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Introduccion

El objetivo principal de este Trabajo de Fin de Grado es estudiar las propiedades del tritio en
forma atémica en la aleacion liquida Li-Pb a diferentes condiciones termodindmicas de interés
tecnoldgico. El estudio estd enfocado en averiguar si el uso de la aleacién Li-Pb como breeding
blanket en los reactores nucleares es provechoso en cuanto a la obtencién de tritio y su poste-
rior transporte y extracciéon (puesto que no abunda en la naturaleza y su obtencién es costosa).
Estos reactores de fusién son aquellos en los que el plasma se confina mediante campos magné-
ticos (ITER, DEMO, etc). Las predicciones realizadas se han basado en el uso de un potencial
interatomico construido con redes neuronales entrenadas a partir de datos obtenidos mediante si-
mulaciones cudnticas basadas en la Teoria del Funcional de la Densidad. Se han obtenido distintos
valores del coeficiente de difusion del tritio a diversas densidades y temperaturas. La variacién del
coeficiente de difusién con la temperatura y la densidad se ha ajustado a dos expresiones diferentes

con precision similar, y se han analizado qué consecuencias tienen esos resultados.



Abstract

The main objective of this Final Degree Project is to study the properties of tritium in atomic
form in the Li-Pb liquid alloy at different thermodynamic conditions of interest. atomic form in the
liquid Li-Pb alloy at different thermodynamic conditions of technological interest. technological
interest. The study is focused on finding out if the use of Li-Pb alloy as breeding blanket in nuclear
reactors is beneficial in terms of obtaining tritium and its subsequent transport and extraction
(as the Li-Pb alloy is used as a breeding blanket in nuclear reactors). The study is focused on
whether the use of Li-Pb alloy as a breeding blanket in nuclear reactors is beneficial in terms of
obtaining tritium and its subsequent transport and extraction (since it is not abundant in nature and
is expensive to obtain). These fusion reactors are those in which the plasma is confined by magnetic
fields (ITER, DEMO, etc.). The predictions made have been based on the use of an interatomic
potential constructed with neural networks. interatomic potential constructed with neural networks
trained from data obtained by quantum simulations based on Tehran’s The predictions have been
based on the use of an interatomic potential built with neural networks trained from data obtained
by quantum simulations based on the Density Functional Theory. Different values of the diffusion
coeflicient of tritium values of the diffusion coefficient of tritium have been obtained at various
densities and temperatures. The variation of the The variation of the diffusion coefficient with
temperature and density has been fitted to two different expressions with similar accuracy, and

analysed with similar accuracy, and the consequences of these results have been analysed.
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Capitulo 1

Motivacion

En las tdltimas décadas, la fusion nuclear ha emergido como una de las areas de investigacion
mads relevantes, impulsada por la necesidad de desarrollar fuentes de energia limpias, seguras y
sostenibles. El principal objetivo de la investigacién en fusién nuclear es superar los desafios
técnicos asociados con la viabilidad de operar reactores de fusiéon de manera continua. Muchos
de estos esfuerzos se centran en el desarrollo de materiales avanzados que permitan mantener la
estabilidad del plasma, asegurar la integridad estructural del reactor y gestionar eficientemente los

subproductos radiactivos.

La fusién nuclear es un proceso mediante el cual nicleos ligeros se combinan para liberar
grandes cantidades de energia, replicando las reacciones que ocurren de forma natural en el Sol. .
Actualmente, la obtencion de energia eléctrica a partir de procesos nucleares se realiza a través de
la fisién nuclear, pero la fusién presenta importantes ventajas, como una menor generacion de re-
siduos radiactivos de larga duracién y el uso de materias primas abundantes, como el deuterio. Sin
embargo, la fusién también presenta desafios técnicos, como la escasez de tritio en la naturaleza.
Una cuestiéon muy importante desde el punto de vista tecnoldgico es la eleccion de los materiales
a utilizar en los reactores de fusidn, especialmente aquellos que se encuentran cerca del plasma,
dado que estdn sometidos a condiciones extremas de irradiacidn neutrénica de alta energia. En
este contexto, la aleacién de litio-plomo (Li-Pb) ha captado la atencién de la comunidad cientifica
debido a sus propiedades Unicas, que la convierten en una candidata ideal para su uso en la capa
regeneradora de reactores de fusién por confinamiento magnético. Esta aleacion ofrece ventajas
clave, como su capacidad para actuar como refrigerante, multiplicador de neutrones y regenerador
de tritio. Ademads de que se trata de un material resistente a la corrosién y con buena conductividad

térmica.

Entre las diversas reacciones de fusién posibles, la méds prometedora en términos de viabilidad
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es la fusién de isétopos del hidrégeno, como el deuterio y el tritio. Esto se debe simplemente a
que la reaccién mds accesible es la fusién de un nidcleo de deuterio con uno de tritio dando lugar

a un nucleo de helio y un neutrén de alta energia:

*H+>H —3 He+\)n (1.1)

Evidentemente para que esto sea posible es necesario disponer tanto de deuterio como de tritio.
El primero (%H ), se encuentra ficilmente en la naturaleza, pero el tritio (? H) no se obtiene de forma
tan sencilla. Es un elemento radioactivo con periodo de semi-desintegracién de aproximadamente
unos 12,3 afios, y que ademads solo se puede encontrar de forma natural en algunas capas altas
de la atmoésfera. Por ello, la aleacién Li-Pb es de gran interés ya que el Li reacciona con los
neutrones energéticos resultantes de la reaccion de fusién dando lugar a tritio, lo que la convierte
en un material prometedor para su uso en la capa regeneradora, también conocida como “breeding

blanket”.

El “breeding blanket” es una parte esencial de un reactor nuclear autosuficiente ya que desem-
pefia multiples funciones, entre las que se incluyen la refrigeracién a partir de la captura de los
neutrones de alta energia resultantes de la reaccidn de fusion transformando su energia cinética
en energia térmica asi como la regeneracion de tritio. El mayor proyecto de reactor de fusién del
mundo es el ITER (International Thermonuclear Experimental Reactor) [1], solo utilizara el blan-
ket con fines tanto de captura y transmisién de energia (normalmente en forma de calor), como
de proteccién frente al bombardeo de neutrones y radiacién liberada, pero no para la regeneracién
de tritio, ya que no se plantea su uso como un reactor autosuficiente. Sin embargo, actualmente se
estd trabajando en un nuevo proyecto denominado DEMO [2], en el que se le afiadird este nuevo
uso al blanket para pasar a ser un “breeding blanket”. La clave de este proceso es el is6topo 6 del

litio (Li-6) que, al ser impactado por neutrones, se fisiona produciendo tritio y helio.

Este trabajo de fin de grado se centra en el estudio de la aleacién de litio-plomo como material
para el “breeding blanket”, evaluando su viabilidad mediante simulaciones a diferentes densidades

y temperaturas, estudiando la difusion del tritio en su interior.

Dado que los métodos tradicionales de simulacién no proporcionan la precision necesaria,
se ha optado por entrenar un potencial utilizando técnicas de aprendizaje automdtico (Machine
Learning), basado en datos obtenidos mediante la Teoria del Funcional de 1a Densidad (DFT). Este
enfoque permite realizar simulaciones con alta precisiéon y menor coste computacional, facilitando

el estudio de la difusion del tritio en la aleacion. Este trabajo continda la linea de investigacién
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iniciada por estudios previos [3, 4] y busca contribuir al conocimiento sobre el comportamiento
de esta aleacién en condiciones extremas, avanzando en el desarrollo de materiales clave para la

fusién nuclear.
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Capitulo 2

Metodologia

2.1. Teoria del Funcional de la Densidad

En este apartado se dard una breve introduccién a la Density functional theory (DFT), la cual

se ha utilizado para crear los datos de referencia para entrenar el potencial utilizado en este trabajo.

A la hora de realizar el estudio, se descartd, en primer lugar, hacerlo con potenciales tradi-
cionales, esto es debido a que este método no explica con exactitud muchas de las interacciones
entre particulas que tienen lugar, por lo tanto no es preciso. Entonces el siguiente método seria En
el otro extremo se observa la Density functional theory (DFT), muy util cuando se tiene decenas
o incluso cientos de dtomos por su gran precision y fiabilidad. Esto método fue utilizado por J.
Martin Dalmas en su Trabajo de Fin de Grado [3]. Por otra parte, esta opcién tiene un defecto y
es el siguiente: cuando se tienen muchas particulas, el tiempo de célculo requerido para este mé-
todo asciende de manera ctibica, es decir, si se multiplica por 10 el nimero de dtomos, el tiempo
de computacién y la complejidad aumentan en un factor 103. Esto hace que para es estudio que
ese quiere llevar a cabo con las proporciones Lij57Pbga 3, y un nimero de particulas utilizadas de
aproximadamente 30000, el método DFT sea inabordable. Ademads de que para caracterizar mejor
las propiedades de difusion del tritio se le afiadird éste de manera muy diluida. Esto hard que se
eleve atin mds el nimero de particulas utilizadas, asi como la extensién temporal de las simula-
ciones, lo cual es necesario para que aunque el tritio se encuentre en proporciones muy bajas, se

puedan estudiar sus propiedades con una buena estadistica y con la menos incertidumbre posible.

Entonces se llega a la conclusién de que se necesita un método con la misma precisién que
el DFT pero que tenga un coste computacional mucho menor para agilizar el proceso y que el

tiempo de ejecucion sea aceptable. La solucién la se encuentra en el Machine Learning (ML). A
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partir de los datos obtenidos con DFT por J. Martin Dalmas [3] para una aleacién litio-plomo con
un 20 % de dtomos de tritio, y otras simulaciones DFT similares se entrend un potencial con redes
neuronales que reproduzca las mismas fuerzas interatémicas y energia potencial que las obtenidas
mediante DFT. Esto es provechoso debido a que se consigue un potencial similar a los potenciales
interatomicos tradicionales, es decir, que su complejidad y tiempo de computacién incrementan
de forma lineal con respecto al nimero de dtomos, pero teniendo una precisioén similar a la que
se obtiene con DFT. Por lo tanto, se consigue rebajar notablemente el tiempo de computacién
pero manteniendo la precisién en las medidas. De esta manera D. Ferreras [4] ha estudiado la
interaccién del helio con la aleacién liquida Li-Pb, que ha servido como precedente a este trabajo
en cuanto al manejo del ML. Se comentard con mds detalle, tanto las caracteristicas y problemas

de la DFT como las soluciones que proporciona el Machine Learning, en las secciones 2.1y 2.2.

La DFT es un método ab initio (un término en latin que significa: primeros principios), tér-
mino que se emplea para referirse a que es un método de resolucién de problemas que se basa
en ecuaciones fundamentales. Es uno de los métodos computacionales mas empleados a la hora
de realizar simulaciones en las que se busque conocer la estructura de un material en su estado
fundamental. El origen de la teoria del funcional de la densidad se sitiia en una publicacién de
Hohenberg y Kohn [5] en la que exponian dos teoremas fundamentales, y basicamente considera-
ban al sistema como un gas electrénico interactuante, el cual estd sometido a un potencial externo.
En este caso la DFT consiste basicamente en resolver la ecuacion de Schrédinger sin utilizar para
ello las funciones de onda multielectrénicas como magnitudes fundamentales (3N, ), como se hace
en otros métodos como el de Hartree-Fock (HF). En su lugar se utiliza la densidad electrénica n(7).
Esta diferencia es fundamental a la hora de reducir los tiempos de computacién. Mientras que con
HF se obtienen resultados excelentes para moléculas pequefias, cuando se aumenta el nimero de
particulas, rdpidamente el tiempo de computacién requerido se hace insostenible. Sin embargo,
al emplear como magnitud fundamental n(7) en vez de las funciones de onda se consigue que el
nimero de variables que son necesarias para el cdlculo disminuya a 3 variables espaciales, por lo

tanto se reduce notablemente el tiempo de computacion mencionado anteriormente.

La Teoria del Funcional de la Densidad (DFT, por sus siglas en inglés) es un método ab initio,
un término derivado del latin que significa .2 partir de primeros principios". Este término se utiliza
para describir métodos que se basan en ecuaciones fundamentales para resolver problemas com-
plejos. La DFT es uno de los enfoques computacionales mas utilizados para simular la estructura

de materiales en su estado fundamental.

El origen de la DFT se remonta a la publicacién seminal de Hohenberg y Kohn, donde se

establecieron dos teoremas fundamentales. En su formulacion, consideraron un sistema como un
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gas electrénico interactuante sometido a un potencial externo. A diferencia de otros métodos, como
el de Hartree-Fock (HF), que emplean funciones de onda multielectrénicas (3N,) como magnitud

principal, 1a DFT se basa en la densidad electrénica n(7) como variable fundamental.

Esta diferencia es crucial, ya que el uso de la densidad electrénica en lugar de las funciones de
onda multielectrénicas reduce significativamente el nimero de variables necesarias en los calculos,
de 3N, a solo tres variables espaciales. Este cambio resulta en una disminucion sustancial del
tiempo de cémputo, lo que hace que la DFT sea particularmente eficiente para sistemas de gran
tamafio, mientras que métodos como Hartree-Fock, aunque precisos para moléculas pequeiias,
se vuelven ineficientes y computacionalmente costosos a medida que el ndimero de particulas

aumenta.

La densidad electronica [6] se define partiendo de la funcién de onda del sistema, i

n(P) = N, f W, Py s Py P, @.1)

Dado que los teoremas de Hohenberg y Kohn no proporcionaban expresiones explicitas para
algunos términos clave, el célculo de la energfa total del sistema se tornaba sumamente compleja.
Este desafio fue superado por Kohn y Sham [7], quienes desarrollaron un método que ahora lleva
sus nombres. Este método introdujo dos formulaciones fundamentales de la DFT: una que se basa
en dos teoremas esenciales y otra que detalla el enfoque mas practico empleado en aplicaciones

reales.

A continuacién, se explicardn los dos teoremas fundamentales. El primero establece que la
energia total de un sistema de electrones en su estado fundamental es un funcional de la densidad

electrénica en dicho estado, n,

Elyol = Elno] 2.2

donde ¥ es la funcién de onda del estado fundamental. Esto quiere decir que, para un sistema
dado, existe una tinica densidad electrénica que minimiza la energia total. El segundo teorema afir-

ma que esta densidad electrénica minimizante es la densidad del estado fundamental del sistema,

E[ng] < E[n’] (2.3)

Esto por tanto es la prueba de que la informacién completa del sistema se puede obtener
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Unicamente con la densidad electrénica y, por lo tanto, no se necesita obtener la funcién de onda.
El principal objetivo de la DFT es la bisqueda del funcional de energia que depende solamente de

la densidad electrénica. Este funcional de energia E(n) contiene toda la informacién del sistema.

La segunda formulacién que propusieron Kohn y Sham es la mas utilizada en la préctica para
realizar las simulaciones. Consiste en considerar un sistema ficticio de electrones no interactuantes
con la misma densidad n(7) que el sistema real de interés. Esto nos va a permitir descomponer
la energia cinética del sistema en dos partes: una correspondiente a la energia cinética de los
electrones no interactuantes, y otra que contiene solamente los efectos de interaccién. Esta energia
cinética de interaccidn, 7., no tiene una forma general conocida, por lo que no puede calcularse
directamente y se suele incluir junto con otros efectos cudnticos Uy,, dando lugar al término de

interaccidn y correlacion, E.:

Ew=T 4 U, (2.4)

La expresion de la energia total del sistema, E[n(7)] se puede escribir como suma de varios

términos,

E[I’l(}'_‘))] = T[n] + Eexi[n] + Ey[n] + Exc[n] (2.5)

donde T's[n] es la energia cinética del sistema ficticio de electrones no interactuantes, E.[n] la
energia de interaccion de los electrones con los iones y Ey[n] la energia electrostatica de Hartree,

la cual viene dada por la siguiente expresion,

o1 ] faties

Kohn y Sham al llevar a cabo esta formulacién demostraron que también se podia escribir ese
mismo sistema de particulas interactuantes como un sistema de particulas no interactuantes, las
cuales se moverdn en un potencial externo efectivo vgs llamado potencial de Kohn y Sham. De
esta forma se consigue transformar un sistema de varios cuerpos interactuantes en un sistema de
particulas ficticias que no interactdan entre si, pero que se mueven dentro del potencial efectivo

vks el cual incluye todos los efectos producidos por las interacciones entre particulas.
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_ OE[n]  8Tsn] _ 0Eculnl = OEg(n] = OEin]

= = + + 2.7
S = o ~ on(d on(7) on(7) on(7) @7
El potencial de Kohn y Sham puede escribirse como una suma de términos,
Vs = Hex(F) + v (7) + e (P) (2.8)

donde v.,s es el potencial creado por los iones sobre los electrones, vy es el potencial de

Hartree, y uy. es el potencial debido a las interacciones cudnticas entre electrones.

Este sistema puede ser resuelto en términos de una sola particula ¢;, dando lugar a soluciones

autoconsistentes de la ecuacion de Schrodiger para particulas no interactuantes.

fi
-5 v? +v;<s(f>wi<?>) = ei(P) (2.9)
m

La autoconsistencia es debido a que las soluciones phi; vienen determinadas por el potencial
vks y este a su vez depende implicitamente de los ; a través de su relacién con la densidad

electronica,

N
n(F) = ) (P (2.10)

Las ecuaciones (2.8), (2.9) y (2.10) son las ecuaciones de Kohn-Sham. Como vgs depende
explicitamente de la densidad electrénica n(7), es con dichas ecuaciones con las que se va a resolver

el problema de forma autoconsistente .

El proceso de simulacién mediante DFT sigue una serie de pasos. En primer lugar, se propone
una densidad electrénica inicial que se utiliza para determinar el potencial de Kohn-Sham (vkg).
A partir de este potencial, como resultado de la ecuacién 2.9 se obtienen los orbitales (i;). Con
estos orbitales, a partir de la la ecuacion 2.10 se calcula una nueva densidad electrénica. Si esta
nueva densidad no es consistente con la inicial, se adopta como nueva propuesta y el proceso se

repite iterativamente hasta alcanzar la convergencia de n(7).

El principal desafio de este método radica en su elevado coste computacional, especialmente
para sistemas grandes que contienen miles de electrones. La resolucidn de las ecuaciones de Kohn-

Sham puede requerir horas de procesamiento y, si se desea estudiar la dindmica del sistema, este
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célculo debe repetirse cada vez que los dtomos se mueven. Esto hace que la DFT sea impracticable
para sistemas muy grandes, como es el caso del sistema liquido a estudiar en este TFG. Para
superar estas limitaciones, se ha recurrido al Machine Learning (ML) [MachingL], que optimiza

el proceso y reduce significativamente el tiempo de cémputo.

2.2. Machine Learning y creacion de potenciales interatémicos

El Machine Learning (ML) forma parte de la inteligencia artificial (IA), concentrdndose en
capacitar a las miquinas para aprender de los datos y mejorar con la experiencia. En este campo,
los algoritmos se entrenan para descubrir patrones y correlaciones dentro de extensos conjuntos
de datos, permitiéndoles tomar decisiones y hacer proyecciones basadas en andlisis exhaustivos. A
medida que estas aplicaciones de machine learning se utilizan mds y acceden a mayores cantidades

de datos, mejoran en precision y efectividad.

En fisica de materiales el objetivo es conseguir informacién sobre ciertas propiedades, en este
caso de la aleacion LiPb. Como se ha descrito antes, el DFT es una manera de obtener datos muy
precisa, pero cuyo coste computacional es demasiado elevado. Por este motivo es mds sencillo

trabajar con modelos de potenciales interatomicos.

Los potenciales interatémicos parametrizan el sistema que se estd midiendo, de forma que nos
proporcionan la energia potencial en funcién de las posiciones atémicas. Esta funcién se puede
representar como una superficie de energia potencial, Potential Energy Surface (PES) [8], cuya
dimension serd 3N, siendo N el nimero de dtomos que componen el s6lido. Una vez que se conoce
esta superficie se pueden obtener las fuerzas que afectan a cada dtomo en cualquier configuracién
atémica a través de : F; = —Z—g. En la creacién se estos potenciales se supone la divisién de la
energia potencial en energias atémicas individuales, (3}; E; = E) de manera que se expresen en
funcién solo de las posiciones de los dtomos vecinos. Que solo se tenga en cuenta a los dtomos
vecinos hace que la particion de energia solo sea vdlida para la interaccion a corto alcance. Lo que
se consigue con esta particién es calcular mds rdpidamente la energia total porque permite calcular
las energias individuales de forma paralela mediante un procedimiento que escala linealmente con
el nimero de dtomos N. Es un proceso muy rdpido por lo que nos permite trabajar con sistemas

compuestos de millones de 4tomos.

Los potenciales interatémicos tradicionales tienen una importante base tedrica puesto que na-
cen de la comprension de la fisica que hay detrds de las interacciones atémicas que rigen el siste-

ma, lo que les confiere versatilidad, ya que se pueden extrapolar a valores fuera del rango utilizado
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para el ajuste del potencial. Sin embargo, los potenciales interatémicos tradicionales tienen va-
rios inconvenientes. Debido al numero de parametros ajustables (entorno a 10-20), su precision
es limitada. Por otro lado, debido a su base fisica, las expresiones utilizadas para modelar el ma-
terial suelen servir para solo un tipo de interaccién atémica, p.e. metdlica, por lo que no pueden
emplearse cuando los sistemas que se estdn estudiando son complejos con distintos tipos de in-
teracciones, como es el caso del sistema Li-Pb con H. Estas limitaciones se pueden resolver al

utilizar potenciales interatémicos de ML.

La utilizacion del ML estd enfocada en predecir las PES mediante la interpolacién de los da-
tos de referencia, obtenidos a través de DFT. Los potenciales creados con ML también tienen en
cuenta tanto el corto alcance de las interacciones como la equiparticion de la energia. Sin embar-
go, el nimero de pardmetros ajustable para describir el potencial es mucho mas elevado, lo cual
aumenta la precision del potencial asi la posibilidad de ajuste del potencial a sistemas complejos
con diversos tipos de interaccion entre dtomos. Un elemento importante durante la creacion del
potencial interatémico con ML es la descripcién de las posiciones atémicas del sistema de forma
correcta. Esta descripcion se debe hacer en términos con la misma invariancia que la energia po-
tencial, que es la variable que se quiere predecir. Un término que no seria correcto utilizar seria
por ejemplo la posicién de los 4tomos, porque no es invariante bajo traslaciones como si lo es la
energia potencial. Las invarianzas a mantener son traslacional, rotacional y de permutacion. Se
Ilaman descriptores aquellas funciones que representan el entorno atémico de cada 4tomo mante-
niendo las mismas invarianzas de la propiedad a predecir. La eleccion de los descriptores es muy
importante puesto que afectard al rendimiento y fiabilidad de las predicciones que nos proporcione
el modelo. En este trabajo se han utilizado unos descriptores de tipo gaussiano desarrollados por
Behler y Parrinello en 2007 [9] basados en funciones de simetria radial y angular. Los descriptores

gaussianos con simetria radial son de la siguiente manera :

N
G;ad — Z e—U(ri_/—/l)zfc(rl,j) (2.11)

i#]

siendo 77 la anchura de la gaussiana, mu donde estd centrada la gaussiana, r;; la distancia

interatomica, y f.(r;;) una funcion de corte dada por:

fe(rij) = (2.12)
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Donde r, es la distancia de corte, o lo que es lo mismo, la distancia hasta donde se tienen en
cuenta los vecinos a la hora de calcular los descriptores. Esta funcién introduce de manera efectiva

la interaccién a corto alcance.

Por otro lado, los descriptores gaussianos angulares tienen la siguiente forma:

N N
_ etV =tV = 1)
Gi" =210 ) > (1= deos@;j)°e i NI I £ folrio fe(ri) - (213)
i#] k#i,j
Siendo 6; ;. el dngulo que forman los dtomos i, j, k, y £ controla la anchura del término angular.

El término A es igual a +1, y cambia el maximo del término angular entre 0° y 180°.

Dentro del Maching Learning hay diversos tipos de modelos de aprendizaje. Se han utilizado
en este caso las redes neuronales que son modelos que simulan de forma simplificada cémo el sis-
tema nervioso gestiona la informacién. El funcionamiento consiste en un gran nimero de unidades
de procesamiento interconectadas de forma que imitan a las neuronas de un cerebro. La neuronas
estan divididas por capas, que se clasifican en 3 tipos: la capa de entrada donde las neuronas reci-
ben los datos de entrada, la capa de salida donde las neuronas generan una respuesta o propiedad
final y por dltimo las capas ocultas que se encuentran entre las dos anteriormente mencionadas
y son las que nos proporcionan los pardmetros de ajuste adicionales, es decir, las que mejoran el

modelo y lo vuelven més preciso.

Cada neurona tiene dos funciones dentro de su correspondiente capa, una multiplica por pesos
los datos que recibe de entrada y los suma (funcion lineal), y otra que serd la encargada de generar
una sefal de salida de esa neurona (funcién de activacion). Esta dltima no es lineal por lo tanto
hace que las redes neuronales tampoco lo sean. Esta caracteristica es muy importante a la hora
de que el algoritmo siga aprendiendo, porque le otorga una gran flexibilidad para enfrentarse y
aprender de los problemas. Como se ha mencionado, las neuronas conectan con pesos, lo que
quiere decir que estos son variables aleatorias que se van ajustando a medida que la red aprende

con el entrenamiento.

Dentro de las redes neuronales cabe destacar el importante papel que desempeiia el sesgo, que
se aflade al resto de datos que recibe cada neurona, a través del cual se puede ajustar el umbral de
activacion de la neurona. De esta manera se podria activar la neurona y que se genere una salida

distinta de cero, incluso si todas sus entradas son nulas.

Se va a explicar a continuacién en que consiste el funcionamiento de una red neuronal. La pri-

20



mera capa de neuronas, la de entrada, recibe una cantidad de datos, los cuales van a ser procesados
por cada neurona (que va a realizar los pasos descritos anteriormente y procesa los datos), que
finalmente va a emitir una sefial de salida. Estos datos de salida seran utilizados como datos de
entrada por la siguiente capa. Hasta que por tltimo se llega a la capa de salida donde se obtendran

los datos finales.

En el caso concreto del célculo de la PES, la capa de salida que se ocupa de ello solo tiene una
neurona, correspondiente a la energia atémica. Cuanto més se entrena y repite el proceso, més se
ajusta la respuesta a los datos de entrada. En este caso la PES predicha (como suma de todas las

energias atomicas predichas) se va a ir ajustando mejor a las PES obtenidas por DFT.

En este trabajo se ha utilizado un software llamado SIMPLE-NN [10] para la creacién y entre-
namiento de la red neuronal con 4 capas de 50 neuronas cada una. Las neuronas estdn conectadas
por completo, esto quiere decir que cada neurona de una capa esta conectada con todas las de la
capa anterior y con todas las de la capa siguiente. Esta manera nos permite usar tensores para el
célculo, y por tanto el uso de la GPU, lo cual hace que el tiempo de computacién sea mds pequefio.
La funcién de activacidn utilizada es la tangente hiperbdlica. Para cada elemento se han utilizado
78 descriptores gaussianos, siendo 24 de tipo radial centrados en cero (o lo que es lo mismo, que
u = 0), y 54 son de tipo angular, también centrados en cero. Se ha usado una distancia de cutoff

f. =6,0A y como funcién error se ha utilizado:

M

1 E' - EDFT Sht i
= 2N M;Z b= (Foprr ]’ (2.14)

Siendo E; y F' las energias y las fuerzas atémicas predichas y E;) rr Y (F D )prr las energias y

fuerzas atomicas de la base de datos de entrenamiento.

2.3. Dinamica molecular: Calculos previos

Durante este estudio se han utilizado simulaciones de dindmica molecular, Molecular Dyna-
mics (MD), que durante las dltimas décadas han sido desarrolladas hasta un punto en el que a dia
de hoy se han convertido en una herramienta casi indispensable para estudiar el comportamien-
to de las diferentes propiedades de los materiales en funcién de la dindmica de sus dtomos y la

interaccion que hay entre ellos.
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En este trabajo de fin de grado, el software utilizado para realizar las simulaciones ha sido el
LAMMPS [11, 12] (Large-scale Atomic/Molecular Massively Parallel Simulator). Para realizar
las simulaciones antes se han de fijar unos parametros que determinen las condiciones del sistema,

de forma que serdn distintos en funcién de lo que se pretenda estudiar.

En primer lugar ha de fijarse el nimero de particulas N. En nuestro caso se han utilizado
30.000 atomos para la aleacion repartidos en 4710 litio y 25290 de plomo (15,7 % de Liy 84,3 %
de Pb) més 5 tritios afadidos. En este trabajo los otros parametros que se han ido modificando
han sido tanto la densidad de la aleacién como la temperatura. En nuestro caso son 3 densidades,
P1, P2 y p3 (definidas en la Tabla 2.1) para las que se ha obtenido el coeficiente de difusion de los

tritios a 6 temperaturas, 750K, 800K, 850K, 900K, 950K y 1000K.

Estas condiciones termodindmicas estdn dentro del rango de valores que se espera que tenga

el breeding blanket durante el funcionamiento de un reactor de fusién.

Durante las simulaciones, la red neuronal proporciona la energfa total del sistema asi como las
fuerzas atémicas y estas son empleadas por el programa LAMMPS para mover los 4tomos a sus
nuevas posiciones tras un tiempo dt. Inicialmente los 4tomos se han dispuesto de forma aleatoria

en una caja de lado L.

Se han estudiado los sistemas anteriormente mencionados durante un total de 300.000 pasos
de tiempo de 1 fs, repartidos entre termalizacién y produccién. Para que el niimero de dtomos sea
constante se han aplicado condiciones de contorno periddicas tales que, si un atomo saliera de la
caja por una cara, estarfa entrando por la contraria. En primer lugar se calcularon los lados L de la
caja para el ndmero fijo de d&tomos y para cada una de las densidades. Esto lo se calcula de forma
sencilla, puesto que si se tiene una densidad fija y el nimero de dtomos encerrados se deduce lo

siguiente:

N N
pZV—>V=;—>V=L3—>L=\3/\_/ (2.15)

Por lo tanto, como las densidades son fijas los valores obtenidos son los siguientes:

De forma que una vez obtenida la dimensién de la caja se mantenga fija en todas las simula-

ciones correspondientes a la misma densidad aunque se realicen a distintas temperaturas.

Una vez que se obtiene esto se hard una termalizacién, o lo que es lo mismo, una Simulacién

hecha con el nimero de particulas constante N, un volumen constante V y una temperatura cons-
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o (dtomos - A-3 ) L (A)

0.0306129 99.333657
0.0319714 97.906305
0.0329897 96.888394

Tabla 2.1: Valores obtenidos de los lados de la caja utilizada en las simulaciones para cada densi-

dad

tante T (NVT). Con esto se consigue estabilizar la temperatura a la que se quiere trabajar en cada
caso. Se ha ejecutado dicha simulacién durante 50.000 pasos de tiempo. Una vez obtenidos estos
datos, se ha realizado otra Simulacién hecha con el nimero de particulas constante N, un volumen
constante V y una energia interna conservada E (NVE), en este caso fijando la energia en vez de la
temperatura, que es lo apropiado para estudiar la difusién como es nuestro caso. Para ello se han
ejecutado 250.000 pasos a partir de la dltima configuracién de la termalizacién. Como resultado
de estas simulaciones se han obtenido las trayectorias de los 4tomos de tritio, con las cuales se han

calculado una serie de propiedades que se detallardn a continuacion.

2.4. Propiedades dinamicas

Se denomina propiedades dindmicas a aquellas que describen el cambio del sistema a lo largo

del tiempo.

En este caso, el estudio de dichas propiedades se va a centrar en el coeficiente de difusién de

las diferentes situaciones a las que se expondrd la aleacion.

Desplazamiento cuadratico medio

Se denomina coeficiente de difusion a la medida de la rapidez con la que se dispersan las par-
ticulas en un fluido como consecuencia del movimiento térmico aleatorio y de los choques contra
el resto de particulas que conforman el sistema. Hay diferentes formas de calcular el coeficiente de
difusidn a partir de los datos obtenidos en una simulacién de dindmica molecular. En este estudio
se ha calculado utilizando Ia relacién que tiene con el desplazamiento cuadratico medio. Se define

el desplazamiento cuadratico medio, R2(7), de la particula i-ésima como:
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R2(1) = {|Fi(0) — 7O (2.16)

Por lo tanto R?(f) es una magnitud que mide la distancia promedio que recorre un 4tomo en un
intervalo de tiempo t. En un principio esta magnitud tiene un comportamiento cuadratico mientras
se comporta como una particula libre, es decir para tiempos cortos en los que la particula no ha
podido interactuar con otros atomos, pero después se comportara de manera lineal porque el &tomo

entra en un periodo de comportamiento difusivo tras haber interactuado con muchos otros dtomos.

De forma similar, aunque no la se ha utilizado en este trabajo, se puede definir la funcién de

correlacion de velocidades Z(¢) de la particula i-ésima moviéndose a través de un fluido:

1
Z(n) = 5(\71'(1)\71‘(0» 2.17)

Se refiere a una medida de la proyeccién de la velocidad en el instante t, sobre la velocidad
que llevaba inicialmente, en t = 0. Si la funcién decae con rapidez, es que las particulas estdn poco
correlacionadas entre si tras ese intervalo de tiempo. Por el contrario si la funcién decae de manera

mads paulatina, eso implicaria una mayor persistencia en las correlaciones de la velocidad.

El valor para el instante inicial Z(¢) = 0 se determina conforme al teorema de equiparticién de

la energia:

21 = 0) = %@(0))2 _ %T 2.18)

Siendo inexistente la correlacion con la velocidad inicial para velocidades a tiempos largos:
Z(t — ) =0 (2.19)

Coeficiente de difusion

El coeficiente de difusién estd relacionado con el desplazamiento cuadratico medio a través de

la relacion de Einstein

2. _ 2 2 2
b o i LEO =FOP) _ 1R

t—o0 t t—00 6 t

(2.20)
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También es posible conectar R?(¢) con la funcién de correlacién Z(7) de la siguiente manera:

7i(t) — 7(0) = ft ("dr (2.21)
0

A continuacién se debe elevar al cuadrado y promediar esta integral sobre todas las condiciones
iniciales, de manera que queden ambas magnitudes relacionadas con el coeficiente de difusion de

esta manera:

t t ! f
<|i_‘),(l) - I_”),'(O)|2> = f dl] f dlz\_/),z\_))ll = 3f dll f dl‘zZ(l‘z - ll) (2.22)
0 0 0 0

Utilizandose las condiciones de simetria respecto a la inversion del tiempo y la invarianza bajo

traslaciones temporales.

=6 f dty f dnZ(h — 1) = 6 f dr f _le‘1Z(T)=6 f dr(t - 1)Z(7) (2.23)
0 0 0 0 0

Por dltimo, se obtiene asi la expresion que relaciona el coeficiente de difusién D con la funcién

de correlacion de velocidades Z(t):

D= f B dtZ(1) (2.24)
0

En este trabajo el coeficiente de difusion de los atomos de tritio solamente se ha calculado a

través de la relacion de Einstein.

En el sistema real los d4tomos de tritio son totalmente equivalentes y por tanto estan todos ellos
caracterizados por un tnico coeficiente de difusion. Por el contrario en la simulacién los dtomos
de tritio individuales siguen cada uno su propia trayectoria dando lugar cada uno a un desplaza-
miento cuadritico medio y por tanto a un coeficiente de difusién. Por tanto para cada densidad
y temperatura se tienen 5 valores del coeficiente de difusién de tritio, cuya media y desviacién
estdndar se han tomado como estimaciones del coeficiente de difusién real y su incertidumbre

respectivamente.

La intencién principal de este trabajo es ajustar los coeficientes de difusion obtenidos frente a

la temperatura a una expresion del tipo Arrhenius:
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Una manera sencilla de llevarlo a cabo es convertirlo en una regresion lineal. Para ello se han
calculado 2 variables nuevas, y = Ln(D)y x = % De esta manera se puede transformar la expresion

del tipo Arrhenius a un sencillo ajuste lineal:

B
z)zAﬁ-aLmD)zbm@+5;ay=a+bx (2.26)

Siendo los nuevos coeficientes a = Ln(A) y b = B.

La férmula de tipo Arrhenius se basa en considerar la difusién como un proceso caracterizado
por una energia de activacion, E,, de forma que el coeficiente de difusion es el producto de dos
factores, el primero relacionado con la frecuencia con la que el dtomo intenta iniciar el proceso
de difusién, y el segundo relacionado con la probabilidad de que ese 4tomo tenga una energia
mayor o igual que la de activacion. Este segundo término es proporcional al factor de Boltzmann,

exp[—E,/(kgT)], dando finalmente lugar a la férmula de Arrhenius.

Este modelo para la difusién es utilizado ampliamente en la literatura, pero no hay que olvidar
que se trata de un modelo, y su validez podria ser limitada. Pueden realizarse también otros tipos
de andlisis de la variacion del coeficiente de difusion con la temperatura. Por ejemplo, del andlisis
de los resultados se han comprobado empiricamente que un ajuste lineal del coeficiente de difusién

frente a la temperatura también puede ser un tratamiento correcto:

D=a+bT (2.27)

Los coeficientes de los ajustes lineales (tanto en la férmula de Arrhenius como en el modelo
lineal) se han calculado mediante un programa basado en el ajuste lineal a un conjunto de datos
con incertidumbres en las ordenadas, del cual se obtiene tanto la pendiente como la ordenada en
el origen de estos 2 tipos de ajuste. Con ello se obtendrdn tres datos de a y tres datos de b, cada

uno para su correspondiente densidad.

En primer lugar, se define la funcién a minimizar como la suma pesada de los cuadrados de la
diferencias entre los resultados del ajuste segtin la recta, a + bx;, y los valores a ajustar, y;, siendo

los pesos los inversos de las varianzas, 0'1.2, de los y;.
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1
—(a+bxi- yi)z} (2.28)
i=1

i
Se tiene que buscar el valor de las incdgnitas a y b que hacen minima esta funcién, por tanto

se deben anular las derivadas parciales de S respecto aa y b:

N

Py 1 ) Y SEARESE
%ZZ{;(CZ'Fbxi_yi)]:a(zoj]'i'b[zoj]_[zaj) (2.29)

i=1 i

S L1 5 > Xi % x? - Xiyi
%=Z[Oj(a+bxi—yi)}=a Z; +b Z; - Z; (2.30)

i=1 i

Por tanto, llamando:

Xy
My = Z - 2.31)

(o

N _m.n
i
=1 i

1

Nos queda el sistema de ecuaciones siguiente:

aM()o + bM10 = M01
(2.32)

aM10 +bM20 = M11

Siendo un sistema 2x2 se puede resolver directamente:

— Mo My—MioMy;

a
MooMa—M3,

(2.33)

b = MooMi1=MioMo
MooMx—M3,

Por dltimo se calculan las incertidumbres tanto de a como de b de la siguiente manera:

(2.34)

Moo
Ab = —
Moo Ma—M3,

Una vez obtenidos los coeficientes del ajuste para cada una de las densidades, el siguiente paso
serd parametrizar la variacién de los coeficientes con la densidad utilizando un ajuste lineal pesado

similar a los realizados anteriormente.
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a=a+pip b=ar+pyp (2.35)

De nuevo se obtendran los valores de los coeficientes a1, 81, a2 y B2, de forma que se pueda
escribir un coeficiente de difusion genérico en funcién de la densidad y la temperatura. En primer

lugar con un ajuste siguiendo la ecuacién de Arrhenius para la dependencia con la temperatura:

ar+fop

D(p,T) = ¢ P1Pe™T (2.36)

Y por tltimo, se escribe la expresion en el caso del ajuste lineal entre el coeficiente de difusion

y la temperatura:

D(,T) = (a1 + B1p) + (a2 + Bop)T (2.37)
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Capitulo 3

Resultados y discusion

En este capitulo se expondran los resultados obtenidos de las propiedades dindmicas para las

diferentes densidades y temperaturas descritas anteriormente

3.1. Propiedades dinamicas: coeficiente de difusion

3.1.1. Desplazamiento cuadratico medio: R*(¢)

En primer lugar se han usado 2 programas para obtener los datos del desplazamiento cuadra-
tico medio. Con el primero se han separado las configuraciones de los 30.005 adtomos totales, en
ficheros con grupos de 2.000, o lo que es lo mismo en cada fichero guarda las trayectorias de 2.000
atomos (aunque el dltimo fichero no llega a los 2.000 y es el que contiene los datos de los dtomos
de tritio). Esta estrategia se sigue precisamente para no saturar la memoria RAM cuando se ejecute
el segundo programa. Este se aplica sobre cada fichero creado previamente. Este programa calcula
R?(#) utilizando la ecuacién (2.16). Lo primero que hace el programa es leer las posiciones y velo-
cidades de los 4tomos que vienen dadas por las 250.000 configuraciones que se ha conseguido del
programa anterior. Una vez que lo ha leido se establece cudl es la configuracion correspondiente
al instante inicial y cual al instante final. En este trabajo se ha elegido tomar configuraciones ini-
ciales cada configuracién, y que calcule R*(¢) durante 2.000 configuraciones, y por tltimo haga
un promedio de estas funciones ya calculadas. Se considera que promediando un gran nimero de

funciones se hard mejor estadistica, y por este motivo se ha procedido asi.
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Después de aplicar este segundo programa a todos los ficheros y hacer una media de las fun-
ciones obtenidas para cada temperatura (en las 3 densidades estudiadas), dan lugar a los resultados

observados en la Figura 3.3.

A continuacién, utilizando la expresion (2.20), se hace la derivada de estas funciones y se
divide entre 6. Para acabar, se ajusta a una recta horizontal la parte lineal de cada una, y de esa
forma se obtienen los coeficientes de difusién cuyos valores se encuentran en las Tablas 3.1,3.2 y
3.3. Cémo se puede ver en la Figura 3.1a, hay distintos regimenes, el balistico a tiempos cortos y el
difusivo a tiempos largos (en este caso el que nos interesa). Ademads, en la Figura 3.1b, se observa
la derivada de las funciones anteriores, viendo que el comportamiento lineal de esta se encuentra
en el régimen de difusidn, por lo tanto se tendrd en cuenta solo la regién lineal de estas derivadas
para hacer un ajuste a una constante para obtener el coeficiente de difusién. En la figura 3.1c se ve
que para tiempos largos se puede ajustar el coeficiente de difusién a una recta horizontal, lo que

quiere decir que es un valor constante.

Se ha de tener en cuenta que la temperatura no es exactamente la planteada inicialmente, sino
la que realmente se ha obtenido en la simulacién NVE, es decir, la media de las “temperaturas
instantaneas” obtenidas a partir de la energia cinética del sistema en cada una de las 250.000
configuraciones realizadas. En la primera densidad en la que se han realizado las simulaciones, se
han utilizado adicionalmente algunos datos existentes que ain no habian sido publicados (DNP)

[13] para realizar un mejor ajuste.

R2(1) / A2

— Tritio |
— Tritio 2
Tritio 3
— Tritio4
Tritio 5

tps

(a) R*(¢) frente al tiempo

R2(1) / Az

— Tritio |
— Tritio2
Tritio 3
— Tritio 4
Tritio 5

Ups

(b) Derivada de R2(7)

R2(1) / Az

— Tritio |
— Tritio2
Tritio 3
— Tritio4
Tritio §

Difusién |
Difusin 2
— Difusion 3
Difusion 4
— Difusién §

(c) Coeficiente de Difusién

Figura 3.1: Desplazamiento cuadratico medio de 5 Tritios con densidad p; a 800K
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TK D, D, D; Dy Ds D

749 0.62 1.08 056 093 0.71 08+0.2
796 140 099 179 139 123 14+03
848 1.20 1.35 091 095 0.75 1.0+0.2
897 273 176 148 2.03 199 2.0+04
946 221 179 142 159 207 18+03
996 2.11 242 2.60 3.64 1.68 25+0.7
774 092 054 0.75 0.61 0.60 0.7+0.1
799 096 091 081 097 094 09+0.1
824 145 1.18 096 129 1.15 12+02
80 089 124 127 189 151 1.7+03
870 1.05 134 138 159 193 15+03
950 1.81 242 253 262 156 22+04
896 156 141 1.74 189 1.79 1.7+0.2
920 2.09 136 1.72 198 191 1.8+03
976 3.17 214 216 271 209 25+04

Tabla 3.1: Datos del coeficiente de difusion, cuyas unidades son A?. ps~!, para cada uno de los
5 tritios a distintas temperaturas obtenidos para la primera densidad p;. Las dltimas 9 filas se han

extraido de [13].

T/K D, D, D3 Di Ds D

746 044 051 0.73 057 058 0.6+0.1
795 086 0.78 1774 074 121 11+04
845 1.06 151 144 1.64 093 13+03
898 1.75 1.28 1.25 198 181 1.6+0.3
946 1.77 186 188 197 152 18+0.2
995 198 198 198 236 236 2.1+02

Tabla 3.2: Datos del coeficiente de difusién, cuyas unidades son A2 - ps~!, para cada uno de los 5

tritios a distintas temperaturas obtenidos para la segunda densidad p;
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TK D, D, D; Dy Ds D

746 036 0.79 057 056 038 05+0.2
795 054 049 084 054 144 08+04
847 145 143 090 122 1.16 12+0.2
895 133 126 1.02 1.09 1.61 13+02
942 2.02 156 158 188 2.07 1.8+0.2
996 221 1.75 192 217 235 21+02

Tabla 3.3: Datos del coeficiente de difusién, cuyas unidades son A2 - ps~!, para cada uno de los 5

tritios a distintas temperaturas obtenidos para la tercera densidad p3

3.1.2. Parametros de ajuste del coeficiente de difusion en funcion de la temperatura

Después calcular el valor medio y la varianza de las 5 medidas, y en lugar de hacer un ajuste
lineal ordinario, se hace un ajuste lineal con diferentes pesos asignados a cada punto en funcién
de su varianza (a menor varianza mayor peso). Ademds, si no existe una correlacion entre las
incertidumbres de los distintos puntos (como en este caso) lo mds adecuado es tomar como pesos
los inversos de las varianzas, como se ha explicado con mayor detalle anteriormente. Una vez se

ha ejecutado el programa que realiza el ajuste se obtiene los valores de a y b para cada densidad.

Ajuste a la ecuacién de Arrhenius

Como se ha detallado en el capitulo anterior, en primer lugar se ha hecho un ajuste Arrhenius
de los datos obtenidos como se puede observar en las Figuras 3.2a, 3.2b y 3.2c. En la primera
figura, correspondiente a la densidad pg, los datos en rojo son de [13] y los negros los obtenidos

en las simulaciones realizadas en este trabajo.

(a) Para la densidad p; (b) Para la densidad p, (c) Para la densidad p;

Figura 3.2: Representacion del Ln(D) frente al inverso de T
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Para estos datos se han obtenido 3 valores de a , uno para cada densidad y de igual forma 3

valores de b (Tabla 3.4). Ademas de haber calculado sus incertidumbres.

p / dtomos - A3 a b/K

0.0306129 49+05 -3,97-10°+430-10°
0.0319714 46+05 -3,77-10° £5,03-10°
0.0329897 47+08 -3,95-10°+722-10°

Tabla 3.4: Datos de los pardmetros a y b con sus respectivas incertidumbres obtenidos con el ajuste

Arrhenius

Ademads se han calculado las funciones S definidas en la Ecuacién 2.28. Estas funciones dan
como resultado lo adecuado que es el ajuste que se ha hecho, es decir, cuanto menor es el valor de

S, més preciso es el ajuste.

Spl sz SP3
4.03 074 0.72

Tabla 3.5: Valores de S para las 3 distintas densidades en el ajuste de Arrhenius

Ajuste lineal D frente a T

Por otra parte, también se ha hecho un ajuste lineal del coeficiente de difusién frente a la
temperatura como se puede observar en las Figuras 3.3a, 3.3b y 3.3c. En la primera figura, co-
rrespondiente a la densidad p;, los datos en rojo son de [13] y los negros los obtenidos por la

simulacion.

D/ At

T

i
[
—o—

L

D/ A%

T

et

——q

1= l 4

ost 7 wif

I E| I I I I
750 800 850 900 950 1000 750 500 850 900 950 1000 750 500 850 900 950 1000
T/IK T/K T/K

(a) Para la densidad p; (b) Para la densidad p, (c) Para la densidad p;

Figura 3.3: Representacion de D frente a T

Para cuyos datos se han obtenido 3 valores de a , uno para cada densidad y de igual forma 3

valores de b (Tabla 3.6). Como para el ajuste anterior, se han calculado sus incertidumbres.
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p/dtomos A3 a/A’ps! b/ A2(psk)!

0.0306129 48+07 73-103+8,7-107*
0.0319714 41+06 63-103+6,7-107
0.0329897 41+08 62-103+93-10"

Tabla 3.6: Datos de los pardmetros a y b con sus respectivas incertidumbres obtenidos con el ajuste

Lineal

Al igual que en el apartado anterior se han calculado las funciones S definidas en la Ecuacién

2.28. Estos valores se detallan a continuacion en la Tabla 3.7:

Spi Sp Sp;
376 0.28 0.57

Tabla 3.7: Valores de S para las 3 distintas densidades en el ajuste Lineal

Se observa que los valores de S que se obtienen en el ajuste lineal son menores, aunque del
mismo orden, que los que se obtuvieron en el ajuste a la formula de Arrhenius. Recordando que S
mide la “distancia” entre los datos y la funcidn a la cual se ajustan, podemos por tanto considerar

ambos ajustes como de precisidn similar, siendo ligeramente més favorable la expresién lineal.

3.1.3. Parametros del ajuste de los coeficientes a y b en funcion de la densidad

Una vez obtenidos los pardmetros a y b de ambos casos, se procede a hacer un ajuste lineal
de ambos con respecto a la densidad para obtener los ultimos coeficientes que se utilizard en la

expresion general del coeficiente de difusién como se ha comentado anteriormente.

Ajuste de los datos obtenidos para la ecuacion de Arrhenius

Se ha utilizado el mismo programa que en el caso anterior para obtener un ajuste lineal con
diferentes pesos asignados a cada punto en funcién de la incertidumbre calculada anteriormente,

obteniendo los resultados que se pueden observar en las Figuras 3.4y 3.5, .

Los coeficientes obtenidos de cada uno de los ajustes serdn, en el caso de la Figura 3.4, a1 y

B1,y en el caso de la Figura 3.5, ax y 5>.

Con los datos expresados en la Tabla 3.8, se construird la expresion genérica del coeficiente

de difusion, que serd la siguiente:
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p /dtomos - A

Figura 3.4: Ajuste lineal del pardmetro a frente a la densidad para los datos obtenidos con un ajuste

Arrhenius
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| . | . | . | . | . |
480! '
6.3 0,0305 0,031 00315 0,032 0,0325 0,033

p /dtomos - A°

Figura 3.5: Ajuste lineal del pardmetro b frente a la densidad para los datos obtenidos con un ajuste

Arrhenius

ay P a B2
8 —1,04-10> -484-10° 2,98-10*

Tabla 3.8: Datos de los parametros a1, 81, a2, 5> calculados con el ajuste lineal para los valores

obtenidos para la ecuacién de Arrhenius

—4839+29827p

D(p,T) = 1= 71— (3.1

atomos

Las unidades en las que se debe incluir la densidad y la temperatura son e

y K respectiva-

.. . . .. A2
mente, obteniéndose el coeficiente de difusién en %.

Ajuste de los datos obtenidos para la ecuacion lineal

Los resultados de los ajustes se muestran en la Figura 3.6 y 3.7.
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Figura 3.6: Ajuste lineal del parametro a frente a la densidad para los datos obtenidos con un ajuste

Lineal
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Figura 3.7: Ajuste lineal del pardmetro b frente a la densidad para los datos obtenidos con un ajuste

Lineal

Los coeficientes obtenidos de cada uno de los ajustes seran, en el caso de la Figura 3.6, a1 y

B1,y enel caso de la Figura 3.7, ap y B>.

a1 P [0%) B2
-16  3,54-10> 22-102 -0.5

Tabla 3.9: Datos de los parametros a1, 81, a2, 5> calculados con el ajuste lineal para los valores

obtenidos para la ecuacidn lineal

Con los datos expresados en la Tabla 3.1.2, se construye la expresion genérica del coeficiente

de difusion, que serd la siguiente:

D(p,T) = (—16 + 354p) + (0,02 - 0,50)T 3.2)
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Las unidades en las que se debe incluir la densidad y la temperatura son ”’Z’—{" y K respectiva-
.2 . . .. A2
mente, obteniéndose el coeficiente de difusién en %.

37



Capitulo 4

Conclusiones

En este trabajo se han calculado por primera vez los coeficientes de difusién del tritio en forma
atémica en la aleacion liquida Lijs 7 Pbgs 3, para distintas densidades y temperaturas tipicas de las
condiciones de trabajo del blanket en un reactor de fusién autosuficiente. Obteniendo de esta forma
dos expresiones de precision similar para obtener el valor del coeficiente de difusién en funcién

de esas dos variables, T y p.

Estas expresiones serdn utiles para disponer de datos relevantes para el estudio del transporte,

extraccion e inventario de tritio en las instalaciones de futuros reactores nucleares de fusion.

A la vista de los valores obtenidos de S en las Tablas 3.5 y 3.7, se puede decir que el ajuste
Lineal es mas adecuado que el de Arrhenius, dado que se obtienen valores mds pequefios de este
coeficiente. No obstante, puesto que estos valores son del mismo orden de magnitud y en algin

caso similares, se puede afirmar que ambos ajustes son validos.

Sin embargo, tanto en el ajuste Arrhenius como en el lineal (3.1.2 y 3.1.2 respectivamente),
se ha comprobado que los valores de las incertidumbres son relativamente grandes, lo cual hace
que el ajuste no sea todo lo preciso que se busca. Se puede observar en las Figuras 3.2a y 3.3a,
como algunos de los datos pintados en rojo, que son los tomados de [13], tienen una menor in-
certidumbre que los obtenidos mediante las simulaciones llevadas a cabo en este trabajo. Esto se
debe principalmente a que esos datos han sido obtenidos mediante simulaciones con una mayor
cantidad de pasos de tiempo, lo que hace que se tenga una mejor estadistica y se obtengan valores

mas precisos con una menor incertidumbre.

También se puede apreciar visualmente en las Figuras 3.4, 3.6, 3.5 y 3.7, que los valores
a1,B1, @2 y B2 tienen una incertidumbre bastante alta, lo cual se debe esencialmente a las incerti-

dumbres arrastradas del calculo anterior.
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La solucién més sencilla para mejorar la precision seria alargar estas simulaciones ailadiendo

pasos de tiempo para disminuir la incertidumbre gracias a una mejor estadistica.

Otro aspecto que podria mejorarse es la inclusién de més densidades en el estudio para confir-

mar (o refutar) el comportamiento lineal de los coeficientes estudiados en funcién de la densidad.
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