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Abstract. We introduce a novel semi-supervised Graph Counterfac-
tual Explainer (GCE) methodology, Dynamic GRAph Counterfactual
Explainer (DyGRACE). It leverages initial knowledge about the data
distribution to search for valid counterfactuals while avoiding using infor-
mation from potentially outdated decision functions in subsequent time
steps. Employing two graph autoencoders (GAEs), DyGRACE learns the
representation of each class in a binary classification scenario. The GAEs
minimise the reconstruction error between the original graph and its
learned representation during training. The method involves (i) optimis-
ing a parametric density function (implemented as a logistic regression
function) to identify counterfactuals by maximising the factual autoen-
coder’s reconstruction error, (ii) minimising the counterfactual autoen-
coder’s error, and (iii) maximising the similarity between the factual and
counterfactual graphs. This semi-supervised approach is independent of
an underlying black-box oracle. A logistic regression model is trained on a
set of graph pairs to learn weights that aid in finding counterfactuals. At
inference, for each unseen graph, the logistic regressor identifies the best
counterfactual candidate using these learned weights, while the GAEs
can be iteratively updated to represent the continual adaptation of the
learned graph representation over iterations. DyGRACE is quite effective
and can act as a drift detector, identifying distributional drift based on
differences in reconstruction errors between iterations. It avoids reliance
on the oracle’s predictions in successive iterations, thereby increasing
the efficiency of counterfactual discovery. DyGRACE, with its capacity
for contrastive learning and drift detection, will offer new avenues for

semi-supervised learning and explanation generation.
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1 Introduction

In the era of big data and complex Machine Learning models, explainability and
interpretability have emerged as critical aspects, not only for the technical mer-
its of transparency and robustness but also from a regulatory perspective. With
regulations such as the European Union’s General Data Protection Regulation
(GDPR) and the proposed Artificial Intelligence Act, there is a growing demand
for models that perform well and provide interpretable and actionable insights
into their predictions. A key element of meeting these regulatory demands in a
human-centred way is using counterfactual explanations, which illuminate model
decisions by illustrating alternative scenarios that would lead to different out-
cores.

However, as shown by recent work [21], a significant challenge arises when
we consider the dynamic and ever-evolving nature of the data these models
interact with. Data undergoes continuous changes and distribution shifts, which
can critically impact the robustness, relevance, and, therefore, the validity of
counterfactual explanations. Existing solutions have yet to adequately address
this complex interplay between robust counterfactual generation and dynamic
data landscapes.

We dive into the challenge of generating robust counterfactual explanations
under data changes and distribution shifts by providing a novel technique for rep-
resenting and tracking data throughout temporal changes. This under-researched
area is increasingly important, as meeting compliance needs in rapidly evolving
real-world scenarios is paramount. Our research outlines and empirically evalu-
ates a novel approach that adaptively generates robust counterfactual explana-
tions, which meets the demands of model transparency and understanding and
provides a basis for current regulatory requirements. This work aims to con-
tribute to the discourse on Al interpretability, ethics, and regulation, helping
to create Machine Learning models that remain transparent, accountable, and
compliant, even amidst changing data landscapes.

2 Related Work

To the best of our knowledge, this is the first work on Graph Counterfactual
Explainability (GCE) considering distributional drift happening in time. While
updating (or even retraining) the prediction model under distributional drifts
has been extensively explored [3,9,15,26], aligning counterfactual explanations
after a drift happens is yet to be covered. Only Pawelczyk et al. [21] tackle the
problem of recourse (i.e., counterfactual) fragility when data is deleted in the
future. The authors pinpoint the most influential data points such that their
deletion at time t + 0 ensures the obsoleteness of generated counterfactuals at a
previous time t. Here, we propose a semi-supervised explanation approach that
produces counterfactuals in a data-driven and principled way and integrates a
drift detection mechanism to signal counterfactual invalidity, thus updating the
explainer to produce valid counterfactuals again.
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We provide the reader with the most recent time-unaware GCE approaches
for completeness. Recently, time-unaware GCE has received more attention due
to the upsurging phenomenon of the need for explainability in graph domains
such as fraud detection in bank transactions [6], drug-disease comorbidity pre-
diction [17], and community detection [31]. Prado-Romero et al. [24] provide a
thorough survey on GCE and categorise the methods according to three classes:
i.e., search-, heuristic-, and learning-based approaches.

Search- and heuristic-based approaches rely on a specific criterion, such as
the similarity between instances, to search for a suitable counterfactual within
the dataset. Contrarily, heuristic-based methods adopt a systematic approach to
modify the input graph until a valid counterfactual is obtained.

DCE [7] aims to find a counterfactual graph G’ similar to the input graph
G but belonging to a different class. In the realm of graph counterfactuality [1],
DDBS and OBS are two heuristic approaches used in brain networks. These
methods represent the brain as a graph with vertices denoting regions of interest
(ROIs) and edges representing connections between co-activated ROIs. Both
DDBS and OBS employ a bidirectional search heuristic. Initially, they perturb
the edges of the input graph G until a counterfactual graph G’ is achieved.
Subsequently, they refine the perturbations to reduce the distance between G
and G’ while ensuring the counterfactual condition.

RCEzplainer [2] utilizes a GNN to define decision regions with linear bound-
aries, capturing shared characteristics of instances within each class. Unsuper-
vised methods identify these regions, preventing overfitting due to potential noise
or peculiarities in specific instances. A loss function based on these boundaries
then trains a network to select a small subset of edges E* from the original
graph G. The resulting graph G* = (V*, E*), belonging to the same class as G,
can be transformed into a counterfactual graph G’ outside this decision region,
satisfying the counterfactual condition.

We point the reader to [10,12,29] for other search- and heuristic-based
methods.

Learning-based approaches share a three-step pipeline: 1) generating masks
that indicate the relevant features given a specific input graph G; 2) combin-
ing the mask with G to derive a new graph G’; 3) feeding G’ to the prediction
model (oracle) @ and updating the mask based on the outcome @(G’). Gener-
ally, learning-based strategies for generating counterfactual explanations can be
categorised into three main groups: i.e., perturbation matrix [5,14,28-30], Rein-
forcement Learning (RL) [19,20], and generative approaches [16,27]. Here, we
describe the most interesting for each category.

CF? |28] produces factual explanations by balancing factual and counterfac-
tual reasoning. It generates a factual subgraph, a subset of the original input
graph, and then derives a counterfactual by removing this factual subgraph,
following a similar approach as described in [2].

MEG [20] and MACCS [29] use multi-objective RL to generate molecule
counterfactuals. However, their domain-specificity limits their applicability to
other domains. The reward function includes a task-specific regularisation term
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to guide perturbation actions. Similarly, MACDA [19] employs RL for counter-
factual generation in drug-target affinity prediction.

CLEAR [16] is a generative method that utilises a Variational Autoencoder
(VAE) to generate counterfactuals. The counterfactuals produced are complete
graphs with stochastic edge weights. To obtain valid counterfactuals, a sampling
procedure is employed. Graph matching between G and G’ is required due to
potential differences in vertex order, which can be time-consuming [13].

A recent paper on generative approaches for GCE [23] explored the adaptation
of CounteRGAN [18] in the graph domain. The authors show how generative
strategies are useful to generate multiple counterfactuals without relying on the
oracle at inference time. However, these approaches need to be further explored
since they do not reach satisfactory performances.

3 Problem Formulation

We consider prediction problems @: G — Y where G = (V, E) is a graph with
vertex and edge sets V = {vy,...,v,} and E = {(v;,v;) | v;,v; € V'}, respec-
tively, and Y is the set of classes; w.l.o.g., we assume Y € {0,1}. We denote
with G = {Gy,...,G}} the dataset containing different graphs G; Vi € [1, k].
According to Prado-Romero et al. [24], the “closest” counterfactual £ (G;) of
G;, given the classifier (oracle) @, can be defined as in Eq. 1.

£s (Gy) = arg max S (Gi, GY) (1)
€0 GLAG) B(G)#D(Gy))

where G’ is the set of all possible graphs, and S (G;, G/;) measures the similarity
between the graph G; and its counterfactual G;.. Notice that Eq.1 produces a
single counterfactual® instance G’; that is the most similar to G;. The search for
the counterfactuals is conditioned such that the returned instance G’;- is different?
from the original G;.

Although Eq.1 has been widely adopted in the literature, the usage of the
similarity metric to produce counterfactuals is loosely defined because different
metrics might produce different counterfactuals for the same input graph G;. To
this end, we take a probabilistic perspective and aim to generate a counterfactual
instance that is quite likely within the distribution of valid counterfactuals by
maximising Eq. 2.

&s (G;) = argmax Py (G, | Gi, @ (G;) ,—P (Gy)) (2)
Gj;eg
Here, we use the notation —¢ (G;) to indicate any other class from the one
predicted for G;, thus supporting also multi-class classification problems. In a
binary classification scenario, =@ (G;) becomes 1 — @ (G;).

! In case multiple counterfactuals maximise this probability, one can break ties arbi-
trarily to produce a single one.

2 Some methods [1] default to the original instance if the search/heuristic fails to
produce a valid counterfactual.
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Fig. 1. Counterfactuality under distributional drifts. (left) Given the decision boundary
of the oracle @ trained on the data at time ¢, graph G% is correctly associated as the
counterfactual of G} since it satisfies Eq. 3. (right) Drift happens and G is “teleported”
at G'T! crossing the old (dotted red line) decision boundary. Here, G5! cannot be a
counterfactual for G4*" since @ (Gi™') = @ (G4"). Assuming that G} satisfies Eq. 3
at time ¢+ 1, we can signal a drift and potentially update @’s decision boundary (green
full line), thus changing the counterfactuals where applicable. (Color figure online)

As anticipated in Sect. 2, counterfactual validity is defied when distributional
drifts happen in time. Now, for different time stamps, we have different snapshots
of the same dataset, G = {GY,..., G} where ¢t € [0,7] and T is the maximum
monitoring time. At any particular time ¢ 4 1, it might happen that the oracle
wrongly predicts the class for G, ie., @ (G!) # @ (Gi"). This means that G
has experienced changes in its structure, which led to a change of its class at
time ¢ + 1. If & (G!) # @ (GiT"), we expect that the counterfactual for Git
to change w.r.t. that of G!. Therefore, we take into account the time factor to

redefine Eq. 2 as follows:

Ep (Gf) = arg max Pctf (G;-, | Gt & (Gf) , P (Gf)) (3)

Gteg

To the best of our knowledge, this is the first work that tries to integrate drift
detection with counterfactuality change in time. In other words, we can signal
a drift happening if & (GY) # & (Gf“) because it means that the original
graph G! has moved beyond the decision boundary of @ at time ¢ + 1 (see
Fig.1). In these scenarios, we can trigger an update of @ to reflect the changes
after the drift and regenerate the counterfactuals accordingly. However, in cases
where G; has changed from ¢ to ¢t + 1 but has @ (G!) = & (Gﬁ"'l), then, even
though its counterfactual might change structure (see Eq.3), it still remains
valid, maintaining the opposite class. Here, a full update of @ could be avoided
in real-world scenarios.
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4 Methodology

Here, we describe our method, Dynamic GRAph Counterfactual Explainer,
namely DyGRACE?. DyGRACE is a semi-supervised GCE method that uses ¢
in the first time step ¢ty to obtain knowledge about the data distribution and
search for valid counterfactuals while avoiding getting hints from its (possibly)
outdated decision function for t; > to Vi € [1,T]. To favour readability, we omit
the time superscript from the formulas unless necessary for disambiguation.

Recall that we are in a binary classification scenario. However, the follow-
ing observations can be easily extended to a multi-class classification problem.
Here, we rely on two graph autoencoders (GAEs) [11], ie., fy,f-y : G — G
that are responsible for learning how to represent each class in Y, respectively.
At each time step, G; € G gets directed through one of the autoencoders
based on y = @ (G;). The objective of each autoencoder during the training
phase is to minimise the reconstruction error between the original graph G; and
its learned representation G;. Generally, the reconstruction score is a function
h:G x G — R. For a pair of instances (G;, G;) s.t. & (G;) # @ (G;), we expect
MGy, fy (G;)) > h(Gj, f-y (G;)). This is the case since the autoencoder cor-
responding to the counterfactual class should know how to represent G, thus
having a low reconstruction error. Contrarily, the autoencoder corresponding
to the factual class should not be able to (at least not easily) reconstruct a
counterfactual.

Once f, and f-, are trained, DyGRACE maximises the probability in Eq. 3
to find counterfactuals for all G; € G. We model P,y by the parametric density
function in Eq.4 where «, 8, and ~ are learned weights.

argmax Py (G; | Gy, @ (G;) , @ (G)))
G;eG

= arg max (ah(Gy, fy (G§)) — BR(Gy, [~y (G)) + 79 (Gi, Gy))

(4)

where y = @ (G;), g : G X G — R measures the similarity between two graphs,
and «, §, and y are learned weights. Eq.4 maximises the reconstruction error
of G; from the factual autoencoder, minimise - hence the negation - the error
of G from the counterfactual autoencoder, and maximises the similarity of G;
w.r.t. G;. In other words, we search for counterfactuals that are far away* from
other factual graphs besides G;.

Notice that the weights «, 3, and v in Eq. 4 can be solved via a logistic regres-
sion trained on a set of graph pairs. We assign pairs of graphs with (G;, G;) a
label of 1 if @ (G;) # ¢ (G;), and 0 otherwise. By solving this objective function,
we can interpret the learned weights and assess the contribution of each compo-
nent in the equation of finding the counterfactuals for each G;. At inference time,
we get a never-seen before graph G*, and for all G; € G, we calculate the recon-
struction errors h(G, fo (G;)) and h(G;, f1 (G:)), and the similarity g (G*, G;).

3 We provide our implementation in https://github.com/bardhprenkaj/HANSEL.
4 One can see the similarity function g as the specular of a particular distance function,
provided that this has a codomain of R}.
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We use these values as input to the trained logistic regressor to find the “best”
counterfactual candidate for G*.

In the next iterations, we do not rely on @’s predictions since they might
not represent the reality of the new incoming data (see Fig.1). Instead, we
exploit the learned representation of the two GAEs from the previous iteration.
In other words, for each Gt € G s.t. t € [1,T], we exploit the reconstruction
errors h(GY, fo(Gh)) and h(GE, f1(GY)) to find the label of G%. Notice that one
of the GAEs embodies the latent representation of G, thus producing a smaller
reconstruction error and playing the role of the factual autoencoder. Now, we
can use the logistic regressor trained in at time ¢ — 1 to return the counterfactual
Gheg.

In practice, to support a continual adaptation of the learned graph represen-
tation of the GAEs, we find the top k counterfactuals via the logistic regressor.
We use these instances to update the knowledge of the counterfactual GAE
and minimise the reconstruction error. Contrarily, we can use the same counter-
factual candidates to maximise their reconstruction error by the factual GAE,
thus steering it away from the counterfactual representation space. This goes in
hand with the intuition of contrastive learning since the factual GAE, at each
iteration, learns to be specific about the factual instances and is drawn away
from potential counterfactuals. The same reasoning applies to the counterfac-
tual GAE. After each iteration, the logistic regressor can be updated (or even
trained from scratch) on the “newly gained” knowledge of the GAEs. In this way,
the prediction decision function gets mimicked by the autoencoders instead of
an external (possibly) black-box oracle @.

Recall that we do not rely on the oracle @ predictions in successive iterations
but on the learned representation of the GAEs at previous ones. Nevertheless,
DyGRACE can play the role of a drift detector based on the reconstruction
errors at iteration ¢ and those at ¢ —1. In other words, f, and f-, can be used to
measure the reconstruction errors for Gf_l € Gbasedony =@ (Gﬁ_l). Then,
we can do the same for G € G based on y = @ (G%). If the distributions of the
reconstruction errors at t and t — 1 are different according to a statistic test (e.g.,
Kolmogorov-Smirnov test), then we can signal a distributional drift and update
@ accordingly. Afterwards, f, and f-, are retrained according to the updated
@, and Eq.4 is optimised. However, notice that this procedure is supervised
and depends on @, which does not guarantee satisfactory performances at each
iteration to guide the search for valid counterfactuals. Exploiting the learned
representation of the GAEs in a semi-supervised manner as described above is
more efficient and decouples itself from the underlying oracle ®.

5 DyGRACE’s Performance Analysis

Here, we assess the performances of DyGRACE and the other SoTA methods.
First, we describe the adopted benchmarking datasets providing the details on
their generation process (see Sect.5.1). Then, we describe the evaluation metrics
and the hyperparameters used to run each method (see Sect.5.2). Finally, in
Sect. 5.3, we provide a discussion of the performance of DyGRACE.
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5.1 Benchmarking Datasets

We test DyGRACE on a synthetic dataset, namely Tree-Cycles, generated
according to [25,32], and a real dataset, namely DBLP-Coauthors [4]. See Table 1
for the dataset characteristics averaged over the different time snapshots.

Table 1. The dataset characteristics. |G| is the number of instances; u(|V]) and o(|V])
represent the mean and std of the number of vertices per instance; u(|E|) and o(|E|)
represent the mean and std of the number of edges per instance; |C;| is the number of
instances in class ¢ € {0,1}. |T'| represents the number of snapshots.

TS| |w(V]) £ o (V) #(E]) £ o(|E]) |Col [|Ch]
DynTree-Cycles |4 1100 28 = 0.00 27.62 % 0.645 |45.7554.25
DBLP-Coauthors|10 36 (13 = 0.00 41.26 + 6.69 |27.27 8.73

Tree-Cycles [32] contains cyclic (1) and acyclic (0) graphs. We extend this
dataset by introducing the time dimension, allowing graphs to evolve while main-
taining class membership. We repeat the dataset generation in [24] at each time
step. In this way, a particular graph G! can change its structure in ¢ + 1 and
remain in the same class or move to the opposite one. This emulates a synthetic
process of tracing the evolution of the graphs in the dataset according to time.
Here, we guarantee that the number of instances per snapshot is the same.

The DBLP-Coauthors dataset comprises graphs representing authors, where
edges denote co-authorship relationships, and edge weights signify the number of
collaborations in a given year. We focus on the time frame {2000, 2010] and con-
sider ego-networks of authors with at least ten collaborations in 2000. From this
set, we randomly sample 1% due to the dataset’s scale. To trace the ego-network
evolution from 2000 to 2010, we propagate ego-networks from the previous year
whenever an author has no collaborations in a specific year t. Ego-networks are
labelled 1 if their mean sum of edge weights is in the 75th percentile of average
collaborations for a particular year ¢, otherwise labelled as 0.

5.2 Evaluation Metrics and Hyperparameter Choice

We follow the suggestion in [24] to evaluate each method and use multiple metrics
to show a complete and fair assessment. To this end, we exploit Runtime, Oracle
calls [1], Correctness [8,25], Sparsity [25,33], and Graph Edit Distance [24] as
evaluation metrics. Since we return a list of counterfactuals for each input graph,
we evaluate DyGRACE by reporting values of the previous metrics @1, ..., Qk.

Notice that DyGRACE is a flexible framework which can take any encoder-
decoder combination to learn meaningful graph representations. Here, we rely on
a 2-layer GCN encoder interleaved with ReLU activation functions. The output
dimension of each convolution operation is 8. The decoder is a simple inner
product between the learned graph representation z, as in [11]. We train each
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GAE for 50 and 150 epochs, respectively, for DTC and DBLP, and use the Adam
optimiser with a learning rate of 1072 and 10~%. We rely on L2 regularisation for
the logistic regressor and use the default parameters of the scikit-learn package.
We implement DyGRACE based on the GRETEL framework [22,25]. We did
not perform any hyperparameter optimisation for DyGRACE.

5.3 Discussion

Table 2 depicts the performance of DyGRACE. We report averages on 10-fold
cross-validation. We reserve 10% of the first snapshot as test data and adapt the
GAEs and the logistic regressor in an online fashion for the other snapshots. As
a preliminary assessment of the performances of DyGRACE, we employ omni-
scient oracles for both datasets such that the correctness refers to the accuracy
of the explainer w.r.t. the ground truth. Excluding the oracles’ performances
allows the reader to understand each explainer’s limitations and benefits better.
Where applicable, we report metrics @1 and @k = 10. As anticipated in Sect. 4,
DyGRACE accesses the oracle only in the first snapshot while relying on the
GAEs in the successive snapshots.

In both datasets, DyGRACE has satisfactory results regarding correctness
@k. Notice, however, that DBLP, being a real-world scenario, is far more com-
plex than DTC. In DBLP, the ego networks belonging to the two classes share a
similar structure, with the sole difference in the edge weights. Therefore, the cor-
rectness @1 in this scenario fluctuates (i.e., increasing until t3, tg, and decreasing
afterwards). We believe this happens due to similar latent spaces that the two
GAEs learn, which cannot completely distinguish between factual and counter-
factual graphs.

It is interesting to notice that the correctness @k has a non-decreasing trend
for DTC, meaning that valid counterfactuals might not be the most probable
w.r.t. the input graph. However, they get captured by the underlying logistic
regressor. Meanwhile, in DBLP, the correctness @1 and @k degrades after iter-
ation t7, meaning that the structure of the graphs mutates heavily, making the
two GAEs unable to correctly represent the two classes. The GED follows a sim-
ilar trend throughout the iterations, indicating that the logistic regressor does
not need to go far away from the separating hyperplane to fetch valid coun-
terfactuals. Additionally, this phenomenon suggests that the logistic regressor
“pays attention” to the first two components of Eq.4 to produce counterfactu-
als rather than concentrating more on the similarity of the instance with its
potential counterfactual.

One drawback that could hinder DyGRACE’s usability is the running time®,
especially in successive iterations (see DBLP) where there are distributional
shifts and the two GAEs need to update. However, one could implement an

5 Notice that in iterations tg, to, t10 in DBLP, DyGRACE fails to produce counterfac-
tuals in the first fold, thus finishing the search for valid counterfactuals prematurely.
Therefore, the running time is reduced by a factor of 2 w.r.t. the previous iterations.
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update trigger mechanism only in those scenarios where substantial drifts hap-
pen, which can get signalled according to a statistical test w.r.t. the reconstruc-
tion errors of the current and previous iterations (see Sect.4).

Table 2. Average of DyGRACE’s performance on DynTree-Cycles (DTC) and DBLP-
Coauthors (DBLP) on 10-fold cross-validation.

Runtime (s) |/Correctness T Sparsity | GED | Oracle Calls |
Q1 Qk @1 Qk @1 @k
DTC |to [24.73570419 | 40£0-490] (%0.000]) GrE0.109] 752011436 90E5-839 |40 04E6-272 |9000,00=0-00
4, 733553622 | 60L0-490/1 ((£0.000|y 9=0.087 () 79:£0.085 |38 (E4.652 |1 46E4.725 | (000

by |74.62%6-225 | 70%0-458/1 (£0.000|y 73::0.038 () 75:£0.079 |4 512,201 |4q (g+4.366 | +0.00

ty 65.00£8409 | 404901 ()0.000|q 76E0.065 ) 74E0.090 4o 5(ESTT5 4] 1G+4.983 |() ()+0.00
DBLP/ty |12.83532599 | 3g%0-481]] .00 | 7E0.186]) 71 £0.194 98 508617 30 (4£9.499 990 0=0-00
£y 1140.21E53-821 () 95£0.433| ge0.331|) £ 40,315y 6o0.238 |35 95 :EAT.872|4() 9 448.264| ()E0.00
ty |121.20%57-151 () 190381 |) go0.331)) £o .00 |3 56.178) g ge:E15.070|g o= 33.389| (E0.00
ts |150.73%20-020 |() 3g:£0.484| gg:+0.381) grok0.489|() g1 +0.884 g3 ] 951,033 57 g:+44.450 ) ()()0.00
£y |161.80E10-609 g 95E0.433|) g0 k0.484|) (a=0.261y 5g+0.263)91 GoE15.337|9() 5 15.186| (0+0.00
15 |162.77%13.782 | 50£0-500|] ()£0.000/] (] +1.388|() 75:+0.835 9] 9H10.361 91 71 +12.553) (E0.00
te |165.39F15-160 () 50£0-500|] ()£0.0009 9G+3.125)9 91 +4.238 55 (1)£39.528 |59 95:£42.852 ) ))0.00
tr |81.20F82797 | 19+0.831) 5)+0.500) 44E3.244)3 1 3+5.670 1] (919,118 95 g(+82.100 (E0-00
te 768575487 | 190831 5(£0.500) 45£0.535\() g 40671 17 ggk23.861 35 9024627 ))0.00
to (669767959 | 95+0-433| 5(£0.500() 44E0.450|) G7+0.257 33 7534387 5 grE20.576) (E0.00
£16/63.07E65-097 () 95+0-433| 38+0.484 ) 91E1.310|() 970685 57 5969.611 77 (1962334 ) )()£0.00

6 Conclusion

We demonstrated the effectiveness of our semi-supervised Graph Counterfactual
Explainer across synthetic and real-world datasets. Deployed on the synthetic
Tree-Cycles dataset and the real-world DBLP-Coauthors dataset, DyGRACE
showcased satisfactory results in terms of correctness. Despite the complexity of
the DBLP dataset due to its real-world nature, DyGRACE managed to discern
between factual and counterfactual graphs to a large extent.

The continual trend of increasing correctness in both datasets asserts
DyGRACE'’s ability to capture valid counterfactuals, even when they may not
be the most probable concerning the input graph. This is particularly impressive
given that GED remained stable throughout iterations, indicating that the model
doesn’t have to deviate significantly from the separating hyperplane to identify
valid counterfactuals. Nonetheless, DyGRACE’s potential downside lies in its
extensive runtime during consecutive iterations, particularly visible in datasets
with significant distributional shifts. We suggest implementing an update trig-
ger mechanism that activates only when substantial drifts occur to alleviate this
issue. This approach would rely on a statistical test concerning the reconstruc-
tion errors of current and previous iterations.
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Our findings support DyGRACE as a promising, flexible framework that can

learn meaningful graph representations for counterfactual explanations. Thus,
DyGRACE offers exciting new opportunities for future research.
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