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7.3. Ĺımite de Tsirelson en primer orden . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
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1 Resumen y abstract

Resumen:
En este trabajo se buscarán los juegos locales con mayor poder estad́ıstico, identificando aquellos con

mayor entroṕıa relativa. Para ello, se desarrollará un programa que generará todos los juegos posibles en
cada escenario y evaluará sus cotas clásica y cuántica. Además, se buscarán los estados y POVMs que
optimicen la cota cuántica en los mejores juegos.

Abstract:
In this work, local games with the highest statistical power will be identified by focusing on those with

the highest relative entropy. To achieve this, a program will be developed to generate all possible games
for each scenario and evaluate their classical and quantum bounds. Additionally, for the best games, the
states and POVMs that optimize the quantum bound will be sought.
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2 Introducción

La mecánica cuántica nace a principios del siglo XX debido a la necesidad de explicar el comporta-
miento de las part́ıculas subatómicas. A mediados de los años 20, se presentaron dos formulaciones de la
mecánica cuántica que, a la postre, resultaron ser equivalentes: la formulación matricial de Heisenberg
y la ondulatoria de Schrödinger. En 1927, durante el V Congreso de Solvay, se debatió acerca de estas
dos formulaciones. Durante los últimos d́ıas del congreso, se produjo una batalla dialéctica entre Eins-
tein y Bohr. El alemán propońıa experimentos mentales que cuestionaban el principio de incertidumbre
de Heisenberg, disćıpulo de Bohr, y en la siguiente sesión el danés encontraba algún fallo lógico en los
experimentos mentales de Einstein. Tras este congreso, se adoptó la formulación de Heisenberg, en la
posteriormente conocida como interpretación de Copenhague, donde el colapso de la función de onda
teńıa una naturaleza probabiĺıstica.

En 1935, Einstein, Podolsky y Rosen formularon la paradoja EPR, que pretend́ıa mostrar que la
mecánica cuántica es una teoŕıa incompleta y abŕıa la puerta a la existencia de alguna teoŕıa más general
(de variables ocultas) que explicara la “acción fantasmal a distancia” del colapso de la función de onda.
La mecánica cuántica siguió avanzando imparable y su interpretación se quedó en el debate filosófico.
Hasta que, en 1964, Bell presentó la desigualdad de Bell, que demostraba que ninguna teoŕıa de variables
ocultas local pod́ıa describir la realidad de la misma manera que la mecánica cuántica. Desde principios
de los años 70 hasta la actualidad, se han realizado numerosos experimentos exitosos para comprobar la
violación de esta desigualdad. Por otro lado, las desigualdades de Bell pueden estudiarse desde los juegos
locales, que son una rama de la teoŕıa de la información cuántica, cosa que se hará en este trabajo.

En este trabajo, se buscarán los juegos locales con mayor poder estad́ıstico [1], es decir, aquellos que
se puedan verificar con mayor intervalo de confianza y menos intentos. Para ello, se creará un programa
que genere todos los juegos locales binarios de cada escenario y evalúe su ĺımite local y su ĺımite cuántico.
Este último ĺımite se calculará utilizando la jerarqúıa NPA para ello. Con estos parámetros, se calculará
la entroṕıa relativa de cada juego para clasificar su poder estad́ıstico. Por último, se utilizará el método de
programación semidefinida see-saw para obtener el estado y los POVMs que dan la cota cuántica superior
de los mejores juegos. Es importante destacar que, dado que el número de juegos crece exponencialmente
con el número de preguntas y respuestas, para escenarios superiores al (2, 2, 2, 2) ha sido necesario reducir
el número total de juegos aplicando condiciones de simetŕıa.

Además de proporcionar conocimiento sobre la realidad, las desigualdades de Bell se utilizan en
modelos de distribución de claves cuánticas, por lo que un mayor conocimiento sobre éstas será útil para
el desarrollo de las comunicaciones cuánticas.
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3 Conceptos necesarios

3.1 Cúbit

De igual manera que un bit es la unidad básica de información en computación clásica, un cúbit[2]
es la unidad básica de información en computación cuántica. Se representa como la superposición de dos
estados que forman una base ortonormal:

|ψ⟩ = α|0⟩+ β|1⟩ (3.1)

Aqúı, α y β son coeficientes complejos que cumplen la condición de normalización, es decir:

|α|2 + |β|2 = 1 (3.2)

3.2 Estados entrelazados

Los estados entrelazados fueron introducidos por primera vez en la paradoja EPR. El estado de un
sistema de n part́ıculas que no interactúan cuyo estado en el espacio de Hilbert es:

|ψ⟩ = |ψ1⟩ ⊗ |ψ2⟩ ⊗ · · · ⊗ |ψn⟩. (3.3)

con |ψi⟩ = c1|i⟩.
Si ahora estas part́ıculas interactúan, por el principio de superposición se tendrá el siguiente estado

entrelazado:

|ψ⟩ =
∑
i

ci|i⟩, (3.4)

donde i⃗ = (i1, i2, . . . , in) es el multíındice, y

|⃗i⟩ = |i1⟩ ⊗ |i2⟩ ⊗ · · · ⊗ |in⟩,

y, en general, ya no se puede describir el estado como un producto de estados de subsistemas indivi-
duales:

|ψ⟩ ≠ |ψ1⟩ ⊗ |ψ2⟩ ⊗ · · · ⊗ |ψn⟩. (3.5)

Esto quiere decir que las medidas no se pueden describir de manera independiente para cada part́ıcula.
Por ejemplo, para N = 2:

|ψ⟩ =
N∑

i1=1

N∑
i2=1

ci1,i2 |i1⟩ ⊗ |i2⟩. (3.6)

|ψ⟩ = c1,1|1⟩ ⊗ |1⟩+ c1,2|1⟩ ⊗ |2⟩+ c2,1|2⟩ ⊗ |1⟩+ c2,2|2⟩ ⊗ |2⟩. (3.7)

3.3 Base computacional

Si ahora se tienen 2 cúbits entrelazados, habrá 4 posibles estados: |00⟩, |01⟩, |11⟩, |10⟩. Estos 4 pares
forman la base computacional [2], representada en la ecuación (3.7)

Serán especialmente interesantes los Estados de Bell, también conocidos como estados máximamente
entrelazados o estados EPR (nombrados aśı en honor a Einstein, Podolsky y Rosen):

4



3.3. BASE COMPUTACIONAL 5

|β00⟩ =
1√
2
(|00⟩+ |11⟩), (3.8)

|β01⟩ =
1√
2
(|01⟩+ |10⟩), (3.9)

|β10⟩ =
1√
2
(|00⟩ − |11⟩), (3.10)

|β11⟩ =
1√
2
(|01⟩ − |10⟩). (3.11)

Estos estados se pueden condensar en la siguiente ecuación generalizada:

|βxy⟩ ≡
1√
2
(|0, y⟩+ (−1)x|1, ȳ⟩) , (3.12)

donde ȳ denota el complemento de y (es decir, si y = 0, entonces ȳ = 1, y viceversa).
Además, se utilizarán los observables X y Z. Su representación en la base computacional es:

X =

(
0 1
1 0

)
,

Z =

(
1 0
0 −1

)
.

(3.13)

Por lo tanto, Z opera aśı:

Z|0⟩ = +1 · |0⟩, Z|1⟩ = −1 · |1⟩, (3.14)

y X es la puerta cuántica NOT, que devuelve el estado opuesto al que mide:

X|0⟩ = |1⟩, X|1⟩ = |0⟩. (3.15)



4 Paradoja EPR y Teorema

4.1 La Paradoja EPR

La paradoja EPR [3] trata de mostrar que la mecánica cuántica no es una teoŕıa completa porque,
de serlo, no seŕıa realista. Para entrar en materia, primero hay que introducir los siguientes términos:

Completitud: una teoŕıa f́ısica es completa si cada elemento de la realidad f́ısica tiene una con-
traparte en la teoŕıa f́ısica.

Elemento de realidad: corresponde a una cantidad f́ısica cuando podemos predecir con certeza
su valor (con probabilidad igual a 1) sin perturbar el sistema.

Localidad: en una teoŕıa local nada puede transmitirse más rápido que la luz; en este caso, indica
que una medición en la part́ıcula A no puede afectar inmediatamente a la part́ıcula B si están lo
suficientemente separadas.

Para formular la paradoja, se comienza partiendo de la premisa que se quiere negar:

1. La función de onda describe completamente la realidad.

Y del principio de indeterminación:

2. Cuando dos operadores correspondientes a dos cantidades f́ısicas no conmutan, las dos cantidades
no pueden tener una realidad simultánea.

Por simplicidad, se utilizará la versión de Bohm-Aharonov [4], que es equivalente a la paradoja EPR.
En este experimento mental, se parte de una molécula con esṕın total cero compuesta por dos átomos

que en algún momento dejan de interaccionar y se separan de tal forma que no influya en el esṕın. Se
env́ıan los átomos a detectores muy alejados entre śı.

La función de onda del sistema será:

|ψ⟩ = 1√
2
(|↑↓⟩ − |↓↑⟩) (4.1)

Dado que el esṕın total es 0, si se mide la componente Ŝz del esṕın de la part́ıcula A, se obtiene ℏ
2 ;

entonces el resultado de la componente Ŝz del esṕın de la part́ıcula B estará completamente definido:
−ℏ

2 . Si se obtiene −ℏ
2 midiendo A, la componente de B estará completamente definida y será ℏ

2 .

Este argumento se puede extender para la componente Ŝx, teniendo completamente definida la com-
ponente Ŝx de la part́ıcula B si se mide la de la part́ıcula A.

En la paradoja EPR se defiende que, como por localidad las mediciones en A no pueden afectar a
B, ambas componentes de B han de estar definidas a la vez y, por lo tanto, son elementos de realidad.
Esto no pasaŕıa con las componentes de A porque, para medirlas, śı se perturba el sistema al colapsar la
función de onda en uno de los dos estados.

La contradicción aparece porque Ŝz y Ŝx no conmutan, por lo que, según el principio de incertidumbre,
no se pueden conocer ambos elementos de realidad a la vez con total precisión. Esto ocurre para la
part́ıcula B, aśı que se concluye que o bien la mecánica cuántica no es una teoŕıa completa y no puede
predecir con certeza estos elementos de realidad, o bien no se cumple el principio de incertidumbre y la
mecánica cuántica falla. Una tercera opción seŕıa que se violara el principio de localidad, pero los autores
de la paradoja consideraron esa idea inadmisible.

La publicación de la paradoja EPR provocó un revuelo mediático. Pocos meses después, Bohr [5]
respondió a ella señalando que el concepto de elemento de realidad estaba vagamente definido y que las
dos part́ıculas, al estar entrelazadas, formaban un único sistema. Hasta el propio Einstein admitió, en
correspondencia con Schrödinger, que hab́ıa lagunas de lenguaje debidas a que Podolsky [6], el redactor
del art́ıculo, teńıa el ruso como lengua materna. Pese a ello, esta paradoja ha sido pieza clave para el
posterior descubrimiento del teorema de Bell, funcionando como reacción al progreso para hacer girar el
motor de la historia.
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4.2. VARIABLES OCULTAS 7

4.2 Variables ocultas

Una de las posibles soluciones que propońıan los detractores de la interpretación de Copenhague
a los problemas de causalidad debidos al colapso de la función de onda y a la falta de determinismo
debida a la naturaleza probabiĺıstica de la medida eran las variables ocultas. De esta forma, se plantea la
existencia de unos elementos desconocidos que explicaŕıan estos problemas de causalidad y determinismo.
Un ejemplo de teoŕıa de variables ocultas desvelada [7] fue la cinética de los gases de Boltzmann y
Maxwell, que postulaba que las propiedades de los gases proveńıan del movimiento de unas part́ıculas
que los compońıan, las cuales se mov́ıan a velocidad constante y colisionaban entre ellas. Fue el propio
Einstein, en 1905, quien comprobó la existencia de los átomos mediante su estudio del movimiento
browniano en ĺıquidos, desvelando aśı esa variable oculta y completando la teoŕıa.

4.3 Teorema de Bell

En 1964, durante su año sabático en el CERN, el f́ısico norirlandés John Bell desarrolló, a partir de
la versión de Bohm de la paradoja EPR [8], una desigualdad que demuestra la incompatibilidad de las
variables ocultas locales con las predicciones de la mecánica cuántica. A partir de la desigualdad de Bell,
este problema filosófico se podŕıa trasladar casi 30 años después al laboratorio.

En 1969, John Clauser, un joven f́ısico experimental nacido en Berkeley, junto con Michael Horne,
Abner Shimony y Richard Holt, recogió la propuesta de Bell para diseñar un montaje experimental que
permitiera probar la desigualdad. Modificaron la desigualdad de Bell, planteando la desigualdad CHSH
[9].

4.4 Demostración CHSH

La desigualdad CHSH es una versión más general de la desigualdad de Bell. La demostración [2]
requiere de 3 participantes: Charlie, Alice y Bob.

Charlie prepara dos part́ıculas y le env́ıa una a Alice y otra a Bob. Alice recibe su part́ıcula y puede
medir dos magnitudes f́ısicas, A0 o A1. Sus mediciones, PA0 y PA1 , solo pueden tomar valores ±1. Alice
mide aleatoriamente una de estas dos magnitudes al mismo tiempo que Bob hace lo mismo con su
part́ıcula, realizando una medición que solo puede dar ±1 para una de las propiedades (también elegida
aleatoriamente como Alice), PB0

o PB1
.

En este punto cabe destacar que se están haciendo las siguientes asunciones:

Localidad: Como Alice y Bob están separados a cierta distancia y hacen las medidas a la vez, la
medida de Alice no puede interferir en la de Bob y viceversa.

Realismo: Todas las magnitudes están perfectamente definidas antes de ser medidas y no dependen
de la medición.

Si se calcula:
A1B0 +A0B0 +A0B1 −A1B1 = (A1 +A0)B0 + (A0 −A1)B1 (4.2)

donde A0, A1 = ±1, entonces se tiene que o bien (A1 +A0) = 0 o (A0 −A1) = 0. Por lo tanto:

A1B0 +A0B0 +A0B1 −A1B1 = ±2. (4.3)

Por lo que se tiene la siguiente desigualdad:

A1B0 +A0B0 +A0B1 −A1B1 ≤ 2. (4.4)

Se tiene una distribución de probabilidad p(a1, a0, b0, b1) de que el estado preparado por Charlie tenga
los valores A1 = a1, A0 = a0, B0 = b0 y B1 = b1, y esta distribución de probabilidad está sujeta a una
condición de normalización: ∑

a1,a0,b0,b1

p(a1, a0, b0, b1) = 1. (4.5)
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(Si, por ejemplo, todas las magnitudes toman los valores ±1 mediante una distribución equiprobable,
habŕıa una probabilidad de 1

16 para cada caso.)
Con esta distribución de probabilidad es posible calcular el valor medio:

E(A1B0 +A0B0 +A0B1 −A1B1) =
∑

a1,a0,b0,b1

p(a1, a0, b0, b1) (a1b0 + a0b0 + a0b1 − a1b1)

≤ 2
∑

a1,a0,b0,b1

p(a1, a0, b0, b1) = 2.
(4.6)

Y como el valor medio de una suma es la suma de los valores medios, se llega finalmente a la
desigualdad CHSH:

⟨A1B0⟩+ ⟨A0B0⟩+ ⟨A0B1⟩ − ⟨A1B1⟩ ≤ 2 (4.7)

Para probar si esta desigualdad se mantiene en el mundo cuántico, Charlie prepara un estado máxi-
mamente entrelazado de 2 qbits y le env́ıa uno a Alice y otro a Bob:

|ψ⟩ = |0A1B⟩ − |1A0B⟩√
2

, (4.8)

Utilizando los siguientes observables:

A1 = Z1, A0 = X1, B0 =
−Z2 −X2√

2
, B1 =

Z2 −X2√
2

, (4.9)

Utilizando la representación en la base computacional de X y de Z (3.13) se pueden calcular los
valores esperados de la expresión (4.7):

⟨A1B0⟩ =
1√
2
, ⟨A0B0⟩ =

1√
2
, ⟨A0B1⟩ =

1√
2
, ⟨A1B1⟩ = − 1√

2
. (4.10)

Por lo que se viola la desigualdad CHSH:

⟨A1B0⟩+ ⟨A0B0⟩+ ⟨A0B1⟩ − ⟨A1B1⟩ = 2
√
2�≤ 2. (4.11)



5 Juegos no locales

Otra forma de ver las desigualdades de Bell son los juegos no locales [10]. En un juego por turnos, un
refeŕı enviará preguntas (x, y) con probabilidad µ(x, y) a dos jugadores, Alice y Bob, y ellos devolverán
respuestas (a, b) que serán evaluadas por el refeŕı mediante unas reglas de juego V (a, b, x, y), que para 2
preguntas y 2 respuestas re representan en el tensor V:

V =


V (0, 0, 0, 0) V (0, 1, 0, 0) V (0, 0, 0, 1) V (0, 1, 0, 1)
V (1, 0, 0, 0) V (1, 1, 0, 0) V (1, 0, 0, 1) V (1, 1, 0, 1)
V (0, 0, 1, 0) V (0, 1, 1, 0) V (0, 0, 1, 1) V (0, 1, 1, 1)
V (1, 0, 1, 0) V (1, 1, 1, 0) V (1, 0, 1, 1) V (1, 1, 1, 1)

 (5.1)

donde V (a, b, x, y) ∈ {0, 1}.
Un escenario (ka, kb, na, nb) se define por los jugadores (a, b) que lo forman, el número de preguntas

(na, nb) que se hacen a cada jugador y el número de respuestas (ka, kb) que devuelve cada jugador. Por
ejemplo, para un escenario con 2 jugadores que reciben 2 preguntas y devuelven 2 respuestas cada uno,
será un escenario (2, 2, 2, 2). En un escenario con 2 jugadores a los que se les hacen 2 preguntas a cada
uno y devuelven 3 respuestas cada uno, el escenario será (3, 3, 2, 2).

Se utilizará la siguiente notación:

x ∈ X = {1, . . . , ka}, a ∈ A = {1, . . . , na}, y ∈ Y = {1, . . . , kb}, b ∈ B = {1, . . . , nb}

El comportamiento p(ab|xy) indica cómo van a responder Alice y Bob ante las preguntas que reciban.
La probabilidad de victoria para comportamiento será:

pwin =
∑

a,b,x,y

µ(x, y)V (a, b, x, y)p(ab|xy) (5.2)

Se define como ĺımite el valor máximo que puede tomar la probabilidad de victoria de entre todos los
comportamientos posibles:

L := máx
p(ab|xy)

∑
a,b,x,y

µ(x, y)V (a, b, x, y)p(ab|xy) (5.3)

En este trabajo se estudiarán comportamientos locales y comportamientos cuánticos.

5.1 Comportamientos locales

Los comportamientos locales deben cumplir una serie de condiciones. En las siguientes ĺıneas se hará
una caracterización adaptada a la formulación de juegos no locales del teorema de Bell, con el fin de
explicar cómo funcionan los comportamientos locales.

En primer lugar, se parte de la probabilidad condicionada de obtener (a, b) al medir una configuración
(x, y) de un estado f́ısico λ(Este estado f́ısico λ no tiene por qué ser conocido, es decir, puede ser una
variable oculta. ). Como puede haber diferentes estados f́ısicos para cada repetición, la probabilidad
condicionada se escribirá de la siguiente manera:

p(ab|xy) =
∑
λ

p(λ|xy) p(ab|xy, λ) (5.4)

Para hacer ciencia es necesaria la hipótesis de no conspiración, es decir, que el sistema f́ısico λ no esté
relacionado con la configuración (x, y). Esto significa que:

p(λ|xy) = p(λ) (5.5)

Por otro lado, está la hipótesis del determinismo, es decir, que el valor de a y de b no dependa de la

9
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medición. Esto permite factorizar la probabilidad, por lo que la ecuación queda de la siguiente forma:

p(ab|xy) =
∑
λ

p(λ) p(a|xy, λ)p(b|xy, λ) (5.6)

Finalmente, la hipótesis de no señalización implica que a no dependa de y ni b de x. Dado que las
mediciones se realizan a la vez y están alejadas, por localidad, la medición de a no podrá modificar la de
b y viceversa. Aśı, se llega a:

p(a, b|x, y) =
∑
λ

p(λ) p(a|x, λ)p(b|y, λ). (5.7)

Por ejemplo, para el escenario (2, 2, 2, 2) se puede construir ahora el tensor de comportamientos P:

P =


p(00|00) p(01|00) p(00|01) p(01|01)
p(10|00) p(11|00) p(10|01) p(11|01)
p(00|10) p(01|10) p(00|11) p(01|11)
p(10|10) p(11|10) p(10|11) p(11|11)

 (5.8)

Cada celda muestra una pregunta (x, y) y sus 4 posibles respuestas (a, b), por lo que habrá 16 com-
portamientos posibles construidos por 16 estrategias diferentes, que se condensan en la siguiente tabla:

Estrategia Valor de a Valor de b
1 0 0
2 0 y
3 0 ¬y
4 0 1
5 x 0
6 x y
7 x ¬y
8 x 1
9 ¬x 0
10 ¬x y
11 ¬x ¬y
12 ¬x 1
13 1 0
14 1 y
15 1 ¬y
16 1 1

Aśı, por ejemplo, para la primera estrategia se tendrá el comportamiento:

P =


1 0 1 0
0 0 0 0
1 0 1 0
0 0 0 0

 . (5.9)

Y el ĺımite local será, por lo tanto:

WL := máx
p(ab|xy)∈local

∑
a,b,x,y

µ(x, y)V (a, b, x, y)p(ab|xy) (5.10)

5.2 Comportamiento cuántico

Por otro lado, si se pudieran utilizar las leyes cuánticas, Alice y Bob podŕıan recibir un estado
entrelazado (por ejemplo, que Alice reciba un fotón que haya interactuado con el de Bob) y medirlo. Con
esta nueva forma de trabajar de Alice y Bob, se define el comportamiento cuántico como:

p(ab|xy) = tr
[(
M

a|x
A ⊗M

b|y
B

)
ρ
]

(5.11)
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donde ρ es la matriz densidad, que describe el estado cuántico de un sistema en un espacio de Hilbert
HA ⊗HB (compuesto por los subespacios de Alice y Bob). Para estados mixtos, la matriz densidad se
describe por:

ρ =
∑
i

pi|ψi⟩⟨ψi| (5.12)

yM
a|x
A yM

b|y
B son los POVMs (Positive Operator-Valued Measure) de Alice y Bob respectivamente. Por

lo tanto, la cota cuántica será:

WQ := máx
p(ab|xy)∈cuántico

∑
a,b,x,y

µ(x, y)V (a, b, x, y)p(ab|xy) (5.13)

donde p(ab|xy) deben cumplir la ecuación (5.11).

Para entender estos nuevos conceptos introducidos, se buscará el juego no local que describa la
desigualdad CHSH (4.7).

5.2.1 Búsqueda del juego CHSH

En la desigualdad CHSH, la correlación de 3 pares de observables suma, y la de un par de ellos resta.
En este caso, habrá que buscar, por lo tanto, 3 pares correlacionados y uno no. Esto se da con la siguiente
función:

V =

{
1 si a⊕ b = x · y,
0 si a⊕ b ̸= x · y.

(5.14)

con µ(x, y) = 1
4 .

En efecto, esta condición se cumple cuando a y b son iguales, salvo cuando x = y = 1. Es decir, gana
3 veces y pierde 1, como en el juego original del que se part́ıa.

El tensor tiene, por lo tanto, la siguiente forma:

V =


1 0 1 0
0 1 0 1
1 0 0 1
0 1 1 0

 (5.15)

Y usando la ecuación (5.10), el ĺımite clásico es WL = 0,75.

5.3 Equivalencia con desigualdad CHSH

A priori puede parecer que este juego no local no sea equivalente a la versión del CHSH demostrada
en el apartado 2.2. Sin embargo, es muy sencillo ver que están describiendo la misma realidad:

En la desigualdad original, si dos medidas están correlacionadas suman 1 y si no lo están restan 1.
Por lo tanto, la correlación entre dos observables arbitrarios se puede definir como:

⟨AxBy⟩ = p(00|xy) + p(11|xy)− p(01|xy)− p(10|xy) (5.16)

Y sumando todas las correlaciones de la desigualdad CHSH (4.7) se tiene:

[p(00|10) + p(11|10)− p(01|10)− p(10|10)] + [p(00|00) + p(11|00)− p(01|00)− p(10|00)]
+ [p(00|01) + p(11|01)− p(01|01)− p(10|01)]− [p(00|11) + p(11|11)− p(01|11)− p(10|11)] ≤ 2.

(5.17)

Sumando a ambos lados todas las posibles respuestas para cada par (x, y):

p(00|xy) + p(10|xy) + p(01|xy) + p(11|xy) = 1, (La probabilidad está normalizada). (5.18)
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Operando se llega a:

2[p(00|00) + p(00|10) + p(00|01) + p(10|11) + p(11|00) + p(11|10) + p(11|01) + p(01|11)] ≤ 6. (5.19)

Y dividiendo entre 8 ambos lados:

1

4
(p(00|00) + p(00|10) + p(00|01) + p(10|11) + p(11|00) + p(11|10) + p(11|01) + p(01|11)) ≤ 3

4
. (5.20)

Que representa la misma suma de probabilidades que el juego V (5.15), que también cyya cota
superior (ĺımite clásico) es WL = 3

4 .

5.3.1 Ĺımite de Tsirelson

Ahora se calculará el ĺımite de Tsirelson[2], es decir, el valor máximo de correlación que se puede
obtener utilizando la mecánica cuántica.

Se parte del operador S que expresa las correlaciones de la ecuación (4.7):

S = A0 ⊗B0 +A0 ⊗B1 +A1 ⊗B0 −A1 ⊗B1. (5.21)

Dado que los valores propios de Ai y Bj son +1 o −1, se cumple:

A2
i = B2

j = I. (5.22)

Al calcular S2:

S2 = (A0 ⊗B0 +A0 ⊗B1 +A1 ⊗B0 −A1 ⊗B1)
2
. (5.23)

Expandiendo los términos, se tiene:

S2 =(A0 ⊗B0)
2 + (A0 ⊗B1)

2 + (A1 ⊗B0)
2 + (A1 ⊗B1)

2

+ 2(A0 ⊗B0)(A0 ⊗B1) + 2(A0 ⊗B0)(A1 ⊗B0)

+ 2(A0 ⊗B0)(−A1 ⊗B1) + 2(A0 ⊗B1)(A1 ⊗B0)

− 2(A0 ⊗B1)(A1 ⊗B1)− 2(A1 ⊗B0)(A1 ⊗B1). (5.24)

Usando la ecuación (5.22) y las propiedades básicas de conmutación, se llega a:

S2 = 4I − [A0, A1]⊗ [B0, B1]. (5.25)

Aplicando la desigualdad triangular:

∥S2∥ ≤ ∥4I∥+ ∥[A0, A1]⊗ [B0, B1]∥, . (5.26)

En mecánica cuántica, los conmutadores de A y B no son necesariamente cero; de hecho, es necesario
que A y B no conmuten para poder obtener una violación de la desigualdad de Bell. Estos conmutadores
están acotados gracias a la desigualdad triangular:

∥[A0, A1]∥ ≤ 2∥A0∥∥A1∥ ≤ 2, (5.27)

∥[B0, B1]∥ ≤ 2∥B0∥∥B1∥ ≤ 2. (5.28)

Por lo que se obtiene finalmente

∥S2∥ ≤ 8. (5.29)

∥S∥ ≤ 2
√
2 (5.30)
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Además, esta demostración proporciona una manera elegante de llegar a la cota clásica. En el caso
clásico, los conmutadores de A y B serán cero, y por lo tanto, sustituyendo en (5.26) se llega a:

∥S∥ ≤ 2 (5.31)

5.4 Cota cuántica

Para calcular la cota cuántica, es necesario encontrar el valor máximo de la ecuación (5.13). Este
cálculo es muy complejo y solo puede resolverse anaĺıticamente para juegos simples, como el CHSH. Se
trata de un problema no convexo de dimensión infinita. Sin embargo, utilizando la jerarqúıa NPA ([11]),
el programa de Matlab MOMENT ([12]) puede proporcionar una cota superior para este ĺımite cuántico.
La jerarqúıa NPA produce una cota superior para cualquier número natural n, conocido como el orden
de la jerarqúıa. A medida que n aumenta, la cota se vuelve más precisa, pero también requiere un mayor
costo computacional para calcularla. Además, la convergencia al valor real de la cota no está garantizada.
De este modo, obtenemos la siguiente sucesión de cotas:

W ∗
Q ≤W∞

Q ≤ · · · ≤W 2
Q ≤W 1

Q (5.32)

Donde el supeŕındice de W indica el orden de la jerarqúıa NPA.

5.4.1 Representación de Collins-Gisin

La representación de V que se ha utilizado hasta ahara tiene elementos redundantes, estos elementos
se pueden eliminar mediante la representación de Collins-Gisin [13]. El programa MOMENT utilizará esta
representación para calcular las cotas. Reescribiendo el comportamiento de probabilidades independientes
P (a | x) y P (b | y), y fijando un valor de a o de b, se pueden obtener el resto de términos como
probabilidades marginales gracias a las condiciones de normalización y de no señalización. Esta última
permite escribir de forma independiente los pares (a, x) y (b, y). Aśı, se tiene:

PCG =

 P (a = 1 | x = 1) P (a = 1 | x = 2)
P (b = 1 | y = 1) P (1, 1 | 1, 1) P (1, 1 | 2, 1)
P (b = 1 | y = 2) P (1, 1 | 1, 2) P (1, 1 | 2, 2)

 (5.33)

Como P (a = 1 | x = 2) + P (a = 2 | x = 2) = 1, entonces P (a = 2 | x = 2) = 1− P (a = 1 | x = 2), y
aśı se pueden obtener los demás términos.

El tensorMCG ha de ser tal que, para cada estrategia, el funcional de BellM(a, b, x, y) = V (a, b, x, y)µ(x, y),
multiplicado término a término por PCG, dé el mismo resultado que en la ecuación ((5.2)).

Definiendo el producto de M y P como:

⟨M · P ⟩ =
∑

a,b,x,y

M(a, b, x, y)P (a, b, x, y) (5.34)

se tiene que:
⟨MCR · PCR⟩ = ⟨MCG · PCG⟩, ∀ p(ab | xy) (5.35)

Donde el sub́ındice CR significa representación completa. Como hay las mismas estrategias locales
que incógnitas y es posible resolver el problema algebraico, y obtener MCG.

Para el caso de CHSH, se tiene:

MCG =
1

4

 −1 0
−1 1 1
0 1 −1

 (5.36)

Para más preguntas y respuestas, será necesario fijar x, y hasta n y a, b hasta k − 1. Por ejemplo,
para 3 preguntas y 3 respuestas:
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P (a = 1 | x = 1) P (a = 2 | x = 1) P (a = 1 | x = 2) P (a = 2 | x = 2)
P (b = 1 | y = 1) P (1, 1 | 1, 1) P (2, 1 | 1, 1) P (1, 1 | 2, 1) P (2, 1 | 2, 1)
P (b = 2 | y = 1) P (1, 2 | 1, 1) P (2, 2 | 1, 1) P (1, 2 | 2, 1) P (2, 2 | 2, 1)
P (b = 1 | y = 2) P (1, 1 | 1, 2) P (2, 1 | 1, 2) P (1, 1 | 2, 2) P (2, 1 | 2, 2)
P (b = 2 | y = 2) P (1, 2 | 1, 2) P (2, 2 | 1, 2) P (1, 2 | 2, 2) P (2, 2 | 2, 2)

(5.37)

5.5 Entroṕıa relativa

Como se ha mencionado anteriormente, hay un infinito zoo de juegos no locales, y para poder trabajar
con ellos, es necesaria alguna forma de clasificarlos y evaluar qué tan buenos son. La diferencia entre WL

y WQ es un buen candidato para esta clasificación; a mayor diferencia, más fácil será distinguir entre
el caso clásico y el cuántico. Sin embargo, al estar tratando un problema probabiĺıstico estudiado en
laboratorio, el p-valor es un mejor candidato para evaluar el significado de los resultados.

El p-valor es la probabilidad de obtener un resultado al menos tan extremo como los datos observados,
bajo la suposición de que la hipótesis nula es verdadera. En este caso, la hipótesis nula es que el mundo
está descrito por variables ocultas locales, lo que implica que la probabilidad de victoria es WL. Dado
que no hay datos observados directamente, se calculará el riesgo estad́ıstico de rechazar la hipótesis nula
(LHV) cuando los datos experimentales se ajustan al modelo cuántico.

El p-valor para cualquier número de victorias es:

p(v, n) =

n∑
k=v

(
n

k

)
W k

L(1−WL)
n−k, (5.38)

donde v es el número de victorias, y n es el número total de experimentos.
Si se evalúa este p-valor para v = ⌈n ·WQ⌉ victorias, donde ⌈n ·WQ⌉ es el valor entero más cercano

mayor o igual a n ·WQ, se obtiene:

p(⌈n ·WQ⌉, n) =
n∑

k=⌈n·WQ⌉

(
n

k

)
W k

L(1−WL)
n−k, (5.39)

No es conveniente trabajar con esta fórmula porque depende del número de experimentos n. Para
manejar esta situación de manera eficiente, se utiliza el ĺımite de Chernoff.[14]

F (v, n, p) ≤ exp
(
−nDKL

( v
n
∥ p

))
, (5.40)

donde F (v;n, p) es la función de distribución acumulativa de una binomial, (5.38)
y DKL

(
v
n ∥ p

)
es la divergencia de Kullback-Leibler:

DKL

( v
n
∥ p

)
=
v

n
· log

( v
n

p

)
+

(
1− v

n

)
· log

(
1− v

n

1− p

)
, (5.41)

Para el caso v = ⌈n ·WQ⌉ y p =WL, se puede escribir la ecuación (5.40) como:

p(⌈n ·WQ⌉, n) ≤ exp (−nDKL (WQ ∥WL)) , (5.42)

Por lo que, a mayor DKL(WQ ∥WL), menor será el p-valor, es decir, a más entroṕıa relativa, el juego
tendrá un mayor poder estad́ıstico.



6 En busca de una comprobación experi-
mental

6.1 Experimento de Clauser y Freedman

El primer experimento relevante para la demostración de la violación de las desigualdades de Bell fue
realizado por Clauser y Freedman en 1972 [15]. Este experimento med́ıa la correlación en la polarización
lineal entre dos fotones emitidos por decaimientos atómicos en cascada de átomos de Calcio excitados.
En términos de momento angular, el proceso de decaimiento sigue el esquema J = 0 → J = 1 → J = 0.
Por conservación de momento angular, los fotones emitidos ν1 y ν2 se encuentran en un estado de
entrelazamiento máximo:

|Ψ⟩ = 1√
2
(|1⟩|0⟩+ |0⟩|1⟩) , (6.1)

donde |1⟩ y |0⟩ representan los estados de polarización de los fotones.

Los resultados experimentales mostraron claramente la violación de la desigualdad de Freedman, una
versión modificada de la primera desigualdad de Bell que tiene en cuenta los aspectos experimentales de
los dispositivos. El mayor problema de este experimento es que los detectores estaban lo suficientemente
cerca uno de otro como para que fuera posible que un detector ”se comunicaraçon el otro, lo que violaba
la hipótesis de localidad.

Figura 6.1: Esquema del experimento de Clauser y Freedman.

6.2 Experimento de Aspect

El siguiente gran avance experimental fue el experimento realizado por Alain Aspect, Jean Dalibar
y Gérard Roger [16]. En este experimento, se utilizaron polarizadores variables temporales, capaces de
cambiar entre diferentes canales de polarización en un intervalo de 10 ns. Dado que la vida media del
nivel intermedio en la cascada atómica es de 15 ns (utilizando también átomos de Calcio excitados), el
tiempo entre mediciones es suficientemente corto para superar los 40 ns que tarda la luz en recorrer los
6 metros que separan los detectores. Este ajuste temporal resuelve aśı la laguna de localidad.

En este experimento se pod́ıan hacer dos configuraciones de mediciones por cada detector, lo que
permitió trabajar con una versión muy similar a la desigualdad CHSH:

−1 ≤ S ≤ 0,

donde

S =
N (⃗a, b⃗)

N(∞⃗, ∞⃗)
− N (⃗a, b⃗′)

N(∞⃗, ∞⃗)
+

N(a⃗′, b⃗′)

N(∞⃗, ∞⃗)
+

N(a⃗′, b⃗)

N(∞⃗, ∞⃗)

+
N (⃗a, ∞⃗)

N(∞⃗, ∞⃗)
− N(a⃗′, ∞⃗)

N(∞⃗, ∞⃗)
− N(∞⃗, b⃗)

N(∞⃗, ∞⃗)
+
N(∞⃗, b⃗′)

N(∞⃗, ∞⃗)
.

Aqúı, N(·,∞) indica las mediciones cuando un polarizador se elimina de la configuración.
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Los resultados experimentales de Aspect mostraron una clara violación de la desigualdad CHSH con
un valor de S = 0,101 ± 0,02, acercandose al valor teórico de S = 0,112 que se predice para un sistema
cuántico ideal.

Figura 6.2: Esquema del experimento de Aspect.

6.3 Lagunas

Aunque el experimento de Aspect superó la laguna de localidad, aún permanecen otras lagunas
(loopholes) experimentales. Las más importantes son la laguna de detección y la laguna de libre albedŕıo.

Laguna de detección: En este caso, los fallos de los detectores pueden alterar los resultados si se
permite que los jugadores se abstengan de responder cuando no se detecta el fotón. Los jugadores podŕıan
ponerse de acuerdo para no responder cuando les llegue una pregunta que les haga perder.

Laguna de libre albedŕıo: Esta laguna se refiere a la preocupación de que la elección de los ángulos
de medición de Alice y de bob pueda estar correlacionada. Esta laguna se conoce como laguna del libre
albedŕıo porque la forma de dar una disposición independiente de medidas seŕıa utilizar el libre albedŕıo
humano (asumiendo que tenemos libre albedŕıo) para generar estas disposiciones de medidas. Esta laguna
es inevitable, siempre podrá existir la duda sobre si las disposiciones están correlacionadas pero puede
ser acotada bajo hipótesis razonables.

6.4 Experimentos libres de loopholes

En 2015, tres experimentos [17][18][19] lograron finalmente salvar todos los loopholes importantes en
las pruebas de las desigualdades de Bell. Estos experimentos utilizaron detectores de mayor precisión para
superar la laguna de detección y separaron los detectores por distancias de hasta varios kilómetros para
resolver la laguna de localidad. Además, se implementaron generadores cuánticos de números aleatorios
para decidir de manera impredecible las configuraciones de medición de Alice y Bob, lo que evitaba que
sus elecciones estuvieran correlacionadas.

En 2018, Zeilinger [20] publicó los resultados de un experimento en el que se utilizaron fotones
emitidos por dos cuásares distantes para determinar las configuraciones de medición de Alice y Bob.
Lo que representa una mejora respecto a los generadores cuánticos de números aleatorios, ya que las
fuentes de datos que definen las disposiciones de medición son completamente independientes para ambos
participantes. Por otro lado, el proyecto Big Bell Test [21] utilizó el libre albedŕıo de miles de personas
que respond́ıan preguntas en un videojuego para generar las configuraciones de medición.
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Figura 6.3: Esquema del experimento libre de loopholes de Zeilinger.



7 Programa

En esta sección se buscarán los mejores juegos no locales para cada escenario, creando todos los juegos
posibles y evaluando su WL y su WQ para encontrar el de mayor entroṕıa relativa. A continuación, se
presenta el programa en Julia utilizado para ello:

7.1 Creación de los tensores

Para generar todos los tensores V (a, b, x, y) de un escenario de 2 jugadores, n preguntas y k respuestas,

se necesitan 2k
2n2

iteraciones, una cantidad que, si se utiliza un ordenador convencional, sólo es viable
para k = n = 2.

Para poder trabajar, es necesario eliminar candidatos (entre los cuales podŕıa haber un mejor resul-
tado). En este caso, se generarán solamente aquellos juegos simétricos respecto a las permutaciones entre
jugadores (entre a y b). Esto significa que las cajas de la diagonal serán simétricas internamente y las de
fuera de la diagonal serán simétricas entre śı.

M1,1 M1,2 M1,3 · · · M1,n

M2,1 M2,2 M2,3 · · · M2,n

M3,1 M3,2 M3,3 · · · M3,n

...
...

...
. . .

...
Mn,1 Mn,2 Mn,3 · · · Mn,n

 (7.1)

Con las condiciones:

Mi,i =MT
i,i para i = 1, 2, . . . , n,

MT
i,j =Mj,i para i ̸= j.

(7.2)

Ahora serán necesarios menos bits, k2n2+kn
2 para ser exactos. En el programa se exponen expĺıcita-

mente las condiciones que copian los valores generados para producir la simetŕıa, como se muestra en el
código.

1 num_bits_diag = k * (k + 1) ÷ 2 * n

2 num_bits_fuera = k^2 * (n * (n - 1) ÷ 2)

3 total_bits = num_bits_diag + num_bits_fuera

4

5 resultados = []

6 candidatos = 0

7

8 for bits in 0:(2^total_bits-1)

9 digitos = digits(bits, base = 2, pad = total_bits)

10

11 V = zeros(Int, k, k, n, n)

12 idx = 1

13

14 for a in 1:k

15 for b in a:k

16 for i in 1:n

17 V[a, b, i, i] = digitos[idx]

18
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18 V[b, a, i, i] = V[a, b, i, i]

19 idx += 1

20 end

21 end

22 end

23

24 for a in 1:k

25 for b in 1:k

26 for i in 1:n

27 for j in i+1:n

28 V[a, b, i, j] = digitos[idx]

29 V[a, b, j, i] = V[a, b, i, j]

30 idx += 1

31 end

32 end

33 end

34 end

35 end

Después de generar cada tensor, se llama a las siguientes funciones para tener los datos necesarios
para obtener la entroṕıa relativa:

1 W_L = Maximo(V, k, n)

2 T = Trivial(V, k, n)

3 no_trivial = n * n - T

4 W_L1 = W_L / no_trivial

5 M = fp2cg(V)

6 scenario = [k, k, n, n]

7 W_Q1 = tsirelson_bound_q1(M, scenario) / no_trivial

7.2 Máximo

La función máximo evalúa el máximo local de cada juego V (a, b, x, y). Para ello compara todas las
posibles estrategias de Alice y Bob guardando en cada iteración sólo aquella que de un mejor resultado
que las anteriores:

1 function Maximo(V, k, n)

2 W_L = 0

3 for a in Base.Iterators.product(fill(1:k, n)...)

4 for b in Base.Iterators.product(fill(1:k, n)...)

5 W = 0

6 for x in 1:n

7 for y in 1:n

8 W += V[a[x], b[y], x, y]

9 end

10 end

11 if W > W_L
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12 W_L = W

13 end

14 end

15 end

16 return W_L

17 end

Como se puede ver en la función, para evaluar todas las estrategias se generan todas las posibles combi-
naciones de (a, b) para la dimensión k y van recorriendo (x, y) para la dimensión n. Para cada iteración,
suma el valor del tensor en la posición V [a[x], b[y], x, y]. Esto selecciona un elemento de cada caja por
lo que el valor máximo de esta función será el número de cajas, 2n. Los caso con WL = 2n no serán
interesantes porque la cota inferior del ĺımite cuántico es el clásico y al este ser máximo, ambos ĺımites
serán iguales.

7.2.1 Trivial

La función Trivial cuenta las cajas triviales de cada juego, es decir, aquellas cajas que sólo contengan
ceros (o unos), para posteriormente dividir el ĺımite local o cuántico entre las cajas no triviales. Esto se
hace porque las cajas triviales no aportan información ya que la aportación a la cota local y cuántica de
éstas será siempre la misma.

1 function Trivial(V, k, n)

2 T = 0

3 for x in 1:n

4 for y in 1:n

5 Suma = 0

6 for a in 1:k

7 for b in 1:k

8 Suma += V[a, b, x, y]

9 end

10 end

11 if Suma == 0

12 T += 1

13 end

14 end

15 end

16 return T

17 end

18

Se puede ver que la función sólo cuenta las cajas llenas de 0. Esto es suficiente porque se van a
generar todos los juegos posibles y aquellas soluciones que resten las cajas triviales van a tener una
mayor entroṕıa. La motivación de esta omisión es que las cajas llenas de unos śı suman a los ĺımites local
y cuántico (suman siempre 1) por lo que si se restan estas cajas del divisor aportaŕıan en el numerador
pero restaŕıan en el denominador. Para solventar este problema se podŕıan convertir las cajas llenas de
unos en cajas llenas de ceros al generar los tensores pero esto no es necesario porque como se crean todos
los tensores simétricos (respecto a la permutación de Alice y Bob) posibles las cajas llenas de ceros se
generarán igualmente. Sólo seŕıa útil si se almacenaran los tensores para luego evaluarlos (disminuiŕıa
los casos), pero al trabajar con tant́ısimos no es eficaz almacenarlos y se evalúan para cada iteración.



7.3. LÍMITE DE TSIRELSON EN PRIMER ORDEN 21

7.3 Ĺımite de Tsirelson en primer orden

La función tsirelson bound q1 (escrita por Mateus Araujo) da una cota superior del ĺımite cuántico
en primer orden para descartar directamente casos en los que la entroṕıa relativa sea menor a la del
CHSH. Esto se hace porque se calculará una aproximación de orden superior del ĺımite de Tsirelson con
Moment, un programa de MATLAB más complejo y preciso que tarda más en ejecutarse. Por lo tanto,
disminuir las llamadas a este programa hará más rápido el cálculo.

Tanto esta función como Moment trabajan con el juego en la base combinada. Para hacer este cambio
de base se utiliza fp2cg, una función del paquete Ket que transforma el tensor de la base completa a
la base de Collins-Gisin. Además, hay que definir el escenario, es decir, las dimensiones del tensor que
describe el juego en la base completa V (k, k, n, n), siendo K y n el número de preguntas y respuestas
respectivamente.

7.4 Entroṕıa relativa

Una vez evaluadas las cotas local y cuántica (y divididas entre las cajas no triviales) es posible calcular
su entroṕıa relativa o divergencia de Kullback-Leibler.

DKL(p ∥ q) = p · log
(
p

q

)
+ (1− p) · log

(
1− p

1− q

)
(7.3)

La función es sencilla pero hay que tratar cuidadosamente los ceros e infinitos para que eal ejecutarlo no
de error.

1 function kl_divergence(p, q)

2 if p > 0 && q > 0 && p < 1 && q < 1

3 return p * log(p / q) + (1 - p) * log((1 - p) / (1 - q))

4 elseif p == 0 || p == 1

5 return 0.0

6 else

7 return Inf

8 end

9 end

7.5 Calculo final de entroṕıa

Finalmente se aplica la condición que descarta los tensores con entroṕıa relativa menor al CHSH
(en primer orden) y se calcula la entroṕıa relativa otra vez usando ahora Moment para calcular la cota
cuántica:

1 if W_L1 > 0 && W_L1 < 1

2 S1 = kl_divergence(W_Q1, W_L1)

3 if S1 > 0.032

4 candidatos += 1

5 W_Q = tsirelson_bound(M, scenario, 2) / no_trivial

6 S = kl_divergence(W_Q, W_L1)

7 push!(resultados, (V = V, S = S, W_L1 = W_L1, W_Q = W_Q))

8 end



7.6. MÉTODO SEE-SAW 22

9 end

10

Por último se ordena el archivo de resultados de mayor a menor entroṕıa y se imprimen en pantalla los
primeros:

1 sorted_resultados = sort(resultados, by = x -> x[:S], rev = true)

2 n_display = min(100, length(sorted_resultados))

3 for i in 1:n_display

4 resultado = sorted_resultados[i]

5 println("S = $(resultado[:S]), V = $(resultado[:V])")

6 end

7.6 Método see-saw

See-saw [22] es un método heuŕıstico basado en programación semidefinida cuyo objetivo es encontrar
el estado cuántico ρ y los POVMs {Aa

x} y {Bb
y} que maximicen la ecuación (??).

La función a optimizar no es lineal, sino un polinomio de grado 3. Si se fija una disposición aleatoria
{Aa

x} y ρ, la maximización de {Bb
y} se convierte en un problema lineal. Luego, al tomar el valor optimizado

de {Bb
y} y fijar ρ de manera aleatoria, se optimiza {Aa

x}, y aśı sucesivamente (de forma iterativa, como
un balanćın), hasta que WQ de ganar deje de aumentar.

El método See-saw está implementado en el paquete Ket. Para ejecutar este método, es necesario
pasar el tensor del juego a la representación de Collins-Gisin, e indicar el escenario y la dimensión. Para
la dimensión, se comienza con el número de respuestas y se aumenta progresivamente si el resultado no
coincide con el WQ calculado con **MOMENTt** para el juego.

1 % Matriz V

2 V = [0 0 1; 0 1 1; 1 1 0; 1 1 0; 1 0 0; 0 0 1; 1 1 0; 1 0 0; 0 0 1; 0 1 0; 1 1 0;

3 0 0 1];

4

5 % Función fp2cg

6 M = fp2cg(V);

7

8 % Método seesaw

9 w, psi, A, B =seesaw(M, [2, 2, 3, 3], 3);



8 Resultados

8.1 2 preguntas y 2 respuestas

Para el caso de dos preguntas y 2 respuestas se analizaron todos los tensores y no sólo los simétricos
respecto a las permutaciones entre a y b. Tanto el CHSH como su negación fueron los que mayor entroṕıa
relativa tuvieron. El estado que da la máxima violación es el singelete (4.8) con los observables dados en
(4.9)

V (a, b, x, y) =

{
1 si a⊕ b ̸= x · y,
0 si a⊕ b = x · y.

(8.1)

S = 0,0321, WL =
3

4
, WQ =

2 +
√
2

4
.

8.2 3 preguntas y 2 respuestas

Para este caso śı que hay que incluir la condición de simetŕıa.
Se ha obtenido el siguiente tensor y las 24 permutaciones simétricas de sus cajas.

V =


1 0 0 0 0 1
0 1 0 0 1 0
0 0 0 1 1 0
0 0 1 0 0 1
0 1 1 0 0 0
1 0 0 1 0 0

 (8.2)

Todos estos tensores son equivalentes al juego de Braunstein-Caves[23], que tiene las mismas cajas
pero no cumplen la condición de simetŕıa. En el juego de Braunstein-Caves se enviarán la siguiente
distribución de preguntas

µ(x, y) =
1

2n
([x = y] + [x = y + 1 (mód n)]) (8.3)

y V(a,b,x,y) está definido la siguiente regla:

V (a, b, x, y) =

{
1 si a⊕ b = δx0δy0,

0 si no se cumple.
(8.4)

Alice y Bob ganan si responden lo mismo que les preguntan salvo para x = y = 0, por lo que se puede
ver simplemente que el ĺımite local será

WL = 1− 1

2n
. (8.5)

Por otro lado, la cota cuántica es

WQ = cos2
( π

4n

)
, (8.6)

se obtiene a partir de un estado singlete (4.8). Por otro lado, los POVMs [24] serán, para cualquier
número de preguntas n:

Xx
a = |φa(αs)⟩⟨φa(αs)|, (8.7)

Y y
b = |φb(βt)⟩⟨φb(βt)|, (8.8)

con

23
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αx =
(π
2
− π

2n

)
y +

π

4n
, (8.9)

βx =
(π
2
− π

2n

)
y. (8.10)

donde

|φ0(θ)⟩ = cos(θ)|0⟩+ sin(θ)|1⟩, (8.11)

|φ1(θ)⟩ = − sin(θ)|0⟩+ cos(θ)|1⟩. (8.12)

Para 3 preguntas se tiene:

S = 0,0444, WL =
5

6
, WQ =

2 +
√
3

4

8.3 2 preguntas y 3 respuestas

Para este caso y el siguiente, śı es necesario incluir la condición de simetŕıa. Se ha encontrado un
juego que no hab́ıa sido estudiado anteriormente. Se tendrá la distribución de preguntas:

µ(x, y) =
1

4
(8.13)

Y las reglas:

V =


0 0 1 1 1 0
0 1 1 1 0 0
1 1 0 0 0 1
1 1 0 0 1 0
1 0 0 1 1 0
0 0 1 0 0 1

 (8.14)

mMdiante el método heuŕıstico seesaw del paquete de Julia ket se ha encontrado el estado entrelazado
que da esa cota máxima:

|ψ⟩ =0,6286054088982822|00⟩
+ (−0,16334324864775843 + 0,07636803935461682i)|01⟩
+ (−0,12961455709177175− 0,004408040675746901i)|02⟩
+ (−0,16334324864775843− 0,07636803935461682i)|10⟩
+ 0,29293441125779784|11⟩
+ (−0,2654097815652861− 0,13526431849558776i)|12⟩
+ (−0,12961455709177175 + 0,004408040675746901i)|20⟩
+ (−0,2654097815652861 + 0,13526431849558776i)|21⟩
+ 0,4928510702990506|22⟩.

(8.15)

Los POVMs de A son:

A[1][1] =

 0,5075 0,0772− 0,2345i 0,4328− 0,0409i
0,0772 + 0,2345i 0,1201 0,0847 + 0,1938i
0,4328 + 0,0409i 0,0847− 0,1938i 0,3725

 (8.16)

A[1][2] =

 0,1598 0,1113 + 0,3272i −0,0408− 0,1147i
0,1113− 0,3272i 0,7474 −0,2634 + 0,0036i
−0,0408 + 0,1147i −0,2634− 0,0036i 0,0928

 (8.17)
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A[2][1] =

 0,0837 0,1725− 0,0918i −0,0474 + 0,1904i
0,1725 + 0,0918i 0,4563 −0,3066 + 0,3405i
−0,0474− 0,1904i −0,3066− 0,3405i 0,4600

 (8.18)

A[2][2] =

 0,3387 −0,1613 + 0,3464i 0,1838 + 0,2101i
−0,1613− 0,3464i 0,4312 0,1274− 0,2881i
0,1838− 0,2101i 0,1274 + 0,2881i 0,2301

 (8.19)

B[1][1] =

 0,2987 −0,2444− 0,1084i −0,0949− 0,3592i
−0,2444 + 0,1084i 0,2393 0,2079 + 0,2595i
−0,0949 + 0,3592i 0,2079− 0,2595i 0,4619

 (8.20)

B[1][2] =

 0,0634 0,1751− 0,1108i −0,1280 + 0,0008i
0,1751 + 0,1108i 0,6779 −0,3553− 0,2218i
−0,1280− 0,0008i −0,3553 + 0,2218i 0,2588

 (8.21)

B[2][1] =

 0,3018 0,0070− 0,4346i 0,1347 + 0,0604i
0,0070 + 0,4346i 0,6260 −0,0839 + 0,1954i
0,1347− 0,0604i −0,0839− 0,1954i 0,0722

 (8.22)

B[2][2] =

 0,2510 0,1080 + 0,2227i 0,2598− 0,2434i
0,1080− 0,2227i 0,2441 −0,1042− 0,3352i
0,2598 + 0,2434i −0,1042 + 0,3352i 0,5049

 (8.23)

El método seesaw con dimensión 3 ha dado la misma WQ que el programa Moment en orden 2.
En este juego se tiene:

S = 0,039537209929330394, WL =
3

4
, WQ = 0,8641.



9 Conclusiones

Se ha cumplido el objetivo principal del trabajo, que era encontrar los mejores juegos no locales
con simetŕıa respecto a las permutaciones de cada escenario con reglas binarias. Por un lado, se han
hallado dos juegos ampliamente conocidos y estudiados: el CHSH para el escenario (2, 2, 2, 2) y el de
Braunstein-Caves para el escenario (3, 3, 2, 2). Además, no hay literatura que indique que estos juegos
sean los mejores de sus respectivos escenarios, por lo que estos son resultados nuevos.

Por otro lado, para el escenario (2, 2, 3, 3) se ha encontrado un juego que no hab́ıa sido estudiado
anteriormente, lo que abre la puerta a investigar sus propiedades.

Para los escenarios (2, 2, 3, 3) y (3, 3, 2, 2), el programa ha dado cientos de miles de juegos con entroṕıa
nula. Esto se debe a que la jerarqúıa NPA de orden 1 sobreestima la cota superior de muchos juegos.
Este puede ser un resultado interesante para el estudio de la jerarqúıa NPA.

Durante todo el trabajo se ha incidido en la condición de simetŕıa, que se aplica debido a una intuición
parcialmente basada en la experiencia, pero no demostrada formalmente. Existen infinitos casos en los
que se rompe un patrón que se da por asumido. Con esta suposición se pierden la mayoŕıa de los juegos,
pero es necesaria para hacer el trabajo. Esto no hace que los resultados sean menos válidos; simplemente
pertenecen a una categoŕıa más restringida.

Hay varias v́ıas para poder continuar con este trabajo aumentando el número de preguntas y respues-
tas. Estas pueden dividirse en dos categoŕıas: optimización y eliminación de juegos.

Optimización

Optimizar el programa para que no cree juegos redundantes: Como las cotas se evalúan por cajas,
todos los juegos que tengan las mismas cajas pero permutadas son realmente el mismo juego.
Eliminar estos juegos redundantes aumentaŕıa sensiblemente la velocidad del programa sin añadir
restricciones adicionales [25].

Optimizar el código de otras maneras y adaptarlo para que pueda trabajar con ordenadores de más
hilos (optimización paralela).

Reducción de juegos

Tratar de encontrar matemáticamente alguna condición que tengan los juegos de mayor entroṕıa
relativa: esto podŕıa ser la condición de simetŕıa incluida en este trabajo u otra más o menos
restrictiva. Esto permitiŕıa centrar la investigación en un grupo de juegos más pequeño, con la
certeza de no estar perdiendo ninguno relevante.

Crear nuevas categoŕıas con condiciones aún más restrictivas que eliminen más juegos: De esta
manera, se podŕıa evaluar un mayor número de preguntas y respuestas. Los tres resultados obtenidos
tienen una condición adicional, y es que las cajas fuera de la diagonal, además de ser simétricas
entre śı, tienen simetŕıa interna. Estas cajas se presentan de la siguiente forma:

A1 B1,2 B1,3 · · · B1,n

B2,1 A2 B2,3 · · · B2,n

B3,1 B3,2 A3 · · · B3,n

...
...

...
. . .

...
Bn,1 Bn,2 Bn,3 · · · An


Con las condiciones:

26
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Ai = AT
i para i = 1, 2, . . . , n,

Bi = BT
i para i = 1, 2, . . . , n,

Bi,j = Bj,i para i ̸= j.

Esto disminuiŕıa la cantidad de bits eliminando k2−(k−1)2

2 de los (n−1)2

2 elementos fuera de la
diagonal.
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[1] M. Araújo, F. Hirsch y M. T. Quintino, “Bell nonlocality with a single shot”, Quantum 4, 353
(2020).

[2] M. A. Nielsen e I. L. Chuang, Quantum Computation and Quantum Information, 2nd (Cambridge
University Press, Cambridge, 2010).

[3] A. Einstein, B. Podolsky y N. Rosen, “Can Quantum-Mechanical Description of Physical Reality
Be Considered Complete?”, Phys. Rev. 47, 777-780 (1935).

[4] D. Bohm e Y. Aharonov, “Discussion of Experimental Proof for the Paradox of Einstein, Rosen,
and Podolsky”, Phys. Rev. 108, 1070-1076 (1957).

[5] N. Bohr, “Can Quantum-Mechanical Description of Physical Reality be Considered Complete?”,
Phys. Rev. 48, 696-702 (1935).

[6] N. Harrigan y R. W. Spekkens, “Einstein, Incompleteness, and the Epistemic View of Quantum
States”, Foundations of Physics 40, 125–157 (2010).

[7] M. Kumar, Quantum: Einstein, Bohr y el gran debate sobre la naturaleza de la realidad (Kairos,
Barcelona, 2011).

[8] A. Einstein, B. Podolsky y N. Rosen, “Can Quantum-Mechanical Description of Physical Reality
Be Considered Complete?”, Phys. Rev. 47, 777-780 (1935).

[9] J. F. Clauser, M. A. Horne, A. Shimony y R. A. Holt, “Proposed Experiment to Test Local Hidden-
Variable Theories”, Physical Review Letters 23, 880-884 (1969).

[10] N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani y S. Wehner, “Bell nonlocality”, Rev. Mod. Phys.
86, 419-478 (2014).
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