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Resumen Abstract

Resumen

En este trabajo, analizaremos el comportamiento de una de las principales medidas em-
pleadas para evaluar protocolos de teleportacion de estados cuanticos. En particular, nos
centraremos en el caracter probabilistico del protocolo cuantico cuando este es afectado por
un tipo especifico de ruido experimental. La fidelidad de teleportacion se utiliza como una me-
dida de rendimiento, la cual se calcula tomando la fidelidad entre el estado inicial que se desea
teleportar y el conjunto de estados finales obtenidos tras aplicar el protocolo, promediada
sobre el conjunto de todos los estados iniciales posibles.

Por otra parte, un procedimiento muy importante en informacién cuantica es el proto-
colo clasico de teleportacion en el que se asume que emisor y receptor estan comunicados
unicamente por un canal clasico. Este protocolo sirve de referencia y establece una cota infe-
rior que todo protocolo de teleportacién cuantico debe superar para que su rendimiento sea
considerado no cldsico.

Recientes trabajos de investigaciéon han agregado, como elemento de analisis de desem-
penio de un protocolo cuantico particular, a la desviacion estandar de la fidelidad en el caso
cuantico, obteniendo una vision mas general del comportamiento estadistico de esta figura
de mérito. En este trabajo, hemos calculado ademas la desviacion de la fidelidad asociada al
protocolo clasico, que debe ser considerada al momento de realizar comparaciones entre el
procedimiento cuantico y el clasico.

Abstract

In this paper, we will review the performance of the main existing figure of merit for
assessing quantum state teleportation protocols. Specifically, we will focus on the probabilistic
behavior of the quantum protocol when it is subjected to a particular experimental noise.
The teleportation fidelity is a benchmark measure that is calculated by taking the fidelity
between the initial state to be teleported and the ensemble of final states of the protocol
averaged over the set of possible initial states.

On the other hand, a very important procedure in quantum information is the classical
teleportation protocol in which it is assumed that the sender and receiver can communicate
each other only by a classical channel. This protocol serves as a reference and establishes a
lower bound that every quantum teleportation protocol must surpass for its performance to
be considered non-classical.

Recent research works have added, as an element of performance analysis of a particular
quantum protocol, the fidelity standard deviation in the quantum case, obtaining a more
general view of the statistical behavior of this figure of merit. In this work, we have also cal-
culated the fidelity deviation associated with the classical protocol, which must be considered
when making comparisons between quantum and classical approaches.
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Introduccién

1. Introducciéon

Entre los anos 1920 y 1930 cientificos como Max Plank, Niels Bohr, Werner Heisenberg y
Erwin Schrodinger formularon las primeras teorias que describen el comportamientos de las
particulas a niveles subatémicos [1]. Posteriormente, el concepto de entrelazamiento cudntico,
planteado inicialmente por Einstein y desarrollado por John Bell, revolucioné nuestra com-
prension de las correlaciones cuanticas entre particulas; este avance permitié en los anos 90
la propuesta tedrica de la teleportacion cuantica.

La teleportacion cuantica es el proceso por el cual la informacién de un sistema cuantico
se transfiere a otro sistema que se encuentra a una cierta distancia. Este proceso se basa
en los principios de la mecanica cuantica, siendo uno muy importante el de entrelazamiento
cudntico, descrito por Einstein como accion fantasmal a distancia [2]. El hecho de que en
un sistema entrelazado las propiedades de las particulas estén correlacionadas hace que al
realizar una medicion sobre una de las particulas parte de las propiedades de la otra particula
queden determinadas de manera instantanea, independientemente de la distancia que las se-
pare. Gracias a la teleportacion, propiedades de un sistema cuantico pueden ser transferidas a
otro situado a cientos de kilometros. El concepto de teleportacion perfecta solo tiene sentido
dentro del contexto de la fisica cuantica ya que, como veremos més adelante, es imposible
teleportar estados cuanticos con probabilidad uno clasicamente porque el entrelazamiento es
un concepto indispensable a la hora de llevar a cabo procesos de teleportacion [1].

El desarrollo de la teleportacion cuantica no soélo sirve para ampliar el entendimiento de
los sistemas fisicos en general, sino para el desarrollo de aplicaciones practicas. Estos pro-
cesos podrian ser la base de redes de comunicacién cuantica seguras, debido a la capacidad
de transportar informacion sin exponerse a que pueda ser interceptada. Del mismo modo,
la teleportacion cuantica ocupa un papel importante en la construccion de computadores
cudnticos, permitiendo enviar informacion de una parte del mismo a otra [3].

El primer experimento que obtuvo un resultado exitoso de teleportacién cuantica fue llevado
a cabo en 1997 por un equipo liderado por Anton Zeilinger [4]. Gracias a este experimento
se comprobd que estos procesos son viables. Durante el mismo, se utilizaron fotones entrela-
zados para teleportar el estado cuantico de un fotén a otro, poniendo de manifiesto no sélo
la posibilidad de teleportar estados cudnticos entre dos sistemas, sino también sus sutilezas:
el Teorema de no clonacion y la imposibilidad de trasmitir a un observador el resultado de
la medicién realizada por Alice més rapido que la velocidad de la luz [5].

Durante los afios siguientes se han estado forzando los limites de la teleportacion en referencia
a la distancia y la complejidad de los estados. Los tultimos experimentos han conseguido tele-
portar estados una gran cantidad de kilometros, por ejemplo en 2017 se consiguié teleportar
un estado entre un satélite y la tierra separados por 1400 km [6].

La teleportacién cuantica todavia presenta una gran cantidad de desafios, uno de los prin-
cipales problemas reside en la preservacién en el tiempo del entrelazamiento cuantico, ya
que las interacciones de los sistemas cudnticos con el entorno generan decoherencia y una
correspondiente perturbacién en las correlaciones [7]. Ademds de esto, si se quiere realizar y
evaluar de manera 6ptima el procedimiento, se deben cumplir las condiciones siguientes [8]:
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1. No limitacién para la informacién de entrada.

2. La informacion de entrada y salida debe ser proporcionada y verificada por un tercero,
excepto por el remitente y el receptor.

3. La fidelidad de teleportacion(un concepto que definiremos en breve) debe ser superior
al umbral apropiado del protocolo cldsico.

En la condicién 3 mencionamos el concepto de fidelidad. Esta es una figura de mérito (o
medida) cuyo objetivo es evaluar distinguibilidad entre dos estados cudnticos, es decir, cuan-
tificar lo diferentes o parecidos que son tales estados. Utilizando esta cantidad, como veremos
especificamente méas adelante, es posible definir la fidelidad de teleportacion que sirve para
evaluar el rendimiento de un protocolo en particular.

Veamos intuitivamente cémo obtener tal medida para un protocolo dado. Consideremos
que nuestro objetivo es transmitir un estado cuantico p,. Aplicamos el protocolo de tele-
portacién en cuestion obteniendo como estado de salida p;. Como senialamos anteriormente,
para comprobar cuanto se parecen los estados final e inicial utilizamos la fidelidad F'. Da-
do ademéas que el protocolo de teleportacién cuantica debe ser capaz de transmitir todos
los estados posibles, la fidelidad de teleportacion es un promedio sobre todos los estados de
entrada [9].

En diversos estudios se ha investigado la relaciéon que existe entre el nivel de entrelaza-
miento y la fidelidad promedio que se puede obtener. La referencia [10] es uno de los trabajos
de mayor relevancia en el area y, entre otras cosas, demuestra que cuando el entrelazamiento
es maximo se puede alcanzar la fidelidad promedio igual a uno. Por otra parte, un proce-
dimiento muy importante es el protocolo clasico de teleportacién, mencionado por primera
vez en la condicion 3, que supone que el emisor y el receptor s6lo pueden intercambiar infor-
macion clasica, es decir, el valor de algiin observable fisico, o de alguna variable aleatoria en
general. Este procedimiento, ademas de profundizar el conocimiento sobre el comportamien-
to de los sistemas cuanticos, sirve para certificar un protocolo como cuantico o clasico: Si la
fidelidad de teleportacion de un protocolo P es mayor a la del protocolo clasico, entonces cer-
tificamos a P como cuantico; en el caso contrario, como clasico. Sin embargo, la fidelidad de
teleportacion promedio no es suficiente para caracterizar completamente el comportamiento
estadistico de un protocolo de teleportacion cuantica, ya que no nos aporta informaciéon so-
bre cuan equitativamente se transmiten los estados. Por tal motivo, recientemente diferentes
autores han propuesto estudiar la desviacién de la fidelidad de teleportacion op [11]; esta
cantidad sera nuestro objeto principal de estudio en este trabajo.

En la Seccion 2 de este trabajo, definiremos nuestro marco tedrico, en el que explicaremos
los conceptos bésicos y necesarios de informacion clasica —variable aleatoria, distribuciones
de probabilidad, varianza y desviacién estandar— y los elementos principales de informacion
cuantica —estados cuanticos, esfera de Bloch, entrelazamiento, canales cuanticos, el formalis-
mo de medicion y fidelidad.—

En la Seccién 3, introduciremos el protocolo cudntico de teleportacion ideal [12], y el
protocolo clésico [13]. Utilizaremos, por otro lado, un estado de Werner como estado recurso
del protocolo cuantico dando lugar a uno de los modelos de ruido mas famosos en la literatura.
En esta secciéon, comprobaremos que al utilizar un estado de Bell como recurso el protocolo
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siempre lograr transmitir perfectamente el estado inicial y, ademas, calcularemos la fidelidad
de teleportacion en los demas casos.

Una vez definidos los principales elementos de los protocolos a estudiar, en la Seccién 4,
nos enfocaremos en las desviaciones estandar del protocolo clasico y cuantico con un estado
de Werner. Nuestro aporte principal, entonces, es extender el estudio de la desviacién al
protocolo clasico y utilizar estados mixtos como entrada, lo que nos da una imagen mas
general del comportamiento de la fidelidad de teleportacién.
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Elementos de informacién y mecanica cuantica Variables aleatorias

2. Elementos de informacién y mecanica cuantica

2.1. Variables aleatorias

El concepto de variable aleatoria ocupa un lugar central en la teoria de probabilidad y
estadistica. De manera sencilla, es una funcién que asigna un valor numérico a un evento
aleatorio particular. De este modo, una abstraccion 1util es la siguiente:

Espacio muestral Es el conjunto © de posibles resultados de un experimento (eventos
aleatorios).

Por ejemplo, si tienes un bombo con cien bolas enumeradas y el experimento consta de escoger
aleatoriamente una de las bolas, el espacio muestral es: 2 = {bolay, ..., bolajg}. Ahora bien,
un mismo espacio muestral puede dar lugar a diferentes variables aleatorias, cuya definicién
formal es:

Variable aleatoria (VA) Sea 2 un espacio muestral. Una variable aleatoria es una funcién
X : Q2 — R" que asigna a cada elemento de 2 un vector en R"; w € 0, X(w) € R™.

Siguiendo el ejemplo del bombo y las bolas, una variable aleatoria sobre el espacio muestral €2
podria ser el peso de las bolas p.(w), mientras que otra diferente serfa el radio de las mismas
r(w).

Las variables pueden ser de dos tipos principales, discretas o continuas, las cuales se diferen-
cian principalmente en que las variables discretas toman valores numerables' mientras que
las variables continuas pueden tomar cualquier valor de la recta real.

2.1.1. Distribuciones de probabilidad

Una Distribucién de Probabilidad (DP) describe el comportamiento estadistico de una
variable aleatoria X. Matematicamente, una DP queda definida por una funcién que toma
elementos del espacio muestral {2 y devuelve un niimero real positivo. En nuestro trabajo, las
variables aleatorias estan definidas univocamente por un sélo espacio muestral, y viceversa,
con lo cual, de ahora en adelante simplificaremos el formalismo estadistico considerando al
espacio muestral 2y definido por los posibles valores que puede tomar la variable X, es decir,
los experimentos estan dados por los eventos en los que la VA en cuestiéon toma diferentes
valores.

De este modo, si x es un posible valor de X, su distribucién de probabilidad p(z) es una
funcién que describe como se distribuyen los posibles valores que toma X. Sus propiedades
son:

» Positividad: Para todo valor de x se cumple que p(z) > 0.

» Normalizacién: La integral de p(x) sobre todos el espacio muestral (i.e. los posibles
valores que toma X)) debe ser igual a 1:

/ﬂx p(x)dVo, = 1.

'Es decir, se puede realizar una biyeccién con algtin subconjunto de los niimero naturales.
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Noétese que p(x) no es una probabilidad en si, sino una densidad de probabilidad, es decir,
p(7)dVa, denota la probabilidad de que X tome algiin valor en las proximidades? de x. Para
darle una interpretacién geométrica, consideremos el caso unidimensional: la funcién p(zx) es
una curva en la recta real, cuya area por debajo nos proporciona la probabilidad de que la
variable aleatoria tome un valor entre dos puntos limite [a, b],

b
Pla< X <b) = / p(z)dz.
a
La definicién anterior de DP es para una variable aleatoria continua, sin embargo, haciendo
uso de la distribucion conocida como delta de Dirac d(x), podemos restringirnos al caso de
una VA discreta por medio de:

p(x) =D pad(zy — ). (1)

De este modo, sélo los valores {x,}, son posibles, y se distribuyen de acuerdo a {p, },.

Durante este trabajo, analizaremos el comportamiento estadistico de una variable alea-
toria continua que consta de un vector tridimensional @ cuyo espacio muestral es la bola en
R? de radio uno: B C R3. Esta variable estard descrita por distribuciones de probabilidad
isotropicas, es decir, que sélo dependen del modulo de @: p(@) = f(u), con u = |i]. De este
modo, la funcién f es no negativa y cumple con la normalizacién correspondiente,

1
/ p(w)dV = 47r/ w? f(u)du = 1, (2)
B 0
y dV el diferencial de volumen en B. Consideraremos tres distribuciones distintas:

= Los vectores unitarios, es decir de médulo uno, son igualmente probables, mientras que
los demas tiene probabilidad de ocurrencia nula:

1
o) = -y0(u 1), Q
» Vectores « uniformemente distribuidos en B:

3
- S 4
ful) = @

= Distribucién cosecante’: ]
fr(u) = ——F——= (5)

721 — w2’

2Estas proximidades estan dadas por dVo,: Si X es una VA continua unidimensional, entonces p(z)dVa, =
p(x)dx es la probabilidad de que X tome un valor en el intervalo entre z y x + dx; Si es multidimensional,
el espacio muestral Qx es un volumen, y dV, es un elemento infinitesimal de volumen.

3Mis adelante veremos por qué hemos considerado esta distribucién particular. El nombre surge de que
si tomamos u = cosz entonces 1/v/1 — u? = cscx.
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Como veremos mas adelante, el interés por las distribuciones anteriores se encuentra en
el contexto cudntico [14], siendo cada una de ellas la representacion estadistica de procedi-
mientos cuanticos particulares.

2.1.2. La esperanza

Consideremos una VA continua unidimensional, es decir, el espacio muestral es un sub-
conjunto de R. La esperanza, o también llamada promedio, de X viene denotado por E[X].
Esta magnitud representa el valor esperado que puede tomar una VA teniendo en cuenta su
distribucién de probabilidad p(z), y se define como,

E[X] = /Qx zp(x)d.

En el capitulo siguiente, utilizaremos cantidades fisicas que dependen de variables aleatorias
continuas en R3. Sea entonces X una VA de este tipo, y C' : Qx — R un funcional que
representa alguna de estas magnitudes fisicas, entonces la esperanza de C' esta dada por:

EC(O)] = [ Clapp(a)dva.

Notese que estamos considerando el caso de VAs continuas, pero siempre podemos restrin-
girnos a variables discretas haciendo uso de la Ec. (1).

La esperanza presenta ciertas propiedades que son muy tutiles en teoria de probabilidad, como
por ejemplo:

= Linealidad. Para cualesquiera variables aleatorias X e Y, y constantes a y b, se tiene,

E[aX + bY] = aE[X] + bE[Y].

= Fsperanza de una constante. Para cualquier constante ¢, su esperanza es ella misma:

Elc] =c
= No negatividad. Si X > 0 entonces E[X]| > 0.

2.1.3. La Varianza

La varianza es una medida estadistica que describe la dispersion de una variable aleatoria
con respecto a la esperanza. La varianza juega un papel crucial en estadistica ya que cuantifica
el nivel de incertidumbre sobre los valores que puede tomar dicha variable. Encontramos un
ejemplo trivial al considerar la variable aleatoria constante: no hay incertidumbre sobre sus
valores (toma siempre el mismo), y la varianza es nula.

Especificamente, la varianza de una variable aleatoria X se denota por o2, siendo o conocida
como desviacion estandar. En el caso unidimensional, puede ser calculada de la siguiente
manera:

0*(X) = E[(X — E[X])"],
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Elementos de informacion y mecanica cuantica Formalismos y elementos basicos t.c.

donde E representa la esperanza. Ademads, se puede ver que la varianza se puede escribir
como,

o*(X) = E[X]? — E[X]. (6)

Esta ecuacién muestra que la varianza puede entenderse como la diferencia entre el valor
esperado del cuadrado de X y el cuadrado de la esperanza.

Del mismo modo, si X es una VA continua multidimensional, y C' : Qx — R es una
magnitud que depende de X, entonces,

En resumen, vimos que una varianza mayor implica una mayor dispersién alrededor del valor
esperado, mientras que una varianza menor conlleva a que los valores estan més proximos al
promedio. Es decir, la varianza es una medida de volatilidad o desviacion de la variable.

2.2. Formalismo y elementos basicos de la teoria cuantica
2.2.1. Estados cuanticos

En la teoria cuantica, el comportamiento dinamico de los sistemas fisicos es intrinseca-
mente estocéstico [15], es decir, los observables fisicos relacionadas son variables aleatorias.
Con el objetivo de comprender mejor la teoria cuantica vamos a repasar resumidamente los
conceptos més importantes.

Los sistemas fisicos cudnticos estan descritos por un espacio de Hilbert H [16] y un estado
que es un operador lineal acotado positivo y autoadjunto, con traza uno. El conjunto de estos
estados se lo denota, habitualmente, como B (H). Matematicamente, un espacio de Hilbert
es un espacio vectorial completo con un producto interno complejo [17].

La regla de Born relaciona el elemento definido como estado cuantico con las magnitudes fisi-
cas: todo observable fisico de un sistema cuantico esta representado por un operador lineal
autoadjunto O. Su valor de expectacion, i.e. el promedio sobre infinitos experimentos iguales,
esta dado por (O) = Tr Op, siendo p € B (H) el estado del sistema.

Por otro lado, los estados cuanticos estan divididos en dos tipos; estados puros y mixtos.

» Estados puros: si p € B (H) es un estado puro, entonces existe un vector |¢p) € H tal
que p = |[¥) (¢|. De este modo, Tr p* = 1. Toda la descripcién del sistema, en este caso,
se puede realizar utilizando solamente |¢)).

= Fstados miztos: estos estados describen sistemas cuanticos que no pueden ser descritos
con un unico vector del espacio de Hilbert. Los estados mixtos son una combinacion
estadistica de estados puros. En este caso, si p € By (H) es el estado mixto en cuestion,
Trp? < 1.

Adicionalmente, se puede demostrar que Tr p? es una medida bien comportada de la pureza
de un estado cudntico; en particular, Tr p?> = 1 si y s6lo si p es un estado puro [18].
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2.2.2. Sistemas de dos niveles y la esfera de Bloch

La esfera de Bloch es una representacién geométrica utilizada para visualizar el estado de
un qubit [19]. Esta representacion es posible debido a que el estado de un qubit se encuentra
en un espacio de Hilbert de dimension dos, lo que permite establecer una correspondencia
entre el espacio de operadores de densidad y la esfera unitaria en R®. Esto se logra utilizando
las matrices de Pauli, ya que, junto con la matriz identidad 1, forman una base completa en
dicho espacio. De esta manera, cualquier operador puede expresarse como una combinacion
lineal de estas matrices.

Un qubit es un sistema cuantico cuya configuracion puede describirse como una superposicion
lineal de dos estados base, |0) y |1), por lo que su estado general se expresa como:

) = al0)+511),
donde a y 3 son coeficientes complejos. En la representacion de la esfera de Bloch, este estado
se parametriza mediante coordenadas esféricas, obteniéndose la siguiente forma:

[) = cosg 10) + ei‘bsing 1),

donde los parametros 6 y ¢ tienen las siguientes interpretaciones geométricas:

= . Colatitud, el angulo entre el eje z y el vector que representa el estado del qubit, con
valores que varian entre 0 y 7.

= ¢: Longitud, el angulo medido en el plano zy desde el eje x hasta la proyeccion del
vector del estado sobre dicho plano, con valores que oscilan entre 0 y 2.

Ademas, también los estados mixtos puede ser representados en la esfera de Bloch. La ex-
presion general de una matriz densidad es:

_1 1+7’3 Tl—iTQ _1 o -
p_2<T1+iT2 1—T3 _5(1_‘_7”‘0-)7 (7)

donde:
n 1 es la matriz identidad de 2 x 2.

w 7= (ry, 1y, 7,) = r(cos¢sind, sin ¢sin b, cos ), es el vector de Bloch, que apunta desde
el centro de la esfera hacia el punto que representa el estado cuantico.

» ¢ = (01, 09,03) son las matrices de Pauli,

0 1 0 —i 10
ol ) R ) B S O

2.2.3. Entrelazamiento cuantico

El entrelazamiento cuantico es un fenémeno fundamental en la mecanica cuantica, en
el que dos o mas particulas comparten un estado cuantico conjunto. Esto significa que las
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propiedades individuales de cada una de las particulas no pueden describirse de manera
independiente respecto a las demas. En particular, cualquier medicién realizada sobre una de
las particulas afecta instantaneamente al estado de las demaés, sin importar la distancia que
las separe [18, 1].

Consideremos un sistema compuesto por dos particulas, A y B. El estado conjunto esta
descrito por un estado global, que puede ser una superposicion de varios estados posibles. Si
las particulas A y B estan entrelazadas, el estado del sistema no puede expresarse como el
producto de los estados individuales de cada particula, lo que implica que hay correlaciones
entre los subsistemas que la componen [17].

Para ilustrar este concepto, consideremos un ejemplo concreto: Supongamos que tenemos
dos electrones que presentan entrelazamiento de espin. Al realizarse una medicion del espin
de cada particular en alguna direccién, podemos obtener uno de dos resultados: “arriba” (1)
o “abajo” (). En este caso, un posible estado entrelazado del sistema serfa:

1

V2

Este estado implica que, al medir el espin de cualquiera de los dos electrones, el estado del
otro queda inmediatamente determinado. Por ejemplo, si al medir el electrén A se obtiene
espin arriba (14), sabemos con certeza que el electrén B tiene espin abajo ({p), y viceversa.

El estado en la Ec. (8), es uno de los conocidos como estados de Bell [20] y tienen la
particularidad de que tienen entrelazamiento maximo. Para un conjunto de dos sistemas de
dos niveles, cualesquiera los estados de Bell vienen dados por:

) (Itads) + [LatTn)) - (8)

1 1
") =—=(100)+[11)), )= (]00)—|11)),
o) \/5(|>\>) ) \/5(|>|>)
1 1
+ - —F= - _ —— —
[w+) = 75 01)+110)). ) = 5 (01)-[10).
La matriz densidad de cada uno de los estados se puede reescribir como:
k k k 1 LA
PBe = [VBen ) Vpeul = 1 <1a ®L+> Wio® Ui) : 9)
i=1

En esta expresion, {W*}1_, son las matrices diagonales asociadas a cada estado de Bell,
siendo estas:

1 0 0 10 0 -1.0 0 -1 0 0
Ww'=10 -1 0| W?=(o 1 0o| W=|0 10| W'=[0 -1 0 [10)
0 0 1 00 —1 0 01 0 0 -1

2.2.4. Canales cuanticos

En la teoria de informacién cuantica, los canales cuanticos presentan un papel funda-
mental en el estudio de conceptos como coherencia, correccion de errores y capacidades de
protocolos particulares [21].

Un canal cudntico se describe matemdticamente como un mapa & : B (H4) — B (Hp)

Trabajo de fin de grado 12 Pablo Crespo Del Amo



Elementos de informacion y mecanica cuantica Formalismo y elementos basicos t.c.

entre operadores lineales, completamente positivo y que preserva la traza.

La importancia de estos objetos matematicos es que permiten representar de forma fisi-
camente consistente cualquier «cambio» * que un estado cudntico pueda exhibir.

Como se comentd anteriormente, los canales cuanticos requieren de dos requisitos indis-
pensables relacionados con matrices densidad bien definidas; especificamente:

» Positividad completa: Esto implica que £ ®Z,, es una aplicacién positiva para cualquier
valor de n, lo que asegura que la evolucién de un estado cuantico inicial a uno final
nunca produce probabilidades negativas.

= Conservacion de la traza: Se preserva la traza de los operadores, lo que quiere decir
Tr(E(p)) = Tr(p) para cualquier estado p. Esto nos asegura que la normalizaciéon de la
probabilidad no se altera cuando el estado evoluciona.

Uno de los objetivos ultimos de la teoria de informacion cuantica es establecer cotas a
cantidades fisicas o de tipo informacionales, siendo una de las herramientas matematicas
basicas los mapas que representan los canales cuanticos.

2.2.5. Mediciones

El postulado de medicién de la mecanica cuantica establece que, dado un sistema en un
estado p € Bf (H), la medicién de una magnitud fisica A, que puede tomar resultados {ay }+,
puede representarse utilizando operadores de medicion { A}k, que acttian en el mismo espacio
de Hilbert H. De este modo, la probabilidad de obtener el resultado a; en la medicién de A
esta dado por pp = Tr AkpAL, mientras que el estado condicional que ocupa el sistema luego
de esta medicién es:

A pAl
Pk = ]Zz £, (11)

El formalismo matematico mas general para estos operadores es el de operadores no nega-
tivos (E, > 0), hermiticos (Ej, = E}) y que suman la identidad ¥, E; = 1, también conocido
como POVMSs®. Este conjunto de operadores es muy importante porque los operadores de
medicién pueden ser siempre generados a partir de una POVM y determinan univocamente
las probabilidades, es decir, la probabilidad de obtener el resultado k-ésimo es pr = Tr Eyp.
Sin embargo, para obtener los estados condicional, Ec. (11), necesitamos descomponer los
elementos de la POVM como

E, = Al A,

Dos aclaraciones importantes: La primera es que {A} no son necesariamente hermiticos vy,
por ultimo, la descomposicion anterior no es tnica, con lo cual, especificando tinicamente la
POVM, no podemos determinar los estados condicionales.

4Es decir, una evolucién o un protocolo particular.
5Por sus siglas en inglés: Positive operator-valued measure.
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2.3. Fidelidad

Con el propésito de evaluar la similitud entre dos estados cuanticos arbitrarios, existen
diversas medidas que pueden emplearse, tales como la distancia de traza o la fidelidad. En el
area de teleportacién cudntica, la més utilizada es la fidelidad [22, 13, 10, 11].

La fidelidad entre dos estados cuanticos, representados por operadores densidad p y o, se
define mediante la siguiente expresion:

D=

F(p,0) = Try/piops. (12)

Es importante destacar que la fidelidad es simétrica respecto al orden en el que se comparan
los estados, es decir, F' (p,0) = F (0, p). Ademads, estd acotada entre 0 y 1, donde F' (p,0) =0
unicamente cuando existe una medicion que nos permita distinguir perfectamente los esta-
dos, y F'(p,0) = 1 cuando ambos estados coinciden, es decir, cuando p = ¢. Aunque esta
propiedad no es evidente a partir de la expresiéon anterior, puede derivarse directamente del
teorema de Uhlmann [23].

2.3.1. Expresion simplificada para sistemas de dos niveles

Trabajar con la expresion de la fidelidad, Ec. (12), puede resultar complicado. Para el
caso de sistemas de dos niveles, podemos simplificar la expresion usando vectores de Bloch,
Ec. (7). Primero, definimos los estados a comparar: p(@) = (1 +@-7) y o(5) = 3(1+5- 7).

Las matrices hermiticas son diagonalizables y las que ademés son definidas no negativas
tienen una raiz cuadrada bien definida: Sea M una matriz 2 x 2 de este tipo,

M = UyMUl, = VM =UyVMU},,
donde M, es una matriz diagonal y U, es la unitaria que digonaliza a M. Ademas,
(TrvVM)? = (Vmy + Vm2)? = mq + my + 2myms,
con m; los elementos de la diagonal de M. Por otro lado,
Te M = mq 4+ mo det M = mims,
entonces
(TrvV/M)? = Tr M + 2det M,

Luego, la matriz /po,/p es una matriz hermitica y definida no negativa, porque p y o
son también de este tipo, entonces tomando M = ,/po,/p hemos demostrado que,

F(p,0) = Tr[\/po+/p] + 2det(y/po+/p) = Tr[po] + 2det pdet o.

Escribiendo los estados en funcién de los vectores de Bloch y desarrollando cada término,
tenemos:

(147 8),

N | —

Tt [po] =
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1—1r? 1—s?
det p = 4T, det o = 48

Finalmente, hemos demostrado que la fidelidad entre dos estados cuanticos se puede
escribir como:

F(p,cr):;(1+F-§+\/1—r2\/1—82>. (13)
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3. Protocolos de teleportacion

El término teleportacion cudntica surge en 1993, de la mano de Charles Bennett y sus
colaboradores [24], quienes propusieron por primera vez el protocolo de teleportacién ideal
(o perfecto) para sistemas de dos niveles. Como senalamos anteriormente, este procedimiento
consiste en la trasmision del estado cuantico de un sistema a otro, utilizando estados de Bell
(entrelazamiento maximo) y comunicacién clasica —este detalle es importante debido a que
limita la velocidad de transmision del estado a la velocidad de la luz.

Ademas del protocolo de teleportacion cuantico perfecto, en la literatura se estudiaron dife-
rentes variantes, siendo una muy importante el protocolo clasico. Este procedimiento supone
que el emisor y el receptor del estado cuantico, usualmente denominados como Alice y Bob,
respectivamente, estan conectados solamente por un canal clasico, es decir, sélo puede enviar-
se bits informacién clasica. Por tultimo, otra situacion relevante toma lugar cuando Alice y
Bob no pueden comunicarse, procedimiento que hemos denominado como estrategia ingenua.
Cabe aclarar que la importancia de estos dos tltimos protocolos es estudiar los limites de la
teleportacion, es decir, cuanto ruido puede admitir un protocolo cuantico antes de compor-
tarse peor que estos protocolos que no hacen uso de ningtin recurso cuantico.

En las secciones siguientes, veremos como definir y cuantificar el desempeno de los protocolos
mencionados anteriormente para el caso de sistemas de dos niveles.

3.1. Fidelidad de teleportacion

Como senialamos anteriormente, la fidelidad de teleportacion es la principal figura de
mérito para cuantificar el desempeno de los protocolos en teleportacion. La podemos definir
como el promedio del rendimiento sobre una distribucion aleatoria estados iniciales posibles.
Especificamente, sea p = %(1 +1 - d) el estado inicial a teleportar de un sistema cuantico y P
un protocolo arbitrario de teleportacion que, dado p, produce el estados cuantico condicional
pi = %(1 + ;- &) con probabilidad p;. El rendimiento F se define como la fidelidad a priori:

F= ZPiF(P> pi) - (14)

La fidelidad de teleportacion se calcula tomando el promedio de la cantidad anterior sobre

—

una distribucién de estados aleatoria D(p) = f(u):

(F) = [ doD(p) F (p,p0) = ;/Bde(ﬁ) (1+a@-@+Vi—@i-w), (1)

siendo B es la esfera de Bloch, f(#) la distribucion de estados aleatorios parametrizada segin
el vector de Bloch #, y donde hemos utilizado la Ec. (13) para la fidelidad.

En este punto surge la pregunta sobre cudl distribucion de estados cuanticos considerar.
Los protocolos de teleportaciéon cuantica suponen maxima incertidumbre sobre el estado a
teleportar, es decir, conocimiento previo minimo. Ahora bien, si nos restringimos a estados
puros iniciales se demuestra que la distribucién que representa esta situacién esta dada por
la «cascara» uniforme sobre la superficie de la esfera de Bloch [14], dada por la Ec. (3), sin
embargo, si se anula esta restriccion, es decir, si permitimos que el protocolo toma como
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estados de entrada cualquier estado cudntico, no existe una distribucién de probabilidad
que represente el conocimiento previo minimo sobre los estados iniciales. Esto se debe a
que existen diferentes formas de cuantificar qué tan diferentes son dos estados cuanticos,
y cada una de ellas da lugar a una nocién de aleatoriedad distinta. En este trabajo, como
anticipamos en la Sec 2.1.1, vamos a utilizar dos distribuciones distintas de estados aleatorios
mixtos dadas por las Ecs. (4) y (5). La primera esté relacionada con la distancia Hilbert-
Schmidt y la segunda con la distancia Bures, que son dos funcionales ampliamente utilizados
y reconocidos como bien comportados en el area [25].

3.2. Protocolo clasico

Como introdujimos anteriormente, el protocolo de teleportacion clasico consta de dos
personas separadas a las que llamaremos Alice y Bob comunicadas por un canal clésico,
es decir, s6lo pueden enviarse bits de informacién clasica. El objetivo es, como siempre,
transmitir el estado de un sistema cuantico A a otro sistema B. En un principio, Alice tiene
un estado cuantico desconocido que podemos representar como

1+1id-3), (16)

donde # es el vector de Bloch del estado cudntico, ver por ejemplo Ec. (7). Ademads, cabe
mencionar que solo se tiene una copia del estado a teleportar, por lo que sélo se podra realizar
una medicién para obtener informaciéon del mismo.

En el primer paso del protocolo clasico Alice realiza una mediciéon dada por la POVM M, =
{M,}; sobre el estado A. La probabilidad de obtener el resultado i-ésimo es p; = Tr[M;p(u)].
Todo operador de medicién M; se puede escribir usando vectores de Bloch [13] como:

M; = s3p;,
siendo p; un estado que viene dada por la expresion pl(dj) = % (1 +d;- 5). Por completitud
se tiene que cumplir que
ZMl = 2312/01 = 1A7
lo que nos lleva a las siguientes dos propiedades:

s2 =2 s2d, = 0. 17
> s >os (17)

La probabilidad de obtener el resultado i-ésimo resulta entonces,

2
_ %

Di 5

(1+d; - 7).

Una vez que Alice ha hecho la mediciéon y ha obtenido el resultado i-ésimo se lo comunica a
Bob utilizando el canal clasico, el cual prepara el estado final en el sistema B al que vamos
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a expresar como

(1+g-0).

N | —

En este punto, surgen entonces dos preguntaS' 1) ;Qué deberia medir Alice? Es decir, ;cémo
determinar la POVM 6éptima M; (s; y d, )75y 2) {Qué deberia preparar Bob? Es decir, jcomo
tomar ¢;, dado el resultado 7 en la medicién? La respuesta a estas preguntas las obtendremos
optimizando la figura de mérito, es decir, la fidelidad de teleportacion.

3.2.1. Fidelidad de teleportaciéon clasica

Una vez hallada la expresién de la fidelidad con la que vamos a trabajar, Ec. (13), ten-
dremos que sacar el rendimiento segin la Ec. (14),

=> piF(p, pi) = Zs (1+a- d: Y(144-g; +V1—u2y/1—g?)
" 18)
1 o L (

= Zzsf <1+u~gi—|—\/1—u2\/1—gi2+u~dl-—i—u-diu-gi—l—u‘di\/l—u%/l—gi?).

Siguiendo la Ec. (15), la fidelidad de teleportacion es el promedio del rendimiento:
_ _ 1 Lo
(F)= [1@F@v = [ 17 5t Gi+ VT=u /1 - gi+
G-di+a-diii-G+i-divV1—u?y/1—g?)

Podemos obtener la expresion analitica de la integral, desarrollando la integral de volumen en
integrales de superficie y radial. Es importante destacar que esta separacion se puede hacer

ya que las densidades de probabilidad son isotrdpicas f(u#) = f(u). La separacién en cuestién
es, especificamente:

/dvz/olduuQ/O%dqb/(fdesen(e):/OIduqﬁ/SdS.

Veamos ahora como calcular cada uno de los términos de la integral Ec. (19).

(19)

1. Primer término:
/f(u) wdndu = 1. (20)

Como vimos en nuestro marco teérico la densidad de probabilidad esta normalizada
segtn la Ec. (2), por lo que nos permite calcular directamente nuestro primer término.

2. Segundo término:
/f(u)a-gzdvz/f(u)u?’du /a-g:-ds, (21)
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donde hemos utilizado que « = uu siendo 4 el vector normalizado. Como ya mencio-
namos en el marco teérico la densidades de probabilidad f(u) son isotrépicas, es por
ello que podemos separar la integral en dos, la primera parte que integra los radios y
la segunda que integra una superficie esférica, y operar cada una de ellas.

En este punto vamos a trabajar con la segunda integral sobre la superficie esférica, que
calcularemos utilizando el teorema de la divergencia. Haremos el desarrollo una vez,
para el resto de términos es analogo.

El teorema de la divergencia establece que dado un campo vectorial F continuamente
diferenciable en los limites de un volumen V' € R® compacto con un borde suave S, vale

/Sﬁ.dgz/v(v.ﬁ)dv,

En nuestro caso, si V es la bola unidad en R3, tenemos que dS = dSa y el campo
vectorial es constante F'(@) = g;, por lo tanto:

/gfi-ﬁdS:/(V~ji)dV:0. (22)

Con lo cual, el segundo término, Ec. (21), es idénticamente nulo, al igual que el cuarto
y sexto término.

3. Tercer término:
/f(u)uQ\/l —u?\/1— g2dSdu = /f(u)u247r\/1 —u?\/1 — g2du. (23)

Dado que la distribuciéon de probabilidad no depende de las variables angulares, enton-
ces sblo queda resolver la parte radial. Para ello hay que especificar la distribucién f(u).

4. Quinto término:
/ Fluy?@-d,@- §dSdu = / Flu)u? du / a-da-gds. (24)

En esta ocasion vamos a simplificar la integral de superficie para dejar inicamente de-
pendencia con el radio; en lo que sigue, utilizaremos la convencion de suma de Einstein.
Sea I un vector unitario,

iody) (5-3) = 2id 2ngt = .l gFay = xi(AF 2y, =7 A7,
( g ] gz ]zgz J 7

donde A; = d_;gf Por otro lado, utilizando una vez mas el teorema de la divergencia y
definiendo el campo vectorial como F(#) = A, tenemos que vale en general:

/Aa-adsz/(v-Aﬁ)dv.
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A su vez,
1 3.
V - (Al) = TAJ’%L,C =Y AT =TrA,
uj j=1
y entonces
AT

/(v ATV = T TrA.

Volviendo a nuestro caso, A = d;§7, por lo tanto, Tr(A) = Tr(d;G;") = d; - §;- Se sigue
entonces que, el término en la Ec. (24) resulta:
. 4m (di - i
/f(u)u2 (@-d) (a-g) dSdu = (3> /f(u)u4 du. (25)

Utilizando las Ecs. (20), (22), (23) y (25), la fidelidad promedio resulta igual a,
B 1 n U2 .
= 242 —(d -a V1—u2/1—¢g?
<F>_/o du f(u) zi:wu s;(1+ 3 (alZ g,)—l— 1 —u?y/1—g?). (26)

Notese que esta ecuacion no puede ser resuelta sin conocer la expresion de la densidad de
probabilidad de los vectores , por lo que vamos a introducir una simplificaciéon para avanzar
en el desarrollo, que viene dado por la siguiente expresion,

EQE/Olduéhrqu(u)(l _4U2>a Ey=1. (27)

Una vez implementamos la Ec. (27), podemos reescribir la fidelidad promedio como sigue

<F>:Zn:isf (1+;(1—4E1) (cﬁ-gﬁ)—i—ZEI/m/l—gf). (28)

1=0

Para seguir con el desarrollo, tenemos que obtener los vectores que optimizan la expresion
de la fidelidad (28). En el trabajo de Vidal [13], se demuestra que los vectores de Bloch
6ptimos de los estados condicionales (i.e. la estrategia de preparacién) estan relacionados a
los operadores de la POVM segtn la expresion:

—

L (1—4Ey)d;
o V36ETy + (1 — 4B))*d;

De esta manera lo que prepara Bob depende de la medida de Alice y de la densidad de pro-
babilidad f(u). Vamos ahora a sustituir en la expresion de la fidelidad promedio obteniendo

(F) = zn: is? (1 + ;\/36E12/2 +(1- 4E1)2d3) . (29)

=1
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Como vemos obtenemos una expresion para la fidelidad de teleportacion méaxima que solo
depende de f(u) y de los pardmetros que definen la medicién (s; y d?). Estamos entonces
en condiciones de obtener la medicion 6ptima, optimizando la expresion anterior. Para cada
resultado de la medicién entonces vemos que d? = 1 maximiza la Ec. (29), con lo cual, la
POVM estd compuesta por proyectores de rango uno. Luego, como Y, s? = 2 por la Ec. (17),
la expresion final para la fidelidad de teleportacién cléasica es:

(F) = ; (1 +2 \/36E1/2 + (1 - 4E1)2) .

Vemos entonces que los elementos {s;} y la cantidad de operadores de la POVM son
parametros libres y no afectan al promedio del rendimiento.

En este trabajo, nos concentraremos en el protocolo clasico 6ptimo minimo, es decir,
la POVM estd compuesta por unicamente por dos proyectores porque es el protocolo mas
utilizado en la literatura [13]. En resumen, la POVM éptima minima y la estrategia de
preparacion estan dadas por:

s; = 1, n =2,
gi:gopt'czi7 ZCZ:(_L
42 =1. (30)
siendo
(1-— 4E1p)
Yopt = (31)

V/36ET ), +(1—4Ey,)”

el modulo de los vectores de Bloch de los estados que componen la estrategia de preparacion.
Este pardmetro es determinado, en ultima instancia, por la distribucién f(u), entonces, el
protocolo cldsico depende de la nocién de aleatoriedad considerada. Ademds, g, es el grado
de pureza 6ptimo de los estados condicionales.

Vamos ahora a calcular las integrales que vienen dados por la Ec. (27) utilizando las
densidades de probabilidad dadas en las Ecs. (3)—(5),

L 1 —u? 1 1 — u?
Ey, :/ du 47w’ fo(u) ( 1 ) =0, Ey, :/ du dmu? f,(u) ( 1 ) =0,
0 0
! 1 —u? 1 1 1 —u? 3
:/0 du dmu? frn (u) ( 4 ) ~ 10 Ly, :/0 du Au® fr (u) ( 1 > =3

1 1 —u? 1 1 1 —u? 2
E,, :/0 dU47TU2fr(U) ( 4 ) = 16’ Ei, :/0 dU47TU2fr(U) ( A ) = 3

Por otro lado vamos a calcular los ultimos elementos que necesitamos para calcular la fidelidad
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promedio:
(1-— 4E1 ,)
0, - ]-, 32
gon(fo) = J3E, + (1—1E,,)? (32)
1—4F
gopt(fm) = ( lm) B ~ 07327
V36ETy +(1—4E,)
1—4F
goznf(fr) ( L) ~ 0,50.

V36ETy + (1 —4E, )2

Cabe destacar que cuando nos restringimos a teleportar estados aleatorios puros, el protocolo
clasico da lugar consistentemente a la preparacion también de estados puros; esto lo podemos
ver en la Ec. (32). Cuando la distribucién involucra estados aleatorios que podrian ser mixtos,
la pureza de los estados finales en el protocolo clasico es considerablemente menor, sobre todo
en el caso de la esfera de Bloch uniforme, Ec. (4).

Por otro lado, los valores de la fidelidad de teleportacion clasica, segin las distribuciones
consideradas, son:

2
<F>p =3 (33)
<F>m ~ 0,811.
<F>T ~ 0,746. (34)

Vemos entonces que, en principio, a medida que la distribucién de estados iniciales invo-
lucra mas estados mixtos, mayor es la fidelidad de teleportacion alcanzada.

3.3. Protocolo cuantico

Para llevar a cabo el protocolo cuantico de teleportacion, consideramos nuevamente a dos
individuos: Alice, cuyo objetivo es enviar el estado p, —escrito como en la Ec. (16)— de un
sistema de dos niveles denominado como a, y Bob, el receptor de tal estado en el sistema B.
En este caso, cambiamos la notaciéon porque el protocolo cuantico hace uso de un sistema
adicional A.

El protocolo cuantico de teleportacion comienza preparando un estado recurso pap en
el sistema AB. El siguiente paso consiste en la distribucién del qubit A y B entre Alice y
Bob, respectivamente. Por otro lado, en este protocolo también se supone que Alice y Bob
mantienen un canal de comunicacion clasico.

En resumen, Bob posee el qubit B, mientras que Alice tiene ahora dos qubits a y A. Es
importante destacar dos cuestiones: 1) Alice desconoce por completo en el qubit a, el cual es
el estado que se desea teleportar; 2) A diferencia del protocolo anterior, los pasos siguientes
del protocolo cuantico estan diseniados para utilizar las potenciales correlaciones en el estado
recurso pup entre los qubits A y B.

El siguiente paso del protocolo consiste en que Alice realice una medicién conjunta sobre
el sistema compuesto por los qubits a y A, representada como M = { M4}, Tras realizar la
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medicién, el estado del qubit B se altera debido al entrelazamiento, dando lugar a estados
condicionales (al resultado de la medicién) en el sistema B [1]:

aA
o Troa [(Ml ®;—}B) (pa ® pAB)} | (35)

donde p; es la probabilidad de obtener cada uno de los resultados de las medidas M = { M1},
cuya expresion es:

pi =T [(M* ©15) (pa @ pas)| . (36)

3.3.1. Protocolo de teleportacion cuantico perfecto

El caso mas sencillo y de mejores resultados, parte de tomar como medicion M =
{M#}; = {pPe"}; la base de Bell y preparar algtin estado de Bell p2¢! como estado recurso
del sistema AB. En este apartado demostraremos que la configuraciéon anterior da lugar a la
transmision perfecta del estado p del qubit a al qubit B. En las ecuaciones siguientes haremos
uso de la convenciéon de suma de Einstein para simplicar el texto.

El primer paso es escribir los estados de Bell como en la Ec. (9):

1
prt = 1 (Lap +Wiioa ®0a), (37)
que es un estado de Bell escrito en la forma de Fano, donde los elementos W son los elementos
diagonales de las matrices de la Ec. (10).
Luego, la probabilidad de que Alice obtenga el resultado i-ésimo en la medicién esta dada
por la Ec. (36) y usando la parametrizacion anterior, Ec. (37), tenemos que:

pi="Tr [(MiaA ® 13) (Pa ® Plfgeu)} = 312 Tr[(Loap + wi'ow @ 1p)

Lo a- = 1
(Loap + Wl ® 04 00 +U-F R Lpp + Wil -0 R 0y ® 04)] = 7
La igualdad anterior se demuestra usando las propiedades de las matrices de Pauli, en par-
ticular, que Tro; = 0.
Una vez hemos medido el subsistema aA y observado el resultado i-ésimo, al estar Ay B
entrelazados, hemos condicionado el estado de B, dado por la Ec. (35):

Troa |pa 4 o
PBli = A;pAB] = 32 Troal(loas + w; 'Or ® 1p)

(Loap +wil, @0, @0y + UG R 1ag + Wil -0 R 0, R 04)],

Aplicando la traza parcial [26] correspondiente vemos que sélo sobreviven los siguientes térmi-
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nos,

(1 + wiwguaoy)

N | —

PBli =g (41 + 2w WLt 2000 Oo) =
1

25(134-173“-53).

El estado que hemos obtenido es muy parecido al estado a teleportar, Ec. (16) que teniamos
en a. Especificamente:

UBM = WZWkU = Rl-u,

donde cada W; son las matrices ortogonales de det = —1 en las Ec. (10), por lo que el
producto de W; W, = R; es una matriz ortogonal de det = 1 , es decir, una rotacion. Esto
quiere decir que %pg); no es mas que el vector de Bloch 4 del estado p, rotado por la accién
de R;, escrito de otro modo:

Por lo tanto, si Alice le envia a Bob el resultado ¢ de su medicién, este puede corregir el
estado aplicando la rotacién de correcciéon R/, obteniendo siempre como resultado el vector
U en el sistema B.

Para todo este proceso hemos estado supuesto condiciones ideales de ruido y sin pérdi-
da de informacién. Veamos a continuacién qué sucede si aplicamos un modelo de ruido al
entrelazamiento entre los estados A y B.

3.3.2. Estado de Werner como recurso del protocolo cuantico

Como bien se introdujo al final de la anterior secciéon, vamos ahora a preparar nuestro
estado inicial de manera distinta, preparando en el sistema AB un estado de Werner que
viene definido por la siguiente expresion:

= (1= p)ppan + glAR
Estos estados son resultado de uno de los modelos de decoherencia méas simples existentes en
la literatura, y representan ruidos locales en los sistemas A y B.

De aqui en adelante, denotaremos por p al nivel de ruido que tenemos. Este estado tiene
la particularidad de ser uno de los estados de Bell si el ruido es 0, lo que implica estar en el
caso de la anterior seccién, o 1/4 de la matriz identidad en caso de que el ruido sea maximo,
es decir igual a 1; esto representa la menor informacién posible.

Como en el caso anterior, Alice precede a realizar la misma medicién en la base de Bell
M = { M}, = {pP},; sobre el subsistema aA. En este caso, tenemos que

pi=Tr [(Mf“‘ ® lB) (pa ® p’fv)] ;
donde,

(M4 @ 1p) = & (Laap + {00 ® 00/ ® 15) .

1 =
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De la misma forma vamos a desarrollar el segundo término obteniendo asi:

1 — —
(Pe@pl) = 5 [(La+@-3) @ ((1 = p)olhen +p1a5)]
1 — — o
:§[(1a+u 7))@ ((1—=p)(Lap + wios @ 04) + plap)]
1
g[(l— p) (Loap + 1w @ 0q @00+ UG R Lap+wid -0 ® 0, ®0,)+

+p(Loap + U -5 @ 145)].

De este modo, las probabilidades resultan:

=Tr [(Mz & 13) (pa & pw)} 312 [(1aAB + ’LU?,(Ta/ R Ow X 1B)

[(1=p)(Loap + 1wy @04 @00+ U-0RLap + Wi Q06 @04) +p(loap + U7 R 1ap)]

1

1— =-.
=35 (8(1—p) +8p) =7
Calculadas las probabilidades, los estados condicionales, Ec. (35), se obtienen de un modo
andalogo:

Tra Mz & 1 a X q]j; 1
PB\i = . [( pB) (p P )} = g TraA[(laAB + w;‘xlo—a/ ® Tay ® 1B)

[(1—p) (Loap+ 1wy ®0a @00+ U-0RIap+Wetd T R0, R 04) +p(Laap + U -7 ® Lap)]].

Si aplicamos la traza parcial sobre dicha expresiéon vemos que sé6lo sobreviven los siguientes
términos,

[1g + (1 — plwfwiuaos] .-

1 1
*(413 (1—p)+4p13+4w?wgua0a (1_]7)) 5

PBli =
T8
Dicha expresion se puede reescribir contrayendo indices, obteniendo:

]_ — —
PBli = 5[1B+(1_p)RiU'U]>

donde R; es la matriz de rotacién y « es el vector de Bloch del estado a teleportar (16). Una

vez Bob recibe el resultado de la medicién de Alice, puede realizar la rotacién dada por R}
para obtener el estado final, siendo este:

15+ (1—p)ii-5). (38)

l\D\»—t

PB

En este caso, el estado final del protocolo no es el mismo al estado inicial, dado por la Ec. (16).
Debido a esto tenemos que calcular la fidelidad entre estos dos estados como hicimos en la
anterior seccion.

Tras haber obtenido el estado que le resulta a Bob, Ec. (38), podemos calcular el rendi-
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miento entre el estado inicial p, y el estado final ppg, segin la expresion (18),

Flparps) = 5 [L+ (1= p)u? + VI= @ T= (1= 2] (39)

Una vez que tenemos la expresion del rendimiento podemos calcular la fidelidad promedio
segin la Ec. (15) para las distintas distribuciones, Ecs. (3)—(5), obteniendo asi las siguientes
fidelidades medias:

B 1
<Fp> = /dQ/ u2 1 lim (5(U — UQ>F(PmpB)dU =1~ ga (40)
0

Aru? uo—1

_ 1
<Fm> = /dQ/ UZEF(paJpB)dua
0 ™

<Fr> = /dQ /01 u27r2\/11_7u2F(pa, pB)du. (41)

La expresion analitica de las dos tdltimas integrales no son simples. En el apartado siguiente,
las calculamos numéricamente en funcion del parametro de ruido p.
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4. Desviacion de la fidelidad

El estudio de la desviacion de la fidelidad es el objetivo principal de nuestro trabajo, debido
a ello vamos a centrar esta seccion en obtener la desviaciéon para el protocolo clasico y para
el protocolo cuantico. Ademas, representaremos graficamente los resultados con el objetivo
de entender la importancia de la desviacion de la fidelidad en el estudio de la teleportacion
cuantica.

Para calcular la desviacién de la fidelidad vamos a reescribir la Ec. (6) como sigue

o = (F*) — (F). (42)

Esta ecuacion no es mas que la diferencia entre el promedio del rendimiento al cuadrado y
la fidelidad promedio al cuadrado.

Comenzaremos obteniendo la desviacion de la fidelidad para el protocolo clasico 6ptimo
minimo desarrollado en la Sec. 3.2.

4.1. Desviacion en el modelo clasico

En este apartado vamos a centrarnos en calcular la desviacién de la fidelidad para el
protocolo clésico, para ello vamos a seguir desarrollando la Ec. (42) donde sabemos que la
expresion del rendimiento viene dado por la Ec. (18) y las fidelidades promedio las calculamos
en las Ecs. (33)—(34).

Sustituyendo las condiciones del protocolo 6ptimo minimo dadas por las Ecs. (30) y (31),
en el rendimiento del protocolo clasico, Ec. (18), obtenemos la expresién simplificada:

_ 1 -
F(P) =5 (1 +gopt(ﬁ'di)2+ V1—u? \/1 _ggpt>

2
1
=3 (l+goptu2cos29+v1—u2\/l—g§pt).

Luego, utilizando la ecuacién anterior, la definiciéon siguiente

_ 27 s 1 _
(Fy= [ [ [ sen®)F(o) f(w) w2t do,
o Jo Jo
y considerando las distribuciones de probabilidad correspondientes, resulta:
7
2 —
(F7) = 157
(F2) ~ 0,66,
(F?) ~ 0,57,

Habiendo obtenido los promedios anteriores, resulta directo calcular las varianzas del proto-
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colo de teleportacion clasico 6ptimo minimo:

741

2
z — 0,02, 43
%r =15 9 45 (43)

o2 ~ 0,668 — 0,657 ~ 0,01, (44)
ol ~ 0,569 — 0,557 ~ 0,013.
Podemos observar que la menor desviacion se alcanza utilizando distribuciones de probabili-

dad de estados mixtos, mientras que el protocolo clasico presenta mayor estabilidad cuando
los estados iniciales son puros.

4.2. Desviacion en el modelo cuantico

De manera analoga a lo que sucedia al calcular la fidelidad promedio en el modelo cuanti-
co, Ecs. (40)—(41), encontrar una expresién analitica para la desviacion de la fidelidad en
este modelo resulta muy complejo. Debido a esto, nos centraremos en obtener una solucion
numérica en funciéon del pardmetro de ruido p.

Al igual que en el modelo clésico, la desviacion se calculara utilizando la Ec. (42). Como se
mencion6 previamente, el segundo término de dicha ecuacién es elevar al cuadrado la fidelidad
promedio obtenida en Ecs. (40)—(41).

Para calcular el promedio del rendimiento al cuadrado, utilizamos la expresion general:

/dQ/ WE2 (p, pi) du.

en la que debemos reemplazar la Ec. (39). Especificamente:

Q 2
2 m 0(u — o) F N il ke
/d / 47ru2 ul(}—ﬂ 6(u — o) F(pa, pp)~ du = 1 7

= Q/ 23 B(a, p)?

/d 0 u A (p »PB) du7

F2> a0 [ i gt
0 7'('2 1—U2 Pas PB .

Luego, se puede ver que la varianza del protocolo cuantico es nula cuando se considera la
distribucion sobre estados aleatorios puros; las varianzas para las distribuciones de estados
mixtos seran ilustradas graficamente en el apartado siguiente.

2 2
p°—4p+4 p —4Ap+4
2= 1 - 1 =0, (45)

7 = (P > < n) (16)
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4.3. Graficas

En este apartado vamos a realizar una comparacién de los resultados obtenidos en el
modelo clasico y el cuantico utilizando como recurso un estado de Werner. Las tres gréaficas
obtenidas, Fig. 1-3, representan la fidelidad promedio obtenido con cada una de las distribu-
ciones de probabilidad con las que hemos trabajado, asi como la desviacion que presentan.
El objetivo es evaluar como varian la fidelidad y la desviacion de la fidelidad, para cada uno
de los casos, en funcion al ruido existente, asi como comparar el rendimiento de cada uno de
los protocolos teniendo en cuenta no solo la fidelidad sino también su desviacion.

A continuacién, se presentan las graficas que ilustran la evolucién de la fidelidad en funcién
del ruido para las tres densidades de probabilidad utilizadas durante el trabajo.

1.0

0.9

Fidelidad

Figura 1: Fidelidad de teleportacion y su desviacién en el contexto de una densidad de
probabilidad f,(u), Ec. (3), para los modelos clasico y cudntico.
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1.0

Fidelidad

0.6

0.5 p

00 02 04 06 08 10

Figura 2: Comparacion de la fidelidad de teleportacion y su desviacion para una distribucion
de probabilidad f,,(u), Ec. (4), entre el modelo clasico y el modelo cudntico
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Figura 3: Fidelidad promedio y su desviacién para una densidad de probabilidad f,(u),
Ec. (5), en los protocolos clasico y cudntico con un ruido de tipo Werner.

En estas graficas, podemos apreciar el valor que toma la fidelidad de teleportacién clasica
representadas por una linea horizontal continua, ya que en el modelo clasico la fidelidad
promedio no depende del ruido del sistema. Del mismo modo, podemos observar los valores
que toman las fidelidades promedio en el modelo cuantico, Ecs. (40)—(41), lineas continuas
que toman valor 1 cuando el ruido es 0 y van decayendo segin aumenta el ruido. Por otro
lado, las lineas punteadas corresponden con la desviacion de la fidelidad promedio para cada
uno de los casos, las cuales corresponden con las Ecs. (43)—(44) para el protocolo clésico y
las Ecs. (45)—(46) para el protocolo cudntico.
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Como podemos apreciar, las fidelidades de los protocolos clasico y cuantico, la desviacion
juega un papel importante, pues el protocolo clasico cuenta con una desviacion estandar
considerable para todas las distribuciones utilizadas. Por otra parte, el protocolo cuantico
para ciertos rangos de p y para distribuciones de estados aleatorias no restringidas a estados
puros también presenta una variabilidad relevante.
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5. Conclusiones

En este trabajo, hemos comparado el rendimiento de un protocolo cuantico bajo diferentes
niveles de ruido frente al protocolo que sirve de referencia cldsica, utilizando tres densidades
de probabilidad distintas de estados cuanticos aleatorios.

En la Figura 1, correspondiente a las distribuciones de probabilidad de estado puros
iniciales f,(u), observamos que el protocolo de teleportacion cudntico ofrece en promedio
mejores resultados que su contraparte cldsica hasta que el nivel de ruido alcanza 2/3.

Como mencionamos anteriormente, en la literatura relacionada, se certifica como 4til o
cudntico a todo protocolo de teleportacién cuya fidelidad en promedio supere a la correspon-
diente del protocolo cléasico.

No obstante, como se puede apreciar en la Figura 1, en el rango de ruido comprendido
entre 0,36 y 0,96, la elevada desviacién en el protocolo clasico permite cuestionar los limites
previamente establecidos para determinar la utilidad del protocolo. A partir de 0,96, el modelo
clasico comienza a demostrar un rendimiento superior. Por debajo de un nivel de ruido de
0,36, podemos concluir también que el protocolo cuantico es claramente mas efectivo. Sin
embargo, para los valores intermedios seria conveniente tener mayor informacién sobre como
la fidelidad de teleportacion se distribuye de acuerdo a la aleatoriedad de los estados iniciales.

De manera anéloga, los resultados correspondientes a la densidad de probabilidad f,,(u),
mostrados en la Figura 2, indican que el protocolo cuantico proporciona mejores resultados
hasta un valor de ruido de 0,38, similar a la distribucién de estados puros. A partir de ese
punto, la superposicion de las desviaciones en ambos modelos no permite realizar afirmaciones
concluyentes sobre cual ofrece un mejor rendimiento.

Por otra parte, la Figura 3 muestra que el modelo cuéntico supera claramente al clasico
hasta que el nivel de ruido alcanza 0,39. A partir de ese valor, al igual que en el caso anterior,
no resulta evidente cudl protocolo tiene un comportamiento superior. Se observa en la grafica
que cuando el ruido llega a 0,89, el rendimiento del protocolo clasico estd por encima del
cuantico.

De todas las densidades de probabilidad consideradas, la que permite mayores niveles de
ruido para que el protocolo cuantico sea evidentemente ttil es la tercera, mostrada en la
Figura 3. Sin embargo, la segunda densidad de probabilidad, representada en la Figura 2,
ofrece los mejores resultados en términos de fidelidad promedio. Por otro lado, la primera
densidad, Figura 1, no presenta ninguna desviacién, lo que la convierte en la opcion que
proporciona resultados mas estables.

Como hemos podido observar, la desviacion de la fidelidad desempena un papel relevante
al comparar ambos modelos, ya que proporciona informacion adicional de gran importan-
cia para realizar una evaluacion més rigurosa, y sugiere que en algunas situaciones seria
conveniente calcular los demés momentos de la distribucién estadistica del rendimiento F'.

Otro punto destacable es que en la literatura el protocolo cudntico bajo el modelo de ruido
que estamos considerando es destacado por tener desviacion estandar nula. Sin embargo, si se
elimina la restriccién de estados puros iniciales, y se consideran distribuciones de estados mas
generales, podemos ver que la desviacion estandar es una funciéon del parametro de ruido,
alzando a superar la varianza del caso clasico. Esto es inquietante puesto que en el caso
clasico ocurre lo contrario: la desviaciéon estdndar es menor cuando se toma la distribucion
fp de estado puros mientras que aumenta con la mixtura media de los estados iniciales.
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Continuacién de la linea de investigacion:
» Considerar modelos de ruido méas generales y experimentalmente relevantes;

» En este trabajo hemos notado que la fidelidad promedio (o fidelidad de teleportacion)
en el protocolo clasico, es independiente de la cantidad de operadores M; —y de los
nimeros s;— que definen a la POVM?S. Ahora bien, todo parece indicar que la desviacién
si depende de estos elementos; por este motivo, usualmente se utiliza el protoclo clasico
mas simple dado por el protocolo 6ptimo minimo. Estudiar tal dependencia puede ser
relevante para definir un mejor protocolo clésico.

= Otra posible cuestion de relevancia es analizar si, ante modelos de ruido particulares
que afectan las correlaciones cuanticas en el estado recurso, cambiar la medicién M; ha-
bitualmente tomada como la base de Bell puede arrojar mejores resultados en promedio
y en desviacién del rendimiento F.

6Esto fue sefialado por primera vez en [13]
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Apéndice Estrategia ingenua

A. Apéndice

A.1. Estrategia Ingenua

La estrategia ingenua es una estrategia que llevamos a cabo para entender los limites
inferiores de la fidelidad de teleportacién. Con ella vamos a preparar estados p; de tal manera
que no tengamos en cuenta el resultado de la mediciéon de Alice. Por lo que el proceso es
el siguiente, Alice una vez que tenga su estado preparado va a realizar una tnica medicién
sobre el estado p(u), una vez hecha la medicién va a comunicarle a Bob lo que obtuvo y a
partir de ahi Bob va a proceder de tres maneras diferentes:

= Bob prepara siempre lo mismo, sin depender de Alice
= Bob prepara es estado ortogonal a Alice

= Bob prepara el estado opuesto a Alice

Vamos a dividir este aparatado en funcién de si el estado de Alice p(%) es un estado puro o
uno mixto, en funcién de eso veremos para que caso nos ofrece peores resultados.

Estados puros Para este apartado vamos a considerar que el estado que Tiene Alice es un
estado puro y que llevamos a cabo el protocolo 6ptimo minimo. Teniendo esto en cuenta la
expresion de la fidelidad queda

1Z 1=

=S (14 1d- ) .

~ 21: ( gt

Una vez obtenida esta expresién tenemos que llevar a cabo las tres posibles estrategias que
puede llevar a cabo Bob.

= Bob prepara siempre lo mismo, sin depender de Alice

Cuando llevamos a cabo esta estrategia estamos dando a entender que Bob prepara siempre
el mismo estado p(g) independientemente de lo que le haya dicho Alice, por lo que siguiendo
la expresién de la fidelidad promedio (29) obtenemos

1

=3 (3 300) -5

debido a seguir el protocolo 6ptimo minimo la suma del producto de los vectores de Bloch se
cancela, dejandonos inicamente el primer término.

w \

= Bob prepara el estado ortogonal a Alice

En este procedimiento Bob toma la medida de alice y prepara siempre un estado que sea
ortogonal al que obtuvo Alice en su medicién, de tal manera que d: L p; por lo que el
producto vectorial entre esos dos vectores va a dar como resultado cero, esto conlleva que la
fidelidad promedio tenga la siguiente expresion

_ 1 1 - 1
Fip)==(24+=N"d,-q | = =.
(p) 4<+3§1 g) 5
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= Bob prepara el estado opuesto a Alice

En este procedimiento Bob va a preparar el estado totalmente opuesto al que obtuvo Alice
en su medicién, debido a esto el producto vectorial entre ambos vectores de Bloch va a dar
como resultado menos uno, por lo que la fidelidad promedio quedara reescrita como

(P = (24530 7) =5 (2- ) =5

como observacién rapida podemos ver que todas las opciones presentan una fidelidad menor
que en anteriores casos sin embargo sorprende que tengan una fidelidad tan alta para el
procedimiento que estamos realizando. También podemos ver que el peor de los casos posibles
resulta cuando Bob resulta tomar como vector de Bloch el opuesto al que Alice midié.

Estados mixtos A diferencia que el apartado anterior aqui vamos a considerar que el
estado que tiene Alice p(u) es un estado mixto, no obstante vamos a seguir utilizando el
protocolo éptimo minimo.

Por otro lado en este apartado inicamente vamos a considerar el caso en el que Bob prepara
siempre el mismo estado p(g), por lo que en este caso siguiendo la Ec. (26) obtenemos la
siguiente expresion para la fidelidad promedio,

= ! Y u'o / 2 2
<F(p)>:/0duf(u)gﬂusi<1+3di-g+ 1—u 1—g>,

aplicando las condiciones que impone el protocolo 6ptimo minimo vemos que podemos sim-
plificar dicha expresion obteniendo asi,

<F> (p) = /Olduf(u)27ru2 (1—1-@\/1 —gQ>.

Para resolver esto nos haria falta la densidad de probabilidad por lo que vamos a utilizar las
mismas que usamos en el apartado anterior, Ecs. (4)—(5). Vamos a sustituir cada uno de las
densidades obteniendo asi los siguientes resultados,

(Fu(p)) = /01 du f, (1) 20 (1 + mm) _ ; n zgm
<Fr(P)> = /01 du f,(u) 2mu? (1 + mm> — ; + 327r 1— g2

A primer vistazo podemos ver en los dos casos que la fidelidad depende del modulo del vector
de Bloch del estado que Bob prepara, g, siendo lo mejor que puede preparar Bob un estado
maximamente mixto, es decir con modulo de g igual a cero. Por otro lado si Bob prepara un
estado puro la fidelidad promedio nos saldria igual que en el apartado anterior.

En la siguiente grafica representamos la soluciéon previamente obtenida para los distintos
valores del modulo de g
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Figura 4: Fidelidades promedio para estados mixtos con densidad de probabilidad f,(u) y

fr(u)

Como ya mencionamos anteriormente lo mejor que puede hacer Bob en este caso es generar
un estado maximamente mixto, es decir la identidad. Al comparar estos resultados con los
obtenidos para el protocolo clasico, Figs. 1 - 3 destacan las siguientes cosas:

1. Estados mixtos Cuando trabajamos con estados mixtos la mejora que ofrece el pro-
tocolo clasico frente a la estrategia ingenua es casi despreciable siendo esta:

» Para densidad f,,(u): 0.795 para la estrategia ingenua y 0.811 para el protocolo
clasico.
» Para densidad f,.(u): 0.712 para la estrategia ingenua y 0.746 para el protocolo

clasico.

2. Estados puros Sin embargo cuando trabajamos con estados puros la mejora ofrecida
por el protocolo clasico es muy destacable siendo esta 0.5 para la estrategia ingenua y
2/3 para el protocolo clasico.

En conclusiéon cuando los estados pueden ser mixtos el canal clasico extrae menos informacion
mientras que si los estados son puros extrae mas informacion.
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