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Data imputation and data generation have important applications across many domains where incomplete or
missing data can hinder accurate analysis and decision-making. Diffusion models have emerged as powerful
generative models capable of capturing complex data distributions across various data modalities such as
image, audio, and time series. Recently, they have been also adapted to generate tabular data. In this article,
we propose a diffusion model for tabular data that introduces three key enhancements: (1) a conditioning
attention mechanism, (2) an encoder–decoder transformer as the denoising network, and (3) dynamic masking.
The conditioning attention mechanism is designed to improve the model’s ability to capture the relationship
between the condition and synthetic data. The transformer layers help model interactions within the condition
(encoder) or synthetic data (decoder), while dynamic masking enables our model to efficiently handle both
missing data imputation and synthetic data generation tasks within a unified framework. We conduct a
comprehensive evaluation by comparing the performance of diffusion models with transformer conditioning
against state-of-the-art techniques such as Variational Autoencoders, Generative Adversarial Networks, and
Diffusion Models, on benchmark datasets. Our evaluation focuses on the assessment of the generated samples
with respect to three important criteria, namely: (1) machine learning efficiency, (2) statistical similarity,
and (3) privacy risk mitigation. For the task of data imputation, we consider the efficiency of the generated
samples across different levels of missing features. The results demonstrate average superior machine learning
efficiency and statistical accuracy compared to the baselines, while maintaining privacy risks at a comparable
level, particularly showing increased performance in datasets with a large number of features. By conditioning
the data generation on a desired target variable, the model can mitigate systemic biases, generate augmented
datasets to address data imbalance issues, and improve data quality for subsequent analysis. This has significant
implications for domains such as healthcare and finance, where accurate, unbiased, and privacy-preserving
data are critical for informed decision-making and fair model outcomes.
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1 Introduction
The exponential increase in data generation across sectors such as healthcare, finance, telecom-
munications, and energy has significantly enhanced decision-making capabilities powered by AI
and Machine Learning (ML) technologies. However, the presence of missing or incomplete data
poses significant challenges, undermining the reliability of analyses derived from ML algorithms.
Moreover, the rise in strict AI regulations and data protection laws has intensified the need for
robust data privacy measures, challenging traditional data handling practices.

Centralized, cloud-based ML solutions, while efficient in terms of model performance, have been
repeatedly criticized for their inherent data privacy issues. Specifically, the centralized nature of
these solutions necessitates the transfer of large volumes of multidimensional and privacy-sensitive
user data, which raises significant privacy concerns. Moreover, centralized models contend with
the issue of single point failure. Even advanced solutions like Federated Learning, which aim to
decentralize data processing to enhance privacy, depend on a central server for coordinating training
processes and aggregating updates. This centralization leaves systems vulnerable to potential
privacy risks from information leakage attacks [17, 39], which can infer private data from shared
model updates.

In addition, these ML models are particularly prone to utility loss due to missing or corrupted
data, especially when dealing with sparse datasets. The handling of missing data can favor certain
statistical interpretations and subsequent implications for policy and practice [9]. For instance,
the mean substitution method, often used to handle missing data, may lead to inconsistent bias,
especially in the presence of a great inequality in the number of missing values for different features
[26]. Furthermore, when missing data are not missing at random (Missing Not at Random
(MNAR)), even multiple imputations do not lead to valid results [16]. Such imputation methods
that fill in blanks with estimated values may inadvertently lead to the creation and transmission of
inaccurate or misleading information.

Current efforts to address these issues, such as the application of differential privacy or the use of
specialized hardware (e.g., Trusted Execution Environments [37]), often result in a tradeoff between
privacy and data utility or necessitate additional infrastructure.

Given these challenges, there is a pressing need for solutions that effectivelymanage data integrity
and privacy. Recent advancements in ML, specifically Generative Adversarial Networks (GANs)
[14] and Diffusion Models [18, 48], have shown promise in generating high-fidelity synthetic data
that preserve the statistical properties of original datasets while mitigating privacy concerns, since
they follow the original distribution without directly exposing or replicating sensitive information.
These generative methods have found their way into applications like image and audio processing
[35, 47, 64] and, more recently, have expanded to address tabular data as well [30, 31, 33, 62, 65].

Specifically, for tabular data, synthetic data stands out as a privacy-preserving alternative to real
data that may contain personally identifiable information. It enables the generation of datasets that
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mimic the statistical properties of their original counterparts, while mitigating the risk of individual
privacy breaches. In addition, this approach to generating new samples can augment existing
datasets by, for example, correcting class imbalances, reducing biases, or expanding their size when
dealing with sparse or limited data. Furthermore, integrating methods for differential privacy [11,
23] with generative models for tabular data makes it possible to share synthetic datasets across
units in large organizations, addressing legal or privacy concerns that often impede technological
innovation adoption.

In this study, we consider synthetic data generation as a general case of data imputation. In
instances where every column in a sample has missing values, the task of data imputation naturally
transitions to synthesizing new data. We introduceMTabGen, a new conditioning in diffusion model
for tabular data using an encoder–decoder transformer and a dynamic masking mechanism that
makes it possible to tackle both tasks with a single model. During the training step of the model,
the dynamic masking randomly masks features that we later generate or impute. The unmasked
features are used as context or condition for the reconstruction of masked features during the
reverse denoising phase of the diffusion process. We refer to the features to be denoised during the
reverse denoising phase as masked features hereinafter.

In our analysis, we perform a rigorous evaluation of the proposed approach using several
benchmark datasets, each with a wide range of features. We demonstrate that our method shows
overall improved performance compared to existing baselines, particularly in handling high-
dimensional datasets, thereby highlighting its robustness and adaptability in complex tabular data
scenarios. The key contributions of this work are the following:

—We propose a new conditioning mechanism for tabular diffusion models. We model the
interaction between condition and masked features (e.g., features to-be-denoised) by using an
attention mechanism. Within this mechanism, the embedding of the masked features plays
the role of query (Q), and the embedding of the condition plays the roles of key (K) and value
(V) (see [57] for details). Compared to the standard approach, where condition and masked
features are added [31, 68] or concatenated [33], our method allows to learn more complex
relationships showing globally improved performances.

—We incorporate a full encoder–decoder transformer within the diffusion process as the de-
noising model. The encoder learns the condition embedding, while the decoder models the
representation of the masked features. Using transformer layers enhances the learning of
inter-feature interactions: within the condition for the encoder and the masked features for
the decoder. Additionally, the encoder–decoder architecture allows the implementation of
the conditioning attention mechanism explained in the previous item. To the best of our
knowledge, [68] is the only prior work that has considered diffusion models for tabular data,
using a transformer denoising component. However, in this article, the transformer layer is
limited to learning the masked feature representation, without modeling the condition nor
using conditioning attention mechanism.

—We extend the masking mechanism proposed by Zheng and Charoenphakdee [68] to train a
single model capable of multitasking, handling both missing data imputation and synthetic
data generation. This is facilitated by the transformer encoder–decoder architecture, which
allows for arbitrary modification of the split between condition and masked features during
the training phase.

—We conduct extensive experiments on several public datasets and demonstrate average per-
formance gain over state-of-the-art baselines, for both tasks, missing data imputation and
synthetic data generation. We evaluate the synthetic data with respect to three important
criteria: (1) ML efficiency, (2) statistical similarity and (3) privacy risk.
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2 Related Work
Tabular Data Modeling and Benchmarks. The evaluation of models for tabular data requires diverse
benchmarks that reflect real-world data conditions. Several recent studies have established such
benchmarks for both data imputation and supervised learning. Jäger et al. [22] present a compre-
hensive evaluation of data imputation methods, comparing both classical and deep learning-based
imputation approaches. Their results show that imputation can significantly improve downstream
ML tasks, especially when training data is fully observed. For supervised tasks, Grinsztajn et al. [15]
argue that tree-based models such as XGBoost and Random Forests often outperform deep learning
models due to the specific properties of tabular data, including irregular patterns and uninformative
features. The authors provide a standard benchmark for evaluating both traditional and novel
approaches on a variety of real-world datasets. Borisov et al. [7] also highlight the challenges faced
by deep learning models when dealing with heterogeneous tabular data and emphasize the need
for architectures specifically designed for tabular datasets. In this work, we extend the benchmark
proposed by [7] to include a wider variety of datasets, providing a more exhaustive evaluation of
generative tasks.

Diffusion Models. Originally introduced by Sohl-Dickstein et al. [48] and Ho et al. [18], diffusion
models utilize a two-step generative approach. Initially, they degrade a data distribution using a for-
ward diffusion process by continuously introducing noise from a known distribution. Subsequently,
they employ a reverse process to reconstruct the original data structure. At their core, these models
leverage parameterized Markov chains, starting typically from a foundational distribution such as a
standard Gaussian, and use deep neural networks to reverse the diffusion. Demonstrated by recent
advancements [10, 40], diffusion models have showcased their capability, potentially surpassing
GANs in image generation capabilities. Recent works, such as StaSy [30], CoDi [33], Tabsyn [65],
TabDDPM [31], or TabCSDI [68], adapt diffusion models to handle tabular data in both synthetic
data generation and data imputation tasks.

Missing Data Imputation. Handling missing values in datasets is a non-trivial problem. Traditional
approaches may involve excluding rows or columns with missing entries or imputing missing
values using the average values of the corresponding feature. However, recent efforts have been
focusing on ML techniques [4, 24, 56] and deep generative models [5, 20, 32, 60, 63], and new models
using diffusion processes have been developed for data imputation tasks. Specifically, TabCSDI,
based on the CSDI model originally designed for time-series data, adapts this technology for tabular
data imputation. TabCSDI employs three common preprocessing techniques: (1) one-hot encoding,
(2) analog bits encoding, and (3) feature tokenization. These methods allow it to treat continuous
and categorical variables uniformly in a Gaussian diffusion process, regardless of their original
types. In contrast, MTabGen implements a dual diffusion mechanism adapted for both continuous
and categorical data, maintaining the unique statistical properties of each feature type throughout
the diffusion process. As noted previously, TabCSDI uses a transformer layer to learn only the
interactions within the masked features and then adds the transformer output to the condition
embedding. In our case, MTabGen uses a more adaptable and general approach: the condition
embedding is modeled by using a transformer encoder and then fed into a conditioning attention
mechanism.
Generative Models. The application of this family of models to tabular data has been gaining

increased attention within the ML community. In particular, tabular VAEs [62] and GANs [12, 29,
41, 53, 61, 66, 67] have shown promising results. Recently, StaSy [30], CoDi [33], Tabsyn [65], and
TabDDPM [31] have been proposed as powerful alternatives to tabular data generation, leveraging
the strengths of Diffusion Models.
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Specifically, STaSy, applies a score-based generative approach [50], integrating self-paced learning
and fine-tuning strategies to enhance data diversity and quality by stabilizing the denoising score
matching training process.

CoDi addresses training challenges with mixed-data types using a dual diffusion model approach.
One model handles continuous features and the other manages discrete (categorical) features. Both
models use a UNet-based architecture with linear layers instead of traditional convolutional layers
and are trained to condition on each other’s outputs. This fixed conditioning setup is designed
specifically to handle the interactions between continuous and categorical variables effectively.
Tabsyn applies the concepts of latent diffusion models [47, 55] to tabular data. First, a VAE

encodes mixed-type data into a continuous latent space and then a diffusion model learns this
latent distribution. The VAE uses a transformer encoder–decoder to capture feature relationships,
while the diffusion model uses an MLP in the reverse denoising process. There are no transformers
used in the denoising step, and it does not include a mask conditional method.

Finally, TabDDPM manages datasets with mixed-data types by using Gaussian diffusion for
continuous features and multinomial diffusion for categorical ones. In the preprocessing step,
continuous features are scaled using a min-max scaler, and categorical features are one-hot encoded.
Then each type of data is sent to its specific diffusion process. After the denoising process, the
preprocessing is reversed by scaling back continuous variables, and categorical ones are estimated
by first applying a softmax function and then selecting the most likely category. For classification
datasets, TabDDPM adopts a class-conditional model consisting in the addition of the condition
embedding to the output of the model, while for regression datasets, it integrates target values as
an additional feature. It utilizes an MLP architecture as the denoising network optimized with a
hybrid objective function that includes MSE and Kullback–Leibler (KL) divergence to predict
continuous and categorical data.

Our method is based on TabDDPM, following the same logic of having two separate diffusion
models for continuous and categorical data. To this end, we augment the model with three key
improvements. First, we employ a transformer-based encoder–decoder as the denoising model,
which enhances the capability to learn inter-feature interactions for both, condition and masked
features. Second, we integrate the conditioning directly into the transformer’s attention mechanism
rather than simply adding embeddings: this approach reduces learning bias, improving how the
interaction between the condition and masked features is modeled. Third, we enable dynamic
masking during training, which allows our model to handle varying numbers of visible variables,
thus supporting both synthetic data generation and missing data imputation within a single
framework. In the following sections, we demonstrate that these contributions lead to improved
results across various datasets, generally outperforming TabDDPM and other state-of-the-art
algorithms.

3 Background
Diffusion models, as introduced by Sohl-Dickstein et al. [48] and Ho et al. [18], involve a two-step
process: first degrading a data distribution using a forward diffusion process and then restoring its
structure through a reverse process. Drawing insights from non-equilibrium statistical physics, these
models employ a forward Markov process which converts a complex unknown data distribution
into a simple known distribution (e.g., Gaussian) and vice-versa a generative reverse Markov process
that gradually transforms a simple known distribution into a complex data distribution.

More formally, the forward Markov process @ (G1:) |G0) =
∏)
C=1 @ (GC |GC−1) gradually adds noise to

an initial sample G0 from the data distribution @ (G0) sampling noise from the predefined distribu-
tions @ (GC |GC−1) with variances {V1, . . . , V) }. Here C ∈ [1,) ] is the timestep, ) is the total number
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of timesteps used in the forward/reverse diffusion processes and 1:) means the range of timesteps
from C = 1 to C =) .

The reverse diffusion process ? (G0:) ) =
∏)
C=1 ? (GC−1 |GC ) gradually denoises a latent variable

G)∼@ (G) ) and allows generating new synthetic data. Distributions ? (GC−1 |GC ) are approximated
by a neural network with parameters \ .

In this work, we use the hat notation (e.g., ?̂ (GC−1 |GC )) to indicate that a variable is estimated by
a neural network model trained with parameters \ . Although these estimations depend on \ , we
omit \ for notational simplicity. Thus, ?̂ (GC−1 |GC ) should be interpreted as ?̂\ (GC−1 |GC ), where the
model parameters \ influence the predicted value.

The parameters are learned optimizing a Variational Lower Bound (VLB):

!vlb :=
)∑
C=0

!C (1)

!0 := − log ?̂ (G0 |G1) (2)
!C−1 := � ! (@ (GC−1 |GC , G0) | | ?̂ (GC−1 |GC )) (3)
!) := � ! (@ (G) |G0) | | ? (G) )). (4)

The term @ (GC−1 |GC , G0) is the forward process posterior distribution conditioned on GC and on the
initial sample G0. !C−1 is the KL divergence between the posterior of the forward process and the
estimated reverse diffusion process ?̂ (GC−1 |GC ).
Gaussian diffusion models operate in continuous spaces (GC ∈ R=) and in this case the aim of

the forward Markov process is to convert the complex unknown data distribution into a known
Gaussian distribution. This is achieved by defining a forward noising process @ that given a data
distribution G0 ∼ @ (G0) produces latents G1 through G) by adding Gaussian noise at time C with
variance VC ∈ (0, 1):

@ (GC |GC−1) :=N
(
GC ;

√
1 − VCGC−1, VC �

)
@ (G) ) :=N (G) ; 0, � ) .

(5)

If we know the exact reverse distribution @ (GC−1 |GC ), by sampling from G) ∼ N (0, � ), we can
execute the process backward to obtain a sample from @ (G0). However, given that @ (GC−1 |GC ) is
influenced by the complete data distribution, we employ a neural network for its estimation:

?̂ (GC−1 |GC ) :=N
(
GC−1; ˆ̀ (GC , C) , Σ̂ (GC , C)

)
. (6)

Ho et al. [18] proposes a simplification of Equation (6) by employing a diagonal variance Σ̂ (GC , C) =
fC � , where fC are constants dependent on time. This narrows down the prediction task to ˆ̀ (GC , C).
While a direct prediction of this term via a neural network seems the most intuitive solution,
another approach could involve predicting G0 and then leveraging earlier equations to determine
ˆ̀ (GC , C). Alternatively, it could be inferred by predicting the noise n , as done by Ho et al. [18]. In
this work, the authors propose the following parameterization:

ˆ̀ (GC , C) =
1

√
UC

(
GC −

VC√
1 − ŪC

n̂ (GC , C)
)
, (7)

where n̂ (GC , C) is the prediction of the noise component n used in the forward diffusion process
between the timesteps C − 1 and C , and UC := 1 − VC , ŪC :=

∏
8≤C U8 .
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The objective Equation (1) can be finally simplified to the sum of MSEs between n̂ (GC , C) and n
over all timesteps C :

!simple = �C,G0,n
[
| |n − n̂ (GC , C) | |2

]
. (8)

For a detailed derivation of these formulas and a deeper understanding of the methodologies,
readers are referred to the original paper by Ho et al. [18] and Nichol and Dhariwal [40].
Multinomial Diffusion Models. Hoogeboom et al. [19] designed the procedures for generating

categorical data, where GC ∈ {0, 1}�; is a one-hot encoded categorical variable with�; classes. Here,
the aim of the forward Markov process is to convert the complex unknown data distribution into a
known uniform distribution. The multinomial forward diffusion process @ (GC |GC−1) is a categorical
distribution that corrupts the data by uniform noise over �; classes:

@ (GC |GC−1) :=�0C (GC ; (1 − VC ) GC−1 + VC/�;)
@ (G) ) :=�0C (G) ; 1/�;)

@ (GC |G0) :=�0C (GC ; ŪCG0 + (1 − ŪC ) /�;) .
(9)

Intuitively, at each timestep, the model updates the data by introducing a small amount of
uniform noise VC across the�; classes combined with the previous value GC−1, weighted by (1− VC ).
This process incrementally introduces noise while retaining a significant portion of the prior state,
promoting the gradual transition to a uniform distribution. This noise introduction mechanism
allows for the derivation of the forward process posterior distribution @ (GC−1 |GC , G0) from the
provided equations as follows:

@ (GC−1 |GC , G0) =�0C
(
GC−1;c/

�;∑
:=1

c:

)
, (10)

where c = [UCGC + (1 − UC ) /�;] � [ŪC−1G0 + (1 − ŪC−1) /�;].
The reverse distribution ?̂ (GC−1 |GC ) is parameterized as @ (GC−1 |GC , Ĝ0 (GC , C)), where Ĝ0 is pre-

dicted by a neural network. Specifically, in this approach, instead of estimating directly the noise
component n , we predict G0, which is then used to compute the reverse distribution. Then, the
model is trained to maximize the VLB (Equation (1)).

4 MTabGen
MTabGen shares foundational principles with the TabDDPM approach [31], but introduces en-
hancements in both the denoising model and the conditioning mechanism using a transformer
encoder–decoder architecture. These improvements enhance the quality of synthetic data and
strengthen the conditioning process needed for the reverse diffusion. As a result, the model is
capable of generating conditioned synthetic data and performing missing data imputation, generally
improving on the performance of other state-of-the-art models for these tasks.

4.1 Problem Definition
In this work, we address the challenge of modeling tabular datasets for supervised tasks. Our
approach is designed to handle both numerical and categorical features, while also effectively
dealing with missing values. We focus on tabular datasets for supervised tasks � =

{(
G28 , G

=
8 , ~8

)}#
8=1,

where G=8 ∈ R num represents the set of numerical features, G28 ∈ Z cat represents the set of categorical
features, with each categorical feature potentially having a different number of categories, and
~8 is the target label for row 8 . The dataset contains # rows, where  num and  cat are the number
of numerical and categorical features, respectively, with the total number of features being  =

 num +  cat.
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Fig. 1. Denoising function 3=\ . The function takes noisy data representations G=C , G
2
C , conditioning values

Gcond = G=0 , G
2
0 and conditioning target ~0, a conditional mask Mask and current timestep C as inputs. The

Columnar Embedding layer projects numerical and categorical features into a shared latent space, while the
Encoder–Decoder Transformer (detailed in Figure 2) refines this representation by modeling intra- and
inter-feature relationships. Outputs are generated through a Columnar Decoder, predicting the estimated
noise for numerical features (n̂=C ) and logits for categorical features (Ĝ20 ).

In our approach, we model numerical features with Gaussian diffusion and categorical features
with multinomial diffusion. Each feature is subjected to a distinct forward diffusion procedure,
which means that the noise components for each feature are sampled individually.

MTabGen generalizes the approach of TabDDPM where themodel originally learned ? (GC−1 |GC , ~),
i.e., the probability distribution of GC−1 given GC and the target ~. We extend this by allowing
conditioning not only on the target ~ but also on a subset of input features, aligning with the
strategies proposed by Zheng and Charoenphakdee [68] and Tashiro et al. [52]. Specifically, we
partition variable G into two subsets: Gmask and Gcond. Here, Gmask contains the features masked and
subjected to forward diffusion, while Gcond represents the untouched variable subset that conditions
the reverse diffusion.This setupmodels ?

(
Gmask
C−1

��Gmask
C , Gcond, ~

)
, with Gcond and~ remaining constant

across timesteps C . This approach not only enhances model performance in data generation, but it
also enables the possibility of performing data imputation with the same model.

The reverse diffusion process ?
(
Gmask
C−1

��Gmask
C , Gcond, ~

)
is parameterized by a single neural network

shown in Figures 1–3. This common neural network predicts simultaneously both the amount of
noise added for numerical features between steps C − 1 and C and the distribution of categorical
features at time C = 0. The output dimensionality is  num +∑ cat

8=1 �;8 , where�;8 denotes the number
of classes for the 8th categorical feature.
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Fig. 2. Conditional transformer encoder–decoder model. The encoder takes three inputs: noisy data em-
bedding, condition embedding, and a conditional mask (Mask). The embedding of a conditioning feature is
represented by a fully filled square, while the embedding of a noisy feature is depicted as a dashed-colored
square. The effective mask (EffMask) combines missing and conditional masks, allowing the encoder to
process conditioning features and target that are unaffected by forward diffusion and without missing
values, learning a conditioning context vector for the decoder. The decoder then refines the representation of
masked features using all available information, including the encoder context, both masked and conditioning
features and targets. The final representation of the masked features is depicted as squares filled with colored
rhombuses.

Fig. 3. Conditioning attention mechanism: The condition embedding produced by the transformer encoder is
used in the decoder attention mechanism. More in detail, the condition embedding plays the roles of K and V
whereas the feature embedding plays the role of Q.
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4.2 Model Overview
MTabGen utilizes an encoder–decoder transformer architecture as the denoising function to refine
the representation of noisy data and produce clean samples through reverse diffusion. The work-
flow is depicted in Figure 1, with the following key components: the columnar embedding, the
encoder–decoder transformer, and the output decoders for each feature type.

4.2.1 Denoising Function Architecture. The denoising function 3=\ is responsible for recon-
structing the original data representation from noisy samples. Figures 1–3 illustrate its detailed
workflow and components. The function follows an encoder–decoder model structure and takes as
inputs the current noisy representations of numerical and categorical data (G=C and G2C ) at timestep
C , a conditional mask (Mask) identifying features involved in the forward diffusion process, the
conditioning values (Gcond), the target (~), and the current timestep (C ).

The primary objective of the denoising function is to produce two outputs at each timestep: the
estimated noise (n̂=C ) for numerical features and the logits (Ĝ20 ) for categorical features, representing
their predicted original distribution. These estimated outputs are then used by Equations (7) and
(10), respectively, to perform the reverse denoising at each timestep C as described in the following
sections.

4.2.2 Columnar Embedding. To facilitate the learning of the denoising function within the
transformer model, a columnar embedding projects both numerical and categorical features of Gmask

and Gcond into a shared latent space. In the case of categorical features, an embedding layer maps
each categorical value into a dense vector representation, whereas numerical features are embedded
using a linear transformation followed by a ReLU activation function. The embedding of the target
variable ~ depends on the supervised task. For regression, ~ is treated as a continuous variable,
while for classification, it is processed through an embedding layer similar to other categorical
features.

4.2.3 Conditional Encoder–Decoder Transformer. The workflow, illustrated in Figure 2, consists
of three inputs, two intermediate stages—masking and transformer—and a final output, arranged
from bottom to top. The three inputs are: (1) the columnar embedding of the noisy data, referred
to as the noisy embedding, (2) the columnar embedding of the conditioning data, termed the
condition embedding, and (3) the conditional mask, denoted as Mask. In the conditional mask,
features involved in the forward diffusion process are indicated by Mask = 1, while features not
involved are marked as Mask = 0. If the original dataset contains missing values, an additional
mask, termed MissingMask, is introduced, where MissingMask = 1 for missing values, as shown
in Figure 2.

During the masking phase, an effective mask (EffMask) is defined as the logical OR between the
conditional mask and the missing value mask, i.e., EffMask = Mask| |MissingMask. This EffMask
is then utilized to generate the input expected by the transformer encoder and decoder.

In the transformer phase, the encoder exclusively processes the conditioning features character-
ized by EffMask = 0, which correspond to features unaffected by the forward diffusion process and
those that do not contain missing values. Simultaneously, the decoder processes two distinct types
of inputs: (1) a combination of noisy data, which includes features involved in the forward diffusion
process or containing missing values (EffMask = 1), and conditioning features (EffMask = 0), and
(2) the output from the encoder . This setup enables the encoder to provide contextual information
from the conditioning features, allowing the decoder to generate refined representations of the
features that require denoising. The output of the decoder corresponds to the final output stage, as
shown in Figure 2.
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Algorithm 1: Sampling or Reverse Diffusion Process

Decoder and Attention Mechanism. The decoder attends to all conditioning features, using the
context provided by the encoder. The attention mechanism, depicted in Figure 3, incorporates the
output of the encoder as the key (K) and value (V) vectors, while the features, including the noisy
data, serves as the query (Q) vector, as described in Vaswani et al. [57]. This enables the decoder to
refine masked feature representations by selectively focusing on interactions between conditioning
variables and noisy data.

This attention-based conditioning mechanism is more general and exhibits less learning bias
compared to recent approaches in the literature on diffusion models for tabular data, such as
TabDDPM and TabCSDI, where the condition embedding is only added to the masked feature
embedding. This advantage holds true even in scenarios where the encoder processes only one
variable (the target variable of a supervised task). Here, the transformer encoder functions similarly
to an MLP, but its output continues to be used in the decoder’s attention mechanism, enhancing
overall performance (see discussion on ablation study in Section 6).

4.2.4 Output Denoising Parameters. Following the description of the workflow of Figure 1,
the final latent representation of the features to denoise is obtained by summing the conditional
encoder–decoder transformer output with the timestep embedding, which is derived by projecting
the sinusoidal temporal embedding [10, 40] into the transformer embedding dimension, using a
linear layer followed by the Mish activation function [36]. Last, this representation is decoded
to produce the output. Each feature has its own decoder consisting of two successive blocks
integrating a linear transformation, normalization, and ReLU activation. Depending on the feature
type (numerical or categorical), an additional linear layer is appended with either a singular
output for numerical features or multiple outputs, corresponding to the number of classes for
categorical ones.

4.3 Sampling or Reverse Diffusion Process
The primary goal of the sampling or reverse diffusion process is to convert a set of samples from
either Gaussian (for numerical variables) or uniform distributions (for categorical variables) into
clean samples that represent a complex real-world distribution. The sampling proceeds iteratively,
moving from timestep C =) , where the distribution is simple and noisy, to timestep C = 0, where
the representation becomes clean and realistic.

The iterative reverse diffusion process for the generation of one sample is described in Algo-
rithm 1. This algorithm requires four inputs: the denoising function, the conditional mask, the
conditioning values, and the number of timesteps. The denoising function, implemented as a neural
network, removes noise from the data and is shared across all variables to enhance its capacity
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Algorithm 2: Training Process

to learn complex relationships. The conditional mask distinguishes the conditioning variables,
Gcond and ~, from those involved in the forward diffusion process that require denoising. Variables
requiring denoising are marked with Mask = 1, while those that do not are marked with Mask = 0.
The conditioning values are given by Gcond and ~ at time C = 0. The number of timesteps dictates
how many reverse diffusion steps must be performed.

First, a consistent preprocessing procedure is applied to the conditioning values, using the
Gaussian quantile transformation from the scikit-learn library [43] for numerical features and
ordinal encoding for categorical ones. Then, at time C = ) , the process initiates by sampling the
initial noise for each dataset feature separately: Gaussian noise for numerical features and uniform
noise for categorical features.The iterative denoising process then proceeds from C =) to C = 0. Each
iteration involves three key actions: first, the denoising function 3=\ estimates n̂=C for continuous
features and Ĝ20 for categorical features. Next, a reverse Gaussian step and a reverse multinomial step
are performed using Equations (7) and (10) to estimate G=C−1 and G

2
C−1, respectively. These actions

are repeated iteratively until the final outputs G=0 and G20 are reached. Finally, a postprocessing step
is applied to the final outputs G=0 and G20 to reverse the initial preprocessing. It is important to note
that the preprocessing of conditioning values and postprocessing of outputs enhances the learning
rate without impacting the quality of the final results. We tested various normalization methods
for numerical features, such as Standard Scaler and Min-Max Scaler from scikit-learn, and found
the results to be statistically equivalent.

4.4 Training Process
The training process for the denoising function is outlined in Algorithm 2. The primary aim is
to train the neural network 3=\ used in the state 7 of Algorithm 1. This network is designed
to leverage noisy representations of numerical and categorical features G=C , G2C , along with the
conditional mask Mask, conditioning values, and current timestep C , to estimate both n̂=C and Ĝ20 .
For numerical features, n̂=C represents the estimated noise introduced during the forward diffusion
process between timesteps C − 1 and C . For categorical features, Ĝ20 serves as an estimate of the
original categorical feature a C = 0.
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The first steps involve initializing the model weights and preprocessing the original data as
discussed in the previous section, followed by an iterative learning process. In each iteration, a
batch of original features G=0 , G

2
0 is sampled from the original dataset. For each element in the

batch, a timestep C is then sampled uniformly from the interval [0,) ]. Using the forward Gaussian
diffusion process, targets for numerical features are computed. Specifically, for each numerical
feature, the reparametrization trick is applied to Equation (5) to compute G=C , that is the noisy
representation of the numerical feature at time C , and n=C , the corresponding noise. Similarly, the
forward multinomial diffusion process of Equation (9) is used to obtain G2C , the noisy representation
of the categorical feature a time C . Next, a new mask is dynamically generated to select a subset of
features that will serve as the conditioning input. With all the 3=\ inputs (G=C , G2C , Mask, G=0 , G

2
0 , C )

and targets (n=C and G20 ) in place, the loss function is then calculated.
The model is trained by minimizing the following total loss function:

!")01�4=C =
!
simple
C (Mask)
 =D<

+
∑
8≤ 20C

!8C (Mask)/�;8
 20C

. (11)

The total loss function !")01�4=C includes two main components:

—Loss for numerical features: !simple
C (defined in Equation (8)) computes the MSE between the

true noise n=C and the predicted noise n̂=C introduced in the forward Gaussian diffusion process
between the steps C − 1 and C .

—Loss for categorical features: !8C (defined in Equation (1)) calculates the KL divergence between
the posterior of the forward process @

(
G2C−1

��G2C , G20 ) and parametrized reverse diffusion process
?̂

(
G2C−1

��G2C ) . Following the approach in [19], the ?̂
(
G2C−1

��G2C ) is approximated by @
(
G2C−1

��G2C , Ĝ20 )
using Equation (10).

!
simple
C (Mask) and !8C (Mask) means that the loss functions are computed taking into account only

the prediction error on variables affected by the forward diffusion process (i.e., Mask = 1). Here,�;8
is the number of classes of the 8th categorical variable.

4.5 Dynamic Conditioning
A key feature of the proposed solution is that the split between Gmask and Gcond does not have
to be fixed for every row 8 in the dataset. The transformer encoder can manage mask with an
arbitrary number of zeros/ones, so we can dynamically alter the split between Gmask and Gcond by
just producing a new mask. In the extreme scenario, we can generate a new mask Mask8 for each
row 8 . During training, the number of ones in Mask8 (i.e., the number of features to be included in
the forward diffusion process) is uniformly sampled from the interval [1,  =D<+ 20C ]. A model that
has been trained in this manner can then be used for both tasks, that is, generation of synthetic data
(Mask8 = 1 for all the  =D< +  20C features and for any dataset index 8) and imputation of missing
values (for each 8 , Mask8 = 1 for the feature to impute). As discussed, when the original dataset
contains missing values, a new MissingMask is introduced and combined with the conditional Mask
to remove any missing value from the condition. The MissingMask is fixed and constant during
the training phase. This setup allows for more flexible conditioning scenarios.

Specifically:

—When Gcond = ∅, ?
(
Gmask
C−1

��Gmask
C , Gcond, ~

)
= ? (GC−1 |GC , ~) our model aligns with TabDDPM,

generating synthetic data influenced by the target distribution.
—When Ḡ" ≠ ∅, themodel can generate synthetic data based on the target distribution and either
a fixed or dynamic subset of features. Conditioning on a fixed subset introduces advantages in
settings where certain variables are readily accessible, whereas others are difficult to obtain

ACM Transactions on Knowledge Discovery from Data, Vol. 19, No. 6, Article 125. Publication date: July 2025.



125:14 M. Villaizán-Vallelado et al.

Table 1. Tabular Benchmark Properties

Dataset Rows Num. Feats Cat. Feats Task

HELOC 9,871 21 2 Binary
Churn 10,000 6 4 Binary
Gas Concentrations 13,910 129 0 Multiclass (6)
Cal. Hous. 20,640 8 0 Regression
House Sales 21,613 14 2 Regression
Adult Inc. 32,561 6 8 Binary
Otto Group 61,900 93 0 Multiclass (9)
Cardio 70,000 7 4 Binary
Insurance 79,900 8 2 Binary
Forest Cov. 581K 10 2 Multiclass (7)

due to challenges like cost constraints. In such cases, the scarce data can be synthetically
produced using the known variables. Conversely, when conditioning on a dynamic subset of
features, the model effectively addresses the challenge of imputing gaps within a dataset.

5 Experiments
5.1 Data
Below we introduce the benchmark datasets used in the performance evaluation of our model. The
statistics are summarized in Table 1.

—Home Equity Line of Credit (HELOC) [13]: HELOC provided by FICO (a data analytics
company) contains anonymized credit applications of HELOC credit lines.The dataset contains
21 numerical and 2 categorical features characterizing the applicant to the HELOC credit line.
The task is a binary classification and the goal is to predict whether the applicant will make
timely payments over a two-year period.

—Churn Modelling [21]: This dataset consists of six numerical and four categorical features
about bank customers. The binary classification task involves predicting whether or not the
customer closed their account.

—Gas Concentrations [58]:The dataset contains measurements from 16 chemical sensors exposed
to 6 gases at different concentration levels. It contains 13.9M of rows and 129 continuous
features and the classification task is to determine which is the gas generating the data.

—California Housing [42]: The information refers to the houses located in a certain California
district, as well as some basic statistics about them based on 1990 census data. This is a
regression task about forecasting the price of a property.

—House Sales King Country [25]: Similar to the California Housing case, this regression task
involves estimating property prices in the King County region for sales between May 2014
and May 2015. The original dataset included 14 numerical features, 4 categorical features, and
1 date feature. During preprocessing, the date feature was transformed into two categorical
variables: month and year.

—Adult Incoming [2]: Personal details such as age, gender, or education level are used to predict
whether an individual would earn more or less than 50K$ per year.

—Otto Group [3]: This dataset, provided by the Otto Group (an e-commerce company), contains
61.9K of rows and 93 continuous product attributes. The task is a multiclass classification
problemwith nine categories, aiming to determine the category to which each product belongs.
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—Cardiovascular Disease [54]: The existence or absence of cardiovascular disease must be
predicted based on factual information, medical examination results, and information provided
by the patient. The dataset consists of seven numerical and four categorical features.

— Insurance [46]: Customer variables and past payment data are used to solve a binary task:
determining whether the customer will pay on time. The dataset has eight numerical and two
categorical features.

—Forest Cover Type [6]: In this multiclass classification task with seven categories, cartographic
variables are used to predict the forest cover type. The first eight features of the dataset are
continuous, whereas the last two are categorical with 4 and 40 levels, respectively.

5.2 Baselines
For the synthetic data generation task, we consider the following state-of-the-art baselines drawn
from representative generative modeling paradigms: VAE, GAN, and Diffusion Models:

—TabDDPM [31]: State-of-the-art diffusion model for tabular data generation and model in
which we have premised the proposed approach.

—Tabsyn1 [65]: Recent state-of-the-art tabular generative model that integrates a diffusion
model into the continuous latent space projected by a VAE.

—CoDi2 [33]: A diffusion model for tabular data generation. The StaSy and CoDi models are
from the same team. In [33], the authors show that CoDi consistently outperforms StaSy.
Therefore, we only include CoDi in our evaluation.

—TVAE3 [62]: A variational autoencoder adapted for mixed-type tabular data.
—CTGAN 3 [62]: A conditional GAN for synthetic tabular data generator.

For the missing data imputation task, the following state-of-the-art baselines have been consid-
ered:

—missForest4 [51]: Iterative method based on random forests to predict and fill in missing values.
—GAIN 4 [63]: GAN model for tabular missing value imputation.
—HyperImpute4 [24]: Iterative imputation algorithm using both regression and classification
methods based on linear models, trees, XGBoost, CatBoost, and neural nets.

—Miracle4 [32]: Missing imputation algorithm using a causal deep learning approach.
—TabCSDI 5 [68]: State-of-the-art diffusion model for missing data imputation.

5.3 Metrics
We evaluate the generative models on three different dimensions: (1) ML efficiency, (2) statistical
similarity, and (3) privacy risk.

5.3.1 ML Efficiency. The ML efficiency measures the performance degradation of classification
or regression models trained on synthetic data, and then tested on real data. The basic idea is to
use a ML discriminative model to evaluate the utility of synthetic data provided by a generative
model. As demonstrated by Kotelnikov et al. [31], a strong ML model allows to obtain more
stable and consistent conclusions on the performances of the generative model. Based on this
intuition, we consider four different ML models: XGBoost [8], CatBoost [44], LightGBM [28], and
MLP. We introduce an initial fine-tuning step, during which we derive the best hyperparameter
1GitHub: https://github.com/amazon-science/tabsyn.
2GitHub: https://github.com/ChaejeongLee/CoDi.
3We use the implementation provided by https://sdv.dev/.
4We use the implementation provided by https://github.com/vanderschaarlab/hyperimpute.
5GitHub: https://github.com/pfnet-research/TabCSDI.
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configuration using Bayesian optimization and Optuna library [1]. Specifically, we perform 100
iterations to fine-tune the model’s (XGBoost, CatBoost, LightGBM, and MLP ) hyperparameters on
each dataset’s real data within the benchmark. Every hyperparameter configuration for ML model
is cross-validated, using a five-fold split. The complete hyperparameter search space is shown in
Appendix A (Table A1).

Once the discriminative model has been optimized for each dataset, the generative model is
further cross-validated using a five-fold split, by implementing the following procedure. For each
fold, the real data is split into three subsets. The main purpose of the first subset is to train the
generative model. The resulting model generates a synthetic dataset conditioned on the second
subset. The synthetic dataset is then used to train the discriminative model. The so-obtained ML
model is finally tested on the third held-out subset, which has not been used in training any of the
models. The procedure is repeated for each fold, and the obtained metric mean is used as a final
measure to compute the generative model ML efficiency.

5.3.2 Statistical Similarity. The comparison between synthetic and real data accounts for both
individual and joint feature distributions. Adopting the approach proposed by Zhao et al. [67], we
employ Wasserstein [59] and Jensen-Shannon distances [34] to analyze numerical and categorical
distributions. In addition, we use the square difference between pairwise correlation matrix to
evaluate the preservation of feature interactions in synthetic datasets. Specifically, the Pearson
correlation coefficient measures correlations between numerical features, the Theil uncertainty
coefficient measures correlations between categorical features, and the correlation ratio evaluates
interactions between numerical and categorical features.

5.3.3 Privacy Risk. The Privacy Risk is evaluated using the Distance to Closest Record (DCR),
i.e., the Euclidean distance between any synthetic record and its closest corresponding real neighbor.
Ideally, the higher the DCR the lesser the risk of privacy breach. It is important to note that out-of-
distribution data, i.e., random noise, will also produce high DCR. Therefore, to maintain ecological
validity, the DCR metric needs to be evaluated jointly with the ML efficiency metric.

6 Results
6.1 ML Efficiency
6.1.1 Synthetic Data Generation. In this task, we evaluate the performance of our generative

model in producing high-quality synthetic data, conditioned exclusively by the supervised target ~.
To this end, we consider two variants of our model:

(1) MTabGen I : This variant consistently includes all dataset features in the diffusion process
and was specifically designed for the synthetic data generation task.

(2) MTabGen II : During training, this variant dynamically selects which features are incorporated
in the diffusion process, making it versatile for both imputing missing data and generating
complete synthetic datasets.

The results shown in Table 2 indicate that MTabGen II demonstrates competitive performance
compared to existing state-of-the-art methods like TabDDPM, Tabsyn, CoDi, TVAE, or CTGAN in the
synthetic data generation task, while showing moderate but statistically significant6 improvements
in most of the datasets. However, the specialized MTabGen I achieves the best performance across

6Following the recommendation of [45], we applied the Wilcoxon signed-rank test to compare, for each dataset, the results
obtained by the best-performing MTabGen model against the best-performing baseline. In 6 out of 10 cases-specifically,
HELOC, California Housing, House Sales, Adult Income, Otto, and Forest Cover Type, MTabGen demonstrated a statistically
significant improvement over the strongest baseline, with a p-value < 0.01.
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Table 2. ML Efficiency

Dataset Baseline TVAE CTGAN CoDi Tabsyn TabDDPM MTabGen I MTabGen II

HELOC ↑ 83.69 ± 0.04 79.41 ± 0.05 77.53 ± 0.06 75.82 ± 0.07 79.24 ± 0.05 76.69 ± 0.10 82.91 ± 0.07 82.71 ± 0.08
Churn ↑ 85.25 ± 0.05 81.67 ± 0.08 79.31 ± 0.06 82.77 ± 0.15 84.60 ± 0.06 83.62 ± 0.15 84.43 ± 0.03 83.91 ± 0.04
Gas ↑ 99.47 ± 0.09 94.55 ± 0.07 62.04 ± 0.07 65.41 ± 0.04 98.66 ± 0.04 65.51 ± 0.06 98.80 ± 0.07 98.60 ± 0.06
Cal. Hous. ↓ 0.161 ± 0.001 0.316 ± 0.003 0.488 ± 0.004 0.290 ± 0.003 0.256 ± 0.002 0.272 ± 0.002 0.224 ± 0.001 0.227 ± 0.001
House Sales ↓ 0.101 ± 0.001 0.209 ± 0.001 0.335 ± 0.001 0.159 ± 0.001 0.148 ± 0.001 0.145 ± 0.001 0.121 ± 0.001 0.145 ± 0.001
Adult Inc. ↑ 86.95 ± 0.04 84.34 ± 0.07 83.64 ± 0.08 84.43 ± 0.08 84.70 ± 0.06 84.86 ± 0.07 85.30 ± 0.09 85.15 ± 0.07
Otto ↑ 81.50 ± 0.06 63.87 ± 0.05 50.48 ± 0.05 63.21 ± 0.06 67.14 ± 0.08 63.34 ± 0.08 73.04 ± 0.07 72.98 ± 0.06
Cardio ↑ 73.54 ± 0.05 72.47 ± 0.08 71.81 ± 0.06 72.34 ± 0.10 72.90 ± 0.11 72.88 ± 0.14 72.97 ± 0.08 72.67 ± 0.12
Insurance ↑ 92.00 ± 0.03 92.63 ± 0.11 92.56 ± 0.05 92.03 ± 0.07 92.20 ± 0.05 92.21 ± 0.04 92.77 ± 0.11 92.64 ± 0.07
Forest Cov. ↑ 96.42 ± 0.06 70.36 ± 0.04 65.65 ± 0.07 74.64 ± 0.09 74.83 ± 0.10 82.08 ± 0.07 85.61 ± 0.04 84.32 ± 0.09

Average Rank 4.9 6.5 5.7 3.3 4.0 1.1 2.4

Classification tasks use F1-score, and regression tasks use MSE, indicated by up/down arrows for maximization/minimization
of the metric. Cross-validation mean and standard deviation are shown for each dataset-model pair. Best and second-best
results are highlighted in bold and underline, respectively. Baseline column shows average performance of ML models
trained on real data, while other columns reflect average performance of ML models trained on synthetic data from specified
models. All models are tested on real data.

the evaluated tasks. The key outcomes of our experiments are as follows: (1) TVAE produces better
results than CTGAN. (2) Approaches based on Diffusion Models outperform TVAE and CTGAN on
average. (3) Our two proposed models show overall improved performance over TabDDPM, Tabsyn,
and CoDi, with statistically significant improvements in specific datasets.6 In the remaining cases,
the results were on par with the baselines, without a statistically significant difference. (4) Our
model tends to outperform the baselines in datasets with a large number of features, such as the
Gas Concentrations and Otto Group datasets, although this trend is less consistent with Tabsyn.
Additionally, it is worth noting that the ML efficiency results align with those reported in the
Tabsyn paper, where Tabsyn generally surpasses TabDDPM and CoDi, with TVAE also showing
stronger performance than CoDi.

The results presented in Table 2 are obtained after applying Bayesian optimization for each
generative model, using the Optuna library over 100 trials, and evaluating performance with the
cross-validatedML efficiencymetric defined in Section 5.3 as the objective. A similar hyperparameter
optimization procedure was applied to all baseline models, considering the parameters specific to
each method, enabling fair comparison with MTabGen. The specific hyperparameter search space
for each model is shown in Appendix A (Table A2).

6.1.2 Ablation Study. We conduct an ablation study to evaluate the contributions of the en-
coder–decoder transformer and dynamic conditioning to our model’s performance and usability.
The encoder–decoder transformer enhances performance for two primary reasons:

—Enhanced Learning of Inter-Feature Interactions within Condition (Encoder) and Masked Features
(Decoder): Transformer layers allow for better learning of inter-feature interactions compared
to MLPs. This is primarily due to the attention mechanism, where the new embedding of a
feature G8 is computed by a linear combination of the embeddings of all features

{
G 9

}
. The

weight of feature G 9 depends on the current values of G8 and G 9 . This mechanism is more
flexible than in MLP case, where the contribution of feature G 9 to a neuron in the next layer is
fixed and does not depend on its current value.

—Conditioning Attention Mechanism: Our model, MTabGen, uses an encoder–decoder trans-
former architecture. The encoder learns latent representations of unmasked features for
conditioning, while the decoder focuses on learning latent representations of masked or
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Table 3. Ablation Study in Terms of ML Efficiency

Dataset Baseline TabDDPM TabDDPM-Transf MTabGen I

HELOC ↑ 83.69 ± 0.04 76.69 ± 0.10 81.15 ± 0.08 82.91 ± 0.07
Churn ↑ 85.25 ± 0.05 83.62 ± 0.15 83.62 ± 0.05 84.43 ± 0.03
Gas ↑ 99.47 ± 0.09 65.51 ± 0.06 93.35 ± 0.09 98.80 ± 0.09
Cal. Hous. ↓ 0.161 ± 0.001 0.272 ± 0.001 0.232 ± 0.001 0.224 ± 0.001
House Sales ↓ 0.101 ± 0.001 0.145 ± 0.001 0.128 ± 0.001 0.121 ± 0.001
Adult Inc. ↑ 86.95 ± 0.04 84.86 ± 0.07 85.13 ± 0.06 85.30 ± 0.09
Otto ↑ 81.50 ± 0.06 63.34 ± 0.08 71.01 ± 0.08 73.04 ± 0.07
Cardio ↑ 73.54 ± 0.05 72.88 ± 0.14 72.94 ± 0.11 72.97 ± 0.08
Insurance ↑ 92.00 ± 0.03 92.21 ± 0.04 92.69 ± 0.06 92.77 ± 0.11
Forest Cov. ↑ 96.42 ± 0.06 82.08 ± 0.07 83.84 ± 0.08 85.61 ± 0.04

Classification tasks use F1-score, and regression tasks use MSE, indicated by up/down arrows
for maximization/minimization of the metric. Cross-validation mean and standard deviation are
shown for each dataset-model pair. Best and second-best results are highlighted in bold and
underline, respectively. Baseline column shows average performance of ML models trained on
real data, while other columns reflect average performance of ML models trained on synthetic
data from specified models. All models are tested on real data.

noisy features. By incorporating conditioning within the attention mechanism of the trans-
former decoder, we reduce learning bias compared to conventional methods like those used
in TabDDPM, which simply sum the latent representations of conditions and noisy features.

To test the impact of these hypotheses, we modified the original implementation of TabDDPM
by replacing the MLP denoising model with a transformer encoder, while retaining the same
conditioning mechanism (i.e., summing the condition embedding and feature embedding). We
call this new implementation TabDDPM-Transf. As shown in the first two columns of Table 3, our
transformer-enhanced TabDDPM-Transf consistently outperforms the standard TabDDPM. The
impact of the conditioning attention mechanism is further demonstrated by the comparison of
TabDDPM-Transf and MTabGen I in Table 3.

With respect to model usability, dynamic conditioning allows a single model to handle a variety
of tasks without compromising performance. Notably, performance metrics for our multitasking
model, MTabGen II (with dynamic conditioning), align closely with those of our specific data
generation model, MTabGen I (without dynamic conditioning), as shown in Table 2. Dynamic
conditioning supports not only synthetic data generation and missing data imputation but also
“prompted data generation”—a scenario where a synthetic subset of features is generated based on
a known subset of variables. This method is particularly useful in settings where data collection is
challenging, enhancing data augmentation in ML projects, improving customer profiling, or acting
as a simulated environment in reinforcement learning, which accelerates data-generation efforts.

6.1.3 Missing Data Imputation. Here, we report the results of our experiments on evaluating
the models’ ability to impute missing values. Specifically, in this task, the generative model utilizes
the available data to condition the generation of data for the missing entries.

The evaluation of imputed data quality considers three possible scenarios for missing data:
Missing Completely at Random (MCAR), Missing at Random (MAR), and MNAR. For each
scenario, we first divide the dataset into three subsets: 40% for “imputation training,” 30% for
“imputation testing/discriminative training,” and 30% as a hold-out set. Next, we generate three
versions of the imputation training and imputation test/discriminative train splits, each containing
an increasing proportion of missing data (10%, 25%, and 40%), while keeping the hold-out set intact.
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Algorithm 3: Evaluate Imputation Model Performance

Table 4. Missing Imputation Analysis in Terms of ML Efficiency When the Missing Information
is MCAR

Dataset % Missing missForest GAIN HyperImpute Miracle TabCSDI MTabGen

10% 83.16 ± 0.02 82.44 ± 0.02 83.36 ± 0.04 83.39 ± 0.03 83.30 ± 0.05 83.79 ± 0.03
HELOC ↑ 25% 82.80 ± 0.04 81.92 ± 0.04 83.23 ± 0.04 82.85 ± 0.04 83.27 ± 0.04 83.54 ± 0.04

40% 82.59 ± 0.04 81.74 ± 0.03 82.97 ± 0.03 82.74 ± 0.03 82.67 ± 0.03 83.41 ± 0.04

10% 84.49 ± 0.03 84.66 ± 0.03 84.47 ± 0.05 84.60 ± 0.03 84.48 ± 0.03 84.76 ± 0.03
Churn ↑ 25% 84.13 ± 0.03 83.45 ± 0.05 83.89 ± 0.05 84.08 ± 0.03 83.92 ± 0.03 84.51 ± 0.04

40% 83.08 ± 0.04 83.22 ± 0.04 83.14 ± 0.04 82.52 ± 0.04 83.45 ± 0.04 84.18 ± 0.04

10% 0.182 ± 0.002 0.182 ± 0.002 0.173 ± 0.002 0.174 ± 0.002 0.175 ± 0.002 0.170 ± 0.002
Cal. Hous. ↓ 25% 0.229 ± 0.002 0.249 ± 0.002 0.190 ± 0.002 0.196 ± 0.002 0.188 ± 0.003 0.183 ± 0.002

40% 0.269 ± 0.004 0.306 ± 0.004 0.218 ± 0.003 0.269 ± 0.004 0.258 ± 0.004 0.210 ± 0.003

10% 0.109 ± 0.002 0.110 ± 0.002 0.112 ± 0.002 0.106 ± 0.002 0.110 ± 0.002 0.105 ± 0.002
House Sales ↓ 25% 0.118 ± 0.002 0.131 ± 0.003 0.120 ± 0.003 0.127 ± 0.002 0.117 ± 0.003 0.115 ± 0.002

40% 0.155 ± 0.003 0.145 ± 0.003 0.156 ± 0.003 0.130 ± 0.003 0.128 ± 0.003 0.119 ± 0.002

Classification tasks use F1-score, and regression tasks use MSE, indicated by up/down arrows for maximization/minimization
of the metric. Cross-validation mean and standard deviation are shown for each dataset-model pair. Best and second-best
results are highlighted in bold and underline, respectively.

To assess the quality of the imputed data in terms of ML efficiency, we follow the steps outlined in
Algorithm 3. For the MAR and MNAR scenarios, the missing data are generated using the code
used by [24] and [38].

The results of the experiments for the MCAR, MAR, and MNAR scenarios are presented in
Tables 4, 5, and 6, respectively. As the assumption about missingness becomes more complex
(MCAR → MAR → MNAR), all the models included in the comparison exhibit a very slight
degradation in performance. However, the findings remain consistent across all missing data
scenarios.

Our experiments indicate that MTabGen tends to outperform the baseline models considered
in this evaluation: missForest [52], GAIN [63], HyperImpute [24], Miracle [32], and TabCSDI [68].
Across all levels of missing data, MTabGen generally achieves better performance on average, with
its advantage becoming more pronounced as the proportion of missing data increases.

6.2 Statistical Similarity
In this task, we compare synthetic and real data accounts based on individual and joint feature
distributions. We report only the top three models with the best ML efficiency. This approach is
motivated by our findings, which show a strong association between the ML efficiency of synthetic
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Table 5. Missing Imputation Analysis in Terms of ML Efficiency When the Missing Information
is MAR.

Dataset % Missing missForest GAIN HyperImpute Miracle TabCSDI MTabGen

10% 83.13 ± 0.02 82.39 ± 0.04 83.34 ± 0.02 83.30 ± 0.03 83.25 ± 0.03 83.78 ± 0.02
HELOC ↑ 25% 82.75 ± 0.03 81.88 ± 0.02 83.15 ± 0.03 82.81 ± 0.02 83.18 ± 0.01 83.53 ± 0.04

40% 82.42 ± 0.02 81.64 ± 0.04 82.86 ± 0.04 82.52 ± 0.02 82.59 ± 0.05 83.40 ± 0.04

10% 84.46 ± 0.04 84.55 ± 0.03 84.42 ± 0.02 84.58 ± 0.04 84.44 ± 0.03 84.76 ± 0.03
Churn ↑ 25% 84.05 ± 0.03 83.39 ± 0.02 83.79 ± 0.02 84.00 ± 0.02 83.58 ± 0.02 84.50 ± 0.02

40% 82.91 ± 0.05 83.11 ± 0.01 83.00 ± 0.03 82.40 ± 0.04 83.31 ± 0.03 84.17 ± 0.04

10% 0.182 ± 0.003 0.183 ± 0.004 0.173 ± 0.003 0.174 ± 0.003 0.175 ± 0.004 0.171 ± 0.003
Cal. Hous. ↓ 25% 0.230 ± 0.002 0.251 ± 0.004 0.191 ± 0.002 0.197 ± 0.004 0.190 ± 0.005 0.183 ± 0.002

40% 0.272 ± 0.002 0.308 ± 0.005 0.222 ± 0.003 0.274 ± 0.002 0.264 ± 0.004 0.211 ± 0.003

10% 0.110 ± 0.004 0.112 ± 0.002 0.114 ± 0.004 0.106 ± 0.002 0.111 ± 0.004 0.105 ± 0.002
House Sales ↓ 25% 0.120 ± 0.003 0.134 ± 0.002 0.122 ± 0.004 0.130 ± 0.002 0.121 ± 0.003 0.116 ± 0.003

40% 0.158 ± 0.003 0.149 ± 0.001 0.160 ± 0.003 0.134 ± 0.003 0.132 ± 0.003 0.120 ± 0.002

Classification tasks use F1-score, and regression tasks use MSE, indicated by up/down arrows for maximization/minimization
of the metric. Cross-validation mean and standard deviation are shown for each dataset-model pair. Best and second-best
results are highlighted in bold and underline, respectively.

Table 6. Missing Imputation Analysis in Terms of ML Efficiency When the Missing Information
is MNAR

Dataset % Missing missForest GAIN HyperImpute Miracle TabCSDI MTabGen

10% 83.09 ± 0.03 82.35 ± 0.03 83.31 ± 0.04 83.25 ± 0.04 83.23 ± 0.04 83.75 ± 0.04
HELOC ↑ 25% 82.59 ± 0.03 81.78 ± 0.02 83.04 ± 0.05 82.69 ± 0.05 83.07 ± 0.05 83.47 ± 0.03

40% 82.12 ± 0.04 81.43 ± 0.03 82.67 ± 0.03 82.35 ± 0.03 82.31 ± 0.04 83.31 ± 0.04

10% 84.42 ± 0.04 84.51 ± 0.05 84.36 ± 0.04 84.49 ± 0.03 84.38 ± 0.04 84.72 ± 0.04
Churn ↑ 25% 83.95 ± 0.04 83.27 ± 0.04 83.66 ± 0.05 83.86 ± 0.04 83.72 ± 0.03 84.42 ± 0.03

40% 82.72 ± 0.03 82.93 ± 0.05 82.80 ± 0.05 82.23 ± 0.03 83.09 ± 0.04 84.04 ± 0.05

10% 0.184 ± 0.003 0.185 ± 0.004 0.177 ± 0.004 0.178 ± 0.003 0.176 ± 0.003 0.173 ± 0.003
Cal. Hous. ↓ 25% 0.234 ± 0.004 0.255 ± 0.003 0.200 ± 0.003 0.205 ± 0.002 0.194 ± 0.004 0.187 ± 0.003

40% 0.285 ± 0.003 0.318 ± 0.002 0.239 ± 0.004 0.289 ± 0.003 0.279 ± 0.002 0.220 ± 0.002

10% 0.111 ± 0.002 0.116 ± 0.004 0.117 ± 0.004 0.112 ± 0.002 0.115 ± 0.003 0.108 ± 0.003
House Sales ↓ 25% 0.127 ± 0.001 0.140 ± 0.002 0.129 ± 0.003 0.137 ± 0.004 0.126 ± 0.002 0.120 ± 0.002

40% 0.169 ± 0.002 0.160 ± 0.003 0.171 ± 0.003 0.143 ± 0.003 0.140 ± 0.004 0.126 ± 0.003

Classification tasks use F1-score, and regression tasks use MSE, indicated by up/down arrows for maximization/minimization
of the metric. Cross-validation mean and standard deviation are shown for each dataset-model pair. Best and second-best
results are highlighted in bold and underline, respectively

data and their ability to replicate the statistical properties of real data. In other words, synthetic
data with higher ML utility tends to better reproduce both individual and joint feature distributions.

Table 7(a) shows the average Wasserstein Distance between synthetic and real numerical data
distributions. Specifically, theWasserstein distance is calculated for each numerical column between
the real data and the synthetic data generated by Tabsys, TabDDPM, and MTabGen. For each
generative model, the final dataset results are the average of these distances across all numerical
columns in the dataset. MTabGen consistently performs better than Tabsys and TabDDPM. This
advantage is more pronounced in datasets where there is a larger difference in ML efficiency, such
as HELOC, California Housing, House Sales, or Forest Cover Type dataset. In contrast, in datasets
like Insurance, where all models have similar ML efficiency, the Wasserstein distances are also
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Table 7. Statistical Similarity Details

(a) Average Wasserstein Distance (b) Average Jensen-Shannon Distance (c) Average L2 Dist. Correlation Matrix

Dataset Tabsyn TabDDPM MTabGen Dataset Tabsyn TabDDPM MTabGen Dataset Tabsyn TabDDPM MTabGen

HELOC 0.25 ± 0.03 0.29 ± 0.02 0.15 ± 0.02 HELOC 0.15 ± 0.02 0.20 ± 0.02 0.08 ± 0.01 HELOC 0.036 ± 0.004 0.040 ± 0.004 0.025 ± 0.003
Churn 0.15 ± 0.02 0.23 ± 0.02 0.17 ± 0.02 Churn 0.07 ± 0.01 0.15 ± 0.02 0.09 ± 0.01 Churn 0.027 ± 0.003 0.034 ± 0.003 0.028 ± 0.003
Gas 0.21 ± 0.04 0.65 ± 0.06 0.23 ± 0.02 Gas NA NA NA Gas 0.032 ± 0.003 0.078 ± 0.007 0.034 ± 0.004

Cal. Hous 0.31 ± 0.03 0.34 ± 0.04 0.22 ± 0.02 Cal. Hous NA NA NA Cal. Hous 0.042 ± 0.004 0.045 ± 0.005 0.031 ± 0.003
House Sales 0.32 ± 0.02 0.28 ± 0.03 0.15 ± 0.01 House Sales 0.22 ± 0.02 0.26 ± 0.03 0.09 ± 0.01 House Sales 0.044 ± 0.004 0.039 ± 0.004 0.024 ± 0.003
Adult Inc. 0.18 ± 0.03 0.24 ± 0.02 0.19 ± 0.02 Adult Inc. 0.07 ± 0.01 0.14 ± 0.02 0.08 ± 0.02 Adult Inc. 0.029 ± 0.003 0.036 ± 0.004 0.030 ± 0.003

Otto 0.25 ± 0.02 0.27 ± 0.03 0.16 ± 0.02 Otto NA NA NA Otto 0.037 ± 0.004 0.041 ± 0.004 0.026 ± 0.003
Cardio 0.23 ± 0.04 0.26 ± 0.03 0.24 ± 0.03 Cardio 0.10 ± 0.01 0.14 ± 0.02 0.11 ± 0.01 Cardio 0.032 ± 0.003 0.035 ± 0.003 0.033 ± 0.003

Insurance 0.19 ± 0.02 0.22 ± 0.02 0.20 ± 0.03 Insurance 0.09 ± 0.01 0.13 ± 0.01 0.10 ± 0.01 Insurance 0.031 ± 0.003 0.033 ± 0.003 0.029 ± 0.003
Forest Cov. 0.41 ± 0.05 0.35 ± 0.04 0.18 ± 0.02 Forest Cov. 0.24 ± 0.03 0.16 ± 0.02 0.08 ± 0.01 Forest Cov. 0.052 ± 0.004 0.046 ± 0.004 0.031 ± 0.003

Av. Rank 1.7 2.8 1.5 Av. Rank 1.6 2.9 1.6 Av. Rank 1.8 2.8 1.4

comparable. A qualitative analysis of the results for some of the columns can be found in the four
plots in the first two rows plots of Figure 4. These plots compare the distributions of real data with
those of the synthetic data generated by the different models.

Similarly, Table 7(b) shows the average Jensen-Shannon distance between synthetic and real
categorical data distributions. MTabGen and Tabsyn outperform TabDDPM, consistent with the
findings of [65], where Tabsyn achieved better results than TabDDPM on categorical data. Also the
Jensen-Shannon distance appears to be strongly related to ML efficiency. For example, in datasets
like HELOC, House Sales or Forest Cover Type, where ML efficiency of MTabGen is significantly
better than the other baselines, it also has a lower Jensen-Shannon distance. In the Insurance
dataset, where all baselines have similar ML efficiency, the Jensen-Shannon distances are also
similar. Notably, while MTabGen and Tabsyn show similar overall results, a qualitative analysis
of per-column results reveals that MTabGen tends to excel when the number of classes in the
categorical variable increases, as shown in the last two rows plots of Figure 4.

Table 7(c) shows the average L2 distance between the two correlation matrices computed on real
and synthetic data. Figure 5, instead, shows the L2 distance details across all the datasets in the
benchmark. In Figure 5, more intense green color means higher difference between the real and
synthetic correlation values. Even more than in the previous statistical measures, there exists an
association between ML efficiency and L2 distance between correlation matrices. In datasets like
HELOC, California Housing, House Sales, or Forest Cover Type where the ML efficiency of MTabGen
is notably better than the one of Tabsyn and TabDDPM the corresponding heatmap of MTabGen
are more lighter, e.g., they show a smaller error in the correlation estimation. Nevertheless, in
datasets like Cardio or Insurance where all the models perform similarly, the heatmaps do not show
resignable differences.

6.3 Privacy Risk
In this section, we delve deeper into the privacy risk associated with synthetic data. As previously
mentioned, DCR is defined by the Euclidean distance between any synthetic record and its closest
real neighbor. Ideally, a higher DCR indicates a lower privacy risk. However, out-of-distribution
data (random noise) can also result in high DCR. Therefore, to maintain ecological validity, DCR
should be evaluated alongside the ML efficiency metric. For this reason, our privacy risk evaluation
includes only Tabsyn, TabDDPM, and MTabGen. These models have superior ML efficiency and are
more likely to pose a privacy risk (lower DCR) because they closely mimic the original data.

Table 8 presents our evaluation results regarding the privacy risk metric, emphasizing the tradeoff
between ML efficiency and privacy guarantees. Based on a 5% threshold for relative improvement
in ML efficiency of MTabGen over Tabsyn and TabDDPM, the results are categorized to illustrate
two key points: (1) Improvements in ML efficiency correlate with increased privacy risks. (2) When
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Fig. 4. Comparison between distribution of real and synthetic data. The two top rows present four examples
of numerical columns from various datasets in our benchmark, while the two bottom rows contain examples
of categorical features.
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Fig. 5. L2 distance between correlation matrices computed on real and synthetic data. More intense green
color means higher difference between the real and synthetic correlation values.

Table 8. Comparison of Privacy Risk (↑) and ML Efficiency (↑ for F1-Score, ↓ for MSE) for Tabsyn, TabDDPM,
and MTabGen for Each Dataset

Tabsyn and MTabGen

Dataset Tabsyn MTabGen

Risk ↑ ML Eff. Risk ↑ ML Eff.

HELOC 0.35 79.24 ↑ 0.25 82.91 ↑
Churn 0.06 84.60 ↑ 0.09 84.43 ↑
Gas 0.21 98.66 ↑ 0.19 98.80 ↑
Adult Inc. 0.13 84.70 ↑ 0.11 85.30 ↑
Cardio 0.35 72.90 ↑ 0.41 72.97 ↑
Insurance 0.12 92.20 ↑ 0.12 92.77 ↑

5% Relative ML Eff. Threshold

Cal. Hous. 0.81 0.256 ↓ 0.18 0.224 ↓
House Sales 0.16 0.148 ↓ 0.10 0.121 ↓
Otto 1.08 67.14 ↑ 0.12 73.04 ↑
Forest Cov. 0.85 74.83 ↑ 0.35 85.61 ↑

TabDDPM and MTabGen

Dataset TabDDPM MTabGen

Risk ↑ ML Eff. Risk ↑ ML Eff.

Churn 0.09 83.62 ↑ 0.09 84.43 ↑
Adult Inc. 0.15 84.86 ↑ 0.11 85.30 ↑
Cardio 0.41 72.88 ↑ 0.41 72.97 ↑
Insurance 0.12 92.21 ↑ 0.12 92.77 ↑
Forest Cov. 0.47 82.08 ↑ 0.35 85.61 ↑

5% Relative ML Eff. Threshold

HELOC 2.75 76.69 ↑ 0.25 82.91 ↑
Gas 3.15 65.51 ↑ 0.19 98.80 ↑
Cal. Hous. 1.28 0.272 ↓ 0.18 0.224 ↓
House Sales 0.34 0.145 ↓ 0.10 0.121 ↓
Otto 2.57 63.34 ↑ 0.12 73.04 ↑

Privacy risk is evaluated using the DCR; higher values indicate a lesser risk of privacy breach. The results are divided
based on a 5% ML efficiency threshold relative to the performance improvements of MTabGen compared to Tabsyn and
TabDDPM. In cases whereMTabGen achieves comparable ML efficiency to the baselines, the privacy risk is similar. However,
in scenarios whereMTabGen outperforms the other baselines, there is higher privacy risk (i.e., lower value of DCR distance),
as expected, since better ML efficiency is related with closer statistical fidelity of the generated data.

MTabGen’s performance improvement over the baselines is less than 5%, no significant increase
in privacy risk is observed. However, when MTabGen’s performance is substantially better, the
comparison becomes irrelevant because the synthetic data generated by the baselines deviate
significantly from real data in terms of ML utility and statistical properties, resulting in a high DCR
due to poor alignment with real data properties.
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Fig. 6. DCR for Tabsyn and MTabGen.

Fig. 7. DCR for TabDDPM and MTabGen.

Figures 6 and 7 provide a qualitative comparison of the DCR distribution for MTabGen versus
Tabsyn and TabDDPM when the relative improvement in ML efficiency is less than 5%. Specifically,
for each synthetic data point, we compute the distance to its closest record in the training dataset.
The plots then depict the distribution of these distances. This comparison confirms that there are
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no significant changes or patterns, indicating that the improvement in ML efficiency does not lead
to a noticeable increase in privacy risk.

To mitigate the risk of increasing privacy concerns, our framework is equipped to integrate
additional privacy-preserving measures, such as differential privacy [23], allowing for a better-
controlled balance between data efficiency and privacy. Additionally, we conduct a sanity check to
ensure that no synthetic sample perfectly matches any original sample (i.e., DCR is always greater
than 0), safeguarding against direct data leakage.

7 Conclusion
In this article, we introduced MTabGen, a diffusion model enhanced with a conditioning attention
mechanism, a transformer-based encoder–decoder architecture, and dynamic masking. MTabGen
is specifically designed for applications involving mixed-type tabular data. The transformer en-
coder–decoder acts as the denoising network, enabling the conditioning attention mechanism
while effectively capturing and representing complex interactions and dependencies within the
data. The dynamic masking feature allows MTabGen to handle both synthetic data generation and
missing data imputation tasks within a unified framework efficiently. We proposed to train the
diffusion model to regenerate masked data, enabling applications ranging from data imputation to
unconditioned or conditioned synthetic data generation. This versatility makes MTabGen suitable
for generating synthetic data to overcome privacy regulations, augment existing datasets, or miti-
gate class imbalances. We evaluated MTabGen against established baselines across several public
datasets with a diverse range of features. Our model demonstrated better overall performance in
terms of ML efficiency and statistical accuracy, while maintaining privacy risks comparable to
those of the baselines, particularly showing increased performance in datasets with a large number
of features.

Impact Statements. Tabular data is one of the most common structures with which to represent
information (e.g., finance, health). With the present model, the ability to generate or complete
records in these structures is given. This fact requires ethical and privacy considerations. The
authors encourage that before sharing any type of data, whether original or generated with the
proposed model, to verify that reverse-identification is impossible or prevented by regulatory
means. In addition to these considerations, our model and methods described in the article can
also be utilized to rebalance datasets for minority groups by synthetically generating new samples
conditioned on the minority class, thus aiding in fairer data representation. Apart from this, we see
no other ethical issues related to this work.
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Appendices
A Hyperparameter Tuning

Table A1. Discriminative Models: Hyperparameters Search
Space

Model Hyperparameter Possible Values

XGBoost

max depth [1, 9]
learning rate [0.01, 1.0]
estimators [50, 500]

min childweight [1, 10]
gamma

[
10−8, 1

]
subsample [0.01, 1]

colsample bytree [0.01, 1]
reg alpha

[
10−8, 1

]
subsample [0.01, 1]
reg lambda

[
10−8, 1

]
CatBoost

learning rate LogUniform [0.1, 1]
l2 leaf reg LogUniform[1, 100]

bagging temperature LogUniform[0.1, 20]
random strength [1.0, 2.0]

depth [1, 10]
min data in leaf [1, 300]

LightGBM

max depth [3, 12]
learning rate [0.01, 1.0]
estimators [50, 500]
num leaves [20, 3,000]

min data in leaf [200, 10,000]
max bin [200, 300]
lambda l1 [0, 100]
lambda l2 [0, 100]

min gain to split [0, 15]
bagging fraction [0.2, 0.95]
feature fraction [0.2, 0.95]

MLP

hidden layers [2, 4, 6, 8]
latent space size [64, 128, 256, 512]

batch size [64, 128, 256, 512, 1,024]
learning rate LogUniform[0.00001, 0.003]

epochs 500
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Table A2. Generative Models: Hyperparameters Search Space

Model Hyperparameter Possible Values

TVAE

compress dims [32, 64, 128, 256, 512]
decompress dims [32, 64, 128, 256, 512]
embedding dim [32, 64, 128, 256, 512]

batch size [64, 128, 256, 512, 1,024]
learning rate LogUniform[0.00001, 0.003]

epochs 500

CTGAN

generator dim [32, 64, 128, 256, 512]
discriminator dim [32, 64, 128, 256, 512]
embedding dim [32, 64, 128, 256, 512]

batch size [64, 128, 256, 512, 1,024]
learning rate LogUniform[0.00001, 0.003]

epochs 500

CoDi

timesteps [50]
learning rate [24 − 03, 24 − 05]
dim(Emb(t)) [16, 32, 64, 128]
{38<(ℎ1), { {16, 32, 64} ,
38<(ℎ2), {32, 64, 128} ,
38<(ℎ3)} {128, 256, 512} }

_� [0.2, 0.3, . . . , 0.8]
_� [0.2, 0.3, . . . , 0.8]

epochs 500

Tabsyn

VAE-n Heads [1, 2, 4]
VAE-Factor [16, 32, 64, 128]
VAE-Layers [1, 2, 3, 4]

VAE-Learning Rate LogUniform[0.00001, 0.003]
VAE-Epochs 4,000

Diffusion-MLP Denoising Dim [512, 1,024, 2,048]
Diffusion-Batch Size [512, 1,024, 2,048, 4,096]

Diffusion-Learning Rate LogUniform[0.00001, 0.003]
Diffusion-Epochs 10,000

TabDDPM

Timesteps [100, 200, 300, 400, 600, 800, 1,000]
latent space size [64, 128, 256, 512, 1,024, 2,048, 4,096]

mlp depth [2, 4, 6, 8]
batch size [64, 128, 256, 512, 1,024]

learning rate LogUniform[0.00001, 0.003]
epochs 500

MTabGen

timesteps [100, 200, 300, 400, 600, 800, 1,000]
latent space size [64, 128, 256, 512]

transformer layer num [2, 3, 4]
transformer heads [2, 4, 8]

transformer feedforward size [256, 512]
batch size [64, 128, 256, 512, 1,024]

learning rate LogUniform[0.00001, 0.003]
epochs 500
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B Additional Experimental Results
In this appendix, we compare the training and sampling times, as well as the number of trainable
parameters, of MTabGen against other tabular generative models, using the Churn, California
Housing, and Gas Concentrations datasets as examples. The training and sampling times and the
number of trainable parameters are highly influenced by both the model hyperparameters and the
dataset characteristics (size and number of features).

Regarding model hyperparameters, each model has been optimized for these datasets as outlined
in Section 6.1.1. This process involves using Bayesian optimization and Optuna to identify the
best hyperparameters for each model, enhancing the ML efficiency described in Section 5.3.1.
The specific hyperparameter search space for each model is provided in Table A2 in Appendix
A, and Table B1 presents the training and sampling times, along with the number of trainable
parameters, for the optimized models on the Churn, California Housing, and Gas Concentrations
datasets.

Table B1. Training/Sampling Time and Number of Trainable Parameters Comparison for Churn,
California Housing, and Gas Concentrations Datasets

Churn California Housing Gas Concentrations

Training Sampling Parameters Training Sampling Parameters Training Sampling Parameters

TVAE 5 min 3 s 0.86 s 190,122 8 min 10 s 1.96 s 180,132 14 min 47 s 4.35 s 325,108
CTGAN 14 min 25 s 1.68 s 280,121 18 min 36 s 3.01 s 265,132 29 min 58 s 5.21 s 456,587
CoDi 2 h 26 min 5 s 6.64 s 615,212 2 h 54 min 10 s 10.54 s 567,987 3 h 58 min 15 s 16.38 s 953,578
Tabsyn 31 min 34 s 6.02 s 415,122 38 min 42 s 9.16 s 409,876 1 h 5 min 31 s 14.43 s 762,463
TabDDPM 14 min 36 s 12.75 s 221,363 18 min 12 s 18.21 s 209,815 29 min 36 s 28.48 s 420,589
MTabGen I 14 min 42 s 15.12 s 332,049 18 min 10 s 21.10 s 298,844 31 min 48 s 30.45 s 597,688
MTabGen II 14 min 53 s 15.30 s 332,049 18 min 42 s 22.95 s 298,844 32 min 24 s 35.12 s 597,688

In terms of dataset characteristics, Churn, California Housing, and Gas Concentrations differ in
size (10,000 vs. 20,640 vs. 13,910 samples) and feature count (10 vs. 8 vs. 129), impacting absolute
values such as training and sampling times, as well as the number of trainable parameters. Despite
these differences, all the datasets yield consistent results.

From the results in Table 2, the baseline model that most closely matches the performance
of MTabGen I and MTabGen II in terms of ML efficiency is Tabsyn. Tabsyn is a latent diffusion
model where a VAE first projects tabular data into a dense, homogeneous continuous space,
followed by a diffusion process. Compared to our model, Tabsyn has a greater number of trainable
parameters and longer training times. However, in terms of sampling, Tabsyn outperforms our
model. This advantage largely arises from the findings of [27], which suggest that the sampling
process can be accelerated by reducing the number of backward diffusion steps through an effective
choice of schedule and scale functions (see [27] for details). The schedule function determines the
desired noise level at each diffusion timestep, while the scale function dictates how data scales
over time. Their optimal selection aligns with that proposed by DDIM [50]. As highlighted by
[27], this choice is independent of how the denoising model (e.g., the neural network) has been
trained. Therefore, we plan to investigate the integration of our masking training mechanism
with the sampling approach proposed by [27] in future work to improve the model’s sampling
speed.

A final comment addresses the impact of dynamic conditioning, specifically the differences
between MTabGen I and MTabGen II. Table B1 demonstrates that the conditioning mechanism has
a limited effect on sampling and training time, while the number of trainable parameters remains
unchanged with or without conditioning.

This outcome arises because the conditioning mask only influences the input size of the en-
coder–decoder transformer, specifically affecting the sequence length of the transformer encoder
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input (as illustrated in Figure 2 and discussed in Section 4.3). Notably, the number of trainable
parameters in a transformer encoder does not depend on input length; therefore, MTabGen I and
MTabGen II both retain the same parameter count. Although input sequence length can impact
computational time, this effect is minimal in our case. Even with the largest dataset, consisting of
129 features, the encoder input remains a relatively short sequence of 129 tokens. Consequently,
the impact on both sampling and training time is minimal.
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