UTILIDAD DE LA TROPONINA I PARA LA ESTRATIFICACIÓN DEL RIESGO EN PACIENTES CON DOLOR TORÁCICO NO TRAUMÁTICO QUE NO PRESENTAN ELEVACIÓN DEL SEGMENTO ST EN EL ELECTROCARDIOGRAMA A NIVEL PREHOSPITALARIO

GRADO EN MEDICINA

UNIVERSIDAD DE VALLADOLID

TRABAJO FIN DE GRADO

CURSO 2024-2025

AUTORA

Claudia Parra Mediavilla

TUTORES:

Dr. D. Miguel Ángel Castro Villamor

Dr. D. Francisco Martín Rodríguez

ÍNDICE

RESUMEN	2
ABSTRACT	3
INTRODUCCIÓN	4
MATERIAL Y MÉTODOS	7
Participantes	7
Selección y recogida de las variables	7
Análisis estadístico	9
Cuestiones éticas	9
RESULTADOS	10
DISCUSIÓN	14
CONCLUSIONES	21
BIBLIOGRAFÍA	21
ANEXOS	25
Anexo I. Procedimiento de determinación de cTnI	25
Anexo II. Procedimiento de determinación de cTnl	26
Anexo III. Tablas y figuras	27
Anexo IV. Dictamen del CEIM de las áreas de salud de Valladolid	30
DÓSTED DEL TRABA IO EIN DE CRADO	30

RESUMEN

Introducción: El dolor torácico agudo no traumático (DTNT) representa uno de los síntomas más comunes en las consultas médicas de urgencias y atención primaria. En ausencia de elevación del segmento ST en el electrocardiograma, la evaluación inicial y la estratificación del riesgo resultan especialmente complejas. En este contexto, la troponina I ultrasensible (cTnI), determinada en el ámbito prehospitalario mediante dispositivos point-of-care, se plantea como una herramienta diagnóstica prometedora para optimizar la toma de decisiones clínicas en las primeras fases de atención.

Objetivo: Evaluar la utilidad de la troponina I ultrasensible (cTnI) para la estratificación del riesgo en pacientes con dolor torácico no traumático a nivel prehospitalario que no presentan elevación del segmento ST en el electrocardiograma.

Material y métodos: Estudio multicéntrico observacional retrospectivo de cohortes realizado en la provincia de Valladolid. Se incluyeron 206 pacientes con DTNT atendidos por los servicios médicos de emergencia entre octubre de 2022 y agosto de 2024. La determinación de cTnl se realizó mediante el analizador AFIAS Cardiac Triple® y se estableció un punto de corte para la detección de SCASEST. Se calculó el área bajo la curva (AUC) mediante análisis ROC, junto con sensibilidad, especificidad y valores predictivos.

Resultados: El 13,6 % de los pacientes fueron diagnosticados de SCASEST. La concentración de cTnI fue significativamente superior en este grupo $(4,74 \pm 4,78 \text{ ng/mL})$ frente a $0,65 \pm 1,59 \text{ ng/mL}$; p < 0,001). La AUC obtenida fue de 0,916, con un punto de corte óptimo de 1,09 ng/mL, lo que proporcionó una sensibilidad del 92,8 %, especificidad del 84,8 % y un valor predictivo negativo del 98,7 %. Este rendimiento se mantuvo elevado independientemente de la edad, sexo, comorbilidad o hallazgos electrocardiográficos.

Conclusión: La troponina I ultrasensible determinada en el ámbito prehospitalario ha demostrado tener una excelente capacidad para discriminar en los pacientes con dolor torácico no traumático la presencia de SCASEST con una elevada sensibilidad. Su alto valor predictivo negativo la posiciona como una herramienta útil para descartar SCASEST en fases iniciales de atención.

Palabras clave: troponina I ultrasensible, dolor torácico no traumático, atención prehospitalaria, síndrome coronario agudo, diagnóstico precoz.

ABSTRACT

Introduction: Acute non-traumatic chest pain (NTCP) is one of the most common symptoms seen in emergency and primary care consultations. In the absence of ST-segment elevation on the electrocardiogram, initial evaluation and risk stratification become particularly challenging. In this context, high-sensitivity cardiac troponin I (hs-cTnI), measured in the prehospital setting using point-of-care devices, emerges as a promising diagnostic tool to optimize clinical decision-making during the early stages of care.

Objective: To assess the usefulness of high-sensitivity troponin I (hs-cTnI) for risk stratification in patients with non-traumatic chest pain attended in the prehospital setting, without ST-segment elevation on the electrocardiogram.

Materials and methods: A multicenter, retrospective observational cohort study was conducted in the province of Valladolid. A total of 206 NTCP patients were attended by emergency medical services between October 2022 and August 2024. hs-cTnI was measured using the AFIAS Cardiac Triple® analyzer. A diagnostic cut-off for NSTEMI was established, and the area under the ROC curve (AUC), sensitivity, specificity and predictive values were calculated.

Results: 13.6% of patients were diagnosed with NSTEMI. hs-cTnI levels were significantly higher in this group $(4.74 \pm 4.78 \text{ ng/mL vs. } 0.65 \pm 1.59 \text{ ng/mL}$; p < 0.001). The AUC was 0.916 with a cut-off of 1.09 ng/mL, yielding a sensitivity of 92.8%, specificity of 84.8%, and a negative predictive value of 98.7%. This predictive accuracy was consistent across different ages, sexes, comorbidities, and ECG findings.

Conclusion: High-sensitivity troponin I determined in the prehospital setting demonstrated excellent capacity to discriminate the presence of NSTEMI in patients with non-traumatic chest pain. Its high negative predictive value supports its use as a useful tool for early exclusion of NSTEMI.

Keywords: high-sensitivity troponin I, non-traumatic chest pain, prehospital care, acute coronary syndrome, early diagnosis.

INTRODUCCIÓN

El dolor torácico agudo no traumático es uno de los síntomas más comunes en las consultas médicas de urgencias y atención primaria, representando entre el 5% y el 15% de la totalidad de estas [1]. Este tipo de dolor se refiere a cualquier molestia significativa en el tórax, que persiste por más de unos segundos y no presenta relación aparente con un traumatismo ni con lesiones visibles o palpables en la zona torácica. El dolor torácico agudo puede ir acompañado de síntomas como sensación de opresión, pesadez y malestar en el tórax, y, en ocasiones, puede irradiar hacia otras áreas como los hombros, los brazos o la mandíbula.

El diagnóstico diferencial de los pacientes con dolor torácico es fundamental debido a la superposición de síntomas asociados, ya que este es un síntoma común en diversas patologías, especialmente relevante hacer distinción entre las causas coronarias y no coronarias [2]. En este sentido, durante la evaluación inicial, se debe identificar aquellas causas potencialmente mortales, como el infarto agudo de miocardio, para el cual la pronta intervención del personal sanitario en el diagnóstico resulta crucial.

Las decisiones clínicas a nivel prehospitalario ante un paciente con dolor torácico se basan principalmente en la historia clínica del paciente y el electrocardiograma de 12 derivaciones. Sin embargo, una gran proporción de pacientes con síndrome coronario agudo (SCA) no presentan cambios electrocardiográficos en el momento de su realización que indiquen enfermedad coronaria. Con base en estos elementos y escalas como la HEART / HEART pathway, se procede a estratificar el riesgo en los pacientes con sospecha de SCA [3,4].

La necrosis miocárdica constituye el principal determinante de la morbimortalidad asociada al infarto agudo de miocardio [5], lo que resalta la importancia de desarrollar métodos diagnósticos que permitan una intervención rápida y adecuada en el manejo de estos pacientes, con el objetivo de minimizar el daño cardíaco irreversible. En este contexto se han estudiado biomarcadores cardíacos, como la troponina, como ayuda en el diagnostico de infarto agudo de miocardio (IAM) [6].

La troponina I cardíaca (cTnI) se encuentra en el tejido muscular cardíaco como una isoforma única con un peso molecular de 22,5 kDa. La contracción cardíaca está mediada por la formación de un complejo de 3 unidades que consiste en cTnI, cTnT y cTnC, junto con tropomiosina para regular la interacción actina-miosina de una manera dependiente de Ca²⁺. Debido a la presencia

de residuos de aminoácidos adicionales en el extremo N de cTnI, en comparación con la troponina I esquelética, cTnI se ha convertido en el biomarcador de elección para la detección de lesión cardíaca. En caso de IAM, la cTnI se libera en el torrente sanguíneo, alcanzando un nivel superior al límite normal a las 4 a 6 horas tras el inicio de los síntomas [7]. El nivel de cTnI alcanza la concentración máxima después de 12 a 24 horas del inicio y luego permanece elevado durante 6 a10 días en algunos casos. Los niveles sanguíneos de cTnI son mínimos en individuos sanos y son indetectables en pacientes con lesión del músculo esquelético.

Actualmente el límite de detección mejorado y la sensibilidad funcional han llevado a que cierta literatura sugiera que la cTnl altamente sensible por sí sola pronto podría ser suficiente para descartar o confirmar un infarto de miocardio en una hora [8].

Medir biomarcadores en el punto de atención, point-fo-care (POC), con pruebas que poseen alta sensibilidad y proporcionan resultados en minutos, son una herramienta relevante a tener en cuenta, ya que reducen el tiempo de respuesta, pudiendo llegar a orientar mejor el diagnóstico. En estudios previos, se ha demostrado que estas pruebas aumentan con éxito el alta temprana del paciente y reducen la estancia media en el servicio de urgencias [9].

Como se ha indicado anteriormente, para descartar un SCA con un biomarcador cardíaco, debe transcurrir un tiempo tras el inicio de los síntomas. Este tiempo es necesario para que el biomarcador se eleve por encima del límite superior de referencia del ensayo utilizado. Así pues, se han buscado biomarcadores que se pudieran realizar en el punto de atención y que sirvieran de ayuda a lo toma de decisiones a nivel prehospitalario. En el 2013 Svensson et als. ya demostraron que el análisis de biomarcadores, troponina T, CK-MB y mioglobina, era factible a la cabecera del paciente en pacientes con sospecha de SCA [10].

El valor pronóstico de la troponina T a nivel prehospitalario en pacientes con SCA sin elevación de ST (SCASEST) se ha demostrado en varios estudios [9, 12,13]. Igualmente se ha demostrado que descartar a nivel prehospitalario un SCASEST, en paciente de bajo riesgo, con la medición de troponina T en el punto de atención conduce a grandes reducciones en el coste de la atención médica y se asocia con una incidencia muy baja de eventos adversos mayores (MACE) [14,15]

A pesar de la creciente disponibilidad de estas pruebas en entornos hospitalarios, su implementación en la atención prehospitalaria, especialmente en la identificación de pacientes con mayor riesgo, sigue siendo un área insuficientemente investigada. Son todavía pocos los

estudios realizados a nivel prehospitalario que intentan valorar la utilidad de la cTnI en el diagnóstico temprano del SCA. Un estudio demostrado que el rendimiento de la cTnI a nivel prehospitalario es al menos comparable al de los dos ensayos de laboratorio central mejor validados [16]. Otro estudio ha demostrado el valor de la cTnI combinado con criterios clínicos y eléctricos en la estratificación del riesgo de los pacientes con SCASEST en el manejo prehospitalario y la optimización de la derivación al centro útil más adecuado[17].

Sin embargo, actualmente sigue existiendo dudas sobre la utilidad de la cTnI a nivel prehospitalario. Una reciente revisión sistemática llega a la conclusión de que los ensayos con troponina a nivel prehospitalario no son lo suficientemente sensibles para descartar IAM, y sugieren que deben realizarse más estudios que evalúen la precisión diagnóstica de la cTnI a nivel prehospitalario [18].

En la actualidad no existe ningún estudio realizado en España sobre la utilidad de la determinación de la cTnI en el entorno prehospitalario, donde los equipos asistenciales de los servicios de emergencias médicas acuden con un médico especializado en emergencias, circunstancia que no sucede en otros países donde los pacientes son atendidos por paramédicos.

La evaluación de la efectividad de las pruebas rápidas de biomarcadores miocárdicos en pacientes con dolor torácico no traumático, como cTnl, así como su capacidad para identificar a aquellos con alto riesgo de sufrir eventos graves, podría mejorar significativamente la toma de decisiones en la atención temprana. Este tipo de investigación tiene el potencial de contribuir al desarrollo de herramientas diagnósticas más accesibles y eficaces, lo que permitiría una estratificación del riesgo más precisa.

El objetivo principal de este Trabajo Fin de Grado es evaluar la utilidad de la troponina I, cTnI, para la estratificación del riesgo en pacientes con dolor torácico no traumático a nivel prehospitalario que no presentan elevación del segmento ST en el electrocardiograma. El objetivo secundario en conocer las características y el manejo prehospitalario de los pacientes con dolor torácico no traumático asistidos por los servicios de emergencias médicas.

MATERIAL Y MÉTODOS

Diseño

Para realizar este Trabajo Fin de Grado se ha realizado un estudio multicéntrico observacional retrospectivo de cohortes como parte del proyecto "Sistema de alerta avanzada (APSS) en cuidados críticos prehospitalarios basado en técnicas de inteligencia artificial" (IP: Francisco Martín-Rodríguez) que cuenta con informe favorable del Comité de Ética de la Investigación con medicamentos (CEIm) del Área de Valladolid Oeste. Ref. CEIm: 23-PI027.

Participantes

El estudio se realizó en la provincia de Valladolid y se incluyeron a todos los pacientes atendidos por los (Servicios de Emergencias Médicas) SEM y por las unidades de soporte vital avanzado (USVA) y derivados a los servicios de urgencias hospitalarios (SUH) de referencia entre el 1 de octubre de 2022 y el 30 de agosto de 2024.

Se consideró que un paciente cumple criterios para ser incluido en el estudio si ha sido evacuado por los SEM al SUH de referencia por presentar un dolor torácico no traumático (DTNT) sin elevación de ST en el electrocardiograma realizado a nivel prehospitalario. Además, no debió cumplir ningún criterio de exclusión, entre los que se encuentran: menores de 18 años, parada cardiorrespiratoria, exitus previo o durante el traslado, embarazadas, pacientes que hayan sido incluidos en el estudio previamente y pacientes que fueron evacuados por otros medios de transporte o dados de alta in situ.

Selección y recogida de las variables

La variable de resultado principal fue el diagnóstico confirmado de síndrome coronario agudo sin elevación de ST (SCASEST) a nivel hospitalario. Esta información se obtuvo mediante revisión de la historia clínica electrónica. Para el enlace de los datos debió existir una coincidencia exacta de al menos cinco de los siguientes extractores: fecha, hora de llegada, código del incidente, filiación, sexo, edad, documento nacional de identidad y/o número de identificación personal en el sistema de salud.

En el momento de la asistencia prehospitalaria el equipo de emergencias prehospitalaria recogió las variables clínicas: frecuencia respiratoria, saturación de oxígeno, frecuencia cardiaca, presión arterial sistólica, presión arterias diastólica, temperatura, puntuación en la Escala de Coma de Glasgow (ECG) y el uso de oxígeno suplementario. Asimismo, se recogió un electrocardiograma de 12 derivaciones.

La determinación de los parámetros analíticos se realizó durante la atención inicial en las USVAs usando el dispositivo epoc[®] Blood Analysis System (Siemens Healthcare GmBH, Erlangen, Germany). Se analizaron los siguientes parámetros: hematocrito, hemoglobina, sodio, potasio, glucosa, creatinina, leucocitos, plaquetas e INR.

Una vez obtenida la vía venosa, se extrajo una muestra de 2,7 mL y se colocó en un tubo de coagulación con citrato de sodio, modelo BD Vacutainer® (Becton, Dickinson and Company). Después de introducir la sangre en el tubo, se volteó 3 o 4 veces para homogeneizar completamente la muestra con el anticoagulante. La muestra de sangre fue reservada y conservada a 2 - 8°C para su análisis posterior. En un máximo de 78 horas tras la extracción se procedió a la determinación cuantitativa de la Troponina I ultrasensible (cTnI) usando el analizador AFIAS Cardiac Triple®, mediante inmunoensayo de fluorescencia (rango de trabajo: 0,001-15). El procedimiento se presenta en el Anexo I.

Dado que el límite de referencia superior (percentil 99) obtenido por la casa comercial para la interpretación de la prueba cTnl, 0,04 ng/ml se extrajo de un único estudio realizado con voluntarios sanos en Corea y no hay estudios clínicos con pacientes reales, en el presente estudio se determinó el punto de corte para la detección de SCASEST para los pacientes con dolor torácico no coronario y sin elevación del segmento ST.

La medición de la temperatura se realizó con un termómetro timpánico ThermoScan® PRO 6000 (Welch Allyn, Inc, Skaneateles Falls, USA) y las mediciones de presión arterial, frecuencia cardiaca y saturación de oxígeno se hicieron con el monitor LifePAK® 15 (Physio-Control, Inc., Redmond, USA) y Corpuls3 (Weinmann Emergency Medical Technology GmbH, Hamburg, Germany).

En un segundo tiempo se recogieron las variables demográficas (sexo y edad), motivo de llamada, tiempos de llegada, asistencia y traslado, índice de comorbilidad de Charlson, maniobras de soporte vital avanzado prehospitalarias de especial seguimiento, como el uso de oxígeno suplementario, así como los fármacos administrados a nivel prehospitalario.

Noventa días después de la atención por el Servicio de Emergencias se recogieron los datos de la historia electrónica del paciente para recopilar las siguientes variables diagnóstico hospitalario, necesidad de ingreso hospitalario, necesidad de ingreso en UCI, necesidad de ingreso en la unidad coronaria, mortalidad a las 48 horas y diagnostico final hospitalario.

Análisis estadístico

Todos los datos se almacenaron en una base de datos creada a tal efecto en la aplicación XLSTAT® BioMED para Microsoft Excel® (versión 14.4.0.) y Statistical Product and Service Solutions (SPSS, versión 29.0), con los que se llevó a cabo el análisis estadístico posterior. Antes de la fase de aplicación de las técnicas estadísticas se procedió a realizar una depuración de la base de datos mediante pruebas lógicas, de rango (para la detección de valores extremos) y de consistencia de los datos.

Se realizó un estudio descriptivo de la muestra obtenida. Se comprobó la normalidad de la distribución de las variables cuantitativas con la prueba de Kolmogórov-Smirnov. Si estas seguían una distribución normal se describieron como media +/- desviación estándar (DS), o como mediana y rango intercuartílico (RIC) si la distribución no es normal. Las variables cualitativas se describieron mediante frecuencias absolutas y relativas (%). Para la comparativa de medias de variables cuantitativas se utilizó la T de Student con variables distribuidas normalmente, y la U de Mann-Whitney en caso de distribuciones que no siguieran la normalidad. Se utilizó la prueba Chi-cuadrado para realizar tablas de contingencia 2x2 y contraste de proporciones para estipular la relación de asociación o dependencia entre variables cualitativas. Se realizó un análisis univariante observando como variable dependiente principal fue el diagnóstico de SCASEST, así como el resto de las variables analizadas.

Se calculó el área bajo la curva (ABC) de la curva de rendimiento diagnóstico (COR). Se calcularon los puntos de corte obtenidos que ofrecieron mayor sensibilidad y especificidad conjunta mediante el índice de Youden de cada escala, y los valores predictivos positivos (VPP), valores predictivos negativos (VPN), cociente de probabilidad positivo (CPP) y cociente de probabilidad negativo (CPN) con sus respectivos intervalos de confianza para necesidad de ventilación mecánica invasiva.

En los test realizados se ha considerado significativo un nivel de confianza del 95% (IC 95%) y se determinó una significación estadística para una p<0.05.

Cuestiones éticas

Se trata de un trabajo no experimental que no requiere ninguna intervención a mayores de las necesarias fuera del contexto clínico del enfermo. Se trabajó sobre una base de datos previamente recogida del proyecto "Sistema de alerta avanzada (APSS) en cuidados críticos prehospitalarios basado en técnicas de inteligencia artificial" (IP: Francisco Martín-Rodríguez)

que cuenta con informe favorable del Comité de Ética de la Investigación con medicamentos (CEIm) del Área de Valladolid Oeste. Ref. CEIm: 23-PI027.

Así pues, para la realización de presente estudio no fue necesario acceder a las historias clínicas de los pacientes, solo a la base de datos anonimizada que de proyecto de investigación anteriormente indicado.

Se cumplieron en todo momento el deber de confidencialidad y las medidas de seguridad y anonimato de los pacientes participantes de acuerdo con la legislación vigente en materia de protección de datos de carácter personal (Ley Orgánica 15/1999 de Protección de Datos de 13 de diciembre, y Ley Orgánica 3/2018 de 5 de diciembre de Protección de Datos Personales y Garantía de los derechos digitales).

El presente estudio también cuenta con el dictamen favorable del del Comité de Ética de la Investigación con medicamentos (CEIm) del Área de Valladolid Oeste. Ref. CEIm: PI-24-642-APO TFG (Anexo II).

RESULTADOS

Se estudiaron 206 pacientes con DTNT asistidos por los SEM en el ámbito prehospitalario. El 13,6% de los pacientes fueron diagnosticados con un síndrome coronario agudo sin elevación del segmento ST. La edad media del conjunto de pacientes fue de 67,20 ± 16,77 años, siendo significativamente mayores aquellos que presentaron un SCASEST. En el conjunto de pacientes predominó el sexo masculino, alcanzando en los pacientes con SCASEST el 67,9%. Los pacientes con SCASEST presentaron una mayor comorbilidad que el resto de los pacientes (p-valor: 0,026), presentando el 96,4% de estos pacientes una alta comorbilidad. El ritmo cardiaco más frecuente en todos los grupos de pacientes fue el ritmo sinusal, evidenciado hasta en el 71,4% de los pacientes con SCASEST. Un electrocardiograma normal fue el hallazgo más frecuente en todos los grupos de pacientes, sin embargo, este diagnóstico electrocardiográfico se produjo en el 46,4% de los pacientes con SCASEST mientras que en el resto de los pacientes se registró en el 82,6% (p-valor <0,001). Los tiempos asistenciales, la evaluación inicial y el resto de las características de los pacientes según el diagnóstico de SCASEST se presentan en la tabla 1.

Tabla 1. Características y asistencia de los pacientes y SCASEST.

	Total	No SCASEST	SCASEST	p-valor
Número, n (%)	206	178 (86,4%)	28 (13,6%)	
Edad media, (media ± DS, años)	67,20 ± 16,77	65,92 ± 17,10	75,32 ± 11,81	0,003
Grupos de edad, n (%)				0,047
18-49	31 (15%)	31 (17,4%)	0 (0%)	
50-74	96 (46,6%)	82 (46,1%)	14 (50%)	
≥ 75	79 (38,3%)	65 (36,5%)	14 (50%)	
Género, n (%)				0,305
Hombre	119 (57,8%)	100 (56,2%)	19 (67,9%)	
Mujer	87 (42,2%)	78 (43,8%)	9 (32,1%)	
Tiempos (media ± DS, años)				
Tiempo de llegada	12,17 ± 7,68	12,21 ± 7,34	11,89 ± 9,71	0,420
Tiempo de asistencia	27,94 ± 8,11	28,08 ± 8,07	27,04 ± 8,50	0,263
Tiempo de traslado	14,51 ± 7,37	14,37 ± 7,18	15,43 ± 8,60	0,240
Tiempo total		54,66 ± 14,49	54,36 ± 15,69	0,460
Índice de comorbilidad de Charlson (mediana, RIC)	5 (3-7)	4 (2-6)	7 (4-9)	0,026
Comorbilidad según Charlson, n (%)				0,023
Ausencia (0-1 punto)	35 (17%)	35 (19,7%)	0 (0%)	
Baja (2 puntos)	13 (3,6%)	12 (6,7%)	1 (3,6%)	
Alta (≥ 3 puntos)	158 (76,7%)	131 (73,6%)	27 (96,4%)	
Evaluación inicial (media ± DS)				
Frecuencia respiratoria (rpm)	18,37 ± 5,91	18,46 ± 6,09	$17,79 \pm 4,67$	0 ,288
Presión Arterial Sistólica (mmHg)	140,32 ± 26,52	139,84 ± 26,66	143,36 ± 25,89	0,258
Presión Arterial Diastólica (mmHg)	80,28 ± 15,49	80,00 ± 15,66	82,04 ± 14,55	0,260
Frecuencia Cardiaca (lpm)	77,98 ± 18,50	77,50 ± 18,07	81,00 ± 21,15	0,177
Temperatura (°C)	36,11 ± 0,52	36,11 ± 0,54	36,10 ± 0,36	0,469
Saturación de oxígeno (%)	96,78 ± 2,73	96,98 ± 2,63	95,50 ± 3,02	0,004
FiO2 basal a la llegada	0,12 ± 0,03	0,21 ± 0,03	0,21 ± 0,02	0,479
Ritmo cardiaco, n (%)				0,970
Sinusal	142 (68,9%)	122 (68,5%)	20 (71,4%)	
Fibrilación Auricular	19 (19,2%)	16 (9%)	3 (10,7%)	
Taquicardia auricular	15 (7,3%)	14 (7,9%)	1 (3,6%)	
Bradicardia sinusal	14 (6,8%)	12 (6,7%)	2 (7,1%)	
Ritmo de marcapasos	8 (3,9%)	7 (3,9%)	1 (3,6%)	
Flutter auricular		3 (1,7%)	1 (3,6%)	
Bloqueo AV de primer grado	3 (1,5%)	3 (1,7%)	0 (0%)	
Bloqueo AV de segundo grado Tipo I	1 (0,5%)	1 (1,6%)	0 (0%)	
Hallazgos electrocardiográficos, n (%)	(, = = - ,	(, /	(/	<0,001
Normal	160 (77,7%)	147 (82,6%)	13 (46,4%)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Ondas T negativa	17 (8,3%)	10 (5,6%)	6 (21,4%)	

Descenso ST	16 (7,8%)	10 (5,6%)	6 (21,4%)	
Ondas T picudas	12 (5,8%)	11 (6,2%)	2 (7,1%)	
Onda Q	1 (0,5%)	0 (0%)	1 (3,6%)	

El 18% de los pacientes presentaron un segundo diagnóstico, siendo la crisis de ansiedad la más prevalente, diagnosticada en el 6,3% de los casos (Tabla 2, en anexo III). Los pacientes que en el diagnóstico final hospitalario no fueron diagnosticados de SCASEST fueron los siguientes: 124 presentaron dolor torácico no coronario (60,2%), 15 ángor (7,3%), 10 arritmia (4,9%), 5 síndrome anémico (2,4%), 5 ansiedad (2,4%) y 3 pericarditis (1,5%).

La tabla 3 (anexo III) recoge las medidas terapéuticas y asistenciales aplicadas a los pacientes durante la atención en el ámbito prehospitalario. El empleo de oxigenoterapia fue poco frecuente aplicándose en el 3,4 % de los casos. Los SEM precisaron menos de 2 fármacos para manejar a los pacientes y el 36,9% de los mismos no precisó ningún fármaco. El fármaco más empleado fue la nitroglicerina (30,3%) seguido del ácido acetilsalicílico (24,8%). La diferencia en uso de cada fármaco según el diagnóstico de SCASEST se presenta en la tabla 2.

Los resultados analíticos obtenidos se presentan en la tabla 4 (anexo III). Se evidenció una mayor concentración de troponina I en los pacientes con SCASEST con un valor de $4,74 \pm 4,78$ ng/mL, en comparación con los pacientes sin SCASEST cuyo promedio fue $0,65 \pm 1,59$ ng/mI (p-valor <0,001). También se obtuvieron niveles de glucosa más altos en los pacientes con SCASEST con una media de $145,39 \pm 49,48$ mg/dL frente a los $119,24 \pm 35,93$ mg/dL del resto (p-valor <0,001).

Los datos referentes a la asistencia hospitalaria se presentan en la tabla 5. Aquellos con SCASEST presentaron mayores tasas de hospitalización (96,4 % frente a 17,4 %, p-valor <0,001), así como un uso más frecuente de unidades coronarias y procedimientos intervencionistas, unido a una estancia media más prolongada (p-valor <0,001). La mortalidad hospitalaria del conjunto de pacientes fue del 1%, todos ellos diagnosticados de SCASEST, lo que supuso una mortalidad del 7,1% de este grupo de pacientes.

Tabla 5. Datos de la asistencia hospitalaria y mortalidad.

	Total	No SCASEST	SCASEST	p-valor
Número, n (%)	206	178 (86,4%)	28 (13,6%)	
Hospitalización, n (%)	58 (28,2%)	31 (17,4%)	27 (96,4%)	< 0,001
Intervencionismo, n (%)	8 (4,9%)	1 (0,6%)	7 (25%)	< 0,001

Ingreso en la unidad coronaria, n (%)	29 (14,1%)	8 (4,5%)	21 (75%)	< 0,001
Ingreso en UCI, n (%)	1 (0,5%)	1 (0,6%)	0 (0%)	0,864
Días de ingreso hospitalario, (media ± DS)	2,11 ± 4,23	1,35 ± 3,56	6,96 ± 4,96	< 0,001
Mortalidad hospitalaria, n (%)	2 (1%)	0 (0%)	2 (7,1%)	0,018

El análisis de las concentraciones de troponina I en función de distintas variables clínicas se presenta en la tabla 6 (anexo III). Al analizar la cTnI según los hallazgos electrocardiográficos en los pacientes con SCASEST se evidenció la mayor elevación en los pacientes con descenso de ST $(9,89 \pm 5,45 \text{ ng/mL})$, seguidos de los pacientes con ondas T negativas $(4,08 \pm 2,93 \text{ ng/mL})$ (tabla 6, anexo III).

La capacidad predictiva de la troponina I medida a nivel prehospitalario para SCASEST en los pacientes con DTNT presento una AUC de 0,916 para un índice de Youden de 1,090 ng/mL (figura1, anexo III). Los datos de sensibilidad, especificidad, verdaderos positivo y negativos se presentan en la tabla 7.

Tabla 7. Capacidad predictiva de Troponina I para el diagnóstico de SCASEST.

Tn-I prehospitalaria			
	AUC	0,916 (0,843-0,988)	
Youden 1,090	Sensibilidad	0,928 (0,833-1)	
	Especificidad	0,848 (0,796-0,901)	
	VPP	0,490 (0,356-0,625)	
	VPN	0,987 (0,969-1)	

La capacidad predictiva de la Tn-I para el diagnóstico de SCASEST a nivel prehospitalario en los pacientes con DTNT fue mayor en los mayores de 74 años (AUC: 0,956) y en las mujeres (AUC: 0,949), sin alcanzar diferencias estadísticamente significativas. Sin embargo, en los pacientes con baja comorbilidad la AUC fue de 1 (p-valor: 0,006). En la tabla 8 se presenta la capacidad predictiva de la Troponina I para el diagnóstico de SCASEST para distintas variables.

Tabla 8. Capacidad predictiva de Troponina I para el diagnóstico de SCASEST.

Tn-l prehospitalaria					
	AUC (IC 95%)	p-valor			
Edad					
50-74 ≥ 75	0,889 (0,780 - 0,998) 0,956 (0,912-1)	0,264			
Género					
Hombre Mujer	0,900 (0,819 - 0,982) 0,949 (0,903 - 0,996)	0,302			
Índice de comorbilidad de Charlson					
Baja (2 puntos) Alta (3 puntos)	1 0,912 (0,849 - 0,975)	0,006			
Hallazgos electrocardiográficos					
Normal	0,885 (0,778 - 0,991)	0,853			
Anormal	0,898 (0,807 - 0,989)	0,000			

DISCUSIÓN

El presente estudio es el primero que se realiza en el ámbito nacional que evalúa la utilidad diagnóstica de la determinación precoz de troponina I en el entorno prehospitalario en pacientes con dolor torácico sin elevación del segmento ST en el electrocardiograma. La troponina I determinada en el ámbito prehospitalario ha demostrado tener una excelente capacidad para discriminar en los pacientes con dolor torácico no traumático la presencia de SCASEST con una elevada sensibilidad.

En España con datos del 2013 se produjeron aproximadamente 116.000 casos de SCA y el 55,8% de los IAM fueron SCASEST [19]. Degano et al. avanzan que los casos de SCA aumentarán en España en las próximas décadas y exponen que la causa más importante de este aumento será la expansión de la población anciana, que supondrá hasta un 60% del total de casos de SCA al llegar al año 2049 [19]. De los pacientes solicitan atención por DTNT, sin embargo, menos del 5% muestran elevación del segmento ST y hasta un 25% presentan un SCASEST [20]. En nuestro estudio la prevalencia de SCASEST en los pacientes con DTNT fue del 13,6%. Estos datos están en consonancia con los presentados por el estudio EVICURE II donde la prevalencia de SCA en pacientes con DTNT en los servicios de urgencias españoles fue del 23,5%, de los cuales el 65% fueron SCASEST [21]. Estos datos también son coincidentes

con los presentados a nivel internacional, así Khera et al. analizan los SCASEST en EE.UU. donde describen una tendencia progresiva, año a año, a aumentar los SCASEST frente a los SCACEST, en todos los grupos etarios y en todas las razas, alcanzando el 68,6% de todos los IAM [22]. El estudio de Scott el al. realizado en SEM de emergencia americanos encuentran que en el 8,7% de los pacientes atendidos por DTNT presentan IAM [23]. Este menor porcentaje se justica porque en nuestro estudio los pacientes han sido atendido por USVAs con médicos cualificados en la atención de emergencias, capaces de dar altas "in situ" y no trasladar a pacientes que no lo precisan. Sin embargo, los SEM americanos están integrados por paramédicos que no tienen la cualificación para dar altas "in situ" en este tipo de pacientes.

La edad media de los pacientes con DTNT fue de 67,2 años, en el rango de edad de lo hasta ahora publicado en la literatura. Dawson et al. encuentran una edad medica 61,9 años [15], García-Castrillo de 58,6 años [21], Manzo-Silberman et al. 61,2 años [24], Yan et al. de 62 años [25], Sagel et al. 65,7 años [26] y Khera et al. de 69,9 años [22]. El envejecimiento poblacional que existe en Castilla y León y el aumento de la prevalencia del SCASEST que acompaña a la edad podrían justificar que nuestros pacientes con SCASEST tengan una edad media de 75,3 años. Existe una mayor proporción de pacientes de género masculino entre los pacientes con DTNT (57,8%), más marcado en los pacientes con SCASEST donde los hombres alcanzan el 67,9% de los casos, circunstancia que coincide con los publicado en la literatura [21,22]. Estos hallazgos son consistentes con lo descrito en las guías de práctica clínica de la Sociedad Española de Cardiología [27], que consideran tanto el género masculino como la franja de edad entre 55 y 75 años factores de riesgo para la cardiopatía isquémica. Asimismo, la ausencia de eventos en pacientes menores de 49 años refuerza la noción de que la edad temprana no se asocia a un mayor riesgo de SCASEST, lo cual es congruente con los factores de riesgo establecidos [28]. Este patrón, junto con la prevalencia del género masculino, acercan los resultados obtenidos en este estudio a las tendencias y factores de riesgo descritos en otros trabajos previos [25,26].

Hay que reseñar que el análisis de los tiempos asistenciales pone de manifiesto la efectividad del equipo de atención prehospitalaria, que logró completar todo el proceso —llegada al paciente, asistencia y traslado— en menos de 55 minutos. Este margen temporal es especialmente relevante en contextos como el síndrome coronario agudo, donde una actuación rápida puede marcar la diferencia en términos de supervivencia, y donde la capacidad del personal para mantener estos tiempos dentro de un intervalo óptimo refleja una actuación adecuada y alineada con las recomendaciones actuales, que asocian la atención precoz con una reducción

significativa de la morbimortalidad [29]. El tiempo de llegada del equipo asistencial fue inferior a 12 minutos desde la activación del 112, por lo que en menos de 15 minutos se dispuso de un electrocardiograma valorado por un médico experto en emergencias, ya que en el protocolo del DTNT es la primera acción que las USVAs realizan cuando asisten al paciente. García-Castrillo et al. encuentran un tiempo de 169 minutos desde el comienzo de los síntomas hasta la llegada de los pacientes al servicio de urgencias en los hospitales españoles, tiempo muy superior al encontrado en nuestro estudio ya que analizaban todos los pacientes que llegaron al servicio de urgencias no solo los trasladados por los SEM [21].

El 96,4% de los pacientes diagnosticados de SCASEST presentaron una alta comorbilidad, situación esperable ya que se trata de individuos de mayor edad y con un perfil habitualmente asociado a una mayor carga de factores de riesgo cardiovascular. Este contexto refuerza la importancia de integrar la comorbilidad en la valoración inicial del paciente, tanto para ajustar el enfoque diagnóstico como para optimizar la toma de decisiones terapéuticas en un escenario de mayor vulnerabilidad clínica.

Las constantes vitales de los pacientes se encontraron dentro la normalidad, no habiendo diferencias entre los grupos analizados excepto en la saturación de oxígeno que fue ligeramente menor en el grupo con SCASEST. Aunque esta diferencia fue estadísticamente significativa no es clínicamente relevante. El personal sanitario evitó en gran medida el uso de la oxigenoterapia, siendo necesario solo en el 3,4% de los pacientes con DTNT y en el 14,3% de los pacientes con SCASEST. Esta actuación está en línea con las recomendaciones actuales [29], que indican que la oxigenoterapia solo debe considerarse cuando la saturación de oxígeno cae por debajo del umbral crítico del 92%. De hecho, administrar oxígeno innecesariamente podría tener efectos adversos, como la vasoconstricción coronaria, lo que interferiría con la autorregulación del flujo sanguíneo miocárdico, un factor crucial en el desarrollo de la enfermedad.

Actualmente la utilidad de realizar un electrocardiograma en el ámbito prehospitalario en el manejo del DTNT es incuestionable [30], y para la selección de nuestros pacientes se precisó realizar un electrocardiograma de forma precoz y descartar la elevación del segmento ST. Sin embargo, una vez descartado el ascenso del segmento ST, en nuestro estudio la mayoría de los pacientes (46,4%) que finalmente fueron diagnosticados de SCASEST presentaron un ECG dentro de la normalidad. Los hallazgos de nuestra cohorte subrayan que un trazado normal en el ECG no excluye la presencia de isquemia miocárdica. Estos datos, que emergen con claridad en nuestro análisis realizado en el ámbito prehospitalario, han sido previamente encontrados en

la entorno hospitalario. Así, García-Castrillo et al. encuentran alteraciones electrocardiográficas relevantes en el 25,7% de los SCA [21], mientras que Yan et al. encuentran signos de isquemia en el 47,9% de los pacientes [25].

El 18% de los pacientes con DTNT presentó un segundo diagnóstico, siendo el más prevalente la crisis de ansiedad. Dentro de los pacientes con SCASCEST el 10,7% presentaron un cuadro sincopal, un dato especialmente relevante desde el punto de vista fisiopatológico. Hay que tener en cuenta que la isquemia miocárdica puede inducir arritmias o disfunción ventricular transitoria, mecanismos que pueden desembocar en episodios sincopales, y aunque esta forma de presentación es poco habitual en la población general, ha sido descrita en la literatura [31] particularmente en pacientes de edad avanzada o con alta carga de comorbilidad, perfil que coincide con el de nuestra muestra, lo que otorga solidez a este hallazgo.

Este estudio presenta por primera vez, hasta donde conocemos, datos sobre los fármacos empleados en el manejo de los pacientes con DTNT en el ámbito prehospitalario. Los pacientes son manejados con muy pocos fármacos, 1,25 fármacos de media y hasta el 36,9% de los pacientes no precisan ser tratados con ningún fármaco. El grupo de pacientes con SCASEST precisó más fármacos para su manejo, pero hasta el 25% no necesitó tratamiento farmacológico. Este hallazgo tiene una importancia particular, ya que este es el único estudio disponible que describe específicamente los fármacos utilizados en el manejo hiperagudo del SCASEST, proporcionándonos una perspectiva más realista sobre su uso en la práctica clínica diaria. En este contexto, el ácido acetilsalicílico, fármaco con mayor evidencia científica en la prevención de nuevos eventos coronarios y reducción de la mortalidad asociada, fue el más utilizado, seguido de los nitratos, indicados para el control del dolor isquémico. Además, el 32% de los pacientes con SCASEST recibieron doble antiagregación con clopidogrel o ticagrelor (más utilizado el primero por la mayor edad de nuestra población), lo que está en concordancia con la estrategia de tratamiento en pacientes con SCA [29].

Dentro de los resultados analíticos destaca un parámetro que a menudo se pasa por alto en su relación con el SCA, la hiperglucemia. Este hallazgo fue particularmente relevante en nuestra muestra, donde los pacientes con SCASEST mostraron niveles elevados de glucosa en comparación con los pacientes sin SCASEST. Diversos estudios han documentado que la hiperglucemia, en pacientes sin diagnóstico previo de diabetes mellitus, se asocia con un peor pronóstico en el contexto de un SCA [32,33]. Este estado metabólico, caracterizado por un estrés fisiológico, altera la regulación del oxígeno en el organismo y perpetúa la hipoxemia,

contribuyendo a una mayor mortalidad. Dado que la hiperglucemia no siempre se reconoce como un factor en el manejo del SCA, su consideración podría ser clave para mejorar los resultados.

Como era previsible, los pacientes diagnosticados con SCASEST presentaron una mayor tasa de hospitalización, una necesidad más frecuente de procedimientos intervencionistas y un incremento en la mortalidad, en comparación con aquellos sin dicho diagnóstico. Estos hallazgos son coherentes con lo descrito en la literatura [26] y reflejan la mayor gravedad del cuadro clínico. El 71,8% de los pacientes con DTNT fueron dados de alta desde el servicio de urgencias hospitalario. Estos datos están en consonancia con los presentados por García-Castrillo et al. (68,7%) [21]o por Kohn et al. (62,4%) [34]. La mortalidad hospitalaria fue baja, del 1% de los pacientes con DTNT, que correspondió con dos pacientes diagnosticados de SCASEST, lo que supuso un 7,1% de mortalidad en este grupo. Khera et al. refieren una mortalidad intrahospitalaria del SCASEST en EE.UU. del 5,5% [22], siendo del 2,45 la encontrada en el estudio Diocles en España [35]. García-Castrillo encuentra una mortalidad del 0,4% de los pacientes con SCASEST en los servicios de urgencias españoles [21], mientras que en nuestro estudio ningún paciente con DTNT falleció en el servicio de urgencias.

La utilidad de la troponina I en el diagnóstico del DTNT es incuestionable en el momento actual, sin embargo, la utilidad de este biomarcador a nivel prehospitalario ha sido puesto en duda. Algmandi et al. publican en 2020 una revisión sistemática sobre el empleo de troponinas en el ámbito prehospitalario, concluyendo que no se justifica el uso clínico de los ensayos con troponinas en el momento de la atención en el entorno prehospitalario para descartar un IAM, remarcando la baja sensibilidad encontrada en los estudios analizados [18]. Sin embargo, otros autores han publicado la utilidad de empleo de la troponina a nivel prehospitalaria para el diagnóstico de SCA, bien como único biomarcador o como complemento a escalas de riesgo [36–38]. Por otro lado, Dawson et al. sugieren que la implementación de la estratificación del riesgo prehospitalario en ambulancias y la determinación de troponina en el punto de atención para el DTNT puede resultar en reducciones sustanciales de los costes [15]. Además, Ezecowitz el al. han demostrado que la medición de Troponina I prehospitalaria en pacientes con DTNT reduce el tiempo de resolución de estos pacientes y facilita el alta temprana en los servicios de urgencias hospitalarios [39].

Nuestros hallazgos encuentran una cTnI significativamente más elevada en los pacientes diagnosticados de SCASEST que el resto de los pacientes con DTNT y este hallazgo es independiente de la edad, el género o la comorbilidad. Al analizar los hallazgos

electrocardiográficos en los pacientes con SCASEST, lo pacientes que presentaron descenso del segmento ST evidenciaron una mayor elevación de la cTnI.

Las características de las formas circulantes de Troponina I, así como la gran variedad de anticuerpos y configuraciones utilizados por diferentes fabricantes justifican que existan diferencias de hasta 10 veces en las cTnI obtenidos con diferentes inmunoanálisis. Este hecho comporta que cada inmunoanálisis de Troponina I tenga un p99 específico y un rendimiento diagnóstico no extrapolable a otros inmunoanálisis [40,41]. La determinación de Troponina I ultrasensible se realizó en nuestro estudio mediante el analizador AFIAS Cardiac Triple®, no disponiéndose de estudios publicados con este método que evalúen el punto de corte para pacientes con SCA. Por todo ello se determinó el punto de corte para el diagnóstico de SCASEST en los pacientes con DTNT que se situó en una cTnI 1,09 ng/mL.

Con el punto de corte de 1,09 mg/mL el AUC de la Troponina I ultrasensible para el diagnóstico de SCASEST en los pacientes con DTNT fue de 0,916, lo que demuestra que este biomarcador tiene una excelente capacidad predictiva en el ámbito prehospitalario. Para este punto de corte se encontró una sensibilidad de 93% y una especificidad de 85% con VPP de 0,49 y VPN de 0,99. Entre los estudios que analizan la capacidad predictiva de la Troponina I a nivel prehospitalario destaca el de Stopyra et al., realizado en EE.UU., en el que encuentran una AUC de 0,823 para la detección de SCASEST por parte de SEM cuyos profesionales eran paramédicos [37]. Sin embargo, según el punto de corte presentan una especificidad del 99,2% y sensibilidad del 26,5% en el mejor de los casos, y para mejorar la sensibilidad presentan un segundo punto de corte donde la sensibilidad es del 79,4%, reduciéndose la especificidad al 74,2%. En el estudio italiano realizado por Di Serio et al. la Troponina I analizada a nivel prehospitalario alcanza una sensibilidad del 91% y una especificidad del 87% [38]. Nuestros datos otorgan a la Troponina I ultrasensible una aceptable especificidad y muy buena sensibilidad, mejorando los resultados obtenidos en estudios previos donde la baja sensibilidad obtenida limitaba su utilidad como marcador diagnóstico fiable de SCASEST [10,18, 24].

El alto valor predictivo negativo (99%) encontrado en nuestro estudio indica que un paciente con una cTnI inferior a 1,09 tendrá muy poca probabilidad de tener un SCASEST (1%), lo que sitúa a la troponina ultrasensible como una herramienta útil a tener en cuenta en el manejo del DTNT en el ámbito prehospitalario. Las pruebas diagnósticas empleadas en el ámbito prehospitalario en el contexto de pacientes con DTNT y sin elevación del segmento ST en el electrocardiograma deben permitir descartar, con la mayor certeza posible, la existencia de IAM a pesar de no

presentar hallazgos electrocardiográficos relevantes. La determinación de troponina I ultrasensible sería una prueba idónea para ayudar a los profesionales de los SEM a orientar de forma rápida y sencilla a estos pacientes.

Por otro lado, el valor predictivo positivo de la troponina I ultrasensible fue algo más modesto (49%). Esto implica que, aunque es extremadamente útil para descartar enfermedad, su utilidad como herramienta confirmatoria en pacientes que superan el valor de corte propuesto podría ser más limitada, siendo necesario complementar su interpretación con otros hallazgos clínicos y electrocardiográficos y la seriación enzimática. Aunque el valor predictivo positivo mejora los resultados encontrados por Stopyra et al. que fue del 37,2% [37], no alcanza el valor obtenido por Di Serio et al. del 83%[38].

También se investigó la capacidad predictiva del valor umbral de troponina I propuesto, considerando diferentes variables clínicas. El AUC de la cTnI fue excelente en todos los perfiles clínicos de edad, género, comorbilidad o hallazgos electrocardiográficos. Aunque las AUC fueron mejores en los pacientes mayores de 74 años, las mujeres o los pacientes con baja comorbilidad, indicando que podría predecir mejor la existencia de SCASEST en estos grupos de pacientes, sin embargo, no se encontraron diferencias estadísticamente significativas.

La determinación de troponina I ultrasensible, a pide de cama, en el ámbito prehospitalario se ha demostrado factible, siendo un método rápido de realizar, que no demora la asistencia al paciente y sin ningún efecto secundario.

El presente estudio presenta algunas limitaciones, entre las que cabe señalar que se trata de un diseño observacional retrospectivo, lo que implica una dependencia directa de la calidad de los registros clínicos disponibles, conllevando un posible margen de error en la recogida de datos, que puede afectar la consistencia de algunos resultados. Además, si bien los hallazgos obtenidos son relevantes en el contexto prehospitalario del SCASEST, este estudio se llevó a cabo en un entorno geográfico específico, un país desarrollado con población envejecida, que además cuenta con la presencia de un médico en el SEM, lo que podría limitar la generalización de los resultados a otros entornos asistenciales con características distintas. Por otro lado, no se tuvo en cuenta los antecedentes clínicos de los pacientes y, en este análisis, no se empleó la estrategia de combinar herramientas que estratifican el riesgo de los pacientes con DTNT y biomarcadores.

Hablando de perspectivas de futuro, la incorporación de la troponina I ultrasensible en algoritmos diagnósticos prehospitalarios podría optimizar la toma de decisiones en fases iniciales, minimizando retrasos en el tratamiento y mejorando potencialmente el pronóstico de estos pacientes. Considerando que la determinación de troponina a pie de cama está disponible, sería deseable avanzar hacia su integración sistemática como herramienta clave en la evaluación prehospitalaria del dolor torácico, sustentada ahora en una evidencia emergente que aporta solidez a su uso en el primer contacto con el paciente. Por último, sería interesante evaluar el impacto coste-efectividad de implementar de forma sistemática esta estrategia diagnóstica prehospitalaria, especialmente en entornos con recursos limitados o en zonas rurales donde el acceso a servicios especializados puede verse retrasado, agilizando el manejo.

CONCLUSIONES

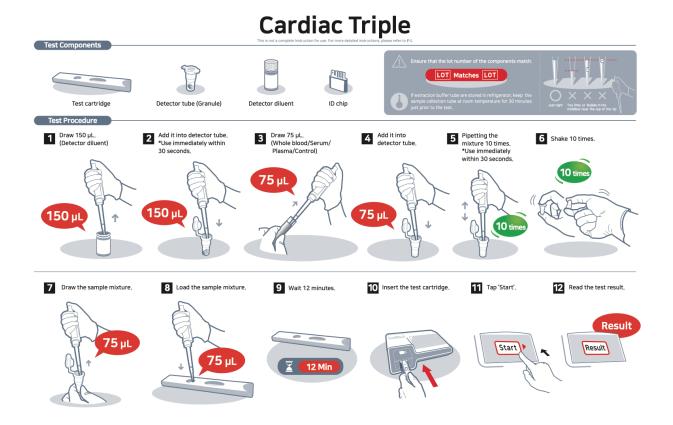
La troponina I ultrasensible determinada en el ámbito prehospitalario ha demostrado tener una excelente capacidad para discriminar en los pacientes con dolor torácico no traumático la presencia de SCASEST (AUC 0,916) con una elevada sensibilidad (92,8%). Se ha establecido un punto de corte de 1,09 ng/mL para la técnica empleada en el estudio que proporciona el mejor ajuste entre sensibilidad y especificidad.

La determinación de la troponina I ultrasensible, a pie de cama, podría mejorar significativamente la toma de decisiones y el manejo de los pacientes con dolor torácico no traumático en la fase hiperaguda del evento.

La prevalencia de SCASEST entre los pacientes con dolor torácico no traumático atendidos por los servicios médicos de emergencia ha sido del 13.6%, presentando una edad media de 75 años, con un predominio del género masculino y con una alta comorbilidad. El 46,4% de los pacientes con SCASEST no presentaron alteraciones electrocardiográficas en el primer electrocardiograma realizado en la asistencia inicial al paciente. La mortalidad intrahospitalaria de estos pacientes fue del 7,1%.

BIBLIOGRAFÍA

 Albacete Armenteros G, Barrios Recio A, Leal Hernández M, Abellán Alemán J. Valoración del dolor torácico en pacientes que acuden de forma urgente a atención primaria. Atención Primaria 2021;53:102145.


- 2. Navea Carrasco OG, Tapia V, Miguel A, Maluenda F. Estratificación de riesgo del dolor torácico en el servicio de urgencia. ARS med 2023;48:48-61.
- 3. Six AJ, Cullen L, Backus BE, Greenslade J, Parsonage W, Aldous S, et al. The HEART score for the assessment of patients with chest pain in the emergency department: a multinational validation study. Crit Pathw Cardiol 2013;Sep;12(3):121-6.
- 4. Jernberg T, Lindahl B, Wallentin L. The combination of a continuous 12-lead ECG and troponin T; a valuable tool for risk stratification during the first 6 hours in patients with chest pain and a non-diagnostic ECG. Eur Heart J 2000;Sep;21(17):1464-72.
- Domínguez-Hernández M, Corona-de-los-Santos C, Adalid-Arellano D, López-Pelcastre L. Sensibilidad y especificidad de ZAP Tnl/Mio vs Triage Cardiac para el diagnóstico de infarto agudo de miocardio. Med Int Méx. 2016 mar;32(2):201-208.
- 6. Westwood M, Ramaekers B, Grimm S, Worthy G, Fayter D, Armstrong N, et al. High-sensitivity troponin assays for early rule-out of acute myocardial infarction in people with acute chest pain: a systematic review and economic evaluation. Health Technol Assess 2021;25:1-276.
- 7. Laugaudin G, Kuster N, Petiton A, Leclercq F, Gervasoni R, Macia JC, et al. Kinetics of high-sensitivity cardiac troponin T and I differ in patients with ST-segment elevation myocardial infarction treated by primary coronary intervention. European Heart Journal: Acute Cardiovascular Care 2016;5:354-63.
- 8. Reichlin T, Schindler C, Drexler B, Twerenbold R, Reiter M, Zellweger C, et al. One-Hour Rule-out and Rule-in of Acute Myocardial Infarction Using High-Sensitivity Cardiac Troponin T. ARCH INTERN MED 2012;172.
- Bruins Slot MHE, Van Der Heijden GJMG, Stelpstra SD, Hoes AW, Rutten FH. Point-of-care tests in suspected acute myocardial infarction: A systematic review. International Journal of Cardiology 2013;168:5355-62.
- 10. Svensson L, Axelsson C, Nordlander R, Herlitz J. Elevation of biochemical markers for myocardial damage prior to hospital admission in patients with acute chest pain or other symptoms raising suspicion of acute coronary syndrome. Journal of Internal Medicine 2003;253:311-9.
- 11. Rasmussen MB, Stengaard C, Sørensen JT, Riddervold IS, Hansen TM, Giebner M, et al. Predictive value of routine point-of-care cardiac troponin T measurement for prehospital diagnosis and risk-stratification in patients with suspected acute myocardial infarction. European Heart Journal: Acute Cardiovascular Care 2019;8:299-308.
- 12. Stengaard C, Sørensen JT, Ladefoged SA, Christensen EF, Lassen JF, Bøtker HE, et al. Quantitative Point-of-Care Troponin T Measurement for Diagnosis and Prognosis in Patients With a Suspected Acute Myocardial Infarction. The American Journal of Cardiology 2013;112:1361-6.
- 13. Sorensen JT, Terkelsen CJ, Steengaard C, Lassen JF, Trautner S, Christensen EF, et al. Prehospital troponin T testing in the diagnosis and triage of patients with suspected acute myocardial infarction. Am J Cardiol 2011;107:1436-40.

- 14. Camaro C, Aarts GWA, Adang EMM, Van Hout R, Brok G, Hoare A, et al. Rule-out of non-ST-segment elevation acute coronary syndrome by a single, pre-hospital troponin measurement: a randomized trial. European Heart Journal 2023;44:1705-14.
- 15. Dawson LP, Nehme E, Nehme Z, Zomer E, Bloom J, Cox S, et al. Chest Pain Management Using Prehospital Point-of-Care Troponin and Paramedic Risk Assessment. JAMA Intern Med 2023;183:203.
- 16. Boeddinghaus J, Nestelberger T, Koechlin L, Wussler D, Lopez-Ayala P, Walter JE, et al. Early Diagnosis of Myocardial Infarction With Point-of-Care High-Sensitivity Cardiac Troponin I. Journal of the American College of Cardiology 2020;75:1111-24.
- 17. Pavlovsky T, Obadia M, Ragot S, Douay B, Casalino E, Ghazali DA. Predictors of Risk Stratification and Value of Point-of-Care of High-Sensitivity Cardiac Troponin-I in EMS Management of Non-ST-Segment Elevation Myocardial Infarction: A Retrospective Study. Prehospital and Disaster Medicine 2022;37:365-72.
- 18. Alghamdi A, Alotaibi A, Alharbi M, Reynard C, Body R. Diagnostic Performance of Prehospital Point-of-Care Troponin Tests to Rule Out Acute Myocardial Infarction: A Systematic Review. Prehosp. Disaster med. 2020;35:567-73.
- 19. Degano IR, Elosua R, Marrugat J. Epidemiologia del sindrome coronario agudo en España: estimación del número de casos y la tendencia de 2005 a 2049. Rev Esp Cardiol 2013;66:472-81.
- 20. Amsterdam EA, Kirk DG, Bluemke DA, Diercks D, Farkouh ME, Garvey JL. Testing of low-risk patients presenting to the emergency department with chest pain. A scientific statement of the American Heart Association. Circulation 2010;122:1756-76.
- 21. L GCR, E RM, A LO, T GC, C GC, F EG. Características y manejo de los pacientes con dolor torácico no traumático en los servicios de urgencias hospitalarios. Resultados del estudio EVICURE II. Emergencias 2008;20:391-8.
- 22. Khera S, Kolte D, Aronow WS, Palaniswamy C, Subramanian KS, Hashim T, et al. Non-ST-elevation myocardial infarction in the United States: contemporary trends in incidence, utilization of the early invasive strategy, and in-hospital outcomes. J Am Heart Assoc 2014;
- 23. Scott G, Clawson JJ, Gardett I, Broadbent M, Williams N, Fivaz C, et al. 9-1-1 Triage of Non-Traumatic Chest Pain: Association with Hospital Diagnosis. Prehospital Emergency Care 2017;21:525-34.
- 24. Manzo-Silberman S, Assez N, Vivien B, Tazarourte K, Mokni T, Bounes V, et al. Management of non-traumatic chest pain by the French Emergency Medical System: Insights from the DOLORES registry. Arch Cardiovasc Dis 2015;Mar;108(3):181-8.
- 25. Yan N, Wei L, Li Z, Song Y. Establishment of a nomogram model for acute chest pain triage in the chest pain center. Front. Cardiovasc. Med. 2023;10:930839.
- 26. Sagel D, Vlaar PJ, Van Roosmalen R, Waardenburg I, Nieuwland W, Lettinga R, et al. Prehospital risk stratification in patients with chest pain. Emerg Med J 2021;38:814-9.
- 27. Palomeque CF, Mollar JCC, Aguilar JC. Guías de práctica clínica de la Sociedad Española de Cardiología en la angina estable. 53.

- 29. Byrne RA, Rossello X, Coughlan JJ, Barbato E, Berry C, Chieffo A, et al. 2023 ESC Guidelines for the management of acute coronary syndromes. European Heart Journal 2023;44:3720-826.
- 30. Herrada L. ROL DEL SISTEMA PREHOSPITALARIO EN EL MANEJO DEL SINDROME CORONARIO. Revista Médica Clínica Las Condes 2017;28:267-72.
- 31. Khan IA, Karim HMR, Panda CK, Ahmed G, Nayak S. Atypical Presentations of Myocardial Infarction: A Systematic Review of Case Reports. Cureus [Internet] 2023 [citado 2025 abr 18]; Available from: https://www.cureus.com/articles/137217-atypical-presentations-of-myocardial-infarction-a-systematic-review-of-case-reports
- 32. Cabrerizo-García JL, Gimeno-Orna JA, Zalba-Etayo B, Pérez-Calvo JI. La hiperglucemia como factor de mal pronóstico en el síndrome coronario agudo. Revista Clínica Española 2011;211:275-82.
- 33. García GM. Hyperglycemia as a prognostic factor for in-hospital complications in ST segment elevation acute myocardial infarction. [revista en Internet]. 2019 [citado 18 Abr 2025]; 11 (2) . Disponible en: https://revcorsalud.sld.cu/index.php/cors/article/view/347 2018;11:9.
- 34. Kohn MA, Kwan E, Gupta M, Tabas JA. Prevalence of acute myocardial infarction and other serious diagnoses in patients presenting to an urban emergency department with chest pain. The Journal of Emergency Medicine 2005;29:383-90.
- 35. Barrabés JA, Bardají A, Jiménez-Candil J. Prognosis and management of acute coronary syndrome in Spain in 2012: the DIOCLES study. Rev Esp Cardiol 2015;Feb;68(2):98-106.
- Dongen DN, EA B, MJ F, RT T, Sluis A, RJ S, et al. Pre-hospital versus hospital acquired HEART score for risk classification of suspected non ST-elevation acute coronary syndrome. Eur J Cardiovasc Nurs 2021;Feb 11;20(1):40-47.
- 37. Stopyra JP, Snavely AC, Scheidler JF, Smith LM, Nelson RD, Winslow JE, et al. Point-of-Care Troponin Testing during Ambulance Transport to Detect Acute Myocardial Infarction. Prehospital Emergency Care 2020;24:751-9.
- 38. Serio F, R L, M L, Sario R, V R, L V, et al. Integration between the tele-cardiology unit and the central laboratory: methodological and clinical evaluation of point-of-care testing cardiac marker in the ambulance. Clin Chem Lab Med 2006;44:768-73.
- 39. Ezekowitz JA, Welsh RC, Weiss D, Chan M, Keeble W, Khadour F, et al. Providing Rapid Out of Hospital Acute Cardiovascular Treatment 4. :4.
- 40. Alquézar-Arbé A, Sanchís J, Guillén E, Bardají A, Miró Ò, Ordóñez-Llanos J. Cardiac troponin measurement and interpretation in the diagnosis of acute myocardial infarction in the emergency department: a consensus statement. Emergencias 2018;Oct;30(5):336-349.
- 41. Tate B, DM C, RH B, JH K, A N, JE S, et al. IFCC Working Group on Standardization of Cardiac Troponin I. Evaluation of standardization capability of current cardiac troponin I assays by a correlation study: results of an IFCC pilot project. Clin Chem Lab Med 2015;Apr;53(5):677-90.
- 42. Schuchert A, Hamm C, Scholz J, Klimmeck S, Goldmann B, Meinertz T. Prehospital testing for troponin T in patients with suspected acute myocardial infarction. American Heart Journal 1999;138:45-8.

ANEXOS

Anexo I. Procedimiento de determinación de cTnl.

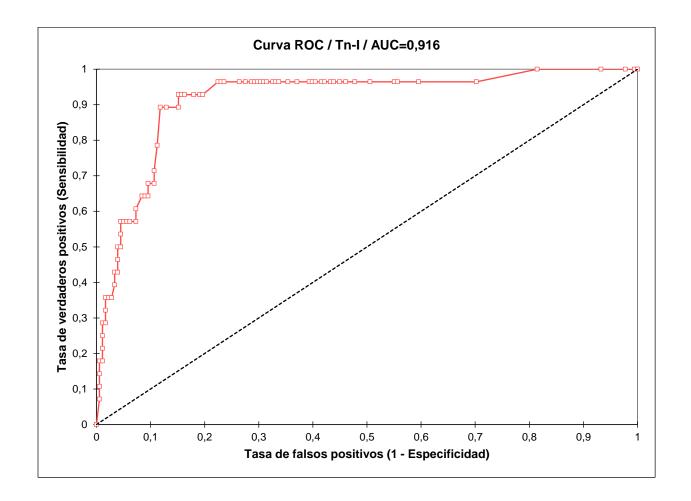
Anexo III. Tablas y figuras.

Tabla 2. Diagnósticos de los pacientes.

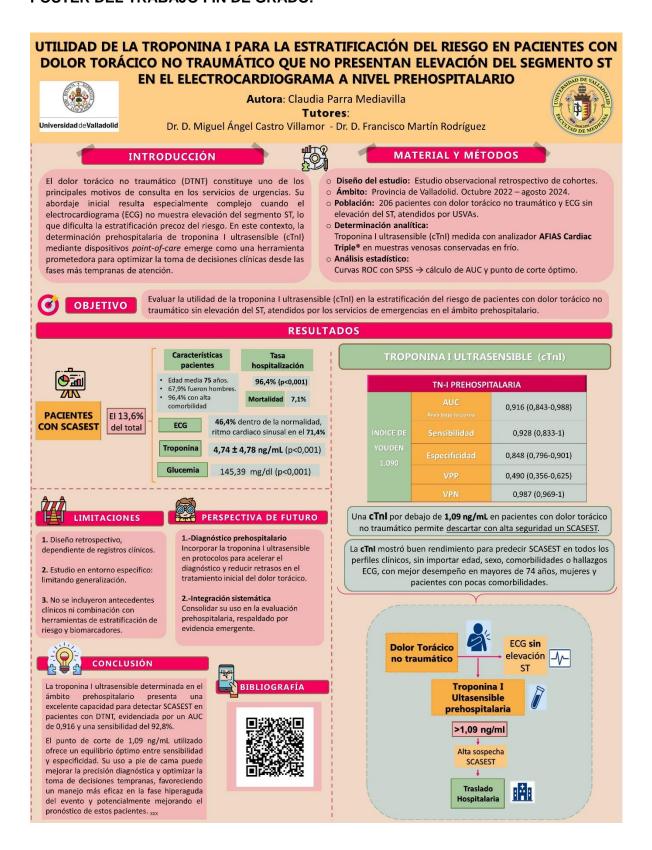
	Total	No SCASEST	SCASEST	p-valor
Número, n (%)	206	178 (86,4%)	28 (13,6%)	
Segundo diagnóstico prehospitario, n (%)	37 (18%)			0,172
Crisis de ansiedad	13 (6,3%)	12 (6,7%)	1 (3,6%)	
Síndrome febril – infección respiratoria	8 (3,9%)	6 (3,4%)	2 (7,1%)	
Síncope	5 (2,4%)	2 (1,1%)	3 (10,7%)	
Dolor abdominal	4 (1,9%)	4 (2,2%)	0 (0%)	
Enfermedad renal crónica	3 (1,5%)	2 (1,1%)	1 (3,6%)	
Disnea	2 (1%)	2 (1,1%)	0 (0%)	
Intoxicación	2 (1%)	2 (1,1%)	0 (0%)	

Tabla 3. Medidas terapéuticas y asistenciales.

	Total	No SCASEST	SCASEST	p-valor
Número, n (%)	206	178 (86,4%)	28 (13,6%)	
Oxigenoterapia, n (%)				
Gafas nasales/Mascarilla tipo Venturi	7 (3,4%)	3 (1,7%)	4 (14,3%)	0,007
Nº fármacos administrados, (media ± DS)	1,25 ± 1,29	1,15 ± 1,21	1,93 ± 1,58	0,001
Nº de fármacos, n (%)				0,005
0	76 (36,9%)	69 (38,8%)	7 (25%)	
1	54 (26,2%)	49 (27,5%)	5 (17,9%)	
2	45 (21,8%)	39 (21,9%)	6 (21,4%)	
3	13 (6,3%)	8 (4,5%)	5 (17,9%)	
4	15 (7,3%)	12 (6,7%)	3 (10,7%)	
5	3 (1,5%)	1 (0,6%)	2 (7,1%)	
Medicación prehospitalaria, n (%)				
AAS	51 (24,8%)	39 (21,9%)	12 (42,9%)	0,031
Clopidogrel	16 (7,8%)	10 (5,6%)	6 (21,4%)	0,011
Ticaglelor	15 (7,3%)	12 (6,7%)	3 (10,7%)	0,463
Nitroglicerina	63 (30,3%)	51 (28,7%)	12 (42,9%)	0,184
Mórfico (Morfina, meperidina o fentanilo)	16 (7,8%)	13 (7,3%)	3 (10,7%)	0,374
Antiemético (ondasetron, metoclopramida)	16 (7,8%)	11 (6,2%)	5 (17,9%)	0,048
Betabloqueante	3 (1,5%)	2 (1,1%)	1 (3,6%)	0,356
Paracetamol	11 (5,3%)	9 (5,1%)	2 (7,1%)	0,649
AINE	4 (1,9%)	4 (2,2%)	0 (0%)	0,555
Otros	12 (5,8%)	10 (5,6%)	2 (7,1%)	0,669
Doble antiagregación, n (%)	31 (15%)	22 (12,4%)	9 (32,1%)	0,011


Tabla 4. Datos analíticos.

	Total	No SCASEST	SCASEST	p-valor
Número, (media ± DS)	206	178 (86,4%)	28 (13,6%)	
Hematocrito (%)	$39,95 \pm 5,59$	40,13 ± 5,45	38,84 ± 6,41	0,129
Hemoglobina (g/dL)	13,30 ± 1,94	13,35 ± 1,90	12,97 ± 2,19	0,168
Leucocitos (x10 ⁹ /L)	$8,03 \pm 2,83$	8,14 ± 2,84	$7,36 \pm 2,76$	0,089
Plaquetas (x10 ⁹ /L)	214,99 ± 70,54	215,40 ± 69,27	212,39 ± 79,47	0,417
Sodio (mEq/L)	138,20 ± 3,17	$138,36 \pm 2,94$	137,18 ± 3,36	0,027
Potasio (mEq/L)	$4,11 \pm 0,49$	4,11 ± 0,46	4,13 ± 0,67	0,414
Glucosa (mg/dL)	122,79 ± 0,78	119,24 ± 35,93	145,39 ± 49,48	<0,001
Creatinina (mg/dL)	$1,05 \pm 0,78$	$1,04 \pm 0,78$	1,15 ± 0,79	0,245
INR	1,15 ± 0,50	1,14 ± 0,46	1,12 ± 0,87	0,136
Troponina I (ng/mL)	1,21 ± 2,68	0,65 ± 1,59	4,74 ± 4,78	<0,001


Tabla 6. Distribución de cTnl

_	Total	No SCASEST	SCASEST	p-valor
Total	1,21 ± 2,68	0,65 ± 1,59	4,74 ± 4,78	<0,001
Edad				0,155
18-49	1,10 ± 3,19	1,10 ± 3,19	-	
50-74	0,88 ± 1,88	$0,49 \pm 0,93$	3,16 ± 3,72	
≥ 75	1,66 ± 3,21	0,66 ± 1,02	6,31 ± 5,33	
Sexo				0,383
Hombre	1,16 ± 2,42	0,61 ± 1,31	4,04 ± 4,27	
Mujer	1,27 ± 3,01	0,71 ± 1,91	6,14 ± 5,74	
Índice de comorbilidad de Charlson				0,396
Ausencia (0-1 punto)	1,05 ± 3,00	1,05 ± 3,00	-	
Baja (2 puntos)	0.34 ± 0.52	$0,17 \pm 0,14$	1,98 ± 0,00	
Alta (≥ 3 puntos)	1,32 ± 2,70	0,59 ± 1,02	$4,84 \pm 4,84$	
Hallazgos electrocardiográficos				<0,001
Normal	0,70 ± 1,57	$0,48 \pm 0,83$	3,15 ± 4,13	
Ondas T negativa	1,73 ± 2,44	0,45 ± 0,12	4,08 ± 2,93	
Descenso ST	4,11 ± 5,61	0,64 ± 0,51	9,89 ± 5,45	
Ondas T picudas	3,35 ± 5,03	3,34 ± 5,46	3,39 ± 3,11	
Onda Q	1,14 ± 0,00	-	1,14 ± 0,00	

Figura 1. AUC de la capacidad predictiva de Troponina I para el diagnóstico de SCASEST.

PÓSTER DEL TRABAJO FIN DE GRADO.

