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1 Resumen y abstract

Resumen:

En este trabajo se buscaran los juegos locales con mayor poder estadistico, identificando aquellos con
mayor entropia relativa. Para ello, se desarrollard un programa que generara todos los juegos posibles en
cada escenario y evaluard sus cotas cldsica y cudntica. Ademds, se buscaran los estados y POVMs que
optimicen la cota cuantica en los mejores juegos.

Abstract:

In this work, local games with the highest statistical power will be identified by focusing on those with
the highest relative entropy. To achieve this, a program will be developed to generate all possible games
for each scenario and evaluate their classical and quantum bounds. Additionally, for the best games, the
states and POVMSs that optimize the quantum bound will be sought.



2 Introduccion

La mecanica cuantica nace a principios del siglo XX debido a la necesidad de explicar el comporta-
miento de las particulas subatémicas. A mediados de los afios 20, se presentaron dos formulaciones de la
mecanica cuantica que, a la postre, resultaron ser equivalentes: la formulacién matricial de Heisenberg
y la ondulatoria de Schrédinger. En 1927, durante el V Congreso de Solvay, se debatié acerca de estas
dos formulaciones. Durante los ultimos dias del congreso, se produjo una batalla dialéctica entre Eins-
tein y Bohr. El aleman proponia experimentos mentales que cuestionaban el principio de incertidumbre
de Heisenberg, discipulo de Bohr, y en la siguiente sesién el danés encontraba algun fallo 16gico en los
experimentos mentales de Einstein. Tras este congreso, se adopté la formulaciéon de Heisenberg, en la
posteriormente conocida como interpretacién de Copenhague, donde el colapso de la funcién de onda
tenfa una naturaleza probabilistica.

En 1935, Einstein, Podolsky y Rosen formularon la paradoja EPR, que pretendia mostrar que la
mecanica cudntica es una teoria incompleta y abria la puerta a la existencia de alguna teoria més general
(de variables ocultas) que explicara la “accién fantasmal a distancia” del colapso de la funcién de onda.
La mecédnica cudntica siguié avanzando imparable y su interpretacion se quedd en el debate filoséfico.
Hasta que, en 1964, Bell presenté la desigualdad de Bell, que demostraba que ninguna teoria de variables
ocultas local podia describir la realidad de la misma manera que la mecénica cudntica. Desde principios
de los anos 70 hasta la actualidad, se han realizado numerosos experimentos exitosos para comprobar la
violacion de esta desigualdad. Por otro lado, las desigualdades de Bell pueden estudiarse desde los juegos
locales, que son una rama de la teoria de la informacién cuantica, cosa que se hard en este trabajo.

En este trabajo, se buscardn los juegos locales con mayor poder estadistico [1], es decir, aquellos que
se puedan verificar con mayor intervalo de confianza y menos intentos. Para ello, se creard un programa
que genere todos los juegos locales binarios de cada escenario y evalte su limite local y su limite cuantico.
Este ltimo limite se calculara utilizando la jerarquia NPA para ello. Con estos parametros, se calculara
la entropia relativa de cada juego para clasificar su poder estadistico. Por tltimo, se utilizard el método de
programacion semidefinida see-saw para obtener el estado y los POVMs que dan la cota cudntica superior
de los mejores juegos. Es importante destacar que, dado que el niimero de juegos crece exponencialmente
con el niimero de preguntas y respuestas, para escenarios superiores al (2,2, 2, 2) ha sido necesario reducir
el nimero total de juegos aplicando condiciones de simetria.

Ademaés de proporcionar conocimiento sobre la realidad, las desigualdades de Bell se utilizan en
modelos de distribucién de claves cuanticas, por lo que un mayor conocimiento sobre éstas serd 1util para
el desarrollo de las comunicaciones cuanticas.



3 Conceptos necesarios

3.1 Cubit

De igual manera que un bit es la unidad bésica de informacién en computacién clasica, un cibit[2]
es la unidad bésica de informacién en computacién cuantica. Se representa como la superposicion de dos
estados que forman una base ortonormal:

) = a|0) + BI1) (3.1)

Aqui, a y 8 son coeficientes complejos que cumplen la condicién de normalizacién, es decir:

o) + 18> =1 (3.2)

3.2 Estados entrelazados

Los estados entrelazados fueron introducidos por primera vez en la paradoja EPR. El estado de un
sistema de n particulas que no interactian cuyo estado en el espacio de Hilbert es:

1) = |11) @ |th2) ® -+ - @ [tn). (3-3)

con ;) = c1i).
Si ahora estas particulas interactian, por el principio de superposicién se tendra el siguiente estado
entrelazado:

) =>aili), (3.4)

%

donde ¢ = (i1, i2,...,1,) es el multiindice, y

i) = [i1) @ |iz) ® -+ @ |in),

y, en general, ya no se puede describir el estado como un producto de estados de subsistemas indivi-
duales:

|[9) # [9h1) @ [th2) ® -+ - @ |¢hm). (3.5)

Esto quiere decir que las medidas no se pueden describir de manera independiente para cada particula.
Por ejemplo, para N = 2:

N N

i1=112=1

) = c1a]1) @ [1) + c12]1) @ [2) + 21[2) @ [1) + ¢2.2[2) ©[2). (3.7)

3.3 Base computacional

Si ahora se tienen 2 ctbits entrelazados, habra 4 posibles estados: [00), |01), |11}, |10). Estos 4 pares
forman la base computacional [2], representada en la ecuacién (3.7)

Seran especialmente interesantes los Estados de Bell, también conocidos como estados maximamente
entrelazados o estados EPR (nombrados asi en honor a Einstein, Podolsky y Rosen):

4



3.3. BASE COMPUTACIONAL

1

|Boo) = ﬁ(|00> + [11)),
1

|Bo1) = EOOD + [10)),
1

|B10) = \ﬁ(|00> —[11)),

|B11) = —=(|01) — [10)).

5=

Estos estados se pueden condensar en la siguiente ecuacion generalizada:
1
V2

donde gy denota el complemento de y (es decir, si y = 0, entonces § = 1, y viceversa).
Ademas, se utilizaran los observables X y Z. Su representacién en la base computacional es:

x= (1 0).
z=(y %)

Z10) = +1-10), Z[1) =—=1-1),

Por lo tanto, Z opera asi:

y X es la puerta cuantica NOT, que devuelve el estado opuesto al que mide:

X[0) = 1),  X[1) = [0).

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)



4 Paradoja EPR y Teorema

4.1 La Paradoja EPR

La paradoja EPR [3] trata de mostrar que la mecdnica cudntica no es una teoria completa porque,
de serlo, no seria realista. Para entrar en materia, primero hay que introducir los siguientes términos:

= Completitud: una teorfia fisica es completa si cada elemento de la realidad fisica tiene una con-
traparte en la teoria fisica.

s Elemento de realidad: corresponde a una cantidad fisica cuando podemos predecir con certeza
su valor (con probabilidad igual a 1) sin perturbar el sistema.

= Localidad: en una teoria local nada puede transmitirse mds rapido que la luz; en este caso, indica
que una medicién en la particula A no puede afectar inmediatamente a la particula B si estan lo
suficientemente separadas.

Para formular la paradoja, se comienza partiendo de la premisa que se quiere negar:
1. La funcién de onda describe completamente la realidad.
Y del principio de indeterminacién:

2. Cuando dos operadores correspondientes a dos cantidades fisicas no conmutan, las dos cantidades
no pueden tener una realidad simultdanea.

Por simplicidad, se utilizard la versién de Bohm-Aharonov [4], que es equivalente a la paradoja EPR.

En este experimento mental, se parte de una molécula con espin total cero compuesta por dos dtomos
que en algin momento dejan de interaccionar y se separan de tal forma que no influya en el espin. Se
envian los atomos a detectores muy alejados entre si.

La funcién de onda del sistema sera:

_ b
V2

Dado que el espin total es 0, si se mide la componente S. del espin de la particula A, se obtiene %;

|¢) (M) = 1) (4.1)

entonces el resultado de la componente S, del espin de la particula B estard completamente definido:

—%. Si se obtiene —g midiendo A, la componente de B estard completamente definida y serd %

Este argumento se puede extender para la componente ,SA'I, teniendo completamente definida la com-
ponente S, de la particula B si se mide la de la particula A.

En la paradoja EPR se defiende que, como por localidad las mediciones en A no pueden afectar a
B, ambas componentes de B han de estar definidas a la vez y, por lo tanto, son elementos de realidad.
Esto no pasaria con las componentes de A porque, para medirlas, si se perturba el sistema al colapsar la
funcién de onda en uno de los dos estados.

La contradiccién aparece porque S, y S, no conmutan, por lo que, segtn el principio de incertidumbre,
no se pueden conocer ambos elementos de realidad a la vez con total precisién. Esto ocurre para la
particula B, asi que se concluye que o bien la mecédnica cuantica no es una teoria completa y no puede
predecir con certeza estos elementos de realidad, o bien no se cumple el principio de incertidumbre y la
mecanica cudntica falla. Una tercera opcion seria que se violara el principio de localidad, pero los autores
de la paradoja consideraron esa idea inadmisible.

La publicacién de la paradoja EPR provocé un revuelo medidtico. Pocos meses después, Bohr [7]
respondio a ella senalando que el concepto de elemento de realidad estaba vagamente definido y que las
dos particulas, al estar entrelazadas, formaban un tnico sistema. Hasta el propio Einstein admitid, en
correspondencia con Schrodinger, que habia lagunas de lenguaje debidas a que Podolsky [6], el redactor
del articulo, tenia el ruso como lengua materna. Pese a ello, esta paradoja ha sido pieza clave para el
posterior descubrimiento del teorema de Bell, funcionando como reaccion al progreso para hacer girar el
motor de la historia.



4.2. VARIABLES OCULTAS 7

4.2 Variables ocultas

Una de las posibles soluciones que proponian los detractores de la interpretacién de Copenhague
a los problemas de causalidad debidos al colapso de la funcién de onda y a la falta de determinismo
debida a la naturaleza probabilistica de la medida eran las variables ocultas. De esta forma, se plantea la
existencia de unos elementos desconocidos que explicarian estos problemas de causalidad y determinismo.
Un ejemplo de teorfa de variables ocultas desvelada [7] fue la cinética de los gases de Boltzmann y
Maxwell, que postulaba que las propiedades de los gases provenian del movimiento de unas particulas
que los componian, las cuales se movian a velocidad constante y colisionaban entre ellas. Fue el propio
Einstein, en 1905, quien comprobé la existencia de los dtomos mediante su estudio del movimiento
browniano en liquidos, desvelando asi esa variable oculta y completando la teoria.

4.3 Teorema de Bell

En 1964, durante su ano sabatico en el CERN, el fisico norirlandés John Bell desarrolld, a partir de
la versién de Bohm de la paradoja EPR [8], una desigualdad que demuestra la incompatibilidad de las
variables ocultas locales con las predicciones de la mecanica cudntica. A partir de la desigualdad de Bell,
este problema filos6fico se podria trasladar casi 30 anos después al laboratorio.

En 1969, John Clauser, un joven fisico experimental nacido en Berkeley, junto con Michael Horne,
Abner Shimony y Richard Holt, recogié la propuesta de Bell para disenar un montaje experimental que
permitiera probar la desigualdad. Modificaron la desigualdad de Bell, planteando la desigualdad CHSH

[9]-

4.4 Demostracion CHSH

La desigualdad CHSH es una versién mds general de la desigualdad de Bell. La demostracién [2]
requiere de 3 participantes: Charlie, Alice y Bob.

Charlie prepara dos particulas y le envia una a Alice y otra a Bob. Alice recibe su particula y puede
medir dos magnitudes fisicas, Ay 0 A;. Sus mediciones, P4, y Pa,, solo pueden tomar valores 1. Alice
mide aleatoriamente una de estas dos magnitudes al mismo tiempo que Bob hace lo mismo con su
particula, realizando una medicién que solo puede dar +1 para una de las propiedades (también elegida
aleatoriamente como Alice), Pg, o Ppg,.

En este punto cabe destacar que se estan haciendo las siguientes asunciones:

Localidad: Como Alice y Bob estdn separados a cierta distancia y hacen las medidas a la vez, la
medida de Alice no puede interferir en la de Bob y viceversa.

Realismo: Todas las magnitudes estan perfectamente definidas antes de ser medidas y no dependen
de la medicién.

Si se calcula:
A1Bo + AoBo + AgB1 — A1B1 = (A1 + Ao)Bo + (Ag — A1) B (4.2)

donde Ag, A1 = £1, entonces se tiene que o bien (A; + Ag) =0 o (A9 — A1) = 0. Por lo tanto:
AlBO + AOBO + A()Bl - AlBl = +2. (43)
Por lo que se tiene la siguiente desigualdad:

A1By + AgBy + AgBy — Ay By < 2. (4.4)

Se tiene una distribucién de probabilidad p(ay, ag, by, b1) de que el estado preparado por Charlie tenga
los valores A; = a1, Ay = ag, Bg = by y By = by, y esta distribucién de probabilidad esté sujeta a una
condiciéon de normalizacién:

Z p(alaaOabOabl) =1 (45)

a1,a0,bo,b1
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(Si, por ejemplo, todas las magnitudes toman los valores +1 mediante una distribucién equiprobable,
habria una probabilidad de {5 para cada caso.)
Con esta distribucién de probabilidad es posible calcular el valor medio:

E(A1By+ AogBy + AyB1 — A1By) = Z p(a1, ao, bo, b1) (a1bo + agbo + agbr — a1b1)

a1,a9,bo,b1

<2 Z p(a1,a0,bo,b1) = 2.

a1,a9,bo,b1

(4.6)

Y como el valor medio de una suma es la suma de los valores medios, se llega finalmente a la
desigualdad CHSH:

(A1Bo) + (A9Bo) + (Ao B1) — (A1B1) <2 (4.7)

Para probar si esta desigualdad se mantiene en el mundo cuéntico, Charlie prepara un estado maxi-

mamente entrelazado de 2 gbits y le envia uno a Alice y otro a Bob:
_ [04lp) = [1405)

|¥) 7 ,

(4.8)

Utilizando los siguientes observables:

—Zy — Xy Zy — Xo
— = Bi=—F7%—,
V2 V2

Utilizando la representacién en la base computacional de X y de Z (3.13) se pueden calcular los
valores esperados de la expresién (4.7):

A1 = Zl, AO = Xl, B() = (49)

(A1B0) = = (AoBo) = 2=, (ABi) = o=, (MiBi) = ——= (4.10)

Por lo que se viola la desigualdad CHSH:

N
3

(A1Bo) + (Ao Bo) + (AoB1) — (A1By) = 2V2 £ 2. (4.11)



5 Juegos no locales

Otra forma de ver las desigualdades de Bell son los juegos no locales [10]. En un juego por turnos, un
referi enviard preguntas (x,y) con probabilidad u(z,y) a dos jugadores, Alice y Bob, y ellos devolveran
respuestas (a, b) que seran evaluadas por el refer{ mediante unas reglas de juego V(a,b, x,y), que para 2
preguntas y 2 respuestas re representan en el tensor V:

14
v
= (5.1)
14

= olm o
ol Reniilen
e R
O OO O

(
(
(
(

donde V(a,b,z,y) € {0,1}.

Un escenario (kq, kp, na, np) se define por los jugadores (a, b) que lo forman, el nimero de preguntas
(ng,mp) que se hacen a cada jugador y el ntimero de respuestas (kq, ky) que devuelve cada jugador. Por
ejemplo, para un escenario con 2 jugadores que reciben 2 preguntas y devuelven 2 respuestas cada uno,
serd un escenario (2,2,2,2). En un escenario con 2 jugadores a los que se les hacen 2 preguntas a cada
uno y devuelven 3 respuestas cada uno, el escenario serd (3,3,2,2).

Se utilizara la siguiente notacién:

zeX={1,...,ky}, a€A={1,...,n.}, yeY={1,....k}, beB={1,...,m}

El comportamiento p(ablzy) indica cémo van a responder Alice y Bob ante las preguntas que reciban.
La probabilidad de victoria para comportamiento sera:

Pwin = Z N(xa y)V(a, b7 €L, y)p(ab|xy) (52)

ab,z,y

Se define como limite el valor maximo que puede tomar la probabilidad de victoria de entre todos los
comportamientos posibles:

L= mix 37 le)V(a,bog)plabley) (53)
a,b,x,y

En este trabajo se estudiaran comportamientos locales y comportamientos cudnticos.

5.1 Comportamientos locales

Los comportamientos locales deben cumplir una serie de condiciones. En las siguientes lineas se hara
una caracterizaciéon adaptada a la formulaciéon de juegos no locales del teorema de Bell, con el fin de
explicar cémo funcionan los comportamientos locales.

En primer lugar, se parte de la probabilidad condicionada de obtener (a, b) al medir una configuracién
(z,y) de un estado fisico A(Este estado fisico A no tiene por qué ser conocido, es decir, puede ser una
variable oculta. ). Como puede haber diferentes estados fisicos para cada repeticién, la probabilidad
condicionada se escribira de la siguiente manera:

plablzy) = p(Aay) p(ablzy, N) (5.4)
A

Para hacer ciencia es necesaria la hip6tesis de no conspiracion, es decir, que el sistema fisico A no esté
relacionado con la configuracién (z,y). Esto significa que:

p(Alzy) = p(A) (5:5)

Por otro lado, esta la hipdtesis del determinismo, es decir, que el valor de a y de b no dependa de la

9



5.2. COMPORTAMIENTO CUANTICO 10

medicién. Esto permite factorizar la probabilidad, por lo que la ecuaciéon queda de la siguiente forma:
plablzy) = > p(X) plalzy, \)p(blay, A) (5.6)
A

Finalmente, la hipétesis de no senalizaciéon implica que a no dependa de y ni b de z. Dado que las
mediciones se realizan a la vez y estan alejadas, por localidad, la medicién de a no podra modificar la de
b y viceversa. Asi, se llega a:

pla,blz,y) = p(A) p(alz, \p(bly, V). (5.7)
A

Por ejemplo, para el escenario (2,2,2,2) se puede construir ahora el tensor de comportamientos P:

p(00[00)  p(01]00) | p(00J0L)  p(01[01)

p_ [ 20000) p(11]00) | p(10j01) p(11jo1) (53)
p(00[10) ~ p(OT[T0) | p(00[TL) p(01[11) '
p(10[10) p(11]10) | p(10]11) p(11[11)

Cada celda muestra una pregunta (z,y) y sus 4 posibles respuestas (a,b), por lo que habrd 16 com-
portamientos posibles construidos por 16 estrategias diferentes, que se condensan en la siguiente tabla:

Estrategia | Valor de a | Valor de b
1 0 0
2 0 Y
3 0 -y
4 0 1
5 x 0
6 x Y
7 T -y
8 x 1
9 -z 0
10 -z
11 -z -y
12 —x 1
13 1 0
14 1 Y
15 1 -y
16 1 1

Asi, por ejemplo, para la primera estrategia se tendra el comportamiento:

Y el limite local serd, por lo tanto:

> @, y)V(a, b,z y)p(ablry) (5.10)

a,0,T,y

max
p(ablzy)Elocal

5.2 Comportamiento cuantico

Por otro lado, si se pudieran utilizar las leyes cuénticas, Alice y Bob podrian recibir un estado
entrelazado (por ejemplo, que Alice reciba un fotén que haya interactuado con el de Bob) y medirlo. Con
esta nueva forma de trabajar de Alice y Bob, se define el comportamiento cuantico como:

p(ablzy) = tr [(MZ‘I ® ng) p} (5.11)
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donde p es la matriz densidad, que describe el estado cuantico de un sistema en un espacio de Hilbert
Ha ® Hp (compuesto por los subespacios de Alice y Bob). Para estados mixtos, la matriz densidad se
describe por:

p= ZZ%WJWJ (5.12)

y MZ‘I y ng son los POVMs (Positive Operator-Valued Measure) de Alice y Bob respectivamente. Por
lo tanto, la cota cudntica sera:

Wo:=  mix >z, y)V(a,b,z, y)p(ablzy) (5.13)

p(ablzy)Ecudntico
ab,x,y

donde p(ablzy) deben cumplir la ecuacién (5.11).

Para entender estos nuevos conceptos introducidos, se buscara el juego no local que describa la
desigualdad CHSH (4.7).

5.2.1 Bisqueda del juego CHSH

En la desigualdad CHSH, la correlacién de 3 pares de observables suma, y la de un par de ellos resta.
En este caso, habra que buscar, por lo tanto, 3 pares correlacionados y uno no. Esto se da con la siguiente
funcién:

1 s — -
V= sta®b=w-y, (5.14)
0 sia®b#x-y.

con p(z,9) = 1.

En efecto, esta condicién se cumple cuando a y b son iguales, salvo cuando x = y = 1. Es decir, gana
3 veces y pierde 1, como en el juego original del que se partia.
El tensor tiene, por lo tanto, la siguiente forma:

(5.15)

1
0
1
0

Y usando la ecuacién (5.10), el limite cldsico es W, = 0,75.

5.3 Equivalencia con desigualdad CHSH

A priori puede parecer que este juego no local no sea equivalente a la versién del CHSH demostrada
en el apartado 2.2. Sin embargo, es muy sencillo ver que estan describiendo la misma realidad:

En la desigualdad original, si dos medidas estan correlacionadas suman 1 y si no lo estdn restan 1.
Por lo tanto, la correlacién entre dos observables arbitrarios se puede definir como:

(AzBy) = p(00[zy) + p(11|zy) — p(01|zy) — p(10]zy) (5.16)

Y sumando todas las correlaciones de la desigualdad CHSH (4.7) se tiene:

[p(00]10) + p(11]10) — p(01[10) — p(10[10)] + [p(00[00) + p(11]00) — p(01]00) — p(10/00)]

- [p(00]01) + p(11]01) — p(01]01) — p(1001)] — [p(00[11) + p(11[11) — p(01]11) — p(10[11)] < 2. 1D

Sumando a ambos lados todas las posibles respuestas para cada par (x,y):

p(00|zy) + p(10|zy) + p(01|zy) + p(11l|zy) = 1, (La probabilidad estd normalizada). (5.18)
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Operando se llega a:

2[p(00]00) + p(00]10) + p(00|01) + p(10|11) + p(11]00) + p(11|10) + p(11]|01) 4+ p(01|11)] <

Y dividiendo entre 8 ambos lados:

1
1 (1(00]00) + p(00[10) + p(00[01) + p(10[11) + p(11]00) + p(11[10) + p(11]01) + p(01[11)) <

6.

<3
4

12

(5.19)

(5.20)

Que representa la misma suma de probabilidades que el juego V' (5.15), que también cyya cota

superior (limite cldsico) es W, = 3.

5.3.1 Limite de Tsirelson

Ahora se calculard el limite de Tsirelson[2], es decir, el valor méximo de correlacién que se puede

obtener utilizando la mecanica cuantica.
Se parte del operador S que expresa las correlaciones de la ecuacién (4.7):

S=A®By+A®@B1+ A ® By — A1 ® By.
Dado que los valores propios de A; y B; son +1 o —1, se cumple:
A7 =Bj =1
Al calcular S2:

5% = (Ag® By + Ag ® By + A, @ By — A, @ By)”.

Expandiendo los términos, se tiene:

5% = (Ao ® Bo)? + (Ao @ B1)* 4 (A1 ® By)* + (A, ® By)?
+2(Ao ® Bo)(Ao ® B1) + 2(Ag ® Bo)(A1 ® By)
+2(Ao ® Bo)(—A1 ® By) +2(Ao ® B1)(A1 ® Bo)
—2(A0 @ B1) (A1 ® By) — 2(A; ® Bo)(A1 @ By).

Usando la ecuacién (5.22) y las propiedades bdsicas de conmutacién, se llega a:
S% =4I — [Ag, A1] ® [Bo, B1].
Aplicando la desigualdad triangular:

1]l < 1411] + [|[Ao, A1] ® [Bo, Bi]. -

(5.21)

(5.22)

(5.23)

(5.24)

(5.25)

(5.26)

En mecédnica cuédntica, los conmutadores de A y B no son necesariamente cero; de hecho, es necesario
que A y B no conmuten para poder obtener una violacién de la desigualdad de Bell. Estos conmutadores

estan acotados gracias a la desigualdad triangular:

[[Ao, Au]|l < 2[|Ao|[[As]| <2,
I[Bo; Bl < 2[|Boll[| Brl| < 2.

Por lo que se obtiene finalmente

IS2] < 8.

15|l < 2v2

(5.29)

(5.30)
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Ademas, esta demostracién proporciona una manera elegante de llegar a la cota cldsica. En el caso
clésico, los conmutadores de A y B serén cero, y por lo tanto, sustituyendo en (5.26) se llega a:

I1S] <2 (5.31)

5.4 Cota cuantica

Para calcular la cota cudntica, es necesario encontrar el valor mdximo de la ecuacién (5.13). Este
calculo es muy complejo y solo puede resolverse analiticamente para juegos simples, como el CHSH. Se
trata de un problema no convexo de dimensién infinita. Sin embargo, utilizando la jerarquia NPA ([11]),
el programa de Matlab MOMENT ([12]) puede proporcionar una cota superior para este limite cudntico.
La jerarquia NPA produce una cota superior para cualquier nimero natural n, conocido como el orden
de la jerarquia. A medida que n aumenta, la cota se vuelve més precisa, pero también requiere un mayor
costo computacional para calcularla. Ademds, la convergencia al valor real de la cota no estd garantizada.
De este modo, obtenemos la siguiente sucesién de cotas:

WoH<WE < < Wi < W (5.32)

Donde el superindice de W indica el orden de la jerarquia NPA.

5.4.1 Representacion de Collins-Gisin

La representacién de V que se ha utilizado hasta ahara tiene elementos redundantes, estos elementos
se pueden eliminar mediante la representacién de Collins-Gisin [13]. El programa MOMENT utilizard esta
representacién para calcular las cotas. Reescribiendo el comportamiento de probabilidades independientes
P(a | ) y P(b | y), y fijando un valor de a o de b, se pueden obtener el resto de términos como
probabilidades marginales gracias a las condiciones de normalizacién y de no senalizacién. Esta tdltima
permite escribir de forma independiente los pares (a,x) y (b,y). Asi, se tiene:

| Pla=1|z=1) Pla=1|z=2)
Poc=|Po=1ly=1] PL1|L1) P(L,1[2,10) (5.33)
Pb=1|y=2)| P1,1]1,2) P(1,1]2,2)

Como Pla=1|z=2)+Pla=2|xz=2)=1,entonces Pla=2|z=2)=1—-Pla=1|z=2),y
asi se pueden obtener los demds términos.

El tensor M¢g ha de ser tal que, para cada estrategia, el funcional de Bell M (a, b, z,y) = V(a, b, x,y)u(z,y),
multiplicado término a término por Pcg, dé el mismo resultado que en la ecuacion ((5.2)).

Definiendo el producto de M y P como:

<MP> = Z M(a,b,x,y)P(a,b,x,y) (534)
a,b,x,y
se tiene que:
(Mcr - Pcr) = (Mcc - Pca), Vp(ab | zy) (5.35)

Donde el subindice CR significa representaciéon completa. Como hay las mismas estrategias locales
que incognitas y es posible resolver el problema algebraico, y obtener Mcg.

Para el caso de CHSH, se tiene:

(5.36)

Para mas preguntas y respuestas, serd necesario fijar x,y hasta n y a,b hasta k — 1. Por ejemplo,
para 3 preguntas y 3 respuestas:
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5.5 Entropia relativa

Como se ha mencionado anteriormente, hay un infinito zoo de juegos no locales, y para poder trabajar
con ellos, es necesaria alguna forma de clasificarlos y evaluar qué tan buenos son. La diferencia entre W7,
y Wgq es un buen candidato para esta clasificacién; a mayor diferencia, més fécil serd distinguir entre
el caso cldsico y el cuantico. Sin embargo, al estar tratando un problema probabilistico estudiado en
laboratorio, el p-valor es un mejor candidato para evaluar el significado de los resultados.

El p-valor es la probabilidad de obtener un resultado al menos tan extremo como los datos observados,
bajo la suposicién de que la hipotesis nula es verdadera. En este caso, la hipotesis nula es que el mundo
esta descrito por variables ocultas locales, lo que implica que la probabilidad de victoria es Wp,. Dado
que no hay datos observados directamente, se calculara el riesgo estadistico de rechazar la hipdtesis nula
(LHV) cuando los datos experimentales se ajustan al modelo cudntico.

El p-valor para cualquier niimero de victorias es:

p(v,n) = Z <Z) Wk —wp)n*, (5.38)

k=v
donde v es el niimero de victorias, y n es el namero total de experimentos.

Si se evalda este p-valor para v = [n - Wg] victorias, donde [n - Wg] es el valor entero més cercano
mayor o igual a n - Wg, se obtiene:

n

el = Y ()wha - wt, (5.39)

k=[n-Wgq]

No es conveniente trabajar con esta férmula porque depende del nimero de experimentos n. Para
manejar esta situacion de manera eficiente, se utiliza el limite de Chernoff.[14]

F(v,n,p) < exp (—nDKL (% | p)) , (5.40)

donde F(v;n,p) es la funcién de distribucién acumulativa de una binomial, (5.38)
vy Dx1, (% I p) es la divergencia de Kullback-Leibler:

DKL(% ||p)=Z-10g(§)+(1—2)~10g<11:£>, (5.41)

Para el caso v = [n-Wq]| y p = Wi, se puede escribir la ecuacién (5.40) comor:

p([n-Wal,n) < exp (—nDkr (W || W), (5.42)

Por lo que, a mayor Dxr,(Wgq || W), menor serd el p-valor, es decir, a més entropia relativa, el juego
tendrda un mayor poder estadistico.



6 En busca de una comprobaciéon experi-
mental

6.1 Experimento de Clauser y Freedman

El primer experimento relevante para la demostracién de la violacién de las desigualdades de Bell fue
realizado por Clauser y Freedman en 1972 [15]. Este experimento media la correlacién en la polarizacién
lineal entre dos fotones emitidos por decaimientos atémicos en cascada de atomos de Calcio excitados.
En términos de momento angular, el proceso de decaimiento sigue el esquema J =0—J =1— J =0.
Por conservacién de momento angular, los fotones emitidos v y v se encuentran en un estado de
entrelazamiento maximo:

_ b
V2

donde 1) y |0) representan los estados de polarizacién de los fotones.

Los resultados experimentales mostraron claramente la violacién de la desigualdad de Freedman, una
versiéon modificada de la primera desigualdad de Bell que tiene en cuenta los aspectos experimentales de
los dispositivos. El mayor problema de este experimento es que los detectores estaban lo suficientemente
cerca uno de otro como para que fuera posible que un detector ”se comunicaragon el otro, lo que violaba
la hipétesis de localidad.

o~ A —

Figura 6.1: Esquema del experimento de Clauser y Freedman.

¥) (ID10) +10)[1)) (6.1)

N

V

6.2 Experimento de Aspect

El siguiente gran avance experimental fue el experimento realizado por Alain Aspect, Jean Dalibar
y Gérard Roger [16]. En este experimento, se utilizaron polarizadores variables temporales, capaces de
cambiar entre diferentes canales de polarizacién en un intervalo de 10 ns. Dado que la vida media del
nivel intermedio en la cascada atémica es de 15 ns (utilizando también dtomos de Calcio excitados), el
tiempo entre mediciones es suficientemente corto para superar los 40 ns que tarda la luz en recorrer los
6 metros que separan los detectores. Este ajuste temporal resuelve asi la laguna de localidad.

En este experimento se podian hacer dos configuraciones de mediciones por cada detector, lo que
permitié trabajar con una versién muy similar a la desigualdad CHSH:

~1<8<0,
donde
N(@b) _ N@V)  N(@.b) = N(d.b)
S = 5+ — ——~ + =~ T ——
N(c0,0) N(R,0) N(X,0) N(0,0)
(N@®)  N@®)  N®E) | NP
N(s0,%0)  N(%,00)  N(s0,00)  N(c,0)

Aqui, N(+,00) indica las mediciones cuando un polarizador se elimina de la configuracién.

15
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Los resultados experimentales de Aspect mostraron una clara violacién de la desigualdad CHSH con
un valor de S = 0,101 £ 0,02, acercandose al valor teérico de S = 0,112 que se predice para un sistema
cuantico ideal.

Figura 6.2: Esquema del experimento de Aspect.

6.3 Lagunas

Aunque el experimento de Aspect super6 la laguna de localidad, ain permanecen otras lagunas
(loopholes) experimentales. Las mds importantes son la laguna de deteccién y la laguna de libre albedrio.

Laguna de deteccién: En este caso, los fallos de los detectores pueden alterar los resultados si se
permite que los jugadores se abstengan de responder cuando no se detecta el fotén. Los jugadores podrian
ponerse de acuerdo para no responder cuando les llegue una pregunta que les haga perder.

Laguna de libre albedrio: Esta laguna se refiere a la preocupacién de que la eleccién de los angulos
de medicién de Alice y de bob pueda estar correlacionada. Esta laguna se conoce como laguna del libre
albedrio porque la forma de dar una disposiciéon independiente de medidas seria utilizar el libre albedrio
humano (asumiendo que tenemos libre albedrio) para generar estas disposiciones de medidas. Esta laguna
es inevitable, siempre podra existir la duda sobre si las disposiciones estdn correlacionadas pero puede
ser acotada bajo hipétesis razonables.

6.4 Experimentos libres de loopholes

En 2015, tres experimentos [17][18][19] lograron finalmente salvar todos los loopholes importantes en
las pruebas de las desigualdades de Bell. Estos experimentos utilizaron detectores de mayor precisién para
superar la laguna de deteccién y separaron los detectores por distancias de hasta varios kilémetros para
resolver la laguna de localidad. Ademds, se implementaron generadores cudnticos de nimeros aleatorios
para decidir de manera impredecible las configuraciones de medicién de Alice y Bob, lo que evitaba que
sus elecciones estuvieran correlacionadas.

En 2018, Zeilinger [20] publicé los resultados de un experimento en el que se utilizaron fotones
emitidos por dos cudsares distantes para determinar las configuraciones de mediciéon de Alice y Bob.
Lo que representa una mejora respecto a los generadores cudnticos de nimeros aleatorios, ya que las
fuentes de datos que definen las disposiciones de medicién son completamente independientes para ambos
participantes. Por otro lado, el proyecto Big Bell Test [21] utiliz6 el libre albedrio de miles de personas
que respondian preguntas en un videojuego para generar las configuraciones de medicién.



6.4.

EXPERIMENTOS LIBRES DE LOOPHOLES

u%{z 3 }!\ bt

Figura 6.3: Esquema del experimento libre de loopholes de Zeilinger.

17
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7 Programa

En esta seccién se buscaran los mejores juegos no locales para cada escenario, creando todos los juegos
posibles y evaluando su Wy y su Wg para encontrar el de mayor entropia relativa. A continuacién, se
presenta el programa en Julia utilizado para ello:

7.1 Creacion de los tensores

Para generar todos los tensores V (a, b, z, y) de un escenario de 2 jugadores, n preguntas y k respuestas,
se necesitan 28" iteraciones, una cantidad que, si se utiliza un ordenador convencional, sélo es viable
para k =n = 2.

Para poder trabajar, es necesario eliminar candidatos (entre los cuales podria haber un mejor resul-
tado). En este caso, se generardn solamente aquellos juegos simétricos respecto a las permutaciones entre
jugadores (entre a y b). Esto significa que las cajas de la diagonal serdan simétricas internamente y las de
fuera de la diagonal serdn simétricas entre si.

Mii | Mio | My M,
Moy | Mao | Mas | -+ | May,
M371 M372 M373 e M3,n (71)
Mp1 | Mpo | Mps M, »
Con las condiciones:
T .
M;;=M;; parai=12...,n, (72)
T . . .
M; ;= M;,; parai# j.
7 . . 2 2 7 .
Ahora seran necesarios menos bits, w para ser exactos. En el programa se exponen explicita-

mente las condiciones que copian los valores generados para producir la simetria, como se muestra en el
cbdigo.

18
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7.2. MAXIMO 19

Después de generar cada tensor, se llama a las siguientes funciones para tener los datos necesarios
para obtener la entropia relativa:

7.2 Maximo

La funcién méximo evaliia el méximo local de cada juego V(a,b, x,y). Para ello compara todas las
posibles estrategias de Alice y Bob guardando en cada iteracién sélo aquella que de un mejor resultado
que las anteriores:
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Como se puede ver en la funcién, para evaluar todas las estrategias se generan todas las posibles combi-
naciones de (a, b) para la dimensién k y van recorriendo (z,y) para la dimensién n. Para cada iteracién,
suma el valor del tensor en la posicién Vialz],bly], z,y]. Esto selecciona un elemento de cada caja por
lo que el valor maximo de esta funcién serd el ntimero de cajas, 2n. Los caso con W; = 2n no seran
interesantes porque la cota inferior del limite cudntico es el cldsico y al este ser maximo, ambos limites
seran iguales.

7.2.1 Trivial

La funcién Trivial cuenta las cajas triviales de cada juego, es decir, aquellas cajas que sélo contengan
ceros (o unos), para posteriormente dividir el limite local o cudntico entre las cajas no triviales. Esto se
hace porque las cajas triviales no aportan informacién ya que la aportacion a la cota local y cuantica de
éstas serd siempre la misma.

Se puede ver que la funcién sélo cuenta las cajas llenas de 0. Esto es suficiente porque se van a
generar todos los juegos posibles y aquellas soluciones que resten las cajas triviales van a tener una
mayor entropia. La motivacién de esta omisién es que las cajas llenas de unos si suman a los limites local
y cudntico (suman siempre 1) por lo que si se restan estas cajas del divisor aportarfan en el numerador
pero restarian en el denominador. Para solventar este problema se podrian convertir las cajas llenas de
unos en cajas llenas de ceros al generar los tensores pero esto no es necesario porque como se crean todos
los tensores simétricos (respecto a la permutacién de Alice y Bob) posibles las cajas llenas de ceros se
generaran igualmente. S6lo serfa 1til si se almacenaran los tensores para luego evaluarlos (disminuiria
los casos), pero al trabajar con tantisimos no es eficaz almacenarlos y se evaldan para cada iteracién.
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7.3 Limite de Tsirelson en primer orden

La funcién tsirelson_bound_ql (escrita por Mateus Araujo) da una cota superior del limite cudntico
en primer orden para descartar directamente casos en los que la entropia relativa sea menor a la del
CHSH. Esto se hace porque se calculard una aproximacion de orden superior del limite de Tsirelson con
Moment, un programa de MATLAB maés complejo y preciso que tarda més en ejecutarse. Por lo tanto,
disminuir las llamadas a este programa hard mas réapido el célculo.

Tanto esta funcién como Moment trabajan con el juego en la base combinada. Para hacer este cambio
de base se utiliza fp2cg, una funcién del paquete Ket que transforma el tensor de la base completa a
la base de Collins-Gisin. Ademds, hay que definir el escenario, es decir, las dimensiones del tensor que
describe el juego en la base completa V (k, k,n,n), siendo K y n el nimero de preguntas y respuestas
respectivamente.

7.4 Entropia relativa

Una vez evaluadas las cotas local y cudntica (y divididas entre las cajas no triviales) es posible calcular
su entropia relativa o divergencia de Kullback-Leibler.

Dxi(pll ¢) =p-log (g) +(1—p)-log (1;_(]) (7.3)

La funcién es sencilla pero hay que tratar cuidadosamente los ceros e infinitos para que eal ejecutarlo no
de error.

7.5 Calculo final de entropia

Finalmente se aplica la condicién que descarta los tensores con entropia relativa menor al CHSH
(en primer orden) y se calcula la entropia relativa otra vez usando ahora Moment para calcular la cota
cuantica:
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Por 1ltimo se ordena el archivo de resultados de mayor a menor entropia y se imprimen en pantalla los
primeros:

7.6 Método see-saw

See-saw [22] es un método heuristico basado en programacién semidefinida cuyo objetivo es encontrar
el estado cudntico p y los POVMs {A%} y {B}} que maximicen la ecuacién (?7).

La funcién a optimizar no es lineal, sino un polinomio de grado 3. Si se fija una disposicién aleatoria
{A2} y p, la maximizacién de {B})} se convierte en un problema lineal. Luego, al tomar el valor optimizado
de {B})} y fijar p de manera aleatoria, se optimiza {A%}, y asf sucesivamente (de forma iterativa, como
un balancin), hasta que W¢ de ganar deje de aumentar.

El método See-saw estd implementado en el paquete Ket. Para ejecutar este método, es necesario
pasar el tensor del juego a la representacion de Collins-Gisin, e indicar el escenario y la dimensién. Para
la dimensién, se comienza con el nimero de respuestas y se aumenta progresivamente si el resultado no
coincide con el Wy calculado con *MOMENTt** para el juego.




8 Resultados

8.1 2 preguntas y 2 respuestas

Para el caso de dos preguntas y 2 respuestas se analizaron todos los tensores y no sélo los simétricos
respecto a las permutaciones entre a y b. Tanto el CHSH como su negacién fueron los que mayor entropia
relativa tuvieron. El estado que da la mdxima violacién es el singelete (4.8) con los observables dados en
(4.9)

1 si b .
Viabay)={ T0V7T (1)
0 sia®b==z-y.
3 2 2
S=00321, W,=2>, Wo= V2
4 4
8.2 3 preguntas y 2 respuestas
Para este caso si que hay que incluir la condicién de simetria.
Se ha obtenido el siguiente tensor y las 24 permutaciones simétricas de sus cajas.
1 0|0 0|0 1
0 1/]0 0|1 O
0 0|0 1|1 O
V= 0 0|1 0|0 1 (8.2)
0 1/1 0]0 O
1 0|0 1|0 O
Todos estos tensores son equivalentes al juego de Braunstein-Caves[23], que tiene las mismas cajas

pero no cumplen la condicién de simetria. En el juego de Braunstein-Caves se enviaran la siguiente
distribucién de preguntas

1

wa,y) = o (e=yl+lz=y+1 (médn)) (8.3)

y V(a,b,x,y) estd definido la siguiente regla:

1 sia®b= 5105340,

. (8.4)
0 si no se cumple.

Via,b,x,y) = {

Alice y Bob ganan si responden lo mismo que les preguntan salvo para x = y = 0, por lo que se puede
ver simplemente que el limite local sera

=1- —. .
Wi o (8.5)
Por otro lado, la cota cudntica es
Weo = cos? (1) , 8.6
Q = cos” | (8.6)
se obtiene a partir de un estado singlete (4.8). Por otro lado, los POVMs [24] serdn, para cualquier
ntimero de preguntas n:
Xa = lealas)){@alas)l, (8.7)
Yy = len(Be)) (u(Be)l; (8.8)

con

23
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o= (3 £)or i 59
Be = (g - %) Y. (8.10)
donde
lpo(6)) = cos(6)]0) + sin(6)[1), (8.11)
|p1(0)) = —sin(0)[0) + cos(6)[1). (8.12)

Para 3 preguntas se tiene:

5
S=004d, Wy=g Wo=

8.3 2 preguntas y 3 respuestas

Para este caso y el siguiente, si es necesario incluir la condicién de simetria. Se ha encontrado un
juego que no habia sido estudiado anteriormente. Se tendrd la distribucién de preguntas:

1

way) =7 (8.13)
Y las reglas:
00 1(1 10
01 1(1 0 0
11 0|0 0 1
V= 11 0{0 1 0 (8.14)
1 0 0|1 1 0
0 0 1(0 0 1

mMdiante el método heuristico seesaw del paquete de Julia ket se ha encontrado el estado entrelazado
que da esa cota maxima:

1) = 0,6286054088982822|00)
+ (—0,16334324864775843 + 0,07636803935461682:)|01)
+ (—0,12961455709177175 — 0,0044080406757469014)02)
+ (—0,16334324864775843 — 0,076368039354616827)|10)
+0,29293441125779784|11) (8.15)
+ (—0,2654097815652861 — 0,13526431849558776i)|12)
+ (—0,12961455709177175 + 0,0044080406757469014)|20)
+ (—0,2654097815652861 + 0,135264318495587767)|21)
+0,4928510702990506|22).

Los POVMs de A son:

0,5075 0,0772 — 0,2345i  0,4328 — 0,0409i
A[1)[1] = |0,0772 + 0,2345i 0,1201 0,0847 + 0,1938i (8.16)
0,4328 + 0,0409i  0,0847 — 0,1938i 0,3725
0,1598 0,1113 +0,3272i  —0,0408 — 0,1147i
A[l][2] = | 0,1113 — 0,3272i 0,7474 —0,2634 + 0,0036i (8.17)

—0,0408 + 0,1147;  —0,2634 — 0,0036¢ 0,0928



8.3. 2 PREGUNTAS Y 3 RESPUESTAS

0,0837
0,1725 + 0,0918i
—0,0474 — 0,1904i

ARl =

0,3387

A2][2] = |—0,1613 — 0,3464i

0,1838 — 0,21014

0,2987
B[1][1] = | —0,2444 + 0,1084i
| —0,0949 + 0,3592i

0,0634
0,1751 + 0,1108i
| —0,1280 — 0,0008;

0,3018
B[2)[1] = |0,0070 + 0,4346i
10,1347 — 0,0604i

0,2510
B[2][2] = |0,1080 — 0,2227i
10,2598 + 0,2434i

0,1725 — 0,0918i
0,4563

—0,3066 — 0,3405i
—0,1613 + 0,3464i

0,4312

0,1274 + 0,2881i
—0,2444 — 0,1084i

0,2393
0,2079 — 0,2595i

0,1751 — 0,1108i
0,6779

—0,3553 + 0,2218i

0,0070 — 0,4346i
0,6260
—0,0839 — 0,1954i

0,1080 + 0,2227i
0,2441
—0,1042 + 0,3352i

—0,0474 + 0,1904i
—0,3066 + 0,3405i
0,4600

0,1838 + 0,21014
0,1274 — 0,2881i
0,2301

—0,0949 — 0,3592;]
0,2079 + 0,2595i
0,4619

—0,1280 4 0,0008i ]
~0,3553 — 0,2218i

0,2588

0,1347 + 0,06047 |
—0,0839 + 0,19544
0,0722

0,2598 — 0,24347 ]|
—0,1042 — 0,3352i
0,5049

25

(8.18)

(8.19)

(8.20)

(8.21)

(8.22)

(8.23)

El método seesaw con dimensién 3 ha dado la misma Wg que el programa Moment en orden 2.

En este juego se tiene:

S = 0,039537209929330394,

3
Wina

Wg = 0,8641.



9 Conclusiones

Se ha cumplido el objetivo principal del trabajo, que era encontrar los mejores juegos no locales
con simetria respecto a las permutaciones de cada escenario con reglas binarias. Por un lado, se han
hallado dos juegos ampliamente conocidos y estudiados: el CHSH para el escenario (2,2,2,2) y el de
Braunstein-Caves para el escenario (3,3,2,2). Ademads, no hay literatura que indique que estos juegos
sean los mejores de sus respectivos escenarios, por lo que estos son resultados nuevos.

Por otro lado, para el escenario (2,2,3,3) se ha encontrado un juego que no habia sido estudiado
anteriormente, lo que abre la puerta a investigar sus propiedades.

Para los escenarios (2,2, 3,3) y (3,3,2,2), el programa ha dado cientos de miles de juegos con entropia
nula. Esto se debe a que la jerarquia NPA de orden 1 sobreestima la cota superior de muchos juegos.
Este puede ser un resultado interesante para el estudio de la jerarquia NPA.

Durante todo el trabajo se ha incidido en la condicién de simetria, que se aplica debido a una intuicién
parcialmente basada en la experiencia, pero no demostrada formalmente. Existen infinitos casos en los
que se rompe un patrén que se da por asumido. Con esta suposicion se pierden la mayoria de los juegos,
pero es necesaria para hacer el trabajo. Esto no hace que los resultados sean menos validos; simplemente
pertenecen a una categoria més restringida.

Hay varias vias para poder continuar con este trabajo aumentando el niimero de preguntas y respues-
tas. Estas pueden dividirse en dos categorias: optimizacién y eliminacién de juegos.

Optimizacién

= Optimizar el programa para que no cree juegos redundantes: Como las cotas se evalian por cajas,
todos los juegos que tengan las mismas cajas pero permutadas son realmente el mismo juego.
Eliminar estos juegos redundantes aumentaria sensiblemente la velocidad del programa sin anadir
restricciones adicionales [25].

= Optimizar el cédigo de otras maneras y adaptarlo para que pueda trabajar con ordenadores de més
hilos (optimizacién paralela).

Reduccién de juegos

= Tratar de encontrar matematicamente alguna condicién que tengan los juegos de mayor entropia
relativa: esto podria ser la condicién de simetria incluida en este trabajo u otra m&s o menos
restrictiva. Esto permitiria centrar la investigaciéon en un grupo de juegos més pequeno, con la
certeza de no estar perdiendo ninguno relevante.

s Crear nuevas categorias con condiciones aiin méas restrictivas que eliminen maés juegos: De esta
manera, se podria evaluar un mayor niimero de preguntas y respuestas. Los tres resultados obtenidos
tienen una condicién adicional, y es que las cajas fuera de la diagonal, ademéds de ser simétricas
entre si, tienen simetria interna. Estas cajas se presentan de la siguiente forma:

Ay | Bip | Big || Bin
Byi | Ay | Bas |-+ | Bay
Bsi | Bso | Az |-+ | Bsn
Bn,l Bn,2 Bn,?y e An

Con las condiciones:

26
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Ai:A;fF parai=1,2,...,n,
B; =Bl parai=1,2,...,n,
Bi,j = Bj,i para Z #]

(n—1)

2 2
Esto disminuirfa la cantidad de bits eliminando ®*—=%=Y" de los elementos fuera de la

2
diagonal.
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