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 A B S T R A C T

Cognitive load refers to the mental effort required to encode, maintain, and manipulate information. Although 
previous electroencephalography (EEG) research has examined spectral biomarkers of cognitive load, most 
studies employed static task paradigms that average neural activity across entire difficulty levels. Such an 
approach presupposes that cognitive load remains constant within each level, thereby neglecting transient 
fluctuations that may arise during information processing. To address this limitation, we implemented a 
novel EEG-based incremental encoding paradigm to track dynamic changes in cognitive load over time. EEG 
was recorded from 24 healthy young adults performing the Corsi Block-Tapping Test, a visuospatial short-
term memory task with sequential stimulus presentation. Items were added one by one to working memory, 
simulating real-world cognitive demands. Spectral absolute power was estimated across theta (4–8 Hz), alpha 
(8–13 Hz), low beta (13–20 Hz), high beta (20–30 Hz), and gamma (> 30 Hz) bands in frontal and parietal 
regions. Independently of the number of encoded elements, spectral power increased relative to rest: frontal 
theta by 80.52%, parietal theta by 139.66%, and frontal alpha by 17.72%, reflecting general attention 
engagement. In contrast, low beta power decreased consistently as more items were encoded (𝑝 < 0.01, 
𝑟 > 0.5), arising as the most reliable biomarker of incremental memory load. A spectral shift toward higher 
beta frequencies was also observed with increased load. These results challenge the conventional understanding 
of theta as a biomarker of working memory and highlight beta-band dynamics as key to real-time cognitive 
monitoring in adaptive systems.
1. Introduction

Cognitive load refers to the mental effort required to perform a task, 
encompassing the amount of cognitive resources that must be mobilized 
to achieve a given objective [1]. Although definitions of cognitive 
load vary between disciplines, it is broadly understood as the demand 
placed on working memory, a limited-capacity system responsible for 
temporarily storing, maintaining, and manipulating information during 
task execution [2]. As task demands increase, the finite capacity of the 
brain to manage and allocate resources becomes a limiting factor [3]. 
This limitation means that as more cognitive resources are consumed 
by a task, fewer remain available for other processes or challenges. 
The cognitive load, therefore, results from the inherent demands of a 
given task in addition to the interaction between these demands and 
the individual’s cognitive capacity [4]. When the resources required for 
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a task or multiple tasks simultaneously exceed this capacity, cognitive 
overload occurs. This overload state decreases the individual’s ability 
to complete tasks effectively, as cognitive resources become saturated 
and cannot be efficiently redistributed [3,5]. Cognitive overload is 
particularly evident in modern societies, where the complexity and 
volume of information have increased dramatically. This phenomenon 
can have serious implications for both the worker’s mental health and 
workplace safety [6,7], as sustained overload may lead to chronic stress 
and cognitive fatigue. In professional settings that require precision 
and quick decision making, such as air traffic control, healthcare, and 
military operations, the risks of cognitive overload are even more 
pronounced. In these fields, human errors due to cognitive saturation 
can result in severe or even fatal outcomes [8,9]. Moreover, cognitive 
overload is not limited to professional environments. It also affects 
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daily life activities, such as driving [10], or recreational tasks like video 
gaming [11]. In these contexts, monitoring cognitive load can enhance 
performance, improve safety, and optimize user experiences. Therefore, 
identifying biomarkers to monitor cognitive load in real-time is of great 
interest across multiple domains.

Traditionally, cognitive load has been assessed using mental effort 
scales, among which the NASA Task Load Index (NASA-TLX) [12] and 
the Subjective Workload Assessment Technique (SWAT) [13] stand out. 
These tools are administered to subjects immediately after completing a 
task to rate perceived cognitive effort. In addition, its quick and simple 
implementation has contributed to their widespread use [1]. However, 
they present a series of limitations. Firstly, they are entirely subjec-
tive, since the perception of difficulty depends on personal factors 
that do not necessarily correlate with the actual cognitive load [14]. 
Furthermore, they do not provide real-time information, offering only 
a snapshot of the cognitive load after the task has been completed. This 
limitation complicates their use to prevent potential problems caused 
by cognitive overload during task execution.

In response to these limitations, physiological measures have emer-
ged as promising alternatives to obtain more accurate real-time data 
on cognitive load during task execution. These measures exploit the 
physiological responses of the human body, which are closely linked 
to cognitive processes [15]. For instance, heart rate variability pro-
vides insight into autonomic nervous system activity, reflecting stress 
levels. Eye tracking measures, such as pupil size and blink rate, of-
fer information on attention and effort. Body temperature and skin 
conductance can also indicate stress-related changes [15]. However, 
to capture rapid and moment-to-moment changes in cognitive load, 
brain-derived metrics are particularly valuable [16]. Among these, 
electroencephalography (EEG) stands out as a highly effective tool as 
it allows the non-invasive and real-time recording of brain electrical 
activity through electrodes placed on the scalp. Although EEG presents 
certain limitations, such as low spatial resolution and susceptibility 
to artifacts that require appropriate pre-processing, its high temporal 
resolution, lower cost compared to other neuroimage techniques, and 
portability, make it a highly useful technique for studying cognitive 
load [16].

The investigation of cognitive load using EEG commonly involves 
the application of two primary paradigms: (1) single task and (2) 
multiple task. The single task paradigm involves completing a single 
activity varying difficulty levels, while multitasks paradigms require 
participants to perform multiple tasks simultaneously [17]. Single task 
paradigms often rely on tasks that manipulate working memory de-
mands, such as the N-Back test or the Corsi Block-Tapping test [18,19]. 
In the former, cognitive load is adjusted by increasing the number 
of items participants must recall and compare [18]. Many studies 
using this approach report an increase in theta power in the frontal 
regions as task difficulty rises, along with a decrease in alpha power in 
the parietal areas [20,21]. Similar findings regarding the theta power 
have been noted in other single task paradigm. For example, Galkin 
et al. [22] opted to use the Corsi Block-Tapping test, which involves 
recalling and reproducing a sequence of spatial locations [19], also 
reporting increases in frontal theta power corresponding to rising task 
difficulty. However, results for the alpha power are mixed in literature. 
While some studies report alpha power decreases under high cognitive 
load [20,21], others, such as Mak et al. [23], have observed the 
opposite effect. In their investigation, participants performed increas-
ingly complex mirror-drawing tasks and they observed an increment in 
upper alpha power in frontal regions during high-demand conditions. 
On the other hand, multitask paradigms (2) induce cognitive load by 
requiring participants to manage multiple concurrent activities. For 
example, Puma et al. [24] studied multitasking environments, pro-
gressively increasing the number of sub-tasks participants needed to 
complete simultaneously. Their results revealed an increase in frontal 
theta power and in parietal alpha power as cognitive load intensified. 
While both approaches are valuable, the single task paradigm allows 
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for more controlled study of cognitive load by minimizing confounding 
factors [25]. Moreover, the single task paradigm is more commonly 
used in the literature due to its ability to offer a more controlled 
assessment of cognitive load [25].

Beyond the distinction between single- and multitask paradigms, 
another important dimension in cognitive load research lies in how 
task difficulty is labeled and analyzed. Most studies adopt traditional 
paradigms [21,23,26]. These traditional paradigms, such as the N-
Back or standard implementations of the Corsi Block-Tapping test, 
typically manipulate difficulty through discrete levels [27,28]. In the 
N-Back, for instance, participants must compare the current stimulus 
to one presented 𝑁 steps earlier, with cognitive demand increasing as 
𝑁 rises. In the Corsi task, participants observe a sequence of spatial 
locations that light up in a fixed order and are required to reproduce the 
same sequence [29]. Task difficulty increases by adding more elements 
to the sequence (for example, 5, 6, or 7 locations to remember). 
Each of these levels is treated as a distinct condition, and EEG data 
are segmented into short epochs within each trial and then averaged 
across repetitions of that level [27,28]. This approach assumes that the 
cognitive load remains stable throughout the entire level. However, 
this assumption overlooks the fact that mental effort often changes 
dynamically within a single level [30]. In the Corsi task, for example, 
the participant starts with an empty working memory and sequentially 
adds new items as they appear. Encoding the second or third element 
is generally less demanding than encoding the sixth or seventh. Yet, 
under the traditional static grading approach, all EEG epochs within 
that trial are treated as equally difficult, thereby masking the gradual 
buildup of cognitive load over time. To better capture these internal 
fluctuations, dynamic paradigms have been proposed [30,31]. Instead 
of aggregating EEG data by level, these paradigms track how cognitive 
load evolves during the sequential encoding of information. By aligning 
EEG signals to the moment each new item is introduced, researchers 
can examine how neural activity changes at finer temporal resolutions. 
This enables the identification of time-specific patterns that reflect the 
incremental demands placed on working memory [30,31]. Recent work 
by Liu et al. [32] reinforces the importance of this approach. With their 
study, they demonstrated that analyzing EEG signals at short timescales 
significantly improves cognitive load prediction.

Despite the advancements in cognitive load research, several lim-
itations remain within the existing literature. One prominent issue 
is the high inter- and intra- subject variability in EEG recordings. 
This is influenced by individual cognitive responses and variability 
in electrode placement, impedance, and other manual aspects of EEG 
setup [33–35]. In addition, anatomical differences such as head shape, 
skull thickness, and tissue conductivity further affect the recorded 
EEG signals [36]. All these factors influence the EEG signal responses, 
hindering the development of a universal cognitive load index and 
limiting the generalizability of the results. To address this, implement-
ing a consistent referencing method that accounts for each subject’s 
baseline cognitive state could help to reduce this variability. For in-
stance, Kakkos et al. [37] demonstrated that specific EEG spectral and 
connectivity features can successfully discriminate mental workload 
levels across different working memory tasks, revealing common neural 
mechanisms underlying cognitive demand. Their findings highlight the 
feasibility of developing general-purpose workload biomarkers that 
are robust across tasks. In this direction, implementing a consistent 
referencing method that accounts for each subject’s baseline cognitive 
state could help reduce variability and enhance the robustness of EEG-
based workload assessment. However, to date, this approach remains 
largely unexplored in cognitive load literature.

Another significant limitation in the study of cognitive load lies 
in the predominant reliance on traditional paradigms [21,23,27,28]. 
For example, in the N-Back test, epochs for levels 𝑁 = 2 or 𝑁 = 3
are grouped, EEG features are extracted, and comparisons are made 
across these difficulty levels [20,21,27]. However, real-world scenarios, 
such as performing a surgical procedure, driving in a complex traffic 
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Fig. 1. Snapshot of the Corsi-Block Tapping test in ITACA [38].
environment, or managing air traffic, often involve rapidly fluctuating 
cognitive demands rather than sustained difficulty over time [30]. In 
these contexts, cognitive load can increase quickly as more information 
must be retained and processed in working memory. For instance, a sur-
geon may need to remember a sequence of steps while simultaneously 
adapting to unexpected complications, or an air traffic controller must 
track an increasing number of aircraft within their sector. To enable 
real-time monitoring of cognitive load in such dynamic scenarios, it 
is important to identify biomarkers capable of assessing the sequential 
integration of new information into working memory. Consequently, 
exploring tests with finer resolution, which enable a more detailed ex-
amination of these incremental encoding processes, could significantly 
enhance their suitability for practical, real-time use. Nevertheless, to 
the best of our knowledge, this type of analysis, focused on the devel-
opment of biomarkers capable of tracking rapid changes in cognitive 
load, remains underexplored.

Based on the identified limitations in previous studies, we hypoth-
esized that the use of EEG to study incremental element encoding 
could lead to the identification of highly sensitive biomarkers of rapidly 
cognitive load fluctuations. These biomarkers would offer improved 
resolution for monitoring real-time changes in cognitive load, mak-
ing them particularly valuable for real-world applications. Thus, the 
main objective of this study is to examine spectral changes in EEG 
activity in response to incremental encoding of short-term memory 
elements during the Corsi Block-Tapping test. To achieve this goal, 
we analyzed EEG data from a cohort of 24 young, healthy subjects 
using a methodology designed to reduce inter-subject variability. The 
main novelties and contributions of this study are twofold: (1) the 
identification of highly sensitive spectral EEG biomarkers that pro-
vide a detailed representation of cognitive load fluctuations during 
incremental element encoding; and (2) the reduction of inter-subject 
variability by leveraging baseline EEG parameters from resting-state 
recordings. This framework lays the groundwork for real-time cognitive 
load monitoring in complex, high-demand environments.

2. Materials and methods

2.1. Subjects and signals

For this research, we utilized a database compiled for the validation 
of ITACA, an application intended to design, conduct, and evaluate 
neurofeedback studies [38]. The database includes EEG recordings 
obtained during cognitive tests in 24 healthy participants (14 women, 
10 men) with an average age of 24.47 ± 4.17 years. All participants 
received a full explanation of the study procedures, the type of data 
to be collected, how their data would be analyzed, and the measures 
in place to protect their privacy. Each participant provided written 
informed consent prior to participation. All experimental procedures 
were carried out under a strict internal protocol in accordance with 
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the Declaration of Helsinki [37], ensuring participant safety, data confi-
dentiality, and adherence to recognized international ethical standards. 
The EEG signals were recorded using a g.USBamp amplifier (g.TEC, 
Austria) equipped with 16 active Ag/AgCl electrodes located in F7, F3, 
Fz, F4, F8, FCz, C3, Cz, CPz, P3, Pz, P4, PO7, POz, and PO8, according 
to the international 10-10 system [39], with a sampling frequency of 
256 Hz. There are two types of recordings in this database: (1) resting-
state data, during which participants remained with their eyes open for 
three minutes without engaging in any cognitive tasks; and (2) EEG syn-
chronized with events presented during the execution of each cognitive 
test. All recordings were carried out using MEDUSA© Platform [40], 
specifically employing the publicly available Recorder [41] and ITACA 
Corsi Block-Tapping Test [42] applications.

2.2. Corsi block-tapping test

Among the different cognitive psychology tests, the Corsi Block-
Tapping test, which assesses visuo-spatial short term working memory, 
was selected as the central focus of the study [29]. Fig.  1 shows 
a screenshot of the implementation of this test in MEDUSA© Plat-
form. This test involves two stages. First, the application presents the 
sequence of blocks that the user has to memorize by highlighting 
them in a specific order. The stimulus duration was 500 ms, and the 
inter-stimulus interval was set to 1000 ms. Once the whole sequence 
has been presented, the user has to repeat the sequence in the same 
order by clicking the corresponding blocks. As users respond correctly, 
the length of the presented sequence increases, thereby progressively 
increasing the maximum cognitive demands. This gradual increase 
forces users to encode more information until they reach the limit of 
their working memory capacity. At that point their resources become 
saturated, making it impossible to retain all the information [3]. The 
decision to focus on the Corsi Block-Tapping test lies in that its structure 
allows for a controlled progression of cognitive load through discrete, 
countable events. This enables to study how cognitive load evolves 
not only as general task difficulty increases, but also within a fixed 
difficulty level, as new elements are sequentially encoded. These char-
acteristics of the Corsi Block-Tapping test make it particularly suitable 
for studying how cognitive load evolves in response to incremental 
element encoding.

In the implementation provided by the ITACA framework, the test 
is structured into levels, series, and trials, following the same approach 
as described in [43]. Each difficulty level (i.e., each sequence length) 
consists of three series, and each series comprises three trials. To pass 
a series, the user must correctly complete at least two of the three 
trials. Then, to advance to the next level, the user must successfully 
complete all three series. This means correctly answering at least six 
trials out of nine (two per series). Additionally, in ITACA’s default 
implementation, the test starts with an initial sequence length of 4, 
which progressively increases. Due to these rules, not all users reach 
the same level, as memory capacity varies between individuals, with 9 
being the maximum possible number of items to remember.
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Table 1
Distribution of available epochs per subject and class following the preprocessing stage.
 Subject Class 0 Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 
 S01 170 25 25 25 25 17 8 0 –  
 S02 141 16 16 16 16 7 – – –  
 S03 144 7 7 7 7 – – – –  
 S04 160 28 28 28 28 19 10 3 –  
 S05 156 20 20 20 20 11 4 – –  
 S06 137 24 24 24 24 15 7 – –  
 S07 169 15 15 15 15 8 1 – –  
 S08 174 21 21 21 21 12 3 – –  
 S09 163 17 17 17 17 8 1 – –  
 S10 156 30 30 30 30 21 12 6 –  
 S11 150 17 17 17 17 8 1 – –  
 S12 167 36 36 36 36 27 18 10 3  
 S13 172 23 23 23 23 14 8 0 –  
 S14 154 19 19 19 19 10 1 – –  
 S15 132 22 22 22 22 14 6 – –  
 S16 149 27 27 27 27 18 10 1 –  
 S17 168 24 24 24 24 10 1 – –  
 S18 164 19 19 19 19 10 1 – –  
 S19 137 34 34 34 34 25 16 8 1  
 S20 154 17 17 17 17 8 0 – –  
 S21 143 30 30 30 30 21 13 6 –  
 S22 136 25 25 25 25 17 8 0 –  
 S23 164 23 23 23 23 14 5 – –  
 S24 143 28 28 28 28 19 11 3 –  
 Total 3703 547 547 547 547 333 145 37 4  
2.3. EEG preprocessing

Before characterizing cognitive load during task execution, it is 
necessary to preprocess the signal to remove noise and artifacts, thereby 
ensuring data quality. For this purpose, MEDUSA© software was used
[40]. First, a finite impulse response (FIR) band-pass filter of order 
1000 was applied between 0.5 and 60 Hz to encompass relevant brain 
activity, along with a notch filter of order 1001 between 49 and 51 Hz 
to eliminate power line interferences [44].

Next, the signal was segmented into 1-s epochs starting from the 
onset of each stimuli, marking the timestamp when the brain’s re-
sponse is triggered. This approach is designed to capture cognitive 
processes related to the discrete encoding and storage of information. 
Resting-state recordings were similarly segmented into 1-s epochs for 
consistency. To ensure artifact-free data, epochs were automatically 
rejected if the amplitude exceeded a threshold of 𝜎 = 4 times the 
standard deviation in at least two samples within one or more channels, 
following the guidelines in [45]. This method accounts for a broad 
range of artifacts, including eye blinks, muscle activity, and electrode 
noise, by directly removing contaminated epochs. The artifact rejection 
process was implemented using the MEDUSA© software, which in-
cludes validated routines for signal preprocessing [40]. The remaining 
clean epochs were then categorized into different groups for subsequent 
analysis. Resting-state epochs were assigned to class 0, representing 
the reference condition with absence of cognitive load. For the Corsi 
Block-Tapping test, cognitive load was modeled based on the number of 
elements that have been encoded in working memory during an specific 
trial, as illustrated in Fig.  2. For example, epochs corresponding to the 
first stimulus were assigned to class 1, reflecting minimal cognitive load 
since no prior elements had been encoded. Similarly, epochs related to 
the second stimulus were assigned to class 2, reflecting the encoding 
of one prior element, and so on. This segmentation strategy is a key 
methodological contribution of our study, as it has not been applied in 
previous cognitive load research, and enables a more precise analysis 
of how cognitive load evolves as additional elements are encoded.

It is worth noting that not all participants reached the higher task 
difficulty levels, leading to a class imbalance. Classes 8 and 9 had very 
few epochs available and were therefore excluded from the analysis. 
Likewise, only epochs associated with correctly responded trials were 
included, as errors could introduce confounding factors. For instance, 
4 
Fig. 2. Epoch labeling based on the number of stimuli encoded in working memory 
within each trial, corresponding to each level of difficulty. Classes 8 and 9 were 
excluded from analysis due to an insufficient number of observations.

incorrect trials may reflect lapses in attention or other cognitive pro-
cesses unrelated to the encoding of additional elements. For this reason, 
all epochs from incorrect trials were discarded, as done in [20]. The 
final number of epochs available for each class and each subject after 
the preprocessing stage can be seen in Table  1.

2.4. Spectral analysis for cognitive load characterization

To analyze and characterize how cognitive load impacts information 
encoding, this study focused on features extracted from the spectral 
domain of EEG signals in the frontal and parietal regions, as these 
areas are known to be highly involved in cognitive processes [46]. 
The frontal region, primarily responsible for executive control and 
attentional regulation, and the parietal region, critical for visuospa-
tial processing [46]. In particular, we examined the absolute power 
within five frequency bands: theta (4–8 Hz), alpha (8–13 Hz), low beta 
(13–20 Hz), high beta (20–30 Hz), and gamma (>30 Hz) [47]. Although 
relative power is commonly used in EEG studies, we opted for absolute 
power because it allows for a more precise identification of where 
changes in activity occur [48]. Relative power, by normalizing the 
power within a specific frequency band to the total power across bands, 
can obscure the interpretation of changes. For instance, a decrease in 
one band’s relative power might result not from an actual reduction 
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in activity within that band but from an increase in another band’s 
absolute power, while the original band remains unchanged.

To obtain absolute power values, we first calculated the power 
spectral density (PSD) for each EEG channel using the Welch method. 
To do so, a Hanning window of 500 ms was applied with 80% segment 
overlap. With a sampling rate of 256 Hz, this corresponds to 128 points 
per window in the Fast Fourier Transform (FFT), yielding a frequency 
resolution of 1 Hz. From the resulting PSD, we extracted absolute power 
values for each frequency band. We then averaged these values across 
frontal electrodes (F7, F3, Fz, F4, F8, FCz) and parietal electrodes (P3, 
Pz, P4, PO7, POz, PO8), which are key regions involved in attention 
and working memory processes [46]. The delta band (<4 Hz) was 
excluded from the analysis due to the limited segment length used 
for spectral estimation. Reliable power estimation typically requires at 
least 3–4 cycles per frequency within each epoch [49]. At 4 Hz, we 
observed 4 cycles per second, barely meeting this threshold, whereas 
lower frequencies like 1–3 Hz yield fewer than 4 cycles. This makes the 
estimation unreliable. Thus, to ensure spectral accuracy, we restricted 
our analysis to frequencies above 4 Hz. In addition, delta activity is 
predominantly associated with sleep and non-cognitive processes, and 
thus has limited relevance for the analysis of task-related cognitive load 
in awake, healthy participants [50,51].

We performed two types of analyses using the absolute power data. 
First, we analyzed overall power differences between the resting state 
and task conditions within the frontal and parietal regions. Specifically, 
the power values were averaged across all epochs recorded during the 
task, regardless of the class. This approach aimed to capture general 
cognitive engagement by comparing the resting state with the overall 
brain activity during task execution. Second, we explored cognitive 
load dynamics during the encoding of discrete information in working 
memory. The aim was to focus on differences across individual task 
classes in the frontal and parietal regions. Given the inherent inter-
subject variability in EEG power [33], normalization was used to adjust 
for baseline differences in each participant’s resting-state power [52]. 
Specifically, mean power in each frequency band during resting state 
was subtracted from task-based power values for each class and ex-
pressed as a percentage increment relative to the resting-state power. 
This procedure reduces individual variability, providing a more reliable 
basis for assessing cognitive load changes across task classes.

Following these analyses, statistical tests were performed for each 
approach. Firstly, we applied the Shapiro–Wilk test to assess the nor-
mality of the data distributions. As most bands returned p-values 
below 0.05, normality was rejected. Consequently, for the comparison 
between resting and task conditions, we applied the Wilcoxon signed-
rank test to absolute power values across all frequency bands in the 
frontal and parietal regions to assess overall cognitive engagement. For 
the analysis across task classes, we applied the same test to normal-
ized power increments for each frequency band, evaluating changes 
associated with the increasing number of encoded elements. In both 
cases, we set a significance level of 0.05 and applied a false discovery 
rate (FDR) correction using the Benjamini–Hochberg method to account 
for multiple comparisons [53]. Additionally, to quantify the magnitude 
of the observed effects, we estimated the effect size using the rank-
based correlation coefficient 𝑟, which is appropriate for non-parametric 
data [54]. According to established thresholds, 𝑟 > 0.5 indicates a large 
effect size, while 𝑟 > 0.3 is considered a medium effect [54].

3. Results

In this section, we present the findings from the spectral power anal-
ysis for both approaches: overall power differences between the resting 
state and task conditions, and power variations with incremental el-
ement encoding. Table  2 summarizes the results for both the frontal 
and parietal regions. In this table, we report the absolute power in 
each band for both the resting state and task conditions. Additionally, 
corrected p-values are displayed. These p-values indicate statistically 
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significant differences across all frequency bands between the resting 
and task conditions, which suggests a general power increase due to 
cognitive engagement during task execution.

For the analysis of cognitive load dynamics in the encoding of 
discrete information elements, each frequency band is represented in 
Fig.  3. In the theta band, no statistically significant differences were 
found between the cognitive load classes, where each class corre-
sponds to the number of elements being encoded into working memory
(Fig.  3A). Similarly, in the alpha band, hardly any significant differ-
ences were observed as the number of encoded elements increased
(Fig.  3B). For the low beta band, we observed a clear downward 
trend in baseline-normalized power as cognitive load increased, with 
statistically significant differences identified between nearly all classes
(Fig.  3C). In the high beta band, baseline-normalized power also 
showed a downward trend in the frontal and parietal channels, with 
statistically significant differences appearing primarily between lower 
and higher classes (Fig.  3D). Lastly, in the gamma band we also found 
statistically significant differences in absolute power distributions in 
both regions (Fig.  3E). The most differences are observed in the classes 
where fewer elements are encoded.

4. Discussion

4.1. Cognitive load characterization

We investigated the spectral power changes across various EEG 
frequency bands during the encoding of information in a working 
memory task, focusing specifically on frontal and parietal regions. 
Unlike traditional paradigms that rely on fixed difficulty levels, our 
study was designed to emulate the dynamic nature of cognitive load as 
experienced in real-world tasks. Specifically, EEG dynamics is analyzed 
in response to the incremental encoding of individual elements with the 
Corsi Block-Tapping test. This fine-grained analysis offers novel insights 
into the neural mechanism underlying cognitive load fluctuations and 
highlights potential biomarkers for real-time monitoring. A summary 
of the findings from other relevant studies alongside our results is 
presented in Table  3.

The primary strength of our approach is the dynamic analysis of cog-
nitive load fluctuations. Traditional methods typically assign a uniform 
difficulty label to entire levels and average EEG activity across them to 
extract general patterns of cognitive demand [20,21,23,27,55]. While 
this strategy is useful for identifying broad trends, it inherently assumes 
that cognitive load remains stable throughout the task level, overlook-
ing the fact that mental effort often varies significantly as information is 
progressively encoded. In contrast, our approach captures the evolving 
nature of cognitive load by aligning the EEG analysis with the tem-
poral structure of the task itself, specifically the sequential encoding 
of new elements in working memory. This allows for a finer-grained 
characterization of how mental effort increases within a single level, 
providing greater sensitivity to subtle neural fluctuations. Moreover, 
our approach aligns with recent findings from [32], who emphasize 
the importance of tracking EEG changes on a moment-to-moment basis 
to better detect variations in cognitive demand. Their results support 
the broader view that EEG signals reflect fast, transient mental states 
that unfold over short time windows. This validates our approach 
of analyzing within-level dynamics, as opposed to aggregating across 
fixed difficulty levels, because it provides a more precise way to assess 
how cognitive load evolves throughout the task. In addition, this is 
particularly valuable for applications requiring dynamic monitoring, as 
it reflects the rapid shifts in mental effort often overlooked by conven-
tional approaches. This granularity aligns more closely with real-life 
tasks that demand continuous adaptation and dynamic allocation of 
cognitive resources.

Our findings regarding the theta band (4–8 Hz) align with the 
existing literature, showing an statistically significant increase in theta 
power relative to the resting state in the frontal and parietal regions. 
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Table 2
Comparison of averaged EEG absolution power values between resting state and cognitive tasks within frontal and parietal regions.
 Frontal region
 Frequency band Resting (μV2) Cognitive task (μV2) p-value Percentage variation 
 Theta (4–8 Hz) 0.077 0.139 3.58e−06 80.52%  
 Alpha (8–13 Hz) 0.079 0.093 0.033 17.72%  
 Low Beta (13–20 Hz) 0.042 0.049 0.033 16.67%  
 High Beta (20–30 Hz) 0.044 0.053 0.033 20.45%  
 Gamma (>30 Hz) 0.047 0.070 0.004 48.94%  
 Parietal region
 Theta (4–8 Hz) 0.058 0.139 1.19e−06 139.66%  
 Alpha (8–13 Hz) 0.071 0.107 1.11e−04 50.70%  
 Low Beta (13–20 Hz) 0.048 0.069 1.81e−04 43.75%  
 High Beta (20–30 Hz) 0.038 0.062 3.50e−05 63.16%  
 Gamma (>30 Hz) 0.050 0.100 1.13e−05 100.00%  
P-values were calculated using the Wilcoxon signed-rank test and corrected for multiple comparisons using the Benjamini–Hochberg method. 
All comparisons are statistically significant (p-value < 0.05).
Fig. 3. Analysis of baseline-normalized power across frequency bands and task classes. Each row corresponds to a specific frequency band. A: theta (𝜃, 4–8 Hz); B: alpha (𝛼, 
8–13 Hz); C: low beta (L𝛽, 13–20 Hz); D: high beta (H𝛽, 20–30 Hz); E: and gamma (𝛾, >30 Hz). For each band, the left display violin plots and overlaid boxplots of absolute 
baseline-normalized power increments in the frontal (left plot) and parietal regions (right plot). The violin plots illustrate the distribution shapes for each class, while the central 
line within the boxplots represents the median power increment, and the upper and lower lines indicate the interquartile range. The central panel presents matrices of corrected
p-values from pairwise statistical comparisons between classes. Each matrix is divided into two triangular regions: the lower-left triangle corresponds to comparisons within the 
frontal region, and the upper-right triangle corresponds to comparisons within the parietal region. Non-white cells in the matrices indicate statistically significant differences (p <
0.05) between classes. Statistical comparisons were performed using the Wilcoxon rank-sum test with a Benjamini–Hochberg FDR correction for multiple comparisons. The rightmost 
panel shows the corresponding effect size matrices (r -values), allowing interpretation of the magnitude of these differences. Darker shades represent larger effect sizes, with values 
above 0.5 indicating large effects and values above 0.3 representing medium effects.
6 
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Table 3
Summary of findings from the literature analyzing cognitive load through EEG and extracting frequency features.
 Authors Task Cognitive domain Signal analysis Extracted features Results  
 Pergher et al. [20] N-Back Test Visuospatial Task level averaging P300 amplitude ERPs, 

power in 𝜃 and 𝛼
↑ Power in 𝜃 with CL in F region 
↓ Power in 𝛼 with CL in P region

 

 Brouwer et al. [27] N-Back Test Visuospatial Task level averaging ERPs, power between 2 
and 20 Hz

↓ Power in 𝛼 with CL in Pz  

 Plechawska et al. [28] Arithmetic tasks Arithmetic Task level averaging Power in 𝛿, 𝜃, 𝛼, low 𝛽, 
and high 𝛽

Higher correlation between CL 
level and 𝛽-band characteristics

 

 Mak et al. [23] Mirror drawing Motor planning Task level averaging Power in 𝛿, 𝜃, 𝛼, 𝛽, 𝛾
bands

↑ Power in 𝛼 and 𝜃 with CL in F 
region

 

 So et al. [55] Arithmetic, 
visual-motor, and 
linguistic tasks

Arithmetic, verbal and 
motor planning

Task level averaging Power in 𝜃, 𝛼, 𝛽, and 𝛾
bands

↑ Power in 𝜃 with CL in F region  

 Puma et al. [24] Priority Management 
Task

Sustained attention Task level averaging Mean power at 𝜃 and 𝛼 ↑ Power in 𝜃 with CL in F region 
↑ Power in 𝛼 with CL in P region

 

 Wang et al. [21] N-Back Test Visuospatial Task level averaging Mean, variance, 
skewness and kurtosis; 
𝜃, 𝛼, 𝛽, and 𝛾 powers

↑ Power in 𝜃 with CL in F region 
↓ Power in 𝛼 with CL in P region

 

 Galkin et al. [22] Corsi Block-Tapping 
Test

Visuospatial Task level averaging 𝜃, 𝛼, and 𝛽 powers ↑ Power in 𝜃 with CL in F region 
↓ Power in 𝛼 with CL in C and P 
regions

 

 Schapkin et al. [56] Multiple 
stimulus–response 
mappings

Sustained attention and 
motor planning

Task level averaging 𝜃, 𝛼, low 𝛽, and high 𝛽
powers

↑ Power in 𝜃 with CL widespread 
↓ Power in 𝛼 with CL widespread 
↑ Power low 𝛽 with performance 
decline in T 
↑ Power high 𝛽 with performance 
decline in C, P, and PT regions

 

 Zammit et al. [57] Matching-to-sample 
task

Visuospatial Task level averaging 𝛼 and 𝛽 powers ↓ Power in 𝛼 with CL in F and P 
regions 
↓ Power in 𝛽 with CL in F and P 
regions

 

 Pavlov et al. [58] Memorizing 5-6-7 
elements forward and 
backwards

Visuospatial Task level averaging 𝜃, 𝛼, low 𝛽, and high 𝛽
powers

↑ Power in 𝜃 with CL in the 
midline 
↓ Power in low 𝛼 with CL in P 
and F regions 
↓ Power in low 𝛽 with CL in PO 
regions 
↑ Power in high 𝛽 with CL in F 
and P regions

 

 This work Corsi Block-Tapping 
Test

Visuospatial IEEa Baseline-normalized 
power in 𝜃, 𝛼, low 𝛽, 
high 𝛽, and 𝛾 bands

No variation in 𝜃&𝛼 powers with 
IEE in F and P 
↓ Power in low 𝛽 with IEE in F 
and P regions 
↓ Power high 𝛽 with IEE in F and 
P regions 
↑ 𝛾-power variability in F and P 
regions

 

a Note that all studies except this one averaged epochs across stimuli per task level, instead of considering the number of elements being encoded in real-time. CL: cognitive 
load. ERPs: Event related potentials. Frequency bands: 𝜃 (theta), 𝛼 (alpha), 𝛽 (beta), 𝛾 (gamma). Regions: F (Frontal), P (Parietal), C (Central), T (Temporal), O (Occipital). IEE: 
incremental element encoding.
This rise in theta power has been associated with cognitive engage-
ment, particularly in tasks that involve working memory and mental 
effort [46]. However, while previous studies demonstrated theta power 
increases with overall task difficulty [20,21,23,55], our results reveal 
that frontal theta power remains stable during incremental element 
encoding (Fig.  3A). This suggest that theta power reflects general task 
engagement but does not track the stepwise increases in cognitive 
demand associated with encoding additional items. This distinction 
implies that theta activity may be more closely related to task initiation 
and sustained attention than to dynamic encoding processes. Thus theta 
band may have a limited utility as a biomarker for detecting rapid 
cognitive load fluctuations in real-time.

The dynamics of alpha power in working memory tasks have shown 
mixed results in the literature, as summarized in Table  3. Some studies 
report alpha desynchronization (i.e., decreased alpha power) with 
increasing task difficulty, especially in visuospatial memory tasks such 
as the N-Back or Corsi Block-Tapping test [20–22,27]. This has been 
linked to increased cognitive effort during encoding and maintenance. 
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Others, however, find alpha synchronization (i.e., increased alpha 
power) under higher load, particularly in tasks involving attentional 
control or motor planning, such as mirror drawing [23] or priority 
management [24]. These increases are interpreted as reflecting in-
hibitory processes that suppress distractions and help maintain task 
focus. Still, other task types, such as arithmetic or language-based 
paradigms, show more variable alpha responses depending on whether 
they involve verbal or spatial processing [28,55]. In our study, we 
observed a statistically significant increase in alpha power (8–13 Hz) 
during task conditions relative to the resting state in both frontal and 
parietal regions, as shown in Table  2. However, when examining alpha 
power across individual elements being encoded, significant differences 
were minimal. Only a slight trend of decreasing alpha power in the 
parietal region has been shown as the number of encoded elements 
increased (Fig.  3B). This trend is consistent with prior visuospatial 
memory findings, linking alpha desynchronization to the retention 
of information in working memory [20–22,27]. These results suggest 
that alpha-band responses are highly sensitive to the specific cognitive 
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demands of a task, whether spatial, verbal, motor, or attentional, rather 
than to general task difficulty alone. In our case, alpha modulation 
was aligned with the expected pattern for visuospatial tasks but failed 
to reflect dynamic changes in cognitive load. Therefore, based on our 
results, alpha power does not appear to be a suitable biomarker for real-
time monitoring of cognitive load, as it fails to track the rapid changes 
associated with encoding additional elements.

The most significant findings in our study were observed in the 
beta bands, especially in the frontal region, which is known for its role 
in executive functions, attention, and working memory control [50]. 
With the incremental element encoding approach, we identified a 
progressive decrease in baseline-normalized power within the low beta 
band (13–20 Hz) as more elements were encoded. This trend exhibited 
statistically significant differences across nearly all levels of encoded 
elements (Fig.  3C), with large effect sizes (𝑟 > 0.5) observed in most 
comparisons, both in frontal and parietal regions, reinforcing the ro-
bustness of the observed pattern. This frontal low beta desynchroniza-
tion has been linked in previous work to the flexible reconfiguration 
of large-scale neural circuits supporting cognitive control. Specifically, 
it is thought to reflect a release of network inhibition, enabling tran-
sient communication between task-relevant brain regions [59,60]. The 
prefrontal cortex plays a central role in this process by coordinating dis-
tributed activity as cognitive load increases. In our task, as more spatial 
locations were encoded, reduced beta synchrony may reflect a greater 
need for dynamic allocation of resources across the frontoparietal 
network. This would be consistent with the involvement of prefrontal 
mechanisms in managing increasing memory demands. All these find-
ings are aligned with prior literature. For instance, Zammit et al. [57] 
observed a reduction in beta power during a matching-to-sample task, 
while Pavlov et al. [58] reported a decrease in low beta power during 
the retention of 5–7 elements in working memory. However, a key dis-
tinction lies in our methodological approach: instead of averaging brain 
activity across broad task difficulty levels, we incrementally analyzed 
the EEG signal within levels. This approach enhances sensitivity to the 
neural changes accompanying gradual increases in cognitive load and 
highlights the utility of low beta power as a fine-grained indicator of 
encoding demands. We hypothesize that these changes allow cognitive 
resources to be allocated efficiently as task demands increase. Impor-
tantly, this finding shows that low beta desynchronization is highly 
sensitive to incremental cognitive load. This interpretation is consistent 
with findings by Kakkos et al. [37], who identified task-independent 
EEG spectral fingerprints that reliable distinguish between levels of 
mental workload. Therefore, the results support the notion that beta 
desynchronization may be a potential biomarker for detecting rapid 
fluctuations in cognitive load and applying in real-time monitoring.

Respectively, high beta (20–30 Hz) showed a statistically significant 
but less pronounced power decrease, particularly between encoding 
early and later elements. In the corrected p-values matrix for frontal 
and parietal regions (Fig.  3D), the frontal region shows clear significant 
decreases in power for classes 1–3 compared to classes 4–7. A similar 
but less marked pattern appears in the parietal region. Moreover, effect 
size analysis revealed medium to large effects in both regions. These 
results align with Chikhi et al. [46], who reviewed evidence showing 
low beta is more sensitive to cognitive load than high beta. However, 
our findings suggest a progressive shift in neural desynchronization, 
with higher-frequency beta bands becoming more engaged as cognitive 
demands increase. This likely reflects a redistribution of neural activity, 
where desynchronization transitions from low to high beta to recruit 
additional resources for higher cognitive processing. Interestingly, our 
results contrast with Schapkin et al. [56]. They observed an increase in 
high beta power during complex stimulus–response tasks and attributed 
it to motor cortex activations and challenges in response preparations. 
Their task involved multiple stimulus–response mappings combined 
with the inhibition of irrelevant stimulus–response mappings, likely 
engaging additional motor processes [61]. In contrast, the Corsi Block-
Tapping task primarily involves cognitive processes, as it focuses on 
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encoding and retaining spatial information without significant motor 
demands [19,62]. This distinction suggests that the high beta power 
decrease in our study reflects a role in higher-order cognitive demands 
rather than motor-related processes.

Regarding gamma activity (>30 Hz), a distinct pattern emerged 
in the parietal regions. Significant gamma power desynchronization 
was observed in classes 3, 4, and 5 compared to classes 1 and 2. 
In contrast, classes 6 and 7 showed a notable increase in gamma 
power variability. This may be due to the noisier nature of the gamma 
band [63] and the smaller number of examples in these higher classes. 
In the frontal region, median gamma power remained stable, but its 
variability across epochs increased (Fig.  3E). This suggests that frontal 
gamma activity does not directly scale with the number of encoded 
elements. Instead, the variability may reflect diverse strategies used by 
individuals to manage the cognitive load of encoding multiple items. 
While few studies have analyzed gamma power in working memory 
tasks, our findings align with Xu et al. [64], who linked gamma dy-
namics to subjective perceptions of cognitive load. Unlike their focus on 
functional connectivity, our results emphasizes spectral power changes, 
suggesting that gamma variability could reflect the heterogeneity of 
cognitive strategies rather than consistent neural activations patterns.

Our results also reveal important differences in the level of granular-
ity at which different frequency bands reflect cognitive load. Theta and 
alpha power increased significantly when comparing task performance 
to the resting state, indicating general task engagement and attentional 
processes. However, they did not reliably track transient changes dur-
ing the encoding phase. In contrast, both low and high beta bands 
showed progressive modulation as more items were encoded, capturing 
fine-grained, within-level variations in cognitive load. Among them, 
low beta power emerged as the most sensitive marker for distinguishing 
between successive encoding steps, making it a robust candidate for dy-
namic load monitoring. Gamma activity, on the other hand, exhibited 
increased variability under higher cognitive demands. As previously 
discussed, this may reflect the involvement of gamma oscillations in 
individual encoding strategies, which likely vary across participants. 
These results underscore the importance of adopting high-resolution 
temporal analysis when studying cognitive load.

All these findings highlight the involvement of both frontal and 
parietal regions in the encoding process, each contributing according to 
its specific functional role. Significant changes in EEG signal power are 
observed in these regions when compared to resting state, indicating 
their activation during the task. Notably, this broader shift in neural 
activity may suggests that these regions synchronize during the encod-
ing of multiple items, which may reflect increased connectivity between 
them.

4.2. Contributions

In summary, the primary contributions of this study are as follows:

– Innovative methodological approach for dynamic analysis of cog-
nitive load: this study represents the first analysis of EEG activ-
ity specifically during incremental element encoding in working 
memory. This approach simulates real-life scenarios where cog-
nitive demands change dynamically, offering a more granular 
perspective compared to traditional methods. Additionally, EEG 
power was referenced to a resting state baseline, allowing for the 
normalization of inter-subject variability and providing a clearer 
assessment of task-related neural dynamics.

– Frontal low beta (13–20 Hz) desynchronization as a biomarker 
for cognitive load: our results indicate that low beta band could 
serve as a key biomarker for tracking cognitive load in real-time 
during working memory tasks. The sensitivity of low beta power 
to the number of elements encoded suggests it reflects the brain’s 
neural adjustments as more cognitive resources are allocated for 
information processing.
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– High beta (20–30 Hz) power modulation as an indicator of cog-
nitive demands: We observed that high beta power exhibited a 
decrease with increasing cognitive load, particularly during the 
encoding of later elements. This suggests that high beta may play 
a role in higher-order cognitive processing, potentially reflecting 
the brain’s allocation of resources for managing complex tasks.

– Theta (4–8 Hz) and alpha (8–13 Hz) bands as biomarkers of 
cognitive engagement:we observed statistically significant power 
increments relative to the resting state, but no further differences 
as additional elements were encoded. This suggests that these 
bands are primarily associated with general cognitive engage-
ment, reflecting heightened attentional processes. However, there 
are not directly linked to the complexity of encoding multiple 
elements.

4.3. Limitations and future work

While our study provides valuable insights into the relationship 
between EEG spectral power and information encoding, several lim-
itations should be addressed. First, there was a class imbalance in 
the data, particularly in the encoding of the fifth, sixth, and seventh 
elements, as not all subjects reached these stages in the Corsi Block-
Tapping test. Future studies could mitigate this imbalance ensuring that 
all participants attempt the same number of elements regardless of per-
formance (e.g., continuing the series even after errors). This approach 
would allow for more robust conclusions. Another important limitation 
is the individual variability in cognitive load responses, as the same 
task may represent a high load for one person while being minimal 
for another. This variability can affect the consistency of results, as 
different participants may show distinct neural patterns under the 
same conditions. Implementing individualized analysis strategies could 
help identify more accurate and sensitive cognitive load biomarkers. 
Moreover, we did not explore functional or effective connectivity, such 
as prefrontal–parietal interactions, nor did we assess dynamic connec-
tivity using approaches like meta-state analysis. These measures could 
offer complementary insights into how inter-regional communication 
supports encoding, especially in relation to the low beta desynchro-
nization we observed. Future studies could integrate phase-based or 
information flow metrics to better understand the functional role of 
low beta oscillations in cognitive load regulation. This would enrich 
the interpretation of spectral findings and provide a more mechanistic 
understanding of encoding dynamics. Additionally, we did not test the 
proposed EEG biomarkers in clinical setups. This limits their generaliz-
ability and prevents conclusions about their diagnostic or therapeutic 
value. Future studies should examine whether these spectral features 
show differences between healthy individuals and patients, such as mild 
cognitive impairment, Alzheimer’s disease or schizophrenia. Future 
work could also investigate cognitive load under alternative paradigms, 
such as dual-task scenarios, to determine whether the observed patterns 
generalize across tasks with differing demands. Furthermore, it would 
be valuable to explore how low beta desynchronization correlates with 
other qualitative metrics, such as self-reported measures of workload 
(e.g., NASA-TLX questionnaires), and quantitative markers, such as 
pupil diameter changes measured through eye tracking. These addi-
tional measures could strengthen the interpretation of EEG findings 
and provide a more comprehensive assessment of cognitive load. Fi-
nally, the controlled lab settings and the exclusive focus on young 
healthy participants limit the validity and applicability of the findings 
to real-world environments or more diverse populations.

Future research could build on our findings and explore real-time 
cognitive load monitoring in tasks with progressively increasing de-
mands. In education, adaptive platforms could monitor student’s men-
tal effort during tasks like solving increasingly complex math problems 
or memorizing expanding sequences and personalize content accord-
ingly [65]. In high-stakes fields, such as air traffic control or surgery, 
cognitive load tracking could be applied to scenarios where operators 
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manage progressively larger sets of information or increasing task 
complexity [51]. This would help to prevent overload and optimize 
decision-making under stress. In the automotive sector, monitoring 
driver’s cognitive load during progressively demanding driving con-
ditions, such as increasing traffic density, multitasking with naviga-
tion systems, or managing vehicle automation levels, could enhance 
safety by detecting mental overload [10]. Similarly, in healthcare, 
tasks requiring incremental memory encoding could be used to identify 
early signs of cognitive decline. The EEG-based biomarkers proposed 
here could support early screening strategies complementing traditional 
neuropsychological tests by providing objective, real-time markers of 
working memory function [66,67]. Finally, in gaming and entertain-
ment, cognitive load monitoring could personalize game difficulty as 
players progress through levels with increasing challenges, enriching 
engagement and user experience [68].

5. Conclusions

This research offers a different perspective on the neural dynamics 
of working memory. For this purpose, we focus on the incremental 
encoding of discrete elements; that is, the gradual accumulation and 
temporal storage of information in short-term working memory. Our 
analysis captures variations within a single task level, as the num-
ber of elements being encoded increases progressively, rather than 
examining static difficulty levels where cognitive demands remain 
constant. This dynamic approach would enable the identification of 
neural biomarkers for real-time cognitive load monitoring in practical 
applications, where cognitive load fluctuates rapidly. The findings, 
particularly the progressive desynchronization of low beta activity as 
more elements are encoded, highlight its role as a sensitive indicator 
of cognitive load variations. Moreover, beta desynchronization shifted 
towards higher frequencies as cognitive load increased. This suggests 
that the neural adjustments involved in managing greater memory 
demands may progressively move to higher beta frequencies. These 
insights emphasize the relevance of beta oscillations as biomarkers 
of working memory processes, with low beta providing continuous 
feedback on task demands and high beta signaling more substantial 
cognitive adjustments when demands reach higher levels. The results 
also highlight the stability of the theta and alpha activity, which appear 
more linked to general task engagement rather than the encoding of 
specific elements.
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