

Universidad de Valladolid

FACULTAD DE CIENCIAS

TRABAJO FIN DE GRADO

Grado en Física

Comparación de mediciones de vapor de agua integrado en el Ártico usando fotómetros solares y GPS

> Autor: Javier Pacheco Rodrigues Tutores: Dr. Abel Calle Montes y Dr. Juan Carlos Antuña Marrero Año 2024

A mis queridos abuelos, cuyo amor incondicional ha sido mi apoyo constante. Sois mi mayor tesoro.

Agradecimientos

A mis tutores de las prácticas de empresa y de este Trabajo de Fin de Grado (TFG), Dr. Abel Calle y Dr. Juan Carlos Antuña, mi más sincero agradecimiento. Vuestra confianza en mí y supervisión, tan cercana como profesional, han sido fundamentales para mi aprendizaje y disfrute en estos trabajos.

A mi familia, pilar fundamental en esta aventura de cuatro años, gracias por vuestro apoyo incondicional en todos los aspectos.

A mis amigos de la carrera, compañeros inseparables de este viaje: gracias por las risas compartidas, los momentos de desahogo, las *frikadas* y todas las experiencias de vida que tanto me han enriquecido.

Índice

Sig	glas y acrónimos	1
Sí	mbolos	1
Τέ	erminos especializados	2
1.	Introducción 1.1. Mediciones del CIVA con GPS	6
2.	Metodología 2.1. Criterio de coincidencia espacial y caracterización geográfica 2.2. Cálculo del coeficiente de corrección (CC) 2.3. Escalas temporales 2.4. Parámetros estadísticos	11
3.	Resultados3.1. Valores instantáneos3.2. Valores medios horarios3.3. Valores medios diarios3.4. Valores medios mensuales3.5. Factores geográficos	16 16 17
4.	Discusión 4.1. Estadísticos de los parámetros geográficos	24 24 24 25 25
5.	Conclusión	26
Re	eferencias	27
Ín	dice de figuras	28
Ín	dice de tablas	29
Α.	Tablas	30
В.	Código para la metodología B.1. Coincidencia espacial	35 35 37

Siglas y acrónimos

AERONET Aerosol Robonic Network 1, 3, 6, 25

AND Andenes 1, 7, 9, 10, 13, 19, 33

BAR Barrow 1, 7, 9, 10, 13, 18–20, 33

GEA Groenlandia y el Ártico europeo 1, 3, 7, 9, 13, 20, 21, 25, 26, 28, 30

GNSS Global Navigation Satellite System 1, 3, 4

GPS Global Positioning System 1, 3–8, 10–20, 22–26, 28–31, 35–37

HOR Hornsund 1, 7, 9, 10, 13, 18–20, 33

ITT Ittoggortoormiit 1, 7, 9, 10, 13, 19, 33

KAN Kangerlussuaq 1, 7, 9, 10, 13, 19, 20, 33

MBE sesgo medio 1, 12, 15–22, 24, 25, 29–32

NYA Ny Alesund AWI 1, 7, 9, 10, 13, 19, 33

OLI ARM Oliktok AK 1, 7, 9, 10, 13, 19, 33

OPA OPAL 1, 6, 7, 9, 10, 13, 19, 20, 33

PEA PEARL 1, 6, 7, 9, 10, 13, 19, 20, 33

RACA Rusia, Alaska y el Ártico canadiense 1, 3, 7–9, 13, 20, 21, 25, 26, 28, 30

RE porcentaje de error relativo 1, 12, 15–17, 28

RES Resolute Bay 1, 7, 9, 10, 13, 19, 20, 33

RMSE error cuadrático medio 1

SOD Sodankyla 1, 7, 9, 10, 13, 19, 20, 33

 $\mathbf{SP} \ \text{ fotómetro solar 1, 3, 5-20, 22-26, 28-33, 35-37}$

STD desviación estándar 1, 12, 15–17, 19–22, 24, 25, 29–32

SZA ángulo solar cenital 1, 6, 16, 25, 29, 30

THU Thule 1, 7, 9, 10, 13, 19, 20, 33

TIK Tiksi 1, 6, 7, 9, 10, 13, 18–20, 33

Símbolos

 $R \ \ {\rm coeficiente} \ \ {\rm de\ Pearson} \ \ 1,\ 12,\ 15-17,\ 20-26,\ 30-32$ $m \ \ \ {\rm pendiente} \ \ {\rm del\ ajuste\ lineal} \ \ 1,\ 12,\ 15-17,\ 20-22,\ 24,\ 25,\ 30-32$ $y_0 \ \ \ {\rm intersecci\'on\ con\ el\ eje\ y\ del\ ajuste\ lineal} \ \ 1,\ 12,\ 15-17,\ 20,\ 30-32$

Términos especializados

 ${\bf CIVA}\,$ Contenido Integral de Vapor de Agua 1, 3–7, 9, 11, 12, 14, 16, 18, 19, 24–26, 28–31, 33, 35, 36

I/O Entrada/Salida (Input/Output) 1, 36

Salvo que se indique lo contrario, todos los ficheros (programas, tablas, gráficos...) son de elaboración propia.

Resumen

El Contenido Integral de Vapor de Agua (CIVA) es crucial para entender la evolución del clima ártico. Este estudio compara las mediciones del CIVA obtenidas por trece fotómetros solares (SP), desde 1997 hasta 2023, y sistemas de posicionamiento global (GPS) en el Ártico. Se aplicó un criterio de coincidencia espacial de 150 kilómetros y se analizaron datos en siete escalas temporales. La comparación devuelve una alta correlación (R > 0.9694), que mejora al aumentar la escala temporal, observándose la correlación más fuerte (R = 0,9873). Se observaron diferencias regionales, con mediciones más exactas en la región de Rusia, Alaska y el Ártico canadiense (RACA) y más precisas en Groenlandia y el Ártico europeo (GEA). Factores como el ángulo solar cenital, la magnitud del CIVA y la distancia entre instrumentos no mostraron una correlación notable con las diferencias relativas entre ambos instrumentos. Los resultados de este estudio permiten considerar la opción de combinar las mediciones del CIVA de ambos instrumentos en el Ártico para futuras investigaciones, manteniendo un riguroso proceso de validación de dichas mediciones. Estos hallazgos tienen implicaciones importantes para futuros estudios climáticos en la región ártica, incluyendo el uso de las mediciones del CIVA realizadas con SP como datos de inicialización en reanálisis atmosféricos y en la mejora de modelos climáticos globales, especialmente en latitudes altas.

Abstract

The Integrated Water Vapor (IWV) is crucial for understanding the evolution of the Arctic climate. This study compares IWV measurements obtained by thirteen solar photometers (SP), from 1997 to 2023, and global positioning systems (GPS) in the Arctic. A spatial coincidence criterion of 150 kilometers was applied, and data were analyzed on seven temporal scales. The comparison yields a high correlation (R > 0.9694), which improves as the temporal scale increases, with the strongest correlation observed (R = 0.9873). Regional differences were observed, with more accurate measurements in the Russia, Alaska, and Canadian Arctic (RACA) region and more precise measurements in Greenland and the European Arctic (GEA). Factors such as solar zenith angle, IWV magnitude, and distance between instruments did not show a notable correlation with the relative differences between both instruments. The results of this study allow for considering the option of combining IWV measurements from both instruments in the Arctic for future research, maintaining a rigorous validation process for these measurements. These findings have important implications for future climate studies in the Arctic region, including the use of IWV measurements made with SP as initialization data in atmospheric reanalyses and in improving global climate models, especially at high latitudes.

KEYWORDS: CIVA, fotómetro solar (SP), Global Positioning System (GPS), Ártico, Aerosol Robonic Network (AERONET), Global Navigation Satellite System (GNSS), Rusia, Alaska y el Ártico canadiense (RACA), Groenlandia y el Ártico europeo (GEA).

1. Introducción

El Ártico es una región de especial interés para el estudio del clima, puesto que participa en la amplificación del calentamiento global, al disminuir su cubierta de hielo marino y nieve, aumentando la humedad atmosférica; este fenómeno se conoce como amplificación ártica (Serreze et al. 2009). El aumento del CIVA en el Ártico puede conducir a una mayor retención de calor, afectar la formación y persistencia de nubes, y alterar los patrones de precipitación (Boisvert et al. 2013).

El vapor de agua, que representa el 99 % del agua atmosférico (EUMeTrain 2014), es una variable climática de gran relevancia pues influye (Ortiz de Galisteo 2011):

- en el efecto invernadero. Es el gas más abundante y es más efectivo que el dióxido de carbono (EUMeTrain 2014).
- en el ciclo hidrológico global.
- en el balance radiativo de la atmósfera.
- en más del 50 % del transporte energético de bajas a altas altitudes (Ortiz de Galisteo 2011; EUMeTrain 2014).
- en las propiedades de los aerosoles, al interactuar con estos (Vaquero-Martínez et al. 2021), alterando la atenuación de la radiación solar.

Una medida de la cantidad total de vapor de agua es el Contenido Integral de Vapor de Agua (CIVA), denominado en otros estudios IWV (vapor de agua integrado), o PWV (vapor de agua precipitable), ambos por sus siglas en inglés (Ortiz de Galisteo 2011; Ning et al. 2016). En este estudio se mide en centímetros, lo cual representa la altura del vapor de agua condensado de una columna vertical en la atmósfera de base 1 m² sobre el fondo de esta (EUMeTrain 2014).

Las mediciones del CIVA muestran generalmente una alta variabilidad tanto en el dominio temporal como en el espacial (Vaquero-Martínez et al. 2021; Ortiz de Galisteo 2011). Sin embargo, ningún instrumento por sí solo puede captar tanto la variabilidad temporal como la espacial. Este problema se agrava en la región ártica, donde la cobertura espacial y temporal es limitada (Alraddawi et al. 2018).

A lo largo de las últimas décadas se han desarrollado una gran variedad de tipos de instrumentación, basados en diferentes técnicas, para la medida del CIVA, todos ellos con sus ventajas e inconvenientes (Ortiz de Galisteo 2011). Entre las técnicas más utilizadas se encuentran los radiosondeos, los receptores GPS y los fotómetros solares.

1.1. Mediciones del CIVA con GPS

Los GPS (englobados en la GNSS) se concibieron como un sistema de posicionamiento global. Bevis et al. (1992) y Bevis et al. (1994) propuso emplearlos también para el estudio de propiedades atmosféricas. Se basan en el retraso que sufre la señal del satélite al atravesar la atmósfera, utilizando factores de conversión que dependen de la temperatura media atmosférica (Bevis et al. 1994). Este sistema ha demostrado ser fiable para medir el CIVA, y por ello se usa como referencia en calibraciones o comparaciones.

Las ventajas de los GPS incluyen (Ortiz de Galisteo 2011):

- Capacidad de medición continua, independiente de las condiciones meteorológicas y la hora del día.
- Amplia cobertura espacial y temporal.
- Menor sensibilidad a la presencia de nubes y aerosoles.

Las limitaciones de los GPS incluyen (Ortiz de Galisteo 2011):

- Menor precisión en comparación con los SP en condiciones óptimas.
- Sensibilidad a errores en la estimación de la temperatura y presión superficial.
- Posibles errores debido a efectos de trayectoria múltiple y variaciones en la geometría de los satélites.

La tabla 1 muestra un resumen de los GPS, su periodo de funcionamiento y la cantidad de mediciones. Se eliminan valores instantáneos negativos, faltantes y fuera de la comparación por fechas; $1\,008\,128$ observaciones $(2,11\,\%$ del total).

TABLA 1: Rango temporal de mediciones del CIVA por GPS. Fecha en formato: día/mes/año. Fuente: (Tyahla 2021)

SP	Inicio	Fin	Días	Total
AND1	08/01/2001	04/10/2023	8305	2 149 428
ANDO	30/09/1999	31/12/2011	4476	1223793
ATQK	13/06/2006	12/08/2022	5905	1578650
BARO	18/04/2014	09/09/2023	3432	961341
BASC	21/12/2011	02/03/2015	1168	329523
BRW1	26/04/2008	04/10/2023	5640	1537732
CCPT	12/02/2002	21/09/2002	222	62168
DSL1	06/11/2002	04/10/2023	7638	1544942
EDOC	01/10/2002	04/10/2023	7674	1578000
ESIS	10/12/2020	04/10/2023	1029	279426
EUR2	08/10/2005	04/10/2023	6571	1827544
EURC	29/08/2008	04/10/2023	5515	959144
EURK	04/03/2003	06/10/2005	948	242676
KELY	18/08/1997	30/05/2018	7591	1738840
KLSQ	15/06/2014	04/10/2023	3399	683191
NABG	01/11/2019	17/03/2022	868	249302
NYA1	12/03/1998	17/03/2022	8772	2453277
NYA2	13/02/2007	04/10/2023	6077	903726
NYAC	29/10/2005	04/10/2023	6550	690292
NYAL	30/07/1997	17/03/2022	8996	2461208
PBOC	12/02/2002	06/10/2015	4985	1290168
PPSH	08/09/2020	04/10/2023	1121	270497
PUO1	06/11/2002	15/03/2015	4513	1052236
RESC	01/09/2008	04/10/2023	5512	763209
RESO	07/08/2000	04/10/2023	8458	2053736
SCOB	01/12/1998	17/04/2005	2330	468748
SCOR	14/12/2004	04/10/2023	6868	1933541
SG27	05/05/2002	04/09/2023	7793	2218585
SOD3	24/10/2013	04/10/2023	3633	850500
SODA	30/07/1997	04/10/2023	9562	2519920
SODF	01/01/2017	07/08/2018	584	51372
THGL	25/09/2017	04/10/2023	2201	478284
THU1	30/07/1997	12/01/2003	1992	375731
THU2	10/11/1998	04/10/2023	9094	2349253
THU3	25/05/2002	25/01/2019	6090	1733114
TIXG	21/10/2010	24/08/2023	4691	1278643
TIXI	10/10/1998	30/05/2022	8634	2398116
TIXJ	24/12/2005	19/10/2010	1761	448496
UTQI	21/02/2018	04/10/2023	2051	527200
WUTH	07/09/2020	25/02/2023	902	235912
Todos	30/07/1997	04/10/2023	9562	46 751 464

1.2. Mediciones del CIVA con SP

Los datos empleados provienen de la AERONET (NASA GSFC 2024). Es un programa de redes terrestres de detección remota de aerosoles, que cuenta con 570 estaciones en activo (Gupta et al. 2024). La red AERONET impone una estandarización de:

- las estaciones: todas emplean el fotómetro solar multibanda CIMEL Electronique CE318 que realiza mediciones de irradiancia solar espectral y radiancias del cielo.
- la calibración: gestionada por el Gooddard Space Flight Center (GSFC) de la NASA, y los centros federados a la misma.
- la transferencia de datos y el procesamiento de los datos: envía automáticamente los datos, los preprocesa y emplea varios algoritmos sobre los datos sin procesar, guardados en formato ASCII y comprimidos.
- la distribución de los datos: usando una herramienta web y el protocolo FTP.

Los SP son producidos por la compañía CIMEL Electronique CE318, capaces de tomar medidas de la radiancia del cielo y la irradiancia espectral solar. Esta última, que atañe a este estudio, mide la transmitancia atmosférica de ocho bandas espectrales, siendo la de 940 nm la empleada en la determinación del CIVA (Holben et al. 1998). El principio físico en el que se basa la determinación del CIVA es la atenuación de la radiación solar causada por la fuerte absorción del vapor de agua (Ortiz de Galisteo 2011).

Las ventajas de los SP son (Ortiz de Galisteo 2011):

- Alta precisión en condiciones de cielo despejado.
- Capacidad para medir simultáneamente otros parámetros atmosféricos, como el espesor óptico de aerosoles.
- Amplia red de instrumentos establecida (por ejemplo, AERONET).

Sin embargo, los SP también presentan limitaciones (Ortiz de Galisteo 2011):

- Dependencia de la radiación solar directa, lo que restringe las mediciones a períodos diurnos.
- Sensibilidad a la presencia de nubes.
- Cobertura temporal limitada (en comparación con los GPS, capaces de realizar mediciones durante todo el día).

Son descartados siete SP, por tener menos de 1500 valores horarios (Antuña-Marrero et al. 2023). Se realizó el control de calidad de las mediciones, excluyendo las anómalas (negativas o faltantes), descartándose 504, el 0.07% del total.

Del rango temporal de las mediciones, véase la tabla 2, se observa que PEARL (PEA) y OPAL (OPA), las dos estaciones con más mediciones, registran unas 29 y 20 veces más datos que Tiksi (TIK), la que menos mediciones tiene.

Recientemente, Antuña-Marrero et al. (2022) validaron el CIVA de los SP de la AERO-NET con medidas de radiosondas, mostrando un buen acuerdo entre ambos instrumentos.

1.3. Objetivos

Los objetivos específicos de este estudio son:

- Comparar cuantitativamente las mediciones del CIVA obtenidas con SP y con GPS en el Ártico, utilizando métricas estadísticas, considerando diferentes escalas temporales y ubicaciones geográficas.
- Investigar la relación entre el ángulo solar cenital (SZA) y el CIVA medido por fotómetro, y su impacto en la comparación entre SP y GPS.

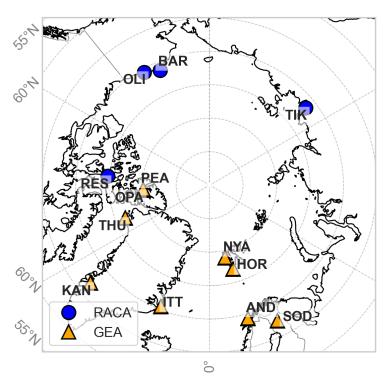
TABLA 2: Rango temporal de mediciones del CIVA, clasificado por SP. Fecha en formato: día-mesaño horas:minutos:segundos. Fuente: (NASA GSFC 2024)

SP	Inicio	Fin	Días	Total
Andenes (AND)	04-Jun-2002 05:15:00	24-Oct-2022 10:28:00	7447	55 693
Barrow (BAR)	30-Jul-1997 18:32:00	19-Oct-2022 23:12:00	9212	40998
Hornsund (HOR)	07-May-2004 14:10:00	11-Mar-2023 12:24:00	6882	30375
Ittoqqortoormiit (ITT)	10-May-2010 13:25:00	21-Oct-2021 14:14:00	4182	38939
Kangerlussuaq (KAN)	01-Apr-2008 13:41:00	28-Mar-2022 14:58:00	5109	68622
Ny Alesund AWI (NYA)	01-Jun-2017 14:40:00	30-May-2022 11:10:00	1824	26422
ARM Oliktok AK (OLI)	23-Sep-2013 22:01:00	19-Jun-2021 15:54:00	2826	20171
OPAL (OPA)	02-Apr-2007 15:35:00	26-Sep-2022 19:06:00	5656	95400
PEARL (PEA)	21-Mar-2007 17:55:00	06-Sep-2019 12:43:00	4552	137779
Resolute Bay (RES)	04-Jul-2004 13:41:00	18-Aug-2022 01:40:00	6618	79476
Sodankyla (SOD)	10-Feb-2007 09:58:00	18-Sep-2023 06:45:00	6064	29146
Thule (THU)	15-Mar-2007 18:00:00	04-Oct-2023 18:04:00	6047	84664
TIK	08-Jun-2010 19:59:00	07-Sep-2015 03:23:00	1916	4634
Todas	30-Jul-1997 18:32:00	04-Oct-2023 18:04:00	9562	712 319

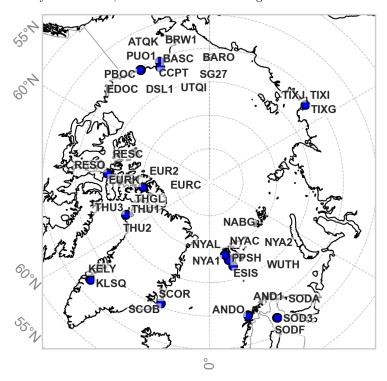
2. Metodología

2.1. Criterio de coincidencia espacial y caracterización geográfica

Este criterio se aplica a partir de cada SP, considerando coincidentes los GPS que están a una distancia menor o igual que 150 kilómetros. Esta distancia es una estimación preliminar gruesa de variabilidad espacial realizada a partir de los resultados reportados de análisis con mediciones satelitales del CIVA. Aunque la capacidad de muestreo de los satélites de órbita polar es muy densa en el Ártico, las medias diarias del CIVA con satélites podían desviarse hasta en un 50 % cuando se comparaban con las de instrumentos en superficie sondeos, GPS y radiómetros de microondas (Crewell et al. 2021).


Cuando emplearon en Crewell et al. (2021) las mediciones del Atmospheric Infrared Sounder (AIRS) las correlaciones y las desviaciones estándar de sus mediciones con las de los citados instrumentos de superficie solo mejoraron cuando a los promedios de las mediciones satelitales se realizaban con radios de coincidencia de 50 kilómetros. En el caso de las del Microwave Integrated Retrieval System (MIRS) este radio óptimo de coincidencia debía ser de 100 kilómetros.

Con miras a facilitar la lectura de las tablas, se reemplaza el nombre completo de los SP por un identificador de tres letras (consúltese el índice de siglas y acrónimos para más información). Se realiza también una clasificación de las estaciones SP, según sus coordenadas geográficas¹: GEA, para la región definida entre \pm 90° entorno al meridiano 0°, y RACA, para la región definida entre \pm 90° entorno al meridiano 180° (véase tabla 3).


Mediante los valores medios horarios para cada estación, véase la figura 2, se observa la variabilidad en la cantidad de mediciones, según la hora y la posición geográfica.

Los rangos de la distancia (véase la tabla 4) entre pares son [0,131 (OPA-EUR2), 126,678 (HOR-ESIS)] km, estando situados más del 80 % de los pares entre [0, 20] km (véase la figura 3a). Nótese en la figura 1a que PEA y OPA son los dos SP más próximos, por lo que comparten los mismos GPS (véase la tabla 4).

 $^{^{1}}$ La notación empleada para las coordenadas geográficas es la siguiente: los intervalos para la latitud y la longitud son $[-90^{\circ}, 90^{\circ})$ y $[-180^{\circ}, 180^{\circ})$. Son equivalentes a $[90^{\circ} \text{ S}, 90^{\circ} \text{ N})$ y $[180^{\circ} \text{ O}, 180^{\circ} \text{ E})$

(A) Mapa de la región Ártica para las estaciones de fotómetros solares (SP). En azul y con círculos, las estaciones SP en la región RACA.

(B) Mapa de la región Ártica para los GPS que verifican el criterio de coincidencia espacial.

FIGURA 1: Mapas de la región Ártica para cada instrumento. Fuente: tabla 4.

TABLA 3: SP clasificados por región geográfica. Fuente: Antuña-Marrero et al. (2023).

Identificador	Región
BAR	RACA
OLI	RACA
RES	RACA
TIK	RACA

Identificador	Región
AND	GEA
HOR	GEA
ITT	GEA
KAN	GEA
NYA	GEA
OPA	GEA
PEA	GEA
SOD	GEA
THU	GEA

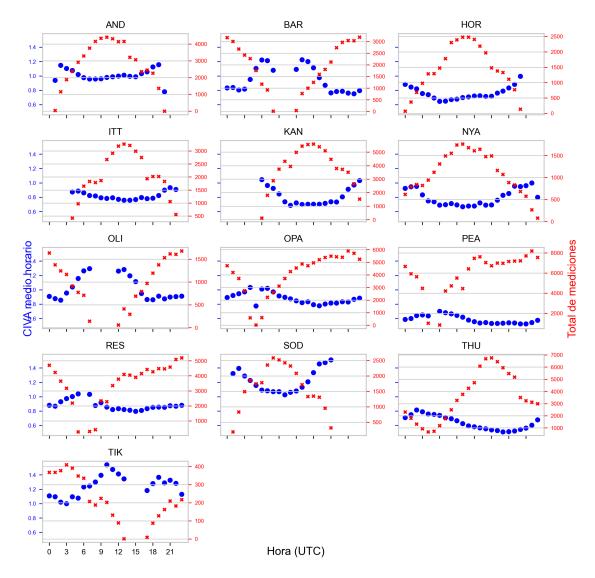
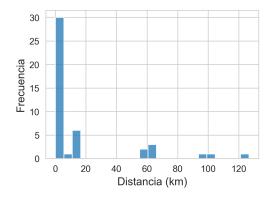
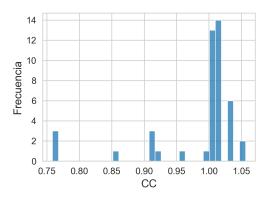


FIGURA 2: Curso diurno de los valores medios horarios (UTC) del CIV $A_{\rm SP}$, para cada SP. En azul, el valor medio horario del CIVA; en rojo el total de mediciones horarias. Fuente: tabla 10

TABLA 4: Información geográfica de los pares de estaciones SP-GPS resultantes tras la aplicación del criterio de coincidencia espacial. Se excluyen nueve GPS de los que no se disponen mediciones.

SP	Lat _{SP} (°)	Lon _{SP} (°)	GPS	Lat _{GPS} (°)	Lon _{GPS} (°)	Dist. (km)	CC
AND	69,28	16,01	AND1 ANDO	69,326 69,278	16,135 16,009	7,096 0,185	0,855 1,016
BAR	71,31	-156,66	ATQK BARO BASC BRW1 SG27 UTQI	70,472 71,325 71,325 71,283 71,323 71,323	202,592 203,332 203,322 203,210 203,390 203,385	97,103 1,691 1,776 5,533 2,279 2,144	1,009 1,002 1,002 1,004 1,001 1,002
HOR	77,00	15,54	ESIS PPSH WUTH	78,061 77,003 77,003	13,621 15,538 15,539	126,678 0,281 0,280	1,016 1,019 1,019
ITT	70,48	-21,95	SCOB SCOR	70,485 70,485	338,049 338,050	0,579 $0,590$	1,029 1,029
KAN	67,00	-50,62	KELY KLSQ	66,987 66,996	309,055 309,380	14,189 0,489	0,959 1,016
NYA	78,92	11,92	ESIS NABG NYA1 NYA2 NYAC NYAL	78,061 78,943 78,930 78,930 78,930 78,930	13,621 11,857 11,865 11,865 11,865	102,718 2,897 1,583 1,742 1,583 1,586	1,019 1,017 1,037 1,035 1,035 1,034
OLI	70,50	-149,88	CCPT DSL1 EDOC PBOC PUO1	70,320 70,333 70,310 70,256 70,254	211,500 211,527 211,682 211,665 211,657	55,226 55,640 61,948 63,752 63,591	1,007 1,007 1,010 1,009 1,009
OPA	79,99	-85,94	EUR2 EURC EURK	79,989 79,990 79,989	274,062 274,098 274,060	0,131 $0,725$ $0,167$	1,011 1,016 1,010
PEA	80,05	-86,42	EUR2 EURC EURK	79,989 79,990 79,989	274,062 274,098 274,060	11,518 11,996 11,509	0,760 0,763 0,759
RES	74,71	-94,97	RESC RESO	74,747 74,691	264,997 265,106	4,181 3,094	1,018 0,993
SOD	67,37	26,63	SOD3 SODA SODF	67,421 67,421 67,366	26,389 26,389 26,631	11,740 11,756 0,413	1,056 1,056 1,009
THU	76,52	-68,77	THGL THU1 THU2 THU3	76,537 76,537 76,537 76,537	291,175 291,212 291,175 291,175	2,375 1,980 2,368 2,368	0,915 0,923 0,915 0,915
TIK	71,59	128,92	TIXG TIXI TIXJ	71,635 71,635 71,635	128,866 128,866 128,866	5,295 5,295 5,295	1,014 1,014 1,014


2.2. Cálculo del coeficiente de corrección (CC)


Dado que los SP y los GPS están a distintas altitudes, las columnas de la atmósfera medidas no son exactamente iguales; el más distante al suelo omite una parte de la columna de atmósfera respecto del más próximo. Se supone que el CIVA decrece, en promedio, exponencialmente con la altura. Por ello es conveniente aplicar un coeficiente de corrección que tiene en cuenta la diferencia de alturas (Wang et al. 2017), mejorando la comparación al reducir errores sistemáticos:

$$CIVA_{GPS} = CIVA_{GPS}^{inicial} \times \exp\left(\frac{C_2 \Delta h}{1000}\right)$$

donde $\Delta h = h_{\rm GPS} - h_{\rm SP}$ m y $C_2 = 0,439~{\rm m}^{-1}$ (Leckner 1978). La corrección de alturas es aplicada una sola vez, para cada valor del GPS correspondiente a cada pareja de (SP, GPS), en los valores instantáneos.

Los rangos del CC (véase la tabla 4) son [0,760, 1,037]. La diferencia de alturas entre la mayoría de pares es ínfima, lo que se refleja en que el 82,22% de CC $\in (1\pm0,05)$ (véase la figura 3b).

(A) Histograma de frecuencias de las distancias entre pares de estaciones SP-GPS.

(B) Histograma de frecuencias del CC entre pares de estaciones SP-GPS.

FIGURA 3: Histogramas de frecuencias con información geográfica sobre los instrumentos de medición. Fuente: tabla 4.

2.3. Escalas temporales

Se utilizan siete intervalos temporales: valores instantáneos, en intervalos de 15 minutos ([0, 15), [15, 30), [30, 45), [45, 60) minutos) y valores medios horarios, diarios y mensuales. Estos intervalos son escogidos puesto que:

- 1. Los valores instantáneos permiten un análisis detallado de la variabilidad a corto plazo del CIVA.
- 2. El intervalo horario proporciona una visión más general, útil para comparaciones con otros estudios.
- 3. Los intervalos diarios y mensuales son importantes para observar tendencias a largo plazo y para realizar estudios climatológicos.

La variedad de escalas temporales permite una evaluación de la concordancia entre las mediciones de SP y GPS bajo diferentes condiciones y para diferentes aplicaciones potenciales.

La comparación de valores SP-GPS se realiza por intervalos temporales, desde el más corto hasta el más amplio. El procedimiento se desarrolla de la siguiente manera:

- 1. Para cada medición del CIVA realizada por SP, se extrae la fecha correspondiente.
- 2. Se identifican los GPS que cumplen el criterio de coincidencia espacial para ese SP.
- 3. Se buscan mediciones de GPS cuya fecha coincida con la del SP, ajustando la precisión temporal según el intervalo requerido (por ejemplo, mismo año y mes para los valores medios mensuales).

Para los valores instantáneos, el proceso implica comparar y filtrar 712 319 mediciones de los SP (véase la tabla 2) con 46 751 464 mediciones de los GPS (véase la tabla 1). Dada la considerable carga computacional, se ha desarrollado un programa eficiente en MATLAB R2024a (para más detalles, consultar el apéndice B.2.1).

Para calcular los valores medios, se han diseñado tres programas adicionales que reutilizan parte del código empleado para los valores instantáneos. La información de entrada para el cálculo de valores medios era la información de salida del intervalo temporal anterior (por ejemplo, para calcular los valores medios diarios, se trataban los valores medios horarios). Los totales de comparaciones para cada intervalo y SP se encuentra en la tabla 5. Para más información sobre el procedimiento empleado, consúltese el apéndice B.2.

2.4. Parámetros estadísticos

La metodología aquí fue empleada recientemente para la validación de mediciones del CIVA por Antuña-Marrero et al. (2022) y Antuña-Marrero et al. (2023).

Los promedios y los valores denotados con el subíndice j son referentes a cada intervalo temporal. Por ejemplo, para la escala diaria: dado un SP, año, mes, y día, se obtiene un conjunto de mediciones, con un total de N medidas.

Son empleados los siguientes estadísticos: el sesgo medio (MBE), que cuantifica la exactitud de las medidas del GPS, la desviación estándar (STD), que cuantifica la precisión de las medidas del GPS, sus valores relativos (rMBE y rSTD), obtenidos dividiendo por el promedio del CIVA_{SP} y multiplicando por 100, y el porcentaje de error relativo (RE).

$$\begin{aligned} \text{MBE} &= \frac{1}{N} \sum_{j=1}^{N} \Delta(\text{CIVA}^{j}) \\ \text{STD} &= \sqrt{\frac{1}{N} \sum_{j=1}^{N} \left(\Delta(\text{CIVA}^{j}) - \overline{\Delta(\text{CIVA}^{j})} \right)^{2}} \\ \text{RE} &= \frac{\left| \text{CIVA}_{\text{SP}} - \overline{\text{CIVA}_{\text{GPS}}} \right|}{\text{CIVA}_{\text{SP}}} \times 100 \end{aligned}$$

Se define $\Delta(\text{CIVA}^j) = \text{CIVA}_{\text{GPS}}^j - \text{CIVA}_{\text{SP}}$. Cuando se realizan regresiones lineales, se analizan tres coeficientes: la pendiente y la intersección con el eje y de la recta de ajuste $(m \text{ e } y_0)$ y el coeficiente de correlación de Pearson (R).

TABLA 5: Número de comparaciones, para cada par de SP-GPS, por intervalos y en total.

SP	GPS	#[0,15)	#[15, 30)	#[30, 45)	#[45, 60)	# hora	# día	# mes	Total
	AND1	38264	40086	41106	40165	9435	1249	96	170401
AND	ANDO	7986	6018	5904	6662	2678	358	32	29638
	Todos	46250	46104	47010	46827	12113	1607	128	200039
	ATQK	23568	23235	22068	22794	6378	929	76	99048
	BARO	20196	20200	17115	19011	3842	553	41	80958
	BASC	2451	2433	3276	2742	1178	185	18	12283
BAR	BRW1	23373	23296	21539	22691	5875	870	73	97717
	SG27	29833	29847	29043	28851	8471	1259	92	127396
	UTQI	17477	17490	13452	16068	2703	390	24	67604
	Todos	116898	116501	106493	112157	28447	4186	324	485006
	ESIS	7587	8232	9156	8532	1422	171	5	35105
HOR	PPSH	7677	8349	9309	8643	1441	171	5	35595
11010	WUTH	14994	16404	18312	16968	1421	170	6	68275
	Todos	30258	32985	36777	34143	4284	512	16	138975
ITT	SCOR	27483	28191	34209	26466	9203	978	48	126578
	KELY	25846	27715	27019	25660	7844	952	63	115099
KAN	KLSQ	21273	19618	17034	20988	3583	432	25	82953
	Todos	47119	47333	44053	46648	11427	1384	88	198052
	ESIS	9726	7788	9546	9939	1209	118	6	38332
	NABG	13983	11169	13236	14076	1566	180	12	54222
NYA	NYA1	17118	14724	16629	17238	2871	342	24	68946
1,111	NYA2	20451	17568	20167	20796	3325	366	24	82697
	NYAL	17037	14643	16524	17133	2858	340	24	68559
	Todos	78315	65892	76102	79182	11829	1346	90	312756
	DSL1	9882	8964	10410	10372	2264	373	18	42283
	EDOC	8715	8216	9704	9645	1915	318	17	38530
OLI	PBOC	1095	657	663	744	322	67	7	3555
	PUO1	816	516	492	573	247	50	7	2701
	Todos	20508	18353	21269	21334	4748	808	49	87069
	EUR2	70636	74508	73807	63912	9941	901	43	293748
OPA	EURC	32622	34480	33785	29169	4989	465	37	135547
	Todos	103258	108988	107592	93081	14930	1366	80	429295
	EUR2	100151	108807	105754	88669	11803	916	43	416143
PEA	EURC	43294	46952	45377	38071	4884	413	32	179023
	Todos	143445	155759	151131	126740	16687	1329	75	595166
	RESC	25740	22630	21283	25864	2950	344	31	98842
RES	RESO	60771	53283	50385	60480	7101	755	42	232817
	Todos	86511	75913	71668	86344	10051	1099	73	331659
	SOD3	15384	16125	14781	15828	4465	651	35	67269
SOD	SODA	20214	21897	19569	21447	6592	973	51	90743
	SODF	651	843	663	738	266	35	5	3201
	Todos	36249	38865	35013	38013	11323	1659	91	161213
	THGL	22678	22860	20112	19440	3585	411	21	89107
THU	THU2	59857	60423	62139	56523	15385	1583	77	255987
1110	THU3	29985	30204	36055	32198	11495	1125	54	141116
	Todos	112520	113487	118306	108161	30465	3119	152	486210
	TIXG	2226	2632	2856	2115	1249	210	11	11299
TIK	TIXI	3166	3705	4041	2910	1723	282	15	15842
	TIXJ	918	1041	1113	750	457	68	4	4351
	Todos	6310	7378	8010	5775	3429	560	30	31492
GEA	Todos	624897	637604	650193	599261	122261	13300	768	2648284
RACA	Todos	230227	218145	207440	225610	46675	6653	476	935226
Todos	Todos	855124	855749	857633	824871	168936	19953	1244	3583510

3. Resultados

Los resultados de los apartados de regresión lineal y parámetros estadísticos, para cada escala temporal, provienen de la tabla 8 y la figura 4. Se obtienen de la comparación entre las mediciones de CIVA obtenidas por SP y las de GPS.

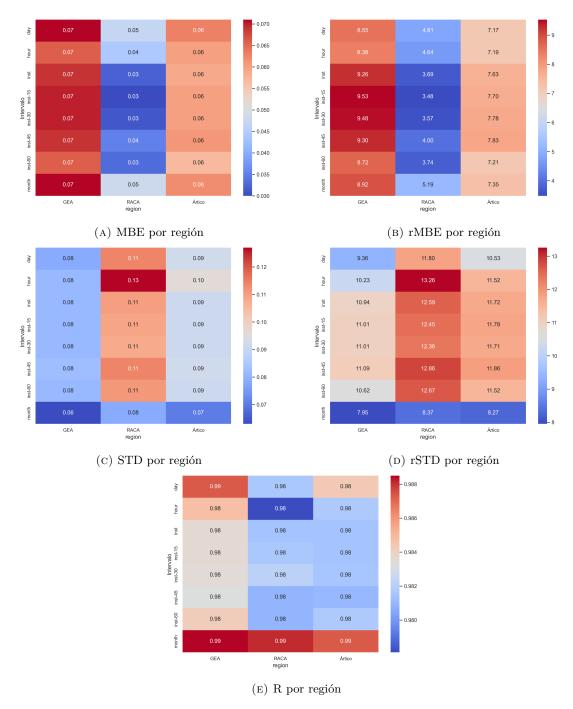


FIGURA 4: Mapas de calor por región para parámetros estadísticos y de la regresión lineal de $CIVA_{GPS}$ vs. $CIVA_{SP}$. Fuente: tabla 8

3.1. Valores instantáneos

Regresión lineal GPS vs. SP

- m muestra una ligera variación entre los diferentes intervalos. Para inst-15, inst-30 e inst-45 se mantiene constante en 0,983, mientras que para inst-60 aumenta ligeramente a 0,992.
- y_0 presenta una tendencia decreciente a medida que aumenta el intervalo de tiempo, comenzando en 0,07 cm para inst-15 y disminuyendo hasta 0,064 cm para inst-60.
- R se mantiene relativamente estable en todos los intervalos, con un valor de 0,9814, 0,9815, 0,981 para inst-15, inst-30 e inst-45, y un ligero aumento a 0,9817 para inst-60.

Parámetros estadísticos GPS vs. SP

- MBE muestra una tendencia creciente desde inst-15 hasta inst-45, aumentando de 0,06 cm a 0,061 cm, para luego disminuir a 0,057 cm en inst-60.
- rMBE sigue un patrón similar, incrementándose de 7,697 % en inst-15 a 7,830 % en inst-45, para luego descender a 7,213 % en inst-60.
- STD se mantiene constante en 0,091 cm para inst-15, inst-30 e inst-45, con un ligero aumento a 0,092 cm en inst-60.
- rSTD muestra una tendencia decreciente, iniciando en 11,777 % para inst-15 y disminuyendo hasta 11,522 % para inst-60.

Distribución del error relativo

La distribución del RE para los valores instantáneos se muestra en la figuras 5a a 5e. Aproximadamente el $70\,\%$ de las mediciones tienen un RE menor al $25\,\%$, lo que indica una buena concordancia general entre las mediciones de GPS y SP. La distribución del RE es similar para los diferentes intervalos de instantáneos, sugiriendo que la variabilidad a corto plazo no afecta significativamente la comparación.

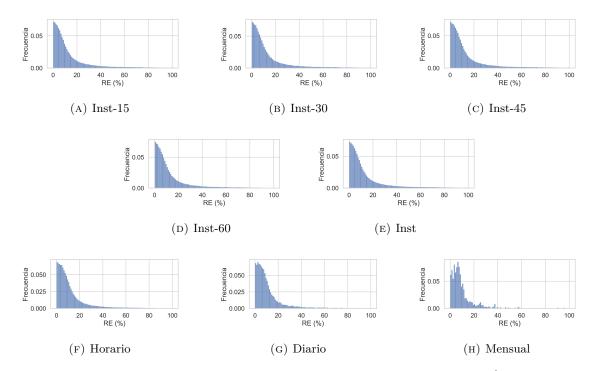


FIGURA 5: Histogramas del RE para diferentes escalas temporales en el Ártico.

Influencia del SZA y de la magnitud del CIVA

La correlación entre $\Delta(\text{CIVA})$ y SZA es prácticamente nula (R=-0,006, figura 6a). Asimismo, la correlación con la magnitud del CIVA_{SP} también es muy baja (R=-0,073, figura 6b). Esto sugiere que estos factores no influyen significativamente en las discrepancias entre GPS y SP.

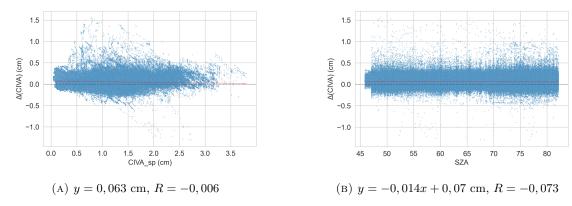


FIGURA 6: Gráficos de dispersión con todos los valores instantáneos ($N=3\,393\,377$). Fuente: tabla 7.

3.2. Valores medios horarios

Regresión lineal GPS vs. SP

- \blacksquare m aumenta a 1,008 en comparación con los valores instantáneos.
- y_0 disminuye a 0,053 cm, mostrando un valor más cercano a cero que en los intervalos instantáneos.
- R experimenta un ligero incremento, alcanzando 0,9817, lo que indica una correlación ligeramente más fuerte en comparación con los valores instantáneos.

Parámetros estadísticos

- MBE se mantiene similar a los valores instantáneos, con 0,060 cm.
- rMBE disminuye notablemente a 7,192 %, mostrando una reducción en el sesgo relativo.
- STD aumenta ligeramente a 0,096 cm.
- rSTD disminuye a 11,516 %, siguiendo la tendencia observada en los intervalos instantáneos de mayor duración.

Distribución del error relativo

La distribución del RE para los valores medios horarios (figura 5f) es similar a la de los valores instantáneos, con una ligera mejoría en la concentración de errores menores. Esto sugiere que el promediado horario reduce ligeramente las discrepancias entre GPS y SP.

3.3. Valores medios diarios

Regresión lineal GPS vs. SP

- \blacksquare m aumenta a 1,021 en comparación con los valores instantáneos.
- y_0 disminuye a 0,045 cm, el valor más cercano a cero observado hasta ahora.
- \blacksquare R experimenta un ligero sigue mejorando, llegando 0,9844, lo que indica una correlación ligeramente más fuerte en comparación con los valores horarios e instantáneos.

Parámetros estadísticos

- MBE aumenta ligeramente a 0,063 cm.
- rMBE continúa disminuyendo, alcanzando 7,171 %, el valor más bajo observado hasta este punto.
- STD disminuye levemente a 0,092 cm en comparación con el intervalo horario.
- rSTD muestra una reducción significativa, llegando a 10,526 %, continuando la tendencia de disminución observada en intervalos más largos.

Distribución del error relativo

La distribución del RE para los valores medios diarios (figura 5g) muestra una mayor concentración de errores bajos comparada con las escalas temporales más cortas. Esto sugiere que el promediado diario mejora aún más la concordancia entre GPS y SP.

3.4. Valores medios mensuales

Regresión lineal GPS vs. SP

- m disminuye ligeramente a 1,017 en comparación con el intervalo diario, pero sigue siendo mayor que en los intervalos instantáneos y horarios.
- y_0 aumenta levemente a 0,048 cm.
- R alcanza su valor más alto, 0,9873, indicando la correlación más fuerte entre todos los intervalos analizados.

Parámetros estadísticos

- MBE disminuye ligeramente a 0,062 cm en comparación con el intervalo diario.
- rMBE aumenta a 7,347 %, interrumpiendo la tendencia decreciente observada en intervalos más cortos.
- STD muestra una disminución significativa, alcanzando 0,070 cm, el valor más bajo entre todos los intervalos.
- rSTD continúa su tendencia decreciente, llegando a 8,269 %, el valor más bajo observado en todos los intervalos analizados.

Distribución del error relativo

La distribución del RE para los valores medios mensuales (figura 5h) muestra la mayor concentración de errores bajos de todas las escalas temporales analizadas. Esto confirma que el promediado a largo plazo mejora significativamente la concordancia entre GPS y SP.

3.5. Factores geográficos

Estaciones SP

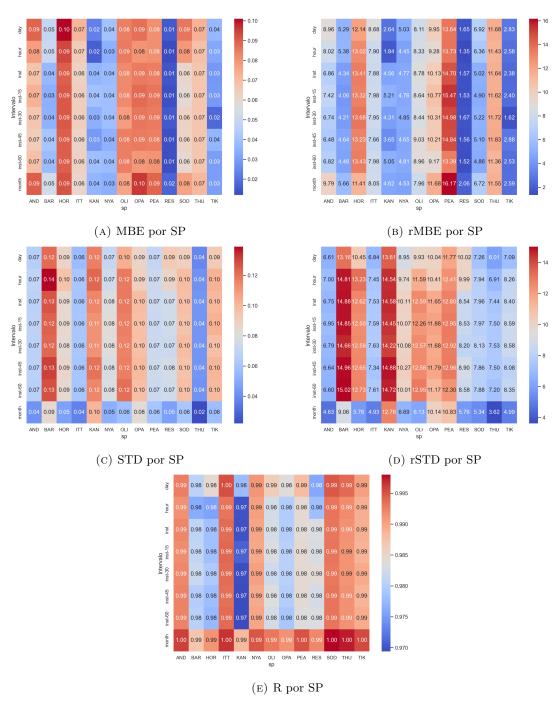


FIGURA 7: Mapas de calor por SP para parámetros estadísticos y de la regresión lineal de $CIVA_{GPS}$ vs. $CIVA_{SP}$. Fuente: apéndice A

A partir de la tabla 6 se observan diferencias notables entre GPS asociados a la misma estación SP. Por ejemplo, para la estación BAR, el MBE varía desde -0.012 cm (BAR-BRW1) hasta 0.144 cm (BAR-ATQK), y el rMBE oscila entre -1.457 % (BAR-BRW1) y 16.254 % (BAR-ATQK). En relación a cada SP:

■ MBE varía considerablemente entre las diferentes estaciones, con un rango desde −0,028 cm (TIK-TIXJ) hasta 0,146 cm (HOR-ESIS). El 87 % de las estaciones muestran un sesgo positivo.

Tabla 6: Parámetros estadísticos de los valores instantáneos de CIVA $_{\rm GPS}$ vs. CIVA $_{\rm SP}.$

SP	GPS	MBE (cm)	rMBE (%)	STD (cm)	rSTD (%)	CC	Dist. (km)
AND	AND1	0,067	6,619	0,064	6,384	0,855	7,096
AND	ANDO	0,078	8,451	0,082	8,853	1,016	0,185
BAR	ATQK	0,144	16,254	$0,\!207$	23,344	1,009	97,103
BAR	BARO	0,037	4,664	0,072	9,045	1,002	1,691
BAR	BASC	0,026	2,668	0,062	$6,\!359$	1,002	1,776
BAR	BRW1	-0,012	-1,457	0,071	8,349	1,004	5,533
BAR	SG27	0,018	1,984	0,071	8,021	1,001	2,279
BAR	UTQI	-0,009	-1,088	0,077	9,848	1,002	2,144
HOR	ESIS	$0,\!146$	21,764	0,136	20,329	1,016	$126,\!678$
HOR	PPSH	0,053	7,878	0,044	$6,\!509$	1,019	0,281
HOR	WUTH	0,081	12,065	0,043	$6,\!357$	1,019	0,280
ITT	SCOR	0,063	$7,\!877$	0,060	$7,\!532$	1,029	$0,\!590$
KAN	KELY	0,026	3,349	$0,\!126$	16,295	0,959	$14,\!189$
KAN	KLSQ	0,049	6,117	0,096	11,935	1,016	0,489
NYA	ESIS	$0,\!141$	$20,\!294$	$0,\!105$	15,164	1,019	102,718
NYA	NABG	$0,\!052$	$6,\!156$	0,059	6,900	1,017	$2,\!897$
NYA	NYA1	0,041	5,053	0,063	7,736	1,037	1,583
NYA	NYA2	0,012	1,642	$0,\!056$	$7,\!323$	1,035	1,742
NYA	NYAL	-0,005	-0,644	0,062	7,540	1,034	1,586
OLI	DSL1	0,090	$9,\!424$	0,116	$12,\!146$	1,007	$55,\!640$
OLI	EDOC	0,077	8,378	$0,\!122$	$13,\!254$	1,010	61,948
OLI	PBOC	0,062	7,348	0,086	$10,\!247$	1,009	63,752
OLI	PUO1	0,048	5,450	0,092	10,508	1,009	$63,\!591$
OPA	EUR2	0,078	8,999	0,092	10,635	1,011	$0,\!131$
OPA	EURC	$0,\!100$	12,851	0,107	13,732	1,016	0,725
PEA	EUR2	0,082	$14,\!292$	0,070	12,308	0,760	$11,\!518$
PEA	EURC	0,089	$15,\!657$	0,079	13,862	0,763	11,996
RES	RESC	0,048	$5{,}149$	0,096	$10,\!258$	1,018	4,181
RES	RESO	-0,001	-0,099	$0,\!058$	$6,\!822$	0,993	3,094
SOD	SOD3	$0,\!059$	4,663	0,096	$7,\!677$	1,056	11,740
SOD	SODA	0,060	5,122	0,096	8,096	1,056	11,756
SOD	SODF	$0,\!125$	9,973	0,109	8,691	1,009	$0,\!413$
THU	THGL	0,062	$10,\!355$	0,045	$7,\!421$	0,915	2,375
THU	THU2	0,066	11,309	0,043	7,343	0,915	2,368
THU	THU3	0,073	13,225	0,041	$7,\!526$	0,915	2,368
TIK	TIXG	0,031	2,736	0,096	8,454	1,014	$5,\!295$
TIK	TIXI	0,042	3,508	0,095	7,974	1,014	$5,\!295$
TIK	TIXJ	-0,028	-2,061	0,109	8,168	1,014	5,295

- rMBE presenta una amplia dispersión, oscilando entre −2.061 % (TIK-TIXJ) y 21,764
 % (HOR-ESIS).
- STD muestra variaciones entre las estaciones, con valores que van desde 0,041 cm (THU-THU3) hasta 0,207 cm (BAR-ATQK).
- rSTD fluctúa entre 6,357 % (HOR-WUTH) y 23,344 % (BAR-ATQK), indicando diferencias significativas en la dispersión relativa de las mediciones entre estaciones.

Basándose en la tabla 9 y la figura 7, se observan las siguientes tendencias para las estaciones SP en el Ártico:

- m varía desde 0,761 (KAN en el intervalo mensual) hasta 1,117 (TIK en el intervalo mensual), indicando diferencias en la relación entre las mediciones de GPS y SP entre estaciones.
- y_0 oscila entre -0.104 cm (TIK en el intervalo mensual) y 0.261 cm (OPA en el intervalo mensual), sugiriendo variaciones en el offset entre las mediciones de GPS y SP.
- R (figura 7e) es generalmente alto, variando desde 0,9694 (KAN en el intervalo instantáneo de 60 minutos) hasta 0,9980 (SOD en el intervalo mensual), indicando una fuerte correlación entre las mediciones de GPS y SP en todas las estaciones.
- MBE (figura 7a) varía desde 0,012 cm (RES en el intervalo horario) hasta 0,101 cm (HOR en el intervalo diario), mostrando diferencias en el sesgo medio entre estaciones.
- rMBE (figura 7b) oscila entre 1,350 % (RES en el intervalo horario) y 16,174 % (PEA en el intervalo mensual), indicando variaciones significativas en el sesgo relativo entre estaciones.
- STD (figura 7d) varía desde 0,022 cm (THU en el intervalo mensual) hasta 0,139 cm (BAR en el intervalo horario), mostrando diferencias en la dispersión de las mediciones entre estaciones.
- rSTD (figura 7c) oscila entre 3,622 % (THU en el intervalo mensual) y 15,021 % (BAR en el intervalo instantáneo de 60 minutos), indicando variaciones en la dispersión relativa entre estaciones.

Variabilidad regional

La tabla 8 y la figura 8 proporcionan información sobre la variabilidad regional en el Ártico:

- (figura 8a) RACA muestra consistentemente valores más altos de m (entre 1,055 y 1,074) en comparación con GEA (entre 0,955 y 1,000), indicando una tendencia a sobrestimar ligeramente las mediciones de GPS en relación con SP en la región RACA.
- y_0 es negativo para RACA (entre -0,020 y -0,016 cm) y positivo para GEA (entre 0,071 y 0,102 cm), sugiriendo un *offset* sistemático entre las regiones.
- (figura 8b) R es ligeramente más alto para GEA (entre 0,9833 y 0,9885) que para RACA (entre 0,9781 y 0,9881).
- (figura 8c) RACA presenta valores de MBE más bajos (entre 0,03 y 0,048 cm) en comparación con GEA (entre 0,066 y 0,071 cm), indicando un menor sesgo positivo (mayor exactitud) en RACA.
- rMBE (figura 8d) es consistentemente más bajo para RACA (entre 3,482 % y 5,187 %) que para GEA (entre 8,375 % y 9,532 %), sugiriendo un menor sesgo relativo en RACA (mayor exactitud relativa).

- (figura 8e) RACA muestra valores de STD más altos (entre 0,078 y 0,127 cm) en comparación con GEA (entre 0,063 y 0,082 cm), indicando una mayor dispersión absoluta en las mediciones de RACA (menor precisión).
- rSTD (figura 8f) son también más altos para RACA (entre 7,951 % y 13,257 %) que para GEA (entre 9,359 % y 11,011 %), sugiriendo una mayor dispersión relativa en RACA (menor precisión relativa).

Estas diferencias regionales podrían estar relacionadas con distintas condiciones atmosféricas o características geográficas de cada región.

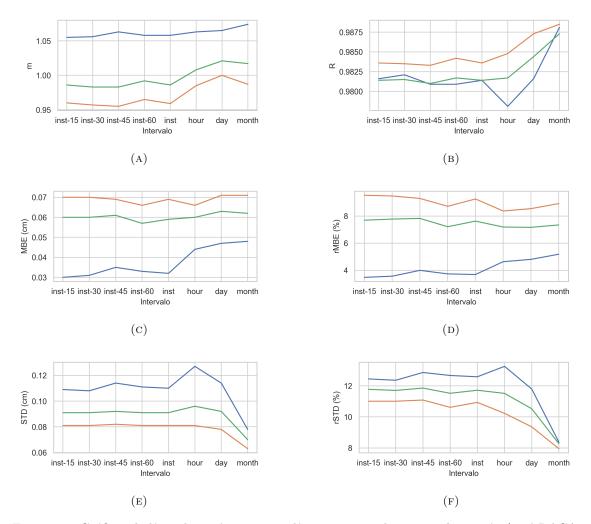


FIGURA 8: Gráficas de línea de parámetros estadísticos por escala temporal y región (azul RACA, naranja GEA, verde Ártico). Fuente: tabla 8

Distancia entre instrumentos

La tabla 7 y la figura 9 proporcionan información sobre la relación entre la distancia entre instrumentos y varios parámetros estadísticos:

- MBE (figura 9a) muestra una débil correlación positiva con la distancia (R = 0.576), con m = 0.001 cm km⁻¹. Esto sugiere un ligero aumento del sesgo con la distancia.
- rMBE (figura 9b) también presenta una correlación positiva débil con la distancia (R=0.554), con $m=0.098~\%\,\mathrm{km}^{-1}$, indicando un aumento del sesgo relativo con la distancia.

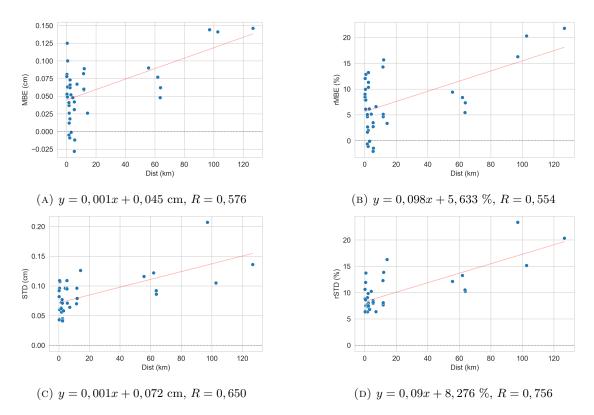


FIGURA 9: Gráficos de dispersión para cada par de SP-GPS con mediciones (N=39) frente a parámetros estadísticos. Fuente: tabla 7.

- STD (figura 9c) muestra una correlación positiva moderada con la distancia (R = 0.650), con m = 0.001 cm km⁻¹, sugiriendo un aumento de la dispersión con la distancia.
- rSTD (figura 9d) presenta la correlación más fuerte con la distancia (R=0.756), con $m=0.090~\%\,\mathrm{km}^{-1}$, indicando un claro aumento de la dispersión relativa con la distancia.

Altitud entre instrumentos

La tabla 7 y la figura 10 muestran la relación entre la diferencia de altitud entre instrumentos y varios parámetros estadísticos:

- MBE (figura 10a) muestra una débil correlación negativa con la diferencia de altitud (R = -0.144), con m = -0.090 cm km⁻¹. Esto sugiere una ligera disminución del sesgo con el aumento de la diferencia de altitud.
- rMBE (figura 10b) presenta una correlación negativa débil con la diferencia de altitud (R = -0.323), con $m = -27.772 \% \, \mathrm{km}^{-1}$, indicando una disminución del sesgo relativo con el aumento de la diferencia de altitud.
- STD (figura 10c) muestra una correlación positiva débil con la diferencia de altitud (R=0.194), con m=0.095 cm km⁻¹, sugiriendo un ligero aumento de la dispersión con el aumento de la diferencia de altitud.
- rSTD (figura 10d) presenta una correlación negativa muy débil con la diferencia de altitud (R = -0.101), con $m = -5.795 \% \, \mathrm{km}^{-1}$, indicando una ligera disminución de la dispersión relativa con el aumento de la diferencia de altitud.

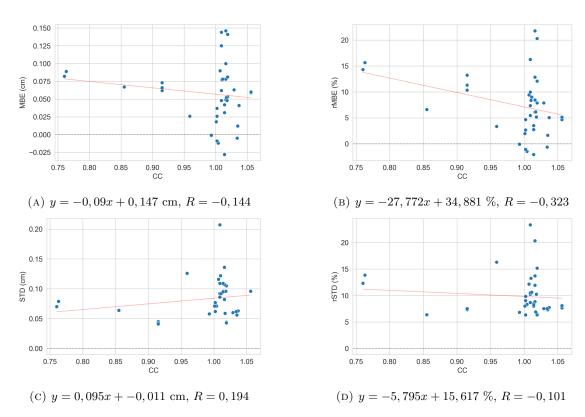


FIGURA 10: Gráficos de dispersión para cada par de SP-GPS con mediciones (N=39). Fuente: tabla 7.

4. Discusión

4.1. Estadísticos de los parámetros geográficos

4.1.1. Distancia entre instrumentos

El análisis de la influencia de la distancia entre los instrumentos GPS y SP (tabla 7, figura 9) revela correlaciones positivas débiles a moderadas con varios parámetros estadísticos:

```
■ MBE: R = 0.576, m = 0.001 cm km<sup>-1</sup>
```

• rMBE: R = 0.554, $m = 0.098 \% \text{ km}^{-1}$

• STD: R = 0.650, m = 0.001 cm km⁻¹

• rSTD: R = 0.756, $m = 0.090 \% \text{ km}^{-1}$

Estas correlaciones indican que tanto el sesgo como la dispersión tienden a aumentar ligeramente con la distancia entre los instrumentos. Este efecto podría atribuirse a la variabilidad espacial del vapor de agua atmosférico, tal y como sugerían Bock et al. (2007). La correlación más fuerte se observa para el rSTD, lo que sugiere que la distancia tiene un impacto más pronunciado en la precisión relativa de las mediciones; así se concluyó en Antuña-Marrero et al. (2022).

4.1.2. Diferencia de altitud entre instrumentos

La diferencia de altitud entre los instrumentos muestra correlaciones débiles con los parámetros estadísticos (tabla 7, figura 10):

```
■ MBE: R = -0.144, m = -0.090 cm km<sup>-1</sup>
```

• rMBE: R = -0.323, m = -27.772 % km⁻¹

• STD: R = 0.194, m = 0.095 cm km⁻¹

• rSTD: R = -0.101, $m = -5.795 \% \text{ km}^{-1}$

Estas correlaciones sugieren una ligera tendencia a la disminución del sesgo y un aumento de la dispersión absoluta con la diferencia de altitud. Sin embargo, la debilidad de estas correlaciones indica que la diferencia de altitud no es un factor determinante en la comparación entre las mediciones de GPS y SP en este estudio.

4.2. Estadísticos de los valores instantáneos

Los resultados de la comparación entre las mediciones de CIVA obtenidas por SP y GPS para valores instantáneos muestran una fuerte correlación (R=0.9814) y una pendiente cercana a la unidad (m=0.986) (tabla 8). Esto indica una buena concordancia general entre ambos métodos de medición. Sin embargo, se observa un sesgo positivo sistemático (MBE = $0.059 \, \mathrm{cm}$, rMBE = $7.631 \, \%$) que sugiere una ligera sobreestimación de los valores de CIVA por parte del GPS en comparación con el SP.

La dispersión de las mediciones (STD = $0.091\,\mathrm{cm}$, rSTD = $11.718\,\%$) refleja la variabilidad inherente en las mediciones atmosféricas y las diferencias en las técnicas de medición. Estos resultados son consistentes con la estimación de la incertidumbre del CIVA medido por SP dada por Holben et al. (1998); en torno al 12 %.

El análisis de la distribución del error relativo (figura 5) muestra que aproximadamente el 70% de las mediciones tienen un error relativo menor al 25%, lo que refuerza la buena concordancia general entre ambos métodos.

4.3. Estadísticos de los valores medios horarios, diarios y mensuales

Al analizar los estadísticos para diferentes escalas temporales (tabla 8), se observa una mejora general en la concordancia entre GPS y SP a medida que aumenta la escala temporal:

- \blacksquare R aumenta de 0,9817 (horario) a 0,9873 (mensual).
- rSTD disminuye significativamente, de 11,516 % (horario) a 8,269 % (mensual).

Esta mejora en la concordancia con el aumento de la escala temporal puede atribuirse a la reducción del ruido aleatorio y la influencia de fluctuaciones a corto plazo en las mediciones.

Sin embargo, rMBE no muestra una tendencia clara de mejora, oscilando entre 7,192% (horario) y 7,347% (mensual). Esto sugiere la presencia de un sesgo sistemático entre las mediciones de GPS y SP que persiste incluso en escalas temporales más largas. Antuña-Marrero et al. (2022) muestra la existencia de un sesgo seco en las medidas del CIVA por SP para las estaciones de la AERONET en el Ártico. Esto explica la persistencia del sesgo medio.

4.4. Estadísticos por región

El análisis regional revela diferencias significativas entre RACA y GEA (tabla 8, figura 8):

- RACA muestra consistentemente valores más altos de *m* (entre 1,055 y 1,074) en comparación con GEA (entre 0,955 y 1,000), indicando una tendencia a sobrestimar ligeramente las mediciones de GPS en relación con SP en la región RACA.
- El sesgo (MBE y rMBE) es considerablemente menor en RACA que en GEA para todas las escalas temporales. Por ejemplo, para valores instantáneos, RACA presenta un rMBE de 3,691 %, mientras que GEA muestra un 9,262 %.
- La dispersión (STD y rSTD) es mayor en RACA que en GEA. Para valores instantáneos, RACA tiene un rSTD de 12,586 %, mientras que GEA presenta un 10,936 %.

Estas diferencias regionales podrían atribuirse a variaciones en las condiciones atmosféricas y climáticas entre las dos regiones, que podrían afectar de manera diferente a las mediciones de GPS y SP.

4.5. Influencia de otras variables en el estudio: SZA y CIVA

El análisis de la influencia del SZA y la magnitud del CIVA medido por SP en las discrepancias entre GPS y SP (tabla 7, figura 6) muestra correlaciones muy débiles:

- \blacksquare SZA vs. $\Delta(\text{CIVA})$: $R=-0{,}006$ (magnitud 12 veces menor que en Antuña-Marrero et al. (2022))
- CIVA_{SP} vs. Δ (CIVA): R = -0.073 (magnitud 5 veces menor que en Antuña-Marrero et al. (2022))

Estos resultados sugieren que ni el SZA ni la magnitud del CIVA tienen una influencia significativa en las discrepancias entre las mediciones de GPS y SP.

5. Conclusión

Este estudio comparativo entre las mediciones del CIVA obtenidas por SP y GPS en el Ártico proporciona evidencia sobre la concordancia entre estas dos técnicas de medición y su aplicabilidad en el monitoreo del vapor de agua atmosférico en esta región crítica. Los hallazgos clave incluyen:

- 1. Complementariedad de técnicas: La fuerte correlación general entre las mediciones de GPS y SP (R > 0.9694 para todas las escalas temporales, apéndice A) sugiere que ambas técnicas pueden usarse de manera complementaria para el monitoreo del CIVA en el Ártico.
- 2. Consideración del sesgo: El sesgo positivo consistente observado en las mediciones de GPS en comparación con SP (rMBE entre 7,171 % y 7,697 % para el Ártico, tabla 8) debe tenerse en cuenta al utilizar datos de GPS para estudios climáticos o para la validación de modelos atmosféricos en la región ártica. Este sesgo podría llevar a una sobreestimación sistemática del CIVA si no se corrige adecuadamente.
- 3. Escala temporal de análisis: La mejora en la concordancia entre GPS y SP a medida que aumenta la escala temporal (tabla 8) sugiere que los datos promediados mensualmente pueden ser más confiables para estudios climáticos a largo plazo. Sin embargo, para estudios de procesos atmosféricos a corto plazo, las mediciones instantáneas o horarias siguen siendo valiosas, aunque con mayor incertidumbre.
- 4. **Diferencias regionales:** RACA muestra un menor sesgo pero mayor dispersión en comparación con GEA.
- 5. **Influencia de la distancia:** La correlación positiva entre la distancia entre instrumentos y los errores de la comparativa (figura 9) sugiere que el radio de la criterio de coincidencia espacial no debería sobrepasar excesivamente los 150 km empleados en este trabajo, y en otros, como Bock et al. (2007).

Este trabajo contribuye al campo de la meteorología ártica y el monitoreo del vapor de agua atmosférico al proporcionar una evaluación exhaustiva de la concordancia entre las mediciones de CIVA por SP y GPS en diferentes escalas temporales y regiones del Ártico.

Referencias

- Alraddawi, D. et al. (2018). « Comparison of total water vapour content in the Arctic derived from GNSS, AIRS, MODIS and SCIAMACHY ». En: Atmospheric Measurement Techniques. DOI: 10.5194/amt-11-2949-2018.
- Anthropic (2024). Claude 3 Family. https://www.anthropic.com/product. Large language model family.
- Antuña-Marrero, J. C. et al. (2023). « Comparing integrated water vapor sun photometer observations over the Arctic with ERA5 and MERRA-2 reanalyses. » Acceso facilitado por el autor.
- Antuña-Marrero, J. C. et al. (2022). « Integrated water vapor over the Arctic: Comparison between radiosondes and sun photometer observations ». En: *Atmospheric Research*. DOI: https://doi.org/10.1016/j.atmosres.2022.106059.
- Bevis, M. et al. (1992). « GPS meteorology: Remote sensing of atmospheric water vapor using the global positioning system ». En: *Journal of Geophysical Research: Atmospheres*. DOI: https://doi.org/10.1029/92JD01517.
- Bevis, M. et al. (1994). « GPS Meteorology: Mapping Zenith Wet Delays onto Precipitable Water ». En: Journal of Applied Meteorology and Climatology. DOI: https://doi.org/10.1175/1520-0450(1994)033<0379:GMMZWD>2.0.CO; 2.
- Bock, O. et al. (2007). « Comparison of ground-based GPS precipitable water vapour to independent observations and NWP model reanalyses over Africa ». En: Quarterly Journal of the Royal Meteorological Society. DOI: https://doi.org/10.1002/qj.185.
- Boisvert, L. N. et al. (2013). « Moisture flux changes and trends for the entire Arctic in 2003–2011 derived from EOS Aqua data ». En: Journal of Geophysical Research: Oceans. DOI: https://doi.org/10.1002/jgrc.20414.
- Crewell, S. et al. (2021). « A systematic assessment of water vapor products in the Arctic: from instantaneous measurements to monthly means ». En: Atmospheric Measurement Techniques. DOI: https://doi.org/10.5194/amt-14-4829-2021. URL: https://api.semanticscholar.org/CorpusID:233809144.
- EUMeTrain (2014). Product tutorial on total precipitable water content products. [Versión electrónica] Consultado, 01/09/24. URL: https://resources.eumetrain.org/data/3/359/navmenu.php?tab=2.
- Gupta, P. e I. Slukster (2024). Aeronet Site Information Page. [Versión electrónica] Consultado, 01/09/24. URL: https://aeronet.gsfc.nasa.gov/new_web/site_info_v3.html.
- Holben, B. et al. (1998). « AERONET—A Federated Instrument Network and Data Archive for Aerosol Characterization ». En: Remote Sensing of Environment. DOI: https://doi.org/10.1016/S0034-4257(98)00031-5.
- Leckner, B. (1978). « The spectral distribution of solar radiation at the earth's surface—elements of a model ». En: *Solar Energy*. DOI: https://doi.org/10.1016/0038-092X(78)90187-1.
- NASA GSFC (2024). AERONET. [Versión electrónica] Consultado, 01/09/2024. URL: https://aeronet.gsfc.nasa.gov/.
- Ning, T. et al. (2016). « The uncertainty of the atmospheric integrated water vapour estimated from GNSS observations ». En: Atmospheric Measurement Techniques. DOI: 10.5194/amt-9-79-2016.
- OpenAI (2023). GPT-40. https://openai.com/research/gpt-4. Large language model. Ortiz de Galisteo, J. P. (2011). « Análisis del contenido total en columna de vapor de agua atmosférico sobre la Península Ibérica medido con distintas técnicas: radiosondas, fotómetros solares y sistema GPS ». Tesis doct. Universidad de Valladolid, Facultad de Ciencias. DOI: https://doi.org/10.35376/10324/888.

- Serreze, M. C. et al. (2009). « The emergence of surface-based Arctic amplification ». En: *The Cryosphere* 3.1, págs. 11-19. DOI: 10.5194/tc-3-11-2009. URL: https://tc.copernicus.org/articles/3/11/2009/.
- The MathWorks Inc (2024). *Documentation*. [Versión electrónica] Consultado, 20/07/2024. URL: https://www.mathworks.com/help.
- Tyahla, L. J. (2021). GNSS data holdings. [Versión electrónica] Consultado, 09/09/24. URL: https://cddis.nasa.gov/Data_and_Derived_Products/GNSS/GNSS_data_holdings.html.
- Vaquero-Martínez, J. y M. Antón (2021). « Review on the Role of GNSS Meteorology in Monitoring Water Vapor for Atmospheric Physics ». En: *Remote Sensing*. DOI: https://doi.org/10.3390/rs13122287.
- Wang, Y. et al. (2017). « Evaluation of Precipitable Water Vapor from Four Satellite Products and Four Reanalysis Datasets against GPS Measurements on the Southern Tibetan Plateau ». En: *Journal of Climate*. DOI: https://doi.org/10.1175/JCLI-D-16-0630.1.

Índice de figuras

1.	Mapas de la región Artica para cada instrumento. Fuente: tabla 4	8
2.	Curso diurno de los valores medios horarios (UTC) del CIVA _{SP} , para cada	
	SP. En azul, el valor medio horario del CIVA; en rojo el total de mediciones	
	horarias. Fuente: tabla 10	S
3.	Histogramas de frecuencias con información geográfica sobre los instrumentos	
	de medición. Fuente: tabla 4	11
4.	Mapas de calor por región para parámetros estadísticos y de la regresión	
	lineal de CIVA _{GPS} vs. CIVA _{SP} . Fuente: tabla 8	14
5.	Histogramas del RE para diferentes escalas temporales en el Ártico	15
6.	Gráficos de dispersión con todos los valores instantáneos $(N=3393377)$.	
	Fuente: tabla 7	16
7.	Mapas de calor por SP para parámetros estadísticos y de la regresión lineal	
	de CIVA $_{\mathrm{GPS}}$ vs. CIVA $_{\mathrm{SP}}$. Fuente: apéndice A	18
8.	Gráficas de línea de parámetros estadísticos por escala temporal y región	
	(azul RACA, naranja GEA, verde Ártico). Fuente: tabla 8	21
9.	Gráficos de dispersión para cada par de SP-GPS con mediciones $(N=39)$	
	frente a parámetros estadísticos. Fuente: tabla 7	22
10.	Gráficos de dispersión para cada par de SP-GPS con mediciones $(N=39)$.	
	Fuente: tabla 7	23
11.	Diagrama de flujo simplificado para el programa calc-instant.mlx. Gene-	
	rado con la web https://mermaid.live	35

Índice de tablas

1.	Rango temporal de mediciones del CIVA por GPS. Fecha en formato: día/-	
	mes/año. Fuente: (Tyahla 2021)	5
2.	Rango temporal de mediciones del CIVA, clasificado por SP. Fecha en	
	formato: día-mes-año horas:minutos:segundos. Fuente: (NASA GSFC 2024)	7
3.	SP clasificados por región geográfica. Fuente: Antuña-Marrero et al. (2023)	9
4.	Información geográfica de los pares de estaciones SP-GPS resultantes tras	
	la aplicación del criterio de coincidencia espacial. Se excluyen nueve GPS de	
	los que no se disponen mediciones	10
5.	Número de comparaciones, para cada par de SP-GPS, por intervalos y en	
	total	13
6.	Parámetros estadísticos de los valores instantáneos de $CIVA_{GPS}$ vs. $CIVA_{SP}$.	19
7.	Regresión lineal para varias variables x (SZA, CIVA, CC y dist.) e y	
	$(\Delta(CIVA), MBE, rMBE, STD, rSTD)$	30
8.	Parámetros estadísticos y de la regresión lineal de CIVA $_{\mathrm{GPS}}$ vs. CIVA $_{\mathrm{SP}}$ por	
	intervalo y región	30
9.	Parámetros estadísticos y de la regresión lineal de CIVA $_{\mathrm{GPS}}$ vs. CIVA $_{\mathrm{SP}}$ por	
	intervalo y SP	31
10.	Valores medios horarios del CIVA número total de mediciones, para cada	
	estación SP y hora (UTC).	33
11.	Tiempos de ejecución (en minutos) para diferentes conjuntos de datos	37