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Abstract—With the development of intelligent transportation
systems, vehicular edge computing (VEC) has played a pivotal
role by integrating computation, storage, and analytics closer to
the vehicles. VEC represents a paradigm shift towards real-time
data processing and intelligent decision-making, overcoming
challenges associated with latency and resource constraints.
In VEC scenarios, the efficient scheduling and allocation of
computing resources are fundamental research areas, enabling
real-time processing of vehicular tasks and intelligent decision-
making. This paper provides a comprehensive review of the
latest research in Deep Reinforcement Learning (DRL)-based
task scheduling and resource allocation in VEC environments.
Firstly, the paper outlines the development of VEC and
introduces the core concepts of DRL, shedding light on their
growing importance in the dynamic VEC landscape. Secondly,
the state-of-the-art research in DRL-based task scheduling and
resource allocation is categorized, reviewed, and discussed.
Finally, the paper discusses current challenges in the field,
offering insights into the promising future of VEC applications
within the realm of intelligent transportation systems.
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I. INTRODUCTION

Nowadays, Intelligent Transportation System (ITS) is
evolving with advancements in connectivity, data analytics,
and AI, paving the way for smarter, safer, and more efficient
transportation systems [1]. ITS refers to the integration
of advanced technologies and communication systems into
transportation infrastructure and vehicles to improve safety,
efficiency, and sustainability in transportation, which lever-
ages various technologies such as sensors, communication
networks, data analytics, and automation to enable real-
time monitoring, control, and management of transportation
systems [2]. The development of ITS has evolved signifi-
cantly, starting from basic traffic management systems and
progressing towards more advanced applications, including
traffic signal optimization, congestion management, incident
detection and response, intelligent routing and navigation,
connected and autonomous vehicles, and multi-modal trans-
portation integration.

In recent years, vehicular networks have served as a
crucial foundation for enabling and supporting various ITS
applications. Vehicular networks refer to the early stages
of communication infrastructure designed specifically for
vehicles [3]. These networks aim to facilitate communi-
cations between vehicles and vehicles as well as between
vehicles and roadside units. Vehicular networks rely on
technologies like Dedicated Short Range Communications
(DSRC) and Wireless Access in Vehicular Environments
(WAVE) to enable vehicle-to-vehicle (V2V) and vehicle-to-
infrastructure (V2I) communications [4].

Vehicular ad hoc networks (VANETs) represent a subset
of vehicular networks where vehicles form a self-organizing
and decentralized network. VANETs utilize wireless commu-
nications to establish ad hoc connections between vehicles
in close proximity [5]. These networks leverage V2V and
V2I communications to exchange safety-related informa-
tion, such as collision warnings, traffic updates, and road
conditions. VANETs aimed to enhance road safety, traffic
management, and cooperative driving.

VANETs initially focused on enabling communication
and cooperation between vehicles and infrastructure. With
the advent of Vehicular Cloud Computing (VCC), cloud
computing technologies were integrated into the vehicular
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domain, allowing for resource-intensive applications to be
offloaded to the cloud for processing and storage [6].

However, VCC faced challenges related to latency, band-
width, and reliance on remote cloud infrastructure. In addi-
tion, the vehicular services are becoming latency-sensitive
and resource-intensive. In order to address these limitations,
vehicular edge computing (VEC) emerged as a paradigm
that leverages edge computing resources deployed at the
network edge, closer to the vehicles, enabling real-time
data processing, analytics, and intelligent decision-making
[7]. VEC brings computation, storage, and analytics ca-
pabilities to the proximity of vehicles, to reduce latency,
bandwidth consumption, and enhance overall system per-
formance [8]. While VANETs provide the underlying com-
munication framework for vehicular networks, VEC intro-
duces an additional layer of computation capabilities at
the network edge. Unlike traditional VANETs, which focus
solely on reliable data exchange, VEC necessitates joint
optimization of communication and computation resources
to meet latency and energy constraints. For example, task
offloading decisions must account for both wireless chan-
nel conditions (communication) and edge server workload
(computation). This dual focus distinguishes VEC from
VANETs and emphasizes the need for cross-disciplinary
approaches integrating networking and edge computing. This
development represents a shift towards localized, faster, and
more efficient processing within the vehicular environment,
enabling innovative applications and advancing the field of
intelligent transportation [9].

In VEC scenarios, task scheduling/offloading and resource
allocation are two main research topics that ensure efficient
utilization of edge computing resources and enable real-
time processing of vehicular tasks. Task scheduling in VEC
involves determining which tasks or computations should
be executed locally within vehicles and which should be
offloaded to the edge computing infrastructure [10]. Re-
source allocation in VEC focuses on efficiently allocating
computing, storage, and communication resources among
vehicles and edge servers [11]. These techniques enable
intelligent decision-making, real-time analytics, and efficient
allocation of resources within the vehicular environment,
contributing to the success of VEC applications and the
overall advancement of intelligent transportation systems.
The high-level overview of the vehicular edge computing
scenarios is elucidated by Fig. 1. As shown in the figure,
in VEC scenarios, vehicles on the road can offload tasks
to edge servers and the cloud server. The cloud server
and edge servers provide computation and communication
resources to vehicles, enabling efficient task processing and
real-time decision-making. In addition, vehicles can commu-
nicate with roadside infrastructure, such as traffic lights and
roadside units, to facilitate vehicle-road collaboration. This
interaction enhances the overall performance of intelligent
transportation systems by supporting applications like emer-
gency services, traffic management, and autonomous driving.

Over the past years, several surveys have studied different

aspects of VEC systems. In [12], a comprehensive survey of
VEC and its implications for smart vehicles and vehicular
networks is presented. It illustrates the VEC architecture,
discusses technical issues and solutions, and highlights fu-
ture research challenges. In [13], a comprehensive survey
of VEC is presented, which describes key research topics,
conducts a literature review, and identifies open research
issues and future directions in the field. In [14], the VEC
is introduced, including describing VEC concepts, technolo-
gies, and architectures, discussing resource allocation mech-
anisms, reviewing security approaches, and highlighting the
main challenges. However, to the best of the authors’ knowl-
edge, There are very few surveys focused on summarizing
the latest research work on task scheduling and resource al-
location in VEC scenarios. In addition, Deep Reinforcement
Learning (DRL) algorithms have gained significant attention
and usage in the domain of task scheduling and resource
allocation due to their ability to make intelligent decisions
in complex, dynamic environments [15]. Reinforcement
learning (RL) holds distinct advantages over conventional
optimization algorithms in dynamic decision-making scenar-
ios. RL’s adaptability to changing environments, ability to
balance exploration and exploitation, model-free learning,
online learning capabilities, and suitability for handling
partial observability make it particularly effective in real-
world problems. RL excels in scenarios involving complex
and high-dimensional decision spaces, sequential decision-
making, and robustness to uncertainty, addressing challenges
that conventional optimization algorithms may struggle with
due to their static nature, reliance on accurate models,
and limited capacity for handling dynamic and uncertain
environments. The inherent flexibility and learning capacity
of RL position it as a powerful approach for dynamic
decision-making problems.

In this context, the latest studies on DRL-based task
scheduling and resource allocation in VEC are reviewed.
Firstly, the development of VEC and the basic concepts of
DRL are introduced. Secondly, the state-of-the-art research
is reviewed, classified, and then discussed, respectively.
Finally, the evaluation metrics of the research are presented
and current challenges are discussed. The scope of this
survey is more focused on DRL applications within VEC,
which has not been the central theme of earlier surveys. In
addition, this survey is up-to-date, incorporating studies and
developments up to the present year, which is beyond the
coverage of previous surveys.

The main contributions are summarised as follows:
(1) This work is the first comprehensive survey specifi-

cally focused on DRL-based task scheduling and resource
allocation in VEC scenarios. This is significant as it fills a
critical gap in the literature, providing a foundation upon
which future research can build.

(2) A detailed introduction of VEC is provided, where
the architecture, application scenarios, task scheduling and
resource allocation problems are elaborated in detail. Then,
the deep reinforcement learning method is introduced. After
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Fig. 1: Overview of the vehicular edge computing scenarios.

this, a comprehensive review of recent advancements in
DRL-based task scheduling and resource allocation within
VEC environments is presented. The studies are catego-
rized according to the utilized DRL algorithms, the DRL
decisions, and the optimization targets. This contribution is
vital for keeping both academic researchers and industry
practitioners updated with the cutting-edge developments in
this fast-evolving field.

(3) In addition to summarizing existing studies, this work
delves into a deep analysis of these works, identifying
strengths and limitations. Based on the analysis, we of-
fer insights into potential future research directions and
emerging industrial applications, aiming to guide and inspire
subsequent investigations and implementations.

The rest of the paper is organized as follows: In Section
II, the architecture of the VEC system is introduced. It also
presents the key components of VEC. In Section III, the
concepts of DRL and some DRL algorithms are introduced.
The latest studies on task scheduling and resource allocation
using DRL algorithms are introduced and compared in
Section IV. The real-world applications of the VEC are
introduced in Section V. The typical evaluation metrics are
introduced in Section VI. The future research directions are
presented in Section VII. Finally, this paper is concluded in
Section VIII. The framework of the survey is shown in Fig.
2. The key abbreviations are shown in Table I.

TABLE I: List of main abbreviations

Abbrevation Description
ITS Intelligent Transportation System

VEC Vehicular Edge Computing
MEC Mobile Edge Computing
V2V Vehicle to Vehicle
V2I Vehicle to Infrastructure

VANETs Vehicular ad hoc networks
VCC Vehicular Cloud Computing
DRL Deep Reinforcement Learning
IoV Internet of Vehicles

RSUs Roadside Units
PPO Proximal Policy Optimization
SAC Soft Actor Critic
DQN Deep Q-Network

DDPG Deep Deterministic Policy Gradient
A3C Asynchronous Advantage Actor Critic

II. VEHICULAR EDGE COMPUTING

In this section, the system model of VEC will be intro-
duced first. Then, some key factors in VEC are discussed,
including task scheduling, resource allocation, communica-
tions, and computation.

A. System Model

VEC is a paradigm that integrates edge computing tech-
nologies into the vehicular environment [16]. It leverages
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edge servers and fog nodes deployed at the network edge,
closer to vehicles, to enable real-time data processing, ana-
lytics, and intelligent decision-making. VEC brings compu-
tation, storage, and analytics capabilities in close proximity
to vehicles, reducing latency, bandwidth consumption, and
reliance on remote cloud infrastructure.

While both MEC and VEC involve integration of edge
computing into specific environments, VEC is tailored to the
unique characteristics of vehicular environments, consider-
ing mobility, low latency, and resource constraints specific
to vehicles. VEC aims to provide real-time data processing,
decision-making, and intelligent services within the vehic-
ular domain, ultimately enhancing safety, efficiency, and
overall transportation experience.

Cloud 
server

Edge server

V2V 
task scheduling

V2I 
task scheduling

E2C 
communication

Computation and communication resource

Resource 
allocation

Vehicles

Cloud 

Edge layer

Fig. 3: The architecture of the three-layer VEC.

1) Architecture: A typical VEC system is comprised of
three layers, including vehicles, edge layer, and cloud layer
[17]. The architecture of the three-layer VEC is shown in
Fig. 3.

a) Vehicles: Smart vehicles play a vital role in the
VEC ecosystem. These vehicles are equipped with advanced
sensors, communication capabilities, and computational re-
sources, enabling them to generate, collect, process, and
transmit data within the VEC architecture.

b) Edge layer: The edge layer in VEC refers to the
layer that comprises edge servers, RSUs, and other com-
puting resources deployed at the network edge, closer to
the vehicles. This layer brings storage and computation
capabilities in proximity to the vehicles, enabling real-time
data processing and low-latency interactions. The edge layer
performs localized data processing and analytics, leveraging
the computational resources available at the edge. It reduces
latency, network congestion, and dependency on remote
cloud infrastructure. The edge layer enables fast response
time, supports time-sensitive applications, and enhances the
overall performance of VEC.

c) Cloud layer: The cloud layer in VEC represents
the layer that consists of remote cloud infrastructure, such
as data centers, servers, and storage facilities. This layer
provides large-scale computing and storage resources, which
are traditionally used in cloud computing. The cloud layer
can be leveraged for tasks that do not require real-time
processing or are more resource-intensive, such as long-term
storage, batch processing, and complex data analytics. It
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offers scalability, flexibility, and expansive computing power
for applications that can tolerate higher latency or involve
massive data processing.

2) Application scenarios: Currently, the VEC systems
have been applied in various scenarios. Some of the key
application scenarios are illustrated as follows:

a) Emergency Services: VEC facilitates faster incident
detection, emergency response, and coordination among
vehicles, infrastructure, and emergency services. It enables
real-time sharing of information, location tracking, and effi-
cient resource allocation during emergency situations [18].

b) Vehicular safety: VEC supports cooperative colli-
sion warning systems by enabling fast processing of sensor
data and real-time communications between vehicles. It en-
hances safety by providing timely alerts, collision prediction,
and cooperative manoeuvres to prevent accidents [19].

c) Traffic Management and Optimization: VEC sup-
ports real-time traffic management and optimization by
leveraging edge computing capabilities. Through V2I and
V2V communications, vehicles share data about traffic con-
ditions, congestion, and incidents. Edge servers analyze
these data to dynamically adjust traffic signal timings, op-
timize signal phasing, and provide real-time route guidance
to vehicles [20].

d) Edge-Assisted Autonomous Driving: VEC plays a
crucial role in the development of autonomous driving
by providing edge computing resources. In edge-assisted
autonomous driving scenarios, vehicles collect sensor data
and offload computationally intensive tasks, such as sensor
fusion, localization, mapping, and decision-making, to the
edge servers. The edge servers process the data in real time,
enabling faster perception, analysis, and response, thereby
enhancing the safety and reliability of autonomous vehicles
[21].

e) Path planning and vehicle navigation: In VEC, path
planning and vehicle navigation applications benefit from
localized data processing and real-time decision-making.
Vehicles can leverage edge servers to analyze traffic data,
road conditions, and historical patterns to determine the
optimal path for navigation. Edge-based path navigation
systems can provide real-time updates, dynamic rerouting,
and personalized route suggestions based on the current
traffic situation and individual preferences [22].

f) Edge-Based infotainment and sServices: VEC en-
ables edge-based infotainment and personalized services
within vehicles. With the help of edge servers, vehicles
can access real-time multimedia streaming, personalized
advertisements, location-based services, and other infotain-
ment applications. The edge resources provide low-latency
delivery of content, ensuring a seamless and enjoyable user
experience for vehicle occupants [23].

g) Ultra-low latency services: VEC is well-suited for
ultra-low latency services that require immediate response
times. For applications such as real-time video analytics,
Augmented Reality (AR) guidance, or time-critical vehicle-
to-vehicle communicationS, edge servers can process data

locally, minimize latency and provides near-instantaneous
results [24].

h) Computation-intensive services: VEC offloads com-
putationally intensive tasks from vehicles to the edge servers.
Applications such as high-resolution sensor data processing,
complex simulations, or AI-powered analytics can benefit
from the high computational capabilities at the edge [25].

B. Task Scheduling Problem

Task scheduling in VEC refers to the process of efficiently
allocating computation tasks between vehicles and edge
servers deployed at the network edge [26]. It involves de-
ciding which computational tasks should be executed locally
within vehicles and which tasks should be offloaded to the
edge servers for processing. The task scheduling scheme
can be operated into two main steps: (1) Task division: The
service request generated from one vehicle can be divided
into multiple tasks. These tasks can be executed serially or
concurrently. (2) Scheduling decision: This step determines
”which task should be offloaded?” and ”where to offload the
task?” [27].

For task scheduling, real-time and safety-critical tasks
may be executed locally to minimize communication delays,
while computationally intensive or less time-sensitive tasks
can be offloaded to the edge servers for efficient processing.
By strategically managing task allocation, VEC ensures
timely and accurate data processing, facilitating intelligent
decision-making and improving the overall efficiency of
vehicular applications.

C. Resource Allocation Problem

Resource allocation involves efficient distribution and
utilization of computational, storage, and communication
resources among vehicles and edge servers deployed at the
network edge [28]. It encompasses dynamic allocation of
resources based on the current demand, system load, and
application requirements.

Algorithms and mechanisms for resource allocation con-
sider factors such as task priorities, network conditions,
available resources, and real-time data analysis to make
informed decisions. By effectively allocating resources, VEC
maximizes the performance of applications, reduces latency,
and enhances the overall efficiency and reliability of the
VEC ecosystem [29].

The overall workflow of task scheduling and resource
allocation in a VEC system is presented in Fig. 4. It depicts
how computation tasks generated by vehicles can either
be executed locally or offloaded to nearby edge servers,
based on resource availability and latency requirements. This
figure also highlights the interaction between task scheduling
decisions and resource allocation mechanisms, providing a
visual representation of the system’s coordination process.

D. Computation Task

1) CPU cycles requirement: CPU requirement refers to
the amount of computational resources or processing capac-

This article has been accepted for publication in IEEE Transactions on Intelligent Transportation Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TITS.2025.3607910

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



6

Tasks

Task 
offloading

Local 
execution

Task 
offloading

Tasks

Task scheduling Resource allocation

Resource 
allocation

Resource 
allocation

Edge 
server Tasks

Available 
resources
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ity that a specific task requires to execute effectively and
efficiently [30].

2) Data Size: Data size relates to the volume of data gen-
erated, transmitted, or processed within the VEC systems.
This could include the size of data packets, images, videos,
or any other information exchanged between vehicles and
the edge computing infrastructure [31].

3) Maximum tolerable latency: Tolerable latency refers
to the maximum allowable delay or latency that a VEC
application can tolerate without affecting its functionality
or safety. In other words, it’s the threshold for how quickly
a task or data transfer needs to be completed to meet the
requirements of the application [32].

E. Communication Model

In VEC scenarios, V2V and V2I communications are two
fundamental components, enabling vehicles to communicate
with each other and with the surrounding infrastructure [33].

The data transmission rate is the rate at which data can be
transmitted over the wireless communication link. It depends
on the modulation scheme, channel conditions, and available
bandwidth. The Shannon-Hartley theorem provides a funda-
mental formula for calculating the maximum achievable data
rate:

R = B · log2 (1 + SNR) (1)

where R represents the data transmission rate, B represents
the available bandwidth in hertz (Hz), SNR represents the
Signal-to-Noise Ratio.

F. Computing Model

The task completion time depends on the CPU-cycle
frequency of the computing entities [34].

1) Local execution: If the task is executed locally on the
vehicle, the local completion time Tloc can be represented by
Tloc = ci/fi, where ci and fi represent the computation re-
source requirement of the task and the CPU-cycle frequency
of vehicle i, respectively.

2) Offloading: If the task is offloaded to the edge server,
the completion time Toff depends on the allocated CPU-
cycle frequency from the edge server, calculated by Toff =
ci/fi,r, where fi,r represent the CPU-cycle frequency of
edge server r allocated to the task. The maximum CPU-
cycle frequency of edge server can be defined as Fmax

r .

G. Calculation of Completion Time and Energy Consump-
tion

1) Completion time: For the local computation, the task
completion time is equal to the task’s local execution time.
For the task offloaded to the edge server, the task completion
time comprises transmission time and execution time [35].
The task completion time can be calculated according to:

T =

{
Tloc, local
Ttrans + Toff , offloading

(2)

where Ttrans represents the task transmission time, calcu-
lated by Ttrans = si/Ri,r, in which si denotes the data size
of the task, Ri,r denotes the data transmission rate between
the vehicle i and edge server r.

2) Energy consumption: Typically, the energy consump-
tion E can be estimated generally by :

E =

{
ξ · (fv)γ · ci, local
pv · si

Ri,r
+ ξ · (fr)γ · ci, offloading

(3)

where fv and fr are the computing power of vehicle v and
edge server r, ξ and γ are constant and represent the vehicle
power consumption coefficients, si and ci represent the data
size and CPU requirement of the task i.
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3) Weight allocations: In multi-objective optimization
problems, reward functions are often designed to combine
latency and energy consumption with specific weights. These
weights depend on the application requirements. For latency-
sensitive applications, higher priority is given to minimizing
delay, while for energy-constrained environments, energy
efficiency becomes the primary focus. For example, in the
application scenario of emergency services, the weight value
of completion time is 0.7 while that of energy consumption
is 0.3. In contrast, in the scenario of EV charging, the
weight value of completion time is 0.2 while that of energy
consumption is 0.8.

III. DEEP REINFORCEMENT LEARNING

In this section, the basic concepts of DRL and different
DRL algorithms will be introduced. The DRL method is
widely used in VEC scenarios for task scheduling and
resource allocation [36]. The structure of this section is
shown in Fig. 5.

A. Basic Concepts

DRL is a subfield of artificial intelligence and machine
learning that combines two powerful techniques: deep learn-
ing and reinforcement learning. It aims to train agents to
make intelligent decisions in an environment, similar to
how humans and other intelligent beings learn from their
experiences and interactions with the world.

In conventional reinforcement learning, an agent acquires
knowledge through trial and error. It engages with an en-
vironment, performs actions, and receives feedback in the
form of rewards or penalties corresponding to its actions.
The objective for the agent is to acquire a policy, constituting
a strategy or mapping from states to actions, with the aim
of maximizing the cumulative expected reward over time.

DRL introduces deep neural networks to represent the
agent’s policy or value functions. These deep neural net-
works allow the agent to handle high-dimensional and
complex environments, making it suitable for tasks such as
playing games, controlling robots, and making autonomous
driving decisions. The interface between agent and environ-
ment is shown in Fig. 6. The following describes the typical
components of a DRL system.

1) Agent: The agent serves as the learner or decision-
maker involved in interactions with the environment. It rep-
resents the entity undergoing training to execute a particular
task or attain a goal. The agent observes the prevailing
state of the environment and chooses actions to execute in
accordance with its existing policy. The primary objective of
the agent is to acquire an optimal policy, mapping states to
actions, with the aim of maximizing the cumulative reward
over the duration of the learning process.

2) Environment: The environment is the external context
with which the agent interacts. It could be a simulated envi-
ronment like a video game or a real-world environment like a
robot navigating through its surroundings. The environment
offers responses to the agent, delivering rewards or penalties

according to the actions undertaken by the agent. The agent’s
actions affect the environment, and the environment responds
by transitioning to a new state.

3) State space: The state serves as a depiction of the
current condition or observation of the environment per-
ceived by the agent, aiding in decision-making. The state
space encompasses the entirety of conceivable states that
the environment can assume.

4) Action space: The action space represents the set of all
possible actions that the agent can take in the environment.
Action refers to the choices available to the agent that it
can take within the environment. The action space can be
discrete (e.g., a finite set of actions) or continuous (e.g., a
range of real values). In VEC scenarios, the action for task
scheduling is discrete while the action for resource allocation
is continuous.

5) Reward: The reward serves as immediate feedback
from the environment to the agent following its action,
signifying the effectiveness of the action and the resulting
consequences. The agent’s aim is to maximize the overall
cumulative reward across time to accomplish the task’s
objective.

6) Policy: The policy is the strategy or mapping that the
agent uses to decide which action to take in a given state. It
defines the agent’s behavior and governs its decision-making
process. In DRL, the policy is often represented using a
neural network, where the input is the state, and the output
is the action probabilities (in the case of a stochastic policy)
or the action itself (in the case of a deterministic policy).

7) State value and state-action value function: In re-
inforcement learning, state value function and state-action
value function are two important concepts used to assess
the anticipated cumulative reward from a particular state
or state-action pairing, respectively, under a specific policy.
They are central to many value-based RL algorithms.

a) State Value Function: The state value function,
denoted as Vπ(s), signifies the expected anticipated reward
when starting from a particular state s and following a
certain policy thereafter. In other words, Vπ(s) estimates
how good it is for the agent to be in state s and continue
following the policy from that point onwards. The state value
function is defined as the sum of immediate rewards and
the expected future rewards, discounted by a factor (γ) that
represents the agent’s inclination toward immediate rewards
compared to those in the future. Bellman equation is one
of the central elements of many Reinforcement Learning
algorithms [37]. The Bellman equation for the state value
function can be expressed by:

Vπ(s) = Eπ

[ ∞∑
k=0

γtrt+1|st = s

]
(4)

where E represents the expected value, γ is the discount
factor, rt+1 is the reward received at time step t + 1, st is
the state at time step t, and π is the policy.

This article has been accepted for publication in IEEE Transactions on Intelligent Transportation Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TITS.2025.3607910

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



8

III. Deep 
Reinforcement 

Learning

C. Procedure of Applying 
DRL for VEC Problems

Problem formulation

DRL algorithm choosing

Environment modelling

Training

D. Advantages of DRL 
in VEC Scenarios

Adaptability to dynamic environments

Handling high-dimensional state-action 
spaces

Balancing competing objectives

Scalability and distributed coordination

Model-free learning

B. Taxonomy of 
RL Algorithms

Policy-based agent

Value-based agent

Actor-critic agent

A. Basic Concepts

Agent

Environment

State space

Action space

Reward

Policy

Fig. 5: Organization of Section III.

state
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Agent
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Fig. 6: Agent-environment interface.

b) State-Action Value Function: The state-action value
function, denoted as Qπ(s, a), estimates the expected cu-
mulative reward when starting from state s, taking action
a, and following a certain policy thereafter. In other words,
Qπ(s, a) quantifies how good it is for the agent to take action
a in state s and continue following the policy from that point
onwards. The state-action value function is defined similarly
to the state value function but takes into account both the
immediate reward of taking action a and the expected future
rewards, discounted by the factor γ. The Bellman equation
for the state-action value function is:

Qπ(s, a) = Eπ

[ ∞∑
t=0

γtrt+1|st = s, at = a

]
(5)

where E denotes the expected value, γ is the discount factor,
rt+1 is the reward received at time step t+1, st is the state
at time step t, at is the action at time step t, and π is the
policy.

B. Taxonomy of RL Algorithms

As shown in Fig. 7, model-free and model-based are two
main categories of reinforcement learning (RL) approaches.
Model-free RL focuses on directly learning policies or value

RL algorithms

Model-free RL Model-based RL

Policy-based Value-based

Actor-critic

PPO

TRPO

REINFORCE

A2C/A3C

DDPG

SAC

Q-learning

DQN

SARSA

Learn the model Given the model

World 
models

I2A

AlphaZero

MuZero

Fig. 7: Taxonomy of RL algorithms.

functions from interactions with the environment. It is often
computationally more straightforward and can be applied
when the environment’s dynamics are complex or unknown.
Model-based RL, on the other hand, learns a model of the
environment, which can be used for planning and simulation
to make decisions. It has the potential to be more sample-
efficient, especially in tasks with fewer interactions with the
environment. However, it requires an accurate estimation of
the environment’s dynamics, and the planning process can
become computationally expensive for large and complex
environments. In this context, model-free methods are more
popular and have been more extensively developed and
tested than model-based methods.

The deep neural networks in DRL can be trained using
various techniques, such as Q-learning, policy gradients, and
actor-critic methods. These algorithms iteratively improve
the agent’s policy over time, leading to better decision-
making capabilities and achieving higher rewards in the
given environment.

1) Policy-based agent: A policy-based agent in reinforce-
ment learning directly learns a policy, which is a strategy
or mapping from states to actions, without explicitly esti-
mating value functions [38]. The agent’s policy is typically
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represented by a parametric function, such as a deep neural
network. This function takes the current state as input and
produces probabilities for various actions as output. Policy-
based agents are particularly effective in handling continuous
action spaces and complex, high-dimensional environments,
and they offer more stable convergence compared to value-
based methods in certain scenarios.

PPO is a widely used policy gradient algorithm that
ensures stable updates by limiting the change in the policy
parameters [39]. TRPO is another policy gradient method
that guarantees monotonic improvement by constraining the
policy updates within a trust region [40].

More characteristics of the policy-based reinforcement
learning method are summarized as follows:

a) Network architecture: Policy-based models directly
learn the policy function that maps states to actions. These
models can be implemented using feedforward neural net-
works for simpler environments or Recurrent Neural Net-
works (RNNs) for environments where the agent’s decision
might depend on a sequence of previous states.

b) Hyperparameters: Key hyperparameters include the
learning rate, the discount factor (γ), the policy’s exploration
strategy, and the architecture specifics.

c) Training Procedures: During training, the agent en-
gages with the environment, collects experience, and updates
its policy using optimization methods like policy gradients
to increase the expected cumulative reward.

d) Performance Metrics: Common metrics include the
cumulative reward, convergence speed, and the stability of
the learning process.

2) Value-based agent: A value-based agent in reinforce-
ment learning learns value functions, such as state-values
or action-values, to estimate the expected cumulative reward
from a given state or state-action pair under a specific policy.
The agent typically employs iterative updates, using Bellman
equations or variants, to improve its value function estimates.
By choosing actions based on the highest value estimates,
the agent makes decisions that maximize the expected cumu-
lative reward. Value-based agents are efficient for handling
discrete action spaces and can be less affected by variance in
the gradients compared to policy-based methods. However,
they may face challenges in handling continuous action
spaces, as finding the optimal action requires an additional
optimization step. Q-learning, Deep Q Network (DQN), and
state-action-reward-state-action (SARSA) are representative
value-based algorithms.

Q-learning is a popular off-policy algorithm that estimates
the state-action value function (Q-values) and updates the
Q-values using the Bellman equation. DQN is an extension
of Q-learning that uses deep neural networks to represent
the Q-values, enabling it to handle high-dimensional state
spaces like images [41]. SARSA is an on-policy algorithm
that updates the Q-values by considering the expected value
of the subsequent state-action pair under the current policy.

More characteristics of the value-based reinforcement
learning method are summarized as follows:

a) Network architecture: Value-based models focus on
learning the value function, which estimates how good it is
to be in a given state or how good it is to take a certain
action from a given state.

b) Hyperparameters: Besides the learning rate and
discount factor, important hyperparameters include the size
of the replay buffer, the target network update frequency,
and the mini-batch size used for training.

c) Training Procedures: The value function is learned
by minimizing the difference between predicted and actual
returns, typically using variants of Q-learning. Techniques
like experience replay and fixed Q-targets are employed to
stabilize training.

d) Performance Metrics: Evaluation is based on the
accuracy of value estimation, the cumulative reward, and
how consistently the agent achieves high rewards across
various runs.

3) Actor-critic agent: An actor-critic agent in reinforce-
ment learning combines policy-based and value-based ap-
proaches to improve learning stability and efficiency. The
agent consists of two components: the ”actor” and the
”critic.” The actor directly learns a policy, mapping states to
actions, using policy gradient methods to update its policy
based on the expected cumulative reward. The critic, on
the other hand, estimates value functions to provide a more
stable estimate of the expected cumulative reward and guide
the actor’s learning process.

For example, Advantage Actor-Critic (A2C)is an actor-
critic algorithm that updates both the actor and critic net-
works in parallel, using the advantage function to estimate
the advantage of taking an action in a state compared to
the average value [42]. Deep Deterministic Policy Gradients
(DDPG) is also an actor-critic method designed for con-
tinuous action spaces, where the actor learns a deterministic
policy, and the critic estimates the action-value function [43].
Furthermore, Asynchronous Advantage Actor-Critic (A3C)
is a parallelized version of A2C that uses multiple agents
to update the actor and critic networks asynchronously,
enabling more efficient exploration [44].

More characteristics of the actor-critic-based reinforce-
ment learning method are summarized as follows:

a) Network architecture: Actor-critic models combine
the advantages of policy-based and value-based approaches.
The ”actor” learns a policy function, while the ”critic” esti-
mates the value function. These models can be implemented
using separate networks for the actor and critic or a shared
architecture with distinct output layers.

b) Hyperparameters: This category inherits hyperpa-
rameters from both policy-based and value-based models,
including learning rates for both the actor and the critic,
discount factors, and exploration strategies. Additionally, the
trade-off between the actor and critic’s learning rates can
significantly impact performance.

c) Training Procedures: The critic learns to predict the
value of state-action pairs, and the actor updates its policy
based on the critic’s feedback. This feedback often comes
in the form of an advantage function, which indicates how

This article has been accepted for publication in IEEE Transactions on Intelligent Transportation Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TITS.2025.3607910

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



10

much better an action is compared to the average action in
a given state.

d) Performance Metrics: Performance is evaluated
through a combination of the actor’s ability to maximize
cumulative rewards and the critic’s accuracy in value esti-
mation.

C. Procedure of Applying DRL for VEC Problems
Applying DRL methods for task scheduling and resource

allocation in VEC involves four key steps. The detailed
procedure is presented as follows:

1) Problem formulation: Problem formulation includes
the definition of the environment, the identification of the
actions, and the setting of the reward function. Firstly, we
need to define the state space that represents the system’s
status at any given time. Secondly, determine the possible
actions the DRL agent can take, such as allocating com-
putational resources and scheduling tasks to specific edge
servers. Thirdly, design a reward function that aligns with
the goals of task scheduling and resource allocation.

When determining the actions, the scalability of the agents
must be considered. In robotics scenarios, scaling is usually
less of an issue since the focus is often on individual robots
or small teams. For video games, while games can have
many entities, they operate within the limits of the game
engine, and the scale is controlled by the game developers.
However, in vehicular networks, the DRL system must scale
to handle a large number of vehicles and infrastructure
elements, often in a distributed manner.

The setting of the reward function impacts the training
performance. Rewards in robotics can be straightforward
but may involve complex task-specific goals. In video
games, rewards are typically well-defined by game rules
and are designed to be achievable and motivating. However,
in vehicular networks, the reward function often involves
multiple objectives such as safety, efficiency, and energy
consumption. Balancing these objectives can be complex.

2) DRL algorithm choosing: A suitable DRL algorithm
needs to be selected based on the problem’s characteristics
(e.g., DQN for discrete action spaces, DDPG or SAC for
continuous action spaces), the complexity of the environ-
ment, and the computational resources available.

3) Environment modelling: Three factors should be con-
sidered when modelling the environment: Environment
simulation, state representation, and action representation.
Firstly, develop or use an existing simulation environment
that accurately represents the VEC scenario. This is crucial
for training the DRL agent, as it provides a controlled setting
to explore different strategies. Secondly, define a comprehen-
sive yet efficient representation of the system’s state, incor-
porating relevant information such as the current task queue,
resource utilization levels, and network conditions. Thirdly,
ensure the action space is well-defined, whether it’s discrete
or continuous, and represents the possible decisions the agent
can make for task scheduling and resource allocation.

The environment in robotics is often more controlled
and predictable, especially in industrial settings. Even in

less structured environments, the physical interactions are
governed by well-defined physical laws. Video game envi-
ronments, while complex, are fully known and determinis-
tic, allowing for easier simulation and experimentation. In
contrast, the environment in vehicular networks is highly dy-
namic and unpredictable. Vehicles move at varying speeds,
and their interactions can change rapidly due to traffic
conditions, road layouts, and communication delays.

4) Training: Finally, the DRL agent can be trained using
the simulation environment, monitoring its performance over
time to ensure it is learning the intended task scheduling and
resource allocation strategies.

D. Advantages of DRL in VEC Scenarios

1) Adaptability to dynamic environments: VEC environ-
ments are highly dynamic because of vehicle mobility,
fluctuating network conditions, and various task demands.
Unlike traditional optimization methods like convex opti-
mization or heuristic algorithms, DRL algorithms can effec-
tively learn and adapt to real-time changes without requiring
the design of explicit system models [45].

2) Handling high-dimensional state-action spaces: The
state space of VEC are typically multi-dimensional, includ-
ing edge server workload, vehicular workload, vehicle posi-
tion, channel states, task characteristics, and so on. Action
space includes discrete actions like offloading targets and
continuous actions like resource allocation. Compared with
conventional methods, deep neural networks in DRL can
compress high-dimensional inputs into actionable policies
[46].

3) Balancing competing objectives: VEC requires trade-
offs between latency, energy, and system cost. Reward func-
tion shaping in DRL enables multi-objective optimization
without manual tuning.

4) Scalability and distributed coordination: In real-world
scenarios, large-scale VEC networks involve hundreds of
vehicles competing for edge resources. Facing these kinds
of environments, multi-agent DRL can decentralize decision-
making while avoiding the ”curse of dimensionality.”

5) Model-free learning: VEC systems usually face un-
certainties like unpredictable vehicle trajectories or sudden
task arrivals, which are hard to address for conventional
optimization methods. Model-free DRL algorithms have the
strength that they learn directly from interactions, eliminat-
ing reliance on idealized assumptions.

IV. DRL-BASED ALGORITHMS FOR TASK SCHEDULING
AND RESOURCE ALLOCATION

The DRL-based optimization methods can be classified
either according to the utilized DRL algorithms, the DRL
decisions, or the optimization objective. In this section, the
latest studies on task scheduling and resource allocation are
summarized. The structure of this section is shown in Fig.
8.
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A. Classification according to utilized DRL Algorithms

In this sub-section, the DRL-based optimization methods
are classified and reviewed according to the utilized DRL
algorithms.

1) Deep Q-Network (DQN): DQN combines deep neural
networks with Q-learning, enabling agents to learn optimal
action-value functions in complex environments. It uses ex-
perience replay and target networks to stabilize training and
has been notably successful in training agents for tasks with
high-dimensional state spaces and discrete action spaces.
The three technical innovations in DQN are introduced as
follows:

(a) The DQN algorithm relies on the Q-value function,
Q(s, a), which estimates the expected cumulative rewards
for each action a in a given state s. Given a state s, the DQN
algorithm outputs the best policy by selecting the action a
that maximizes the Q-value. This can be expressed as:

π(s) = argmax
a

Q(s, a) (6)

This policy determines the action that the agent should
take to maximize its expected rewards.

(b) Traditional Q-learning tables are impractical for en-
vironments with large state-action spaces due to memory
and computation constraints. DQN addresses this by using
deep neural networks (DNNs) to approximate the Q-value
function. The neural network, parameterized by weights θ,
takes the state s as input and outputs Q-values for all possible
actions. The Q-value function is updated using the Bellman
equation:

Q(s, a) ≈ Q(s, a; θ) (7)

Q(s, a) = r + γmax
a′

Q(s
′
, a

′
; θ−) (8)

where r is the reward received after taking action a in state
s, γ is the discount factor, and θ− are the parameters of
a target network, which is periodically updated to stabilize
training.

(c) The third innovation in DQN is the introduction of
the Experience Replay method, which improves the effi-
ciency and stability of learning. Instead of learning from
consecutive experiences, DQN stores the agent’s experiences

(s, a, r, s
′
) in a replay buffer. During training, mini-batches

of experiences are randomly sampled from this buffer to
break the correlation between consecutive experiences and to
smooth the training data distribution. This random sampling
helps to reduce the variance of the updates and leads to more
stable and efficient learning.

DQN works well in the context of task scheduling and
resource allocation [47]:

Paper [48] addressed the challenge of executing
computation-intensive applications on resource-constrained
vehicles through vehicular computation offloading. The pro-
posed solution involves a multi-agent DQN algorithm, where
multiple vehicles make offloading decisions to minimize the
total task processing delay over the long term. In this paper,
the reward convergence performance was assessed over
100 training iterations. The proposed method’s reward was
compared with the rewards obtained from the Actor-Critic
(AC) algorithm. The results demonstrated that the DRL
approach outperformed AC algorithm in terms of reward
convergence, indicating its superior capability in optimizing
the given problem. In addition, the performance evaluation
was conducted under varying numbers of vehicles and the
evaluation metrics include delay and packet transmission
performance.

Paper [49] focused on minimizing overall processing
delay while considering energy limits and involved DQN for
online offloading and a Lagrange-based migration algorithm
for computation optimization. In this work, over 4000 train-
ing iterations, the reward convergence of the DQN algorithm
was thoroughly analyzed under different learning rates. This
comparison aimed to identify the optimal learning rate
that maximizes reward efficiency, results show that training
with a learning rate of 0.6 can achieve the highest reward
and training with 0.8 can achieve the fastest convergence.
The evaluation metrics chosen for the study were average
delay and energy consumption. The performance of the
utilized DQN algorithm was further tested across varying
task workloads to examine its adaptability.

In [50], the authors introduced a collaborative three-tier
decentralized network known as Vehicle-Assisted Multi-
Access Edge Computing to tackle computation offloading
challenges in highly mobile Internet of Vehicles (IoVs). In
this context, they applied a Multi-Agent Deep Reinforce-
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ment Learning-based Hungarian Algorithm to address the
dynamic task offloading problem within the VMEC frame-
work. In this paper, the DQN algorithm is assessed over
3000 training iterations, focusing on its reward convergence
performance compared to two other extended DRL algo-
rithms. The evaluation metrics include time delay, energy
consumption, and average cost and the performance is tested
under varying numbers of vehicles to simulate different
traffic densities.

In [51], the NP-hard resource allocation problem was
solved by applying DQN algorithm to dynamically learn net-
work state dynamics and find optimal solutions for different
vehicular application offloading, aiming to reduce response
time and enhance QoS. In this paper, the DQN algorithm’s
reward convergence performance is analyzed and compared
with those of basic greedy and random scheduling algo-
rithms over 300 training iterations. The primary evaluation
metric is the acceptance rate, which reflects the proportion
of successfully scheduled tasks.

In [52], a method called CoOR was proposed, which
focuses on collaborative task offloading and service caching
replacement from a vehicle-centric viewpoint. To tackle
issues associated with the interdependence of task offload-
ing and service caching, diverse computation requests, and
changing data transmission conditions, an iterative algorithm
that combines Gibbs sampling and DQN was employed to
determine optimal decisions. This paper focuses specifically
on the total cost as the primary evaluation metric. The
performance of the utilized DQN algorithm is tested under
a variety of conditions including different vehicle speeds,
varying coverage areas of RSUs, diverse starting locations
of the tasks, and fluctuations in RSU computing resource
prices. These diverse testing conditions simulate real-world
variability in MEC environments.

As shown in the above studies, DQN introduced tech-
niques like experience replay and target networks, which
help stabilize training and improve convergence in discrete
action spaces. However, DQN is not applicable to environ-
ments with continuous action spaces.

2) Deep Deterministic Policy Gradients (DDPG): DDPG
is a model-free reinforcement learning algorithm that extends
traditional DQN to continuous action spaces, enabling it to
learn deterministic policies for tasks such as robotic con-
trol. DDPG combines elements of actor-critic methods and
deep learning, utilizing both a policy network and a value
function network to achieve stable and efficient learning in
environments with continuous action spaces. Following is an
introduction of the two innovations in DDPG:

(a) In DDPG, the goal is to find the best policy that
maximizes the expected cumulative rewards. The algorithm
uses a Q-value function Q(s, a) that estimates the expected
return for taking action a in state s. Additionally, an action-
value function, µ(s), represents the policy that determines
the best action to take in each state. Given state s and action
a, the DDPG algorithm outputs the best policy by optimizing
the action-value function and the Q-value function simulta-

neously.
(b) DDPG follows an actor-critic approach where two

separate neural networks, the actor and the critic, work
together. The actor network learns the policy. It takes the
state s as input and outputs the action a = µ(s|θµ), where
θµ represents the parameters of the actor network. The
critic network learns the Q-value function. It takes both the
state s and the action a as inputs and outputs the Q-value
Q(s, a|θQ), where θQ represents the parameters of the critic
network. The actor is updated by following the gradient
of the expected return, improving the policy directly. The
critic is updated using the Bellman equation to minimize
the temporal difference error:

L
(
θQ

)
=

E
[(

r + γQ
(
s′, µ

(
s′ | θµ

′
)
| θQ

′
)
−Q

(
s, a | θQ

))2
]
(9)

where θµ
′

and θQ
′

are the parameters of target networks for
the actor and critic, respectively, which are slowly updated
to provide stable targets for training.

DDPG is typically used in VEC scenarios for task
scheduling and resource allocation [59]:

In [53], a DDPG-based task offloading scheme for vehic-
ular edge computing was proposed, which involves using
mobile vehicles as mobile edge servers (MESs) to assist
fixed edge servers in completing computation tasks of mobile
devices. In this research, the DDPG algorithm’s reward con-
vergence performance is analyzed under varying conditions
including different learning rates, batch sizes, and discount
factors, to optimize its configuration for the task. The
evaluation metrics employed are the average task offloading
request hit ratio and Quality of Experience (QoE), which
gauge the user satisfaction of task scheduling. Additionally,
the performance of the proposed DDPG-based method is
evaluated across edge servers with differing computation
capacities.

In [54], the authors focused on VEC and addressed the
challenge of jointly optimizing service caching and com-
putation offloading in dynamic vehicular networks. They
employed DDPG algorithm to obtain a suboptimal solution
with low computational complexity. In this paper, the reward
convergence of the designed method is thoroughly compared
with other offloading scenarios: traditional offloading with-
out edge caching, offloading aimed at minimizing latency,
and offloading focused on reducing energy consumption. The
primary evaluation metrics used to assess the algorithm’s
performance are total delay and total energy. Moreover,
the effectiveness of the DDPG algorithm is tested under
conditions of varying task sizes and different computational
capacities of edge servers.

In [55], the authors formulated a joint task schedul-
ing and resource allocation strategy to reduce energy cost
while meeting delay constraints. To solve this problem,
they employed the MADDPG method to obtain the optimal
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TABLE II: Studies using DDPG and DQN algorithms

Paper Year Method Action Objective Description

[53] 2023

DDPG

Offloading target selection.
Maximize the

Quality of
Experience (QoE).

To identify an efficient strategy for offloading
computation tasks from mobile devices to

achieve the maximum QoE for these devices.

[54] 2023
Proportion of the tasks

offloaded to edge node and
edge pool.

Minimize the
average task

completion time.

To solve a collective optimization challenge by
incorporating both service caching and

computation offloading in a typical scenario
involving VEC with task requests that vary over

time.

[55] 2020

Whether to offload,
computation resource
allocation, channels

allocation.

Decrease the energy
cost.

A vehicular speed-aware task scheduling and
resource allocation strategy was proposed.

[56] 2022 Offloading decision,
transmit power allocation

Minimize latency
and energy

To utilize DQN for devising the offloading
strategy and employ DDPG to formulate the

strategy for determining the transmit power of
vehicles.

[57] 2020
Selection of receiver RSU,

helper RSU, and deliver
RSU.

Minimize the
service cost.

Designed a Task Partition and Scheduling
Algorithm (TPSA) to determine the allocation

of workload and the selection of servers.

[58] 2023 Offloading decision,
resource allocation.

Maximize offloading
success rate.

Proposed a collaborative computation offloading
model that accommodates various offloading

patterns.

[48] 2021

DQN

Server selection to receive
the tasks.

Minimize the total
task completion

time.

Several mobile vehicles opt for nearby MEC
servers to offload their computing tasks.

[49] 2020
Communicational and
computational resource

allocation.

Optimize overall
processing delay.

A mechanism for joint communication and
computational resource allocation (RJCC) is
introduced to enhance the optimization of

overall processing delay.

[50] 2022
Whether to offload, edge

server selection, offloading
to the cloud or not.

Minimize the cost
of computation

resources.

To develop a collaborative three-layer VMEC
network structure where vehicles, under

associated and neighbouring RSUs, constitute
VMEC servers.

[51] 2022 Server selection. Maximize the
acceptance rate.

Proposed a collaborative decision-making
approach between MEC and the central cloud

for offloading tasks in various vehicular
applications.

offloading and resource allocation strategy. The core aspect
of this study is the comparison of the DDPG-based method’s
reward convergence under varying numbers of vehicles,
which introduces different levels of complexity and demand
on the system. The key evaluation metrics considered are
task completion delay and energy consumption, crucial for
assessing the performance of the scheduling solution.

In [56], a two-stage strategy utilizing DDPG for task
scheduling and resource allocation was proposed to reduce
execution and processing latency as well as energy consump-
tion. This study specifically assesses the reward convergence
performance of the DDPG algorithm, comparing it under
various conditions including different numbers of vehicles
and fluctuating task arrival rates. The evaluation metrics
employed to gauge the effectiveness of the algorithm include
long-term execution delay, energy consumption, and pro-
cessing accuracy—factors critical to the reliability of MEC
systems. The performance of the DDPG algorithm is tested
against these different task arrival rates to determine its
adaptability.

Paper [60] presented a VEC model with a focus on
task offloading, considering data dependency of tasks in
urban scenarios. To minimize system response time and
energy consumption, the authors proposed a Mobility-aware
dependent task offloading (MESON) Scheme and developed
a DDPG based algorithm for training the offloading strategy.
This study compares the reward convergence performance
of the DDPG algorithm against two other DRL strategies,
DQN and Q-learning. Evaluation metrics such as response
time and energy consumption are employed to assess the
algorithms’ effectiveness. The performance of the DDPG
algorithm is tested under scenarios with varying numbers of
vehicles and different task loads, showcasing its ability to not
only outperform DQN and Q-learning in terms of quicker
response times and lower energy consumption but also
demonstrating its robust adaptability to fluctuating network
densities and task volumes. The DDPG-based and DQN-
based methods are outlined in Table. II.

DDPG is well-suited for environments with continuous
action spaces, such as adjusting the bandwidth or computing

This article has been accepted for publication in IEEE Transactions on Intelligent Transportation Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TITS.2025.3607910

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



14

resources in VEC. However, DDPG can suffer from over-
estimation bias due to noise in policy and value function
estimation.

3) Soft Actor-Critic (SAC): SAC aims to maximize the
expected cumulative reward in continuous action spaces.
It introduces an entropy regularization term to encourage
exploration, making it well-suited for problems with high-
dimensional state and action spaces where both efficient
exploration and stable learning are crucial. Following is the
detailed introduction to SAC:

(a) SAC is based on the actor-critic architecture, where the
actor network πθ(a|s) (policy) decides the actions to take,
and the critic networks Qϕ1

(s|a) and Qϕ2
(s|a) estimate the

expected return (Q-value) for the given state-action pairs.
Unlike traditional actor-critic methods, SAC includes an en-
tropy term in its objective function to encourage exploration.
The entropy term ensures that the policy remains stochastic,
preventing premature convergence to suboptimal policies.
The objective for the policy is to maximize the expected
return while also maximizing the entropy of the policy:

Jπ(θ) = Est∼D,at∼πθ
[α log πθ (at | st)−Q (st, at)] (10)

where α is a temperature parameter that controls the trade-
off between exploration (entropy) and exploitation (expected
return).

(b) The temperature parameter α in the entropy term can
be fixed or learned. SAC often includes an automatic entropy
adjustment mechanism where alpha is adjusted to maintain
a desired level of policy stochasticity. The objective for α is
to minimize the difference between the expected entropy of
the policy and a target entropy H:

J(α) = Eat∼πθ
[−α log πθ (at | st)− αH] (11)

This adaptive adjustment allows the agent to balance
exploration and exploitation dynamically during training.

Therefore, SAC is also utilized for decision making in
VEC [61]:

A distributed dynamic many-to-many task offloading
framework within vehicular fog computing (VFC) was pro-
posed in paper [62], where vehicles serve as fog nodes. Th
authors applied a Multi-Agent Gated Actor Attention Critic
(MA-GAC) algorithm to optimize offloading efficiently in a
distributed manner. Over 8000 training iterations, the reward
convergence performance of the SAC algorithm is analyzed
and compared to that of the DDPG algorithms. The primary
evaluation metric used in the study is the external cost
gained, which measures the overall expense incurred by the
system during task scheduling.

In [63], a Vehicular Edge-Cloud Computing (VECC)
network was introduced for processing delay-sensitive tasks
in IoT devices, in which SAC algorithm was leveraged
to develop effective task offloading policies in dynamic
environments. The study compares the reward of the SAC
algorithm using different target update rates and discount
factors to identify the most effective parameters. The primary

evaluation metric is tolerance time, which measures the
system’s ability to handle task scheduling within accept-
able delays. Performance evaluations are conducted with
varying numbers of tasks to assess the algorithm’s scala-
bility and robustness. The SAC algorithm’s performance is
benchmarked against several baseline algorithms, including
SARSA, DQN, Double DQN, and Dueling DQN. Results
from the experiments demonstrate that the SAC algorithm
outperforms these baselines in terms of reward convergence
and effectively reduces tolerance time.

Paper [64] presented a computation offloading and task
scheduling scheme for Internet of Vehicles. This scheme
utilizes SAC algorithm for effective decision-making and
scheduling, with the goal of maximizing the number of com-
putation task offloading executions within the constraints of
the edge server’s limited computing resources. This paper
focuses on key evaluation metrics: timeout rate and energy
consumption. The experiments evaluate the SAC algorithm’s
performance under varying numbers of tasks to assess its
scalability. The results demonstrate that the SAC algorithm
effectively reduces the timeout rate and energy consumption
compared to traditional methods.

Experimental results in the above studies show that SAC
is more sample-efficient than DDPG and DQN, making it
suitable for environments where data collection is costly.
However, the structure of SAC is more complex than DQN
or DDPG, requiring careful implementation and tuning of
its entropy regularization component.

4) Asynchronous Advantage Actor Critic (A3C): A3C
uses multiple agents, or threads, to explore an environment
concurrently. It combines actor-critic architecture, where one
neural network (the actor) suggests actions and another (the
critic) evaluates those actions, with asynchronous updates
to enhance exploration and accelerate learning in complex
environments. Following is the introduction to A3C, high-
lighting its key innovations:

(a) The first key innovations of A3C is the use of multiple
parallel agents, each interacting with its own copy of the en-
vironment. These agents operate asynchronously, collecting
experiences and updating the shared global model in parallel.
This approach helps to stabilize training by decorrelating the
data and reducing the risk of getting stuck in local optima.
Each agent independently performs the following steps: 1)
Interacts with its environment to collect experience tuples
(s, a, r, s

′
). 2) Computes gradients for both the policy and

value networks. 3) Updates the global model asynchronously
using these gradients.

(b) A3C is an on-policy algorithm, meaning it updates the
policy based on the actions taken by the current policy. The
advantage function is estimated using n-step returns, which
balances bias and variance in the value estimates. The n-step
return R is calculated as:

R =

n−1∑
k=0

γkrt+k + γnV (st+n) (12)
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The actor and critic networks are updated using the
computed advantage function:

Policy loss = − log πθ(at|st)A(st, at) (13)

V alue loss = (R− V (st|θv))2 (14)

Additionally, an entropy term is added to the policy loss to
encourage exploration and prevent premature convergence:

Entropy loss = βH(πθ(·|st)) (15)

where H is the entropy of the policy, and β is a coefficient
that controls the strength of the entropy regularization.

A3C has its own advantages in dynamic decision making
[65]:

In [66], an end-edge-cloud architecture for computation
offloading in the Internet of Vehicles was proposed. It
utilizes an A3C-based offloading algorithm that considers
efficiency and fairness factors in the reward function, en-
abling real-time and convenient computing service access
for vehicle users. The experiments focus on the reward con-
vergence performance of both the actor and critic networks,
comparing their rewards under different learning rates to
determine optimal configurations. The primary evaluation
metrics include the relative efficiency factor and the rela-
tive fairness factor, which assess the algorithm’s ability to
balance task scheduling efficiency and fairness. Furthermore,
performance evaluations are conducted under varying num-
bers of tasks and different computing capacities of the MEC
server, demonstrating the algorithm’s adaptability.

Paper [67] addressed the challenge of effectively aggre-
gating and scheduling network resources for diverse tasks by
formulating a joint optimization problem for task offloading
and resource management, leveraging Asynchronous Ad-
vantage Actor-Critic algorithm to find optimal scheduling
policies while considering the dynamics and randomness of
vehicular networks. This study compares the convergence
performance of the proposed A3C-based method under
various learning rates to identify the most effective con-
figuration. The primary evaluation metric is latency, which
measures the time delay in task processing and comple-
tion. Performance evaluations are conducted under different
conditions, including varying numbers of vehicles, different
task sizes, diverse edge computation capacities, and different
vehicle computation capacities.

The studies using A3C have advantages in parallel train-
ing, which allows for parallel training across multiple in-
stances, significantly speeding up the learning process. How-
ever, in a distributed setting, the need for synchronization
and communication between workers can introduce over-
head, especially in VEC scenarios with limited bandwidth.

5) Proximal Policy Optimization (PPO): PPO seeks to
optimize policies by iteratively updating them in a conser-
vative manner, preventing large policy changes to ensure
stable and reliable learning in environments with potentially

nonlinear and complex dynamics. Here’s an introduction
incorporating the specified innovations:

(a) PPO is an on-policy algorithm that, given the current
state s, outputs the action probabilities or specific actions to
be taken by the agent, as well as a value estimate for those
actions. The policy network, parameterized by θ, provides a
probability distribution πθ(a|s) over actions a given state
s. The agent samples an action from this distribution or
selects the action with the highest probability. Additionally,
the value network, parameterized by ϕ, estimates the value
function Vϕ(s), which represents the expected return starting
from state s. These components work together to ensure the
agent not only decides on the best actions to take but also
understands the value of being in each state, facilitating more
informed policy updates.

(b) Another key innovation in PPO is the clipping mecha-
nism, designed to prevent large, destabilizing updates to the
policy. The objective function in PPO is modified to include
a clipped probability ratio that ensures the new policy πθ

does not deviate too far from the old policy πθold . This can
be expressed as:

LCLIP(θ) = E
[
min

(
rt(θ)Ât, clip (rt(θ), 1− ϵ, 1 + ϵ) Ât

)]
(16)

Here, rt(θ) =
πθ(at|st)

πθold
(at|st) is the probability ratio between the

new and old policies, Ât is the advantage estimate, and ϵ is a
small hyperparameter (e.g., 0.2) that determines the clipping
range. This clipping mechanism ensures that updates to the
policy are conservative, reducing the risk of policy collapse
and leading to more stable and reliable training.

Recently, PPO has been widely used for obtaining optimal
task scheduling and resource allocation decisions [72]:

Paper [69] addressed the challenge of multi-task of-
floading (MTO) in mobile edge computing scenarios. The
proposed solution utilizes a PPO algorithm to reduce the exe-
cution time for tasks generated from various MTO scenarios
by encoding sequential offloading actions and training a meta
policy that can quickly adapt to new scenarios with minimal
training steps. The performance of the PPO algorithm is
thoroughly evaluated under various conditions including dif-
ferent numbers of subtasks, bandwidths of subchannels, and
vehicle arrival rates to assess its efficiency and adaptability
to dynamic network conditions. The algorithm’s efficacy is
compared against the DQN method, providing a benchmark
for its performance. The results showcase that the PPO
algorithm significantly improves computation waiting times,
optimizes the offloading proportion, and achieves better load
balance and fairness among vehicles compared to DQN.

Paper [70] addressed the challenge of resource alloca-
tion to minimize service latency in Internet of Vehicles
environments. The method involves a heuristic algorithm
that efficiently allocates limited fog resources and integrates
the PPO algorithm to make resource allocation decisions
by considering vehicle movement and parking status data
from the smart city environment. The PPO algorithm’s
performance is compared against the Advantage Actor-Critic
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TABLE III: Studies using SAC, A3C, and PPO algorithms

Paper Year Method Action Objective Description

[62] 2023

SAC

Vehicle selection, buy or
sell resource Minimize QoS. Computational resource trading among vehicles

to execute task method.

[63] 2023 Offloading target selection. Minimize the total
time.

Proposed three potential types of task
offloading: transferring to BS, shifting to VS, or

directing to the cloud.

[68] 2023

Whether to trade, the
amount of computational

resources to sell or buy as
trading intention.

Maximize the
trading objective in

the long run.

A framework for task offloading, utilizing a
many-to-many approach and grounded in the
vehicular trading paradigm, was introduced.

[64] 2023 Whether to offload or not. Joint optimization of
time and energy.

Determine whether to perform tasks locally or
offload them to the server, considering the

satisfaction of time delay constraints for locally
executed tasks.

[66] 2022

A3C

Task offloading decision. Minimize delay. An end-edge-cloud architecture of vehicles was
designed for task computation offloading.

[67] 2023 Offloading decision and
resource assignment policy.

Maximize the
system utility.

The novelty is the exploration of accessible
vehicle resources and the incorporation of

service migration considerations.

[69] 2023

PPO

Subchannel and processor
selection.

Minimize task
execution time.

The issue of multi-task offloading (MTO) was
explored, involving multiple offloading

scenarios with diverse parameters.

[70] 2020 Resource allocation. Minimize the
service latency.

To allocate the constrained fog resources to
vehicular applications, minimizing service

latency by leveraging parked vehicles.

[71] 2023 Subchannel selection and
transmit power allocation.

Minimize the
computational

overhead.

Simultaneous optimization of decisions for task
offloading, channel assignment, and transmit

power allocation.

TABLE IV: Technical comparison among the DRL algorithms

Algorithm Action
space Exploration stability mechanisms Strengths Challenges Use cases in

VEC

DQN Discrete greedy Experience Replay,
Target Networks

Handles discrete offloading
decisions, stable learning with

Experience Replay

Less effective for continuous
actions, high-dimensional state

spaces

Simple
offloading
decisions

DDPG Continuous Noise Experience Replay,
Target Networks

Suitable for continuous
adjustments, dynamic resource

scheduling

Requires careful tuning, complex
implementation

Dynamic
resource

allocation

SAC Continuous Entropy
Max.

Twin Q-networks,
Adaptive Entropy

Robust exploration, handles
complex scheduling

Computationally intensive,
extensive hyperparameter tuning

Complex
scheduling
scenarios

A3C Both Entropy
Term

Asynchronous Parallel
Agents

Efficient parallel learning,
versatile action handling

Distributed setup complexity, high
variance

Large-scale VEC
environments

PPO Both Clipping Clipped Objective
Stable learning, simple to

implement, balances exploration
and exploitation

Frequent updates needed in
dynamic environments

Mixed decision
types in

scheduling

(A2C) method to gauge its relative efficiency. Results from
the study demonstrate that the PPO algorithm significantly
enhances service satisfaction and effectively manages the
distribution between local and cloud processing, leading to
an optimized average offloading count.

Paper [71] focused on the joint computation offloading
and resource allocation problem in a nonorthogonal multiple
access (NOMA) edge computing system. The goal is to
minimize computational overhead, considering execution
delay and energy consumption, in dynamic environments
with time-varying wireless fading channels. The method em-
ploys the PPO algorithm to approximate different statistical
models for continuous and discrete control, addressing this
optimization challenge. In this paper, the PPO algorithm is
benchmarked against the A2C, Twin Delayed DDPG (TD3),
and SAC algorithms. The experiments focus on reward

convergence performance, comparing the rewards achieved
by PPO to those of the other algorithms. The average
computational overhead of the PPO algorithm is tested under
different scenarios including varying data sizes, the number
of CPU cycles required by tasks, computing capacities of
the MEC server, number of subchannels, and quantities of
mobile devices. The results indicate that the PPO algorithm
not only consistently achieves superior reward convergence
but also maintains lower average computational overhead.

In order to address the challenge of computation-intensive
and latency-sensitive tasks in the context of MEC, a method
that considers dependency-aware task offloading was pro-
posed [73]. To ensure privacy preservation, the authors
propose a distributed DRL-based algorithm with an opti-
mized structure for offloading strategy. The performance of
the designed method is compared against the Actor-Critic
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(AC) and DQN algorithms. The reward convergence of the
PPO algorithm is compared under various learning rates to
determine the optimal settings for maximum efficiency. The
evaluation focuses on two critical metrics: time cost and
energy cost, which are essential for assessing the practical
utility of the algorithm in real-world settings. Performance
evaluations are carried out under conditions with varying
numbers of vehicles to test adaptability. The findings reveal
that the PPO algorithm outperforms both the AC and DQN
in terms of reward convergence, effectively minimizing both
time and energy costs across different vehicle densities.
The SAC-based, A3C-based, and PPO-based methods are
outlined in Table. III.

PPO achieves a balance between the sample efficiency
of methods like SAC and the simplicity of implementation,
making it an attractive option for VEC. However, the clip-
ping mechanism in PPO, designed to prevent large policy
updates, can sometimes lead to sub-optimal policies if not
properly tuned.

In summary, when choosing a DRL algorithm for VEC
scenarios, the decision often involves trade-offs between
sample efficiency, ease of implementation, ability to handle
continuous vs. discrete action spaces, and the computational
resources available for training and inference. For instance,
while SAC and PPO offer advantages in terms of sample
efficiency and robustness in continuous spaces, DQN and
A3C may be preferable in scenarios with discrete action
spaces or where parallel training infrastructure is available.
The comparative summary of the DRL algorithms in VEC
scenarios is presented in Table IV.

B. Classification according to DRL Decisions
According to the type of decision made by the DRL

algorithms in VEC scenarios, the latest studies can be classi-
fied into three categories: making task offloading decisions,
making resource allocation decisions, and jointly making
task offloading and resource allocation decisions.

1) Task scheduling: Task scheduling is of paramount
importance due to its significant impact on system perfor-
mance. Some studies focused on making optimal scheduling
decisions for individual task, multiple tasks, or dependency-
aware tasks [17], [79], [80].

In [74], the authors proposed a non-orthogonal multiple
access (NOMA) based architecture for VEC. They addressed
the challenges of limited resources and high transmission
demands by optimizing task offloading using a multi-agent
distributed distributional deep deterministic policy gradient
(MAD4PG) method.

In [75], a priority-sensitive task offloading scheme was
presented for IoV networks. Vehicles periodically exchange
beacon messages to inquire about available services, and
a DRL algorithm is employed to classify tasks based on
priority and computation size, with the goal of maximizing
network utility while ensuring the quality of service for
vehicles.

Paper [76] addressed the challenge of task offloading
services in edge-enabled IoV to enhance the Quality of

Experience (QoE) while considering various status of edge
servers, vehicles, and vehicular offloading modes. The pro-
posed approach employs DRL to optimize offloading modes,
with a focus on saving energy consumption and stabilizing
rewards during training.

Paper [77] addressed the challenge of task offloading in
Vehicular Fog Computing (VFC) where energy-constrained
Road Side Units (RSUs) need to efficiently schedule tasks
to mobile fog vehicles.

In [81], the authors addressed task scheduling in a VEC
network for intelligent vehicles, where tasks have different
urgency and dependencies and must be completed within
strict time constraints. The studies on making task schedul-
ing decisions are outlined in Table. V.

These studies present improvements in reducing task exe-
cution and communication latency by efficiently scheduling
tasks closer to their data sources or end-users. Furthermore,
the task completion rates are also enhanced by minimizing
task execution times and avoiding bottlenecks.

2) Resource allocation: Resource allocation ensures that
the VEC system can effectively manage its limited resources
and meet the dynamic demands of vehicular applications.
The edge computing resource comprises transmit power,
bandwidth, transmission channel, and computation resource.

Paper [82] focused on the bandwidth resource allocation
for VEC that considers task dependencies and employs
a DDPG algorithm to optimize allocation decisions in a
vehicle-edge-cloud environment, efficiently addressing the
continuous control problem and achieving rapid conver-
gence.

Paper [83] focused on resource allocation in a Multi-
Access Edge Computing (MEC)-based vehicular network,
addressing spectrum, computing, and storage resource al-
location for different vehicular applications. They employ
reinforcement learning to achieve rapid resource allocation
decisions to meet quality-of-service (QoS) requirements.

In [84], the authors proposed an architecture that com-
bines centralized decision-making with distributed channel
allocation to maximize spectrum efficiency, utilizing deep
reinforcement learning techniques along with long short-
term memory (LSTM) to adapt resource allocation dynami-
cally based on changing user mobility, demand, and channel
conditions.

Paper [85] focused on transmission power allocation for
vehicular networks considering multiple stochastic tasks,
varying wireless channels, and bandwidth. The proposed
approach leverages deep reinforcement learning to address
the continuous action space and aims to strike a balance
between energy consumption and data transmission delay in
an unstable environment.

Paper [87] addressed the task processing decision in
vehicular edge computing where tasks can be processed
locally or offloaded based on V2I and V2V communications.
It focuses on optimizing power allocation in a complex
and uncertain VEC environment using a decentralized deep
reinforcement learning approach. The studies on making
resource allocation decisions are outlined in Table. VI.
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TABLE V: The studies on making task scheduling decisions.

Paper Year Action Method Objective Description

[74] 2023

Task scheduling

MADDPG Maximize the
service ratio.

The cooperative resource optimization problem
was decomposed into two subproblems: task

offloading and resource allocation.

[75] 2022 DDPG Maximize the mean
utility.

A scheme for task offloading and resource
allocation in an IoV network, considering

priority sensitivity, was proposed.

[76] 2021 DDPG Minimize energy
consumption.

A task offloading mechanism for vehicles was
suggested with a focus on optimizing QoE.

[77] 2021 SARSA Minimize total
energy consumption.

An energy-efficient vehicle scheduling problem
for offloading tasks to mobile fog nodes subject

to satisfying constraints of task deadline and
resource availability was presented.

[78] 2022 double DQN
Maximize both

system utility and
energy consumption.

A shared task offloading strategy was proposed
that the successfully matched task unit does not

need to be recomputed by the VEC server.

TABLE VI: The studies on making resource allocation decisions.

Paper Year Action Method Objective Description

[82] 2022

Resource allocation

DDPG
Minimize the

average processing
latency.

A task offloading scheme for VEC with
collaborative computation between vehicles,

edge, and cloud, taking into account
dependencies, is put forward.

[83] 2020 DDPG

Maximize the
number of tasks

completed with QoS
requirements.

Simultaneous allocation of spectrum, computing,
and storage resources in a vehicular network

based on Multi-Access Edge Computing (MEC).

[84] 2022 DQN

Maximize the
spectrum efficiency

of all vehicles
involved.

A proposed architecture involves centralized
decision-making alongside distributed channel

allocation.

[85] 2020 DDPG

Minimize the energy
consumption,

transmission latency,
and bandwidth.

A model for offloading task computations in a
diverse vehicular network was developed, taking

into account various stochastic tasks and the
diversity of wireless channels and bandwidth.

[86] 2021 DQN

Reduce the
processing latency
and improve the

reliability.

A strategy called Intelligent Communication and
Computation Resource Allocation (ICCRA) was

introduced, employing a multi-objective
reinforcement learning approach.

These studies perform well in improving the utilization of
edge computing resources, ensuring that computational and
network resources are neither underused nor overburdened.

3) Joint decision making: Furthermore, Some studies
focused on making task scheduling and resource allocation
decisions jointly. Some of them decompose the joint opti-
mization problem into two sub-problems.

Paper [88] addressed the challenge of joint optimization of
computation offloading and resource allocation in a dynamic
multiuser mobile-edge computing system. The goal is to
minimize energy consumption while considering delay con-
straints and uncertain resource requirements of computation
tasks.

Paper [89] addressed the challenging problem of joint task
offloading, collaborative computing, and resource allocation
in a multi-access edge computing system. They proposed a
deep reinforcement learning-based optimization framework,
where decisions related to task offloading are made at the

upper level, and computing resource allocation is optimized
at the lower level.

Paper [90] focused on addressing the challenges posed by
data-intensive and latency-sensitive vehicular applications in
the IoV through VEC. It employs the twin delayed deep
deterministic policy gradient (TD3) algorithm to determine
the task offloading and resource allocation strategy.

Paper [91] introduced a joint task type and vehicle speed-
aware task offloading and resource allocation strategy for
in-vehicle applications. The method involves establishing a
model that considers task type and vehicle speed to optimize
task offloading and resource allocation, with the aim of
minimizing vehicle energy costs and increasing revenue
while meeting delay constraints. The studies on jointly
making task scheduling and resource allocation decisions
are outlined in Table. VII.

Above studies simultaneously optimize both task schedul-
ing and resource allocation decisions to maximize overall
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TABLE VII: The studies on jointly making task scheduling and resource allocation decisions.

Paper Year Action Method Objective Description

[88] 2022

Joint task scheduling
and resource allocation.

DDQN Minimize the energy
consumption.

Joint optimization of computation offloading
and resource allocation in a dynamic multi-user

MEC system.

[89] 2023 DDQN Minimize the total
energy consumption.

The upper level addresses the task offloading as
well as power and subcarriers allocation

subproblems, while the lower level focuses on
solving the computation resource allocation

subproblem.

[90] 2022 TD3
Joint optimization of
offloading delay and
energy consumption.

The optimal offloading strategy is attained
through the application of the twin delayed deep
deterministic policy gradient (TD3) algorithm.

[91] 2022 MADDPG Maximize the utility
level of the vehicles.

A strategy for task offloading and resource
allocation was suggested, taking into account
the type of task and the speed of the vehicle.

[92] 2023 MADDPG Minimize the
system cost.

The actor network underwent a redesign,
incorporating a transformer-based temporal

feature extraction network and a policy
decoupling network.

[93] 2022 DQN Service cost
minimization.

A learning-based channel allocation and task
offloading strategy was proposed in temporary

UAV-assisted VEC.

TABLE VIII: The studies focused on minimizing latency.

Paper Year Objective Method Action Description

[94] 2023

Minimize the latency.

SAC
The proportion of

the task offloaded to
ES.

The multitype task cooperative offloading
among multiple ESs is modelled as a system

latency minimization problem.

[95] 2020 SAC

whether to offload,
unit price paid to
CPU, computation
resource allocation.

Vehicles are encouraged to contribute their
unused computing resources through a dynamic

pricing mechanism.

[96] 2023 DQN

Task offloading
decision and the
percentage of the

resources allocated.

The structure of the action generation network
was adjusted to incorporate multiple branches,
with each branch producing a one-dimensional

action.

[97] 2023 DQN

Spectrum access
selection, the

transmit power
allocation, and the
computation block

selection.

A collaborative strategy for secure offloading
and resource allocation is proposed to enhance

confidentiality performance and resource
efficiency in VEC networks.

system performance. They generally provide the most com-
prehensive solutions, optimizing across multiple dimensions.
However, they are also more complex to implement and may
require more sophisticated DRL models and algorithms.

C. Classification according to Optimization Target

For task scheduling and resource allocation, the optimiza-
tion target can be classified into three categories: Minimizing
latency, minimizing energy consumption, and joint reduction
of latency and energy consumption [109].

1) Latency target: Some studies target to minimize the
latency, including transmission and computing latency.

Paper [94] focused on cooperative task offloading among
edge servers within the context of the IoV. To minimize task

execution delay, the authors treat cooperative offloading as a
Markov decision process (MDP) and enhance the Soft Actor-
Critic (SAC) algorithm’s convergence speed and stability
using an adaptive weight sampling mechanism.

Paper [95] addressed the challenge of motivating vehicles
to share their idle computing resources in vehicular fog
computing (VFC) while considering vehicle mobility, task
priority, and service availability. The authors used a Soft
Actor-Critic (SAC) algorithm to maximize the mean latency-
aware utility of tasks in a period by optimizing the task
offloading policy.

Paper [96] presented a joint optimization approach for
task offloading decisions and resource allocation in a time-
varying Mobile Edge Computing (MEC) system. The goal
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TABLE IX: The studies focused on minimizing energy consumption.

Paper Year Objective Method Action Description

[98] 2021

Minimize the
energy consumption.

DQN Power allocation.
A practical vehicular environment was

considered by taking into account the dynamics
of mobile vehicular networks.

[99] 2022 DDPG

Computation
resource and

caching resource
allocation.

An optimization problem was formulated to
minimize mobile network operator’s energy
costs by considering the computation and

caching energy costs jointly.

[100] 2023 TD3

Decisions regarding
task offloading for

vehicles, task slicing
for RSU, and

bandwidth allocation
for the MBS are

made.

A scenario with random traffic flow and a
dynamic network environment was taken into

account, where MEC and cloud servers
collaborated to process tasks that are sensitive

to delays and computationally intensive.

[101] 2023 MADDPG

Policy for task
offloading, policy

for controlling
transmission power,

and policy for
allocating local

computing
resources.

The framework takes into account various
decision variables related to energy

optimization, including constraints on
transmission power, the local CPU cycle

frequency for processing computational tasks,
the quantity of computation tasks to be

offloaded, and the allocation of computation
resources on edge servers.

TABLE X: The studies focused on jointly minimizing latency and energy consumption.

Paper Year Objective Method Action Description

[102] 2022

Minimize the latency
and energy consumption.

TD3
transmission power

allocation, task
partition ratios.

Determine optimal movements for UAVs,
allocate task offloading efficiently, and manage

communication resources in dynamic MEC
environments.

[103] 2023 DDPG Flying direction and
moving distance.

A collaborative algorithm was suggested for
UAV movement control, MU association, and
MU power control. The optimization process

involves iterative enhancements of three
sub-problems.

[104] 2022 DDPG

Local execution
power and

offloading power
allocation.

A power allocation scheme that optimally
addresses stochastic task arrival and channel

variations was developed.

[105] 2023 SAC
Task executor

selection for each
task.

Task initiators (TIs) generate a set of correlated
tasks and subsequently offload them to various

task executors (TEs).

[106] 2023 DQN Offloading decision.

The paper investigates the problem of joint task
offloading, resource allocation, and the

fast-changing channel between a vehicle and an
edge server.

[107] 2022 SAC
Percentage of

resources allocated
to the vehicle.

A task offloading scheme was introduced for
vehicular networks that prioritize considerations

of latency and energy efficiency.

[108] 2022 DDPG Pricing policy.

Based on the unit prices provided by the VEC
server, vehicles decide the quantity of

computational resources to acquire from the
server.

of the paper is to reduce the average task latency and discard
rate while operating within the constraints of latency and the
server’s limited computing resources.

In [97], a DRL-based approach was introduced to enhance

resource efficiency in VEC networks. It optimizes transmit
power, frequency spectrum selection, and computation re-
source allocation, with the goal of minimizing processing
delay.
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In [110], the authors established a dynamic offloading
model for multiple moving vehicles, dividing tasks into
sequential subtasks, and proposed a Dynamic Framing Of-
floading algorithm based on Double Deep Q-Network (DFO-
DDQN) to find optimal offloading decisions for these se-
quential subtasks, minimizing total delay and waiting time.

Paper [111] introduced a strategy for cloudlet-based vehic-
ular networks to enhance computation services by employ-
ing multi-agent deep reinforcement learning. Specifically,
it focuses on optimizing task scheduling to reduce task
processing delay. The studies focused on minimizing latency
are outlined in Table. VIII.

These studies often demonstrate significant reductions in
task completion times by optimizing the scheduling and
allocation of resources to prioritize task execution speed.
However, focusing solely on latency reduction can lead to
suboptimal energy usage because the most rapid computa-
tional resources may also be the most energy-intensive.

2) Energy target: For some studies, the minimization of
the total energy consumption is the only optimization target
[112].

Paper [98] addressed the challenge of task offloading in
vehicular networks with limited edge computing resources
by jointly considering communication and computation re-
sources. The authors formulated a non-linear problem to
minimize energy consumption and tackle the dynamics of
mobile vehicular networks.

In [99], a joint computing and caching framework was
proposed for mobile network operators (MNOs) in an IoV
scenario. The authors formulated an optimization problem
aimed at minimizing the MNO’s energy expenses, encom-
passing both computation and caching energy costs. The
solution to this problem was obtained using the DDPG
algorithm.

In [100], the authors presented a method called Computa-
tion Offloading and Resource Allocation (CORA) to process
delay-sensitive and computation-intensive tasks in an IoV
scenario, with the objective of minimizing the system cost.

Paper [101] aimed to reduce energy consumption with-
out compromising performance by addressing the complex
problem of optimal resource allocation in VEC. It jointly
optimizes task distribution and radio resource allocation with
the target of minimizing energy consumption, considering
vehicle mobility and dynamic data traffic in Roadside Units
(RSUs). The studies focused on minimizing energy con-
sumption are outlined in Table. IX.

These studies perform well in energy efficiency by ad-
justing the task offloading based on energy considerations.
However, prioritizing energy conservation may result in in-
creased latency for some tasks, as energy-efficient computing
resources may not be the fastest.

3) Joint multi-target optimization: Starting in 2022, more
studies worked to jointly optimize task completion time and
energy consumption.

In [102], a collaborative mobile edge computing system
was proposed that utilizes multiple unmanned aerial vehicles

(UAVs) and edge clouds (ECs) to offload computation-
intensive tasks. The goal is to minimize the sum of exe-
cution delays and energy consumption by optimizing UAV
trajectories, computation task allocation, and communication
resource management.

Paper [103] addressed the resource allocation problem in
unmanned aerial vehicle (UAV) networks for mobile edge
computing with the goal of minimizing system latency and
energy consumption.

Paper [104] focused on optimizing power allocation in
a VEC system where each vehicular user (VU) allocates
power for task processing through offloading and local
execution. The Deep Deterministic Policy Gradient (DDPG)
algorithm was utilized to find the optimal power allocation
scheme, aiming to minimize long-term power consumption
and latency.

In [105], The authors addressed the challenge of task
offloading in a multi-access edge computing (MEC) system.
The goal is to minimize the weighted sum of task processing
latency and energy consumption in the MEC system. They
proposed a two-phrase method: firstly, they use a DRL
algorithm to optimize task offloading, and secondly, they
determine the optimal transmission power for the offloaded
tasks.

Paper [113] focused on addressing latency-sensitive and
compute-intensive tasks in vehicular networks by utilizing
fog computing, specifically in Vehicular Fog Computing
(VFC) networks. The goal is to balance latency, computing,
and communication constraints while considering energy
consumption. The studies focused on jointly minimizing
latency and energy consumption are outlined in Table. X.

These studies often employ multi-objective DRL frame-
works or reward functions to quantify and optimize the trade-
offs, leading to solutions that are more applicable in real-
world scenarios where both task completion time and energy
consumption are critical.

D. Hybrid DRL Approaches in VEC

Nowadays, some existing studies focus on the research of
the integration of DRL with other optimization techniques
in VEC scenarios.

1) DRL combined with federated learning: In VEC, pri-
vacy protection is a critical challenge due to the sensitive
nature of shared vehicular data, such as location and driving
patterns. Traditional centralized DRL approaches require raw
data aggregation at edge servers, raising concerns about data
leakage and user privacy. To address this, Federated Learning
(FL) can be integrated with DRL to enable decentralized
model training, where vehicles collaboratively train a shared
DRL model while keeping their data locally [114]. FL-
DRL frameworks leverage gradient aggregation instead of
raw data transmission, ensuring privacy preservation while
maintaining model accuracy [115].

For example, paper [116] proposed a novel multi-agent
federated deep reinforcement learning framework to reduce
task offloading latency for electric vehicles on electrified
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roads by integrating wireless power transfer and full-duplex
MIMO vehicular networks, enabling continuous charging
and efficient computation. The framework optimizes task
offloading across base stations, UAVs, and satellites while
preserving data privacy through differential privacy tech-
niques.

2) DRL combined with optimization algorithms: Un-
manned Aerial Vehicles (UAVs) have been applied recently
to play a pivotal role in extending edge computing cover-
age for vehicular networks, but their dynamic positioning
presents complex optimization challenges. DRL alone may
struggle with the high-dimensional action space of UAV
trajectory planning and resource management. By integrating
DRL with classical optimization algorithms, the strengths
of both approaches can be harnessed: DRL handles high-
level decision-making and adaptability to real-time changes,
while optimization algorithms provide precise solutions for
subproblems like UAV placement and energy-efficient path
planning [117].

In [118], the UAV-assisted Two-stage Intelligent Collab-
oration (UTIC) method was proposed to optimize UAV
positioning and task scheduling in VEC, addressing chal-
lenges like limited UAV communication range and energy
constraints. The approach consists of three key contribu-
tions: (1) a UAV-assisted Two-stage Task Scheduling system
model to streamline task allocation; (2) an Enhanced Particle
Swarm Optimization algorithm to determine optimal UAV
positions, minimizing the number of UAVs while ensuring
full coverage of mobile vehicles (MVs); and (3) a Deep
Deterministic Policy Gradient-based scheduler to optimize
offloading decisions, balancing energy consumption, delay,
and task priorities for efficient MV task processing.

3) DRL combined with forecasting: In VEC, Electric
Vehicles (EVs) require intelligent charging strategies to op-
timize energy consumption and minimize grid load, but their
unpredictable mobility and charging demands complicate
decision-making. DRL can be enhanced with forecasting
algorithms like LSTM and time-series models to predict
EV trajectories and energy requirements, enabling proactive
charging station selection and resource allocation [119]. The
hybrid approach allows DRL agents to leverage historical
and real-time data for more informed decisions, improving
energy efficiency and reducing latency.

Paper [120] proposed a vehicular-cloud-assisted MEC
network to enhance computation offloading for Intelligent
Vehicles by efficiently utilizing idle resources from both
MEC servers and dynamic vehicular traffic. Firstly, a deep
neural network-based virtual platform that predicts vehicle
trajectories and forms vehicular clouds to pool distributed
computation resources; Then, a multi-constraint offloading
scheme designed to maximize task throughput while ensur-
ing long-term queue stability using Lyapunov optimization;
Thirdly, a lightweight hybrid framework that decomposes the
problem into per-slot subproblems via Lyapunov drift-plus-
penalty and solves them using DQN to reduce complexity,
addressing the coupling of variables across time slots.

V. REAL-WORLD APPLICATIONS

As shown in Section IV, DRL has shown remarkable
potential in addressing task scheduling and resource alloca-
tion issues for VEC scenarios. In addition to the research
progress, several real-world applications are presented in
this section, as presented in Fig. 9, presenting a more in-
depth discussion on the deployment and operational aspects
of VEC in actual systems. In real-world scenarios, the
edge server is equipped on roadside infrastructures like
traffic lights, base stations, and roadside units to provide
computation and storage sources [28].

A. Emergency Services

1) Overview: Emergency services in VEC require ultra-
low latency and high reliability for tasks like collision
warnings, ambulance routing, and disaster response. These
scenarios involve high-priority tasks with strict deadlines
[121].

PPO and A3C are suitable for these kind of scenarios.
They provide stable, fast-converging policies crucial for
time-sensitive emergency response, where even milliseconds
matter. Their ability to handle partial observability is vital
when emergency vehicles rapidly enter/exit coverage zones.

2) Implementation methodology: In deploying PPO and
A3C for emergency services, the system first establishes a
real-time monitoring framework where connected emergency
vehicles and roadside units (RSUs) form a prioritized V2X
network. For collision avoidance, PPO agents are deployed
on edge servers with the following concrete implementation:
1) Input states include vehicle kinematics, LiDAR-based
obstacle detection data, and network conditions; 2) The
action space comprises discrete emergency maneuvers like
hard braking and evasive steering with safety constraints en-
forced through reward shaping; 3) Training uses prioritized
experience replay with synthetic near-crash scenarios from
SUMO simulations, progressively fine-tuned with real-world
data from Tokyo’s emergency vehicle fleet, achieving 93.7%
decision accuracy in field tests [122]. For ambulance rout-
ing, A3C’s parallel actors simultaneously explore alternative
routes in a digital twin of the city, processing real-time traffic
data from 200+ IoT cameras, reducing emergency response
time by 28% compared to traditional navigation systems.

B. Traffic Management and Control

1) Overview: DRL algorithms can optimize traffic signals
in real-time by processing data from connected vehicles and
infrastructure. This application aims to reduce congestion,
enhance traffic flow, and minimize waiting times at inter-
sections. By utilizing the VEC structure, the roadside smart
infrastructures can quickly analyze data on traffic density,
speeds, and incidents to dynamically adjust traffic signals
and reroute traffic. In addition, by leveraging machine learn-
ing algorithms at the edge, VEC can predict traffic patterns
and potential bottlenecks, enabling proactive management.
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Edge Caching and Content DistributionEnergy Management in Electric Vehicles

Fig. 9: Overview of the typical real-world applications using DRL for VEC scenarios.

DQN is commonly utilized in this application because
discrete but large action spaces like traffic signal combina-
tions benefit from value-based methods with efficient action
selection mechanisms.

2) Implementation methodology: In practical deployment,
DQN-based traffic control systems are implemented through
a three-tier architecture: 1) Vehicle-side OBUs collect real-
time speed/direction data and transmit via V2I to edge
servers; 2) Edge servers run parallel DQN instances, where
the state space incorporates traffic flow metrics, signal phase
timing, and queue lengths, while the action space encodes
all valid signal phase combinations; 3) The reward func-
tion combines multi-objective terms: +0.1 for each vehicle
cleared per green phase, -0.05 per second of accumulated
wait time, and -2.0 for emergency vehicle interruptions. For
example, federal government agencies have proposed an
Active Transportation and Demand Management (ATDM)
approach [123]. In ATDM, an actor-critic method could be
used to continuously adjust traffic signal timings based on
the current traffic conditions, learning from the cumulative
feedback to minimize overall congestion and improve traffic
throughput.

C. Autonomous Driving

1) Overview: In autonomous driving, policy-based DRL
can help in making real-time navigation decisions, such
as lane changing, speed adjustment, and path planning, by
considering the dynamic vehicular environment, including
the behaviour of other drivers, traffic conditions, and road
constraints. It can be significantly enhanced by VEC. On
the one hand, VEC provides the necessary low-latency
communication for AVs to share and process critical data,

such as obstacle detection. On the other hand, AVs can share
sensor data with VEC nodes to build a more comprehensive
understanding of their surroundings, improving situational
awareness.

Recently, Virginia Tech Transportation Institute re-
searchers put an autonomous Ford F-150 through a series of
driving scenarios related to public safety on the 395 express
lanes in Arlington, Va. [124].

For this application, SAC and DDPG are suitable choices
because continuous action spaces in vehicle control like
steering and acceleration match these algorithms’ strengths.
SAC’s entropy maximization is particularly valuable for
exploring safe manoeuvres in uncertain environments.

2) Implementation methodology: For autonomous vehicle
control, SAC and DDPG are deployed in a hierarchical VEC
architecture where: 1) Vehicle-level agents (SAC) process
local sensor data to handle immediate driving actions, with
entropy regularization enabling safe exploration during un-
certain scenarios like pedestrian crossings; 2) Edge-level
DDPG coordinators at RSUs aggregate V2X data from 8-12
vehicles within 150m range to optimize platooning strate-
gies, using a centralized critic that evaluates group rewards.
Recently, Virginia Tech Transportation Institute researchers
put an autonomous Ford F-150 through a series of driving
scenarios related to public safety on the 395 express lanes
in Arlington, Va. [124].

D. Edge Caching and Content Distribution

1) Overview: DRL can also be applied to decide what
content is cached at the edge of vehicular networks in
order to minimize content delivery times and reduce back-
haul network load. This is particularly relevant for video
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streaming, software updates, and map data for autonomous
and connected vehicles. By caching frequently accessed
content at the edge of the network, VEC reduces the time
needed to fetch data from remote servers, improving the
driving experience. In addition, VEC minimizes the need
for redundant data transmissions over the core network,
reducing bandwidth consumption. Since DQN is efficient
for discrete server selection, it could be applied to address
the content distribution problem.

2) Implementation methodology: For edge caching op-
timization, a DQN-based system is implemented through
a three-phase process: 1) Content popularity prediction at
RSUs using LSTM networks processing historical request
patterns, classifying content into hot (top 5% requested),
warm (next 15%), and cold categories; 2) A distributed
DQN architecture where each edge server runs local agents
with discrete action spaces (cache/replace/ignore decisions)
based on real-time states including cache occupancy (%),
request rates (reqs/min), and vehicle density (vehicles/RSU
coverage), using a reward function that combines cache hit
rate (+0.5 per hit) and backhaul savings (+0.1 per MB
conserved); 3) Federated updates every 6 hours to share
popularity models across the caching hierarchy. For example,
Varnish Software provides fast, efficient content delivery and
caching solutions [125]. By using the actor-critic models, the
caching strategies can be adjusted dynamically based on user
demand and network status, learning to predict and cache
the most requested content closer to the users to minimize
latency.

E. Energy Management in Electric Vehicles

1) Overview: DRL can optimize the energy consumption
of electric vehicles (EVs), including decisions about when
and where to charge to minimize costs and ensure the
vehicle meets its range requirements, considering factors like
the availability of charging stations and real-time electricity
prices. Specifically, policy-based DRL algorithms can be
used to make decisions on charging behaviour by directly
learning a policy that maps state information (e.g., battery
level, location, electricity prices) to charging actions (e.g.,
start charging, stop charging, select charging station). In
this process, VEC nodes can manage charging schedules
based on real-time data on grid load, electricity prices, and
vehicle usage patterns, optimizing energy costs and grid
stability. SAC is more suitable for this application because
it maximizes entropy for adaptive charging decisions in
uncertain environments.

2) Implementation methodology: For optimal EV charg-
ing management, a SAC-based system is deployed through a
hierarchical architecture where: 1) Vehicle-level agents con-
tinuously monitor battery state-of-charge (1% resolution),
driving patterns, and real-time electricity prices (5-minute
updates from grid APIs); 2) Edge servers at charging stations
run federated SAC instances that process aggregated demand
forecasts from 50-100 EVs, with continuous action spaces
(charging rates: 0-150kW) and entropy-regulated exploration

to adapt to dynamic pricing fluctuations; 3) The reward
function combines multiple objectives: +2.0 for completing
charge within deadline, -0.3 per kWh cost, and +1.5 for
utilizing renewable energy peaks. Federal Energy Man-
agement Program introduces a Managed Electric Vehicle
Charging project, in which managed charging can ensure that
vehicles are properly powered when needed while reducing
unnecessary burdens on the site’s building infrastructure
[126].

VI. UNIFIED EVALUATION METRICS

In order to evaluate the performance of the designed
DRL-based decision-making methods, some metrics are
applied according to the optimization objective. Typically,
core performance metrics, algorithm efficiency metrics, and
scalability metrics are indeed key evaluation metrics used for
evaluation in VEC systems. In this section, an explanation
of these metrics is presented.

A. Core Performance Metrics

1) Task Completion Time: Task completion time mea-
sures the time delay between the initiation of a task or a re-
quest and the completion of that task in a VEC system [127].
For example, in [73], the influence of different numbers of
vehicles on average time and total latency was explored.

2) Scheduling Time: Scheduling time is the duration
taken by the DRL algorithm to generate a scheduling and
resource allocation decision for a given set of tasks and
resources. Lower scheduling time is preferred as it indicates
that the algorithm is capable of quickly providing solutions.
In scenarios where real-time decision-making is crucial,
minimizing scheduling time becomes essential. Efficient
scheduling time also contributes to the responsiveness of the
system.

3) Energy Consumption: Energy consumption measures
the amount of electrical power or energy used by the VEC
system for processing tasks and communication [128]. Op-
timizing energy consumption is vital, especially in resource-
constrained environments or in applications where energy ef-
ficiency is a key concern. In [81], the comparison of average
energy consumption under different weighting coefficients
and methods is presented.

4) Resource utilization: Resource utilization evaluates
how efficiently edge computing resources are allocated and
utilized in VEC systems. It measures the percentage of
available computational resources and communication re-
sources that are effectively used for task processing at any
given time. High resource utilization indicates that the DRL
algorithm successfully maximizes infrastructure usage, while
low utilization suggests inefficiencies in task scheduling or
resource allocation.

B. Algorithm Efficiency Metrics

1) Reward Performance: The ”reward” is used to assess
the overall benefit or utility that the vehicle or system derives
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from a specific action or task. In the VEC scenario, the
reward could represent the total income generated by the
vehicle during a given time period [129].

2) Convergence speed: The convergence speed of reward
is critical to evaluate the performance of the proposed
method. Faster convergence is desirable because it means
that the algorithm is efficiently adapting to the dynamics of
the task scheduling and resource allocation problem. Slow
convergence may lead to delays in making optimal decisions
and, in some cases, may prevent the algorithm from finding
an optimal solution at all. In [113], the convergence of the
proposed method was analyzed with different learning rates.

3) Computational overhead: Computational overhead
quantifies the additional processing resources required by
DRL algorithms themselves during both training and in-
ference phases. In VEC environments where edge devices
have constrained capabilities, algorithms with lower compu-
tational overhead are preferred as they leave more resources
available for actual task processing.

C. Scalability Metrics

1) Performance under varying vehicle densities: This
critical metric assesses how DRL algorithms scale with
changing numbers of connected vehicles in the network.
The performance could be evaluated across a spectrum from
sparse to ultra-dense scenarios that represent different real-
world conditions. This evaluation reveals which algorithm
can handle the inherent scalability challenges of VEC, where
the same infrastructure must serve fluctuating numbers of
vehicles with diverse service requirements.

VII. CHALLENGES AND FUTURE PROSPECTS

In terms of task scheduling and resource allocation in
VEC, some challenges need to be solved. In this section,
current challenges are discussed, which represent the future
research direction.

A. Mobility and Channel Uncertainty

The mobility of vehicles and channel uncertainty pose a
significant challenge in the context of VEC scenarios [130].
The high mobility of vehicles introduces dynamic network
topologies, making it difficult to maintain stable connections
between vehicles and edge servers. This variability can
lead to frequent handovers, increased latency, and potential
service disruptions. Nowadays, many existing studies ad-
dress mobility-aware task offloading and resource allocation
utilizing deep reinforcement learning. These works highlight
the need for adaptive algorithms that can predict vehicle
trajectories and optimize offloading decisions in advance. In
this context, future research could explore hybrid models
combining DRL with trajectory prediction techniques to
further mitigate mobility-induced instability.

On the other hand, vehicular networks are prone to rapid
channel variations due to factors like signal fading, interfer-
ence, and environmental obstacles. This uncertainty compli-
cates resource allocation and task scheduling [46]. Recent

studies propose DRL-based channel selection strategies to
handle dynamic channel conditions. These approaches lever-
age real-time feedback to adapt to dynamic environments.
However, gaps remain in urban canyons or dense traffic,
where channel conditions are highly unpredictable. There-
fore, future work could Integrate physical-layer insights with
DRL to enhance robustness.

B. Completion Rate

Increasing the completion rate of tasks, which refers to the
successful execution of requests or computation tasks within
the Maximum tolerable latency, is also one of the main
challenges [131]. On the one hand, network connectivity
can be unreliable, especially in scenarios where vehicles are
constantly on the move. Disruptions and signal interference
can lead to task failures, affecting the task completion rate.
On the other hand, as vehicles move, the latency of data
transmission to and from edge servers may vary. The delay
caused by data transmission can lead to service delays,
affecting the services that require low latency, such as real-
time traffic information, autonomous driving, and safety-
critical systems.

C. Resource Management

VEC systems must efficiently allocate computational,
storage, and communication resources to meet the varying
demands of connected vehicles [132]. The resources are
finite, and their allocation needs to be optimized to serve a
dynamic set of vehicles. As vehicles move through different
regions, the allocation of resources to them may need to
change dynamically. Efficiently managing and allocating
resources to meet the varying demands of vehicles is a non-
trivial task. In addition, different vehicular applications have
varying QoS requirements. Some applications demand low
latency, while others prioritize data throughput or energy
efficiency. Resource management must cater to these specific
QoS requirements, which can be conflicting at times.

D. Deployment of Edge Servers

Having an adequate number of edge servers plays a pivotal
role in enhancing the vehicular network’s performance,
especially on a large scale. However, the deployment of
these edge servers comes with a substantial cost. Therefore,
it becomes crucial to strategically determine the optimal
quantity and position of edge servers that should be in-
stalled [133], [134]. This optimization process primarily
involves identifying suitable locations where the efficiency
of vehicular networks can be maximized. Additionally, it’s
imperative to manage the available resources effectively,
ensuring that the edge servers are deployed in a manner that
optimizes costs. Consequently, the ultimate goal is to create
a model that optimally calculates the minimum requirement
for deploying edge servers [135].
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E. Security and Privacy

VEC systems handle a vast amount of data, including
location information, V2V communications, and sensor data.
Protecting these data from unauthorized access, tampering,
or theft is crucial [136], [137]. Furthermore, sharing data
among vehicles and edge servers can enhance safety and
efficiency, but it also introduces privacy concerns. Mecha-
nisms to aggregate data and remove personally identifiable
information should be in place.

F. Edge AI for Traffic Systems

The concept of edge intelligence, where DRL models
are not just deployed but also trained at the edge, offers
the potential for real-time learning [138]. Research will
explore distributed learning approaches, such as federated
learning, to train DRL models across multiple edge traffic
infrastructures, enhancing privacy, reducing latency, and
decreasing the bandwidth needed for data transmission from
traffic infrastructures to centralized clouds [139].

G. Enhanced Learning Efficiency

Future research can aim to improve the learning efficiency
of DRL algorithms, reducing the amount of data and time
required to train effective models [140]. Techniques such as
transfer learning, meta-learning, and few-shot learning could
enable DRL models to adapt to new tasks or environments
more quickly, leveraging prior knowledge [141]. This is
particularly relevant for dynamic urban environments where
traffic conditions change rapidly.

H. Application of Foundation Models

Foundation models are a broader category of AI models
designed to provide a general, adaptable base for various
applications [142]. They can encompass not only language
tasks but also other modalities like images or even mul-
timodal tasks. These models, like GPT-4, are trained on
vast amounts of data, enabling them to generate, interpret,
and predict text with remarkable accuracy. Furthermore,
Large Language Models (LLMs) can be understood as a
subset of fine-tuned foundation models with a specific focus
on text-based tasks [143]. In addition to LLMs, we can
further have large vision models (LVMs), large audio models
(LAMs), and large multimodal models (LMMs) [144]. These
large models can be applied to the VEC-powered intelligent
transportation systems and play a crucial role in improving
transportation intelligence, optimizing traffic management,
and advancing smart city initiatives by harnessing their
language understanding and data analysis capabilities [145].

Looking ahead, further research should delve into large
models’ capabilities in addressing emerging challenges, re-
fine their real-time decision-making in traffic management,
tailor them for smart cities’ specific needs, and encourage
interdisciplinary collaborations to fully unlock their potential
in creating sustainable, intelligent, and people-centric trans-
portation ecosystems.

I. UAV-assisted Vehicle-road-cloud Collaboration

Unmanned Aerial Vehicles (UAVs) play an increasingly
vital role in enhancing the communication and computing
capabilities of vehicular networks by acting as flexible, mo-
bile edge nodes that can dynamically support data relaying,
task offloading, and coverage extension in areas with limited
infrastructure [146]. The integration of UAVs with vehi-
cles and roadside infrastructure enables multi-source data
fusion, which significantly improves situational awareness,
traffic perception, and decision-making accuracy in intelli-
gent transportation systems. However, realizing such vehicle-
road-cloud collaboration poses several challenges, including
the need for dynamic coordination among heterogeneous
agents, ensuring data consistency across distributed sources,
managing the limited energy resources of UAVs, dynamic
path planning of multiple UAVs, and efficiently allocating
computation and communication resources in highly dy-
namic and uncertain environments.

VIII. CONCLUSION

In the ongoing pursuit of optimizing VEC systems, DRL
algorithms have gained considerable attention. Their abil-
ity to make intelligent decisions within the dynamic and
complex VEC environment has unlocked new possibilities
for enhancing task scheduling and resource allocation. In
this paper, the architecture of vehicular edge computing
is presented in detail first. Then the concept of DRL and
some DRL algorithms are introduced. Subsequently, the
latest research on DRL-based task scheduling and resource
allocation in VEC scenarios is reviewed. Moreover, open
challenges and several future directions are discussed for
academics and researchers related to this field.
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