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ARTICLE INFO ABSTRACT
Keywords: Cognitive load refers to the mental effort required to encode, maintain, and manipulate information. Although
Cognitive load previous electroencephalography (EEG) research has examined spectral biomarkers of cognitive load, most

Electroencephalography (EEG)

studies employed static task paradigms that average neural activity across entire difficulty levels. Such an
Working memory

approach presupposes that cognitive load remains constant within each level, thereby neglecting transient

E:gl ;::Helral:;:rl:g fluctuations that may arise during information processing. To address this limitation, we implemented a
novel EEG-based incremental encoding paradigm to track dynamic changes in cognitive load over time. EEG
was recorded from 24 healthy young adults performing the Corsi Block-Tapping Test, a visuospatial short-
term memory task with sequential stimulus presentation. Items were added one by one to working memory,
simulating real-world cognitive demands. Spectral absolute power was estimated across theta (4-8 Hz), alpha
(8-13 Hz), low beta (13-20 Hz), high beta (20-30 Hz), and gamma (> 30 Hz) bands in frontal and parietal
regions. Independently of the number of encoded elements, spectral power increased relative to rest: frontal
theta by 80.52%, parietal theta by 139.66%, and frontal alpha by 17.72%, reflecting general attention
engagement. In contrast, low beta power decreased consistently as more items were encoded (p < 0.01,
r > 0.5), arising as the most reliable biomarker of incremental memory load. A spectral shift toward higher
beta frequencies was also observed with increased load. These results challenge the conventional understanding
of theta as a biomarker of working memory and highlight beta-band dynamics as key to real-time cognitive
monitoring in adaptive systems.

1. Introduction a task or multiple tasks simultaneously exceed this capacity, cognitive

overload occurs. This overload state decreases the individual’s ability

Cognitive load refers to the mental effort required to perform a task, to complete tasks effectively, as cognitive resources become saturated
encompassing the amount of cognitive resources that must be mobilized and cannot be efficiently redistributed [3,5]. Cognitive overload is
to achieve a given objective [1]. Although definitions of cognitive particularly evident in modern societies, where the complexity and
load vary between disciplines, it is broadly understood as the demand volume of information have increased dramatically. This phenomenon
placed on working memory, a limited-capacity system responsible for can have serious implications for both the worker’s mental health and
temporarily storing, maintaining, and manipulating information during workplace safety [6,7], as sustained overload may lead to chronic stress
task execution [2]. As task demands increase, the finite capacity of the and cognitive fatigue. In professional settings that require precision
brain to manage and allocate resources becomes a limiting factor [3]. and quick decision making, such as air traffic control, healthcare, and

This limitation means that as more cognitive resources are consumed
by a task, fewer remain available for other processes or challenges.
The cognitive load, therefore, results from the inherent demands of a
given task in addition to the interaction between these demands and
the individual’s cognitive capacity [4]. When the resources required for

military operations, the risks of cognitive overload are even more
pronounced. In these fields, human errors due to cognitive saturation
can result in severe or even fatal outcomes [8,9]. Moreover, cognitive
overload is not limited to professional environments. It also affects
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daily life activities, such as driving [10], or recreational tasks like video
gaming [11]. In these contexts, monitoring cognitive load can enhance
performance, improve safety, and optimize user experiences. Therefore,
identifying biomarkers to monitor cognitive load in real-time is of great
interest across multiple domains.

Traditionally, cognitive load has been assessed using mental effort
scales, among which the NASA Task Load Index (NASA-TLX) [12] and
the Subjective Workload Assessment Technique (SWAT) [13] stand out.
These tools are administered to subjects immediately after completing a
task to rate perceived cognitive effort. In addition, its quick and simple
implementation has contributed to their widespread use [1]. However,
they present a series of limitations. Firstly, they are entirely subjec-
tive, since the perception of difficulty depends on personal factors
that do not necessarily correlate with the actual cognitive load [14].
Furthermore, they do not provide real-time information, offering only
a snapshot of the cognitive load after the task has been completed. This
limitation complicates their use to prevent potential problems caused
by cognitive overload during task execution.

In response to these limitations, physiological measures have emer-
ged as promising alternatives to obtain more accurate real-time data
on cognitive load during task execution. These measures exploit the
physiological responses of the human body, which are closely linked
to cognitive processes [15]. For instance, heart rate variability pro-
vides insight into autonomic nervous system activity, reflecting stress
levels. Eye tracking measures, such as pupil size and blink rate, of-
fer information on attention and effort. Body temperature and skin
conductance can also indicate stress-related changes [15]. However,
to capture rapid and moment-to-moment changes in cognitive load,
brain-derived metrics are particularly valuable [16]. Among these,
electroencephalography (EEG) stands out as a highly effective tool as
it allows the non-invasive and real-time recording of brain electrical
activity through electrodes placed on the scalp. Although EEG presents
certain limitations, such as low spatial resolution and susceptibility
to artifacts that require appropriate pre-processing, its high temporal
resolution, lower cost compared to other neuroimage techniques, and
portability, make it a highly useful technique for studying cognitive
load [16].

The investigation of cognitive load using EEG commonly involves
the application of two primary paradigms: (1) single task and (2)
multiple task. The single task paradigm involves completing a single
activity varying difficulty levels, while multitasks paradigms require
participants to perform multiple tasks simultaneously [17]. Single task
paradigms often rely on tasks that manipulate working memory de-
mands, such as the N-Back test or the Corsi Block-Tapping test [18,19].
In the former, cognitive load is adjusted by increasing the number
of items participants must recall and compare [18]. Many studies
using this approach report an increase in theta power in the frontal
regions as task difficulty rises, along with a decrease in alpha power in
the parietal areas [20,21]. Similar findings regarding the theta power
have been noted in other single task paradigm. For example, Galkin
et al. [22] opted to use the Corsi Block-Tapping test, which involves
recalling and reproducing a sequence of spatial locations [19], also
reporting increases in frontal theta power corresponding to rising task
difficulty. However, results for the alpha power are mixed in literature.
While some studies report alpha power decreases under high cognitive
load [20,21], others, such as Mak et al. [23], have observed the
opposite effect. In their investigation, participants performed increas-
ingly complex mirror-drawing tasks and they observed an increment in
upper alpha power in frontal regions during high-demand conditions.
On the other hand, multitask paradigms (2) induce cognitive load by
requiring participants to manage multiple concurrent activities. For
example, Puma et al. [24] studied multitasking environments, pro-
gressively increasing the number of sub-tasks participants needed to
complete simultaneously. Their results revealed an increase in frontal
theta power and in parietal alpha power as cognitive load intensified.
While both approaches are valuable, the single task paradigm allows
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for more controlled study of cognitive load by minimizing confounding
factors [25]. Moreover, the single task paradigm is more commonly
used in the literature due to its ability to offer a more controlled
assessment of cognitive load [25].

Beyond the distinction between single- and multitask paradigms,
another important dimension in cognitive load research lies in how
task difficulty is labeled and analyzed. Most studies adopt traditional
paradigms [21,23,26]. These traditional paradigms, such as the N-
Back or standard implementations of the Corsi Block-Tapping test,
typically manipulate difficulty through discrete levels [27,28]. In the
N-Back, for instance, participants must compare the current stimulus
to one presented N steps earlier, with cognitive demand increasing as
N rises. In the Corsi task, participants observe a sequence of spatial
locations that light up in a fixed order and are required to reproduce the
same sequence [29]. Task difficulty increases by adding more elements
to the sequence (for example, 5, 6, or 7 locations to remember).
Each of these levels is treated as a distinct condition, and EEG data
are segmented into short epochs within each trial and then averaged
across repetitions of that level [27,28]. This approach assumes that the
cognitive load remains stable throughout the entire level. However,
this assumption overlooks the fact that mental effort often changes
dynamically within a single level [30]. In the Corsi task, for example,
the participant starts with an empty working memory and sequentially
adds new items as they appear. Encoding the second or third element
is generally less demanding than encoding the sixth or seventh. Yet,
under the traditional static grading approach, all EEG epochs within
that trial are treated as equally difficult, thereby masking the gradual
buildup of cognitive load over time. To better capture these internal
fluctuations, dynamic paradigms have been proposed [30,31]. Instead
of aggregating EEG data by level, these paradigms track how cognitive
load evolves during the sequential encoding of information. By aligning
EEG signals to the moment each new item is introduced, researchers
can examine how neural activity changes at finer temporal resolutions.
This enables the identification of time-specific patterns that reflect the
incremental demands placed on working memory [30,31]. Recent work
by Liu et al. [32] reinforces the importance of this approach. With their
study, they demonstrated that analyzing EEG signals at short timescales
significantly improves cognitive load prediction.

Despite the advancements in cognitive load research, several lim-
itations remain within the existing literature. One prominent issue
is the high inter- and intra- subject variability in EEG recordings.
This is influenced by individual cognitive responses and variability
in electrode placement, impedance, and other manual aspects of EEG
setup [33-35]. In addition, anatomical differences such as head shape,
skull thickness, and tissue conductivity further affect the recorded
EEG signals [36]. All these factors influence the EEG signal responses,
hindering the development of a universal cognitive load index and
limiting the generalizability of the results. To address this, implement-
ing a consistent referencing method that accounts for each subject’s
baseline cognitive state could help to reduce this variability. For in-
stance, Kakkos et al. [37] demonstrated that specific EEG spectral and
connectivity features can successfully discriminate mental workload
levels across different working memory tasks, revealing common neural
mechanisms underlying cognitive demand. Their findings highlight the
feasibility of developing general-purpose workload biomarkers that
are robust across tasks. In this direction, implementing a consistent
referencing method that accounts for each subject’s baseline cognitive
state could help reduce variability and enhance the robustness of EEG-
based workload assessment. However, to date, this approach remains
largely unexplored in cognitive load literature.

Another significant limitation in the study of cognitive load lies
in the predominant reliance on traditional paradigms [21,23,27,28].
For example, in the N-Back test, epochs for levels N = 2 or N = 3
are grouped, EEG features are extracted, and comparisons are made
across these difficulty levels [20,21,27]. However, real-world scenarios,
such as performing a surgical procedure, driving in a complex traffic
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Fig. 1. Snapshot of the Corsi-Block Tapping test in ITACA [38].

environment, or managing air traffic, often involve rapidly fluctuating
cognitive demands rather than sustained difficulty over time [30]. In
these contexts, cognitive load can increase quickly as more information
must be retained and processed in working memory. For instance, a sur-
geon may need to remember a sequence of steps while simultaneously
adapting to unexpected complications, or an air traffic controller must
track an increasing number of aircraft within their sector. To enable
real-time monitoring of cognitive load in such dynamic scenarios, it
is important to identify biomarkers capable of assessing the sequential
integration of new information into working memory. Consequently,
exploring tests with finer resolution, which enable a more detailed ex-
amination of these incremental encoding processes, could significantly
enhance their suitability for practical, real-time use. Nevertheless, to
the best of our knowledge, this type of analysis, focused on the devel-
opment of biomarkers capable of tracking rapid changes in cognitive
load, remains underexplored.

Based on the identified limitations in previous studies, we hypoth-
esized that the use of EEG to study incremental element encoding
could lead to the identification of highly sensitive biomarkers of rapidly
cognitive load fluctuations. These biomarkers would offer improved
resolution for monitoring real-time changes in cognitive load, mak-
ing them particularly valuable for real-world applications. Thus, the
main objective of this study is to examine spectral changes in EEG
activity in response to incremental encoding of short-term memory
elements during the Corsi Block-Tapping test. To achieve this goal,
we analyzed EEG data from a cohort of 24 young, healthy subjects
using a methodology designed to reduce inter-subject variability. The
main novelties and contributions of this study are twofold: (1) the
identification of highly sensitive spectral EEG biomarkers that pro-
vide a detailed representation of cognitive load fluctuations during
incremental element encoding; and (2) the reduction of inter-subject
variability by leveraging baseline EEG parameters from resting-state
recordings. This framework lays the groundwork for real-time cognitive
load monitoring in complex, high-demand environments.

2. Materials and methods
2.1. Subjects and signals

For this research, we utilized a database compiled for the validation
of ITACA, an application intended to design, conduct, and evaluate
neurofeedback studies [38]. The database includes EEG recordings
obtained during cognitive tests in 24 healthy participants (14 women,
10 men) with an average age of 24.47 + 4.17 years. All participants
received a full explanation of the study procedures, the type of data
to be collected, how their data would be analyzed, and the measures
in place to protect their privacy. Each participant provided written
informed consent prior to participation. All experimental procedures
were carried out under a strict internal protocol in accordance with

the Declaration of Helsinki [37], ensuring participant safety, data confi-
dentiality, and adherence to recognized international ethical standards.
The EEG signals were recorded using a g.USBamp amplifier (g.TEC,
Austria) equipped with 16 active Ag/AgCl electrodes located in F7, F3,
Fz, F4, F8, FCz, C3, Cz, CPz, P3, Pz, P4, PO7, POz, and PO8, according
to the international 10-10 system [39], with a sampling frequency of
256 Hz. There are two types of recordings in this database: (1) resting-
state data, during which participants remained with their eyes open for
three minutes without engaging in any cognitive tasks; and (2) EEG syn-
chronized with events presented during the execution of each cognitive
test. All recordings were carried out using MEDUSA®© Platform [40],
specifically employing the publicly available Recorder [41] and ITACA
Corsi Block-Tapping Test [42] applications.

2.2. Corsi block-tapping test

Among the different cognitive psychology tests, the Corsi Block-
Tapping test, which assesses visuo-spatial short term working memory,
was selected as the central focus of the study [29]. Fig. 1 shows
a screenshot of the implementation of this test in MEDUSA© Plat-
form. This test involves two stages. First, the application presents the
sequence of blocks that the user has to memorize by highlighting
them in a specific order. The stimulus duration was 500 ms, and the
inter-stimulus interval was set to 1000 ms. Once the whole sequence
has been presented, the user has to repeat the sequence in the same
order by clicking the corresponding blocks. As users respond correctly,
the length of the presented sequence increases, thereby progressively
increasing the maximum cognitive demands. This gradual increase
forces users to encode more information until they reach the limit of
their working memory capacity. At that point their resources become
saturated, making it impossible to retain all the information [3]. The
decision to focus on the Corsi Block-Tapping test lies in that its structure
allows for a controlled progression of cognitive load through discrete,
countable events. This enables to study how cognitive load evolves
not only as general task difficulty increases, but also within a fixed
difficulty level, as new elements are sequentially encoded. These char-
acteristics of the Corsi Block-Tapping test make it particularly suitable
for studying how cognitive load evolves in response to incremental
element encoding.

In the implementation provided by the ITACA framework, the test
is structured into levels, series, and trials, following the same approach
as described in [43]. Each difficulty level (i.e., each sequence length)
consists of three series, and each series comprises three trials. To pass
a series, the user must correctly complete at least two of the three
trials. Then, to advance to the next level, the user must successfully
complete all three series. This means correctly answering at least six
trials out of nine (two per series). Additionally, in ITACA’s default
implementation, the test starts with an initial sequence length of 4,
which progressively increases. Due to these rules, not all users reach
the same level, as memory capacity varies between individuals, with 9
being the maximum possible number of items to remember.
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Table 1
Distribution of available epochs per subject and class following the preprocessing stage.
Subject Class 0 Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8
S01 170 25 25 25 25 17 8 0 -
502 141 16 16 16 16 7 - - -
S03 144 7 7 7 7 - - - -
S04 160 28 28 28 28 19 10 3 -
S05 156 20 20 20 20 11 4 -
S06 137 24 24 24 24 15 7 - -
S07 169 15 15 15 15 8 1 - -
S08 174 21 21 21 21 12 3 - -
S09 163 17 17 17 17 8 1 - -
S10 156 30 30 30 30 21 12 6 -
S11 150 17 17 17 17 8 1 -
S12 167 36 36 36 36 27 18 10
S13 172 23 23 23 23 14 8 0
S14 154 19 19 19 19 10 1 - -
s15 132 22 22 22 22 14 6 - -
S16 149 27 27 27 27 18 10 1 -
S17 168 24 24 24 24 10 1 - -
s18 164 19 19 19 19 10 1 - -
S19 137 34 34 34 34 25 16 8 1
S20 154 17 17 17 17 8 0 - -
S21 143 30 30 30 30 21 13 6 -
522 136 25 25 25 25 17 8 0 -
S23 164 23 23 23 23 14 5 - -
S24 143 28 28 28 28 19 11 3 -
Total 3703 547 547 547 547 333 145 37 4
2.3. EEG preprocessing A X
Level 4 ﬁ
Before characterizing cognitive load during task execution, it is —_— ]
necessary to preprocess the signal to remove noise and artifacts, thereby Level 5 ‘ ﬁ % ‘ ﬁ ‘
ensuring data quality. For this purpose, MEDUSA®© software was used (P— b 4 y
[40]. First, a finite impulse response (FIR) band-pass filter of order Level 6 ‘ﬁ ﬁ ‘ 7/
1000 was applied between 0.5 and 60 Hz to encompass relevant brain - s
activity, along with a notch filter of order 1001 between 49 and 51 Hz Level 9 ﬁ‘ ﬁ ﬁ (ﬁ\ ﬁ
to eliminate power line interferences [44]. =il | Gai=aed) ¢ \ )

Next, the signal was segmented into 1-s epochs starting from the
onset of each stimuli, marking the timestamp when the brain’s re-
sponse is triggered. This approach is designed to capture cognitive
processes related to the discrete encoding and storage of information.
Resting-state recordings were similarly segmented into 1-s epochs for
consistency. To ensure artifact-free data, epochs were automatically
rejected if the amplitude exceeded a threshold of ¢ = 4 times the
standard deviation in at least two samples within one or more channels,
following the guidelines in [45]. This method accounts for a broad
range of artifacts, including eye blinks, muscle activity, and electrode
noise, by directly removing contaminated epochs. The artifact rejection
process was implemented using the MEDUSA®© software, which in-
cludes validated routines for signal preprocessing [40]. The remaining
clean epochs were then categorized into different groups for subsequent
analysis. Resting-state epochs were assigned to class 0, representing
the reference condition with absence of cognitive load. For the Corsi
Block-Tapping test, cognitive load was modeled based on the number of
elements that have been encoded in working memory during an specific
trial, as illustrated in Fig. 2. For example, epochs corresponding to the
first stimulus were assigned to class 1, reflecting minimal cognitive load
since no prior elements had been encoded. Similarly, epochs related to
the second stimulus were assigned to class 2, reflecting the encoding
of one prior element, and so on. This segmentation strategy is a key
methodological contribution of our study, as it has not been applied in
previous cognitive load research, and enables a more precise analysis
of how cognitive load evolves as additional elements are encoded.

It is worth noting that not all participants reached the higher task
difficulty levels, leading to a class imbalance. Classes 8 and 9 had very
few epochs available and were therefore excluded from the analysis.
Likewise, only epochs associated with correctly responded trials were
included, as errors could introduce confounding factors. For instance,

CLASS 3 CLASS 4 CLASS 5 CLASS 6

CLASS 8 CLASS 9

No 8 "

Fig. 2. Epoch labeling based on the number of stimuli encoded in working memory
within each trial, corresponding to each level of difficulty. Classes 8 and 9 were
excluded from analysis due to an insufficient number of observations.

incorrect trials may reflect lapses in attention or other cognitive pro-
cesses unrelated to the encoding of additional elements. For this reason,
all epochs from incorrect trials were discarded, as done in [20]. The
final number of epochs available for each class and each subject after
the preprocessing stage can be seen in Table 1.

2.4. Spectral analysis for cognitive load characterization

To analyze and characterize how cognitive load impacts information
encoding, this study focused on features extracted from the spectral
domain of EEG signals in the frontal and parietal regions, as these
areas are known to be highly involved in cognitive processes [46].
The frontal region, primarily responsible for executive control and
attentional regulation, and the parietal region, critical for visuospa-
tial processing [46]. In particular, we examined the absolute power
within five frequency bands: theta (4-8 Hz), alpha (8-13 Hz), low beta
(13-20 Hz), high beta (20-30 Hz), and gamma (>30 Hz) [47]. Although
relative power is commonly used in EEG studies, we opted for absolute
power because it allows for a more precise identification of where
changes in activity occur [48]. Relative power, by normalizing the
power within a specific frequency band to the total power across bands,
can obscure the interpretation of changes. For instance, a decrease in
one band’s relative power might result not from an actual reduction
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in activity within that band but from an increase in another band’s
absolute power, while the original band remains unchanged.

To obtain absolute power values, we first calculated the power
spectral density (PSD) for each EEG channel using the Welch method.
To do so, a Hanning window of 500 ms was applied with 80% segment
overlap. With a sampling rate of 256 Hz, this corresponds to 128 points
per window in the Fast Fourier Transform (FFT), yielding a frequency
resolution of 1 Hz. From the resulting PSD, we extracted absolute power
values for each frequency band. We then averaged these values across
frontal electrodes (F7, F3, Fz, F4, F8, FCz) and parietal electrodes (P3,
Pz, P4, PO7, POz, PO8), which are key regions involved in attention
and working memory processes [46]. The delta band (<4 Hz) was
excluded from the analysis due to the limited segment length used
for spectral estimation. Reliable power estimation typically requires at
least 3-4 cycles per frequency within each epoch [49]. At 4 Hz, we
observed 4 cycles per second, barely meeting this threshold, whereas
lower frequencies like 1-3 Hz yield fewer than 4 cycles. This makes the
estimation unreliable. Thus, to ensure spectral accuracy, we restricted
our analysis to frequencies above 4 Hz. In addition, delta activity is
predominantly associated with sleep and non-cognitive processes, and
thus has limited relevance for the analysis of task-related cognitive load
in awake, healthy participants [50,51].

We performed two types of analyses using the absolute power data.
First, we analyzed overall power differences between the resting state
and task conditions within the frontal and parietal regions. Specifically,
the power values were averaged across all epochs recorded during the
task, regardless of the class. This approach aimed to capture general
cognitive engagement by comparing the resting state with the overall
brain activity during task execution. Second, we explored cognitive
load dynamics during the encoding of discrete information in working
memory. The aim was to focus on differences across individual task
classes in the frontal and parietal regions. Given the inherent inter-
subject variability in EEG power [33], normalization was used to adjust
for baseline differences in each participant’s resting-state power [52].
Specifically, mean power in each frequency band during resting state
was subtracted from task-based power values for each class and ex-
pressed as a percentage increment relative to the resting-state power.
This procedure reduces individual variability, providing a more reliable
basis for assessing cognitive load changes across task classes.

Following these analyses, statistical tests were performed for each
approach. Firstly, we applied the Shapiro-Wilk test to assess the nor-
mality of the data distributions. As most bands returned p-values
below 0.05, normality was rejected. Consequently, for the comparison
between resting and task conditions, we applied the Wilcoxon signed-
rank test to absolute power values across all frequency bands in the
frontal and parietal regions to assess overall cognitive engagement. For
the analysis across task classes, we applied the same test to normal-
ized power increments for each frequency band, evaluating changes
associated with the increasing number of encoded elements. In both
cases, we set a significance level of 0.05 and applied a false discovery
rate (FDR) correction using the Benjamini-Hochberg method to account
for multiple comparisons [53]. Additionally, to quantify the magnitude
of the observed effects, we estimated the effect size using the rank-
based correlation coefficient r, which is appropriate for non-parametric
data [54]. According to established thresholds, r > 0.5 indicates a large
effect size, while r > 0.3 is considered a medium effect [54].

3. Results

In this section, we present the findings from the spectral power anal-
ysis for both approaches: overall power differences between the resting
state and task conditions, and power variations with incremental el-
ement encoding. Table 2 summarizes the results for both the frontal
and parietal regions. In this table, we report the absolute power in
each band for both the resting state and task conditions. Additionally,
corrected p-values are displayed. These p-values indicate statistically
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significant differences across all frequency bands between the resting
and task conditions, which suggests a general power increase due to
cognitive engagement during task execution.

For the analysis of cognitive load dynamics in the encoding of
discrete information elements, each frequency band is represented in
Fig. 3. In the theta band, no statistically significant differences were
found between the cognitive load classes, where each class corre-
sponds to the number of elements being encoded into working memory
(Fig. 3A). Similarly, in the alpha band, hardly any significant differ-
ences were observed as the number of encoded elements increased
(Fig. 3B). For the low beta band, we observed a clear downward
trend in baseline-normalized power as cognitive load increased, with
statistically significant differences identified between nearly all classes
(Fig. 3C). In the high beta band, baseline-normalized power also
showed a downward trend in the frontal and parietal channels, with
statistically significant differences appearing primarily between lower
and higher classes (Fig. 3D). Lastly, in the gamma band we also found
statistically significant differences in absolute power distributions in
both regions (Fig. 3E). The most differences are observed in the classes
where fewer elements are encoded.

4. Discussion
4.1. Cognitive load characterization

We investigated the spectral power changes across various EEG
frequency bands during the encoding of information in a working
memory task, focusing specifically on frontal and parietal regions.
Unlike traditional paradigms that rely on fixed difficulty levels, our
study was designed to emulate the dynamic nature of cognitive load as
experienced in real-world tasks. Specifically, EEG dynamics is analyzed
in response to the incremental encoding of individual elements with the
Corsi Block-Tapping test. This fine-grained analysis offers novel insights
into the neural mechanism underlying cognitive load fluctuations and
highlights potential biomarkers for real-time monitoring. A summary
of the findings from other relevant studies alongside our results is
presented in Table 3.

The primary strength of our approach is the dynamic analysis of cog-
nitive load fluctuations. Traditional methods typically assign a uniform
difficulty label to entire levels and average EEG activity across them to
extract general patterns of cognitive demand [20,21,23,27,55]. While
this strategy is useful for identifying broad trends, it inherently assumes
that cognitive load remains stable throughout the task level, overlook-
ing the fact that mental effort often varies significantly as information is
progressively encoded. In contrast, our approach captures the evolving
nature of cognitive load by aligning the EEG analysis with the tem-
poral structure of the task itself, specifically the sequential encoding
of new elements in working memory. This allows for a finer-grained
characterization of how mental effort increases within a single level,
providing greater sensitivity to subtle neural fluctuations. Moreover,
our approach aligns with recent findings from [32], who emphasize
the importance of tracking EEG changes on a moment-to-moment basis
to better detect variations in cognitive demand. Their results support
the broader view that EEG signals reflect fast, transient mental states
that unfold over short time windows. This validates our approach
of analyzing within-level dynamics, as opposed to aggregating across
fixed difficulty levels, because it provides a more precise way to assess
how cognitive load evolves throughout the task. In addition, this is
particularly valuable for applications requiring dynamic monitoring, as
it reflects the rapid shifts in mental effort often overlooked by conven-
tional approaches. This granularity aligns more closely with real-life
tasks that demand continuous adaptation and dynamic allocation of
cognitive resources.

Our findings regarding the theta band (4-8 Hz) align with the
existing literature, showing an statistically significant increase in theta
power relative to the resting state in the frontal and parietal regions.
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Table 2
Comparison of averaged EEG absolution power values between resting state and cognitive tasks within frontal and parietal regions.

Frontal region

Frequency band Resting (uV?*) Cognitive task (uV?) p-value Percentage variation
Theta (4-8 Hz) 0.077 0.139 3.58e-06 80.52%
Alpha (8-13 Hz) 0.079 0.093 0.033 17.72%
Low Beta (13-20 Hz) 0.042 0.049 0.033 16.67%
High Beta (20-30 Hz) 0.044 0.053 0.033 20.45%
Gamma (>30 Hz) 0.047 0.070 0.004 48.94%
Parietal region

Theta (4-8 Hz) 0.058 0.139 1.19e-06 139.66%
Alpha (8-13 Hz) 0.071 0.107 1.11e-04 50.70%
Low Beta (13-20 Hz) 0.048 0.069 1.81e-04 43.75%
High Beta (20-30 Hz) 0.038 0.062 3.50e—-05 63.16%
Gamma (>30 Hz) 0.050 0.100 1.13e-05 100.00%

P-values were calculated using the Wilcoxon signed-rank test and corrected for multiple
All comparisons are statistically significant (p-value < 0.05).

comparisons using the Benjamini-Hochberg method.
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Fig. 3. Analysis of baseline-normalized power across frequency bands and task classes. Each row corresponds to a specific frequency band. A: theta (¢, 4-8 Hz); B: alpha (a,
8-13 Hz); C: low beta (Lp, 13-20 Hz); D: high beta (Hp, 20-30 Hz); E: and gamma (y, >30 Hz). For each band, the left display violin plots and overlaid boxplots of absolute
baseline-normalized power increments in the frontal (left plot) and parietal regions (right plot). The violin plots illustrate the distribution shapes for each class, while the central
line within the boxplots represents the median power increment, and the upper and lower lines indicate the interquartile range. The central panel presents matrices of corrected
p-values from pairwise statistical comparisons between classes. Each matrix is divided into two triangular regions: the lower-left triangle corresponds to comparisons within the
frontal region, and the upper-right triangle corresponds to comparisons within the parietal region. Non-white cells in the matrices indicate statistically significant differences (p <
0.05) between classes. Statistical comparisons were performed using the Wilcoxon rank-sum test with a Benjamini-Hochberg FDR correction for multiple comparisons. The rightmost
panel shows the corresponding effect size matrices (r-values), allowing interpretation of the magnitude of these differences. Darker shades represent larger effect sizes, with values
above 0.5 indicating large effects and values above 0.3 representing medium effects.
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Table 3
Summary of findings from the literature analyzing cognitive load through EEG and extracting frequency features.
Authors Task Cognitive domain Signal analysis Extracted features Results
Pergher et al. [20] N-Back Test Visuospatial Task level averaging P300 amplitude ERPs, 1 Power in 6 with CL in F region
power in 6 and « | Power in a with CL in P region
Brouwer et al. [27] N-Back Test Visuospatial Task level averaging ERPs, power between 2 | Power in « with CL in Pz
and 20 Hz
Plechawska et al. [28] Arithmetic tasks Arithmetic Task level averaging Power in 6, 0, a, low p, Higher correlation between CL

and high g

level and p-band characteristics

Mak et al. [23]

Mirror drawing

Motor planning

Task level averaging

Power in §, 0, a, f, v
bands

t Power in « and @ with CL in F
region

So et al. [55]

Arithmetic,
visual-motor, and
linguistic tasks

Arithmetic, verbal and
motor planning

Task level averaging

Power in 6, a, #, and y
bands

1 Power in 6 with CL in F region

Puma et al. [24]

Priority Management
Task

Sustained attention

Task level averaging

Mean power at § and a

1 Power in 6 with CL in F region
1 Power in a with CL in P region

Wang et al. [21] N-Back Test Visuospatial Task level averaging Mean, variance, 1 Power in 6 with CL in F region
skewness and kurtosis; | Power in a with CL in P region
0, a, f, and y powers

Galkin et al. [22] Corsi Block-Tapping Visuospatial Task level averaging 0, a, and p powers 1 Power in ¢ with CL in F region

Test

| Power in « with CL in C and P
regions

Schapkin et al. [56]

Multiple
stimulus-response
mappings

Sustained attention and
motor planning

Task level averaging

0, a, low f, and high g
powers

1 Power in 6 with CL widespread
| Power in a with CL widespread
t Power low p with performance
decline in T

1 Power high g with performance
decline in C, P, and PT regions

Zammit et al. [57]

Matching-to-sample
task

Visuospatial

Task level averaging

a and f powers

| Power in « with CL in F and P
regions
| Power in g with CL in F and P
regions

Pavlov et al. [58]

Memorizing 5-6-7
elements forward and
backwards

Visuospatial

Task level averaging

0, a, low g, and high g
powers

t Power in # with CL in the
midline

| Power in low « with CL in P
and F regions

| Power in low g with CL in PO
regions

1 Power in high g with CL in F
and P regions

This work

Corsi Block-Tapping
Test

Visuospatial

IEE®

Baseline-normalized
power in 6, a, low B,
high g, and y bands

No variation in &a powers with
IEE in F and P

| Power in low g with IEE in F
and P regions

| Power high g with IEE in F and
P regions

1 y-power variability in F and P
regions

2 Note that all studies except this one averaged epochs across stimuli per task level, instead of considering the number of elements being encoded in real-time. CL: cognitive
load. ERPs: Event related potentials. Frequency bands: 6 (theta), « (alpha), p (beta), y (gamma). Regions: F (Frontal), P (Parietal), C (Central), T (Temporal), O (Occipital). IEE:
incremental element encoding.

This rise in theta power has been associated with cognitive engage-
ment, particularly in tasks that involve working memory and mental
effort [46]. However, while previous studies demonstrated theta power
increases with overall task difficulty [20,21,23,55], our results reveal
that frontal theta power remains stable during incremental element
encoding (Fig. 3A). This suggest that theta power reflects general task
engagement but does not track the stepwise increases in cognitive
demand associated with encoding additional items. This distinction
implies that theta activity may be more closely related to task initiation
and sustained attention than to dynamic encoding processes. Thus theta
band may have a limited utility as a biomarker for detecting rapid
cognitive load fluctuations in real-time.

The dynamics of alpha power in working memory tasks have shown
mixed results in the literature, as summarized in Table 3. Some studies
report alpha desynchronization (i.e., decreased alpha power) with
increasing task difficulty, especially in visuospatial memory tasks such
as the N-Back or Corsi Block-Tapping test [20-22,27]. This has been
linked to increased cognitive effort during encoding and maintenance.

Others, however, find alpha synchronization (i.e., increased alpha
power) under higher load, particularly in tasks involving attentional
control or motor planning, such as mirror drawing [23] or priority
management [24]. These increases are interpreted as reflecting in-
hibitory processes that suppress distractions and help maintain task
focus. Still, other task types, such as arithmetic or language-based
paradigms, show more variable alpha responses depending on whether
they involve verbal or spatial processing [28,55]. In our study, we
observed a statistically significant increase in alpha power (8-13 Hz)
during task conditions relative to the resting state in both frontal and
parietal regions, as shown in Table 2. However, when examining alpha
power across individual elements being encoded, significant differences
were minimal. Only a slight trend of decreasing alpha power in the
parietal region has been shown as the number of encoded elements
increased (Fig. 3B). This trend is consistent with prior visuospatial
memory findings, linking alpha desynchronization to the retention
of information in working memory [20-22,27]. These results suggest
that alpha-band responses are highly sensitive to the specific cognitive
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demands of a task, whether spatial, verbal, motor, or attentional, rather
than to general task difficulty alone. In our case, alpha modulation
was aligned with the expected pattern for visuospatial tasks but failed
to reflect dynamic changes in cognitive load. Therefore, based on our
results, alpha power does not appear to be a suitable biomarker for real-
time monitoring of cognitive load, as it fails to track the rapid changes
associated with encoding additional elements.

The most significant findings in our study were observed in the
beta bands, especially in the frontal region, which is known for its role
in executive functions, attention, and working memory control [50].
With the incremental element encoding approach, we identified a
progressive decrease in baseline-normalized power within the low beta
band (13-20 Hz) as more elements were encoded. This trend exhibited
statistically significant differences across nearly all levels of encoded
elements (Fig. 3C), with large effect sizes (» > 0.5) observed in most
comparisons, both in frontal and parietal regions, reinforcing the ro-
bustness of the observed pattern. This frontal low beta desynchroniza-
tion has been linked in previous work to the flexible reconfiguration
of large-scale neural circuits supporting cognitive control. Specifically,
it is thought to reflect a release of network inhibition, enabling tran-
sient communication between task-relevant brain regions [59,60]. The
prefrontal cortex plays a central role in this process by coordinating dis-
tributed activity as cognitive load increases. In our task, as more spatial
locations were encoded, reduced beta synchrony may reflect a greater
need for dynamic allocation of resources across the frontoparietal
network. This would be consistent with the involvement of prefrontal
mechanisms in managing increasing memory demands. All these find-
ings are aligned with prior literature. For instance, Zammit et al. [57]
observed a reduction in beta power during a matching-to-sample task,
while Pavlov et al. [58] reported a decrease in low beta power during
the retention of 5-7 elements in working memory. However, a key dis-
tinction lies in our methodological approach: instead of averaging brain
activity across broad task difficulty levels, we incrementally analyzed
the EEG signal within levels. This approach enhances sensitivity to the
neural changes accompanying gradual increases in cognitive load and
highlights the utility of low beta power as a fine-grained indicator of
encoding demands. We hypothesize that these changes allow cognitive
resources to be allocated efficiently as task demands increase. Impor-
tantly, this finding shows that low beta desynchronization is highly
sensitive to incremental cognitive load. This interpretation is consistent
with findings by Kakkos et al. [37], who identified task-independent
EEG spectral fingerprints that reliable distinguish between levels of
mental workload. Therefore, the results support the notion that beta
desynchronization may be a potential biomarker for detecting rapid
fluctuations in cognitive load and applying in real-time monitoring.

Respectively, high beta (20-30 Hz) showed a statistically significant
but less pronounced power decrease, particularly between encoding
early and later elements. In the corrected p-values matrix for frontal
and parietal regions (Fig. 3D), the frontal region shows clear significant
decreases in power for classes 1-3 compared to classes 4-7. A similar
but less marked pattern appears in the parietal region. Moreover, effect
size analysis revealed medium to large effects in both regions. These
results align with Chikhi et al. [46], who reviewed evidence showing
low beta is more sensitive to cognitive load than high beta. However,
our findings suggest a progressive shift in neural desynchronization,
with higher-frequency beta bands becoming more engaged as cognitive
demands increase. This likely reflects a redistribution of neural activity,
where desynchronization transitions from low to high beta to recruit
additional resources for higher cognitive processing. Interestingly, our
results contrast with Schapkin et al. [56]. They observed an increase in
high beta power during complex stimulus-response tasks and attributed
it to motor cortex activations and challenges in response preparations.
Their task involved multiple stimulus-response mappings combined
with the inhibition of irrelevant stimulus-response mappings, likely
engaging additional motor processes [61]. In contrast, the Corsi Block-
Tapping task primarily involves cognitive processes, as it focuses on
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encoding and retaining spatial information without significant motor
demands [19,62]. This distinction suggests that the high beta power
decrease in our study reflects a role in higher-order cognitive demands
rather than motor-related processes.

Regarding gamma activity (>30 Hz), a distinct pattern emerged
in the parietal regions. Significant gamma power desynchronization
was observed in classes 3, 4, and 5 compared to classes 1 and 2.
In contrast, classes 6 and 7 showed a notable increase in gamma
power variability. This may be due to the noisier nature of the gamma
band [63] and the smaller number of examples in these higher classes.
In the frontal region, median gamma power remained stable, but its
variability across epochs increased (Fig. 3E). This suggests that frontal
gamma activity does not directly scale with the number of encoded
elements. Instead, the variability may reflect diverse strategies used by
individuals to manage the cognitive load of encoding multiple items.
While few studies have analyzed gamma power in working memory
tasks, our findings align with Xu et al. [64], who linked gamma dy-
namics to subjective perceptions of cognitive load. Unlike their focus on
functional connectivity, our results emphasizes spectral power changes,
suggesting that gamma variability could reflect the heterogeneity of
cognitive strategies rather than consistent neural activations patterns.

Our results also reveal important differences in the level of granular-
ity at which different frequency bands reflect cognitive load. Theta and
alpha power increased significantly when comparing task performance
to the resting state, indicating general task engagement and attentional
processes. However, they did not reliably track transient changes dur-
ing the encoding phase. In contrast, both low and high beta bands
showed progressive modulation as more items were encoded, capturing
fine-grained, within-level variations in cognitive load. Among them,
low beta power emerged as the most sensitive marker for distinguishing
between successive encoding steps, making it a robust candidate for dy-
namic load monitoring. Gamma activity, on the other hand, exhibited
increased variability under higher cognitive demands. As previously
discussed, this may reflect the involvement of gamma oscillations in
individual encoding strategies, which likely vary across participants.
These results underscore the importance of adopting high-resolution
temporal analysis when studying cognitive load.

All these findings highlight the involvement of both frontal and
parietal regions in the encoding process, each contributing according to
its specific functional role. Significant changes in EEG signal power are
observed in these regions when compared to resting state, indicating
their activation during the task. Notably, this broader shift in neural
activity may suggests that these regions synchronize during the encod-
ing of multiple items, which may reflect increased connectivity between
them.

4.2. Contributions

In summary, the primary contributions of this study are as follows:

— Innovative methodological approach for dynamic analysis of cog-
nitive load: this study represents the first analysis of EEG activ-
ity specifically during incremental element encoding in working
memory. This approach simulates real-life scenarios where cog-
nitive demands change dynamically, offering a more granular
perspective compared to traditional methods. Additionally, EEG
power was referenced to a resting state baseline, allowing for the
normalization of inter-subject variability and providing a clearer
assessment of task-related neural dynamics.

— Frontal low beta (13-20 Hz) desynchronization as a biomarker
for cognitive load: our results indicate that low beta band could
serve as a key biomarker for tracking cognitive load in real-time
during working memory tasks. The sensitivity of low beta power
to the number of elements encoded suggests it reflects the brain’s
neural adjustments as more cognitive resources are allocated for
information processing.
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— High beta (20-30 Hz) power modulation as an indicator of cog-
nitive demands: We observed that high beta power exhibited a
decrease with increasing cognitive load, particularly during the
encoding of later elements. This suggests that high beta may play
a role in higher-order cognitive processing, potentially reflecting
the brain’s allocation of resources for managing complex tasks.

— Theta (4-8 Hz) and alpha (8-13 Hz) bands as biomarkers of
cognitive engagement:we observed statistically significant power
increments relative to the resting state, but no further differences
as additional elements were encoded. This suggests that these
bands are primarily associated with general cognitive engage-
ment, reflecting heightened attentional processes. However, there
are not directly linked to the complexity of encoding multiple
elements.

4.3. Limitations and future work

While our study provides valuable insights into the relationship
between EEG spectral power and information encoding, several lim-
itations should be addressed. First, there was a class imbalance in
the data, particularly in the encoding of the fifth, sixth, and seventh
elements, as not all subjects reached these stages in the Corsi Block-
Tapping test. Future studies could mitigate this imbalance ensuring that
all participants attempt the same number of elements regardless of per-
formance (e.g., continuing the series even after errors). This approach
would allow for more robust conclusions. Another important limitation
is the individual variability in cognitive load responses, as the same
task may represent a high load for one person while being minimal
for another. This variability can affect the consistency of results, as
different participants may show distinct neural patterns under the
same conditions. Implementing individualized analysis strategies could
help identify more accurate and sensitive cognitive load biomarkers.
Moreover, we did not explore functional or effective connectivity, such
as prefrontal-parietal interactions, nor did we assess dynamic connec-
tivity using approaches like meta-state analysis. These measures could
offer complementary insights into how inter-regional communication
supports encoding, especially in relation to the low beta desynchro-
nization we observed. Future studies could integrate phase-based or
information flow metrics to better understand the functional role of
low beta oscillations in cognitive load regulation. This would enrich
the interpretation of spectral findings and provide a more mechanistic
understanding of encoding dynamics. Additionally, we did not test the
proposed EEG biomarkers in clinical setups. This limits their generaliz-
ability and prevents conclusions about their diagnostic or therapeutic
value. Future studies should examine whether these spectral features
show differences between healthy individuals and patients, such as mild
cognitive impairment, Alzheimer’s disease or schizophrenia. Future
work could also investigate cognitive load under alternative paradigms,
such as dual-task scenarios, to determine whether the observed patterns
generalize across tasks with differing demands. Furthermore, it would
be valuable to explore how low beta desynchronization correlates with
other qualitative metrics, such as self-reported measures of workload
(e.g., NASA-TLX questionnaires), and quantitative markers, such as
pupil diameter changes measured through eye tracking. These addi-
tional measures could strengthen the interpretation of EEG findings
and provide a more comprehensive assessment of cognitive load. Fi-
nally, the controlled lab settings and the exclusive focus on young
healthy participants limit the validity and applicability of the findings
to real-world environments or more diverse populations.

Future research could build on our findings and explore real-time
cognitive load monitoring in tasks with progressively increasing de-
mands. In education, adaptive platforms could monitor student’s men-
tal effort during tasks like solving increasingly complex math problems
or memorizing expanding sequences and personalize content accord-
ingly [65]. In high-stakes fields, such as air traffic control or surgery,
cognitive load tracking could be applied to scenarios where operators
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manage progressively larger sets of information or increasing task
complexity [51]. This would help to prevent overload and optimize
decision-making under stress. In the automotive sector, monitoring
driver’s cognitive load during progressively demanding driving con-
ditions, such as increasing traffic density, multitasking with naviga-
tion systems, or managing vehicle automation levels, could enhance
safety by detecting mental overload [10]. Similarly, in healthcare,
tasks requiring incremental memory encoding could be used to identify
early signs of cognitive decline. The EEG-based biomarkers proposed
here could support early screening strategies complementing traditional
neuropsychological tests by providing objective, real-time markers of
working memory function [66,67]. Finally, in gaming and entertain-
ment, cognitive load monitoring could personalize game difficulty as
players progress through levels with increasing challenges, enriching
engagement and user experience [68].

5. Conclusions

This research offers a different perspective on the neural dynamics
of working memory. For this purpose, we focus on the incremental
encoding of discrete elements; that is, the gradual accumulation and
temporal storage of information in short-term working memory. Our
analysis captures variations within a single task level, as the num-
ber of elements being encoded increases progressively, rather than
examining static difficulty levels where cognitive demands remain
constant. This dynamic approach would enable the identification of
neural biomarkers for real-time cognitive load monitoring in practical
applications, where cognitive load fluctuates rapidly. The findings,
particularly the progressive desynchronization of low beta activity as
more elements are encoded, highlight its role as a sensitive indicator
of cognitive load variations. Moreover, beta desynchronization shifted
towards higher frequencies as cognitive load increased. This suggests
that the neural adjustments involved in managing greater memory
demands may progressively move to higher beta frequencies. These
insights emphasize the relevance of beta oscillations as biomarkers
of working memory processes, with low beta providing continuous
feedback on task demands and high beta signaling more substantial
cognitive adjustments when demands reach higher levels. The results
also highlight the stability of the theta and alpha activity, which appear
more linked to general task engagement rather than the encoding of
specific elements.
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