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Introducción

El objetivo principal de este Trabajo de Fin de Grado es estudiar las propiedades del tritio en

forma atómica en la aleación líquida Li-Pb a diferentes condiciones termodinámicas de interés

tecnológico. El estudio está enfocado en averiguar si el uso de la aleación Li-Pb como breeding

blanket en los reactores nucleares es provechoso en cuanto a la obtención de tritio y su poste-

rior transporte y extracción (puesto que no abunda en la naturaleza y su obtención es costosa).

Estos reactores de fusión son aquellos en los que el plasma se confina mediante campos magné-

ticos (ITER, DEMO, etc). Las predicciones realizadas se han basado en el uso de un potencial

interatómico construido con redes neuronales entrenadas a partir de datos obtenidos mediante si-

mulaciones cuánticas basadas en la Teoría del Funcional de la Densidad. Se han obtenido distintos

valores del coeficiente de difusión del tritio a diversas densidades y temperaturas. La variación del

coeficiente de difusión con la temperatura y la densidad se ha ajustado a dos expresiones diferentes

con precisión similar, y se han analizado qué consecuencias tienen esos resultados.
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Abstract

The main objective of this Final Degree Project is to study the properties of tritium in atomic

form in the Li-Pb liquid alloy at different thermodynamic conditions of interest. atomic form in the

liquid Li-Pb alloy at different thermodynamic conditions of technological interest. technological

interest. The study is focused on finding out if the use of Li-Pb alloy as breeding blanket in nuclear

reactors is beneficial in terms of obtaining tritium and its subsequent transport and extraction

(as the Li-Pb alloy is used as a breeding blanket in nuclear reactors). The study is focused on

whether the use of Li-Pb alloy as a breeding blanket in nuclear reactors is beneficial in terms of

obtaining tritium and its subsequent transport and extraction (since it is not abundant in nature and

is expensive to obtain). These fusion reactors are those in which the plasma is confined by magnetic

fields (ITER, DEMO, etc.). The predictions made have been based on the use of an interatomic

potential constructed with neural networks. interatomic potential constructed with neural networks

trained from data obtained by quantum simulations based on Tehran’s The predictions have been

based on the use of an interatomic potential built with neural networks trained from data obtained

by quantum simulations based on the Density Functional Theory. Different values of the diffusion

coefficient of tritium values of the diffusion coefficient of tritium have been obtained at various

densities and temperatures. The variation of the The variation of the diffusion coefficient with

temperature and density has been fitted to two different expressions with similar accuracy, and

analysed with similar accuracy, and the consequences of these results have been analysed.
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Capítulo 1

Motivación

En las últimas décadas, la fusión nuclear ha emergido como una de las áreas de investigación

más relevantes, impulsada por la necesidad de desarrollar fuentes de energía limpias, seguras y

sostenibles. El principal objetivo de la investigación en fusión nuclear es superar los desafíos

técnicos asociados con la viabilidad de operar reactores de fusión de manera continua. Muchos

de estos esfuerzos se centran en el desarrollo de materiales avanzados que permitan mantener la

estabilidad del plasma, asegurar la integridad estructural del reactor y gestionar eficientemente los

subproductos radiactivos.

La fusión nuclear es un proceso mediante el cual núcleos ligeros se combinan para liberar

grandes cantidades de energía, replicando las reacciones que ocurren de forma natural en el Sol. .

Actualmente, la obtención de energía eléctrica a partir de procesos nucleares se realiza a través de

la fisión nuclear, pero la fusión presenta importantes ventajas, como una menor generación de re-

siduos radiactivos de larga duración y el uso de materias primas abundantes, como el deuterio. Sin

embargo, la fusión también presenta desafíos técnicos, como la escasez de tritio en la naturaleza.

Una cuestión muy importante desde el punto de vista tecnológico es la elección de los materiales

a utilizar en los reactores de fusión, especialmente aquellos que se encuentran cerca del plasma,

dado que están sometidos a condiciones extremas de irradiación neutrónica de alta energía. En

este contexto, la aleación de litio-plomo (Li-Pb) ha captado la atención de la comunidad científica

debido a sus propiedades únicas, que la convierten en una candidata ideal para su uso en la capa

regeneradora de reactores de fusión por confinamiento magnético. Esta aleación ofrece ventajas

clave, como su capacidad para actuar como refrigerante, multiplicador de neutrones y regenerador

de tritio. Además de que se trata de un material resistente a la corrosión y con buena conductividad

térmica.

Entre las diversas reacciones de fusión posibles, la más prometedora en términos de viabilidad
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es la fusión de isótopos del hidrógeno, como el deuterio y el tritio. Esto se debe simplemente a

que la reacción más accesible es la fusión de un núcleo de deuterio con uno de tritio dando lugar

a un núcleo de helio y un neutrón de alta energía:

2
1H +3

1 H −→4
2 He +1

0 n (1.1)

Evidentemente para que esto sea posible es necesario disponer tanto de deuterio como de tritio.

El primero (2
1H), se encuentra fácilmente en la naturaleza, pero el tritio (3

1H) no se obtiene de forma

tan sencilla. Es un elemento radioactivo con periodo de semi-desintegración de aproximadamente

unos 12,3 años, y que además solo se puede encontrar de forma natural en algunas capas altas

de la atmósfera. Por ello, la aleación Li-Pb es de gran interés ya que el Li reacciona con los

neutrones energéticos resultantes de la reacción de fusión dando lugar a tritio, lo que la convierte

en un material prometedor para su uso en la capa regeneradora, también conocida como “breeding

blanket”.

El “breeding blanket” es una parte esencial de un reactor nuclear autosuficiente ya que desem-

peña múltiples funciones, entre las que se incluyen la refrigeración a partir de la captura de los

neutrones de alta energía resultantes de la reacción de fusión transformando su energía cinética

en energía térmica así como la regeneración de tritio. El mayor proyecto de reactor de fusión del

mundo es el ITER (International Thermonuclear Experimental Reactor) [1], solo utilizará el blan-

ket con fines tanto de captura y transmisión de energía (normalmente en forma de calor), como

de protección frente al bombardeo de neutrones y radiación liberada, pero no para la regeneración

de tritio, ya que no se plantea su uso como un reactor autosuficiente. Sin embargo, actualmente se

está trabajando en un nuevo proyecto denominado DEMO [2], en el que se le añadirá este nuevo

uso al blanket para pasar a ser un “breeding blanket”. La clave de este proceso es el isótopo 6 del

litio (Li-6) que, al ser impactado por neutrones, se fisiona produciendo tritio y helio.

Este trabajo de fin de grado se centra en el estudio de la aleación de litio-plomo como material

para el “breeding blanket”, evaluando su viabilidad mediante simulaciones a diferentes densidades

y temperaturas, estudiando la difusión del tritio en su interior.

Dado que los métodos tradicionales de simulación no proporcionan la precisión necesaria,

se ha optado por entrenar un potencial utilizando técnicas de aprendizaje automático (Machine

Learning), basado en datos obtenidos mediante la Teoría del Funcional de la Densidad (DFT). Este

enfoque permite realizar simulaciones con alta precisión y menor coste computacional, facilitando

el estudio de la difusión del tritio en la aleación. Este trabajo continúa la línea de investigación
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iniciada por estudios previos [3, 4] y busca contribuir al conocimiento sobre el comportamiento

de esta aleación en condiciones extremas, avanzando en el desarrollo de materiales clave para la

fusión nuclear.
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Capítulo 2

Metodología

2.1. Teoría del Funcional de la Densidad

En este apartado se dará una breve introducción a la Density functional theory (DFT), la cual

se ha utilizado para crear los datos de referencia para entrenar el potencial utilizado en este trabajo.

A la hora de realizar el estudio, se descartó, en primer lugar, hacerlo con potenciales tradi-

cionales, esto es debido a que este método no explica con exactitud muchas de las interacciones

entre partículas que tienen lugar, por lo tanto no es preciso. Entonces el siguiente método sería En

el otro extremo se observa la Density functional theory (DFT), muy útil cuando se tiene decenas

o incluso cientos de átomos por su gran precisión y fiabilidad. Esto método fue utilizado por J.

Martín Dalmas en su Trabajo de Fin de Grado [3]. Por otra parte, esta opción tiene un defecto y

es el siguiente: cuando se tienen muchas partículas, el tiempo de cálculo requerido para este mé-

todo asciende de manera cúbica, es decir, si se multiplica por 10 el número de átomos, el tiempo

de computación y la complejidad aumentan en un factor 103. Esto hace que para es estudio que

ese quiere llevar a cabo con las proporciones Li15,7Pb84,3, y un número de partículas utilizadas de

aproximadamente 30000, el método DFT sea inabordable. Además de que para caracterizar mejor

las propiedades de difusión del tritio se le añadirá éste de manera muy diluida. Esto hará que se

eleve aún más el número de partículas utilizadas, así como la extensión temporal de las simula-

ciones, lo cual es necesario para que aunque el tritio se encuentre en proporciones muy bajas, se

puedan estudiar sus propiedades con una buena estadística y con la menos incertidumbre posible.

Entonces se llega a la conclusión de que se necesita un método con la misma precisión que

el DFT pero que tenga un coste computacional mucho menor para agilizar el proceso y que el

tiempo de ejecución sea aceptable. La solución la se encuentra en el Machine Learning (ML). A
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partir de los datos obtenidos con DFT por J. Martín Dalmas [3] para una aleación litio-plomo con

un 20 % de átomos de tritio, y otras simulaciones DFT similares se entrenó un potencial con redes

neuronales que reproduzca las mismas fuerzas interatómicas y energía potencial que las obtenidas

mediante DFT. Esto es provechoso debido a que se consigue un potencial similar a los potenciales

interatómicos tradicionales, es decir, que su complejidad y tiempo de computación incrementan

de forma lineal con respecto al número de átomos, pero teniendo una precisión similar a la que

se obtiene con DFT. Por lo tanto, se consigue rebajar notablemente el tiempo de computación

pero manteniendo la precisión en las medidas. De esta manera D. Ferreras [4] ha estudiado la

interacción del helio con la aleación líquida Li-Pb, que ha servido como precedente a este trabajo

en cuanto al manejo del ML. Se comentará con más detalle, tanto las características y problemas

de la DFT como las soluciones que proporciona el Machine Learning, en las secciones 2.1 y 2.2.

La DFT es un método ab initio (un término en latín que significa: primeros principios), tér-

mino que se emplea para referirse a que es un método de resolución de problemas que se basa

en ecuaciones fundamentales. Es uno de los métodos computacionales más empleados a la hora

de realizar simulaciones en las que se busque conocer la estructura de un material en su estado

fundamental. El origen de la teoría del funcional de la densidad se sitúa en una publicación de

Hohenberg y Kohn [5] en la que exponían dos teoremas fundamentales, y básicamente considera-

ban al sistema como un gas electrónico interactuante, el cual está sometido a un potencial externo.

En este caso la DFT consiste básicamente en resolver la ecuación de Schrödinger sin utilizar para

ello las funciones de onda multielectrónicas como magnitudes fundamentales (3Ne), como se hace

en otros métodos como el de Hartree-Fock (HF). En su lugar se utiliza la densidad electrónica n(r⃗).

Esta diferencia es fundamental a la hora de reducir los tiempos de computación. Mientras que con

HF se obtienen resultados excelentes para moléculas pequeñas, cuando se aumenta el número de

partículas, rápidamente el tiempo de computación requerido se hace insostenible. Sin embargo,

al emplear como magnitud fundamental n(r⃗) en vez de las funciones de onda se consigue que el

número de variables que son necesarias para el cálculo disminuya a 3 variables espaciales, por lo

tanto se reduce notablemente el tiempo de computación mencionado anteriormente.

La Teoría del Funcional de la Densidad (DFT, por sus siglas en inglés) es un método ab initio,

un término derivado del latín que significa .a partir de primeros principios". Este término se utiliza

para describir métodos que se basan en ecuaciones fundamentales para resolver problemas com-

plejos. La DFT es uno de los enfoques computacionales más utilizados para simular la estructura

de materiales en su estado fundamental.

El origen de la DFT se remonta a la publicación seminal de Hohenberg y Kohn, donde se

establecieron dos teoremas fundamentales. En su formulación, consideraron un sistema como un
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gas electrónico interactuante sometido a un potencial externo. A diferencia de otros métodos, como

el de Hartree-Fock (HF), que emplean funciones de onda multielectrónicas (3Ne) como magnitud

principal, la DFT se basa en la densidad electrónica n(r⃗) como variable fundamental.

Esta diferencia es crucial, ya que el uso de la densidad electrónica en lugar de las funciones de

onda multielectrónicas reduce significativamente el número de variables necesarias en los cálculos,

de 3Ne a solo tres variables espaciales. Este cambio resulta en una disminución sustancial del

tiempo de cómputo, lo que hace que la DFT sea particularmente eficiente para sistemas de gran

tamaño, mientras que métodos como Hartree-Fock, aunque precisos para moléculas pequeñas,

se vuelven ineficientes y computacionalmente costosos a medida que el número de partículas

aumenta.

La densidad electrónica [6] se define partiendo de la función de onda del sistema, ψ:

n(r⃗) = Ne

∫︂
|ψ(r⃗, r2⃗, ..., r⃗NE )|2dr⃗...dr⃗Ne (2.1)

Dado que los teoremas de Hohenberg y Kohn no proporcionaban expresiones explícitas para

algunos términos clave, el cálculo de la energía total del sistema se tornaba sumamente compleja.

Este desafío fue superado por Kohn y Sham [7], quienes desarrollaron un método que ahora lleva

sus nombres. Este método introdujo dos formulaciones fundamentales de la DFT: una que se basa

en dos teoremas esenciales y otra que detalla el enfoque más práctico empleado en aplicaciones

reales.

A continuación, se explicarán los dos teoremas fundamentales. El primero establece que la

energía total de un sistema de electrones en su estado fundamental es un funcional de la densidad

electrónica en dicho estado, n0,

E[ψ0] = E[n0] (2.2)

donde ψ0 es la función de onda del estado fundamental. Esto quiere decir que, para un sistema

dado, existe una única densidad electrónica que minimiza la energía total. El segundo teorema afir-

ma que esta densidad electrónica minimizante es la densidad del estado fundamental del sistema,

E[n0] ≤ E[n′] (2.3)

Esto por tanto es la prueba de que la información completa del sistema se puede obtener
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únicamente con la densidad electrónica y, por lo tanto, no se necesita obtener la función de onda.

El principal objetivo de la DFT es la búsqueda del funcional de energía que depende solamente de

la densidad electrónica. Este funcional de energía E(n) contiene toda la información del sistema.

La segunda formulación que propusieron Kohn y Sham es la más utilizada en la práctica para

realizar las simulaciones. Consiste en considerar un sistema ficticio de electrones no interactuantes

con la misma densidad n(r⃗) que el sistema real de interés. Esto nos va a permitir descomponer

la energía cinética del sistema en dos partes: una correspondiente a la energía cinética de los

electrones no interactuantes, y otra que contiene solamente los efectos de interacción. Esta energía

cinética de interacción, Tc, no tiene una forma general conocida, por lo que no puede calcularse

directamente y se suele incluir junto con otros efectos cuánticos Uxc, dando lugar al término de

interacción y correlación, Exc:

Exc = Tc + Uxc (2.4)

La expresión de la energía total del sistema, E[n(r⃗)] se puede escribir como suma de varios

términos,

E[n(r⃗)] = Ts[n] + Eext[n] + EH[n] + Exc[n] (2.5)

donde TS [n] es la energía cinética del sistema ficticio de electrones no interactuantes, Eext[n] la

energía de interacción de los electrones con los iones y EH[n] la energía electrostática de Hartree,

la cual viene dada por la siguiente expresión,

EH =
1
2

∫︂ ∫︂
dr⃗ds⃗

n(r⃗)n(s⃗)
|r⃗ − s⃗|

(2.6)

Kohn y Sham al llevar a cabo esta formulación demostraron que también se podía escribir ese

mismo sistema de partículas interactuantes como un sistema de partículas no interactuantes, las

cuales se moverán en un potencial externo efectivo vKS llamado potencial de Kohn y Sham. De

esta forma se consigue transformar un sistema de varios cuerpos interactuantes en un sistema de

partículas ficticias que no interactúan entre sí, pero que se mueven dentro del potencial efectivo

vKS el cual incluye todos los efectos producidos por las interacciones entre partículas.
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vKS =
∂E[n]
∂n(r⃗)

−
∂Ts[n]
∂n(r⃗)

=
∂Eext[n]
∂n(r⃗)

+
∂EH[n]
∂n(r⃗)

+
∂Exc[n]
∂n(r⃗)

(2.7)

El potencial de Kohn y Sham puede escribirse como una suma de términos,

vKS = +vext(r⃗) + vH(r⃗) + uxc(r⃗) (2.8)

donde vext es el potencial creado por los iones sobre los electrones, vH es el potencial de

Hartree, y uxc es el potencial debido a las interacciones cuánticas entre electrones.

Este sistema puede ser resuelto en términos de una sola partícula ϕi, dando lugar a soluciones

autoconsistentes de la ecuación de Schrödiger para partículas no interactuantes.

(︄
−
ℏ

2m
▽2 +vKS (r⃗)ψi(r⃗)

)︄
= ϵiψi(r⃗) (2.9)

La autoconsistencia es debido a que las soluciones phii vienen determinadas por el potencial

vKS y este a su vez depende implícitamente de los ψi a través de su relación con la densidad

electrónica,

n(r⃗) =
N∑︂
i

|ψi(r⃗)| (2.10)

Las ecuaciones (2.8), (2.9) y (2.10) son las ecuaciones de Kohn-Sham. Como vKS depende

explícitamente de la densidad electrónica n(r⃗), es con dichas ecuaciones con las que se va a resolver

el problema de forma autoconsistente .

El proceso de simulación mediante DFT sigue una serie de pasos. En primer lugar, se propone

una densidad electrónica inicial que se utiliza para determinar el potencial de Kohn-Sham (vKS ).

A partir de este potencial, como resultado de la ecuación 2.9 se obtienen los orbitales (ψi). Con

estos orbitales, a partir de la la ecuación 2.10 se calcula una nueva densidad electrónica. Si esta

nueva densidad no es consistente con la inicial, se adopta como nueva propuesta y el proceso se

repite iterativamente hasta alcanzar la convergencia de n(r⃗).

El principal desafío de este método radica en su elevado coste computacional, especialmente

para sistemas grandes que contienen miles de electrones. La resolución de las ecuaciones de Kohn-

Sham puede requerir horas de procesamiento y, si se desea estudiar la dinámica del sistema, este
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cálculo debe repetirse cada vez que los átomos se mueven. Esto hace que la DFT sea impracticable

para sistemas muy grandes, como es el caso del sistema liquido a estudiar en este TFG. Para

superar estas limitaciones, se ha recurrido al Machine Learning (ML) [MachingL], que optimiza

el proceso y reduce significativamente el tiempo de cómputo.

2.2. Machine Learning y creación de potenciales interatómicos

El Machine Learning (ML) forma parte de la inteligencia artificial (IA), concentrándose en

capacitar a las máquinas para aprender de los datos y mejorar con la experiencia. En este campo,

los algoritmos se entrenan para descubrir patrones y correlaciones dentro de extensos conjuntos

de datos, permitiéndoles tomar decisiones y hacer proyecciones basadas en análisis exhaustivos. A

medida que estas aplicaciones de machine learning se utilizan más y acceden a mayores cantidades

de datos, mejoran en precisión y efectividad.

En física de materiales el objetivo es conseguir información sobre ciertas propiedades, en este

caso de la aleación LiPb. Como se ha descrito antes, el DFT es una manera de obtener datos muy

precisa, pero cuyo coste computacional es demasiado elevado. Por este motivo es más sencillo

trabajar con modelos de potenciales interatómicos.

Los potenciales interatómicos parametrizan el sistema que se está midiendo, de forma que nos

proporcionan la energía potencial en función de las posiciones atómicas. Esta función se puede

representar como una superficie de energía potencial, Potential Energy Surface (PES) [8], cuya

dimensión será 3N, siendo N el número de átomos que componen el sólido. Una vez que se conoce

esta superficie se pueden obtener las fuerzas que afectan a cada átomo en cualquier configuración

atómica a través de : F⃗i = −
dE
dr⃗i

. En la creación se estos potenciales se supone la división de la

energía potencial en energías atómicas individuales, (
∑︁

i Ei = E) de manera que se expresen en

función solo de las posiciones de los átomos vecinos. Que solo se tenga en cuenta a los átomos

vecinos hace que la partición de energía solo sea válida para la interacción a corto alcance. Lo que

se consigue con esta partición es calcular más rápidamente la energía total porque permite calcular

las energías individuales de forma paralela mediante un procedimiento que escala linealmente con

el número de átomos N. Es un proceso muy rápido por lo que nos permite trabajar con sistemas

compuestos de millones de átomos.

Los potenciales interatómicos tradicionales tienen una importante base teórica puesto que na-

cen de la comprensión de la física que hay detrás de las interacciones atómicas que rigen el siste-

ma, lo que les confiere versatilidad, ya que se pueden extrapolar a valores fuera del rango utilizado
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para el ajuste del potencial. Sin embargo, los potenciales interatómicos tradicionales tienen va-

rios inconvenientes. Debido al numero de parametros ajustables (entorno a 10-20), su precisión

es limitada. Por otro lado, debido a su base física, las expresiones utilizadas para modelar el ma-

terial suelen servir para solo un tipo de interacción atómica, p.e. metálica, por lo que no pueden

emplearse cuando los sistemas que se están estudiando son complejos con distintos tipos de in-

teracciones, como es el caso del sistema Li-Pb con H. Estas limitaciones se pueden resolver al

utilizar potenciales interatómicos de ML.

La utilización del ML está enfocada en predecir las PES mediante la interpolación de los da-

tos de referencia, obtenidos a través de DFT. Los potenciales creados con ML también tienen en

cuenta tanto el corto alcance de las interacciones como la equipartición de la energía. Sin embar-

go, el número de parámetros ajustable para describir el potencial es mucho más elevado, lo cual

aumenta la precisión del potencial así la posibilidad de ajuste del potencial a sistemas complejos

con diversos tipos de interacción entre átomos. Un elemento importante durante la creación del

potencial interatómico con ML es la descripción de las posiciones atómicas del sistema de forma

correcta. Esta descripción se debe hacer en términos con la misma invariancia que la energía po-

tencial, que es la variable que se quiere predecir. Un término que no sería correcto utilizar sería

por ejemplo la posición de los átomos, porque no es invariante bajo traslaciones como sí lo es la

energía potencial. Las invarianzas a mantener son traslacional, rotacional y de permutación. Se

llaman descriptores aquellas funciones que representan el entorno atómico de cada átomo mante-

niendo las mismas invarianzas de la propiedad a predecir. La elección de los descriptores es muy

importante puesto que afectará al rendimiento y fiabilidad de las predicciones que nos proporcione

el modelo. En este trabajo se han utilizado unos descriptores de tipo gaussiano desarrollados por

Behler y Parrinello en 2007 [9] basados en funciones de simetría radial y angular. Los descriptores

gaussianos con simetría radial son de la siguiente manera :

Grad
i =

N∑︂
i≠ j

e−η(ri j−µ)2
fc(ri j) (2.11)

siendo η la anchura de la gaussiana, mu donde está centrada la gaussiana, ri j la distancia

interatómica, y fc(ri j) una función de corte dada por:

fc(ri j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
1
2

[︂
cos

(︂
πri j
rc

)︂]︂
, si ri j ≤ rc

0, si ri j > rc

(2.12)
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Donde rc es la distancia de corte, o lo que es lo mismo, la distancia hasta donde se tienen en

cuenta los vecinos a la hora de calcular los descriptores. Esta función introduce de manera efectiva

la interacción a corto alcance.

Por otro lado, los descriptores gaussianos angulares tienen la siguiente forma:

Gang
i = 21−ζ

N∑︂
i≠ j

N∑︂
k≠i, j

(1 − λcos(θi jk))ζe−η(ri j−µ)2
e−η(rik−µ)2

e−η(r jk−µ)2
fc(ri j) fc(rik) fc(r jk) (2.13)

Siendo θi jk el ángulo que forman los átomos i, j, k, y ζ controla la anchura del término angular.

El término λ es igual a ±1, y cambia el máximo del término angular entre 0º y 180º.

Dentro del Maching Learning hay diversos tipos de modelos de aprendizaje. Se han utilizado

en este caso las redes neuronales que son modelos que simulan de forma simplificada cómo el sis-

tema nervioso gestiona la información. El funcionamiento consiste en un gran número de unidades

de procesamiento interconectadas de forma que imitan a las neuronas de un cerebro. La neuronas

están divididas por capas, que se clasifican en 3 tipos: la capa de entrada donde las neuronas reci-

ben los datos de entrada, la capa de salida donde las neuronas generan una respuesta o propiedad

final y por último las capas ocultas que se encuentran entre las dos anteriormente mencionadas

y son las que nos proporcionan los parámetros de ajuste adicionales, es decir, las que mejoran el

modelo y lo vuelven más preciso.

Cada neurona tiene dos funciones dentro de su correspondiente capa, una multiplica por pesos

los datos que recibe de entrada y los suma (función lineal), y otra que será la encargada de generar

una señal de salida de esa neurona (función de activación). Esta última no es lineal por lo tanto

hace que las redes neuronales tampoco lo sean. Esta característica es muy importante a la hora

de que el algoritmo siga aprendiendo, porque le otorga una gran flexibilidad para enfrentarse y

aprender de los problemas. Como se ha mencionado, las neuronas conectan con pesos, lo que

quiere decir que estos son variables aleatorias que se van ajustando a medida que la red aprende

con el entrenamiento.

Dentro de las redes neuronales cabe destacar el importante papel que desempeña el sesgo, que

se añade al resto de datos que recibe cada neurona, a través del cual se puede ajustar el umbral de

activación de la neurona. De esta manera se podría activar la neurona y que se genere una salida

distinta de cero, incluso si todas sus entradas son nulas.

Se va a explicar a continuación en que consiste el funcionamiento de una red neuronal. La pri-
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mera capa de neuronas, la de entrada, recibe una cantidad de datos, los cuales van a ser procesados

por cada neurona (que va a realizar los pasos descritos anteriormente y procesa los datos), que

finalmente va a emitir una señal de salida. Estos datos de salida serán utilizados como datos de

entrada por la siguiente capa. Hasta que por último se llega a la capa de salida donde se obtendrán

los datos finales.

En el caso concreto del cálculo de la PES, la capa de salida que se ocupa de ello solo tiene una

neurona, correspondiente a la energía atómica. Cuanto más se entrena y repite el proceso, más se

ajusta la respuesta a los datos de entrada. En este caso la PES predicha (como suma de todas las

energías atómicas predichas) se va a ir ajustando mejor a las PES obtenidas por DFT.

En este trabajo se ha utilizado un software llamado SIMPLE-NN [10] para la creación y entre-

namiento de la red neuronal con 4 capas de 50 neuronas cada una. Las neuronas están conectadas

por completo, esto quiere decir que cada neurona de una capa está conectada con todas las de la

capa anterior y con todas las de la capa siguiente. Esta manera nos permite usar tensores para el

cálculo, y por tanto el uso de la GPU, lo cual hace que el tiempo de computación sea más pequeño.

La función de activación utilizada es la tangente hiperbólica. Para cada elemento se han utilizado

78 descriptores gaussianos, siendo 24 de tipo radial centrados en cero (o lo que es lo mismo, que

µ = 0), y 54 son de tipo angular, también centrados en cero. Se ha usado una distancia de cutoff

fc = 6, 0Å y como función error se ha utilizado:

ϵ =
1
M

M∑︂
i=1

(
Ei − EDFT

Ni
)2 +

τ1

M

M∑︂
i=1

3∑︂
α=1

[Fi
α − (Fi

α)DFT ]2 (2.14)

Siendo Ei y Fi
α las energías y las fuerzas atómicas predichas y Ei

DFT y (Fi
α)DFT las energías y

fuerzas atómicas de la base de datos de entrenamiento.

2.3. Dinámica molecular: Cálculos previos

Durante este estudio se han utilizado simulaciones de dinámica molecular, Molecular Dyna-

mics (MD), que durante las últimas décadas han sido desarrolladas hasta un punto en el que a día

de hoy se han convertido en una herramienta casi indispensable para estudiar el comportamien-

to de las diferentes propiedades de los materiales en función de la dinámica de sus átomos y la

interacción que hay entre ellos.
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En este trabajo de fin de grado, el software utilizado para realizar las simulaciones ha sido el

LAMMPS [11, 12] (Large-scale Atomic/Molecular Massively Parallel Simulator). Para realizar

las simulaciones antes se han de fijar unos parámetros que determinen las condiciones del sistema,

de forma que serán distintos en función de lo que se pretenda estudiar.

En primer lugar ha de fijarse el número de partículas N. En nuestro caso se han utilizado

30.000 átomos para la aleación repartidos en 4710 litio y 25290 de plomo (15,7 % de Li y 84,3 %

de Pb) más 5 tritios añadidos. En este trabajo los otros parámetros que se han ido modificando

han sido tanto la densidad de la aleación como la temperatura. En nuestro caso son 3 densidades,

ρ1, ρ2 y ρ3 (definidas en la Tabla 2.1) para las que se ha obtenido el coeficiente de difusión de los

tritios a 6 temperaturas, 750K, 800K, 850K, 900K, 950K y 1000K.

Estas condiciones termodinámicas están dentro del rango de valores que se espera que tenga

el breeding blanket durante el funcionamiento de un reactor de fusión.

Durante las simulaciones, la red neuronal proporciona la energía total del sistema así como las

fuerzas atómicas y estas son empleadas por el programa LAMMPS para mover los átomos a sus

nuevas posiciones tras un tiempo dt. Inicialmente los átomos se han dispuesto de forma aleatoria

en una caja de lado L.

Se han estudiado los sistemas anteriormente mencionados durante un total de 300.000 pasos

de tiempo de 1 fs, repartidos entre termalización y producción. Para que el número de átomos sea

constante se han aplicado condiciones de contorno periódicas tales que, si un átomo saliera de la

caja por una cara, estaría entrando por la contraria. En primer lugar se calcularon los lados L de la

caja para el número fijo de átomos y para cada una de las densidades. Esto lo se calcula de forma

sencilla, puesto que si se tiene una densidad fija y el número de átomos encerrados se deduce lo

siguiente:

ρ =
N
V
→ V =

N
ρ
→ V = L3 → L =

3√
V (2.15)

Por lo tanto, como las densidades son fijas los valores obtenidos son los siguientes:

De forma que una vez obtenida la dimensión de la caja se mantenga fija en todas las simula-

ciones correspondientes a la misma densidad aunque se realicen a distintas temperaturas.

Una vez que se obtiene esto se hará una termalización, o lo que es lo mismo, una Simulación

hecha con el número de partículas constante N, un volumen constante V y una temperatura cons-
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ρ (átomos · Å−3) L (Å)

0.0306129 99.333657

0.0319714 97.906305

0.0329897 96.888394

Tabla 2.1: Valores obtenidos de los lados de la caja utilizada en las simulaciones para cada densi-

dad

tante T (NVT). Con esto se consigue estabilizar la temperatura a la que se quiere trabajar en cada

caso. Se ha ejecutado dicha simulación durante 50.000 pasos de tiempo. Una vez obtenidos estos

datos, se ha realizado otra Simulación hecha con el número de partículas constante N, un volumen

constante V y una energía interna conservada E (NVE), en este caso fijando la energía en vez de la

temperatura, que es lo apropiado para estudiar la difusión como es nuestro caso. Para ello se han

ejecutado 250.000 pasos a partir de la última configuración de la termalización. Como resultado

de estas simulaciones se han obtenido las trayectorias de los átomos de tritio, con las cuales se han

calculado una serie de propiedades que se detallarán a continuación.

2.4. Propiedades dinámicas

Se denomina propiedades dinámicas a aquellas que describen el cambio del sistema a lo largo

del tiempo.

En este caso, el estudio de dichas propiedades se va a centrar en el coeficiente de difusión de

las diferentes situaciones a las que se expondrá la aleación.

Desplazamiento cuadrático medio

Se denomina coeficiente de difusión a la medida de la rapidez con la que se dispersan las par-

tículas en un fluido como consecuencia del movimiento térmico aleatorio y de los choques contra

el resto de partículas que conforman el sistema. Hay diferentes formas de calcular el coeficiente de

difusión a partir de los datos obtenidos en una simulación de dinámica molecular. En este estudio

se ha calculado utilizando la relación que tiene con el desplazamiento cuadrático medio. Se define

el desplazamiento cuadrático medio, R2(t), de la partícula i-ésima como:
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R2(t) = ⟨|r⃗i(t) − r⃗i(0)|2⟩ (2.16)

Por lo tanto R2(t) es una magnitud que mide la distancia promedio que recorre un átomo en un

intervalo de tiempo t. En un principio esta magnitud tiene un comportamiento cuadrático mientras

se comporta como una partícula libre, es decir para tiempos cortos en los que la partícula no ha

podido interactuar con otros átomos, pero después se comportará de manera lineal porque el átomo

entra en un período de comportamiento difusivo tras haber interactuado con muchos otros átomos.

De forma similar, aunque no la se ha utilizado en este trabajo, se puede definir la función de

correlación de velocidades Z(t) de la partícula i-ésima moviéndose a través de un fluido:

Z(t) =
1
3
⟨v⃗i(t)v⃗i(0)⟩ (2.17)

Se refiere a una medida de la proyección de la velocidad en el instante t, sobre la velocidad

que llevaba inicialmente, en t = 0. Si la función decae con rapidez, es que las partículas están poco

correlacionadas entre sí tras ese intervalo de tiempo. Por el contrario si la función decae de manera

más paulatina, eso implicaría una mayor persistencia en las correlaciones de la velocidad.

El valor para el instante inicial Z(t) = 0 se determina conforme al teorema de equipartición de

la energía:

Z(t = 0) =
1
3
⟨v⃗i(0)⟩2 =

kBT
m

(2.18)

Siendo inexistente la correlación con la velocidad inicial para velocidades a tiempos largos:

Z(t → ∞) = 0 (2.19)

Coeficiente de difusión

El coeficiente de difusión está relacionado con el desplazamiento cuadrático medio a través de

la relación de Einstein

D = lı́m
t→∞

1
6
⟨|r⃗i(t) − r⃗i(0)|2⟩

t
= lı́m

t→∞

1
6

R2(t)
t

(2.20)
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También es posible conectar R2(t) con la función de correlación Z(t) de la siguiente manera:

r⃗i(t) − r⃗i(0) =
∫︂ t

0
v⃗(t′)dt′ (2.21)

A continuación se debe elevar al cuadrado y promediar esta integral sobre todas las condiciones

iniciales, de manera que queden ambas magnitudes relacionadas con el coeficiente de difusión de

esta manera:

⟨|r⃗i(t) − r⃗i(0)|2⟩ =
∫︂ t

0
dt1

∫︂ t

0
dt2v⃗t2 v⃗t1 = 3

∫︂ t

0
dt1

∫︂ t

0
dt2Z(t2 − t1) (2.22)

Utilizándose las condiciones de simetría respecto a la inversión del tiempo y la invarianza bajo

traslaciones temporales.

= 6
∫︂ t

0
dt1

∫︂ t−t1

0
dt2Z(t2 − t1) = 6

∫︂ t

0
dτ

∫︂ t−τ

0
dt1Z(τ) = 6

∫︂ t

0
dτ(t − τ)Z(τ) (2.23)

Por último, se obtiene así la expresión que relaciona el coeficiente de difusión D con la función

de correlación de velocidades Z(t):

D =
∫︂ ∞

0
dtZ(t) (2.24)

En este trabajo el coeficiente de difusión de los átomos de tritio solamente se ha calculado a

través de la relación de Einstein.

En el sistema real los átomos de tritio son totalmente equivalentes y por tanto están todos ellos

caracterizados por un único coeficiente de difusión. Por el contrario en la simulación los átomos

de tritio individuales siguen cada uno su propia trayectoria dando lugar cada uno a un desplaza-

miento cuadrático medio y por tanto a un coeficiente de difusión. Por tanto para cada densidad

y temperatura se tienen 5 valores del coeficiente de difusión de tritio, cuya media y desviación

estándar se han tomado como estimaciones del coeficiente de difusión real y su incertidumbre

respectivamente.

La intención principal de este trabajo es ajustar los coeficientes de difusión obtenidos frente a

la temperatura a una expresión del tipo Arrhenius:
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D = Ae
B
T (2.25)

Una manera sencilla de llevarlo a cabo es convertirlo en una regresión lineal. Para ello se han

calculado 2 variables nuevas, y = Ln(D) y x = 1
T De esta manera se puede transformar la expresión

del tipo Arrhenius a un sencillo ajuste lineal:

D = Ae
B
T → Ln(D) = Ln(A) +

B
T
→ y = a + bx (2.26)

Siendo los nuevos coeficientes a = Ln(A) y b = B.

La fórmula de tipo Arrhenius se basa en considerar la difusión como un proceso caracterizado

por una energía de activación, Ea, de forma que el coeficiente de difusión es el producto de dos

factores, el primero relacionado con la frecuencia con la que el átomo intenta iniciar el proceso

de difusión, y el segundo relacionado con la probabilidad de que ese átomo tenga una energía

mayor o igual que la de activación. Este segundo término es proporcional al factor de Boltzmann,

exp[−Ea/(kBT )], dando finalmente lugar a la fórmula de Arrhenius.

Este modelo para la difusión es utilizado ampliamente en la literatura, pero no hay que olvidar

que se trata de un modelo, y su validez podría ser limitada. Pueden realizarse también otros tipos

de análisis de la variación del coeficiente de difusión con la temperatura. Por ejemplo, del análisis

de los resultados se han comprobado empíricamente que un ajuste lineal del coeficiente de difusión

frente a la temperatura también puede ser un tratamiento correcto:

D = a + bT (2.27)

Los coeficientes de los ajustes lineales (tanto en la fórmula de Arrhenius como en el modelo

lineal) se han calculado mediante un programa basado en el ajuste lineal a un conjunto de datos

con incertidumbres en las ordenadas, del cual se obtiene tanto la pendiente como la ordenada en

el origen de estos 2 tipos de ajuste. Con ello se obtendrán tres datos de a y tres datos de b, cada

uno para su correspondiente densidad.

En primer lugar, se define la función a minimizar como la suma pesada de los cuadrados de la

diferencias entre los resultados del ajuste según la recta, a + bxi, y los valores a ajustar, yi, siendo

los pesos los inversos de las varianzas, σ2
i , de los yi.
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S =
1
2

N∑︂
i=1

⎡⎢⎢⎢⎢⎣ 1
σ2

i

(a + bxi − yi)2
⎤⎥⎥⎥⎥⎦ (2.28)

Se tiene que buscar el valor de las incógnitas a y b que hacen mínima esta función, por tanto

se deben anular las derivadas parciales de S respecto a a y b:

∂S
∂a
=

N∑︂
i=1

⎡⎢⎢⎢⎢⎣ 1
σ2

i

(a + bxi − yi)2
⎤⎥⎥⎥⎥⎦ = a

⎛⎜⎜⎜⎜⎜⎜⎝ N∑︂
i=1

1
σ2

i

⎞⎟⎟⎟⎟⎟⎟⎠ + b

⎛⎜⎜⎜⎜⎜⎜⎝ N∑︂
i=1

xi

σ2
i

⎞⎟⎟⎟⎟⎟⎟⎠ −
⎛⎜⎜⎜⎜⎜⎜⎝ N∑︂

i=1

yi

σ2
i

⎞⎟⎟⎟⎟⎟⎟⎠ (2.29)

∂S
∂b
=

N∑︂
i=1

⎡⎢⎢⎢⎢⎣ 1
σ2

i

(a + bxi − yi)2
⎤⎥⎥⎥⎥⎦ = a

⎛⎜⎜⎜⎜⎜⎜⎝ N∑︂
i=1

xi

σ2
i

⎞⎟⎟⎟⎟⎟⎟⎠ + b

⎛⎜⎜⎜⎜⎜⎜⎝ N∑︂
i=1

x2
i

σ2
i

⎞⎟⎟⎟⎟⎟⎟⎠ −
⎛⎜⎜⎜⎜⎜⎜⎝ N∑︂

i=1

xiyi

σ2
i

⎞⎟⎟⎟⎟⎟⎟⎠ (2.30)

Por tanto, llamando:

Mmn =

N∑︂
i=1

xm
i yn

i

σ2
i

(2.31)

Nos queda el sistema de ecuaciones siguiente:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
aM00 + bM10 = M01

aM10 + bM20 = M11

(2.32)

Siendo un sistema 2x2 se puede resolver directamente:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
a = M01 M20−M10 M11

M00 M20−M2
10

b = M00 M11−M10 M01
M00 M20−M2

10

(2.33)

Por último se calculan las incertidumbres tanto de a como de b de la siguiente manera:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
△a = M20

M00 M20−M2
10

△b = M00
M00 M20−M2

10

(2.34)

Una vez obtenidos los coeficientes del ajuste para cada una de las densidades, el siguiente paso

será parametrizar la variación de los coeficientes con la densidad utilizando un ajuste lineal pesado

similar a los realizados anteriormente.
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a = α1 + β1ρ b = α2 + β2ρ (2.35)

De nuevo se obtendrán los valores de los coeficientes α1, β1, α2 y β2, de forma que se pueda

escribir un coeficiente de difusión genérico en función de la densidad y la temperatura. En primer

lugar con un ajuste siguiendo la ecuación de Arrhenius para la dependencia con la temperatura:

D(ρ,T ) = eα1+β1ρe
α2+β2ρ

T (2.36)

Y por último, se escribe la expresión en el caso del ajuste lineal entre el coeficiente de difusión

y la temperatura:

D(ρ,T ) = (α1 + β1ρ) + (α2 + β2ρ)T (2.37)
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Capítulo 3

Resultados y discusión

En este capítulo se expondrán los resultados obtenidos de las propiedades dinámicas para las

diferentes densidades y temperaturas descritas anteriormente

3.1. Propiedades dinámicas: coeficiente de difusión

3.1.1. Desplazamiento cuadrático medio: R2(t)

En primer lugar se han usado 2 programas para obtener los datos del desplazamiento cuadrá-

tico medio. Con el primero se han separado las configuraciones de los 30.005 átomos totales, en

ficheros con grupos de 2.000, o lo que es lo mismo en cada fichero guarda las trayectorias de 2.000

átomos (aunque el último fichero no llega a los 2.000 y es el que contiene los datos de los átomos

de tritio). Esta estrategia se sigue precisamente para no saturar la memoria RAM cuando se ejecute

el segundo programa. Este se aplica sobre cada fichero creado previamente. Este programa calcula

R2(t) utilizando la ecuación (2.16). Lo primero que hace el programa es leer las posiciones y velo-

cidades de los átomos que vienen dadas por las 250.000 configuraciones que se ha conseguido del

programa anterior. Una vez que lo ha leído se establece cuál es la configuración correspondiente

al instante inicial y cual al instante final. En este trabajo se ha elegido tomar configuraciones ini-

ciales cada configuración, y que calcule R2(t) durante 2.000 configuraciones, y por último haga

un promedio de estas funciones ya calculadas. Se considera que promediando un gran número de

funciones se hará mejor estadística, y por este motivo se ha procedido así.
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Después de aplicar este segundo programa a todos los ficheros y hacer una media de las fun-

ciones obtenidas para cada temperatura (en las 3 densidades estudiadas), dan lugar a los resultados

observados en la Figura 3.3.

A continuación, utilizando la expresión (2.20), se hace la derivada de estas funciones y se

divide entre 6. Para acabar, se ajusta a una recta horizontal la parte lineal de cada una, y de esa

forma se obtienen los coeficientes de difusión cuyos valores se encuentran en las Tablas 3.1, 3.2 y

3.3. Cómo se puede ver en la Figura 3.1a, hay distintos regímenes, el balístico a tiempos cortos y el

difusivo a tiempos largos (en este caso el que nos interesa). Además, en la Figura 3.1b, se observa

la derivada de las funciones anteriores, viendo que el comportamiento lineal de esta se encuentra

en el régimen de difusión, por lo tanto se tendrá en cuenta solo la región lineal de estas derivadas

para hacer un ajuste a una constante para obtener el coeficiente de difusión. En la figura 3.1c se ve

que para tiempos largos se puede ajustar el coeficiente de difusión a una recta horizontal, lo que

quiere decir que es un valor constante.

Se ha de tener en cuenta que la temperatura no es exactamente la planteada inicialmente, sino

la que realmente se ha obtenido en la simulación NVE, es decir, la media de las “temperaturas

instantaneas” obtenidas a partir de la energía cinética del sistema en cada una de las 250.000

configuraciones realizadas. En la primera densidad en la que se han realizado las simulaciones, se

han utilizado adicionalmente algunos datos existentes que aún no habían sido publicados (DNP)

[13] para realizar un mejor ajuste.

0 0,5 1 1,5 2
t / ps

0

5

10

15

20

25

30

R
²(

t)
 /

 Å
²

Tritio 1
Tritio 2
Tritio 3
Tritio 4
Tritio 5

(a) R2(t) frente al tiempo

0 0,3 0,6 0,9 1,2 1,5 1,8
t / ps

1

2

3

4

R
²(

t)
 /

 Å
²

Tritio 1
Tritio 2
Tritio 3
Tritio 4
Tritio 5

(b) Derivada de R2(t)

1 1,2 1,4 1,6

0

0,5

1

1,5

2

2,5 Difusión 1
Difusión 2
Difusión 3
Difusión 4
Difusión 5

1 1,2 1,4 1,6
t / ps

0

0,5

1

1,5

2

2,5

R
²(

t)
 /

 Å
²

Tritio 1
Tritio 2
Tritio 3
Tritio 4
Tritio 5

(c) Coeficiente de Difusión

Figura 3.1: Desplazamiento cuadrático medio de 5 Tritios con densidad ρ1 a 800K
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T/K D1 D2 D3 D4 D5 D

749 0.62 1.08 0.56 0.93 0.71 0.8 ± 0.2

796 1.40 0.99 1.79 1.39 1.23 1.4 ± 0.3

848 1.20 1.35 0.91 0.95 0.75 1.0 ± 0.2

897 2.73 1.76 1.48 2.03 1.99 2.0 ± 0.4

946 2.21 1.79 1.42 1.59 2.07 1.8 ± 0.3

996 2.11 2.42 2.60 3.64 1.68 2.5 ± 0.7

774 0.92 0.54 0.75 0.61 0.60 0.7 ± 0.1

799 0.96 0.91 0.81 0.97 0.94 0.9 ± 0.1

824 1.45 1.18 0.96 1.29 1.15 1.2 ± 0.2

850 0.89 1.24 1.27 1.89 1.51 1.7 ± 0.3

870 1.05 1.34 1.38 1.59 1.93 1.5 ± 0.3

950 1.81 2.42 2.53 2.62 1.56 2.2 ± 0.4

896 1.56 1.41 1.74 1.89 1.79 1.7 ± 0.2

920 2.09 1.36 1.72 1.98 1.91 1.8 ± 03

976 3.17 2.14 2.16 2.71 2.09 2.5 ± 0.4

Tabla 3.1: Datos del coeficiente de difusión, cuyas unidades son Å2 · ps−1, para cada uno de los

5 tritios a distintas temperaturas obtenidos para la primera densidad ρ1. Las últimas 9 filas se han

extraído de [13].

T/K D1 D2 D3 D4 D5 D

746 0.44 0.51 0.73 0.57 0.58 0.6 ± 0.1

795 0.86 0.78 1.74 0.74 1.21 1.1 ± 0.4

845 1.06 1.51 1.44 1.64 0.93 1.3 ± 0.3

898 1.75 1.28 1.25 1.98 1.81 1.6 ± 0.3

946 1.77 1.86 1.88 1.97 1.52 1.8 ± 0.2

995 1.98 1.98 1.98 2.36 2.36 2.1 ± 0.2

Tabla 3.2: Datos del coeficiente de difusión, cuyas unidades son Å2 · ps−1, para cada uno de los 5

tritios a distintas temperaturas obtenidos para la segunda densidad ρ2
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T/K D1 D2 D3 D4 D5 D

746 0.36 0.79 0.57 0.56 0.38 0.5 ± 0.2

795 0.54 0.49 0.84 0.54 1.44 0.8 ± 0.4

847 1.45 1.43 0.90 1.22 1.16 1.2 ± 0.2

895 1.33 1.26 1.02 1.09 1.61 1.3 ± 0.2

942 2.02 1.56 1.58 1.88 2.07 1.8 ± 0.2

996 2.21 1.75 1.92 2.17 2.35 2.1 ± 0.2

Tabla 3.3: Datos del coeficiente de difusión, cuyas unidades son Å2 · ps−1, para cada uno de los 5

tritios a distintas temperaturas obtenidos para la tercera densidad ρ3

3.1.2. Parámetros de ajuste del coeficiente de difusión en función de la temperatura

Después calcular el valor medio y la varianza de las 5 medidas, y en lugar de hacer un ajuste

lineal ordinario, se hace un ajuste lineal con diferentes pesos asignados a cada punto en función

de su varianza (a menor varianza mayor peso). Además, si no existe una correlación entre las

incertidumbres de los distintos puntos (como en este caso) lo más adecuado es tomar como pesos

los inversos de las varianzas, como se ha explicado con mayor detalle anteriormente. Una vez se

ha ejecutado el programa que realiza el ajuste se obtiene los valores de a y b para cada densidad.

Ajuste a la ecuación de Arrhenius

Como se ha detallado en el capítulo anterior, en primer lugar se ha hecho un ajuste Arrhenius

de los datos obtenidos como se puede observar en las Figuras 3.2a, 3.2b y 3.2c. En la primera

figura, correspondiente a la densidad ρ1, los datos en rojo son de [13] y los negros los obtenidos

en las simulaciones realizadas en este trabajo.
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Figura 3.2: Representación del Ln(D) frente al inverso de T
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Para estos datos se han obtenido 3 valores de a , uno para cada densidad y de igual forma 3

valores de b (Tabla 3.4). Además de haber calculado sus incertidumbres.

ρ / átomos · Å−3 a b / K

0.0306129 4.9 ± 0.5 −3,97 · 103 ± 4,30 · 102

0.0319714 4.6 ± 0.5 −3,77 · 103 ± 5,03 · 102

0.0329897 4.7 ± 0.8 −3,95 · 103 ± 7,22 · 102

Tabla 3.4: Datos de los parámetros a y b con sus respectivas incertidumbres obtenidos con el ajuste

Arrhenius

Además se han calculado las funciones S definidas en la Ecuación 2.28. Estas funciones dan

como resultado lo adecuado que es el ajuste que se ha hecho, es decir, cuanto menor es el valor de

S, más preciso es el ajuste.

S ρ1 S ρ2 S ρ3

4.03 0.74 0.72

Tabla 3.5: Valores de S para las 3 distintas densidades en el ajuste de Arrhenius

Ajuste lineal D frente a T

Por otra parte, también se ha hecho un ajuste lineal del coeficiente de difusión frente a la

temperatura como se puede observar en las Figuras 3.3a, 3.3b y 3.3c. En la primera figura, co-

rrespondiente a la densidad ρ1, los datos en rojo son de [13] y los negros los obtenidos por la

simulación.
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Figura 3.3: Representación de D frente a T

Para cuyos datos se han obtenido 3 valores de a , uno para cada densidad y de igual forma 3

valores de b (Tabla 3.6). Como para el ajuste anterior, se han calculado sus incertidumbres.
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ρ / átomos Å−3 a / Å2 ps−1 b / Å2(psK)−1

0.0306129 -4.8 ± 0.7 7,3 · 10−3 ± 8,7 · 10−4

0.0319714 -4.1 ± 0.6 6,3 · 10−3 ± 6,7 · 10−4

0.0329897 -4.1 ± 0.8 6,2 · 10−3 ± 9,3 · 10−4

Tabla 3.6: Datos de los parámetros a y b con sus respectivas incertidumbres obtenidos con el ajuste

Lineal

Al igual que en el apartado anterior se han calculado las funciones S definidas en la Ecuación

2.28. Estos valores se detallan a continuación en la Tabla 3.7:

S ρ1 S ρ2 S ρ3

3.76 0.28 0.57

Tabla 3.7: Valores de S para las 3 distintas densidades en el ajuste Lineal

Se observa que los valores de S que se obtienen en el ajuste lineal son menores, aunque del

mismo orden, que los que se obtuvieron en el ajuste a la fórmula de Arrhenius. Recordando que S

mide la “distancia” entre los datos y la función a la cual se ajustan, podemos por tanto considerar

ambos ajustes como de precisión similar, siendo ligeramente más favorable la expresión lineal.

3.1.3. Parámetros del ajuste de los coeficientes a y b en función de la densidad

Una vez obtenidos los parámetros a y b de ambos casos, se procede a hacer un ajuste lineal

de ambos con respecto a la densidad para obtener los últimos coeficientes que se utilizará en la

expresión general del coeficiente de difusión como se ha comentado anteriormente.

Ajuste de los datos obtenidos para la ecuación de Arrhenius

Se ha utilizado el mismo programa que en el caso anterior para obtener un ajuste lineal con

diferentes pesos asignados a cada punto en función de la incertidumbre calculada anteriormente,

obteniendo los resultados que se pueden observar en las Figuras 3.4 y 3.5, .

Los coeficientes obtenidos de cada uno de los ajustes serán, en el caso de la Figura 3.4, α1 y

β1, y en el caso de la Figura 3.5, α2 y β2.

Con los datos expresados en la Tabla 3.8, se construirá la expresión genérica del coeficiente

de difusión, que será la siguiente:
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Figura 3.5: Ajuste lineal del parámetro b frente a la densidad para los datos obtenidos con un ajuste

Arrhenius

α1 β1 α2 β2

8 −1,04 · 102 −4,84 · 103 2,98 · 104

Tabla 3.8: Datos de los parámetros α1, β1, α2, β2 calculados con el ajuste lineal para los valores

obtenidos para la ecuación de Arrhenius

D(ρ,T ) = e8−104ρe
−4839+29827ρ

T (3.1)

Las unidades en las que se debe incluir la densidad y la temperatura son atomos
Å3 y K respectiva-

mente, obteniéndose el coeficiente de difusión en Å2

ps .

Ajuste de los datos obtenidos para la ecuación lineal

Los resultados de los ajustes se muestran en la Figura 3.6 y 3.7.
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Figura 3.7: Ajuste lineal del parámetro b frente a la densidad para los datos obtenidos con un ajuste

Lineal

Los coeficientes obtenidos de cada uno de los ajustes serán, en el caso de la Figura 3.6, α1 y

β1, y en el caso de la Figura 3.7, α2 y β2.

α1 β1 α2 β2

-16 3,54 · 102 2,2 · 10−2 -0.5

Tabla 3.9: Datos de los parámetros α1, β1, α2, β2 calculados con el ajuste lineal para los valores

obtenidos para la ecuación lineal

Con los datos expresados en la Tabla 3.1.2, se construye la expresión genérica del coeficiente

de difusión, que será la siguiente:

D(ρ,T ) = (−16 + 354ρ) + (0,02 − 0,5ρ)T (3.2)
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Las unidades en las que se debe incluir la densidad y la temperatura son tomos
Å3 y K respectiva-

mente, obteniéndose el coeficiente de difusión en Å2

ps .
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Capítulo 4

Conclusiones

En este trabajo se han calculado por primera vez los coeficientes de difusión del tritio en forma

atómica en la aleación líquida Li15,7Pb84,3, para distintas densidades y temperaturas típicas de las

condiciones de trabajo del blanket en un reactor de fusión autosuficiente. Obteniendo de esta forma

dos expresiones de precisión similar para obtener el valor del coeficiente de difusión en función

de esas dos variables, T y ρ.

Estas expresiones serán útiles para disponer de datos relevantes para el estudio del transporte,

extracción e inventario de tritio en las instalaciones de futuros reactores nucleares de fusión.

A la vista de los valores obtenidos de S en las Tablas 3.5 y 3.7, se puede decir que el ajuste

Lineal es más adecuado que el de Arrhenius, dado que se obtienen valores más pequeños de este

coeficiente. No obstante, puesto que estos valores son del mismo orden de magnitud y en algún

caso similares, se puede afirmar que ambos ajustes son válidos.

Sin embargo, tanto en el ajuste Arrhenius como en el lineal (3.1.2 y 3.1.2 respectivamente),

se ha comprobado que los valores de las incertidumbres son relativamente grandes, lo cual hace

que el ajuste no sea todo lo preciso que se busca. Se puede observar en las Figuras 3.2a y 3.3a,

como algunos de los datos pintados en rojo, que son los tomados de [13], tienen una menor in-

certidumbre que los obtenidos mediante las simulaciones llevadas a cabo en este trabajo. Esto se

debe principalmente a que esos datos han sido obtenidos mediante simulaciones con una mayor

cantidad de pasos de tiempo, lo que hace que se tenga una mejor estadística y se obtengan valores

más precisos con una menor incertidumbre.

También se puede apreciar visualmente en las Figuras 3.4, 3.6, 3.5 y 3.7, que los valores

α1, β1, α2 y β2 tienen una incertidumbre bastante alta, lo cual se debe esencialmente a las incerti-

dumbres arrastradas del cálculo anterior.
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La solución más sencilla para mejorar la precisión sería alargar estas simulaciones añadiendo

pasos de tiempo para disminuir la incertidumbre gracias a una mejor estadística.

Otro aspecto que podría mejorarse es la inclusión de más densidades en el estudio para confir-

mar (o refutar) el comportamiento lineal de los coeficientes estudiados en función de la densidad.
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