.com/S0360-8352(25)00603-5/h0285
http://refhub.elsevier.com/S0360-8352(25)00603-5/h0290
http://refhub.elsevier.com/S0360-8352(25)00603-5/h0290
http://refhub.elsevier.com/S0360-8352(25)00603-5/h0290
http://refhub.elsevier.com/S0360-8352(25)00603-5/h0295
http://refhub.elsevier.com/S0360-8352(25)00603-5/h0295
http://refhub.elsevier.com/S0360-8352(25)00603-5/h0295
http://refhub.elsevier.com/S0360-8352(25)00603-5/h0295
http://refhub.elsevier.com/S0360-8352(25)00603-5/h0300
http://refhub.elsevier.com/S0360-8352(25)00603-5/h0300
http://refhub.elsevier.com/S0360-8352(25)00603-5/h0300
http://refhub.elsevier.com/S0360-8352(25)00603-5/h0305
http://refhub.elsevier.com/S0360-8352(25)00603-5/h0305
http://refhub.elsevier.com/S0360-8352(25)00603-5/h0305
http://refhub.elsevier.com/S0360-8352(25)00603-5/h0310
http://refhub.elsevier.com/S0360-8352(25)00603-5/h0310
http://refhub.elsevier.com/S0360-8352(25)00603-5/h0310
http://refhub.elsevier.com/S0360-8352(25)00603-5/h0315
http://refhub.elsevier.com/S0360-8352(25)00603-5/h0315
https://sustainabledevelopment.un.org/?menu=1300
https://sustainabledevelopment.un.org/?menu=1300
http://refhub.elsevier.com/S0360-8352(25)00603-5/h0325
http://refhub.elsevier.com/S0360-8352(25)00603-5/h0325
http://refhub.elsevier.com/S0360-8352(25)00603-5/h0325
http://refhub.elsevier.com/S0360-8352(25)00603-5/h0330
http://refhub.elsevier.com/S0360-8352(25)00603-5/h0330
http://refhub.elsevier.com/S0360-8352(25)00603-5/h0330
http://refhub.elsevier.com/S0360-8352(25)00603-5/h0335
http://refhub.elsevier.com/S0360-8352(25)00603-5/h0335
http://refhub.elsevier.com/S0360-8352(25)00603-5/h0335
http://refhub.elsevier.com/S0360-8352(25)00603-5/h0340
http://refhub.elsevier.com/S0360-8352(25)00603-5/h0340
http://refhub.elsevier.com/S0360-8352(25)00603-5/h0340
https://www.water.org.uk/sites/default/files/2023-08/Water-UK-Net-Zero-2030-Routemap.pdf
https://www.water.org.uk/sites/default/files/2023-08/Water-UK-Net-Zero-2030-Routemap.pdf
http://refhub.elsevier.com/S0360-8352(25)00603-5/h0355
http://refhub.elsevier.com/S0360-8352(25)00603-5/h0355
http://refhub.elsevier.com/S0360-8352(25)00603-5/h0355
http://refhub.elsevier.com/S0360-8352(25)00603-5/h0360
http://refhub.elsevier.com/S0360-8352(25)00603-5/h0360
http://refhub.elsevier.com/S0360-8352(25)00603-5/h0360
http://refhub.elsevier.com/S0360-8352(25)00603-5/h0365
http://refhub.elsevier.com/S0360-8352(25)00603-5/h0365
http://refhub.elsevier.com/S0360-8352(25)00603-5/h0365
http://refhub.elsevier.com/S0360-8352(25)00603-5/h0365
http://refhub.elsevier.com/S0360-8352(25)00603-5/h0370
http://refhub.elsevier.com/S0360-8352(25)00603-5/h0370
http://refhub.elsevier.com/S0360-8352(25)00603-5/h0370

	Benchmarking energy efficiency in water utilities: Evidence from England and Wales
	1 Introduction
	2 Material and methods
	2.1 Methodology to estimate energy efficiency scores
	2.2 Methodology to identify and quantify variables influencing energy efficiency scores
	2.3 Case Study: Data and sample selection

	3 Results and discussion
	3.1 Optimal levels of energy use
	3.2 Energy efficiency and potential energy savings
	3.3 Factors influencing energy efficiency of water companies

	4 Conclusions
	CRediT authorship contribution statement
	Funding
	Declaration of competing interest
	Data availability
	References


