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Resumen Abstract

Resumen
En este trabajo, analizaremos el comportamiento de una de las principales medidas em-

pleadas para evaluar protocolos de teleportación de estados cuánticos. En particular, nos
centraremos en el carácter probabiĺıstico del protocolo cuántico cuando este es afectado por
un tipo espećıfico de ruido experimental. La fidelidad de teleportación se utiliza como una me-
dida de rendimiento, la cual se calcula tomando la fidelidad entre el estado inicial que se desea
teleportar y el conjunto de estados finales obtenidos tras aplicar el protocolo, promediada
sobre el conjunto de todos los estados iniciales posibles.

Por otra parte, un procedimiento muy importante en información cuántica es el proto-
colo clásico de teleportación en el que se asume que emisor y receptor están comunicados
únicamente por un canal clásico. Este protocolo sirve de referencia y establece una cota infe-
rior que todo protocolo de teleportación cuántico debe superar para que su rendimiento sea
considerado no clásico.

Recientes trabajos de investigación han agregado, como elemento de análisis de desem-
peño de un protocolo cuántico particular, a la desviación estándar de la fidelidad en el caso
cuántico, obteniendo una visión más general del comportamiento estad́ıstico de esta figura
de mérito. En este trabajo, hemos calculado además la desviación de la fidelidad asociada al
protocolo clásico, que debe ser considerada al momento de realizar comparaciones entre el
procedimiento cuántico y el clásico.

Abstract
In this paper, we will review the performance of the main existing figure of merit for

assessing quantum state teleportation protocols. Specifically, we will focus on the probabilistic
behavior of the quantum protocol when it is subjected to a particular experimental noise.
The teleportation fidelity is a benchmark measure that is calculated by taking the fidelity
between the initial state to be teleported and the ensemble of final states of the protocol
averaged over the set of possible initial states.

On the other hand, a very important procedure in quantum information is the classical
teleportation protocol in which it is assumed that the sender and receiver can communicate
each other only by a classical channel. This protocol serves as a reference and establishes a
lower bound that every quantum teleportation protocol must surpass for its performance to
be considered non-classical.

Recent research works have added, as an element of performance analysis of a particular
quantum protocol, the fidelity standard deviation in the quantum case, obtaining a more
general view of the statistical behavior of this figure of merit. In this work, we have also cal-
culated the fidelity deviation associated with the classical protocol, which must be considered
when making comparisons between quantum and classical approaches.

Trabajo de fin de grado 3 Pablo Crespo Del Amo



Introducción

1. Introducción
Entre los años 1920 y 1930 cient́ıficos como Max Plank, Niels Bohr, Werner Heisenberg y

Erwin Schrödinger formularon las primeras teoŕıas que describen el comportamientos de las
part́ıculas a niveles subatómicos [1]. Posteriormente, el concepto de entrelazamiento cuántico,
planteado inicialmente por Einstein y desarrollado por John Bell, revolucionó nuestra com-
prensión de las correlaciones cuánticas entre part́ıculas; este avance permitió en los años 90
la propuesta teórica de la teleportación cuántica.

La teleportación cuántica es el proceso por el cual la información de un sistema cuántico
se transfiere a otro sistema que se encuentra a una cierta distancia. Este proceso se basa
en los principios de la mecánica cuántica, siendo uno muy importante el de entrelazamiento
cuántico, descrito por Einstein como acción fantasmal a distancia [2]. El hecho de que en
un sistema entrelazado las propiedades de las part́ıculas estén correlacionadas hace que al
realizar una medición sobre una de las part́ıculas parte de las propiedades de la otra part́ıcula
queden determinadas de manera instantánea, independientemente de la distancia que las se-
pare. Gracias a la teleportación, propiedades de un sistema cuántico pueden ser transferidas a
otro situado a cientos de kilómetros. El concepto de teleportación perfecta sólo tiene sentido
dentro del contexto de la f́ısica cuántica ya que, como veremos más adelante, es imposible
teleportar estados cuánticos con probabilidad uno clásicamente porque el entrelazamiento es
un concepto indispensable a la hora de llevar a cabo procesos de teleportación [1].

El desarrollo de la teleportación cuántica no sólo sirve para ampliar el entendimiento de
los sistemas f́ısicos en general, sino para el desarrollo de aplicaciones prácticas. Estos pro-
cesos podŕıan ser la base de redes de comunicación cuántica seguras, debido a la capacidad
de transportar información sin exponerse a que pueda ser interceptada. Del mismo modo,
la teleportación cuántica ocupa un papel importante en la construcción de computadores
cuánticos, permitiendo enviar información de una parte del mismo a otra [3].

El primer experimento que obtuvo un resultado exitoso de teleportación cuántica fue llevado
a cabo en 1997 por un equipo liderado por Anton Zeilinger [4]. Gracias a este experimento
se comprobó que estos procesos son viables. Durante el mismo, se utilizaron fotones entrela-
zados para teleportar el estado cuántico de un fotón a otro, poniendo de manifiesto no sólo
la posibilidad de teleportar estados cuánticos entre dos sistemas, sino también sus sutilezas:
el Teorema de no clonación y la imposibilidad de trasmitir a un observador el resultado de
la medición realizada por Alice más rápido que la velocidad de la luz [5].

Durante los años siguientes se han estado forzando los ĺımites de la teleportación en referencia
a la distancia y la complejidad de los estados. Los últimos experimentos han conseguido tele-
portar estados una gran cantidad de kilómetros, por ejemplo en 2017 se consiguió teleportar
un estado entre un satélite y la tierra separados por 1400 km [6].

La teleportación cuántica todav́ıa presenta una gran cantidad de desaf́ıos, uno de los prin-
cipales problemas reside en la preservación en el tiempo del entrelazamiento cuántico, ya
que las interacciones de los sistemas cuánticos con el entorno generan decoherencia y una
correspondiente perturbación en las correlaciones [7]. Además de esto, si se quiere realizar y
evaluar de manera óptima el procedimiento, se deben cumplir las condiciones siguientes [8]:
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Introducción

1. No limitación para la información de entrada.

2. La información de entrada y salida debe ser proporcionada y verificada por un tercero,
excepto por el remitente y el receptor.

3. La fidelidad de teleportación(un concepto que definiremos en breve) debe ser superior
al umbral apropiado del protocolo clásico.

En la condición 3 mencionamos el concepto de fidelidad. Esta es una figura de mérito (o
medida) cuyo objetivo es evaluar distinguibilidad entre dos estados cuánticos, es decir, cuan-
tificar lo diferentes o parecidos que son tales estados. Utilizando esta cantidad, como veremos
espećıficamente más adelante, es posible definir la fidelidad de teleportación que sirve para
evaluar el rendimiento de un protocolo en particular.

Veamos intuitivamente cómo obtener tal medida para un protocolo dado. Consideremos
que nuestro objetivo es transmitir un estado cuántico ρu. Aplicamos el protocolo de tele-
portación en cuestión obteniendo como estado de salida ρf . Como señalamos anteriormente,
para comprobar cuánto se parecen los estados final e inicial utilizamos la fidelidad F . Da-
do además que el protocolo de teleportación cuántica debe ser capaz de transmitir todos
los estados posibles, la fidelidad de teleportación es un promedio sobre todos los estados de
entrada [9].

En diversos estudios se ha investigado la relación que existe entre el nivel de entrelaza-
miento y la fidelidad promedio que se puede obtener. La referencia [10] es uno de los trabajos
de mayor relevancia en el área y, entre otras cosas, demuestra que cuando el entrelazamiento
es máximo se puede alcanzar la fidelidad promedio igual a uno. Por otra parte, un proce-
dimiento muy importante es el protocolo clásico de teleportación, mencionado por primera
vez en la condición 3, que supone que el emisor y el receptor sólo pueden intercambiar infor-
mación clásica, es decir, el valor de algún observable f́ısico, o de alguna variable aleatoria en
general. Este procedimiento, además de profundizar el conocimiento sobre el comportamien-
to de los sistemas cuánticos, sirve para certificar un protocolo como cuántico o clásico: Si la
fidelidad de teleportación de un protocolo P es mayor a la del protocolo clásico, entonces cer-
tificamos a P como cuántico; en el caso contrario, como clásico. Sin embargo, la fidelidad de
teleportación promedio no es suficiente para caracterizar completamente el comportamiento
estad́ıstico de un protocolo de teleportación cuántica, ya que no nos aporta información so-
bre cuán equitativamente se transmiten los estados. Por tal motivo, recientemente diferentes
autores han propuesto estudiar la desviación de la fidelidad de teleportación σF [11]; esta
cantidad será nuestro objeto principal de estudio en este trabajo.

En la Sección 2 de este trabajo, definiremos nuestro marco teórico, en el que explicaremos
los conceptos básicos y necesarios de información clásica –variable aleatoria, distribuciones
de probabilidad, varianza y desviación estándar– y los elementos principales de información
cuántica –estados cuánticos, esfera de Bloch, entrelazamiento, canales cuánticos, el formalis-
mo de medición y fidelidad.–

En la Sección 3, introduciremos el protocolo cuántico de teleportación ideal [12], y el
protocolo clásico [13]. Utilizaremos, por otro lado, un estado de Werner como estado recurso
del protocolo cuántico dando lugar a uno de los modelos de ruido más famosos en la literatura.
En esta sección, comprobaremos que al utilizar un estado de Bell como recurso el protocolo
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siempre lograr transmitir perfectamente el estado inicial y, además, calcularemos la fidelidad
de teleportación en los demás casos.

Una vez definidos los principales elementos de los protocolos a estudiar, en la Sección 4,
nos enfocaremos en las desviaciones estándar del protocolo clásico y cuántico con un estado
de Werner. Nuestro aporte principal, entonces, es extender el estudio de la desviación al
protocolo clásico y utilizar estados mixtos como entrada, lo que nos da una imagen más
general del comportamiento de la fidelidad de teleportación.

Trabajo de fin de grado 6 Pablo Crespo Del Amo
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2. Elementos de información y mecánica cuántica

2.1. Variables aleatorias
El concepto de variable aleatoria ocupa un lugar central en la teoŕıa de probabilidad y

estad́ıstica. De manera sencilla, es una función que asigna un valor numérico a un evento
aleatorio particular. De este modo, una abstracción útil es la siguiente:

Espacio muestral Es el conjunto Ω de posibles resultados de un experimento (eventos
aleatorios).

Por ejemplo, si tienes un bombo con cien bolas enumeradas y el experimento consta de escoger
aleatoriamente una de las bolas, el espacio muestral es: Ω = {bola1, . . . , bola100}. Ahora bien,
un mismo espacio muestral puede dar lugar a diferentes variables aleatorias, cuya definición
formal es:

Variable aleatoria (VA) Sea Ω un espacio muestral. Una variable aleatoria es una función
X : Ω → Rn que asigna a cada elemento de Ω un vector en Rn; ω ∈ Ω, X(ω) ∈ Rn.

Siguiendo el ejemplo del bombo y las bolas, una variable aleatoria sobre el espacio muestral Ω
podŕıa ser el peso de las bolas pe(ω), mientras que otra diferente seŕıa el radio de las mismas
r(ω).
Las variables pueden ser de dos tipos principales, discretas o continuas, las cuales se diferen-
cian principalmente en que las variables discretas toman valores numerables1 mientras que
las variables continuas pueden tomar cualquier valor de la recta real.

2.1.1. Distribuciones de probabilidad

Una Distribución de Probabilidad (DP) describe el comportamiento estad́ıstico de una
variable aleatoria X. Matemáticamente, una DP queda definida por una función que toma
elementos del espacio muestral Ω y devuelve un número real positivo. En nuestro trabajo, las
variables aleatorias están definidas uńıvocamente por un sólo espacio muestral, y viceversa,
con lo cual, de ahora en adelante simplificaremos el formalismo estad́ıstico considerando al
espacio muestral ΩX definido por los posibles valores que puede tomar la variable X, es decir,
los experimentos están dados por los eventos en los que la VA en cuestión toma diferentes
valores.
De este modo, si x es un posible valor de X, su distribución de probabilidad p(x) es una
función que describe cómo se distribuyen los posibles valores que toma X. Sus propiedades
son:

Positividad: Para todo valor de x se cumple que p(x) ≥ 0.

Normalización: La integral de p(x) sobre todos el espacio muestral (i.e. los posibles
valores que toma X) debe ser igual a 1:∫

ΩX

p(x)dVΩX
= 1.

1Es decir, se puede realizar una biyección con algún subconjunto de los número naturales.
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Nótese que p(x) no es una probabilidad en śı, sino una densidad de probabilidad, es decir,
p(x)dVΩX

denota la probabilidad de que X tome algún valor en las proximidades2 de x. Para
darle una interpretación geométrica, consideremos el caso unidimensional: la función p(x) es
una curva en la recta real, cuya área por debajo nos proporciona la probabilidad de que la
variable aleatoria tome un valor entre dos puntos ĺımite [a, b],

P (a ≤ X ≤ b) =
∫ b

a
p(x)dx.

La definición anterior de DP es para una variable aleatoria continua, sin embargo, haciendo
uso de la distribución conocida como delta de Dirac δ(x), podemos restringirnos al caso de
una VA discreta por medio de:

p(x) =
∑

n

pnδ(xn − x). (1)

De este modo, sólo los valores {xn}n son posibles, y se distribuyen de acuerdo a {pn}n.

Durante este trabajo, analizaremos el comportamiento estad́ıstico de una variable alea-
toria continua que consta de un vector tridimensional u⃗ cuyo espacio muestral es la bola en
R3 de radio uno: B ⊂ R3. Esta variable estará descrita por distribuciones de probabilidad
isotrópicas, es decir, que sólo dependen del módulo de u⃗: p(u⃗) = f(u), con u = |u⃗|. De este
modo, la función f es no negativa y cumple con la normalización correspondiente,∫

B
p(u⃗)dV = 4π

∫ 1

0
u2f(u)du = 1, (2)

y dV el diferencial de volumen en B. Consideraremos tres distribuciones distintas:

Los vectores unitarios, es decir de módulo uno, son igualmente probables, mientras que
los demás tiene probabilidad de ocurrencia nula:

fp(u) = 1
4πu2 δ(u− 1). (3)

Vectores u⃗ uniformemente distribuidos en B:

fm(u) = 3
4π . (4)

Distribución cosecante3:
fr(u) = 1

π2
√

1 − u2
. (5)

2Estas proximidades están dadas por dVΩX
: Si X es una VA continua unidimensional, entonces p(x)dVΩX

=
p(x)dx es la probabilidad de que X tome un valor en el intervalo entre x y x + dx; Si es multidimensional,
el espacio muestral ΩX es un volumen, y dVΩX

es un elemento infinitesimal de volumen.
3Más adelante veremos por qué hemos considerado esta distribución particular. El nombre surge de que

si tomamos u = cos x entonces 1/
√

1 − u2 = csc x.
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Como veremos más adelante, el interés por las distribuciones anteriores se encuentra en
el contexto cuántico [14], siendo cada una de ellas la representación estad́ıstica de procedi-
mientos cuánticos particulares.

2.1.2. La esperanza

Consideremos una VA continua unidimensional, es decir, el espacio muestral es un sub-
conjunto de R. La esperanza, o también llamada promedio, de X viene denotado por E[X].
Esta magnitud representa el valor esperado que puede tomar una VA teniendo en cuenta su
distribución de probabilidad p(x), y se define como,

E[X] =
∫

ΩX

xp(x)dx.

En el caṕıtulo siguiente, utilizaremos cantidades f́ısicas que dependen de variables aleatorias
continuas en R3. Sea entonces X una VA de este tipo, y C : ΩX −→ R un funcional que
representa alguna de estas magnitudes f́ısicas, entonces la esperanza de C está dada por:

E[C(X)] =
∫

ΩX

C(x)p(x)dVΩX
.

Nótese que estamos considerando el caso de VAs continuas, pero siempre podemos restrin-
girnos a variables discretas haciendo uso de la Ec. (1).
La esperanza presenta ciertas propiedades que son muy útiles en teoŕıa de probabilidad, como
por ejemplo:

Linealidad. Para cualesquiera variables aleatorias X e Y , y constantes a y b, se tiene,

E[aX + bY ] = aE[X] + bE[Y ].

Esperanza de una constante. Para cualquier constante c, su esperanza es ella misma:

E[c] = c.

No negatividad. Si X ≥ 0 entonces E[X] ≥ 0.

2.1.3. La Varianza

La varianza es una medida estad́ıstica que describe la dispersión de una variable aleatoria
con respecto a la esperanza. La varianza juega un papel crucial en estad́ıstica ya que cuantifica
el nivel de incertidumbre sobre los valores que puede tomar dicha variable. Encontramos un
ejemplo trivial al considerar la variable aleatoria constante: no hay incertidumbre sobre sus
valores (toma siempre el mismo), y la varianza es nula.
Espećıficamente, la varianza de una variable aleatoria X se denota por σ2, siendo σ conocida
como desviación estándar. En el caso unidimensional, puede ser calculada de la siguiente
manera:

σ2(X) = E[(X − E[X])2],
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donde E representa la esperanza. Además, se puede ver que la varianza se puede escribir
como,

σ2(X) = E[X]2 − E[X]2. (6)

Esta ecuación muestra que la varianza puede entenderse como la diferencia entre el valor
esperado del cuadrado de X y el cuadrado de la esperanza.
Del mismo modo, si X es una VA continua multidimensional, y C : ΩX −→ R es una
magnitud que depende de X, entonces,

σ2[C(X)] = E[(C(X) − E[C(X)])2].

En resumen, vimos que una varianza mayor implica una mayor dispersión alrededor del valor
esperado, mientras que una varianza menor conlleva a que los valores están más próximos al
promedio. Es decir, la varianza es una medida de volatilidad o desviación de la variable.

2.2. Formalismo y elementos básicos de la teoŕıa cuántica
2.2.1. Estados cuánticos

En la teoŕıa cuántica, el comportamiento dinámico de los sistemas f́ısicos es intŕınseca-
mente estocástico [15], es decir, los observables f́ısicos relacionadas son variables aleatorias.
Con el objetivo de comprender mejor la teoŕıa cuántica vamos a repasar resumidamente los
conceptos más importantes.
Los sistemas f́ısicos cuánticos están descritos por un espacio de Hilbert H [16] y un estado
que es un operador lineal acotado positivo y autoadjunto, con traza uno. El conjunto de estos
estados se lo denota, habitualmente, como B+

1 (H). Matemáticamente, un espacio de Hilbert
es un espacio vectorial completo con un producto interno complejo [17].
La regla de Born relaciona el elemento definido como estado cuántico con las magnitudes f́ısi-
cas: todo observable f́ısico de un sistema cuántico está representado por un operador lineal
autoadjunto O. Su valor de expectación, i.e. el promedio sobre infinitos experimentos iguales,
está dado por ⟨O⟩ = TrOρ, siendo ρ ∈ B+

1 (H) el estado del sistema.
Por otro lado, los estados cuánticos están divididos en dos tipos; estados puros y mixtos.

Estados puros: si ρ ∈ B+
1 (H) es un estado puro, entonces existe un vector |ψ⟩ ∈ H tal

que ρ = |ψ⟩ ⟨ψ|. De este modo, Tr ρ2 = 1. Toda la descripción del sistema, en este caso,
se puede realizar utilizando solamente |ψ⟩.

Estados mixtos: estos estados describen sistemas cuánticos que no pueden ser descritos
con un único vector del espacio de Hilbert. Los estados mixtos son una combinación
estad́ıstica de estados puros. En este caso, si ρ ∈ B+

1 (H) es el estado mixto en cuestión,
Tr ρ2 < 1.

Adicionalmente, se puede demostrar que Tr ρ2 es una medida bien comportada de la pureza
de un estado cuántico; en particular, Tr ρ2 = 1 śı y sólo śı ρ es un estado puro [18].
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2.2.2. Sistemas de dos niveles y la esfera de Bloch

La esfera de Bloch es una representación geométrica utilizada para visualizar el estado de
un qubit [19]. Esta representación es posible debido a que el estado de un qubit se encuentra
en un espacio de Hilbert de dimensión dos, lo que permite establecer una correspondencia
entre el espacio de operadores de densidad y la esfera unitaria en R3. Esto se logra utilizando
las matrices de Pauli, ya que, junto con la matriz identidad 1, forman una base completa en
dicho espacio. De esta manera, cualquier operador puede expresarse como una combinación
lineal de estas matrices.
Un qubit es un sistema cuántico cuya configuración puede describirse como una superposición
lineal de dos estados base, |0⟩ y |1⟩, por lo que su estado general se expresa como:

|ψ⟩ = α |0⟩ + β |1⟩ ,

donde α y β son coeficientes complejos. En la representación de la esfera de Bloch, este estado
se parametriza mediante coordenadas esféricas, obteniéndose la siguiente forma:

|ψ⟩ = cos θ2 |0⟩ + eiϕ sin θ2 |1⟩ ,

donde los parámetros θ y ϕ tienen las siguientes interpretaciones geométricas:

θ: Colatitud, el ángulo entre el eje z y el vector que representa el estado del qubit, con
valores que vaŕıan entre 0 y π.

ϕ: Longitud, el ángulo medido en el plano xy desde el eje x hasta la proyección del
vector del estado sobre dicho plano, con valores que oscilan entre 0 y 2π.

Además, también los estados mixtos puede ser representados en la esfera de Bloch. La ex-
presión general de una matriz densidad es:

ρ = 1
2

(
1 + r3 r1 − ir2
r1 + ir2 1 − r3

)
= 1

2 (1 + r⃗ · σ⃗) , (7)

donde:

1 es la matriz identidad de 2 × 2.

r⃗ = (rx, ry, rz) = r(cosϕ sin θ, sinϕ sin θ, cos θ), es el vector de Bloch, que apunta desde
el centro de la esfera hacia el punto que representa el estado cuántico.

σ⃗ = (σ1, σ2, σ3) son las matrices de Pauli,

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

2.2.3. Entrelazamiento cuántico

El entrelazamiento cuántico es un fenómeno fundamental en la mecánica cuántica, en
el que dos o más part́ıculas comparten un estado cuántico conjunto. Esto significa que las
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propiedades individuales de cada una de las part́ıculas no pueden describirse de manera
independiente respecto a las demás. En particular, cualquier medición realizada sobre una de
las part́ıculas afecta instantáneamente al estado de las demás, sin importar la distancia que
las separe [18, 1].

Consideremos un sistema compuesto por dos part́ıculas, A y B. El estado conjunto está
descrito por un estado global, que puede ser una superposición de varios estados posibles. Si
las part́ıculas A y B están entrelazadas, el estado del sistema no puede expresarse como el
producto de los estados individuales de cada part́ıcula, lo que implica que hay correlaciones
entre los subsistemas que la componen [17].

Para ilustrar este concepto, consideremos un ejemplo concreto: Supongamos que tenemos
dos electrones que presentan entrelazamiento de esṕın. Al realizarse una medición del esṕın
de cada particular en alguna dirección, podemos obtener uno de dos resultados: “arriba” (↑)
o “abajo” (↓). En este caso, un posible estado entrelazado del sistema seŕıa:

|ψ⟩ = 1√
2

(|↑A↓B⟩ + |↓A↑B⟩) . (8)

Este estado implica que, al medir el esṕın de cualquiera de los dos electrones, el estado del
otro queda inmediatamente determinado. Por ejemplo, si al medir el electrón A se obtiene
esṕın arriba (↑A), sabemos con certeza que el electrón B tiene esṕın abajo (↓B), y viceversa.

El estado en la Ec. (8), es uno de los conocidos como estados de Bell [20] y tienen la
particularidad de que tienen entrelazamiento máximo. Para un conjunto de dos sistemas de
dos niveles, cualesquiera los estados de Bell vienen dados por:

∣∣∣ϕ+
〉

= 1√
2

(|00 ⟩+|11⟩) ,
∣∣∣ϕ−

〉
= 1√

2
(|00 ⟩−|11⟩) ,∣∣∣ψ+

〉
= 1√

2
(|01 ⟩+|10⟩) ,

∣∣∣ψ−
〉

= 1√
2

(|01 ⟩−|10⟩) .

La matriz densidad de cada uno de los estados se puede reescribir como:

ρk
Bell = |ψk

Bell ⟩⟨ψk
Bell| = 1

4

(
1a ⊗ 1b +

3∑
i=1

W k
i σi ⊗ σi

)
. (9)

En esta expresión, {W k}4
k=1 son las matrices diagonales asociadas a cada estado de Bell,

siendo estas:

W 1 =

1 0 0
0 −1 0
0 0 1

 W 2 =

1 0 0
0 1 0
0 0 −1

 W 3 =

−1 0 0
0 1 0
0 0 1

 W 4 =

−1 0 0
0 −1 0
0 0 −1

 .(10)

2.2.4. Canales cuánticos

En la teoŕıa de información cuántica, los canales cuánticos presentan un papel funda-
mental en el estudio de conceptos como coherencia, corrección de errores y capacidades de
protocolos particulares [21].

Un canal cuántico se describe matemáticamente como un mapa E : B+
1 (HA) → B+

1 (HB)
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entre operadores lineales, completamente positivo y que preserva la traza.
La importancia de estos objetos matemáticos es que permiten representar de forma f́ısi-

camente consistente cualquier ((cambio)) 4 que un estado cuántico pueda exhibir.
Como se comentó anteriormente, los canales cuánticos requieren de dos requisitos indis-

pensables relacionados con matrices densidad bien definidas; espećıficamente:

Positividad completa: Esto implica que E ⊗In es una aplicación positiva para cualquier
valor de n, lo que asegura que la evolución de un estado cuántico inicial a uno final
nunca produce probabilidades negativas.

Conservación de la traza: Se preserva la traza de los operadores, lo que quiere decir
Tr(E(ρ)) = Tr(ρ) para cualquier estado ρ. Esto nos asegura que la normalización de la
probabilidad no se altera cuando el estado evoluciona.

Uno de los objetivos últimos de la teoŕıa de información cuántica es establecer cotas a
cantidades f́ısicas o de tipo informacionales, siendo una de las herramientas matemáticas
básicas los mapas que representan los canales cuánticos.

2.2.5. Mediciones

El postulado de medición de la mecánica cuántica establece que, dado un sistema en un
estado ρ ∈ B+

1 (H), la medición de una magnitud f́ısica A, que puede tomar resultados {ak}k,
puede representarse utilizando operadores de medición {Ak}k, que actúan en el mismo espacio
de Hilbert H. De este modo, la probabilidad de obtener el resultado ak en la medición de A
está dado por pk = TrAkρA

†
k, mientras que el estado condicional que ocupa el sistema luego

de esta medición es:

ρk = AkρA
†
k

pk

. (11)

El formalismo matemático más general para estos operadores es el de operadores no nega-
tivos (Ek ≥ 0), hermı́ticos (Ek = E†

k) y que suman la identidad ∑k Ek = 1, también conocido
como POVMs5. Este conjunto de operadores es muy importante porque los operadores de
medición pueden ser siempre generados a partir de una POVM y determinan uńıvocamente
las probabilidades, es decir, la probabilidad de obtener el resultado k-ésimo es pk = TrEkρ.
Sin embargo, para obtener los estados condicional, Ec. (11), necesitamos descomponer los
elementos de la POVM como

Ek = A†
kAk.

Dos aclaraciones importantes: La primera es que {Ak} no son necesariamente hermı́ticos y,
por último, la descomposición anterior no es única, con lo cual, especificando únicamente la
POVM, no podemos determinar los estados condicionales.

4Es decir, una evolución o un protocolo particular.
5Por sus siglas en inglés: Positive operator-valued measure.
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2.3. Fidelidad
Con el propósito de evaluar la similitud entre dos estados cuánticos arbitrarios, existen

diversas medidas que pueden emplearse, tales como la distancia de traza o la fidelidad. En el
área de teleportación cuántica, la más utilizada es la fidelidad [22, 13, 10, 11].

La fidelidad entre dos estados cuánticos, representados por operadores densidad ρ y σ, se
define mediante la siguiente expresión:

F (ρ, σ) = Tr
√
ρ

1
2σρ

1
2 . (12)

Es importante destacar que la fidelidad es simétrica respecto al orden en el que se comparan
los estados, es decir, F (ρ, σ) = F (σ, ρ). Además, está acotada entre 0 y 1, donde F (ρ, σ) = 0
únicamente cuando existe una medición que nos permita distinguir perfectamente los esta-
dos, y F (ρ, σ) = 1 cuando ambos estados coinciden, es decir, cuando ρ = σ. Aunque esta
propiedad no es evidente a partir de la expresión anterior, puede derivarse directamente del
teorema de Uhlmann [23].

2.3.1. Expresión simplificada para sistemas de dos niveles

Trabajar con la expresión de la fidelidad, Ec. (12), puede resultar complicado. Para el
caso de sistemas de dos niveles, podemos simplificar la expresión usando vectores de Bloch,
Ec. (7). Primero, definimos los estados a comparar: ρ(u⃗) = 1

2(1 + u⃗ · σ⃗) y σ(s⃗) = 1
2(1 + s⃗ · σ⃗).

Las matrices hermı́ticas son diagonalizables y las que además son definidas no negativas
tienen una ráız cuadrada bien definida: Sea M una matriz 2 × 2 de este tipo,

M = UMMdU
†
M =⇒

√
M = UM

√
MU †

M ,

donde Md es una matriz diagonal y UM es la unitaria que digonaliza a M . Además,

(Tr
√
M)2 = (√m1 + √

m2)2 = m1 +m2 + 2m1m2,

con mi los elementos de la diagonal de M . Por otro lado,

TrM = m1 +m2 detM = m1m2,

entonces

(Tr
√
M)2 = TrM + 2 detM,

Luego, la matriz √
ρσ

√
ρ es una matriz hermı́tica y definida no negativa, porque ρ y σ

son también de este tipo, entonces tomando M = √
ρσ

√
ρ hemos demostrado que,

F (ρ, σ) = Tr[√ρσ√
ρ] + 2 det(√ρσ√

ρ) = Tr[ρσ] + 2 det ρ detσ.

Escribiendo los estados en función de los vectores de Bloch y desarrollando cada término,
tenemos:

Tr [ρσ] = 1
2 (1 + r⃗ · s⃗) ,

Trabajo de fin de grado 14 Pablo Crespo Del Amo



Elementos de información y mecánica cuántica Fidelidad

det ρ = 1 − r2

4 , detσ = 1 − s2

4 .

Finalmente, hemos demostrado que la fidelidad entre dos estados cuánticos se puede
escribir como:

F (ρ, σ) = 1
2
(
1 + r⃗ · s⃗+

√
1 − r2

√
1 − s2

)
. (13)
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3. Protocolos de teleportación
El término teleportación cuántica surge en 1993, de la mano de Charles Bennett y sus

colaboradores [24], quienes propusieron por primera vez el protocolo de teleportación ideal
(o perfecto) para sistemas de dos niveles. Como señalamos anteriormente, este procedimiento
consiste en la trasmisión del estado cuántico de un sistema a otro, utilizando estados de Bell
(entrelazamiento máximo) y comunicación clásica –este detalle es importante debido a que
limita la velocidad de transmisión del estado a la velocidad de la luz.
Además del protocolo de teleportación cuántico perfecto, en la literatura se estudiaron dife-
rentes variantes, siendo una muy importante el protocolo clásico. Este procedimiento supone
que el emisor y el receptor del estado cuántico, usualmente denominados como Alice y Bob,
respectivamente, están conectados solamente por un canal clásico, es decir, sólo puede enviar-
se bits información clásica. Por último, otra situación relevante toma lugar cuando Alice y
Bob no pueden comunicarse, procedimiento que hemos denominado como estrategia ingenua.
Cabe aclarar que la importancia de estos dos últimos protocolos es estudiar los ĺımites de la
teleportación, es decir, cuánto ruido puede admitir un protocolo cuántico antes de compor-
tarse peor que estos protocolos que no hacen uso de ningún recurso cuántico.
En las secciones siguientes, veremos cómo definir y cuantificar el desempeño de los protocolos
mencionados anteriormente para el caso de sistemas de dos niveles.

3.1. Fidelidad de teleportación
Como señalamos anteriormente, la fidelidad de teleportación es la principal figura de

mérito para cuantificar el desempeño de los protocolos en teleportación. La podemos definir
como el promedio del rendimiento sobre una distribución aleatoria estados iniciales posibles.
Espećıficamente, sea ρ = 1

2(1 + u⃗ · σ⃗) el estado inicial a teleportar de un sistema cuántico y P
un protocolo arbitrario de teleportación que, dado ρ, produce el estados cuántico condicional
ρi = 1

2(1 + u⃗i · σ⃗) con probabilidad pi. El rendimiento F̄ se define como la fidelidad a priori:

F̄ =
∑

i

pi F (ρ, ρi) . (14)

La fidelidad de teleportación se calcula tomando el promedio de la cantidad anterior sobre
una distribución de estados aleatoria D(ρ) = f(u⃗):

⟨F ⟩ =
∫
dρD(ρ)F (ρ, ρi) = 1

2

∫
B
dV f(u⃗)

(
1 + u⃗ · u⃗i +

√
1 − u2

√
1 − u2

i

)
, (15)

siendo B es la esfera de Bloch, f(u⃗) la distribución de estados aleatorios parametrizada según
el vector de Bloch u⃗, y donde hemos utilizado la Ec. (13) para la fidelidad.

En este punto surge la pregunta sobre cuál distribución de estados cuánticos considerar.
Los protocolos de teleportación cuántica suponen máxima incertidumbre sobre el estado a
teleportar, es decir, conocimiento previo mı́nimo. Ahora bien, si nos restringimos a estados
puros iniciales se demuestra que la distribución que representa esta situación está dada por
la ((cáscara)) uniforme sobre la superficie de la esfera de Bloch [14], dada por la Ec. (3), sin
embargo, si se anula esta restricción, es decir, si permitimos que el protocolo toma como
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estados de entrada cualquier estado cuántico, no existe una distribución de probabilidad
que represente el conocimiento previo mı́nimo sobre los estados iniciales. Esto se debe a
que existen diferentes formas de cuantificar qué tan diferentes son dos estados cuánticos,
y cada una de ellas da lugar a una noción de aleatoriedad distinta. En este trabajo, como
anticipamos en la Sec 2.1.1, vamos a utilizar dos distribuciones distintas de estados aleatorios
mixtos dadas por las Ecs. (4) y (5). La primera está relacionada con la distancia Hilbert-
Schmidt y la segunda con la distancia Bures, que son dos funcionales ampliamente utilizados
y reconocidos como bien comportados en el área [25].

3.2. Protocolo clásico
Como introdujimos anteriormente, el protocolo de teleportación clásico consta de dos

personas separadas a las que llamaremos Alice y Bob comunicadas por un canal clásico,
es decir, sólo pueden enviarse bits de información clásica. El objetivo es, como siempre,
transmitir el estado de un sistema cuántico A a otro sistema B. En un principio, Alice tiene
un estado cuántico desconocido que podemos representar como

ρ(u⃗) = 1
2 (1 + u⃗ · σ⃗) , (16)

donde u⃗ es el vector de Bloch del estado cuántico, ver por ejemplo Ec. (7). Además, cabe
mencionar que sólo se tiene una copia del estado a teleportar, por lo que sólo se podrá realizar
una medición para obtener información del mismo.
En el primer paso del protocolo clásico Alice realiza una medición dada por la POVM MA =
{Mi}i sobre el estado A. La probabilidad de obtener el resultado i-ésimo es pi = Tr[Miρ(u⃗)].
Todo operador de medición Mi se puede escribir usando vectores de Bloch [13] como:

Mi = s2
i ρi,

siendo ρi un estado que viene dada por la expresión ρi(d⃗i) = 1
2

(
1 + d⃗i · σ⃗

)
. Por completitud

se tiene que cumplir que ∑
i

Mi =
∑

i

s2
i ρi = 1A,

lo que nos lleva a las siguientes dos propiedades:∑
i

s2
i = 2,

∑
i

s2
i d⃗i = 0. (17)

La probabilidad de obtener el resultado i-ésimo resulta entonces,

pi = s2
i

2
(
1 + d⃗i · u⃗

)
.

Una vez que Alice ha hecho la medición y ha obtenido el resultado i-ésimo se lo comunica a
Bob utilizando el canal clásico, el cual prepara el estado final en el sistema B al que vamos
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a expresar como

ρ̃i(g⃗i) = 1
2 (1 + g⃗i · σ⃗) .

En este punto, surgen entonces dos preguntas: 1) ¿Qué debeŕıa medir Alice? Es decir, ¿cómo
determinar la POVM óptima Mi (si y d⃗i)?; y 2) ¿Qué debeŕıa preparar Bob? Es decir, ¿cómo
tomar g⃗i, dado el resultado i en la medición? La respuesta a estas preguntas las obtendremos
optimizando la figura de mérito, es decir, la fidelidad de teleportación.

3.2.1. Fidelidad de teleportación clásica

Una vez hallada la expresión de la fidelidad con la que vamos a trabajar, Ec. (13), ten-
dremos que sacar el rendimiento según la Ec. (14),

F̄ (ρ) =
∑

i

piF (ρ, ρ̃i) = 1
4
∑

i

s2
i (1 + u⃗ · d⃗i) (1 + u⃗ · g⃗i +

√
1 − u2

√
1 − g2

i )

= 1
4
∑

i

s2
i

(
1 + u⃗ · g⃗i +

√
1 − u2

√
1 − g2

i + u⃗ · d⃗i + u⃗ · d⃗i u⃗ · g⃗i + u⃗ · d⃗i

√
1 − u2

√
1 − g2

i

)
.

(18)

Siguiendo la Ec. (15), la fidelidad de teleportación es el promedio del rendimiento:
〈
F̄
〉

=
∫
f(u⃗)F̄ (ρ)dV =

∫
f(u⃗)1

4
∑

i

s2
i (1 + u⃗ · g⃗i +

√
1 − u2

√
1 − g2

i +

u⃗ · d⃗i + u⃗ · d⃗i u⃗ · g⃗i + u⃗ · d⃗i

√
1 − u2

√
1 − g2

i ) dV.
(19)

Podemos obtener la expresión anaĺıtica de la integral, desarrollando la integral de volumen en
integrales de superficie y radial. Es importante destacar que esta separación se puede hacer
ya que las densidades de probabilidad son isotrópicas f(u⃗) = f(u). La separación en cuestión
es, espećıficamente:∫

dV =
∫ 1

0
du u2

∫ 2π

0
dϕ
∫ π

0
dθ sen(θ) =

∫ 1

0
du u2

∫
S
dS.

Veamos ahora cómo calcular cada uno de los términos de la integral Ec. (19).

1. Primer término: ∫
f(u)u24πdu = 1. (20)

Como vimos en nuestro marco teórico la densidad de probabilidad esta normalizada
según la Ec. (2), por lo que nos permite calcular directamente nuestro primer término.

2. Segundo término: ∫
f(u) u⃗ · g⃗i dV =

∫
f(u)u3du

∫
û · g⃗idS, (21)
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donde hemos utilizado que u⃗ = uû siendo û el vector normalizado. Como ya mencio-
namos en el marco teórico la densidades de probabilidad f(u) son isotrópicas, es por
ello que podemos separar la integral en dos, la primera parte que integra los radios y
la segunda que integra una superficie esférica, y operar cada una de ellas.
En este punto vamos a trabajar con la segunda integral sobre la superficie esférica, que
calcularemos utilizando el teorema de la divergencia. Haremos el desarrollo una vez,
para el resto de términos es análogo.
El teorema de la divergencia establece que dado un campo vectorial F⃗ continuamente
diferenciable en los ĺımites de un volumen V ∈ R3 compacto con un borde suave S, vale∫

S
F⃗ · dS⃗ =

∫
V

(∇ · F⃗ )dV,

En nuestro caso, si V es la bola unidad en R3, tenemos que dS⃗ = dSû y el campo
vectorial es constante F⃗ (u⃗) = g⃗i, por lo tanto:∫

g⃗i · ûdS =
∫

(∇ · g⃗i)dV = 0. (22)

Con lo cual, el segundo término, Ec. (21), es idénticamente nulo, al igual que el cuarto
y sexto término.

3. Tercer término:∫
f(u)u2√1 − u2

√
1 − g2

i dSdu =
∫
f(u)u24π

√
1 − u2

√
1 − g2

i du. (23)

Dado que la distribución de probabilidad no depende de las variables angulares, enton-
ces sólo queda resolver la parte radial. Para ello hay que especificar la distribución f(u).

4. Quinto término:∫
f(u)u2u⃗ · d⃗i u⃗ · g⃗i dSdu =

∫
f(u)u4 du

∫
û · d⃗i û · g⃗idS. (24)

En esta ocasión vamos a simplificar la integral de superficie para dejar únicamente de-
pendencia con el radio; en lo que sigue, utilizaremos la convención de suma de Einstein.
Sea x̂ un vector unitario,(

x̂ · d⃗i

)
(x̂ · g⃗i) = xjd

j
i xkg

k
i = xjd

j
i g

k
i xk = xj(Ajk

i xk) = x̂ · Aix̂,

donde Ai = d⃗ig⃗
⊺
i . Por otro lado, utilizando una vez más el teorema de la divergencia y

definiendo el campo vectorial como F (u⃗) = Au⃗, tenemos que vale en general:∫
Aû · û dS =

∫
(∇ · Au⃗)dV.
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A su vez,

∇ · (Au⃗) = 1
∂uj

Ajkuk =
3∑

j=1
Ajj = TrA,

y entonces ∫
(∇ · Au⃗)dV = 4π

3 TrA.

Volviendo a nuestro caso, A = d⃗ig⃗
⊺
i , por lo tanto, Tr(A) = Tr(d⃗ig⃗i

⊺) = d⃗i · g⃗i. Se sigue
entonces que, el término en la Ec. (24) resulta:

∫
f(u)u2

(
u⃗ · d⃗i

)
(u⃗ · g⃗i) dSdu =

4π
(
d⃗i · g⃗i

)
3

∫
f(u)u4 du. (25)

Utilizando las Ecs. (20), (22), (23) y (25), la fidelidad promedio resulta igual a,

〈
F̄
〉

=
∫ 1

0
du f(u)

n∑
i

πu2s2
i (1 + u2

3
(
d⃗i · g⃗i

)
+

√
1 − u2

√
1 − g2

i ). (26)

Nótese que esta ecuación no puede ser resuelta sin conocer la expresión de la densidad de
probabilidad de los vectores u⃗, por lo que vamos a introducir una simplificación para avanzar
en el desarrollo, que viene dado por la siguiente expresión,

Eα ≡
∫ 1

0
du 4πu2f(u)

(
1 − u2

4

)α

E0 = 1. (27)

Una vez implementamos la Ec. (27), podemos reescribir la fidelidad promedio como sigue

〈
F̄
〉

=
n∑

i=0

1
4s

2
i

(
1 + 1

3(1 − 4E1)
(
d⃗i · g⃗i

)
+ 2E1/2

√
1 − g2

i

)
. (28)

Para seguir con el desarrollo, tenemos que obtener los vectores que optimizan la expresión
de la fidelidad (28). En el trabajo de Vidal [13], se demuestra que los vectores de Bloch
óptimos de los estados condicionales (i.e. la estrategia de preparación) están relacionados a
los operadores de la POVM según la expresión:

g⃗i = (1 − 4E1)d⃗i√
36E2

1/2 + (1 − 4E1)2d2
i

De esta manera lo que prepara Bob depende de la medida de Alice y de la densidad de pro-
babilidad f(u). Vamos ahora a sustituir en la expresión de la fidelidad promedio obteniendo

〈
F̄
〉

=
n∑

i=1

1
4s

2
i

(
1 + 1

3
√

36E2
1/2 + (1 − 4E1)2d2

i

)
. (29)
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Como vemos obtenemos una expresión para la fidelidad de teleportación máxima que solo
depende de f(u) y de los parámetros que definen la medición (si y d2

i ). Estamos entonces
en condiciones de obtener la medición óptima, optimizando la expresión anterior. Para cada
resultado de la medición entonces vemos que d2

i = 1 maximiza la Ec. (29), con lo cual, la
POVM está compuesta por proyectores de rango uno. Luego, como ∑i s

2
i = 2 por la Ec. (17),

la expresión final para la fidelidad de teleportación clásica es:
〈
F̄
〉

= 1
2

(
1 + 1

3
√

36E2
1/2 + (1 − 4E1)2

)
.

Vemos entonces que los elementos {si} y la cantidad de operadores de la POVM son
parámetros libres y no afectan al promedio del rendimiento.

En este trabajo, nos concentraremos en el protocolo clásico óptimo mı́nimo, es decir,
la POVM está compuesta por unicamente por dos proyectores porque es el protocolo más
utilizado en la literatura [13]. En resumen, la POVM óptima mı́nima y la estrategia de
preparación están dadas por:

si = 1, n = 2,
g⃗i = gopt · d⃗i,

∑
i

d⃗i = 0⃗,

d2
i = 1. (30)

siendo

gopt = (1 − 4E1p)√
36E2

1/2p
+ (1 − 4E1p)2

(31)

el módulo de los vectores de Bloch de los estados que componen la estrategia de preparación.
Este parámetro es determinado, en última instancia, por la distribución f(u), entonces, el
protocolo clásico depende de la noción de aleatoriedad considerada. Además, gopt es el grado
de pureza óptimo de los estados condicionales.

Vamos ahora a calcular las integrales que vienen dados por la Ec. (27) utilizando las
densidades de probabilidad dadas en las Ecs. (3)–(5),

E1p =
∫ 1

0
du 4πu2fp(u)

(
1 − u2

4

)
= 0, E1/2p =

∫ 1

0
du 4πu2fp(u)

(
1 − u2

4

)
= 0,

E1m =
∫ 1

0
du 4πu2fm(u)

(
1 − u2

4

)
= 1

10 , E1/2m =
∫ 1

0
du 4πu2fm(u)

(
1 − u2

4

)
= 3π

32 ,

E1r =
∫ 1

0
du 4πu2fr(u)

(
1 − u2

4

)
= 1

16 , E1/2r =
∫ 1

0
du 4πu2fr(u)

(
1 − u2

4

)
= 2

3π .

Por otro lado vamos a calcular los últimos elementos que necesitamos para calcular la fidelidad
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promedio:

gopt(fp) = (1 − 4E1p)√
36E2

1/2p
+ (1 − 4E1p)2

= 1, (32)

gopt(fm) = (1 − 4E1m)√
36E2

1/2m
+ (1 − 4E1m)2

≈ 0,32,

gopt(fr) = (1 − 4E1r)√
36E2

1/2r
+ (1 − 4E1r)2

≈ 0,50.

Cabe destacar que cuando nos restringimos a teleportar estados aleatorios puros, el protocolo
clásico da lugar consistentemente a la preparación también de estados puros; esto lo podemos
ver en la Ec. (32). Cuando la distribución involucra estados aleatorios que podŕıan ser mixtos,
la pureza de los estados finales en el protocolo clásico es considerablemente menor, sobre todo
en el caso de la esfera de Bloch uniforme, Ec. (4).

Por otro lado, los valores de la fidelidad de teleportación clásica, según las distribuciones
consideradas, son: 〈

F̄
〉

p
= 2

3 . (33)〈
F̄
〉

m
≈ 0,811.〈

F̄
〉

r
≈ 0,746. (34)

Vemos entonces que, en principio, a medida que la distribución de estados iniciales invo-
lucra más estados mixtos, mayor es la fidelidad de teleportación alcanzada.

3.3. Protocolo cuántico
Para llevar a cabo el protocolo cuántico de teleportación, consideramos nuevamente a dos

individuos: Alice, cuyo objetivo es enviar el estado ρa –escrito como en la Ec. (16)– de un
sistema de dos niveles denominado como a, y Bob, el receptor de tal estado en el sistema B.
En este caso, cambiamos la notación porque el protocolo cuántico hace uso de un sistema
adicional A.

El protocolo cuántico de teleportación comienza preparando un estado recurso ρAB en
el sistema AB. El siguiente paso consiste en la distribución del qubit A y B entre Alice y
Bob, respectivamente. Por otro lado, en este protocolo también se supone que Alice y Bob
mantienen un canal de comunicación clásico.

En resumen, Bob posee el qubit B, mientras que Alice tiene ahora dos qubits a y A. Es
importante destacar dos cuestiones: 1) Alice desconoce por completo en el qubit a, el cual es
el estado que se desea teleportar; 2) A diferencia del protocolo anterior, los pasos siguientes
del protocolo cuántico están diseñados para utilizar las potenciales correlaciones en el estado
recurso ρAB entre los qubits A y B.

El siguiente paso del protocolo consiste en que Alice realice una medición conjunta sobre
el sistema compuesto por los qubits a y A, representada como M = {MaA

i }. Tras realizar la
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medición, el estado del qubit B se altera debido al entrelazamiento, dando lugar a estados
condicionales (al resultado de la medición) en el sistema B [1]:

ρB|i =
TraA

[(
MaA

i ⊗ 1B

)
(ρa ⊗ ρAB)

]
pi

, (35)

donde pi es la probabilidad de obtener cada uno de los resultados de las medidas M = {MaA
i },

cuya expresión es:

pi = Tr
[(
MaA

i ⊗ 1B

)
(ρa ⊗ ρAB)

]
. (36)

3.3.1. Protocolo de teleportación cuántico perfecto

El caso más sencillo y de mejores resultados, parte de tomar como medición M =
{MaA

i }i = {ρBell
i }i la base de Bell y preparar algún estado de Bell ρBell

k como estado recurso
del sistema AB. En este apartado demostraremos que la configuración anterior da lugar a la
transmisión perfecta del estado ρ del qubit a al qubit B. En las ecuaciones siguientes haremos
uso de la convención de suma de Einstein para simplicar el texto.

El primer paso es escribir los estados de Bell como en la Ec. (9):

ρBell
k = 1

4 (1AB +Wα
k σα ⊗ σα) , (37)

que es un estado de Bell escrito en la forma de Fano, donde los elementosWα
k son los elementos

diagonales de las matrices de la Ec. (10).
Luego, la probabilidad de que Alice obtenga el resultado i-ésimo en la medición está dada

por la Ec. (36) y usando la parametrización anterior, Ec. (37), tenemos que:

pi = Tr
[(
MaA

i ⊗ 1B

) (
ρa ⊗ ρk

Bell

)]
= 1

32 Tr[(1aAB + wα′
i σα′ ⊗ 1B)

(1aAB + wα
k 1a ⊗ σα ⊗ σα + u⃗ · σ⃗ ⊗ 1AB + wα

k u⃗ · σ⃗ ⊗ σα ⊗ σα)] = 1
4 ,

La igualdad anterior se demuestra usando las propiedades de las matrices de Pauli, en par-
ticular, que Trσi = 0.

Una vez hemos medido el subsistema aA y observado el resultado i-ésimo, al estar A y B
entrelazados, hemos condicionado el estado de B, dado por la Ec. (35):

ρB|i = TraA [ρaAB]
pi

= 4
32 TraA[(1aAB + wα′

i σα′ ⊗ 1B)

(1aAB + wα
k 1a ⊗ σα ⊗ σα + u⃗ · σ⃗ ⊗ 1AB + wα

k u⃗ · σ⃗ ⊗ σα ⊗ σα)],

Aplicando la traza parcial [26] correspondiente vemos que sólo sobreviven los siguientes térmi-
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nos,

ρB|i =1
8 (4 1B + 2wα′

i w
α
kuα 2δαα′ σα) = 1

2 (1B + wα
i w

α
kuασα)

= 1
2
(
1B + u⃗B|i · σ⃗

)
.

El estado que hemos obtenido es muy parecido al estado a teleportar, Ec. (16) que teńıamos
en a. Espećıficamente:

u⃗B|i = WiWku⃗ = Riu⃗,

donde cada Wi son las matrices ortogonales de det = −1 en las Ec. (10), por lo que el
producto de WiWk = Ri es una matriz ortogonal de det = 1 , es decir, una rotación. Esto
quiere decir que u⃗B|i no es más que el vector de Bloch u⃗ del estado ρa rotado por la acción
de Ri, escrito de otro modo:

u⃗B|i = Ri u⃗ → u⃗ = R⊺
i u⃗B|i,

Por lo tanto, si Alice le env́ıa a Bob el resultado i de su medición, este puede corregir el
estado aplicando la rotación de corrección R⊺

i , obteniendo siempre como resultado el vector
u⃗ en el sistema B.

Para todo este proceso hemos estado supuesto condiciones ideales de ruido y sin pérdi-
da de información. Veamos a continuación qué sucede si aplicamos un modelo de ruido al
entrelazamiento entre los estados A y B.

3.3.2. Estado de Werner como recurso del protocolo cuántico

Como bien se introdujo al final de la anterior sección, vamos ahora a preparar nuestro
estado inicial de manera distinta, preparando en el sistema AB un estado de Werner que
viene definido por la siguiente expresión:

ρk
w = (1 − p)ρk

Bell + p

41AB.

Estos estados son resultado de uno de los modelos de decoherencia más simples existentes en
la literatura, y representan ruidos locales en los sistemas A y B.

De aqúı en adelante, denotaremos por p al nivel de ruido que tenemos. Este estado tiene
la particularidad de ser uno de los estados de Bell si el ruido es 0, lo que implica estar en el
caso de la anterior sección, o 1/4 de la matriz identidad en caso de que el ruido sea máximo,
es decir igual a 1; esto representa la menor información posible.

Como en el caso anterior, Alice precede a realizar la misma medición en la base de Bell
M = {MaA

i }i = {ρBell
i }i sobre el subsistema aA. En este caso, tenemos que

pi = Tr
[(
MaA

i ⊗ 1B

) (
ρa ⊗ ρk

w

)]
,

donde, (
MaA

i ⊗ 1B

)
= 1

4 (1aAB + wα′
i σα′ ⊗ σα′ ⊗ 1B) .
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De la misma forma vamos a desarrollar el segundo término obteniendo aśı:
(
ρa ⊗ ρk

w

)
= 1

8
[
(1a + u⃗ · σ⃗) ⊗

(
(1 − p)ρk

Bell + p 1AB

)]
= 1

8 [(1a + u⃗ · σ⃗) ⊗ ((1 − p)(1AB + wα
kσα ⊗ σα) + p 1AB)]

= 1
8 [(1 − p) (1aAB + 1aw

α
k ⊗ σα ⊗ σα + u⃗ · σ⃗ ⊗ 1AB + wα

k u⃗ · σ⃗ ⊗ σα ⊗ σα) +

+p (1aAB + u⃗ · σ⃗ ⊗ 1AB)] .

De este modo, las probabilidades resultan:

pi = Tr
[
(Mi ⊗ 1B)

(
ρa ⊗ ρk

w

)]
= 1

32[(1aAB + wα′
i σα′ ⊗ σα′ ⊗ 1B)

[(1 − p) (1aAB + 1aw
α
k ⊗ σα ⊗ σα + u⃗ · σ⃗ ⊗ 1AB + wα

k u⃗ · σ⃗ ⊗ σα ⊗ σα) + p (1aAB + u⃗ · σ⃗ ⊗ 1AB)]]

= 1
32 (8(1 − p) + 8p) = 1

4 .

Calculadas las probabilidades, los estados condicionales, Ec. (35), se obtienen de un modo
análogo:

ρB|i =
TraA

[
(Mi ⊗ 1B)

(
ρa ⊗ ρk

w

)]
pi

= 1
8 TraA[(1aAB + wα′

i σα′ ⊗ σα′ ⊗ 1B)

[(1 − p) (1aAB + 1aw
α
k ⊗ σα ⊗ σα + u⃗ · σ⃗ ⊗ 1AB + wα

k u⃗ · σ⃗ ⊗ σα ⊗ σα) + p (1aAB + u⃗ · σ⃗ ⊗ 1AB)]].

Si aplicamos la traza parcial sobre dicha expresión vemos que sólo sobreviven los siguientes
términos,

ρB|i = 1
8 (4 1B (1 − p) + 4 p 1B + 4wα

i w
α
kuασα (1 − p)) = 1

2 [1B + (1 − p)wα
i w

α
kuασα] .

Dicha expresión se puede reescribir contrayendo ı́ndices, obteniendo:

ρB|i = 1
2 [1B + (1 − p)Ri u⃗ · σ⃗] ,

donde Ri es la matriz de rotación y u⃗ es el vector de Bloch del estado a teleportar (16). Una
vez Bob recibe el resultado de la medición de Alice, puede realizar la rotación dada por R⊺

i

para obtener el estado final, siendo este:

ρB = 1
2 [1B + (1 − p)u⃗ · σ⃗] . (38)

En este caso, el estado final del protocolo no es el mismo al estado inicial, dado por la Ec. (16).
Debido a esto tenemos que calcular la fidelidad entre estos dos estados como hicimos en la
anterior sección.

Tras haber obtenido el estado que le resulta a Bob, Ec. (38), podemos calcular el rendi-

Trabajo de fin de grado 25 Pablo Crespo Del Amo



Protocolos de teleportación Protocolo cuántico

miento entre el estado inicial ρa y el estado final ρB, según la expresión (18),

F̄ (ρa, ρB) = 1
2

[
1 + (1 − p)u2 +

√
1 − u2

√
1 − (1 − p)2 u2

]
. (39)

Una vez que tenemos la expresión del rendimiento podemos calcular la fidelidad promedio
según la Ec. (15) para las distintas distribuciones, Ecs. (3)–(5), obteniendo aśı las siguientes
fidelidades medias:〈

F̄p

〉
=
∫
dΩ

∫ 1

0
u2 1

4πu2 ĺım
u0→1

δ(u− u0)F (ρa, ρB)du = 1 − p

2 , (40)〈
F̄m

〉
=
∫
dΩ

∫ 1

0
u2 3

4πF (ρa, ρB)du,〈
F̄r

〉
=
∫
dΩ

∫ 1

0
u2 1
π2

√
1 − u2

F (ρa, ρB)du. (41)

La expresión anaĺıtica de las dos últimas integrales no son simples. En el apartado siguiente,
las calculamos numéricamente en función del parámetro de ruido p.
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4. Desviación de la fidelidad
El estudio de la desviación de la fidelidad es el objetivo principal de nuestro trabajo, debido

a ello vamos a centrar esta sección en obtener la desviación para el protocolo clásico y para
el protocolo cuántico. Además, representaremos gráficamente los resultados con el objetivo
de entender la importancia de la desviación de la fidelidad en el estudio de la teleportación
cuántica.

Para calcular la desviación de la fidelidad vamos a reescribir la Ec. (6) como sigue

σ2 =
〈
F̄ 2
〉

−
〈
F̄
〉2
. (42)

Esta ecuación no es más que la diferencia entre el promedio del rendimiento al cuadrado y
la fidelidad promedio al cuadrado.

Comenzaremos obteniendo la desviación de la fidelidad para el protocolo clásico óptimo
mı́nimo desarrollado en la Sec. 3.2.

4.1. Desviación en el modelo clásico
En este apartado vamos a centrarnos en calcular la desviación de la fidelidad para el

protocolo clásico, para ello vamos a seguir desarrollando la Ec. (42) donde sabemos que la
expresión del rendimiento viene dado por la Ec. (18) y las fidelidades promedio las calculamos
en las Ecs. (33)–(34).

Sustituyendo las condiciones del protocolo óptimo mı́nimo dadas por las Ecs. (30) y (31),
en el rendimiento del protocolo clásico, Ec. (18), obtenemos la expresión simplificada:

F̄ (ρ) = 1
2

(
1 + gopt(u⃗ · d⃗i)2 +

√
1 − u2

√
1 − g2

opt

)
= 1

2

(
1 + gopt u

2 cos2 θ +
√

1 − u2
√

1 − g2
opt

)
.

Luego, utilizando la ecuación anterior, la definición siguiente
〈
F̄ 2
〉

=
∫ 2π

0

∫ π

0

∫ 1

0
sen(θ)F̄ 2(ρ) f(u)u2du dθ dϕ,

y considerando las distribuciones de probabilidad correspondientes, resulta:
〈
F 2

p

〉
= 7

15 ,〈
F 2

m

〉
≈ 0,66,〈

F 2
r

〉
≈ 0,57.

Habiendo obtenido los promedios anteriores, resulta directo calcular las varianzas del proto-

Trabajo de fin de grado 27 Pablo Crespo Del Amo



Desviación de la fidelidad Desviación en el modelo cuántico

colo de teleportación clásico óptimo mı́nimo:

σ2
c,p = 7

15 − 4
9 = 1

45 = 0,02, (43)

σ2
c,m ≈ 0,668 − 0,657 ≈ 0,01, (44)
σ2

c,r ≈ 0,569 − 0,557 ≈ 0,013.

Podemos observar que la menor desviación se alcanza utilizando distribuciones de probabili-
dad de estados mixtos, mientras que el protocolo clásico presenta mayor estabilidad cuando
los estados iniciales son puros.

4.2. Desviación en el modelo cuántico
De manera análoga a lo que suced́ıa al calcular la fidelidad promedio en el modelo cuánti-

co, Ecs. (40)–(41), encontrar una expresión anaĺıtica para la desviación de la fidelidad en
este modelo resulta muy complejo. Debido a esto, nos centraremos en obtener una solución
numérica en función del parámetro de ruido p.

Al igual que en el modelo clásico, la desviación se calculará utilizando la Ec. (42). Como se
mencionó previamente, el segundo término de dicha ecuación es elevar al cuadrado la fidelidad
promedio obtenida en Ecs. (40)–(41).

Para calcular el promedio del rendimiento al cuadrado, utilizamos la expresión general:
〈
F̄ 2
〉

=
∫
dΩ

∫ 1

0
u2f(u)F̄ 2 (ρ, ρ̃i) du.

en la que debemos reemplazar la Ec. (39). Espećıficamente:

〈
F̄p

2〉 =
∫
dΩ

∫ 1

0
u2 1

4πu2 ĺım
u0→1

δ(u− u0)F̄ (ρa, ρB)2 du = p2 − 4p+ 4
4 ,〈

F̄m
2〉 =

∫
dΩ

∫ 1

0
u2 3

4π F̄ (ρa, ρB)2 du,〈
F̄r

2〉 =
∫
dΩ

∫ 1

0
u2 1
π2

√
1 − u2

F̄ (ρa, ρB)2 du.

Luego, se puede ver que la varianza del protocolo cuántico es nula cuando se considera la
distribución sobre estados aleatorios puros; las varianzas para las distribuciones de estados
mixtos serán ilustradas gráficamente en el apartado siguiente.

σ2
p = p2 − 4p+ 4

4 − p2 − 4p+ 4
4 = 0, (45)

σ2
m =

〈
F̄m

2〉−
〈
F̄m

〉2
, (46)

σ2
r =

〈
F̄r

2〉−
〈
F̄r

〉2
.
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4.3. Gráficas
En este apartado vamos a realizar una comparación de los resultados obtenidos en el

modelo clásico y el cuántico utilizando como recurso un estado de Werner. Las tres gráficas
obtenidas, Fig. 1-3, representan la fidelidad promedio obtenido con cada una de las distribu-
ciones de probabilidad con las que hemos trabajado, aśı como la desviación que presentan.
El objetivo es evaluar cómo vaŕıan la fidelidad y la desviación de la fidelidad, para cada uno
de los casos, en función al ruido existente, aśı como comparar el rendimiento de cada uno de
los protocolos teniendo en cuenta no solo la fidelidad sino también su desviación.

A continuación, se presentan las gráficas que ilustran la evolución de la fidelidad en función
del ruido para las tres densidades de probabilidad utilizadas durante el trabajo.

Figura 1: Fidelidad de teleportación y su desviación en el contexto de una densidad de
probabilidad fp(u), Ec. (3), para los modelos clásico y cuántico.
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Figura 2: Comparación de la fidelidad de teleportación y su desviación para una distribución
de probabilidad fm(u), Ec. (4), entre el modelo clásico y el modelo cuántico

Figura 3: Fidelidad promedio y su desviación para una densidad de probabilidad fr(u),
Ec. (5), en los protocolos clásico y cuántico con un ruido de tipo Werner.

En estas gráficas, podemos apreciar el valor que toma la fidelidad de teleportación clásica
representadas por una linea horizontal continua, ya que en el modelo clásico la fidelidad
promedio no depende del ruido del sistema. Del mismo modo, podemos observar los valores
que toman las fidelidades promedio en el modelo cuántico, Ecs. (40)–(41), lineas continuas
que toman valor 1 cuando el ruido es 0 y van decayendo según aumenta el ruido. Por otro
lado, las lineas punteadas corresponden con la desviación de la fidelidad promedio para cada
uno de los casos, las cuales corresponden con las Ecs. (43)–(44) para el protocolo clásico y
las Ecs. (45)–(46) para el protocolo cuántico.
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Como podemos apreciar, las fidelidades de los protocolos clásico y cuántico, la desviación
juega un papel importante, pues el protocolo clásico cuenta con una desviación estándar
considerable para todas las distribuciones utilizadas. Por otra parte, el protocolo cuántico
para ciertos rangos de p y para distribuciones de estados aleatorias no restringidas a estados
puros también presenta una variabilidad relevante.
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5. Conclusiones
En este trabajo, hemos comparado el rendimiento de un protocolo cuántico bajo diferentes

niveles de ruido frente al protocolo que sirve de referencia clásica, utilizando tres densidades
de probabilidad distintas de estados cuánticos aleatorios.

En la Figura 1, correspondiente a las distribuciones de probabilidad de estado puros
iniciales fp(u), observamos que el protocolo de teleportación cuántico ofrece en promedio
mejores resultados que su contraparte clásica hasta que el nivel de ruido alcanza 2/3.

Como mencionamos anteriormente, en la literatura relacionada, se certifica como útil o
cuántico a todo protocolo de teleportación cuya fidelidad en promedio supere a la correspon-
diente del protocolo clásico.

No obstante, como se puede apreciar en la Figura 1, en el rango de ruido comprendido
entre 0,36 y 0,96, la elevada desviación en el protocolo clásico permite cuestionar los ĺımites
previamente establecidos para determinar la utilidad del protocolo. A partir de 0,96, el modelo
clásico comienza a demostrar un rendimiento superior. Por debajo de un nivel de ruido de
0,36, podemos concluir también que el protocolo cuántico es claramente más efectivo. Sin
embargo, para los valores intermedios seŕıa conveniente tener mayor información sobre cómo
la fidelidad de teleportación se distribuye de acuerdo a la aleatoriedad de los estados iniciales.

De manera análoga, los resultados correspondientes a la densidad de probabilidad fm(u),
mostrados en la Figura 2, indican que el protocolo cuántico proporciona mejores resultados
hasta un valor de ruido de 0,38, similar a la distribución de estados puros. A partir de ese
punto, la superposición de las desviaciones en ambos modelos no permite realizar afirmaciones
concluyentes sobre cuál ofrece un mejor rendimiento.

Por otra parte, la Figura 3 muestra que el modelo cuántico supera claramente al clásico
hasta que el nivel de ruido alcanza 0,39. A partir de ese valor, al igual que en el caso anterior,
no resulta evidente cuál protocolo tiene un comportamiento superior. Se observa en la gráfica
que cuando el ruido llega a 0,89, el rendimiento del protocolo clásico está por encima del
cuántico.

De todas las densidades de probabilidad consideradas, la que permite mayores niveles de
ruido para que el protocolo cuántico sea evidentemente útil es la tercera, mostrada en la
Figura 3. Sin embargo, la segunda densidad de probabilidad, representada en la Figura 2,
ofrece los mejores resultados en términos de fidelidad promedio. Por otro lado, la primera
densidad, Figura 1, no presenta ninguna desviación, lo que la convierte en la opción que
proporciona resultados más estables.

Como hemos podido observar, la desviación de la fidelidad desempeña un papel relevante
al comparar ambos modelos, ya que proporciona información adicional de gran importan-
cia para realizar una evaluación más rigurosa, y sugiere que en algunas situaciones seŕıa
conveniente calcular los demás momentos de la distribución estad́ıstica del rendimiento F̄ .

Otro punto destacable es que en la literatura el protocolo cuántico bajo el modelo de ruido
que estamos considerando es destacado por tener desviación estándar nula. Sin embargo, si se
elimina la restricción de estados puros iniciales, y se consideran distribuciones de estados más
generales, podemos ver que la desviación estándar es una función del parámetro de ruido,
alzando a superar la varianza del caso clásico. Esto es inquietante puesto que en el caso
clásico ocurre lo contrario: la desviación estándar es menor cuando se toma la distribución
fp de estado puros mientras que aumenta con la mixtura media de los estados iniciales.
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Continuación de la linea de investigación:

Considerar modelos de ruido más generales y experimentalmente relevantes;

En este trabajo hemos notado que la fidelidad promedio (o fidelidad de teleportación)
en el protocolo clásico, es independiente de la cantidad de operadores Mi –y de los
números si– que definen a la POVM6. Ahora bien, todo parece indicar que la desviación
śı depende de estos elementos; por este motivo, usualmente se utiliza el protoclo clásico
más simple dado por el protocolo óptimo mı́nimo. Estudiar tal dependencia puede ser
relevante para definir un mejor protocolo clásico.

Otra posible cuestión de relevancia es analizar si, ante modelos de ruido particulares
que afectan las correlaciones cuánticas en el estado recurso, cambiar la medición Mi ha-
bitualmente tomada como la base de Bell puede arrojar mejores resultados en promedio
y en desviación del rendimiento F̄ .

6Esto fue señalado por primera vez en [13]
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A. Apéndice

A.1. Estrategia Ingenua
La estrategia ingenua es una estrategia que llevamos a cabo para entender los ĺımites

inferiores de la fidelidad de teleportación. Con ella vamos a preparar estados ρ̃i de tal manera
que no tengamos en cuenta el resultado de la medición de Alice. Por lo que el proceso es
el siguiente, Alice una vez que tenga su estado preparado va a realizar una única medición
sobre el estado ρ(u⃗), una vez hecha la medición va a comunicarle a Bob lo que obtuvo y a
partir de ah́ı Bob va a proceder de tres maneras diferentes:

Bob prepara siempre lo mismo, sin depender de Alice

Bob prepara es estado ortogonal a Alice

Bob prepara el estado opuesto a Alice
Vamos a dividir este aparatado en función de si el estado de Alice ρ(u⃗) es un estado puro o
uno mixto, en función de eso veremos para que caso nos ofrece peores resultados.

Estados puros Para este apartado vamos a considerar que el estado que Tiene Alice es un
estado puro y que llevamos a cabo el protocolo óptimo mı́nimo. Teniendo esto en cuenta la
expresión de la fidelidad queda

F̄ (ρ) = 1
4

2∑
1

(
1 + 1

3 d⃗i · g⃗i

)
.

Una vez obtenida esta expresión tenemos que llevar a cabo las tres posibles estrategias que
puede llevar a cabo Bob.

Bob prepara siempre lo mismo, sin depender de Alice
Cuando llevamos a cabo esta estrategia estamos dando a entender que Bob prepara siempre
el mismo estado ρ̃(g⃗) independientemente de lo que le haya dicho Alice, por lo que siguiendo
la expresión de la fidelidad promedio (29) obtenemos

F̄ (ρ) = 1
4

(
2 + 1

3

2∑
1
d⃗i · g⃗

)
= 1

2 ,

debido a seguir el protocolo óptimo mı́nimo la suma del producto de los vectores de Bloch se
cancela, dejándonos únicamente el primer término.

Bob prepara el estado ortogonal a Alice
En este procedimiento Bob toma la medida de alice y prepara siempre un estado que sea
ortogonal al que obtuvo Alice en su medición, de tal manera que d⃗i ⊥ p⃗i por lo que el
producto vectorial entre esos dos vectores va a dar como resultado cero, esto conlleva que la
fidelidad promedio tenga la siguiente expresión

F̄ (ρ) = 1
4

(
2 + 1

3

2∑
1
d⃗i · g⃗i

)
= 1

2 .
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Bob prepara el estado opuesto a Alice

En este procedimiento Bob va a preparar el estado totalmente opuesto al que obtuvo Alice
en su medición, debido a esto el producto vectorial entre ambos vectores de Bloch va a dar
como resultado menos uno, por lo que la fidelidad promedio quedara reescrita como

〈
F̄ (ρ)

〉
= 1

4

(
2 + 1

3

2∑
1
d⃗i · g⃗i

)
= 1

4

(
2 − 2

3

)
= 1

3 ,

como observación rápida podemos ver que todas las opciones presentan una fidelidad menor
que en anteriores casos sin embargo sorprende que tengan una fidelidad tan alta para el
procedimiento que estamos realizando. También podemos ver que el peor de los casos posibles
resulta cuando Bob resulta tomar como vector de Bloch el opuesto al que Alice midió.

Estados mixtos A diferencia que el apartado anterior aqúı vamos a considerar que el
estado que tiene Alice ρ(u⃗) es un estado mixto, no obstante vamos a seguir utilizando el
protocolo óptimo mı́nimo.
Por otro lado en este apartado únicamente vamos a considerar el caso en el que Bob prepara
siempre el mismo estado ρ̃(g⃗), por lo que en este caso siguiendo la Ec. (26) obtenemos la
siguiente expresión para la fidelidad promedio,

〈
F̄ (ρ)

〉
=
∫ 1

0
du f(u)

2∑
1
πu2s2

i

(
1 + u2

3 d⃗i · g⃗ +
√

1 − u2
√

1 − g2

)
,

aplicando las condiciones que impone el protocolo óptimo mı́nimo vemos que podemos sim-
plificar dicha expresión obteniendo aśı,

〈
F̄
〉

(ρ) =
∫ 1

0
du f(u) 2πu2

(
1 +

√
1 − u2

√
1 − g2

)
.

Para resolver esto nos haŕıa falta la densidad de probabilidad por lo que vamos a utilizar las
mismas que usamos en el apartado anterior, Ecs. (4)–(5). Vamos a sustituir cada uno de las
densidades obteniendo aśı los siguientes resultados,

〈
F̄m(ρ)

〉
=
∫ 1

0
du fm(u) 2πu2

(
1 +

√
1 − u2

√
1 − g2

)
= 1

2 + 3π
32

√
1 − g2,〈

F̄r(ρ)
〉

=
∫ 1

0
du fr(u) 2πu2

(
1 +

√
1 − u2

√
1 − g2

)
= 1

2 + 2
3π

√
1 − g2.

A primer vistazo podemos ver en los dos casos que la fidelidad depende del modulo del vector
de Bloch del estado que Bob prepara, g, siendo lo mejor que puede preparar Bob un estado
máximamente mixto, es decir con modulo de g igual a cero. Por otro lado si Bob prepara un
estado puro la fidelidad promedio nos saldŕıa igual que en el apartado anterior.
En la siguiente gráfica representamos la solución previamente obtenida para los distintos
valores del modulo de g
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Figura 4: Fidelidades promedio para estados mixtos con densidad de probabilidad fm(u) y
fr(u)

Como ya mencionamos anteriormente lo mejor que puede hacer Bob en este caso es generar
un estado máximamente mixto, es decir la identidad. Al comparar estos resultados con los
obtenidos para el protocolo clásico, Figs. 1 - 3 destacan las siguientes cosas:

1. Estados mixtos Cuando trabajamos con estados mixtos la mejora que ofrece el pro-
tocolo clásico frente a la estrategia ingenua es casi despreciable siendo esta:

Para densidad fm(u): 0.795 para la estrategia ingenua y 0.811 para el protocolo
clásico.
Para densidad fr(u): 0.712 para la estrategia ingenua y 0.746 para el protocolo
clásico.

2. Estados puros Sin embargo cuando trabajamos con estados puros la mejora ofrecida
por el protocolo clásico es muy destacable siendo esta 0.5 para la estrategia ingenua y
2/3 para el protocolo clásico.

En conclusión cuando los estados pueden ser mixtos el canal clásico extrae menos información
mientras que si los estados son puros extrae más información.
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