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 A B S T R A C T

This paper studies a sustainable inventory model for items whose demand rate is the product of a time-
dependent function and a price-dependent function. The inventory system allows shortages during the product 
management period. Carbon emissions from transportation and storage are included in the model. The 
consideration of a demand rate that combines the effects of a price-algebraic function and a time-power 
function, with full backlogging and environmental constraints, is a novel and more realistic hypothesis and 
it should be studied. To determine the optimal inventory policy for this system can help to improve the 
efficiency and sustainability practices in inventory control. The objective is to determine a sustainable inventory 
policy that maximizes the average profit per unit time. We include the following significant components in the 
objective function: the average revenue, the ordering cost, the purchasing cost, the shipping cost, the holding 
cost, the shortage cost, and the carbon emissions costs in transportation and storage. To find the solution to 
this sustainable inventory problem, four scenarios are analyzed and, for each scenario, the optimal inventory 
policy is obtained. This policy determines the lot size, the optimal selling price, the maximum shortage, and the 
maximum profit per unit time. Some numerical examples are presented to illustrate the proposed methodology 
for determining the optimal policy of this sustainable inventory problem. We examine the effects on the best 
inventory policy when some parameters of the system are changed. Useful managerial insights derived from 
these results are proposed.
1. Introduction

In a global scenario increasingly conditioned by climate urgency, 
regulatory pressure, and consumer environmental awareness, it has 
become essential to reconsider classic business management models 
from a sustainability-oriented perspective. In particular, the field of in-
ventory management, traditionally focused on economic efficiency, re-
quires a reformulation that explicitly incorporates the real environmen-
tal costs derived from logistical operations, including carbon emissions 
associated with transportation, storage, and product replenishment 
processes.

As is well known, environmental regulations imposed by govern-
ments have forced many companies to take measures to reduce their 
carbon emissions. These measures affect the entire supply chain and, 
therefore, also the management of product inventories. Thus, numer-
ous researchers in inventory management have devoted themselves to 
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examining the effect that carbon emissions have on the replenishment 
policies of products.

One of the first papers that explicitly consider carbon emissions 
costs in the formulation of the inventory model is Hua et al. (2011). 
They compared the best inventory policy under the cap-and-trade 
mechanism with the classical Economic Order Quantity (EOQ) model 
and investigated the impacts of carbon cap and carbon price on that 
optimal policy. Chen et al. (2013) used a model analogous to that 
of Hua et al. (2011) and gave a condition under which carbon emissions 
can be reduced by modifying lot sizes. Toptal et al. (2014) studied 
a retailer’s joint inventory problem and carbon emission reduction 
investment under three carbon emission regulation policies. Konur 
and Schaefer (2014) developed a retailer’s integrated inventory system 
and the transportation decisions of a retailer under four different 
carbon emissions regulation policies, assuming two common practices 
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of trucking. Hovelaque and Bironneau (2015) studied an EOQ inventory 
model, taking the carbon emissions into account under a price-and-
environmental dependent demand. Yenipazarli (2016) analyzed the 
effect of emissions taxes on optimal pricing and production policy and 
studied the economic, environmental and social impacts of remanufac-
turing. The coordination problem of a two-echelon supply chain system 
is developed by Xu et al. (2016), where decisions depend on both the 
sustainability investment and the selling price. Tiwari et al. (2018) 
studied an integrated single vendor–buyer supply chain for deteriorat-
ing items with imperfect quality, assuming carbon emissions due to 
transporting, warehousing, and keeping deteriorating products. Halat 
and Hafezalkotob (2019) developed a multi-stage green supply chain 
under four different carbon emission regulations. A sustainable carbon 
tax and cap-based economic production quantity model is considered 
in Mishra et al. (2020), with a controllable carbon emission rate under 
three different shortage situations. Malleeswaran and Uthayakumar 
(2020) analyzed an integrated supply chain model with price depen-
dent demand and carbon emission costs, where demand during the lead 
time is normally distributed and shortages are completely backlogged. 
A two-plant production system with a warranty period and carbon 
emission effects during the production process is considered by Manna 
et al. (2021). Later, Taleizadeh et al. (2022) analyzed a sustainable 
EOQ model with partial delay in payments and backordering under 
environmental issues. A two-echelon supply chain is developed in Asad-
khani et al. (2022), where the buyer acquires a random fraction of 
repairable items and the carbon footprint is incorporated into the 
total cost, using carbon emissions. Ebrahimi et al. (2022) studied a 
sustainable two-echelon supply chain with stochastic demand under a 
double-level sustainability effort. Mahato and Mahata (2023) analyzed 
an EOQ inventory model with carbon emission costs, assuming limited 
warehouse storage space, all-units discount and backlogging under 
order-size-dependent trade credit. Khan et al. (2023a) presented a 
production–inventory system for a manufacturer in a circular economy, 
where both demand and gross profit per unit depend on the circularity 
level and carbon emissions from the manufacturer’s operations are 
considered. Khan et al. (2023b) developed an inventory system with 
prepayment, and time-and-price dependent demand under carbon tax 
regulations for a growing item. Jain et al. (2023) presented a three-
echelon supply chain inventory model that considers carbon emissions 
due to the activities of manufacturing, transportation and storage. Lok 
et al. (2023) studied an EOQ model for deteriorating items, including 
investment in preservation technology under carbon emissions. More 
recently, Khan et al. (2024) developed a sustainable inventory model 
for an industrial livestock farm that operates with a single kind of grow-
ing item. San-José et al. (2024) studied a sustainable inventory model 
for non-instantaneous deteriorating items with power demand pattern 
and backlogged shortages, considering a carbon emissions tax. Sebat-
jane et al. (2024) studied various inventory models for a three-echelon 
food supply chain comprising growing items where the demand rate for 
the items depends on both the selling price and the carbon emissions.

Despite the growing academic interest in sustainable inventory 
systems, models that rigorously incorporate environmental costs into 
the objective function remain relatively scarce and often partial. This 
limitation is accentuated when formulations are required to simultane-
ously consider realistic demand patterns that are sensitive to both time 
and price. The present study addresses this research gap by proposing a 
novel and sustainable inventory system for an article whose demand is 
the product of a power-time function and an algebraic price-function. 
This demand function is very versatile and allows the demand of the 
articles to be adjusted for a wide variety of situations. Note that, in 
particular, the algebraic-price function is an extension of the well-
known isoelastic-price function. Besides, we suppose that shortages 
are allowed and fully backlogged. Thus, all customer demands are 
satisfied, but some customer requests may be met with a delay. We also 
consider environmental constraints for sustainable inventory manage-
ment. Hence, various taxes to carbon emissions associated with logistics 
operations are included in the model.
2 
The main innovation of the study lies in integrating a price-
dependent demand function with a power pattern adapted to the 
temporal distribution of demand, and a comprehensive environmental 
cost structure that simultaneously considers emissions from transport 
and storage. This formulation generalizes previous models and provides 
a more accurate and versatile tool for strategic decision-making in 
environments where consumer behavior is dynamic, price acts as 
a determining factor in demand configuration, and environmental 
regulations are increasingly stringent.

The most significant contribution of this work is to help inventory 
system managers reduce the environmental impact by developing more 
sustainable inventory models. To the best of our knowledge, this is 
the first time that the optimal joint pricing, lot size and maximum 
shortage quantity policy that maximizes average profit per unit time 
for an inventory system is determined, while also considering a demand 
rate that is the product of a power-time function and a rational-price 
function, with shortages completely backordered and carbon tax regu-
lations. We thoroughly study the novel sustainable inventory problem 
and provide an algorithmic procedure to obtain the optimal inventory 
policy for all possible inventory system scenarios.

To highlight the differences of this study with respect to the pre-
vious papers, Table  1 presents a list of articles that have been cited 
in this introduction, classified by time demand pattern type, price 
demand pattern type, shortage type, and if there exists a cost for carbon 
emissions from stocking. They are shown in chronological order.

The remainder of this article is organized as follows. Section 2 
provides the assumptions and notations used to develop the inventory 
system. The problem is formulated and the mathematical model to 
determine the objective function and the constraints of the problem 
is introduced in Section 3. A solution procedure to obtain the optimal 
sustainable policy is presented in Section 4. Section 5 provides several 
numerical examples to illustrate the solution procedure previously 
developed. Section 6 investigates the variation of the optimal inventory 
policy, when some parameters of the sustainable system are modified 
and gives some useful managerial insights derived from those results. 
Finally, some suggestions and conclusions are given in Section 7.

2. Notation and assumptions

Table  2 provides the notation used to establish the proposed inven-
tory model.

The lot size model studied in this paper is developed under the 
following hypotheses. The inventory is continuously reviewed and 
replenishment is instantaneous. The item is a single product and the 
planning horizon is infinite. The lead time is zero or negligible and 
shortages are allowed and these are fully backordered. There is a 
procurement of 𝑞 units when the number of backorders attains the 
amount 𝑏. The ordering cost 𝐾 is fixed regardless of the lot size. The 
purchasing cost 𝑝 is a known constant and the selling price 𝑠 is a 
decision variable. The other decision variables are the lot size 𝑞 and 
the maximum shortage 𝑏. The cost of shipping is an affine function of 
lot size (that is, 𝑔0 + 𝑔1𝑞). The carbon emissions due to transportation 
are also an affine function of lot size (that is, 𝑑0 + 𝑑1𝑞). The carbon 
emissions in the warehouse depend on the average inventory. There are 
taxes that apply to carbon emissions, so there exists a tax 𝑟1 applied 
to carbon emissions in transportation and another tax 𝑟2 applied to 
carbon emissions in inventory storage. The holding cost per unit is a 
linear function of time in storage and the backordering cost 𝜔 per unit 
and time is known and constant. The demand rate 𝜆(𝑠, 𝑡) is a bivariate 
function of price and time. Thus, we assume that 𝜆(𝑠, 𝑡) multiplies the 
effects of a decreasing rational price-dependent function 𝜆1(𝑠) and a 
power time-dependent function 𝜆2(𝑡), that is, we consider that 𝜆(𝑠, 𝑡) =
𝜆1(𝑠)𝜆2(𝑡), where 𝜆1(𝑠) is the algebraic price-dependent function defined 
by

𝜆 (𝑠) =
(

𝑎 + 𝑎 𝑠
)−𝛾 , with 𝑎 ≥ 0, 𝑎 > 0 and 𝛾 ≥ 1
1 0 1 0 1
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Table 1
Summary of literature on inventory models under carbon emissions.
 Authors Time-dependent Price-dependent Backlogging Carbon emissions
 demand demand in storage  
 Hua et al. (2011) No No No Yes  
 Chen et al. (2013) No No No Yes  
 Toptal et al. (2014) No No No Yes  
 Konur and Schaefer (2014) No No No Yes  
 Hovelaque and Bironneau (2015) No Linear No Yes  
 Yenipazarli (2016) No Linear No No  
 Xu et al. (2016) No Linear No No  
 Tiwari et al. (2018) No No No Yes  
 Halat and Hafezalkotob (2019) No No No Yes  
 Mishra et al. (2020) No No Partial Yes  
 Malleeswaran and Uthayakumar 
(2020)

No Power Full No  

 Manna et al. (2021) Linear warranty No No No  
 Taleizadeh et al. (2022) No Linear Partial Yes  
 Asadkhani et al. (2022) No No No Yes  
 Ebrahimi et al. (2022) No No Partial No  
 Mahato and Mahata (2023) No No Partial Yes  
 Khan et al. (2023a) No No No Yes  
 Khan et al. (2023b) Power Power No Yes  
 Jain et al. (2023) No No No Yes  
 Lok et al. (2023) No No No Yes  
 Khan et al. (2024) Power Power Full Yes  
 San-José et al. (2024) Power No Full Yes  
 Sebatjane et al. (2024) No Linear No Yes  
 This paper Power Algebraic Full Yes  
Table 2
List of notations.
 Variables
 𝑞 Lot size per cycle (decision variable)  
 𝑇 Length of the inventory cycle  
 𝑏 Maximum shortage quantity per cycle (decision 

variable)
 

 𝜏1 Time period where the net stock is positive  
 𝜏2 Time period where the net stock is negative  
 𝑀 Maximum level of the stock  
 𝑠 Unit selling price (decision variable)  
 Parameters
 𝑔0 Fixed shipment cost  
 𝑔1 Shipment cost per transported unit  
 𝑑0 Fixed carbon emissions in transporting  
 𝑑1 Variable carbon emissions in transporting  
 𝑟1 Tax charged on carbon emissions in transporting 

($/per carbon kilogram emission)
 

 𝑒0 Fixed carbon emissions in holding  
 𝑒1 Carbon emissions per unit held in stock  
 𝑟2 Tax charged on carbon emissions in storage ($/per 

carbon kilogram emission)
 

 𝑝 Unit purchasing cost  
 ℎ Unit holding cost per unit time  
 𝜔 Unit backordering cost per unit time  
 𝐾 Ordering cost  
 𝑎0 Non-centrality parameter of the price-dependent 

demand rate
 

 𝑎1 Sensitivity coefficient for the price-dependent demand  
 𝛾 Exponent of the price-dependent demand  
 𝛿 Index of demand pattern  
 𝜋0 Auxiliary parameter given by 𝜋0 = 𝐾 + 𝑔0 + 𝑟1𝑑0 + 𝑟2𝑒0  
 𝜋1 Auxiliary parameter given by 𝜋1 = 𝑝 + 𝑔1 + 𝑟1𝑑1  
 𝜋2 Auxiliary parameter given by 

𝜋2 =
(

ℎ + 𝜔 + 𝑟2𝑒1
)

∕ (𝛿 + 1)
 

 Functions
 𝜆(𝑠, 𝑡) Demand rate at time 𝑡 when the selling price is 𝑠  
 𝐼(𝑠, 𝑡) Inventory level at time 𝑡 when the selling price is 𝑠  
 𝑃 (𝑠, 𝑞, 𝑏) Average profit per unit time  

and 𝜆2(𝑡) is the power time-dependent function given by

𝜆 (𝑡) = 1 ( 𝑡 )(1−𝛿)∕𝛿
, with 𝛿 > 0
2 𝛿 𝑇

3 
In the function 𝜆1(𝑠), the coefficient 𝑎0 can be interpreted as the non-
centrality parameter of the demand rate regarding the selling price 
(see Pando et al., 2021), and the parameters 𝑎1 and 𝛾 are coefficients 
that represent the sensitivity of demand with respect to the selling 
price. This algebraic price-dependent demand function was also used 
by other researchers, such as Huang et al. (2013), Jeuland and Shugan 
(1988), and Zhu and Cetinkaya (2014). Note that if we set 𝑎0 = 0, 
we obtain the well-known isoelastic price-dependent function (see, 
e.g., Rubio-Herrero and Baykal-Gürsoy, 2020;  Yang and Liu,  2023; 
Terzi et al.,  2024; and  Pando et al.,  2024).

The function 𝜆2(𝑡) describes the way in which units are taken from 
stock to cover customer demand, based on the time at which they 
are requested. Some explanations about the practical utility of the 
function 𝜆2(𝑡) to  describe the demand for certain products can be found 
in San-José et al. (2021, 2024, 2017, 2020). Thus, the price-and-time-
dependent function considered in this work can be useful to describe 
the real demand for some articles, since it can better fit the empirical 
data.

The price elasticity of demand is 𝜀 (𝑠) = −𝑎1𝛾𝑠∕
(

𝑎0 + 𝑎1𝑠
) and 

the price super-elasticity, defined as the elasticity of the function 𝜀 (𝑠)
(see, e.g., Kimball, 1995; and Mrázová and Neary, 2017), is given by 
𝜎 (𝑠) = 𝑎0∕

(

𝑎0 + 𝑎1𝑠
)

. Thus, if the parameter 𝑎0 is positive, the price 
elasticity, which depends on the unit selling price, is strictly decreasing 
and convex, as is the price super-elasticity. Note that the isoelastic 
price-function has an elasticity equal to −𝛾 and its super-elasticity is 
0.

To illustrate the characteristic of the customer’s demand as a func-
tion of the parameters 𝛾 and 𝛿, we have depicted the function 𝜆 (𝑠, 𝑡)
for different possible values of these indexes in Figs.  1, 2 and 3.

3. Model formulation

The behavior of the net inventory level 𝐼(𝑠, 𝑡) is described as follows. 
At the beginning of the inventory period there are 𝑀 units stored and 
that amount decreases during the time period (0, 𝜏1) and falls to zero at 
𝑡 = 𝜏1. Therefore,

𝑀 = ∫

𝜏1

0
𝜆(𝑠, 𝑡)𝑑𝑡

Next, during the time period (𝜏1, 𝑇 ), shortages occur and demand is 
completely backordered.
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Fig. 1. Demand rate functions 𝜆(𝑠, 𝑡) when 𝛿 > 1.
Fig. 2. Demand rate functions 𝜆(𝑠, 𝑡) when 𝛿 = 1.
Fig. 3. Demand rate functions 𝜆(𝑠, 𝑡) when 𝛿 < 1.
The net inventory level 𝐼(𝑠, 𝑡) at time 𝑡, with 𝑡 ∈ [0, 𝑇 ), is given by 

𝐼(𝑠, 𝑡) = 𝑀 − ∫

𝑡

0
𝜆(𝑠, 𝑢)𝑑𝑢 = ∫

𝜏1

𝑡
𝜆(𝑠, 𝑢)𝑑𝑢 (1)

Since demand during the stock-out period is completely backlogged, 
the lot size 𝑞 must match demand during the inventory cycle. Therefore, 

𝑞 = ∫

𝑇

0
𝜆(𝑠, 𝑡)𝑑𝑡 =

(

𝑎0 + 𝑎1𝑠
)−𝛾 𝑇 (2)

The maximum shortage quantity coincides with the demand during the 
stock-out period, that is, 

𝑏 = ∫

𝑇

𝜏1
𝜆(𝑠, 𝑡)𝑑𝑡 =

(

𝑎0 + 𝑎1𝑠
)−𝛾

(

1 −
( 𝜏1
𝑇

)1∕𝛿
)

𝑇 =
(

1 −
( 𝜏1
𝑇

)1∕𝛿
)

𝑞

(3)

Substituting 𝜆1(𝑠) and 𝜆2(𝑡) into Eq. (1) , we have that the net 
inventory level, for 0 ≤ 𝑡 < 𝑇  and 𝑝 ≤ 𝑠, is given by

𝐼(𝑠, 𝑡) =
(

𝑎0 + 𝑎1𝑠
)−𝛾

(

( 𝜏1 )1∕𝛿
−
( 𝑡 )1∕𝛿

)

𝑇

𝑇 𝑇

4 
=
⎛

⎜

⎜

⎝

1 −

(

𝑡
𝑞
(

𝑎0 + 𝑎1𝑠
)𝛾

)1∕𝛿
⎞

⎟

⎟

⎠

𝑞 − 𝑏 (4)

From (2), the length of the inventory cycle 𝑇  is given by 

𝑇 = 𝑞
(

𝑎0 + 𝑎1𝑠
)𝛾 (5)

and, from (3), the length of the stock-in period is given by 

𝜏1 = 𝑞
(

𝑎0 + 𝑎1𝑠
)𝛾

(

1 − 𝑏
𝑞

)𝛿
(6)

Therefore, the length of the stock-out period is given by 

𝜏2 = 𝑇 − 𝜏1 = 𝑞
(

𝑎0 + 𝑎1𝑠
)𝛾

(

1 −
(

1 − 𝑏
𝑞

)𝛿
)

(7)

The objective is to maximize the average profit per unit time 
𝑃 (𝑠, 𝑞, 𝑏) = 𝐵(𝑠, 𝑞, 𝑏)∕𝑇 , where 𝐵(𝑠, 𝑞, 𝑏) is the profit during the inventory 
cycle 𝑇 . This profit includes the following significant components: the 
average revenue, the ordering cost, the purchasing cost, the shipping 
cost, the holding cost, the average emissions cost and the backordering 
cost. It is clear that, at each cycle, the revenue is 𝑠𝑞, the ordering cost 
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is 𝐾, the purchasing cost is 𝑝𝑞, the shipping cost is 𝑔0 + 𝑔1𝑞 and the 
holding cost is

∫

𝜏1

0
ℎ𝐼(𝑠, 𝑡)𝑑𝑡 = ℎ

𝛿 + 1
(

𝑎0 + 𝑎1𝑠
)−𝛾 𝜏1𝑇

( 𝜏1
𝑇

)1∕𝛿

= ℎ
𝛿 + 1

(

𝑎0 + 𝑎1𝑠
)𝛾 𝑞2

(

1 − 𝑏
𝑞

)𝛿+1
(8)

Since carbon emissions are due to transportation and storage, the cost 
of carbon emissions per cycle is the sum of the costs incurred by the 
carbon emissions in each of these two tasks. That is,

𝑟1
(

𝑑0 + 𝑑1𝑞
)

+ 𝑟2

(

𝑒0 + 𝑒1 ∫

𝜏1

0
𝐼(𝑠, 𝑡)𝑑𝑡

)

= 𝑟1
(

𝑑0 + 𝑑1𝑞
)

+ 𝑟2
(

𝑒0 +
𝑒1

𝛿 + 1
(

𝑎0 + 𝑎1𝑠
)𝛾 𝑞1−𝛿 (𝑞 − 𝑏)𝛿+1

)

(9)

Finally, the backorder cost per cycle is

∫

𝑇

𝜏1
𝜔 (−𝐼(𝑠, 𝑡)) 𝑑𝑡 = 𝜔

(

𝑎0 + 𝑎1𝑠
)−𝛾

× 𝑇
(

𝛿
𝛿 + 1

𝑇 −
(

𝑇 −
𝜏1

𝛿 + 1

)( 𝜏1
𝑇

)1∕𝛿
)

= 𝜔𝑞
(

𝑎0 + 𝑎1𝑠
)𝛾

×

(

𝑏 −
𝑞

𝛿 + 1

(

1 −
(

1 − 𝑏
𝑞

)𝛿+1
))

(10)

Thus, the profit during the cycle [0, 𝑇 ) is

𝐵(𝑠, 𝑞, 𝑏) =
(

𝑠 − 𝜋1
)

𝑞 − 𝜋0 − 𝜋2𝑞
2 (𝑎0 + 𝑎1𝑠

)𝛾
(

1 − 𝑏
𝑞

)𝛿+1

− 𝜔𝑞
(

𝑎0 + 𝑎1𝑠
)𝛾

(

𝑏 −
𝑞

𝛿 + 1

)

where

𝜋0 = 𝐾 + 𝑔0 + 𝑟1𝑑0 + 𝑟2𝑒0, 𝜋1 = 𝑝 + 𝑔1 + 𝑟1𝑑1 and 
𝜋2 =

(

ℎ + 𝜔 + 𝑟2𝑒1
)

∕ (𝛿 + 1) (11)

Consequently, the average profit per unit time is given by

𝑃 (𝑠, 𝑞, 𝑏) =
𝐵(𝑠, 𝑞, 𝑏)

𝑇
=
(

𝑠 − 𝜋1 −
𝜋0
𝑞

)

(

𝑎0 + 𝑎1𝑠
)−𝛾

− 𝜋2𝑞
(

1 − 𝑏
𝑞

)𝛿+1
− 𝜔

(

𝑏 −
𝑞

𝛿 + 1

)

(12)

The aim is to obtain the values of the variables 𝑠, 𝑞 and 𝑏 that 
maximize the function 𝑃 (𝑠, 𝑞, 𝑏) given by (12), subject to the constraints 
𝑞 > 0, 0 ≤ 𝑏 ≤ 𝑞 and 𝑝 ≤ 𝑠.

4. Analysis and solution

Since, for a fixed value of 𝑠, the function 𝑃𝑠(𝑞, 𝑏) = 𝑃 (𝑠, 𝑞, 𝑏) is 
strictly concave (see Lemma  1 in the Appendix), it is easy to deduce 
that it reaches its maximum value at the point (𝑞∗ (𝑠) , 𝑏∗ (𝑠)), which is 
obtained by solving the system of nonlinear equations 𝜕𝑃 (𝑠,𝑞,𝑏)𝜕𝑞 = 0 and 
𝜕𝑃 (𝑠,𝑞,𝑏)

𝜕𝑏 = 0. Thus, we have 

𝑞∗ (𝑠) =

√

(1 + 𝛿)𝜋0
𝛿𝜔𝜉0

(

𝑎0 + 𝑎1𝑠
)𝛾 (13)

and 

𝑏∗ (𝑠) = 𝜉0𝑞
∗ (𝑠) =

√

(1 + 𝛿)𝜋0𝜉0
𝛿𝜔

(

𝑎0 + 𝑎1𝑠
)𝛾 (14)

where 𝜉0 = 1 −
(

𝜔
(1+𝛿)𝜋2

)1∕𝛿
= 1 −

(

𝜔
ℎ+𝜔+𝑟2𝑒1

)1∕𝛿
.

Therefore the initial optimization problem can be reduced to the 
problem of maximizing 𝐺(𝑠) = 𝑃 (𝑞∗ 𝑠 , 𝑏∗ 𝑠 ) with the condition 𝑠 ≥ 𝑝.
𝑠 ( ) ( )

5 
4.1. Determining the optimal unit selling price

From (12), (13) and (14), after a few algebraic operations, we obtain 

𝐺(𝑠) =
𝑠 − 𝜋1

(

𝑎0 + 𝑎1𝑠
)𝛾 − 2

√

𝛿𝜉0𝜋0𝜔

(1 + 𝛿)
(

𝑎0 + 𝑎1𝑠
)𝛾 (15)

It is clear that: (i) 𝐺(𝑝) < 0; (ii) lim𝑠→∞ 𝐺(𝑠) = 1∕𝑎1 if 𝛾 = 1 and 
lim𝑠→∞ 𝐺(𝑠) = 0 if 𝛾 > 1; and (iii) the function 𝐺(𝑠) is differentiable, 
and its first derivative is given by 

𝐺′(𝑠) =
𝛽 (𝑠)

(

𝑎0 + 𝑎1𝑠
)𝛾+1

(16)

where 

𝛽(𝑠) = 𝑎0 − 𝑎1 (𝛾 − 1) 𝑠 + 𝑎1𝛾
⎛

⎜

⎜

⎝

𝜋1 +

√

𝛿𝜉0𝜋0𝜔
(

𝑎0 + 𝑎1𝑠
)𝛾

1 + 𝛿

⎞

⎟

⎟

⎠

(17)

Thus, we have that sign [𝐺′(𝑠)
]

= sign [𝛽(𝑠)]. For this reason, we now 
study some properties of the function 𝛽(𝑠) that will help us determine 
the optimal selling price.

First of all, it is clear that 𝛽(𝑝) > 0, because 𝛽(𝑝) = 𝑎0 + 𝑎1𝑝 +

𝑎1𝛾

(

𝑔1 + 𝑟1𝑑1 +
√

𝛿𝜉0𝜋0𝜔
(

𝑎0+𝑎1𝑝
)𝛾

𝛿+1

)

. Next, we show the behavior of the 
function 𝛽(𝑠) regarding the value of the parameter 𝛾.

Proposition 1.  Let 𝛽(𝑠) be given by (17). Then:
1. If 𝛾 = 1, then 𝛽(𝑠) is a strictly increasing and concave function with 

lim𝑠→∞ 𝛽(𝑠) = ∞.
2. If 1 < 𝛾 < 2, then 𝛽(𝑠) is a strictly concave function and 

lim𝑠→∞ 𝛽(𝑠) = −∞.
3. If 𝛾 = 2, then 𝛽(𝑠) is an affine function. Moreover,

lim
𝑠→∞

𝛽(𝑠) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−∞ 𝑖𝑓
√

1+𝛿
𝛿𝜉0𝜋0𝜔

> 2𝑎1

2
(

𝑎0 + 𝑎1𝜋1
)

𝑖𝑓
√

1+𝛿
𝛿𝜉0𝜋0𝜔

= 2𝑎1

∞ 𝑖𝑓
√

1+𝛿
𝛿𝜉0𝜋0𝜔

< 2𝑎1

4. If 𝛾 > 2, then 𝛽(𝑠) is a strictly convex function that attains its 
minimum value at the point 𝑠0 given by 

𝑠0 =
1
𝑎1

⎛

⎜

⎜

⎝

(

4 (1 + 𝛿) (𝛾 − 1)2

𝑎21𝛾
4𝛿𝜉0𝜋0𝜔

)1∕(𝛾−2)

− 𝑎0
⎞

⎟

⎟

⎠

(18)

Moreover, lim𝑠→∞ 𝛽(𝑠) = ∞.

Proof.  Please, see Appendix. □

Taking into account the above result, we now study separately the 
scenarios (i) 𝛾 = 1, (ii) 𝛾 ∈ (1, 2), (iii) 𝛾 = 2 and (iv) 𝛾 > 2.

4.1.1. Scenario 𝛾 = 1
The following theorem ensures the existence, in this scenario, of a 

unit selling price from which the inventory system is profitable.

Theorem 1.  Let 𝐺(𝑠) be given by (15). If 𝛾 = 1, then the function 𝐺(𝑠) does 
not reach its maximum at any point 𝑠 ≥ 𝑝, the supremum of 𝐺(𝑠) is 1∕𝑎1
and it is obtained when 𝑠 tends to infinity. Moreover, the inventory system 
is profitable for 𝑠 > 𝑠1, where 𝑠1 = 𝜋1+2𝑎1𝜉1+2

√

𝜉1
(

𝑎0 + 𝑎1
(

𝜋1 + 𝑎1𝜉1
))

, 
with 𝜉1 = 𝛿𝜉0𝜋0𝜔∕ (1 + 𝛿).

Proof. Please, see Appendix. □

Note that, for each value 𝑣, with 𝑣 ∈
(

0, 1∕𝑎1
)

, there is a unique unit 
selling price 𝑠𝑣 for which the inventory system has an average profit per 
unit time equal to 𝑣.
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4.1.2. Scenario 𝛾 ∈ (1, 2)
Next, we provide a criterion to determine the optimal selling price 

𝑠∗ in this scenario.

Theorem 2.  Let 𝐺(𝑠) and 𝛽(𝑠) be given, respectively, by (15) and (17). 
If 𝛾 ∈ (1, 2), then the function 𝐺(𝑠) reaches its maximum at the point 
𝑠∗ = arg𝑠∈(𝑝,∞) {𝛽(𝑠) = 0}, with the value 

𝐺(𝑠∗) =
(

𝑎0 + 𝑎1𝑠
∗)−𝛾∕2

(
(

𝑎0 + 𝑎1𝑠∗
)1−𝛾∕2

𝑎1𝛾
−
√

𝛿𝜉0𝜋0𝜔
1 + 𝛿

)

(19)

Proof. Please, see Appendix. □

Note that, in this scenario, there is always an optimal selling price 
and, therefore, the sustainable inventory system is always profitable.

4.1.3. Scenario 𝛾 = 2
Now, let us determine the optimal selling price 𝑠∗ in this other 

scenario, when 𝛾 = 2.

Theorem 3.  Let 𝐺(𝑠) be given by (15). If 𝛾 = 2, then the optimum selling 
price 𝑠∗ can be determined in the following way:

1. If 
√

1+𝛿
𝛿𝜉0𝜋0𝜔

> 2𝑎1, then the function 𝐺(𝑠) reaches its maximum at 
the point

𝑠∗ = 𝑠2 =
1
𝑎1

⎛

⎜

⎜

⎜

⎝

2
(

𝑎0 + 𝑎1𝜋1
)

1 − 2𝑎1
√

𝛿𝜉0𝜋0𝜔
1+𝛿

− 𝑎0

⎞

⎟

⎟

⎟

⎠

with the value

𝐺(𝑠2) =
1

𝑎0 + 𝑎1𝜋1

[

1
4𝑎1

+
√

𝛿𝜉0𝜋0𝜔
1 + 𝛿

(

𝑎1

√

𝛿𝜉0𝜋0𝜔
1 + 𝛿

− 1

)]

2. If 
√

1+𝛿
𝛿𝜉0𝜋0𝜔

≤ 2𝑎1, then the function 𝐺(𝑠) does not reach its 
maximum at any point 𝑠 ≥ 𝑝. The supremum of 𝐺(𝑠) is 0 and is 
obtained when 𝑠 tends to infinity.

Proof. Please, see Appendix. □

4.1.4. Scenario 𝛾 > 2
In the following theorem, the optimal selling price 𝑠∗ is obtained 

when it is assumed that 𝛾 > 2.

Theorem 4.  Let 𝐺(𝑠), 𝛽(𝑠) and 𝑠0 be given, respectively, by (15), (17) and 
(18). The optimum selling price 𝑠∗ can be determined in the following way:

A. If 𝑠0 ≤ 𝑝, then the function 𝐺(𝑠) does not reach its maximum at any 
point 𝑠 ≥ 𝑝. The supremum of 𝐺(𝑠) is 0 and is obtained when 𝑠 tends 
to infinity.

B. If 𝑠0 > 𝑝 and 𝛽 (𝑠0
)

≥ 0, then the function 𝐺(𝑠) does not reach its 
maximum at any point 𝑠 ≥ 𝑝. The supremum of 𝐺(𝑠) is 0 and is 
obtained when 𝑠 tends to infinity.

C. If 𝑠0 > 𝑝 and 𝛽 (𝑠0
)

< 0, then let ̃𝑠 = arg𝑠∈(𝑝,𝑠0) {𝛽(𝑠) = 0}.

(i) If 𝐺(𝑠̃) < 0, then the function 𝐺(𝑠) does not reach its 
maximum at any point 𝑠 ≥ 𝑝. The supremum of 𝐺(𝑠) is 0
and is obtained when 𝑠 tends to infinity.

(ii) If 𝐺(𝑠̃) ≥ 0, then the function 𝐺(𝑠) reaches its maximum at 
the point 𝑠∗ = 𝑠̃, with maximum profit per unit time given by 
(19).

Proof. Please, see Appendix. □
6 
4.2. Sustainable inventory without shortages

It is clear that the optimal inventory policy for the system in which 
shortages are not allowed can be obtained through the previous results, 
taking the limit as 𝜔 tends to ∞.

Thus, from (13), we have that the optimal lot size for a fixed selling 
price 𝑠 is now

𝑞∗𝑤(𝑠) = lim
𝜔→∞

𝑞∗(𝑠) =

√

(1 + 𝛿)𝜋0
(

ℎ + 𝑟2𝑒1
) (

𝑎0 + 𝑎1𝑠
)𝛾

and, proceeding in a similar way to the full backlogging case, the 
optimal unit selling price is the value 𝑠∗𝑤 that maximizes the function 
𝐺𝑤(𝑠), where 

𝐺𝑤(𝑠) = lim
𝜔→∞

𝐺(𝑠) =
𝑠 − 𝜋1

(

𝑎0 + 𝑎1𝑠
)𝛾 − 2

√

√

√

√

𝜋0
(

ℎ + 𝑟2𝑒1
)

(1 + 𝛿)
(

𝑎0 + 𝑎1𝑠
)𝛾 (20)

We can now give a criterion for determining the optimal selling 
price 𝑠∗, which is the analogue of Theorems  1 to 4.

Theorem 5.  Let 𝛽𝑤(𝑠) = 𝑎0−𝑎1 (𝛾 − 1) 𝑠+𝑎1𝛾

(

𝜋1 +
√

𝜋0
(

ℎ+𝑟2𝑒1
)(

𝑎0+𝑎1𝑠
)𝛾

1+𝛿

)

and 𝐺𝑤(𝑠) be given by (20).
1. If 𝛾 = 1, then the function 𝐺𝑤(𝑠) does not reach its maximum at 
any point 𝑠 ≥ 𝑝 and sup𝑠≥𝑝 𝐺𝑤(𝑠) = 1∕𝑎1, which is obtained when 
𝑠 → ∞.

2. If 𝛾 ∈ (1, 2), then the optimal selling price is 𝑠∗𝑤 = arg𝑠∈(𝑝,∞)
{

𝛽𝑤(𝑠) = 0
} and the maximum average profit per unit time is 

𝐺𝑤
(

𝑠∗𝑤
)

.
3. If 𝛾 = 2, then:

(a) When 2𝑎1 <
√

1+𝛿
𝜋0

(

ℎ+𝑟2𝑒1
) , the optimal selling price is 𝑠∗𝑤 =

1
𝑎1

(

2
(

𝑎0+𝑎1𝜋1
)

1−2𝑎1
√

𝜋0
(

ℎ+𝑟2𝑒1
)

(1+𝛿)−1
− 𝑎0

)

.

(b) Otherwise, 𝑠∗𝑤 = ∞ and 𝐺𝑤(𝑠∗𝑤) = 0 (that is, the function 
𝐺𝑤(𝑠) does not reach its maximum at any point 𝑠 ≥ 𝑝 and 
sup𝑠≥𝑝 𝐺𝑤(𝑠) = 0, which is obtained when 𝑠 → ∞ ).

4. If 𝛾 > 2, let 𝑠𝑤 = 1
𝑎1

(

(

4(1+𝛿)(𝛾−1)2

𝑎21𝛾
4𝜋0

(

ℎ+𝑟2𝑒1
)

)1∕(𝛾−2)
− 𝑎0

)

.

(a) In the cases: (i) 𝑠𝑤 ≤ 𝑝 and (ii) 𝑠𝑤 > 𝑝 and 𝛽𝑤
(

𝑠𝑤
)

≥ 0, we 
have 𝑠∗𝑤 = ∞ and 𝐺𝑤(𝑠∗𝑤) = 0.

(b) If 𝑠𝑤 > 𝑝 and 𝛽𝑤
(

𝑠𝑤
)

< 0, let ̃𝑠𝑤 = arg𝑠∈(𝑝,𝑠𝑤)
{

𝛽𝑤(𝑠) = 0
}

.

i. The optimal selling price is 𝑠∗𝑤 = 𝑠̃𝑤, when 𝐺𝑤(𝑠̃𝑤) ≥
0.

ii. However, 𝑠∗𝑤 = ∞ and 𝐺𝑤(𝑠∗𝑤) = 0, when 𝐺𝑤(𝑠̃𝑤) < 0.

Proof. Please, see Appendix. □

5. Numerical examples

In this section, we illustrate with some numerical examples the 
solution procedure developed in Section 4.

Example 1. Consider an inventory system that has the characteristics 
described in Section 2 and assume the following input parameters: 
ordering cost 𝐾 = $12, unit purchasing cost 𝑝 = $7.5, unit holding 
cost ℎ = $2 per week, unit backlogging cost 𝜔 = $2.9 per week, fixed 
shipment cost 𝑔0 = $6, shipment cost per transported unit 𝑔1 = $0.02, 
fixed carbon emissions in transporting: 𝑑0 = 25 kg, variable carbon 
emissions in transporting: 𝑑1 = 0.8 kg per unit, fixed carbon emissions 
in holding: 𝑒 = 16 kg, carbon emission per unit held in stock and per 
0
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unit of time: 𝑒1 = 1 kg, tax charged on carbon emissions kilogram in 
transporting: 𝑟1 = $1.5, tax charged on carbon emissions kilogram in 
storage: 𝑟2 = $1, index of demand pattern: 𝛿 = 1.25, non-centrality 
parameter of the price-dependent demand rate: 𝑎0 = 0.015, sensitivity 
coefficient for the price-dependent demand: 𝑎1 = 0.01 and exponent 
of the price-dependent demand: 𝛾 = 2.5. Following the development 
given in the previous section, from (18), the value of 𝑠0 is 𝑠0 = $212920. 
Applying Theorem  4, from (17), we calculate 𝛽(𝑠0) = −638.510. Then, 
we obtain 𝑠̃ = $16.9582 and 𝐺 (

𝑠̃
)

= $445.996. Therefore, the optimal 
selling price is 𝑠∗ = $16.9582, with the optimal profit 𝐺∗ = $445.996. 
From (13), the optimal lot size is 𝑞∗ = 83.6341 units and, from (14), the 
maximum number of backorders is 𝑏∗ = 36.2514. Moreover, from (5), 
the optimal inventory cycle is 𝑇 ∗ = 1.22421 weeks and, from (6), the 
optimal stock-in period is 𝜏∗1 = 0.601731 weeks.

Example 2. Use the same data as given in Example  1, but changing 
the value of 𝛾 to 𝛾 = 2. Applying Theorem  3, we calculate 

√

1+𝛿
𝛿𝜉0𝜋0𝜔

=
0.141519, which is greater than 2𝑎1. Thus, the optimal selling price is 
𝑠∗ = 𝑠2 = $22.3041, with maximum profit 𝐺∗ = $180.363. Therefore, the 
optimal lot size is 𝑞∗ = 42.5078, the maximum shortage is 𝑏∗ = 18.4251, 
the optimal inventory cycle is 𝑇 ∗ = 2.40864 weeks and the optimal 
stock-in period is 𝜏∗1 = 1.18391 weeks.

Example 3. We now assume the same input parameters as in Example 
2, but modify the value of 𝑎1 to 𝑎1 = 0.1. We have 2𝑎1 = 0.2, which 
is greater than 

√

(1 + 𝛿) ∕
(

𝛿𝜉0𝜋0𝜔
)

. Therefore, by applying Theorem  3 
again, we conclude that the function 𝐺(𝑠) does not reach its maximum 
at any point 𝑠 ≥ 𝑝. Obviously, in this case, the item should not be 
stocked.

Example 4. Consider the same data as given in Example  1, but chang-
ing the value of 𝛾 to 𝛾 = 1.5. From Theorem  2, we conclude that 
the optimum selling price is 𝑠∗ = $40.1507. The optimal lot size is 
𝑞∗ = 19.5166 units, the optimal inventory cycle is 𝑇 ∗ = 5.24610 weeks, 
the maximum number of backorders is 𝑏∗ = 8.45949, the optimal stock-
in period is 𝜏∗1 = 2.57859 weeks and the optimal profit per unit time is 
𝐺∗ = $89.6702.

Example 5. Assume the same data as given in Example  1, but modify 
the value of 𝛾 to 𝛾 = 1. From Theorem  1 , we deduce that the function 
𝐺(𝑠) does not reach its maximum at any point 𝑠 ≥ 𝑝 and the supremum 
of 𝐺(𝑠) is 1∕𝑎1 = 100. We calculate 𝑠1 = $14.3456 and we can conclude 
that the inventory system is profitable for 𝑠 > $14.3456. Moreover, for 
example, if we want to obtain a profit per unit of time equal to $60, we 
should take a unit selling price equal to 𝑠 = $49.2094.

Example 6. Suppose the same input parameters as in Example  3, but 
modify the value of 𝛾 to 𝛾 = 4. From (18), we obtain 𝑠0 = $5.15695, 
which is less than the purchasing cost 𝑝. Thus, applying Theorem  4, we 
deduce that the function 𝐺(𝑠) does not reach its maximum at any point 
𝑠 ≥ 𝑝.

Example 7. Assume the same data as given in Example  6, but changing 
the value of 𝑎1 to 𝑎1 = 0.06. Now, we have 𝑠0 = $14.4915 > 𝑝 = $7.5 and 
𝛽
(

𝑠0
)

= 0.826062 > 0. Therefore, from Theorem  4 again, we conclude 
that the function 𝐺(𝑠) does not reach its maximum at any point 𝑠 ≥ 𝑝.

Example 8. Consider the same data given in Example  6, but modify 
the value of 𝑎1 to 𝑎1 = 0.045. We calculate 𝑠0 = $25.8738 and 𝛽(𝑠0) =
−0.139384. Next, we obtain ̃𝑠 = $18.5175 and 𝐺 (

𝑠̃
)

= −$0.718532. Thus, 
we see that the function 𝐺(𝑠) does not reach its maximum at any point 
𝑠 ≥ 𝑝.

Example 9. Let us suppose the same data given in Example  1, but 
now considering that shortages are not allowed. Applying Theorem  5, 
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we calculate 𝑠𝑤 = $58406.9, which is greater than 𝑝. Since 𝛽(𝑠𝑤) =
−174.970 < 0, we obtain 𝑠̃𝑤 = $17.5863 and 𝐺𝑤(𝑠̃𝑤) = $402.314 > 0. 
Thus, the optimal unit selling price is 𝑠∗𝑤 = $17.5863, with maximum 
profit per unit time 𝐺∗

𝑤 = $402.314. Therefore, the optimal lot size is 
𝑞∗𝑤 = 58.0474 units, with an inventory cycle equal to 𝑇 ∗

𝑤 = 0.923814
weeks.

Note that in Examples  3, 6, 7 and 8, as the supremum of 𝐺(𝑠) is 0, it 
means that the profit per unit time is always negative and the inventory 
system is unprofitable.

5.1. Effects of the sustainable costs in the inventory system

Next, in this subsection, we compare the optimal inventory policy 
previously obtained with the one achieved from a model where carbon 
emission costs are not considered.

Let 𝐺∗ denote the maximum value of the objective function of 
the model with carbon emission costs. That is, 𝐺∗ is the value of the 
average profit per unit time linked with the optimal inventory policy 
developed in this paper. Let us denote by 𝐺# the average profit per unit 
time of the best policy for the inventory model without considering 
sustainable costs. To compare both inventory policies, it is necessary 
to calculate the last profit 𝐺#. To do this, we must first calculate the 
objective function 𝑃 (𝑠, 𝑞, 𝑏) to be maximized in the model that does not 
consider carbon emission costs. It is clear that this function 𝑃 (𝑠, 𝑞, 𝑏) is 
obtained from (12), but now considering 𝜋0 = 𝐾 + 𝑔0, 𝜋1 = 𝑝 + 𝑔1 and 
𝜋2 = (ℎ + 𝜔) ∕ (𝛿 + 1). Thus, we get the following average profit per unit 
time

𝑃 (𝑠, 𝑞, 𝑏) =
(

𝑠 −
(

𝑝 + 𝑔1
)

−
𝐾 + 𝑔0

𝑞

)

(

𝑎0 + 𝑎1𝑠
)−𝛾

− ℎ + 𝜔
𝛿 + 1

𝑞
(

1 − 𝑏
𝑞

)𝛿+1
− 𝜔

(

𝑏 −
𝑞

𝛿 + 1

)

Applying Theorems  1 to 4 to the above function 𝑃 (𝑠, 𝑞, 𝑏), we obtain 
the best inventory policy (𝑠̂, 𝑞, 𝑏̂) for the system without considering 
sustainable costs. Thus, the profit 𝐺# per unit time related with that 
policy (𝑠̂, 𝑞, 𝑏̂) is determined as 𝐺# = 𝑃 (𝑠̂, 𝑞, 𝑏̂), with the function 𝑃 (𝑠, 𝑞, 𝑏)
given by (12).

Next, we define as a measure of the difference between the two 
solutions, the value 𝐺𝑎𝑝 given by

𝐺𝑎𝑝 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

100
(

𝐺#−𝐺∗

𝐺∗

)

 if 𝐺∗ > 0

−∞  if 𝐺∗ = 0 and 𝐺# < 0

0  if 𝐺∗ = 0 and 𝐺# = 0

Table  3 shows the results obtained for the previously solved numerical 
examples in which shortages are allowed. Note that, for Example  2, the 
selling price for the model without considering the sustainable costs is 
𝑠 = 17.7540, which is 20.4003% lower than the optimal selling price 
𝑠∗. The lot size for this model is 𝑞 = 36.7273, which is 13.5987% 
lower than the optimal lot size 𝑞∗, and the maximum shortage quantity 
is 𝑏̂ = 12.5866, which is 31.6878% lower than the optimal maximum 
shortage quantity 𝑞∗. This leads to the relative gap of more than 
37%. However, for Example  7 , the best inventory policy obtained 
for the model without considering sustainability costs is (𝑠̂, 𝑞, 𝑏̂) =
(12.6142, 9.58405, 3.28448); while Theorem  4 indicates that, considering 
sustainable costs, the profit per unit of time is always negative and the 
inventory system is not profitable, because the supremum of 𝐺(𝑠) is 
0. These two examples clearly show that, applying the optimal policy 
obtained for the inventory model without considering sustainable costs, 
can lead to a considerable decrease in the maximum profit (or, equiv-
alently, a high additional cost) corresponding to the optimal solution 
deduced considering sustainable costs.
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Table 3
Comparison of the inventory of numerical examples.
 Example 𝑠∗ 𝑞∗ 𝑏∗ 𝐺∗ 𝑠̂ 𝑞 𝑏̂ 𝐺# 𝐺𝑎𝑝 (%)  
 1 16.9582 83.6341 36.2514 445.996 14.0462 58.4901 20.0448 388.243 −12.9494 
 2 22.3041 42.5078 18.4251 180.363 17.7540 36.7273 12.5866 113.200 −37.2375 
 3 ∞ 0 0 0 41.3660 1.37530 0.47132 −2.1194 −∞  
 4 40.1507 19.5166 8.45949 89.6702 29.4880 13.7473 4.71126 80.2760 −10.4763 
 5 ∞ 0 0 100 ∞ 0 0 100 0  
 6 ∞ 0 0 0 ∞ 0 0 0 0  
 7 ∞ 0 0 0 12.6142 9.58405 3.28448 −16.9965 −∞  
 8 ∞ 0 0 0 11.2872 20.8804 7.15578 −26.6012 −∞  
6. Sensitivity analysis and managerial insights

6.1. Impact of some parameters

In this section, we study the variation of the best inventory policy of 
the system presented when some values of the parameters of the system 
are modified. To do this, we consider the parameters of Example  1 of 
Section 5. Then, we obtain the percentage variations of the optimal 
policies, assuming that the value of each input parameter considered 
varies by ±5%, ±10%, ±20% and ±30%. Table  4 shows the computational 
results assuming these percentage variations in the parameters related 
to the demand rate function; while Table  5 displays the effects, with 
these same percentage variations, of the parameters 𝑝, 𝑟1 and 𝑟2 on the 
optimal policy.

Hence, Table  4 reveals that the sensitivity coefficient 𝑎1 for the 
price-dependent demand and the exponent of the price-dependent de-
mand 𝛾 are, of the four parameters associated with the demand rate, 
the parameters that have the greatest influence on the optimal policy. 
Thus, for changes in 𝛾 between −30% and 30%, the maximum profit 
varies between −73% and 342%. The effect of this parameter on the 
optimal unit selling price and the optimal inventory cycle is always 
negative, since both 𝑠∗ and 𝑇 ∗ increase when 𝛾 decreases. However, the 
optimal lot size 𝑞∗, the maximum shortage 𝑏∗ and the initial stock level 
𝑀∗ are strictly increasing as the parameter 𝛾 increases. The parameter 
𝑎1 also has a significant influence on the maximum profit per unit time 
and on the optimal values of the decision variables 𝑞 and 𝑏, but not on 
the optimal selling price 𝑠∗. This parameter has a positive effect on the 
optimal selling price 𝑠∗ and the optimal cycle 𝑇 ∗, while the maximum 
profit 𝐺∗, the lot size 𝑞∗, the maximum shortage 𝑏∗ and the maximum 
stock level 𝑀∗ decrease when 𝑎1 increases. Of the four parameters 
analyzed in this table, the one that has the least influence on the 
maximum profit 𝐺∗ and the optimal unit selling price 𝑠∗ is the index of 
demand pattern 𝛿. Thus, for changes in range between −30% and +30%, 
the maximum benefit only varies between −1% and 1.2%. Finally, 
the parameter 𝑎0 has a rather contained influence with respect to the 
optimal policy and the maximum benefit. Thus, when 𝑎0 varies between 
−30% and +30%, the optimal price 𝑠∗ varies between −2% and 2%, the 
optimal lot size between +6% and −5% (the same as the maximum 
shortage and the initial stock level), and the maximum profit between 
+7% and −7%. Note that the type of effect on the optimal price 𝑠∗ and 
the maximum profit 𝐺∗ is always inverse, that is, if the optimal price 
increases when one of the parameters decreases, then the maximum 
profit decreases, and if the optimal price decreases, the maximum profit 
increases. It is also interesting to note that when changes occur in the 
parameter 𝛾, the magnitudes of the changes generated in the optimal 
lot size 𝑞∗, the maximum shortage 𝑏∗ and the initial stock level 𝑀∗

coincide. The same occurs with the changes in the parameters 𝑎0 and 
𝑎1.

The results shown in Table  5 indicate that, as expected, the param-
eter 𝑝 has a notable influence on both the optimal inventory policy 
(𝑠∗, 𝑞∗, 𝑏∗) and the maximum profit 𝐺∗. Thus, for changes in 𝑝 between 
−30% and +30%, the maximum profit 𝐺∗ varies between +48% and 
−27%, the optimal selling price 𝑠∗ fluctuates between −24% and +25%, 
and the lot size 𝑞∗ and the maximum shortage 𝑏∗ change between +37%
and −22%. Note that 𝑝 always has a positive effect on the optimal selling 
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Table 4
Effects of the parameters 𝑎0, 𝑎1, 𝛾 and 𝛿 on the optimal policy.
 𝛥 𝛥𝑠∗ (%) 𝛥𝑞∗ (%) 𝛥𝑏∗ (%) 𝛥𝑀∗ (%) 𝛥𝑇 ∗ (%) 𝛥𝐺∗ (%) 
 𝑎0 −30% −2.23841 5.91665 5.91665 5.91665 −5.58614 7.30172
 −20% −1.49294 3.87668 3.87668 3.87668 −3.73200 4.77373
 −10% −0.746800 1.90556 1.90556 1.90556 −1.86993 2.34148
 −5% −0.373482 0.944782 0.944782 0.944782 −0.935939 1.15969
 +5% 0.373645 −0.929168 −0.929168 −0.929168 0.937882 −1.13816
 +10% 0.747453 −1.84309 −1.84309 −1.84309 1.87770 −2.25535
 +20% 1.49555 −3.62662 −3.62662 −3.62662 3.76309 −4.42890
 +30% 2.24429 −5.35332 −5.35332 −5.35332 5.65611 −6.52473

 𝑎1 −30% −0.277227 50.0998 50.0998 50.0998 −33.3777 143.372
 −20% −0.441462 29.5333 29.5333 29.5333 −22.7998 75.8839
 −10% −0.325996 13.2220 13.2220 13.2220 −11.6779 31.0275
 −5% −0.186159 6.28057 6.28057 6.28057 −5.90942 14.1576
 +5% 0.227738 −5.70707 −5.70707 −5.70707 6.05249 −11.9719
 +10% 0.493226 −10.9135 −10.9135 −10.9135 12.2504 −22.1655
 +20% 1.12560 −20.0598 −20.0598 −20.0598 25.0936 −38.4272
 +30% 1.87851 −27.8256 −27.8256 −27.8256 38.5534 −50.6266

 𝛾 −30% 65.2000 −64.8075 −64.8075 −64.8075 184.152 −72.6123
 −20% 31.5240 −49.1741 −49.1741 −49.1741 96.7502 −59.5595
 −10% 12.2731 −28.2085 −28.2085 −28.2085 39.2923 −37.3323
 −5% 5.51265 −15.1490 −15.1490 −15.1490 17.8536 −21.0599
 +5% −4.56601 17.5685 17.5685 17.5685 −14.9432 27.2389
 +10% −8.39850 37.9360 37.9360 37.9360 −27.5026 62.4602
 +20% −14.4430 88.8832 88.8832 88.8832 −47.0572 166.889
 +30% −18.9634 157.204 157.204 157.204 −61.1203 341.565

 𝛿 −30% 0.354166 −4.04468 23.0622 −24.7834 −3.26221 −0.991361
 −20% 0.256578 −2.96322 13.8321 −15.8129 −2.39035 −0.719410
 −10% 0.134756 −1.57850 6.29200 −7.60003 −1.27359 −0.378635
 −5% 0.0684866 −0.808515 3.01124 −3.73091 −0.652410 −0.192654
 +5% −0.0699584 0.839613 −2.77525 3.60526 0.677659 0.197268
 +10% −0.140802 1.70434 −5.34265 7.09582 1.37575 0.397520
 +20% −0.283390 3.49055 −9.94537 13.7700 2.81824 0.802070
 +30% −0.425118 5.32926 −13.9594 20.0866 4.30380 1.20617

price 𝑠∗, while it is negative on lot size 𝑞∗, the maximum shortage 𝑏∗
and the optimal profit 𝐺∗. Also, the tax charged on carbon emissions 
in storage 𝑟2 has a relatively small influence on the optimal selling 
price 𝑠∗, the lot size 𝑞∗ and the maximum profit per unit time 𝐺∗. 
Thus, for changes in range between −30% and +30%, the lot size 𝑞∗
varies between −0.01% and +0.14%, the optimal selling price 𝑠∗ between 
−0.57% and +0.55%, and the maximum profit 𝐺∗ between +1.61% and 
−1.54%. It is also interesting to note that the effect of this parameter 𝑟2
on the optimal lot size 𝑞∗ is not monotonic, unlike what happens with 
the other parameters analyzed. Finally, with respect to the tax charged 
on carbon emissions in transporting 𝑟1, we can say that its influence 
is not noticeable and that its effect is always positive with respect to 
the optimal policy (the optimal selling price, the optimal lot size and 
the maximum shortage increase when 𝑟1 increases), but it is always 
negative with respect to the maximum profit per unit time.

6.2. Managerial insights

From the computational results and the above comments, we can 
deduce the following managerial insights:
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Table 5
Effects of the parameters 𝑝, 𝑟1 and 𝑟2 on the optimal policy.
 𝛥 𝛥𝑠∗ (%) 𝛥𝑞∗ (%) 𝛥𝑏∗ (%) 𝛥𝑀∗ (%) 𝛥𝑇 ∗ (%) 𝛥𝐺∗ (%) 
 𝑝 −30% −24.3973 37.3331 37.3331 37.3331 −27.1844 47.5070
 −20% −16.2827 22.4526 22.4526 22.4526 −18.3357 28.1780
 −10% −8.14998 10.2175 10.2175 10.2175 −9.27029 12.6666
 −5% −4.07708 4.88784 4.88784 4.88784 −4.66007 6.02544
 +5% 4.08116 −4.49691 −4.49691 −4.49691 4.70865 −5.48629
 +10% 8.16631 −8.64635 −8.64635 −8.64635 9.46470 −10.4982
 +20% 16.3482 −16.0472 −16.0472 −16.0472 19.1146 −19.3114
 +30% 24.5449 −22.4455 −22.4455 −22.4455 28.9416 −26.7931

 𝑟1 −30% −4.63581 −3.07105 −3.07105 −3.07105 −13.0644 8.03214
 −20% −3.09297 −1.91860 −1.91860 −1.91860 −8.73857 5.24896
 −10% −1.54780 −0.899302 −0.899302 −0.899302 −4.38489 2.57372
 −5% −0.774242 −0.435405 −0.435405 −0.435405 −2.19654 1.27455
 +5% 0.774960 0.408297 0.408297 0.408297 2.20508 −1.25064
 +10% 1.55067 0.790785 0.790785 0.790785 4.41903 −2.47804
 +20% 3.10441 1.48314 1.48314 1.48314 8.87475 −4.86573
 +30% 4.66144 2.08596 2.08596 2.08596 13.3694 −7.16796

 𝑟2 −30% −0.567649 0.0457796 −5.52908 4.31096 −1.25352 1.61458
 −20% −0.376537 0.00616920 −3.65030 2.80365 −0.856485 1.06743
 −10% −0.187349 −0.00817471 −1.80778 1.36866 −0.437895 0.529363
 −5% −0.0934500 −0.00674452 −0.899640 0.676388 −0.221231 0.263616
 +5% 0.0930106 0.0117687 0.891310 −0.661146 0.225561 −0.261529
 +10% 0.185591 0.0282895 1.77446 −1.30766 0.455229 −0.521014
 +20% 0.369499 0.0745831 3.51690 −2.55905 0.926060 −1.03401
 +30% 0.551794 0.137020 5.22855 −3.75838 1.41097 −1.53929

1. The largest increase in average profit per unit of time is obtained 
when the exponent of the price-dependent demand 𝛾 increases. 
Note that, from the point of view of inventory managers, it is not 
possible to act directly on this parameter, since it is obtained 
by fitting demand to the best curve that represents the price-
dependent function. However, the price-dependent demand rate 
could be stimulated by increasing advertising or marketing cam-
paigns (for example, by increasing the number of advertisements 
about the product’s benefits in social networks, television, radio 
or press), or by encouraging customers to increase their pur-
chases (for example, giving away an additional free unit of the 
product with the purchase of multiple units of that article).

2. The average profit per unit time can also be increased by re-
ducing the unit purchase price 𝑝 of the product. Thus, the 
person responsible for purchasing the article should obtain a 
price reduction by negotiating with suppliers (for example, by 
agreeing to a minimum purchase volume over a period of time).

3. Another way to increase the profit per unit time would be to 
decrease the tax 𝑟1 on carbon emissions in shipping. To achieve 
this, tax authorities should be convinced of the negative impact 
that very high environmental taxes can have (for example, on 
employment).

4. The computational results show that an increase in the potential 
demand pattern index also leads to a small increase in the profit 
per unit time. Thus, this increase must be quite large (around 
30%) to achieve a significant increase in profit per unit of time. 
As indicated in the first point, it is not possible for inventory 
managers to act directly on this parameter. However, they can 
act indirectly by modifying customer demand through marketing 
campaigns, as noted in the first point above.

The model demonstrates high applicability in sectors such as e-
commerce, characterized by dynamic price variations; the food indus-
try, with high turnover cycles; sustainable pharmaceutical and cos-
metics, where demand is influenced by environmental impact and 
expiration dates; or consumer-oriented startups, which operate under 
strict regulatory frameworks and sustainability values. In all these 
cases, the model allows for the characterization of optimal policies 
that balance profitability and ecological responsibility, showing that 
sustainable inventory management can be viable and potentially more 
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profitable when pricing, replenishment, and cycle duration decisions 
are efficiently coordinated. Numerical simulations and sensitivity anal-
ysis reinforce the applicability of the model, allowing for the precise 
characterization of the existence of the conditions for optimal solu-
tions under different price sensitivity scenarios. Taken together, these 
contributions significantly advance the state of the art in sustainable 
inventory management, offering researchers and practitioners an effec-
tive tool for responsible, informed decision-making aligned with global 
sustainability challenges.

7. Conclusions and future research

In this paper, we have developed a sustainable inventory model with 
price-and-time dependent demand under full backlogging, considering 
taxes applied to carbon emissions. The demand rate is the product 
of an algebraic price-dependent function and a power time-dependent 
function, which may be useful to describe the real demand for some 
items, since it can fit the empirical data well.

We have formulated the mathematical model of profit maximization 
per inventory cycle and have developed theoretical results to obtain the 
optimal inventory policy (lot size, maximum shortage quantity and unit 
selling price). Several numerical examples have been solved to show 
the solution’s procedure and confirm that the policies obtained indicate 
significant increases in benefits compared to models in which carbon 
emission rates are not considered.

The results of the numerical sensitivity analysis reflect that, of 
the four parameters associated with the demand rate, those that have 
the greatest influence on the optimal policy are the sensitivity co-
efficient for the price-dependent demand and the exponent of the 
price-dependent demand; while the least influential parameter on the 
maximum profit is the index of demand pattern. Thus, it is advisable 
to stimulate the price-dependent demand rate by increasing advertising 
or marketing campaigns.

With respect to the purchasing cost, changes in this parameter have 
a positive effect on the optimal selling price, while it is negative on 
the lot size, the maximum shortage and the optimal profit per unit 
time. The tax charged on carbon emissions in transporting has a greater 
influence on the optimal selling price, the lot size and the maximum 
profit than the tax charged on carbon emissions in storage. From an 
environmental perspective, it is advisable to reduce carbon emissions 
in transportation by using, for example, electric or hybrid vehicles.

This proposal represents a significant advance in the field of sustain-
able logistics management, offering an analytical model that addresses 
the challenges faced by organizations immersed in the transition to-
ward more responsible and resilient business models. The work con-
tributes to global sustainability goals, providing operational tools that 
enable the design of more efficient, environmentally conscious, and 
economically viable logistics systems. Due to its integrative approach 
and practical applicability, it constitutes a valuable contribution to the 
development of academic research, public policy design, and informed 
business decision-making in contexts of high uncertainty across the 
supply chain.

The proposed model can be extended in several ways. One possible 
extension is to suppose different dependence functions of demand 
with respect to the selling price and/or time. Another possibility is to 
consider that replenishment is not instantaneous and, therefore, a fi-
nite replenishment rate is considered. Furthermore, another interesting 
study could be to admit the possibility of the deterioration of product 
items.
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Appendix

This appendix includes the proofs of the results given in the paper.

Lemma 1.  For a fixed value of 𝑠, the function 𝑃𝑠(𝑞, 𝑏) = 𝑃 (𝑠, 𝑞, 𝑏) given 
by (12) is strictly concave on the set 𝛤 = {(𝑞, 𝑏) ∶ 𝑞 > 0, 0 ≤ 𝑏 ≤ 𝑞}.

Proof.  Since 𝛤  can be expressed as 𝛤 = 𝛤1 ∪ 𝛤2 ∪
◦
𝛤 , with 𝛤1 =

{(𝑞, 𝑏) ∶ 𝑞 > 0, 𝑏 = 0}, 𝛤2 = {(𝑞, 𝑏) ∶ 𝑞 > 0, 𝑏 = 𝑞} and 
◦
𝛤  the set of interior 

points of 𝛤 , we now prove that the function 𝑃𝑠(𝑞, 𝑏) is strictly concave 
on each of these three convex sets.

First, the restriction of 𝑃𝑠(𝑞, 𝑏) on 𝛤1 and the restriction of 𝑃𝑠(𝑞, 𝑏) on 
𝛤2 are univariate functions given, respectively, by 𝜑0(𝑞) =

(

𝑠 − 𝜋1 −
𝜋0
𝑞

)

(

𝑎0 + 𝑎1𝑠
)−𝛾 − ℎ+𝑟2𝑒1

𝛿+1 𝑞 and 𝜑𝑞(𝑞) =
(

𝑠 − 𝜋1 −
𝜋0
𝑞

)

(

𝑎0 + 𝑎1𝑠
)−𝛾 − 𝛿𝜔

𝛿+1 𝑞. 
Thus, it is immediate to check that these two functions have the same 
second derivative given by 𝜑′′

0 (𝑞) = − 2𝜋0
𝑞3

(

𝑎0 + 𝑎1𝑠
)−𝛾 < 0. Therefore, 

the function 𝑃𝑠(𝑞, 𝑏) is strictly concave on both 𝛤1 and 𝛤2.
Next, we analyze the function 𝑃𝑠(𝑞, 𝑏) on the set 

◦
𝛤 . Taking into 

account the fact that the function 𝑃𝑠(𝑞, 𝑏) is twice-differentiable on 
◦
𝛤 ; 

we now prove that the Hessian matrix is negative definite on 
◦
𝛤 .

Since the first partial derivatives of 𝑃𝑠(𝑞, 𝑏) are given by
𝜕
𝜕𝑞

𝑃𝑠(𝑞, 𝑏) =
𝜋0

(

𝑎0 + 𝑎1𝑠
)𝛾 𝑞2

− 𝜋2

(

1 − 𝑏
𝑞

)𝛿 (

1 + 𝛿𝑏
𝑞

)

+ 𝜔
𝛿 + 1

𝜕
𝜕𝑏

𝑃𝑠(𝑞, 𝑏) = 𝜋2 (𝛿 + 1)
(

1 − 𝑏
𝑞

)𝛿
− 𝜔

we have that the second partial derivatives of the average profit are
𝜕2

𝜕𝑞2
𝑃𝑠(𝑞, 𝑏) =

−2𝜋0
(

𝑎0 + 𝑎1𝑠
)𝛾 𝑞3

− 𝜋2

[

𝛿𝑏
𝑞2

(

1 − 𝑏
𝑞

)𝛿−1 (

1 + 𝛿𝑏
𝑞

)

]

−
(

1 − 𝑏
𝑞

)𝛿 𝛿𝑏
𝑞2

= −

(

2𝜋0
(

𝑎0 + 𝑎1𝑠
)𝛾 𝑞3

+ 𝛿 (𝛿 + 1)𝜋2
𝑏2

𝑞3

(

1 − 𝑏
𝑞

)𝛿−1
)

𝜕2

𝜕𝑏𝜕𝑞
𝑃𝑠(𝑞, 𝑏) = −𝜋2

(

−𝛿
𝑞

(

1 − 𝑏
𝑞

)𝛿−1 (

1 + 𝛿𝑏
𝑞

)

+
(

1 − 𝑏
𝑞

)𝛿 𝛿
𝑞

)

= 𝛿 (𝛿 + 1)𝜋2
𝑏
𝑞2

(

1 − 𝑏
𝑞

)𝛿−1

𝜕
𝜕𝑏2

𝑃𝑠(𝑞, 𝑏) = −
𝛿 (𝛿 + 1)𝜋2

𝑞

(

1 − 𝑏
𝑞

)𝛿−1

Therefore, the Hessian matrix is

𝐻 =

⎛

⎜

⎜

⎜

⎝

−
(

2𝜋0
(

𝑎0+𝑎1𝑠
)𝛾 𝑞3

+ 𝛿 (𝛿 + 1)𝜋2
𝑏2

𝑞3

(

1 − 𝑏
𝑞

)𝛿−1
)

𝛿 (𝛿 + 1)𝜋2
𝑏
𝑞2

(

1 − 𝑏
𝑞

)𝛿−1

𝛿 (𝛿 + 1)𝜋2
𝑏
𝑞2

(

1 − 𝑏
𝑞

)𝛿−1
− 𝛿(𝛿+1)𝜋2

𝑞

(

1 − 𝑏
𝑞

)𝛿−1

⎞

⎟

⎟

⎟

⎠

Thus, we obtain 𝐻11 = 𝜕2𝑃𝑠(𝑞, 𝑏)∕𝜕𝑞2 < 0, 𝐻22 = 𝜕2𝑃𝑠(𝑞, 𝑏)∕𝜕𝑏2 < 0 and 
det (𝐻) = 2𝛿(𝛿+1)𝜋0𝜋2

(

𝑎0+𝑎1𝑠
)𝛾 𝑞4

(

1 − 𝑏
𝑞

)𝛿−1
> 0, for all (𝑞, 𝑏) ∈

◦
𝛤 . Hence the matrix 

𝐻 is negative definite on 
◦
𝛤  and, consequently, the function 𝑃𝑠(𝑞, 𝑏) is 

strictly concave on 
◦
𝛤 . This completes the proof. □
10 
Proof of Proposition  1.  From (17), the two first derivatives of the 
function 𝛽(𝑠) are 

𝛽′(𝑠) = 𝑎1 (1 − 𝛾) +
𝑎21𝛾

2

2
(

𝑎0 + 𝑎1𝑠
)

√

𝛿𝜉0𝜋0𝜔
(

𝑎0 + 𝑎1𝑠
)𝛾

𝛿 + 1
(21)

and

𝛽′′(𝑠) =
𝑎31𝛾

2 (𝛾 − 2)
4

√

𝛿𝜉0𝜋0𝜔
(

𝑎0 + 𝑎1𝑠
)𝛾−4

𝛿 + 1
Therefore:

(a) If 𝛾 = 1, then we have 𝛽(𝑠) = 𝑎0+𝑎1

(

𝜋1 +
√

𝛿𝜉0𝜋0𝜔
(

𝑎0+𝑎1𝑠
)

1+𝛿

)

 and, 

it is easy to check that lim𝑠→∞ 𝛽(𝑠) = ∞. Moreover, from (21), it 
follows that 𝛽′(𝑠) > 0 and 𝛽(𝑠) is a strictly increasing function. 
Also, as 𝛽′′(𝑠) < 0, then 𝛽(𝑠) is a strictly concave function.

(b) If 1 < 𝛾 < 2, then 𝛽′′(𝑠) < 0 and 𝛽(𝑠) is a strictly concave function. 
Furthermore, a trivial verification shows that lim𝑠→∞ 𝛽(𝑠) = −∞.

(c) If 𝛾 = 2, then 𝛽(𝑠) = 𝑎0 + 2𝑎1

(

𝜋1 + 𝑎0
√

𝛿𝜉0𝜋0𝜔
𝛿+1

)

+
(

2𝑎1
√

𝛿𝜉0𝜋0𝜔
𝛿+1 − 1

)

𝑎1𝑠, and it is an affine function. Thus, we 

must consider three cases depending on whether 2𝑎1
√

𝛿𝜉0𝜋0𝜔
𝛿+1 −1

is positive, negative or zero to obtain the limit of the function 
𝛽(𝑠) when 𝑠 tends to infinity.

(d) If 𝛾 > 2, then 𝛽′′(𝑠) > 0 and 𝛽(𝑠) is a strictly convex function. 
From (17), it is clear that lim𝑠→∞ 𝛽(𝑠) = ∞. Moreover, from (21), 
it is obvious that 𝛽′(𝑠) = 𝑎1 (1 − 𝛾)+

𝑎21𝛾
2

2

√

𝛿𝜉0𝜋0𝜔
(

𝑎0+𝑎1𝑠
)𝛾−2

𝛿+1 , hence, 
𝑠0 given by (18) is the unique root of the equation 𝛽′(𝑠) = 0, and 
𝛽(𝑠) attains its minimum at the point 𝑠0. □

Proof of Theorem  1. From Proposition  1, we have 𝛽(𝑠) > 𝛽(𝑝) for 𝑠 > 𝑝
and, since 𝛽(𝑝) > 0, it follows that 𝐺(𝑠) is a strictly increasing function. 
Therefore, sup𝑠≥𝑝 𝐺(𝑠) = lim𝑠→∞ 𝐺(𝑠) = 1∕𝑎1.

Taking into account that 𝐺(𝑝) < 0, lim𝑠→∞ 𝐺(𝑠) > 0 and 𝐺(𝑠) is a 
strictly increasing function, there exists a unique root of the function 
𝐺(𝑠) in the interval (𝑝,∞). Thus, after some algebraic manipulations, 
from (15) and 𝛾 = 1, we deduce that 𝑠1 is the largest of the roots of the 
equation (𝑠 − 𝜋1

)2 = 4𝛿𝜉0𝜋0𝜔
(1+𝛿)

(

𝑎0 + 𝑎1𝑠
)

, that is, 𝑠2−2 (𝜋1 + 2𝑎1𝜉1
)

𝑠+𝜋2
1−

4𝑎0𝜉1 = 0, with 𝜉1 = 𝛿𝜉0𝜋0𝜔∕ (1 + 𝛿). Consequently, 𝑠1 = 𝜋1 + 2𝑎1𝜉1 +

2
√

𝜉1
(

𝑎0 + 𝑎1
(

𝜋1 + 𝑎1𝜉1
))

. The rest of the proof is obvious, because 
𝐺(𝑠) > 𝐺(𝑠1) = 0, for 𝑠 > 𝑠1. □

Proof of Theorem  2. Since 𝛽(𝑝) > 0, lim𝑠→∞ 𝛽(𝑠) = −∞ and 𝛽(𝑠) is 
a strictly concave function, there exists a unique root 𝑠∗ of 𝛽(𝑠), such 
that 𝛽(𝑠) > 0 for 𝑠 ∈ [𝑝, 𝑠∗) and 𝛽(𝑠) < 0 for 𝑠 ∈ (𝑠∗,∞). Therefore, 
the function 𝐺(𝑠) is strictly increasing on the interval [𝑝, 𝑠∗) and strictly 
decreasing on (𝑠∗,∞). Thus, 𝐺(𝑠) reaches its maximum at the point 𝑠∗, 
with 𝐺(𝑠∗) > lim𝑠→∞ 𝐺(𝑠) = 0.

On the other hand, since 𝛽(𝑠∗) = 0, we have 𝜋1 = (𝛾−1)𝑠∗
𝛾 − 𝑎0

𝑎1𝛾
−

√

𝛿𝜉0𝜋0𝜔
(

𝑎0+𝑎1𝑠∗
)𝛾

1+𝛿  and substituting this value in the expression for 𝐺(𝑠)

given in (15), we obtain 𝐺 (𝑠∗) =
(

𝑎0+𝑎1𝑠∗
)

1−𝛾

𝑎1𝛾
−

√

𝛿𝜉0𝜋0𝜔
(

𝑎0+𝑎1𝑠∗
)−𝛾

1+𝛿 =
(

𝑎0 + 𝑎1𝑠∗
)−𝛾∕2

(

(

𝑎0+𝑎1𝑠∗
)1−𝛾∕2

𝑎1𝛾
−
√

𝛿𝜉0𝜋0𝜔
1+𝛿

)

. □

Proof of Theorem  3. From Proposition  1, we have:

1. If 
√

1+𝛿
𝛿𝜉0𝜋0𝜔

> 2𝑎1, then 𝛽(𝑠) has a unique root, since 𝛽(𝑝) > 0, 
lim𝑠→∞ 𝛽(𝑠) = −∞ and 𝛽(𝑠) is an affine function. It is trivial to 
check that the root is 𝑠2. The rest is immediate.

2. If 
√

1+𝛿
𝛿𝜉0𝜋0𝜔

= 2𝑎1, then 𝛽(𝑠) = 𝛽(𝑝) > 0 for 𝑠 > 𝑝 and, there-
fore, 𝐺(𝑠) is a strictly increasing function. Thus, sup𝑠≥𝑝 𝐺(𝑠) =
lim 𝐺(𝑠) = 0.
𝑠→∞
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3. If 
√

1+𝛿
𝛿𝜉0𝜋0𝜔

< 2𝑎1, then 𝛽(𝑠) is a strictly increasing function. 
Therefore, 𝛽(𝑠) > 𝛽(𝑝) > 0 for 𝑠 > 𝑝 and the rest of the proof 
runs as in the previous case. □

Proof of Theorem  4. Taking into account Proposition  1, we can 
consider the following two cases:

1. 𝑠0 ≤ 𝑝: since 𝛽(𝑠) is a strictly convex function that attains its 
minimum value at 𝑠0, we have 𝛽′(𝑠) > 0 for 𝑠 > 𝑝. Hence, 
𝛽(𝑠) > 𝛽(𝑝) > 0 for 𝑠 > 𝑝, therefore, 𝐺(𝑠) is a strictly increasing 
function, and we obtain the desired conclusion.

2. 𝑠0 > 𝑝 and 𝛽 (𝑠0
)

≥ 0: then 𝛽(𝑠) > 𝛽
(

𝑠0
)

≥ 0 for 𝑠 > 𝑝 and 𝑠 ≠ 𝑠0, 
and the rest of the proof runs as in the previous case.

3. 𝑠0 > 𝑝 and 𝛽 (𝑠0
)

< 0: then there exist two roots ̃𝑠 and 𝑠3 of the 
equation 𝛽(𝑠) = 0, with 𝑝 < 𝑠̃ < 𝑠0 < 𝑠3, such that 𝛽(𝑠) > 0 for 
𝑠 ∈

(

𝑝, 𝑠̃
)

∪
(

𝑠3,∞
) and 𝛽(𝑠) < 0 for 𝑠 ∈ (

𝑠̃, 𝑠3
)

. Thus, the function 
𝐺(𝑠) is strictly increasing for 𝑠 ∈ (

𝑝, 𝑠̃
)

∪
(

𝑠3,∞
) and it is strictly 

decreasing for 𝑠 ∈
(

𝑠̃, 𝑠3
)

. In consequence, as lim𝑠→∞ 𝐺(𝑠) = 0, 
it follows that if 𝐺(𝑠̃) ≥ 0, then 𝐺(𝑠) reaches its maximum at 𝑠̃. 
However, if 𝐺(𝑠̃) < 0, then 𝐺(𝑠) does not reach its maximum at 
any point 𝑠 ≥ 𝑝 and sup𝑠≥𝑝 𝐺(𝑠) = lim𝑠→∞ 𝐺(𝑠) = 0. □

Proof of Theorem  5. This follows by the same method as in the 
proofs of Theorems  1 to 4, taking into account that lim𝜔→∞ 𝜔𝜉0 =
(

ℎ + 𝑟2𝑒1
)

∕𝛿 and, therefore: (i) lim𝜔→∞ 𝛽(𝑠) = 𝛽𝑤(𝑠), (ii) lim𝜔→∞ 𝑠2 =

1
𝑎1

(

2
(

𝑎0+𝑎1𝜋1
)

1−2𝑎1
√

𝜋0
(

ℎ+𝑟2𝑒1
)

(1+𝛿)−1
− 𝑎0

)

 and (iii) lim𝜔→∞ 𝑠0 = 𝑠𝑤. □
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