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ARTICLE INFO ABSTRACT

Keywords: This paper studies a sustainable inventory model for items whose demand rate is the product of a time-
Sustainable EOQ model dependent function and a price-dependent function. The inventory system allows shortages during the product
C}z:rbon emissions management period. Carbon emissions from transportation and storage are included in the model. The
Shortages

consideration of a demand rate that combines the effects of a price-algebraic function and a time-power
function, with full backlogging and environmental constraints, is a novel and more realistic hypothesis and
it should be studied. To determine the optimal inventory policy for this system can help to improve the
efficiency and sustainability practices in inventory control. The objective is to determine a sustainable inventory
policy that maximizes the average profit per unit time. We include the following significant components in the
objective function: the average revenue, the ordering cost, the purchasing cost, the shipping cost, the holding
cost, the shortage cost, and the carbon emissions costs in transportation and storage. To find the solution to
this sustainable inventory problem, four scenarios are analyzed and, for each scenario, the optimal inventory
policy is obtained. This policy determines the lot size, the optimal selling price, the maximum shortage, and the
maximum profit per unit time. Some numerical examples are presented to illustrate the proposed methodology
for determining the optimal policy of this sustainable inventory problem. We examine the effects on the best
inventory policy when some parameters of the system are changed. Useful managerial insights derived from
these results are proposed.

Power demand pattern
Algebraic-price demand
Optimal price

1. Introduction

In a global scenario increasingly conditioned by climate urgency,
regulatory pressure, and consumer environmental awareness, it has
become essential to reconsider classic business management models
from a sustainability-oriented perspective. In particular, the field of in-
ventory management, traditionally focused on economic efficiency, re-
quires a reformulation that explicitly incorporates the real environmen-
tal costs derived from logistical operations, including carbon emissions
associated with transportation, storage, and product replenishment
processes.

As is well known, environmental regulations imposed by govern-
ments have forced many companies to take measures to reduce their
carbon emissions. These measures affect the entire supply chain and,
therefore, also the management of product inventories. Thus, numer-
ous researchers in inventory management have devoted themselves to

* Corresponding author.

examining the effect that carbon emissions have on the replenishment
policies of products.

One of the first papers that explicitly consider carbon emissions
costs in the formulation of the inventory model is Hua et al. (2011).
They compared the best inventory policy under the cap-and-trade
mechanism with the classical Economic Order Quantity (EOQ) model
and investigated the impacts of carbon cap and carbon price on that
optimal policy. Chen et al. (2013) used a model analogous to that
of Hua et al. (2011) and gave a condition under which carbon emissions
can be reduced by modifying lot sizes. Toptal et al. (2014) studied
a retailer’s joint inventory problem and carbon emission reduction
investment under three carbon emission regulation policies. Konur
and Schaefer (2014) developed a retailer’s integrated inventory system
and the transportation decisions of a retailer under four different
carbon emissions regulation policies, assuming two common practices
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of trucking. Hovelaque and Bironneau (2015) studied an EOQ inventory
model, taking the carbon emissions into account under a price-and-
environmental dependent demand. Yenipazarli (2016) analyzed the
effect of emissions taxes on optimal pricing and production policy and
studied the economic, environmental and social impacts of remanufac-
turing. The coordination problem of a two-echelon supply chain system
is developed by Xu et al. (2016), where decisions depend on both the
sustainability investment and the selling price. Tiwari et al. (2018)
studied an integrated single vendor-buyer supply chain for deteriorat-
ing items with imperfect quality, assuming carbon emissions due to
transporting, warehousing, and keeping deteriorating products. Halat
and Hafezalkotob (2019) developed a multi-stage green supply chain
under four different carbon emission regulations. A sustainable carbon
tax and cap-based economic production quantity model is considered
in Mishra et al. (2020), with a controllable carbon emission rate under
three different shortage situations. Malleeswaran and Uthayakumar
(2020) analyzed an integrated supply chain model with price depen-
dent demand and carbon emission costs, where demand during the lead
time is normally distributed and shortages are completely backlogged.
A two-plant production system with a warranty period and carbon
emission effects during the production process is considered by Manna
et al. (2021). Later, Taleizadeh et al. (2022) analyzed a sustainable
EOQ model with partial delay in payments and backordering under
environmental issues. A two-echelon supply chain is developed in Asad-
khani et al. (2022), where the buyer acquires a random fraction of
repairable items and the carbon footprint is incorporated into the
total cost, using carbon emissions. Ebrahimi et al. (2022) studied a
sustainable two-echelon supply chain with stochastic demand under a
double-level sustainability effort. Mahato and Mahata (2023) analyzed
an EOQ inventory model with carbon emission costs, assuming limited
warehouse storage space, all-units discount and backlogging under
order-size-dependent trade credit. Khan et al. (2023a) presented a
production—-inventory system for a manufacturer in a circular economy,
where both demand and gross profit per unit depend on the circularity
level and carbon emissions from the manufacturer’s operations are
considered. Khan et al. (2023b) developed an inventory system with
prepayment, and time-and-price dependent demand under carbon tax
regulations for a growing item. Jain et al. (2023) presented a three-
echelon supply chain inventory model that considers carbon emissions
due to the activities of manufacturing, transportation and storage. Lok
et al. (2023) studied an EOQ model for deteriorating items, including
investment in preservation technology under carbon emissions. More
recently, Khan et al. (2024) developed a sustainable inventory model
for an industrial livestock farm that operates with a single kind of grow-
ing item. San-José et al. (2024) studied a sustainable inventory model
for non-instantaneous deteriorating items with power demand pattern
and backlogged shortages, considering a carbon emissions tax. Sebat-
jane et al. (2024) studied various inventory models for a three-echelon
food supply chain comprising growing items where the demand rate for
the items depends on both the selling price and the carbon emissions.

Despite the growing academic interest in sustainable inventory
systems, models that rigorously incorporate environmental costs into
the objective function remain relatively scarce and often partial. This
limitation is accentuated when formulations are required to simultane-
ously consider realistic demand patterns that are sensitive to both time
and price. The present study addresses this research gap by proposing a
novel and sustainable inventory system for an article whose demand is
the product of a power-time function and an algebraic price-function.
This demand function is very versatile and allows the demand of the
articles to be adjusted for a wide variety of situations. Note that, in
particular, the algebraic-price function is an extension of the well-
known isoelastic-price function. Besides, we suppose that shortages
are allowed and fully backlogged. Thus, all customer demands are
satisfied, but some customer requests may be met with a delay. We also
consider environmental constraints for sustainable inventory manage-
ment. Hence, various taxes to carbon emissions associated with logistics
operations are included in the model.
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The main innovation of the study lies in integrating a price-
dependent demand function with a power pattern adapted to the
temporal distribution of demand, and a comprehensive environmental
cost structure that simultaneously considers emissions from transport
and storage. This formulation generalizes previous models and provides
a more accurate and versatile tool for strategic decision-making in
environments where consumer behavior is dynamic, price acts as
a determining factor in demand configuration, and environmental
regulations are increasingly stringent.

The most significant contribution of this work is to help inventory
system managers reduce the environmental impact by developing more
sustainable inventory models. To the best of our knowledge, this is
the first time that the optimal joint pricing, lot size and maximum
shortage quantity policy that maximizes average profit per unit time
for an inventory system is determined, while also considering a demand
rate that is the product of a power-time function and a rational-price
function, with shortages completely backordered and carbon tax regu-
lations. We thoroughly study the novel sustainable inventory problem
and provide an algorithmic procedure to obtain the optimal inventory
policy for all possible inventory system scenarios.

To highlight the differences of this study with respect to the pre-
vious papers, Table 1 presents a list of articles that have been cited
in this introduction, classified by time demand pattern type, price
demand pattern type, shortage type, and if there exists a cost for carbon
emissions from stocking. They are shown in chronological order.

The remainder of this article is organized as follows. Section 2
provides the assumptions and notations used to develop the inventory
system. The problem is formulated and the mathematical model to
determine the objective function and the constraints of the problem
is introduced in Section 3. A solution procedure to obtain the optimal
sustainable policy is presented in Section 4. Section 5 provides several
numerical examples to illustrate the solution procedure previously
developed. Section 6 investigates the variation of the optimal inventory
policy, when some parameters of the sustainable system are modified
and gives some useful managerial insights derived from those results.
Finally, some suggestions and conclusions are given in Section 7.

2. Notation and assumptions

Table 2 provides the notation used to establish the proposed inven-
tory model.

The lot size model studied in this paper is developed under the
following hypotheses. The inventory is continuously reviewed and
replenishment is instantaneous. The item is a single product and the
planning horizon is infinite. The lead time is zero or negligible and
shortages are allowed and these are fully backordered. There is a
procurement of ¢ units when the number of backorders attains the
amount b. The ordering cost K is fixed regardless of the lot size. The
purchasing cost p is a known constant and the selling price s is a
decision variable. The other decision variables are the lot size g and
the maximum shortage b. The cost of shipping is an affine function of
lot size (that is, gy + g;¢). The carbon emissions due to transportation
are also an affine function of lot size (that is, d, + d;q). The carbon
emissions in the warehouse depend on the average inventory. There are
taxes that apply to carbon emissions, so there exists a tax r, applied
to carbon emissions in transportation and another tax r, applied to
carbon emissions in inventory storage. The holding cost per unit is a
linear function of time in storage and the backordering cost @ per unit
and time is known and constant. The demand rate A(s,t) is a bivariate
function of price and time. Thus, we assume that A(s,7) multiplies the
effects of a decreasing rational price-dependent function A,(s) and a
power time-dependent function 4,(z), that is, we consider that A(s, 1) =
A1(s)A,(1), where 4,(s) is the algebraic price-dependent function defined
by

M(s)=(ag+a;s)”", withay 20,4, >0and y > 1
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Table 2

Table 1
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Summary of literature on inventory models under carbon emissions.

Authors Time-dependent Price-dependent Backlogging Carbon emissions
demand demand in storage

Hua et al. (2011) No No No Yes
Chen et al. (2013) No No No Yes
Toptal et al. (2014) No No No Yes
Konur and Schaefer (2014) No No No Yes
Hovelaque and Bironneau (2015) No Linear No Yes
Yenipazarli (2016) No Linear No No
Xu et al. (2016) No Linear No No
Tiwari et al. (2018) No No No Yes
Halat and Hafezalkotob (2019) No No No Yes
Mishra et al. (2020) No No Partial Yes
Malleeswaran and Uthayakumar No Power Full No
(2020)

Manna et al. (2021) Linear warranty No No No
Taleizadeh et al. (2022) No Linear Partial Yes
Asadkhani et al. (2022) No No No Yes
Ebrahimi et al. (2022) No No Partial No
Mahato and Mahata (2023) No No Partial Yes
Khan et al. (2023a) No No No Yes
Khan et al. (2023b) Power Power No Yes
Jain et al. (2023) No No No Yes
Lok et al. (2023) No No No Yes
Khan et al. (2024) Power Power Full Yes
San-José et al. (2024) Power No Full Yes
Sebatjane et al. (2024) No Linear No Yes
This paper Power Algebraic Full Yes

List of notations.

Variables
q
T
b

7

2

M

s
Parameters
8o

81

dy

d

r

Functions
As, 1)
I(s,1)
P(s,q,b)

Lot size per cycle (decision variable)

Length of the inventory cycle

Maximum shortage quantity per cycle (decision
variable)

Time period where the net stock is positive
Time period where the net stock is negative
Maximum level of the stock

Unit selling price (decision variable)

Fixed shipment cost

Shipment cost per transported unit

Fixed carbon emissions in transporting

Variable carbon emissions in transporting

Tax charged on carbon emissions in transporting
($/per carbon kilogram emission)

Fixed carbon emissions in holding

Carbon emissions per unit held in stock

Tax charged on carbon emissions in storage ($/per
carbon kilogram emission)

Unit purchasing cost

Unit holding cost per unit time

Unit backordering cost per unit time

Ordering cost

Non-centrality parameter of the price-dependent
demand rate

Sensitivity coefficient for the price-dependent demand
Exponent of the price-dependent demand

Index of demand pattern

Auxiliary parameter given by 7, = K + gy + r,d, + rye,
Auxiliary parameter given by =, = p+g, +rd;
Auxiliary parameter given by
m=(h+w+re)/@E+1)

Demand rate at time ¢ when the selling price is s
Inventory level at time ¢ when the selling price is s
Average profit per unit time

and 4,(7) is the power time-dependent function given by

o3

)<1—6>/6

, with 6 >0

In the function A4,(s), the coefficient a, can be interpreted as the non-
centrality parameter of the demand rate regarding the selling price
(see Pando et al., 2021), and the parameters a; and y are coefficients
that represent the sensitivity of demand with respect to the selling
price. This algebraic price-dependent demand function was also used
by other researchers, such as Huang et al. (2013), Jeuland and Shugan
(1988), and Zhu and Cetinkaya (2014). Note that if we set a; = 0,
we obtain the well-known isoelastic price-dependent function (see,
e.g., Rubio-Herrero and Baykal-Giirsoy, 2020; Yang and Liu, 2023;
Terzi et al.,, 2024; and Pando et al., 2024).

The function A,(r) describes the way in which units are taken from
stock to cover customer demand, based on the time at which they
are requested. Some explanations about the practical utility of the
function 4,(7) to describe the demand for certain products can be found
in San-José et al. (2021, 2024, 2017, 2020). Thus, the price-and-time-
dependent function considered in this work can be useful to describe
the real demand for some articles, since it can better fit the empirical
data.

The price elasticity of demand is £(s) = —a;rs/(ag+a;s) and
the price super-elasticity, defined as the elasticity of the function & (s)
(see, e.g., Kimball, 1995; and Mrazova and Neary, 2017), is given by
o (s) = ag/ (ag + a;s). Thus, if the parameter a, is positive, the price
elasticity, which depends on the unit selling price, is strictly decreasing
and convex, as is the price super-elasticity. Note that the isoelastic
price-function has an elasticity equal to —y and its super-elasticity is
0.

To illustrate the characteristic of the customer’s demand as a func-
tion of the parameters y and 6, we have depicted the function (s, 1)
for different possible values of these indexes in Figs. 1, 2 and 3.

3. Model formulation

The behavior of the net inventory level I(s, ¢) is described as follows.
At the beginning of the inventory period there are M units stored and
that amount decreases during the time period (0, 7;) and falls to zero at
t = 1. Therefore,

7]
M= / A(s, Hdt
0

Next, during the time period (r, T), shortages occur and demand is
completely backordered.
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Fig. 1. Demand rate functions A(s,f) when § > 1.
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Fig. 2. Demand rate functions A(s,f) when § = 1.

v>2

1<y<2

v=1

Fig. 3. Demand rate functions A(s,7) when § < 1.

The net inventory level I(s,t) at time 7, with ¢ € [0,T), is given by

' T
I(s,t)y=M —/ A(s,u)du = / l A(s,u)du (€8]
0 t

Since demand during the stock-out period is completely backlogged,
the lot size ¢ must match demand during the inventory cycle. Therefore,

T
q=/ ﬂ(s,t)dt:(a0+als)_yT 2
0

The maximum shortage quantity coincides with the demand during the
stock-out period, that is,

T _ 1/6 To\1/6
b=/.M&0m= ap+ays 7@- a )T:(l— a >q
o (a0 +as) (T) <T>
3

Substituting 4;(s) and A,(t) into Eq. (1) , we have that the net
inventory level, for 0 <t < T and p < s, is given by

I(s,1) = (a0+a15)_y ((;"_1)1/6 - (%)1/6> T

1/5
t
=1 — —b 4)
<q(ao+als)y) !

From (2), the length of the inventory cycle T is given by
T=q(ao+a1s)y 5)

and, from (3), the length of the stock-in period is given by

y b\’
ry=q(ag+as) <1—5> (6)

Therefore, the length of the stock-out period is given by

b 1
12=T—11=q(ao+als)y<1—<1—5>> )

The objective is to maximize the average profit per unit time
P(s,q,b) = B(s,q,b)/T, where B(s, g, b) is the profit during the inventory
cycle T. This profit includes the following significant components: the
average revenue, the ordering cost, the purchasing cost, the shipping
cost, the holding cost, the average emissions cost and the backordering
cost. It is clear that, at each cycle, the revenue is sq, the ordering cost
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is K, the purchasing cost is pq, the shipping cost is g, + g4 and the
holding cost is

7 h
/ hi(s,t)dt =
0 S+1

5+1
h v 2 b
=—(ay+ 1-- 8
s5+1 (a0 +a15)"a < q> ®

- 2)1/5
(ao +als) rlT(T

Since carbon emissions are due to transportation and storage, the cost
of carbon emissions per cycle is the sum of the costs incurred by the
carbon emissions in each of these two tasks. That is,

7
r (do +dlq) +r) <e0 +el/0 I(s,t)dt)

e
=r (d0+d1q) +r (eo+

1
o+1

(a+ar5)" 4" (g = b)) ©

Finally, the backorder cost per cycle is

T
/ w(=1I(s,1)dt

7

w(a0+a|s)7y

T <5L+1T_ (T_ 5:1 1 ) (%)1/5>

wq (GO + als)y

I

Thus, the profit during the cycle [0,T) is

X

) b 5+1
B(s,q,b) = (s—n:])q—ﬂo—lrzqz (a0+als)/ <l - 5)

—wq (a0+als)y (b— ﬁ)

where
7y =K +gy+rdy+ryey, 1y =p+g +rd and
m=(h+o+re)/G+1) a1

Consequently, the average profit per unit time is given by

P(s,q,b) = M = <S—7f1 - %) (ap+a;s)”"

b\ g
—7r2q<1—5> —w(b—m> (12)

The aim is to obtain the values of the variables s, ¢ and b that
maximize the function P(s, g, b) given by (12), subject to the constraints
qg>0,0<b<gandp<s.

4. Analysis and solution

Since, for a fixed value of s, the function P,(¢q,b) = P(s,q.b) is
strictly concave (see Lemma 1 in the Appendix), it is easy to deduce
that it reaches its maximum value at the point (¢* (s), b* (s)), which is
obtained by solving the system of nonlinear equations ‘”)(é;“;’"’) =0 and

W = 0. Thus, we have

q* (s) = Lﬂoy (13)
ow&, (ao + als)

and

D) = 600" (9) = 4| T a9

ow (ao + als)y

» 1/6 » 1/6
where &= 1= () =1~ (et )

Therefore the initial optimization problem can be reduced to the
problem of maximizing G(s) = Py(q¢* (s), b* (s)) with the condition s > p.
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4.1. Determining the optimal unit selling price

From (12), (13) and (14), after a few algebraic operations, we obtain

- 6
6= —"_ 2 So7o® _ 1s)
(a0+als) (1+9) (a0+als)
It is clear that: (i) G(p) < 0; (ii) lim,,, G(s) = 1/a; if y = 1 and
lim,_,, G(s) = 0 if y > 1; and (iii) the function G(s) is differentiable,
and its first derivative is given by

B(s)

G'(s) = (16)
(ao + als)Hl
where
6&ymow (ag +ay s v
ps)=ag—a; (y—1)s+ayy|m + M a7

1+6

Thus, we have that sign [G'(s)] = sign [A(s)]. For this reason, we now
study some properties of the function A(s) that will help us determine
the optimal selling price.

First of all, it is clear that f(p) > 0, because f(p) = ay + a;p +

5507[0a)(a0+a| p)y

P . Next, we show the behavior of the

ayy | g +rd +

function f(s) regarding the value of the parameter y.

Proposition 1. Let f(s) be given by (17). Then:

1. If y = 1, then B(s) is a strictly increasing and concave function with
limg_, , f(s) = oo.

2.If 1 < y < 2, then f(s) is a strictly concave function and
lim,_, o, f(s) = —o0.

3. If y =2, then f(s) is an affine function. Moreover,

. 1+
0 if Soomen > 2a,
. _ . 1+5_ _
SIHEO p(s) =12 (ao + “1”1) if Somgm 2a,
. 1+6
© if Soomen < 2a,

4. If y > 2, then B(s) is a strictly convex function that attains its
minimum value at the point s, given by

sa+o6 -2\
oot (M) a8

a ayr*e&ymyw

Moreover, lim,_,  f(s) = oo.

Proof. Please, see Appendix. []

Taking into account the above result, we now study separately the
scenarios (i) y = 1, (ii) y € (1,2), (iii) y =2 and (iv) y > 2.

4.1.1. Scenario y =1
The following theorem ensures the existence, in this scenario, of a
unit selling price from which the inventory system is profitable.

Theorem 1. Let G(s) be given by (15). If y = 1, then the function G(s) does
not reach its maximum at any point s > p, the supremum of G(s) is 1/a,
and it is obtained when s tends to infinity. Moreover, the inventory system
is profitable for s > s,, where s; = &, +2a,&, +2\/¢fl (ag+a; (m; +a1&1)),
with & = 6&ympw/ (1 + 6).

Proof. Please, see Appendix. []

Note that, for each value v, with v € (0,1/a,), there is a unique unit
selling price s, for which the inventory system has an average profit per
unit time equal to v.
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4.1.2. Scenario y € (1,2)
Next, we provide a criterion to determine the optimal selling price
s* in this scenario.

Theorem 2. Let G(s) and B(s) be given, respectively, by (15) and (17).

If y € (1,2), then the function G(s) reaches its maximum at the point
5% = arg,e(p.00) (A(s) = 0}, with the value

G(s* e ((ag+as) 7 [ 6807o® 19
(s)—(a0+a1s) arr — T+5 19

Proof. Please, see Appendix. []

Note that, in this scenario, there is always an optimal selling price
and, therefore, the sustainable inventory system is always profitable.

4.1.3. Scenario y =2
Now, let us determine the optimal selling price s* in this other
scenario, when y = 2.

Theorem 3. Let G(s) be given by (15). If y = 2, then the optimum selling
price s* can be determined in the following way:

1. If 5;:‘2’ > 2a,, then the function G(s) reaches its maximum at
070
the point

y 1 2(a0+a]7r|)
st=5=—| ————=—aq

a; [ 6Somo@
1- 2&1 W

with the value
1 1 o0&y my@ \/é«fofroa)
Gy =—— | Lo/ i
)= e [4a1 1+6 \""V1+s
2. If 5‘;;5[0 2a,, then the function G(s) does not reach its
070
maximum at any point s > p. The supremum of G(s) is 0 and is

obtained when s tends to infinity.

Proof. Please, see Appendix. []

4.1.4. Scenario y > 2
In the following theorem, the optimal selling price s* is obtained
when it is assumed that y > 2.

Theorem 4. Let G(s), f(s) and s, be given, respectively, by (15), (17) and
(18). The optimum selling price s* can be determined in the following way:

A. If sy < p, then the function G(s) does not reach its maximum at any
point s > p. The supremum of G(s) is 0 and is obtained when s tends
to infinity.

B. If sy > p and B (sy) > 0, then the function G(s) does not reach its
maximum at any point s > p. The supremum of G(s) is 0 and is

obtained when s tends to infinity.
C. If sy > pand B (sy) <0, then let 5= Arge (s (A() = 0.

(@) If GG5) < 0, then the function G(s) does not reach its
maximum at any point s > p. The supremum of G(s) is 0
and is obtained when s tends to infinity.

(ii) If G(5) > 0, then the function G(s) reaches its maximum at
the point s* =5, with maximum profit per unit time given by
(19).

Proof. Please, see Appendix. []
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4.2. Sustainable inventory without shortages

It is clear that the optimal inventory policy for the system in which
shortages are not allowed can be obtained through the previous results,
taking the limit as w tends to .

Thus, from (13), we have that the optimal lot size for a fixed selling
price s is now

. 1+ 9)m,
q,,(s) = lim g*(s) =
wmoe (h+rze]) (ao+als)y

and, proceeding in a similar way to the full backlogging case, the
optimal unit selling price is the value s that maximizes the function
G, (s), where

G(s) = lim G(s) = —— "L _» o (h+ryey) 20)
w—00 (a()+als)y (1+496) (ao_'_als)}’

We can now give a criterion for determining the optimal selling
price s*, which is the analogue of Theorems 1 to 4.

h+ +ays)’
Theorem 5. Let f,(s) = ag—a; (y — 1) s+a;y (751 + M%)

and G,(s) be given by (20).

1. If y = 1, then the function G ,(s) does not reach its maximum at
any point s > p and sup, G,,(s) = 1/a,;, which is obtained when
S — 00.

2. If y € (1,2), then the optimal selling price is s = arg,c(, o)
{B,(s)=0} and the maximum average profit per unit time is
G, (s*w)

3. If y =2, then:

146
((1) When 2(11 < W

1 2(ap+a;7y)
— —ay |-
a 1—201\/7[0(}’!4'!‘28])(1“'5)71
(b) Otherwise, s = co and G, (s}) = 0 (that is, the function

G,,(s) does not reach its maximum at any point s > p and
Supy, G, (s) = 0, which is obtained when s — o ).

1 4(1+8)(y=1)? Vo
y—
4. Ify > 2, lets, = o <—%y4 o r261)> -a |-

(a) In the cases: (i) s,, < p and (ii) s, > p and p,, (s,,) = 0, we
have s7 = co and G ,(s}) = 0.

®) Ifs,>pandp, (s,,_) <0, lets, = ALie(ps,) {ﬂw(s) = 0}.

, the optimal selling price is s =

i. The optimal selling price is 5%, =5, when G, (5,) >
0.

ii. However, s*

» = oo and G, (s},) = 0, when G ,(5,,) < 0.

Proof. Please, see Appendix. []
5. Numerical examples

In this section, we illustrate with some numerical examples the
solution procedure developed in Section 4.

Example 1. Consider an inventory system that has the characteristics
described in Section 2 and assume the following input parameters:
ordering cost K = $12, unit purchasing cost p = $7.5, unit holding
cost h = $2 per week, unit backlogging cost w = $2.9 per week, fixed
shipment cost g, = $6, shipment cost per transported unit g, = $0.02,
fixed carbon emissions in transporting: d, = 25 kg, variable carbon
emissions in transporting: d;, = 0.8 kg per unit, fixed carbon emissions
in holding: e, = 16 kg, carbon emission per unit held in stock and per
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unit of time: e; = 1 kg, tax charged on carbon emissions kilogram in
transporting: r; = $1.5, tax charged on carbon emissions kilogram in
storage: r, = $1, index of demand pattern: § = 1.25, non-centrality
parameter of the price-dependent demand rate: g, = 0.015, sensitivity
coefficient for the price-dependent demand: a; = 0.01 and exponent
of the price-dependent demand: y = 2.5. Following the development
given in the previous section, from (18), the value of s, is s, = $212920.
Applying Theorem 4, from (17), we calculate f(s)) = —638.510. Then,
we obtain § = $16.9582 and G (5) = $445.996. Therefore, the optimal
selling price is s* = $16.9582, with the optimal profit G* = $445.996.
From (13), the optimal lot size is ¢* = 83.6341 units and, from (14), the
maximum number of backorders is b* = 36.2514. Moreover, from (5),
the optimal inventory cycle is T* = 1.22421 weeks and, from (6), the
optimal stock-in period is 7 = 0.601731 weeks.

Example 2. Use the same data as given in Example 1, but changing
the value of y to y = 2. Applying Theorem 3, we calculate 4/ 3 f;iw =
0.141519, which is greater than 2a,. Thus, the optimal selling price is
s* =5, = $22.3041, with maximum profit G* = $180.363. Therefore, the
optimal lot size is g* = 42.5078, the maximum shortage is b* = 18.4251,
the optimal inventory cycle is T* = 2.40864 weeks and the optimal

stock-in period is 7} = 1.18391 weeks.

Example 3. We now assume the same input parameters as in Example
2, but modify the value of a; to a; = 0.1. We have 24, = 0.2, which

is greater than /(1 +6) / (6ymyw). Therefore, by applying Theorem 3

again, we conclude that the function G(s) does not reach its maximum
at any point s > p. Obviously, in this case, the item should not be
stocked.

Example 4. Consider the same data as given in Example 1, but chang-
ing the value of y to y = 1.5. From Theorem 2, we conclude that
the optimum selling price is s* = $40.1507. The optimal lot size is
g* = 19.5166 units, the optimal inventory cycle is T* = 5.24610 weeks,
the maximum number of backorders is b* = 8.45949, the optimal stock-
in period is 7} = 2.57859 weeks and the optimal profit per unit time is
G* = $89.6702.

Example 5. Assume the same data as given in Example 1, but modify
the value of y to y = 1. From Theorem 1 , we deduce that the function
G(s) does not reach its maximum at any point s > p and the supremum
of G(s) is 1/a; = 100. We calculate s; = $14.3456 and we can conclude
that the inventory system is profitable for s > $14.3456. Moreover, for
example, if we want to obtain a profit per unit of time equal to $60, we
should take a unit selling price equal to s = $49.2094.

Example 6. Suppose the same input parameters as in Example 3, but
modify the value of y to y = 4. From (18), we obtain s, = $5.15695,
which is less than the purchasing cost p. Thus, applying Theorem 4, we
deduce that the function G(s) does not reach its maximum at any point
s> p.

Example 7. Assume the same data as given in Example 6, but changing
the value of a, to a; = 0.06. Now, we have s, = $14.4915 > p = $§7.5 and
B (sg) = 0.826062 > 0. Therefore, from Theorem 4 again, we conclude
that the function G(s) does not reach its maximum at any point s > p.

Example 8. Consider the same data given in Example 6, but modify
the value of a; to a; = 0.045. We calculate s, = $25.8738 and f(s() =
—0.139384. Next, we obtain 5= $18.5175 and G (?) = —$0.718532. Thus,
we see that the function G(s) does not reach its maximum at any point
s> p.

Example 9. Let us suppose the same data given in Example 1, but
now considering that shortages are not allowed. Applying Theorem 5,
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we calculate s, = $58406.9, which is greater than p. Since f(s,) =
—174.970 < 0, we obtain 5,, = $17.5863 and G, (5,) = $402.314 > 0.
Thus, the optimal unit selling price is s* = $17.5863, with maximum
profit per unit time G}, = $402.314. Therefore, the optimal lot size is
q;, = 58.0474 units, with an inventory cycle equal to T;; = 0.923814
weeks.

Note that in Examples 3, 6, 7 and 8, as the supremum of G(s) is 0, it
means that the profit per unit time is always negative and the inventory
system is unprofitable.

5.1. Effects of the sustainable costs in the inventory system

Next, in this subsection, we compare the optimal inventory policy
previously obtained with the one achieved from a model where carbon
emission costs are not considered.

Let G* denote the maximum value of the objective function of
the model with carbon emission costs. That is, G* is the value of the
average profit per unit time linked with the optimal inventory policy
developed in this paper. Let us denote by G* the average profit per unit
time of the best policy for the inventory model without considering
sustainable costs. To compare both inventory policies, it is necessary
to calculate the last profit G*. To do this, we must first calculate the
objective function P(s, g, b) to be maximized in the model that does not
consider carbon emission costs. It is clear that this function P(s, g, b) is
obtained from (12), but now considering z, = K + gy, 7; = p+ g, and
7, = (h+ w) /(6 + 1). Thus, we get the following average profit per unit
time

~ K+ _
P(s,q,b):(s—(p+g1)— qg0>(a0+als) Y

h+w b\ q
_hre (i2b —a)(b——)
5+1 7 5+1

Applying Theorems 1 to 4 to the above function P(s, g, b), we obtain
the best inventory policy (5,4,b) for the system without considering
sustainable costs. Thus, the profit G* per unit time related with that
policy (5, (?,3) is determined as G* = P(5, g, ), with the function P(s, q,b)
given by (12).

Next, we define as a measure of the difference between the two
solutions, the value Gap given by

G*-g* e o
100(%2) iG>0
Gap=3 _4 if G*=0and G* <0
0 ifG*=0and G* =0

Table 3 shows the results obtained for the previously solved numerical
examples in which shortages are allowed. Note that, for Example 2, the
selling price for the model without considering the sustainable costs is
§ = 17.7540, which is 20.4003% lower than the optimal selling price
s*. The lot size for this model is § = 36.7273, which is 13.5987%
lower than the optimal lot size ¢*, and the maximum shortage quantity
is b = 12.5866, which is 31.6878% lower than the optimal maximum
shortage quantity ¢*. This leads to the relative gap of more than
37%. However, for Example 7 , the best inventory policy obtained
for the model without considering sustainability costs is (5, t’j,Z) =
(12.6142,9.58405, 3.28448); while Theorem 4 indicates that, considering
sustainable costs, the profit per unit of time is always negative and the
inventory system is not profitable, because the supremum of G(s) is
0. These two examples clearly show that, applying the optimal policy
obtained for the inventory model without considering sustainable costs,
can lead to a considerable decrease in the maximum profit (or, equiv-
alently, a high additional cost) corresponding to the optimal solution
deduced considering sustainable costs.
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Table 3
Comparison of the inventory of numerical examples.
Example s* q* b* G* Q q b G* Gap (%)
1 16.9582  83.6341  36.2514 445996  14.0462  58.4901  20.0448  388.243  —12.9494
2 22.3041 425078  18.4251  180.363  17.7540  36.7273  12.5866  113.200  —37.2375
3 = 0 0 0 41.3660 137530  0.47132  -2.1194 -
4 40.1507  19.5166  8.45949  89.6702  29.4880  13.7473  4.71126  80.2760  —10.4763
5 ™ 0 0 100 o 0 0 100 0
6 o 0 0 0 ™ 0 0 0 0
7 ™ 0 0 0 12.6142  9.58405  3.28448 169965 —oo
8 0 0 0 0 11.2872  20.8804  7.15578  -26.6012 —oo
6. Sensitivity analysis and managerial insights Table 4
Effects of the parameters q, a,, y and § on the optimal policy.
6.1. Impact of some parameters 4 As* (%) Aq* (%) 4b* (%) AM* (%) AT* (%) AG* (%)
ay —30% -223841 591665 591665 591665  —558614  7.30172
In this section, we study the variation of the best inventory policy of —20% —149294  3.87668  3.87668  3.87668  -3.73200  4.77373
the system presented when some values of the parameters of the system -10% —0.746800  1.90556  1.90556 190556  -186993 234148
are modified. To do this, we consider the parameters of Example 1 of Y% 0373482 0.944782  0.944782 - 0.944782  ~0935939  1.15969
: > +5%  0.373645  —0.929168 —0.929168 —0.929168 0.937882 —1.13816
Section 5. Then, we obtain the percentage variations of the Optimal +10% 0.747453 —1.84309 —1.84309 —1.84309 1.87770 —2.25535
policies, assuming that the value of each input parameter considered +20% 1.49555 —-3.62662  -3.62662 —3.62662  3.76309  —4.42890
varies by +5%, +10%, +20% and +30%. Table 4 shows the computational +30%  2.24429 —5.35332 535332 535332 5.65611  —6.52473
results assuming these percentage variations in the parameters related a; -30% —0.277227 50.0998  50.0998  50.0998  -33.3777  143.372
to the demand rate function; while Table 5 displays the effects, with —20% —0441462  29.5333  29.5333  29.5333  -22.7998  75.8839
these same percentage variations, of the parameters p, r; and r, on the -10%  -0325996  13.2220 132220 132220 116779 31.0275
. : 5% —0.186159  6.28057  6.28057  6.28057  —5.90942  14.1576
optimal policy. +5%  0.227738  —570707 —=5.70707 —5.70707 6.05249  —11.9719
Hence, Table 4 reveals that the sensitivity coefficient a; for the +10% 0.493226  —10.9135 —109135 —109135 12.2504  —22.1655
price-dependent demand and the exponent of the price-dependent de- +20% 1.12560 -20.0598  -20.0598  -20.0598  25.0936  -38.4272
mand y are, of the four parameters associated with the demand rate, +30% 1.87851  -27.8256  -27.8256  -27.8256  38.5534  -50.6266
the parameters that have the greatest influence on the optimal policy. v =30% 65.2000 —-64.8075  —64.8075  —64.8075 184.152  -72.6123
Thus, for changes in y between —30% and 30%, the maximum profit _TSZ” ?;23‘3“1) ‘;‘;;ggé ‘;Z;gg; _‘21:;(7):; zg;ggg ‘g;’;ii
Vari.es betw.een —.73% a.nd 342%. The f:ffect.of this parametc.er on the _5%” 551265 151490  —151490 151490  17.8536  —21.0599
optimal unit selling price and the optimal inventory cycle is always +5%  —456601  17.5685  17.5685  17.5685  —14.9432  27.2389
negative, since both s* and T* increase when y decreases. However, the +10% —839850  37.9360  37.9360  37.9360  —27.5026  62.4602
optimal lot size ¢*, the maximum shortage »* and the initial stock level +20% —144430  88.8832  88.8832  88.8832  —47.0572  166.889
M* are strictly increasing as the parameter y increases. The parameter +30% 18963+  157.204 157.204 | 157.204 611203 341.565
a, also has a significant influence on the maximum profit per unit time 6 -30% 0354166  -4.04468  23.0622  -24.7834  -3.26221  -0.991361
and on the optimal values of the decision variables ¢ and b, but not on —20% 0256578  -2.96322  13.8321  -158129  -239035  —0.719410
. . s . —-10% 0.134756  —1.57850  6.29200  -7.60003 —127359  —0.378635
the optimal selling price s*. This parameter has a positive effect on the 5% 0.0684866 —0808515 3.01124  —373091 —0.652410 —0.192654
optimal selling price s* and the optimal cycle T*, while the maximum +5%  —0.0699584 0.839613 —2.77525 3.60526  0.677659 0.197268
profit G*, the lot size ¢*, the maximum shortage »* and the maximum +10% —0.140802  1.70434  -5.34265 7.09582  1.37575  0.397520
stock level M* decrease when q, increases. Of the four parameters +20% 0283390  3.49055 994537 137700  2.81824  0.802070
+30% —0425118 532926  —13.9594 20.0866  4.30380  1.20617

analyzed in this table, the one that has the least influence on the
maximum profit G* and the optimal unit selling price s* is the index of
demand pattern §. Thus, for changes in range between —30% and +30%,
the maximum benefit only varies between —1% and 1.2%. Finally,
the parameter a, has a rather contained influence with respect to the
optimal policy and the maximum benefit. Thus, when g, varies between
—30% and +30%, the optimal price s* varies between —2% and 2%, the
optimal lot size between +6% and —5% (the same as the maximum
shortage and the initial stock level), and the maximum profit between
+7% and —7%. Note that the type of effect on the optimal price s* and
the maximum profit G* is always inverse, that is, if the optimal price
increases when one of the parameters decreases, then the maximum
profit decreases, and if the optimal price decreases, the maximum profit
increases. It is also interesting to note that when changes occur in the
parameter y, the magnitudes of the changes generated in the optimal
lot size ¢*, the maximum shortage b* and the initial stock level M*
coincide. The same occurs with the changes in the parameters a, and
aj.

The results shown in Table 5 indicate that, as expected, the param-
eter p has a notable influence on both the optimal inventory policy
(s*, ¢*, b*) and the maximum profit G*. Thus, for changes in p between
-30% and +30%, the maximum profit G* varies between +48% and
—27%, the optimal selling price s* fluctuates between —24% and +25%,
and the lot size ¢* and the maximum shortage »* change between +37%
and —22%. Note that p always has a positive effect on the optimal selling

price s*, while it is negative on lot size ¢*, the maximum shortage b*
and the optimal profit G*. Also, the tax charged on carbon emissions
in storage r, has a relatively small influence on the optimal selling
price s*, the lot size ¢* and the maximum profit per unit time G*.
Thus, for changes in range between —30% and +30%, the lot size ¢*
varies between —0.01% and +0.14%, the optimal selling price s* between
—0.57% and +0.55%, and the maximum profit G* between +1.61% and
—1.54%. It is also interesting to note that the effect of this parameter r,
on the optimal lot size ¢* is not monotonic, unlike what happens with
the other parameters analyzed. Finally, with respect to the tax charged
on carbon emissions in transporting r,, we can say that its influence
is not noticeable and that its effect is always positive with respect to
the optimal policy (the optimal selling price, the optimal lot size and
the maximum shortage increase when r; increases), but it is always
negative with respect to the maximum profit per unit time.

6.2. Managerial insights

From the computational results and the above comments, we can
deduce the following managerial insights:
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Table 5
Effects of the parameters p, r, and r, on the optimal policy.

A As* (%) Ag* (%) Ab* (%) AM* (%)  AT* (%) AG* (%)

p  —30% —24.3973 37.3331 37.3331 37.3331 —27.1844  47.5070
—-20% —16.2827 22.4526 22.4526 22.4526 —18.3357  28.1780
—-10% —8.14998 10.2175 10.2175 10.2175 -9.27029  12.6666
-5%  —4.07708 4.88784 4.88784 4.88784 —4.66007  6.02544
+5%  4.08116 —4.49691 —4.49691  —4.49691  4.70865 —5.48629
+10% 8.16631 —8.64635 —8.64635  —8.64635  9.46470 —10.4982
+20% 16.3482 —16.0472 —16.0472  -16.0472 19.1146 -19.3114
+30% 24.5449 —22.4455 —22.4455 -22.4455 28.9416 —26.7931

r, —30% —4.63581 -3.07105 -3.07105 -3.07105 —-13.0644  8.03214
-20% —3.09297 —1.91860 -191860 —1.91860 —8.73857  5.24896
—-10% —1.54780 —0.899302 —0.899302 —0.899302 —4.38489  2.57372
—5%  —0.774242  —0.435405 —0.435405 —0.435405 -2.19654  1.27455
+5%  0.774960  0.408297 0.408297 0.408297 2.20508 —1.25064
+10% 1.55067 0.790785 0.790785 0.790785 4.41903 —2.47804
+20% 3.10441 1.48314 1.48314 1.48314 8.87475 —4.86573
+30% 4.66144 2.08596 2.08596 2.08596 13.3694 —-7.16796

ry —30% —0.567649  0.0457796 —5.52908  4.31096 —1.25352 1.61458
—20% —0.376537 0.00616920 -3.65030 2.80365 —0.856485 1.06743
-10% —0.187349  —0.00817471 -1.80778 1.36866 —0.437895 0.529363

—5%  —0.0934500 —0.00674452 —0.899640 0.676388 —0.221231 0.263616
+5% 0.0930106 0.0117687  0.891310 —0.661146 0.225561 —0.261529

+10% 0.185591  0.0282895  1.77446 —1.30766  0.455229 —0.521014
+20% 0.369499  0.0745831  3.51690 —2.55905  0.926060 —1.03401
+30% 0.551794  0.137020 5.22855 —3.75838  1.41097 —1.53929

1. The largest increase in average profit per unit of time is obtained
when the exponent of the price-dependent demand y increases.
Note that, from the point of view of inventory managers, it is not
possible to act directly on this parameter, since it is obtained
by fitting demand to the best curve that represents the price-
dependent function. However, the price-dependent demand rate
could be stimulated by increasing advertising or marketing cam-
paigns (for example, by increasing the number of advertisements
about the product’s benefits in social networks, television, radio
or press), or by encouraging customers to increase their pur-
chases (for example, giving away an additional free unit of the
product with the purchase of multiple units of that article).

2. The average profit per unit time can also be increased by re-
ducing the unit purchase price p of the product. Thus, the
person responsible for purchasing the article should obtain a
price reduction by negotiating with suppliers (for example, by
agreeing to a minimum purchase volume over a period of time).

3. Another way to increase the profit per unit time would be to
decrease the tax r; on carbon emissions in shipping. To achieve
this, tax authorities should be convinced of the negative impact
that very high environmental taxes can have (for example, on
employment).

4. The computational results show that an increase in the potential
demand pattern index also leads to a small increase in the profit
per unit time. Thus, this increase must be quite large (around
30%) to achieve a significant increase in profit per unit of time.
As indicated in the first point, it is not possible for inventory
managers to act directly on this parameter. However, they can
act indirectly by modifying customer demand through marketing
campaigns, as noted in the first point above.

The model demonstrates high applicability in sectors such as e-
commerce, characterized by dynamic price variations; the food indus-
try, with high turnover cycles; sustainable pharmaceutical and cos-
metics, where demand is influenced by environmental impact and
expiration dates; or consumer-oriented startups, which operate under
strict regulatory frameworks and sustainability values. In all these
cases, the model allows for the characterization of optimal policies
that balance profitability and ecological responsibility, showing that
sustainable inventory management can be viable and potentially more
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profitable when pricing, replenishment, and cycle duration decisions
are efficiently coordinated. Numerical simulations and sensitivity anal-
ysis reinforce the applicability of the model, allowing for the precise
characterization of the existence of the conditions for optimal solu-
tions under different price sensitivity scenarios. Taken together, these
contributions significantly advance the state of the art in sustainable
inventory management, offering researchers and practitioners an effec-
tive tool for responsible, informed decision-making aligned with global
sustainability challenges.

7. Conclusions and future research

In this paper, we have developed a sustainable inventory model with
price-and-time dependent demand under full backlogging, considering
taxes applied to carbon emissions. The demand rate is the product
of an algebraic price-dependent function and a power time-dependent
function, which may be useful to describe the real demand for some
items, since it can fit the empirical data well.

We have formulated the mathematical model of profit maximization
per inventory cycle and have developed theoretical results to obtain the
optimal inventory policy (lot size, maximum shortage quantity and unit
selling price). Several numerical examples have been solved to show
the solution’s procedure and confirm that the policies obtained indicate
significant increases in benefits compared to models in which carbon
emission rates are not considered.

The results of the numerical sensitivity analysis reflect that, of
the four parameters associated with the demand rate, those that have
the greatest influence on the optimal policy are the sensitivity co-
efficient for the price-dependent demand and the exponent of the
price-dependent demand; while the least influential parameter on the
maximum profit is the index of demand pattern. Thus, it is advisable
to stimulate the price-dependent demand rate by increasing advertising
or marketing campaigns.

With respect to the purchasing cost, changes in this parameter have
a positive effect on the optimal selling price, while it is negative on
the lot size, the maximum shortage and the optimal profit per unit
time. The tax charged on carbon emissions in transporting has a greater
influence on the optimal selling price, the lot size and the maximum
profit than the tax charged on carbon emissions in storage. From an
environmental perspective, it is advisable to reduce carbon emissions
in transportation by using, for example, electric or hybrid vehicles.

This proposal represents a significant advance in the field of sustain-
able logistics management, offering an analytical model that addresses
the challenges faced by organizations immersed in the transition to-
ward more responsible and resilient business models. The work con-
tributes to global sustainability goals, providing operational tools that
enable the design of more efficient, environmentally conscious, and
economically viable logistics systems. Due to its integrative approach
and practical applicability, it constitutes a valuable contribution to the
development of academic research, public policy design, and informed
business decision-making in contexts of high uncertainty across the
supply chain.

The proposed model can be extended in several ways. One possible
extension is to suppose different dependence functions of demand
with respect to the selling price and/or time. Another possibility is to
consider that replenishment is not instantaneous and, therefore, a fi-
nite replenishment rate is considered. Furthermore, another interesting
study could be to admit the possibility of the deterioration of product
items.
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Appendix
This appendix includes the proofs of the results given in the paper.

Lemma 1. For a fixed value of s, the function P,(q,b) = P(s,q,b) given
by (12) is strictly concave on the set I' = {(q,b) : ¢ > 0,0 < b < q}.

Proof. Since I' can be expressed as I' = I U I, U I', with I} =

{(g.b) : ¢>0,b=0}, I, = {(g.b) : ¢>0,b=gq} and I the set of interior
points of I', we now prove that the function P,(q,b) is strictly concave
on each of these three convex sets.

First, the restriction of P,(q, b) on I'} and the restriction of P,(q, b) on
I', are univariate functions given, respectively, by ¢,(q) = (s -y - ”—0)

q
v _ hine — 7o -7 o
(ag+ays)™ - 'l and @,(q) = (s—zzl—7)(a0+a1s) - e

Thus, it is immediate to check that these two functions have the same
second derivative given by ¢{(q) = —2% (ag + als)_y < 0. Therefore,
the function P,(q, b) is strictly concave on both I'; and I’.

Next, we analyze the function P,(q,b) on the set I'. Taking into
account the fact that the function P,(qg, b) is twice-differentiable on I';

o
we now prove that the Hessian matrix is negative definite on I".
Since the first partial derivatives of P,(g, b) are given by

8
J ) b ob [
ZP(gb)= —2—— 1 <1——> (1+—>+—
aq (a+as) @\ a q) s+1

5
7} b
ﬁPS(q,b) =m06+1) <1 - ;) -

we have that the second partial derivatives of the average profit are

) - 5-1
a—PS(q,b) = —”Oy—ﬁz @(1-2) <1+@>
aq* (ag+ays) ¢ ¢ q q
( b>§5b

1-- )

q) q
5 5 -1
=- ¢7+5(5+1)@”—3 <1-9>
(ag+ays) ¢ q° q
5-1 B

0% -6 b &b b\° 6
2 _P(qb) =-x —(1—-> <1+—>+<1—-> 2
obog 2< q q q q) q

6—1
5(5+ 1);:2% (1 - 2)
q

q
P 5(5+1)7z2< b>5“
ZLpgb=-———2(1-2
a2 @ P q q

Therefore, the Hessian matrix is

2w 2 () z( _e>”"
. ((aoww)"q"+5(5+1)”243<1 q) 5G+m (1-2

5-1 N -1
5(5+1)7zzqiz(1—f) _M(l_z)

q q q
Thus, we obtain H,; = d*>P,(q, b)/dq*> < 0, Hy, = 0*>P,(q,b)/db* < 0 and

6—1
det (H) = 2@+Drom (1 - 9) > 0, for all (¢, b) € I'. Hence the matrix
(a0+a| x) q4 q

H is negative definite on I' and, consequently, the function P(q,b) is

strictly concave on I'. This completes the proof. []
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Proof of Proposition 1. From (17), the two first derivatives of the
function p(s) are

azyz 8&ymow (ag + ays)’
Fs)=ay(1-y)+ — foro0 (2 + 1) @1
2(a0+als) o+1
and
. a?yz(y—Z) 5§0n0w(a0+als)y_4
p(s) =
4 6+ 1
Therefore:

(@) If y = 1, then we have f(s) = ay+a, <7r1 + M) and,

it is easy to check that lim,_,, f(s) = co. Moreover, from (21), it
follows that #’(s) > 0 and f(s) is a strictly increasing function.
Also, as f"’(s) < 0, then f(s) is a strictly concave function.

(b) If 1 <y <2, then " (s) < 0 and f(s) is a strictly concave function.
Furthermore, a trivial verification shows that lim,_, , f(s) = —oc0.

(@If y = 2, then f(s) = ay + 2a (751 +a0,/55§$)
+ <201\/ é‘fg’f‘;w - 1> a;s, and it is an affine function. Thus, we

must consider three cases depending on whether 24,4/ ome _ g
is positive, negative or zero to obtain the limit of the function
B(s) when s tends to infinity.

(d) If y > 2, then g”(s) > 0 and f(s) is a strictly convex function.
From (17), it is clear that lim,_,  f(s) = c0. Moreover, from (21),

2.2 =2
it is obvious that §'(s) = @, (1 — y)+ L~ Stomow(aotars)

+1
so given by (18) is the unique root of the equation #’(s) = 0, and
p(s) attains its minimum at the point s,. [

, hence,

Proof of Theorem 1. From Proposition 1, we have f(s) > f(p) for s > p
and, since f(p) > 0, it follows that G(s) is a strictly increasing function.
Therefore, sups, G(s) = lim,_,, G(s) = 1/a;.

Taking into account that G(p) < 0, lim,_,, G(s) > 0 and G(s) is a
strictly increasing function, there exists a unique root of the function
G(s) in the interval (p, o). Thus, after some algebraic manipulations,
from (15) and y = 1, we deduce that s, is the largest of the roots of the
equation (s — 71'1)2 = 4??‘:;‘;‘0 (ap +ays), thatis, s2=2 (x| +2a,¢) s+7z'%_

4ayé; = 0, with & = 6&ymyw/ (1 + 6). Consequently, s; = 7| + 2a,&; +

2\/51 (ag+a; (7, +a;&))). The rest of the proof is obvious, because
G(s)> G(s)) =0, for s>s,. [

Proof of Theorem 2. Since f(p) > 0, lim,_, f(s) = —oo0 and f(s) is
a strictly concave function, there exists a unique root s* of f(s), such
that g(s) > 0 for s € [p,s*) and B(s) < 0 for s € (s*, ). Therefore,
the function G(s) is strictly increasing on the interval [p, s*) and strictly
decreasing on (s*, o). Thus, G(s) reaches its maximum at the point s*,
with G(s*) > lim,_, , G(s) = 0.

On the other hand, since f(s*) = 0, we have z; = @ - :—“y -
1
égoﬂom(a0+a|s*)y

s and substituting this value in the expression for G(s)

. . . ) 1=¥ 5 )77
given in (15), we obtain G (s*) = (HOM‘I'Sy) - 50”“‘"(?3;“‘: A
1

«\1-7/2
#\=7/2 [ (ap+a;s*) _ . [mo
(a0+a1s) < w7 T ) O

Proof of Theorem 3. From Proposition 1, we have:

1. If % > 2a;, then f(s) has a unique root, since f(p) > 0,
0
lim,_,, A(s) = —o0 and f(s) is an affine function. It is trivial to

check that the root is s,. The rest is immediate.

2. If ‘/% = 2a,, then f(s) = p(p) > 0 for s > p and, there-
fore, G(s) is a strictly increasing function. Thus, sup,s, G(s) =
lim,_, , G(s) = 0.
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3. If 150« 24,, then f(s) is a strictly increasing function.
6Eymy@
Therefore, p(s) > B(p) > 0 for s > p and the rest of the proof
runs as in the previous case. []

Proof of Theorem 4. Taking into account Proposition 1, we can
consider the following two cases:
1. s < p: since f(s) is a strictly convex function that attains its
minimum value at s;, we have p’(s) > 0 for s > p. Hence,
B(s) > B(p) > 0 for s > p, therefore, G(s) is a strictly increasing
function, and we obtain the desired conclusion.
2. s0>pandﬂ(s0) >0: thenﬂ(s)>ﬁ(so) >0 for s > p and s # s,
and the rest of the proof runs as in the previous case.
3. 59> p and § (s9) < 0: then there exist two roots § and s, of the
equation f(s) = 0, with p < 5 < sy < s3, such that g(s) > 0 for
5 € (p.5) U (s3.00) and f(s) < 0 for s € (5, s3). Thus, the function
G(s) is strictly increasing for s € (p,5) U (s3,00) and it is strictly
decreasing for s € (5,s3). In consequence, as lim,_, ., G(s) = 0,
it follows that if G(5) > 0, then G(s) reaches its maximum at 7.
However, if G(5) < 0, then G(s) does not reach its maximum at
any point s > p and sup,,, G(s) = lim;_,, G(s) =0. [

Proof of Theorem 5. This follows by the same method as in the
proofs of Theorems 1 to 4, taking into account that lim,_ . w& =
(h+rye;) /6 and, therefore: (i) lim,_ o, A(s) = B,,(s), (ii) lim,,_ . s,

a

L 2(110+tl17[|)
N\ 12a) [ (hbraey ) (146)!

—ay | and (iii) lim,_,o, 5o = 5,
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