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Abstract

La resolucion de ecuaciones polindmicas, en particular la busqueda de raices de polinomios con coefi-
cientes enteros, es un tema fundamental en Educacién Secundaria.

En el presente trabajo se analiza el tratamiento que estos contenidos reciben actualmente en el curriculo
oficial de Educacion Secundaria Obligatoria y Bachillerato, atendiendo tanto a la legislacion estatal estable-
cida por la LOMLOE como a su concrecion normativa en la Comunidad Auténoma de Castilla y Leén. A
partir de este andlisis, se constata que el estudio de las raices de polinomios se centra fundamentalmente en
la aplicacién de la Regla de Ruffini, que sélo es ttil para polinomios previamente seleccionados que tengan
raices enteras y limita la comprension del alumnado sobre la generalidad y profundidad del problema.

Paralelamente, se realiza una revision histérica de los principales métodos desarrollados para la resolu-
cion de raices de polinomios, desde los procedimientos algebraicos clasicos hasta técnicas mds avanzadas,
como el método de Sturm, o las aproximaciones numéricas de dichas raices. Esta perspectiva historica per-
mite comprender la evolucion del dlgebra de polinomios y valorar la riqueza conceptual que ha acompafiado
a la busqueda de soluciones de ecuaciones polindmicas a lo largo de la historia.

El objetivo de este trabajo es, por tanto, doble: por un lado, recuperar y contextualizar histéricamente
distintos métodos para la resolucién de ecuaciones polindmicas; y por otro, con base en esta revision his-
térica y, teniendo en cuenta el actual curriculo de Educacion Secundaria, valorar cudles de estos métodos
pueden ser adaptados o simplificados didacticamente para su inclusion en el aula de Secundaria de cara a
proporcionar una mayor variedad de métodos. De esta forma, y con el fin de enriquecer la ensefianza del
algebra de polinomios y ofrecer al alumnado una visién mas completa, se propone una ampliacion del enfo-
que tradicional, incorporando (de forma accesible) resultados como el método de Sturm o algunos métodos
de aproximacion numérica con interpretacion geométrica sencilla e intuitiva.

Abstract

The resolution of polynomial equations, particularly the search for roots of polynomials with integer
coefficients, is a fundamental topic in Educacion Secundaria.

This work analyzes how these contents are currently addressed in the official curriculum in Educacién
Secundaria and Bachillerato, considering both the national legislation established by the LOMLOE and
its specific implementation in the Autonomous Community of Castilla y Ledn. Based on this analysis, it is
evident that the study of polynomial roots is mainly limited to the application of Ruffini’s Rule, which is only
effective for carefully selected polynomials with integer roots, and which restricts students’ understanding
of the general scope and depth of the problem.

In parallel, this work presents a historical review of the main methods developed for solving polynomial
roots, ranging from classical algebraic procedures to more advanced techniques, such as Sturm’s method
or numerical approaches for approximating roots. This historical perspective highlights the evolution of
polynomial algebra and reveals the conceptual richness that has accompanied the search for solutions to
polynomial equations throughout history.



The aim of this work is therefore twofold: on the one hand, to recover and contextualize various histori-
cal methods for solving polynomial equations; and on the other, to assess—based on this historical review
and in light of the current Educacion Secundaria curriculum—which of these methods could be adapted or
simplified for classroom use. Ultimately, this study proposes broadening the traditional approach by incor-
porating (in an accessible way) An expansion of the traditional approach is proposed, incorporating (in an
accessible way) results such as the Sturm method or some numerical approximation methods with a simple
and intuitive geometric interpretation.
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1. Introduccion

La determinacion de raices de polinomios constituye un aspecto fundamental del dlgebra que se abor-
da en la Educacion Secundaria. No obstante, en el aula, su tratamiento suele estar restringido a métodos
elementales como la Regla de Ruffini, el Teorema del Resto o la factorizacién por inspeccién. Todos estos
métodos son aplicables tnicamente a polinomios con coeficientes enteros y raices racionales facilmente
identificables. Esta restriccion metodoldgica empobrece la comprension del concepto de raiz por parte del
alumno, y dificulta el desarrollo de una visién més realista, general y profunda del problema.

El presente trabajo parte de la hipdtesis de que es posible y pedagdgicamente deseable ampliar la pers-
pectiva desde la que se ensefa la resolucidon de ecuaciones polindmicas, incorporando métodos de reso-
lucién més generales que permitan al alumno de Educacion Secundaria comprender, tanto la naturaleza
estructural de los polinomios, como el significado de sus raices (reales, racionales o aproximadas), junto
con su interpretacion grafica y funcional.

Con este objetivo, y tras revisar el curriculo oficial de Educacion Secundaria, se realiza un recorrido his-
torico del tratamiento de las raices de polinomios, desde los desarrollos de la Antigiiedad hasta aportaciones
clave de matematicos como Tartaglia, Cardano, Viete, Ruffini, Sturm,... De esta forma, utilizamos la his-
toria como recurso diddctico, fomentando asi la interdisciplinariedad y ofreciendo una visién que conecta
con la historia, la filosofia y la cultura y, en concreto, con la evolucidén de la ciencia y el pensamiento 16gico
a través de matematicos de diferentes épocas. También permite mostrar a los alumnos que el dlgebra, tal y
como se usa hoy, tiene raices multiculturales y multidisciplinares. Esta forma de presentar los contenidos
ha estado motivada por la asignatura Ideas y conceptos matemdticos a través de la historia que cursé en el
Master y que me animo a investigar acerca de la vida de algunos matemadticos (Poblacion, 2025).

El trabajo también explora el uso de herramientas digitales como pueden ser GeoGebra o WolframAlpha
que facilitan la visualizacion gréfica de polinomios y sus raices, la automatizacién de procedimientos sim-
bélicos y numéricos, y el disefio de actividades interactivas que permiten un aprendizaje mds significativo
y contextualizado.

Desde una perspectiva aplicada, la bisqueda de raices de polinomios es una competencia transversal
que trasciende el &mbito escolar. Algunas de sus aplicaciones més relevantes incluyen:

= Ingenieria de control: Las raices de los polinomios caracteristicos determinan la estabilidad y el
comportamiento dindmico de sistemas como los de navegacion aérea o vehiculos autbnomos.

= Fisica: En mecdnica celeste, por ejemplo, se resuelven ecuaciones polindmicas cuyas raices corres-
ponden a posiciones, tiempos o velocidades.

= Economia y finanzas: Permiten determinar puntos de equilibrio o valores criticos en modelos de
costes, beneficios o tasas de crecimiento.

= Calculo de maximos y minimos: A través del analisis de las raices de la derivada, se pueden localizar
extremos relativos o puntos de inflexion.

= Resoluciéon de ecuaciones algebraicas: La factorizacion y resolucién de polinomios de diversos
grados es esencial tanto en dlgebra pura como aplicada.
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= Algoritmos computacionales: Se usan en interpolacion, ajuste de curvas, simulaciones y otros pro-
cesos numéricos.

= Electrénica y teoria de circuitos: Las raices del polinomio caracteristico determinan la respuesta
temporal de sistemas eléctricos complejos.

Estas aplicaciones refuerzan la importancia de que el alumno comprenda no sélo qué es una raiz, sino
también su multiplicidad, localizacion aproximada y su interpretacion grafica como punto de partida para
conectar el saber matemdtico con la resolucion de problemas reales.

Este trabajo consta de siete secciones incluyendo la presente introduccién y un anexo final.

Tras la introduccidn, en la Seccién 2 se realiza un andlisis curricular y legal basado en la la LOMLOE
(ley educativa actualmente vigente en Espafia y es la Ley Orgéanica de Educacion 3/2020, de 29 de diciem-
bre, por la que se modifica la Ley Organica 2/2006, de 3 de mayo) y en el marco de la Educacién Secundaria
Obligatoria en Castilla y Ledn que contextualiza la presencia de los polinomios en los distintos cursos de
esta etapa educativa.

La Seccién 3 muestra los conceptos basicos y los métodos cldsicos que se desarrollan en Educacién
Secundaria y que son el punto de partida del recorrido histérico, que se lleva a cabo en la Seccion 4, de
los principales avances en la resolucion de polinomios, desde la antigiiedad hasta la actualidad, destacando
la evolucion de los métodos clasicos y la aparicién de técnicas avanzadas y de gran potencial como son:
el método de Sturm (Benedetti, 1990), cuya demostracion se incluye y para la que han sido de ayuda los
apuntes de la asignatura del Mdaster Complementos matemdticos. Bloque de Algebra) (Cano, 2025); y los
métodos de aproximacidon numérica (Burden y Faires, 2010).

A partir del marco normativo y las técnicas descritas a lo largo de la Seccién 4, se propone una inte-
gracién curricular progresiva de contenidos y estrategias diddcticas innovadoras para 3°y 4° de ESO, que
ampliamos también, a 1° de Bachillerato, todo ello con el objetivo de enriquecer el aprendizaje mas alla del
uso tradicional de la regla de Ruffini para lo que nos han sido de gran utilidad los apuntes proporcionados
en la asignatura Metodologia y evaluacion Matemadtica cursada en el Méster (Gonzalez, 2025).

Finalmente, se presentan diversas propuestas de actividades de aula, fundamentadas pedagégicamente,
cuyo objetivo es favorecer el desarrollo competencial del alumno y promover una vision mds amplia y
profunda del estudio de los polinomios en la Educacién Secundaria Obligatoria.



2. Analisis curricular. Marco legal en la enseiianza de polinomios.

La ensenanza de los polinomios estd regulada en la comunidad de Castilla y Ledn por los siguientes
documentos legales que podemos encontrar en el BOCYL:

= Decreto 39/2022, de 29 de junio, por el que se establece el curriculo de la Educaciéon Secundaria
Obligatoria.

= Decreto 40/2022, de 29 de junio, por el que se establece el curriculo de Bachillerato.

En concreto, en el curriculo de 1° y 2° de la ESO se introducen los conocimientos previos que preparan al
alumno para un estudio mas formal del dlgebra que se desarrolla en cursos superiores, principalmente en 3°
y 4° dentro del bloque Sentido algebraico del area de Matematicas.

1° de ESO.

Segun el Decreto 39/2022, entre los saberes bdsicos para este curso se incluyen:
D. Sentido algebraico

3. Variable

= Variable: Comprension del concepto como incégnita en ecuaciones lineales con coeficientes
enteros y como cantidades variables en férmulas.

= Comprension del significado del lenguaje algebraico como un avance en la historia y el desarro-
llo de las matemaéticas frente al lenguaje retérico sin simbolos matematicos de la antigiiedad.

4. Igualdad y desigualdad

= Equivalencia de expresiones algebraicas involucradas en ecuaciones lineales con coeficientes
enteros, utilizando representaciones concretas (balanzas, discos algebraicos, etc.), matematicas
y simbdlicas.

= Ecuaciones lineales con coeficientes enteros: resoluciéon mediante cdlculo mental o métodos
manuales apoyados por material manipulativo si es necesario.

Ademads, en el Decreto 39/2022, estos contenidos se vinculan especialmente con las siguientes competen-
cias especificas y con los correspondientes criterios de evaluacién:

= CEl: Reconocer patrones y relaciones. Identifica patrones sencillos (nimeros pares, multiplos, se-
cuencias simples).

= CE2: Resolver problemas. Resuelve problemas aritméticos basicos.

= CE3: Representar e interpretar. Usa representaciones graficas simples (graficas de barras, lineas).
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CE4: Razonar y argumentar. Justifica procedimientos basicos (por qué una operacion es correcta).

CES: Usar tecnologia. Calculadora bésica. Inicios en el uso de hojas de calculo.

CE6: Comunicar matematicamente.Expresa ideas basicas con lenguaje numérico y verbal.

CE7: Aplicar las matemadticas. Aplica a situaciones cotidianas (precios, tiempo, distancias).

CES: Actitud positiva. Participa en resolucion de retos sencillos.

Criterio de evaluacion:

= Comprender y utilizar el lenguaje algebraico para representar relaciones y operaciones.

= Resolver problemas sencillos utilizando expresiones algebraicas bésicas.

Podemos concluir, que se introduce el uso de letras para representar niimeros y comenzar a expresar rela-
ciones (introduccion al lenguaje algebraico), la traduccion de expresiones verbales a expresiones algebraicas
sencillas y la evaluacion de expresiones algebraicas simples sustituyendo letras por numeros. También se
realizan operaciones con expresiones algebraicas muy bdsicas, como monomios sencillos y se presentan
propiedades de las operaciones: distributiva, conmutativa, asociativa.

2° de ESO.
Segtn el Decreto 39/2022, entre los saberes bdsicos para este curso se incluyen:
D. Sentido algebraico

3. Variable

= Variable: Comprension del concepto de variable como incdégnita en ecuaciones lineales con
coeficientes racionales, como indeterminadas en expresion de patrones o identidades y como
cantidades variables en férmulas y funciones afines.

= Monomios. Operaciones bdsicas.
4. Igualdad y desigualdad
= Relaciones lineales en situaciones de la vida cotidiana o mateméaticamente relevantes: expresion

mediante dlgebra simbdlica.

= Equivalencia de expresiones algebraicas en la resolucion de problemas, especialmente aquellos
basados en relaciones lineales.

= Estrategias de busqueda de soluciones en ecuaciones lineales con coeficientes racionales y sis-
temas de ecuaciones lineales en situaciones de la vida cotidiana.



= Ecuaciones lineales y sistemas de ecuaciones lineales: resolucién mediante cdlculo mental, mé-
todos manuales o el uso de la tecnologia segutn el grado de dificultad.

Ademas, en el Decreto 39/2022, estos contenidos se vinculan especialmente con las siguientes competen-
cias especificas y con los correspondientes criterios de evaluacién:

= CEl: Reconocer patrones y relaciones. Generaliza reglas en tablas y gréaficos.

= CE2: Resolver problemas. Usa expresiones algebraicas en problemas contextualizados.

= CE3: Representar e interpretar. Interpreta y elabora representaciones algebraicas y gréficas.
» CE4: Razonar y argumentar. Da razones simples en problemas geométricos y numéricos.

= CES: Usar tecnologia. Uso de software grafico o simuladores.

= CE6: Comunicar matematicamente. Utiliza notacion simboélica mds estructurada.

= CE7: Aplicar las matemaéticas. Relaciona con otras areas: fisica, tecnologia.

= CES: Actitud positiva. Acepta el error y busca soluciones alternativas.

También se indican los Criterio de evaluacion:

= Aplicar técnicas bésicas de manipulacion algebraica en la resolucién de problemas.

= Resolver ecuaciones de primer grado y sistemas sencillos.

Podemos observar, que se profundiza en el uso del lenguaje algebraico, en las operaciones con monomios:
suma, resta, multiplicacién. Se introducen las igualdades notables simples y la resolucién de ecuaciones de
primer grado con expresiones algebraicas y se comienza la formulacién de problemas con algebra.

3° de ESO.

Segtn el Decreto 39/2022, entre los saberes bdsicos para este curso se incluyen:

C. Sentido algebraico

3. Variable

= Comprension del concepto de variable como incdgnita en ecuaciones cuadraticas, como inde-
terminadas en identidades notables y como cantidades variables en férmulas y funciones cua-
dréticas.

= Polinomios en una variable, operaciones bdsicas y factorizacion.
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4. Igualdad y desigualdad

» Relaciones cuadraticas en situaciones de la vida cotidiana o matematicamente relevantes: ex-
presion mediante dlgebra simbolica.

» Equivalencia de expresiones algebraicas en la resolucion de problemas, especialmente aquellos
basados en relaciones cuadraticas. Identidades notables.

» Estrategias de busqueda de soluciones en ecuaciones cuadraticas en situaciones de la vida coti-
diana.

» Ecuaciones cuadraticas: resolucion mediante calculo mental, métodos manuales o el uso de la
tecnologia segtin el grado de dificultad.

También, en el Decreto 39/2022, estos contenidos se vinculan especialmente con las siguientes competen-
cias especificas y con los correspondientes criterios de evaluacion:

= CEl: Reconocer patrones y relaciones. Reconoce relaciones algebraicas y funcionales.

= CE2: Resolver problemas. Aplica dlgebra y geometria para modelar situaciones.

= CE3: Representar e interpretar. Trabaja con coordenadas, funciones y polinomios.

= CE4: Razonar y argumentar. Argumenta sobre propiedades y demuestra con ejemplos.

= CES: Usar tecnologia. Aplica TIC para representar funciones y resolver problemas.

= CE6: Comunicar matematicamente. Explica procedimientos con propiedad formal.

= CE7: Aplicar las matematicas. Modeliza fendbmenos reales con ecuaciones o proporciones.

= CES: Actitud positiva. Muestra persistencia en problemas complejos.

Criterio de evaluacion:
= Utilizar el dlgebra para modelizar y resolver situaciones problemdticas mas complejas.

= Aplicar técnicas de factorizacién y simplificacién de expresiones algebraicas.

Por tanto, en este curso se pide que el alumno reconozca y manipule expresiones algebraicas, realice opera-
ciones con polinomios: suma, resta, multiplicacion y divisién de polinomios entre monomios. Se introducen
la Regla de Ruffini y la factorizacién de polinomios sencillos y se aborda la resolucién de ecuaciones poli-
némicas de segundo grado con una incégnita, aplicado todo ello en problemas contextualizados.

10



4° de ESO. Opcion A.
Segun el Decreto 39/2022, entre los saberes bdsicos para este curso se incluyen:

D. Sentido algebraico

3. Variable

= Variables: asociacion de expresiones simbdlicas al contexto del problema y diferentes usos (co-
mo incdgnita en ecuaciones, inecuaciones y sistemas, indeterminada en patrones e identidades,
para expresar cantidades que varian en férmulas y funciones elementales y como constantes o
parametros en modelos funcionales).

» Caracteristicas del cambio en la representacion gréfica de relaciones lineales y cuadriticas.
4. Igualdad y desigualdad

= Relaciones lineales, cuadraticas y de proporcionalidad inversa en situaciones de la vida cotidiana
o matemdaticamente relevantes: expresion mediante dlgebra simbdlica.

= Formas equivalentes de expresiones algebraicas (incluyendo la factorizacion) en la resolucion
de ecuaciones polindmicas y sistemas de ecuaciones e inecuaciones lineales.

» Estrategias de discusion y biisqueda de soluciones en ecuaciones lineales y cuadréticas en situa-
ciones de la vida cotidiana.

= Ecuaciones polindmicas, sistemas de ecuaciones e inecuaciones lineales: resolucion mediante
calculo mental, métodos manuales o el uso de la tecnologia segun el grado de dificultad.

Ademads, en el Decreto 39/2022, estos contenidos se vinculan especialmente con las siguientes competen-
cias especificas y con los correspondientes criterios de evaluacién:

= CEl: Reconocer patrones y relaciones. Estudia progresiones, patrones algebraicos complejos.

= CE2: Resolver problemas. Utiliza funciones, sistemas y ecuaciones en situaciones reales.

= CE3: Representar e interpretar. Interpreta graficas complejas de funciones reales (lineales, cuadrati-
cas, racionales).

= CE4: Razonar y argumentar. Elabora razonamientos matematicos formales.
= CES: Usar tecnologia. Usa tecnologia para resolver y validar resultados.
= CE6: Comunicar mateméticamente. Presenta informes con lenguaje matematico preciso.

= CE7: Aplicar las matematicas. Utiliza funciones y modelos para interpretar fenémenos sociales, cien-
tificos.

= CES: Actitud positiva. Trabaja de forma auténoma, creativa y critica.

Criterio de evaluacion:
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= Analizar y resolver problemas utilizando herramientas algebraicas avanzadas.
= Interpretar y representar funciones polindmicas y racionales.

Podemos observar que se incluye la factorizacién de polinomios (factor comun, trinomios cuadrados per-
fectos, diferencias de cuadrados) y su aplicacion a la resolucion de ecuaciones algebraicas.

4° de ESO. Opcion B.
Segun el Decreto 39/2022, entre los saberes bdsicos para este curso se incluyen:
D. Sentido algebraico

3. Variable

= Variables: asociacion de expresiones simbdlicas al contexto del problema y diferentes usos (co-
mo incdgnita en ecuaciones, inecuaciones y sistemas, indeterminada en patrones e identidades,
para expresar cantidades que varian en férmulas y funciones elementales y como constantes o
parametros en modelos funcionales).

= Relaciones entre cantidades y sus tasas de cambio.
4. Igualdad y desigualdad

» Algebra simbdlica: representacion de relaciones funcionales en contextos diversos.

= Formas equivalentes de expresiones algebraicas (incluyendo factorizacion y fracciones algebrai-
cas sencillas) en la resolucidn de ecuaciones polindmicas, exponenciales y logaritmicas sencillas
e irracionales, inecuaciones lineales y cuadraticas y sistemas de ecuaciones lineales y no linea-
les.

= Ecuaciones polindmicas, exponenciales y logaritmicas sencillas e irracionales, inecuaciones li-
neales y cuadraticas y sistemas de ecuaciones lineales y no lineales: resolucién mediante célculo
mental, métodos manuales o el uso de la tecnologia segun el grado de dificultad.

Ademas, en el Decreto 39/2022, estos contenidos se vinculan especialmente con las siguientes competen-
cias especificas y con los correspondientes criterios de evaluacion:

= CEl: Reconocer patrones y relaciones. Estudia progresiones, patrones algebraicos complejos.
= CE2: Resolver problemas. Utiliza funciones, sistemas y ecuaciones en situaciones reales.

= CE3: Representar e interpretar. Interpreta graficas complejas de funciones reales (lineales, cuadrati-
cas, racionales).

= CE4: Razonar y argumentar. Elabora razonamientos matematicos formales.
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CES: Usar tecnologia. Usa tecnologia para resolver y validar resultados.

CE6: Comunicar matematicamente. Presenta informes con lenguaje matematico preciso.

CE7: Aplicar las matematicas. Utiliza funciones y modelos para interpretar fendmenos sociales, cien-
tificos.

CES: Actitud positiva. Trabaja de forma auténoma, creativa y critica.

Criterio de evaluacion:

= Analizar y resolver problemas utilizando herramientas algebraicas avanzadas.

= Interpretar y representar funciones polindmicas y racionales.

Observamos que se estudia la factorizacion de polinomios (factor comin, trinomios cuadrados perfectos,
diferencias de cuadrados) y su uso en la resolucién de ecuaciones algebraicas con aplicaciones en funciones
polinémicas simples.

Aunque nuestra atencion se centra fundamentalmente en Educacion Secundaria, hemos querido plasmar
la presencia de los polinomios en el curriculo de Bachillerato, constatando que se contintia su estudio,
especialmente en la asignatura Matemdticas I de 1.° de Bachillerato dentro del bloque Algebra y funciones
contribuyendo al desarrollo de la competencia matemdtica y competencias bdsicas en ciencia y tecnologia,
asi como a la competencia en razonamiento y resolucion de problemas. Ademas, se articula con los criterios
de evaluacion establecidos para cada etapa y curso, con un enfoque competencial y contextualizado. En
esta etapa se refuerzan las competencias especificas relativas a la resolucion de problemas algebraicos, la
modelizacion y el anélisis de funciones. Hemos incluido en el Anexo 7 la normativa relativa a los estudios de
Bachillerato con el fin de completar la informacién normativa proporcionada en relacién con los polinomios.

3. Conocimientos basicos y métodos clasicos utilizados en Educacion
Secundaria

En lo que sigue, denotaremos por K][z] al anillo de polinomios con coeficientes en un cuerpo K (ya sea Q,
R, 0 C) y consideraremos P(x) € K[z]|. Como referencias bibliograficas podemos citar (Larson, 2007) o
(Artin, 2011).

Definicion de polinomio

Un polinomio en una variable x con coeficientes en un cuerpo K es una expresion de la forma:
P(z) = ap2™ + ap 2™ -+ ayx + ag

conn €N, ag,aq,...,a, € K, ya, #0.
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El nimero natural n se denomina grado del polinomio.

Raiz de un polinomio

Una raiz o cero de un polinomio P(z) es un nimero r que cumple que P(r) = 0.

Es decir, la raiz de un polinomio es un valor de la variable para el cual el polinomio se anula.
Ejemplo: sea P(z) = 2% — 4, entonces r = 2y r = —2 son raices, ya que P(2) = 22 —4 =0y
P(-2)=(-2)?—-4=0.

Multiplicidad de una raiz

Si P(z) = (z —1r)* - g(z), con g(r) # 0, diremos que 7 es una raiz de P(x) de multiplicidad k.

Ejemplo: P(x) = (x —1)3(z + 2) tiene una raiz de multiplicidad 3 en = 1, y una raiz simple en x = —2.

Teorema del Resto

Sea P(x) € K[z] un polinomio con coeficientes en un cuerpo K. Si se divide P(x) entre z — a, con
a € R, entonces el resto de dicha divisién es P(a).

Demostracion:

Usamos el algoritmo de la divisién de polinomios en K[z] y sabemos que existe un polinomio cociente
Q(z) y un resto R € K (pues el grado del divisor (z — r) es 1) tales que:

Por tanto, R = P(r). [
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Teorema Fundamental de Algebra

Sea P(x) € C[z] un polinomio con coeficientes en un cuerpo C.
P(z) = ap2™ + ap 2™ '+ -+ ayx +ag, cona,#0ya; €C,
entonces existen 21, 2o, . . . , 2, € C, (no necesariamente distintos), tales que

Pz) =an(x — z1)(x — 2z9) ... (x — z,).

Es decir, un polinomio de grado n tiene exactamente n raices complejas, contando sus multiplicidades.

En cuanto a los métodos clédsicos de busqueda de raices, fundamentalmente son procedimientos de caracter
algoritmico y de aplicacion directa como la factorizacion por inspeccion, el uso de identidades notables y,
de forma destacada, la Regla de Ruffini.

La Regla de Ruffini se presenta habitualmente como un método eficiente para dividir un polinomio de
grado n entre un binomio de la forma x — a, y se utiliza, sobre todo, como herramienta para la factorizacién
de polinomios con coeficientes enteros.

En Secundaria, su uso se limita a comprobar si un nimero entero dado es raiz de un polinomio (teorema
del resto) y, en caso afirmativo, dividirlo para reducir el grado de la ecuacion. Este método resulta eficaz
unicamente cuando el polinomio tiene raices enteras y el alumno es capaz de encontrarlas mediante ensayo
y error entre los divisores del término independiente. Su uso se puede extender también a raices racionales.

Pese a su utilidad préctica, la regla de Ruffini puede fomentar un enfoque muy mecanico del dlgebra, en el
que la nocién de raiz queda reducida a una técnica de buisqueda sin conexion con el significado matemético
ni con el comportamiento grafico del polinomio. Ademas, este método excluye aquellas situaciones en las
que las raices no son enteras ni racionales, lo que limita gravemente la comprension estructural del concepto.

La Regla de Ruffini

Sea P(x) € K[x] ysea r € K. Entonces, existe un polinomio ()(z) y un nimero R € K tales que:

P(zx)=(x—7r)Q(x) + R
con R=P(r) y Q(z) esel cociente de la divisién de P(z) entre (x — r).

En particular, r es raiz de P(x) siy sélo si R = 0, es decir, si y sélo si P(r) = 0.

Demostracion:
Sea P(z) = a,z™ + ap_12" '+ + ayz + ap € K|z].

Aplicamos el algoritmo de division en el anillo K|z]: dado un polinomio P(x) y un binomio lineal (z — r),
existen tnicos polinomios Q(x) € K[z]| y un escalar R € K tales que:
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Evaluamos en x = r:

Por tanto, R = P(r), lo que demuestra que:
P(r) = (v —7) - Qz) + P(r).

En consecuencia, (z — r) divide a P(x) siy s6lo si P(r) = 0, es decir, r es raiz de P(x) siy sélo si el resto
de la division es nulo.

Si se encuentra un nimero r tal que P(r) = 0, entonces se sabe que (x — r) es un factor de P(z), lo que
permite dividir y continuar el proceso con el cociente. |

Ejemplo:
Consideremos el polinomio P(z) = z* — 622 + 11x — 6.
usando el Teorema del Factor, probamos con los divisores del término independiente: 41, +2, +3, £6.

Aplicamos la regla de Ruffini con z = 1

1 -6 11 -6
1 1 -5 6

1 =5 6 0 —>resto0, raiz 1, cociente Q(z) = z° — 5z + 6
2 2 —6 — ——resto0, raiz 2, cociente Qo(x) =z — 3

1 -3 0

Finalmente, P(z) = (z — 1) - (x —2) - (x — 3) y lasraices son: z = 1, x = 2, = 3.

Otro método clésico para la busqueda de raices supone aplicar el Teorema del Factor.

Teorema del factor

Sea P(x) € K[z] ysea r € K. Entonces, r es raizde P(x) siy solo si existe un polinomio
Q(z) € K[z] talque P(z) = (z —1)-Q(x).

Demostracion:
Supongamos que r es raiz de P(x), entonces P(r) = 0.

Dividiendo en K|x], se sabe que existen polinomios Q(z) y R(z), con grado de R(z) menor estrictamente
que el grado de (z — r) (que es 1 y por tanto, R(z) = R € K ) con:

Plr) = (z—r)-Q(z) + R.
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Evaluando en z = r,

Pry=(r—r)-Q(r)y+ R=0+R=R=— R=P(r)=0.
Por tanto, P(z) = (x — 1) - Q(z).

Reciprocamente, si P(z) = (z — r) - Q(x), entonces

P(ry=(r—7r)-Q(r)=0-Q(r) = 0= resraizde P(x).
[

La factorizacion directa es otra estrategia comuin que se usa a partir de productos notables conocidos,
como el cuadrado de una suma, la diferencia de cuadrados o el trinomio cuadrado perfecto. Este enfoque
se aplica principalmente a polinomios de segundo grado o a expresiones cuidadosamente disefadas para
ajustarse a patrones reconocibles.

Este tipo de factorizacion, suele suponer un punto complicado para el alumno que no siempre utiliza estos
productos notables de forma correcta.
Identidades notables

(a+b)* = a® + 2ab + b?
(a —b)* = a* — 2ab + b*
(a+b)(a—b) =a®>—b*
(x+a)(x+b)=2°+ (a+b)x +ab
(a+b+c)*=a*+b*+ 4 2ab + 2ac + 2bc
(a+0b)* =a® + 3a*b + 3ab® + b’
(a —b)® = a® — 3a®b + 3ab® — b*
a® 4+ b = (a+ b)(a* — ab + V?)

a® —b* = (a — b)(a* + ab + b?)

Estas identidades notables también se usan cuando intentamos factorizar por inspeccion. Se trata de un
método empirico que consiste en identificar visual o intuitivamente factores de un polinomio, basandose en
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propiedades conocidas, identidades algebraicas o candidatos a raices racionales utilizando el teorema del
factor y el teorema del resto.

El procedimiento habitual incluye:
= Buscar raices enteras o racionales usando el teorema del resto y la Regla de Ruffini.

= Aplicar identidades notables (cuadrado de una suma, diferencia de cuadrados, trinomio cuadrado
perfecto).

= Utilizar propiedades del nimero de términos y signos para deducir posibles factores.

En el curriculo actual de Educacion Secundaria en Espafia (segun la LOMLOE y su concrecion en
Castilla y Leon), la resolucién de ecuaciones de segundo grado constituye un contenido clave del bloque
de Algebra. Se introduce habitualmente en 3° de ESO y se consolida en 4° de ESO y 1° de Bachillerato,
con especial énfasis en el uso de la férmula general, la interpretacion del discriminante y la representacion
gréfica de funciones cuadréticas.

La ecuacion de segundo grado

La ecuacion polindmica de grado 2 con coeficientes reales
ar’ +br+c=0, a#0,
admiten una solucién general mediante la conocida férmula

b= Vb? — 4dac

2a

X

La cantidad A = b* — 4ac se llama discriminante e indica la naturaleza de las raices:
= Si A > (), existen dos soluciones reales y distintas.
= Si A = 0, existe una tnica solucidn real doble.

= Si A < 0, las soluciones son complejas conjugadas.

Las ecuaciones cuadréticas fueron tratadas ya por los babilonios hacia el afio 2000 a. C., aunque de forma
implicita y sin simbolismo algebraico. Mds adelante, en la Antigiiedad cldsica, matemdticos griegos como
Euclides abordaron este tipo de ecuaciones con herramientas geométricas. En la India, en el siglo XII,
Bhaskara presenté métodos para encontrar raices de ecuaciones cuadriticas.

Fue en el mundo isldmico donde se sistematizaron los procedimientos para resolver ecuaciones cuadra-
ticas. En particular, Al-Khwarizmi (siglo IX) describié métodos algoritmicos para resolver ecuaciones
cuadréticas mediante procedimientos equivalentes al completado del cuadrado, aunque sin el uso de letras
ni simbolos.
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La version simbdlica moderna de la férmula no apareci6 hasta el desarrollo del dlgebra en Europa, durante
los siglos XVI y XVII, con matematicos como Francois Viete y René Descartes.

Estas técnicas mencionadas previamente, son Utiles en muchos aspectos, pero tienen ciertas limitaciones
acerca de la visién que el alumno adquiere del concepto de raiz de un polinomio. De hecho, son procedi-
mientos cerrados, eficaces s6lo en casos particulares y habitualmente disefiados para ofrecer soluciones
exactas. Se plantean varias limitaciones:

= No es sistemdtico ni generalizable a polinomios de grado alto o con raices no racionales.

= Se excluye la posibilidad de trabajar con raices irracionales o complejas, lo que impide mostrar la
completitud del cuerpo de los niimeros complejos.

= No se promueve la comprension de las raices como soluciones de una ecuacién ni como puntos de
interseccion con el eje de abscisas en una representacion gréfica.

= Se pierde la oportunidad de conectar con métodos de aproximacién, con el comportamiento global
de la funcién polinémica o con herramientas informdticas que permiten representar, experimentar y
conjeturar.

Por todo ello, resulta necesario complementar estos enfoques tradicionales mediante técnicas que introduz-
can nuevas perspectivas, que sean asequibles para el alumno, pero que amplien su vision matemaética.
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4. Evolucion histérica de la bisqueda de raices de polinomios

El curriculo LOMLOE para Castilla y Leén (ESO y Bachillerato) destaca la resolucién de ecuaciones y
polinomios como eje transversal del pensamiento algebraico y se promueve la competencia matemaética y
el sentido historico, integrando contextos que ayuden a dar significado profundo al dlgebra.

En este sentido, hemos decidido complementar diferentes métodos para la bisqueda de las raices de un
polinomio con un recorrido histérico que nos permite situar esos métodos en un proceso evolutivo. De esta
forma, utilizamos la historia como recurso didactico, fomentando asi la interdisciplinariedad y ofreciendo
una vision que conecta con la historia, la filosofia y la cultura y, en concreto, con la evolucién de la ciencia
y el pensamiento 16gico a través de matemadticos de diferentes épocas. Esta decision ha sido el resultado de
cursar la asignatura Ideas y conceptos matemdticos a través de la historia donde comprobé que, los datos
histéricos y las anécdotas, captaban mi atencion y la de mis compafieros al tiempo que nos servian como
paréntesis cuando estudiabamos temas matemdticos mds profundos.

Por otro lado, permite mostrar a los alumnos que el dlgebra, tal y como la usan hoy, tiene raices multicultu-
rales y multidisciplinares.

Comenzaremos revisando primero algunos conceptos importantes acerca de los polinomios para seguir
después con el recorrido histérico.

4.1. Los polinomios en la antigiiedad

En el Antiguo Egipto y Mesopotamia (aproximadamente entre los siglos XVIII y XVI a.C.), se en-
cuentran los primeros indicios de resolucion de ecuaciones, aunque aun no se hablaba de polinomios. Los
problemas se formulaban a partir de situaciones practicas como el reparto de cosechas, cdlculos de dreas, vo-
lumen de graneros... Asf, se documentan procedimientos para resolver ecuaciones de la forma ax? +bx = c
a través de métodos numéricos que a menudo se apoyaban en reglas geométricas o0 mediante ensayo y error
como era el caso de los antiguos egipcios.

4.2. La época helénistica: Euclides

Los matematicos griegos usaban un enfoque mas geométrico de las ecuaciones. Cabe destacar la figura
del matemadtico y geémetra griego Euclides (siglo III a.C.). Su obra mds famosa, Los Elementos, es una
recopilacién en 13 libros de los conocimientos matemadticos de su época, especialmente sobre geometria y
aritmética, y ha sido uno de los libros mas editados y estudiados de la historia, sélo superado por la Biblia.

El algoritmo de Euclides es uno de los algoritmos mds antiguos conocidos en la historia de las mate-
maticas. Aparece en los Elementos de Euclides (Libro VII) y estaba originalmente formulado para enteros
positivos. Su generalizacion al contexto de polinomios se produjo con el desarrollo del algebra en el Rena-
cimiento y posteriormente fue formalizada en la teoria de anillos y dominios de integridad.

En élgebra moderna, el algoritmo de Euclides se aplica en dominios euclideos, entre ellos Z y K[z], y
es de gran importancia tanto a nivel tedrico como en célculo simbdlico (por ejemplo, para factorizacion,
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simplificacion de fracciones algebraicas o resolucion de ecuaciones diofanticas polindmicas).

El algoritmo de Euclides

Sean P(z),G(z) € K]z], con K un cuerpo y G(z) # 0. Entonces se puede calcular el mdximo
comiin divisor de P(x) y G(z), (que denotaremos m.c.d.( P, G)), mediante el siguiente procedimiento
recursivo:

1. Sedivide P(z) entre G(x) obteniendo cociente Q1 (z) y resto Ry (x):

P(z) = Qi(z)G(x) + Ri(x), deg(R1) < deg(G)
2. Se repite el proceso:
G(z) = Qa(x)Ry(x) + Ra(x)
Rl(]}) = Qg(I)RQ(I) + Rg(l’)

3. Se termina en la etapa k si el resto Ry (x) = 0. Entonces m.c.d.(P,G) = Ry_1(z).

Demostracion:

El algoritmo se basa en la siguiente propiedad: Si P = () - G + R, entonces m.c.d.(P,G) = m.c.d.(G, R).
En efecto, como:

P=Q-G+R=R=P-Q-G.

Si d es un divisor comiin de P y G, entonces, d divide a P, y lo denotaremos por d | P, y también d divide a
G, es decir, (d | G). En virtud de la implicacion anterior tenemos que d | R. Por tanto, todo divisor comiin
de Py G también divide R.

Inversamente, todo divisor comin de G'y R divide a P. Por lo tanto, el conjunto de divisores comunes de
Py G coinciden con el conjunto de divisores comunes de G'y Ry, en particular, el mdximo comun divisor
es el mismo. [ |

Ejemplo:
Calculemos m.c.d.(P(z), G(z)) siendo: P(x) = 23 — 62? + 11z — 6 y G(x) = 32? — 12z + 11.
Paso 1. Dividimos P(x) entre G(z) y se cumple
P(z) = Q1(z) - G(z) + Ry(z),
es decir,
1 2 2 4
3r2 — 12z + 11 = (gx — §> (32 — 122+ 11) + (—gaj + 5)
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Paso 2. Dividimos G(x) entre R;(x) para obtener G(x) = Q2(x) - Ri(x) + Ra(z), con

9 2 4
3 _ 62 +1lr—6=(—-—"2— Y B R |
x° —6z"+ 11z -6 57 9 3x+3

Paso 3. Dividimos R;(z) entre Ry(x):

Ri(z) = Q3(z) - Re(x) + R3(x) = —%x + g = (—m + —) -(=1)4+0

Por tanto, el m.c.d.(P(z),Q(z)) = —1

4.3. Matematicos arabes: AlI-Khwarizmi y el nacimiento del algebra

El gran avance se produce con la llegada de la matemdtica isldmica en los siglos VIII-IX cuando la
resolucion de ecuaciones se percibe como un proceso mds general, no s6lo como la resolucién de casos
concretos.

El matematico persa Al-Khwarizmi (siglo IX), sistematizé los métodos para resolver ecuaciones linea-
les y cuadraticas. Resolvia ecuaciones del tipo az? + bx = ¢, az? = bx y ax? = c sin simbolos, mediante
lenguaje y razonamiento geométrico.

En esta época se recopilaron y tradujeron conocimientos griegos, indios y babildnicos, lo que dio lugar a
una sintesis que influiria profundamente en el desarrollo del dlgebra en Europa durante la Baja Edad Media
y el Renacimiento.

4.4. El Renacimiento: Tartaglia, Cardano, Viete y Ferrari

Durante el Renacimiento, especialmente en los siglos XV y XVI, se produjo un gran interés por el
algebra en Europa. Las matemadticas dejaron de verse s6lo como una herramienta para la contabilidad y la
astronomia, y empez6 a estudiarse también como disciplina tedrica. Uno de los grandes retos de la época
era encontrar soluciones generales a ecuaciones de tercer y cuarto grado.

El matematico italiano Scipione del Ferro fue el primero en resolver una forma reducida de la ecuacién
cibica (23 + ax = b).

Posteriormente, Niccold Tartaglia redescubrié métodos similares y revel su método a Gerolamo Car-
dano (siglo XVI) bajo promesa de secreto. Sin embargo, Cardano lo publicé y desaté una famosa disputa
por la autoria de la formula. Casi simultdneamente, Frangois Viete, formul6 explicitamente las relaciones
entre las raices de una ecuacion polinémica y sus coeficientes. Algunos detalles curiosos de la vida de estos
matematicos son:

Tartaglia: es un matemadtico e ingeniero italiano (1499-1557) cuya infancia estuvo marcada por la
pobreza y la tragedia, durante el saqueo francés de Brescia, con doce afios, sufrid graves heridas en la cara
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y la mandibula y qued6 con una tartamudez permanente, apodo que €l mismo adoptd y con el que firm6
sus obras (7artaglia significa tartamudo en italiano). De educacién fundamentalmente autodidacta. Gané
fama al ganar el desafio planteado por el matematico Antonio Maria del Fiore al descubrir un método para
resolver ciertas ecuaciones de tercer grado. Tartaglia fue de los primeros en aplicar las matematicas a la
artillerfia.

Cardano: (1501-1576, Italia) fue un médico, matematico, fisico, astrénomo, filésofo, escritor y jugador
profesional. Fue arrestado por la Inquisicion en 1570, acusado de herejia, en parte por haber publicado un
hordscopo de Jesucristo. Pasé meses en prision hasta abjurar. Era tan supersticioso que, segtn la leyenda,
predijo el dia exacto de su muerte y, para cumplir su profecia, se dej6 morir ese dia.

Publicé la primera solucidén general para resolver ecuaciones cubicas y supusieron un avance funda-
mental en la historia del dlgebra durante el Renacimiento. Cardano atribuy6 el descubrimiento de estas
férmulas a su alumno Tartaglia, quien inicialmente hall6 métodos para resolver ciertos casos particulares
de ecuaciones cubicas.

Formula de Cardano

Dada la ecuacién 22 + px + ¢ = 0, su solucién puede obtenerse mediante la férmula:

sl q ¢ P s q ¢ P
x_\/2+\/4+27+\/2 Vi T or

Francois Viete: (1540—1603) fue un matematico, jurista y consejero real francés, considerado el padre
del dlgebra moderna. Fue autodidacta en matemdticas y ejercié principalmente como abogado y funciona-
rio publico, dedicando su tiempo libre a las matematicas. Su método de descifrado de mensajes fue tan
eficaz que, tras romper un complicado cédigo espaiiol, el rey Felipe II protest6 ante el Papa acusando a
los franceses de usar artes magicas. Viete fue pionero en expresar soluciones de ecuaciones mediante for-
mulas generales y en usar letras para representar constantes y variables, practica que hoy es universal en
matematicas.

Formul6 explicitamente las relaciones entre las raices de una ecuacion polindmica y sus coeficientes, sen-
tando las bases de lo que hoy llamamos las formulas de Viéte.
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Las formulas de Viete

Sea P(x) € K|z] un polinomio de grado n de la forma:
P(x) = 2"+ a2" '+ agr" 2+ -+ a7 +ay

y sean 11,79, ...,7, € C sus raices (reales o complejas y contadas con su multiplicidad). Entonces
se cumplen las formulas de Viete:

r+ro+--- 4+, =—0

E riry = ag

1<i<j<n

E Tﬂ"j?”k = —as

1<i<j<k<n
Ty = (—1)"ay,

Demostracion:

Como 71,79, ...,r, € C son las raices, podemos expresar el polinomio de la forma:
Pz)=(z—r)(x—13) - (x —1p).

Desarrollando esta expresion, se obtiene:

P(z) = ”-(Zri)x"’1+ Zrirj 2" (D) gy,

i<j
X 10 1 i )=z a1 asx™” -4 ay, :
Basta comparar esta expresion con el polinomio P n4 n—l 4 n=2 4 + ara obtener

n

§ § n
a) = — Ti, a9 = Tﬂ”j, ce Ap = (—1) Hri.

i<j i=1

Las féormulas anteriores son notaciones algebraicas que permiten expresar relaciones entre las raices de
las ecuaciones y sus coeficientes y son la base de los polinomios simétricos. La teoria de estos polinomios
se desarroll6 formalmente en el siglo XIX con el nacimiento de la teoria de invariantes y de la teoria de
Galois, donde los polinomios simétricos desempefian un papel crucial en la caracterizacién de extensiones
algebraicas y en la formulacién de resolubilidad por radicales. Las férmulas de Viete ponen de relieve que
los coeficientes del polinomio (con signo alternado) son los polinomios simétricos elementales evaluados
en las raices (Stewart, 2004).
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Polinomios simétricos

Sean xy,zs, ..., x, variables indeterminadas. Un polinomio P(z1,xs,...,2,) € K[z, xe,. .., ,)
se dice que es simétrico si permanece invariante bajo cualquier permutacién de sus variables, es
decir:

P(Il,l‘g, ... ,xn) = P(aja(l),xa(g), .. ,ZEU(n)> Vo € S,

donde S, es el grupo simétrico de permutaciones de n elementos.

Los polinomios simétricos elementales forman una base candnica del conjunto de todos los polinomios
simétricos de n variables.

Polinomios simétricos elementales

er(T1,. .., xy) = Z T

ea(xy,. .., xy) = Z L%

1<i<j<n

er(xy, ..., x,) = Z Tiy iy * * Ty

1<i1<ia< <1 <n

en(Ty, ..., &p) = 120+ Ty
Ademds, un polinomio P(z) € K[z| de grado n cuyas raices son rq,rs, ..., 7, puede expresarse de
la forma
P)=a"—e(ry,...,m) - a" P Hea(ry, ... ,mn) 2™ % — o (1) (T, ).

El interés en los polinomios simétricos elementales no es meramente histérico sino que constituyen la base
del teorema de Viete, son fundamentales en dlgebra computacional (por ejemplo, en cédlculo de discrimi-
nantes), y su estructura algebraica permite entender como varian las raices de un polinomio al modificar
sus coeficientes. Por su parte, Isaac Newton (1642—1727) profundiz6 en el estudio de las expresiones
simétricas en las raices de un polinomio. Introdujo las sumas de potencias de las raices y desarrollé férmu-
las recursivas para calcularlas en funcién de los coeficientes del polinomio, conocidas hoy como férmulas
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de Newton. Estos desarrollos se consolidaron a finales del siglo XVII, aunque no se publicaron de forma
sistemadtica hasta el siglo X VIII.

El siguiente teorema sintetiza estas dos aportaciones

Teorema de Newton—Viete

Todo polinomio simétrico en n variables con coeficientes en un cuerpo K puede expresarse de forma
Unica como un polinomio en los polinomios simétricos elementales e, . . ., e,.

Ejemplo: El polinomio
P(21, 79, 73) = 2509 + 2523 + 1571,

es simétrico pero no es elemental. Sin embargo, puede escribirse como combinacion de eq, es, e3. El proceso
para obtener esa expresion se puede realizar mediante algoritmos (como el de Newton—Girard) o manipu-
lacién simbdlica utilizando software algebraico (por ejemplo, Maple o Mathematica).

En la subseccién 4.6 ahondaremos en los resultados y estudios realizados por Newton.

Observaciones:

= Las formulas de Viete son validas para cualquier polinomio con raices bien definidas, incluso si no
son conocidas de forma explicita.

= Son utiles para construir polinomios a partir de sus raices y para analizar simetrias algebraicas.

Ejemplo: Aplicacion al caso cuadratico:

. T Ty =—a
P(z) = 2* + a1 + ay, raices ry, 7y =
172 = Q2
Ejemplo: Aplicacion al caso cibico:
T +7re+1r3=—a

2 .
P(x) = x3 + a1x” + axx + a3, raices ri,ro,r3 = 1Ty + 1173 + T3 = Ao

172973 =— —das

4.5. Siglo XVII: Descartes

René Descartes (Francia, 1596-1650) fue un filésofo, matemético y cientifico francés, considerado el
padre de la filosofia moderna y de la geometria analitica. Tras licenciarse en Derecho, ingresé en el ejército
y en sus viajes conocié al matemético Isaac Beeckman, quien influy6 en su vocacién cientifica. Mientras
estaba acuartelado en Alemania (1619) y, tras una serie de tres sueflos muy vividos, sintié que habia recibido
la inspiracion para crear un método universal basado en las matemadticas, que aplicaria tanto a la ciencia
como a la filosofia y le llevaria mas tarde a expresar su célebre frase Cogito, ergo sum.
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En matematicas, Descartes fue el creador de la geometria analitica, que uni6 el dlgebra y la geometria y
permitié expresar curvas mediante ecuaciones algebraicas.

En el campo de los polinomios, su contribucién mds famosa es la regla de los signos de Descartes. Esta regla
permite determinar, a partir de los cambios de signo en los coeficientes de un polinomio, el nimero maximo
posible de raices reales positivas y negativas que puede tener dicho polinomio, es decir, proporciona una
cota del nimero exacto de raices reales. La regla, sin embargo, no da informacion sobre la multiplicidad de
las raices, ni sobre las raices complejas.

A partir de la siguiente definicién enunciaremos la Regla de los signos de Descartes. Véase (Lang,2002) o
(Birkhoff y Mac Lane, 1999).

Variacién de signos de un polinomio P(x)

Sea P(z) = apa™+a,_ 12" '+ -+ag € R[z], con a,, # 0. Llamamos variacién de signos de P(z)
al nimero de veces que los coeficientes no nulos de P cambian de signo (tienen signos opuestos)
cuando se disponen en orden decreciente de potencias de x.

Regla de los signos de Descartes

El niimero de raices reales positivas de un polinomio con coeficientes reales a,z" +a, 12" 1+ - -+
ag € R[], con a,, # 0, es, como mdximo, igual al nimero de cambios de signo que se produce entre
los coeficientes del polinomio (ordenados de mayor a menor grado), ignorando los ceros. Si no se
alcanza esa cota, el nimero real de raices positivas serd menor que ese nimero en una cantidad par
(es decir, la diferencia serd 0, 2, 4,...).

Demostracion:

Denotemos por V' (P) a la variacién de signos de P(x) y por Z, (P) al nimero de ceros positivos de P(x)
contando su multiplicidad.

Utilizaremos induccién matemética sobre el grado n del polinomio. El caso n = 1, es claro, pues si P(z) =

a,x + ag, con ay, ag # 0, laraiz de dicho polinomio es _do que serd positivasiy solosi a y b tienen
ai

signos distintos, con lo cual V(P (z)) = 1 <= Z,(P) = 1,de donde, Z,(P) < V(P(x)).

Supongamos que el resultado es cierto para polinomios de grado menor o igual que n — 1.

Sea P(z) = a,a™ + ap_12" ' + -+ + a9 € R[z], con a,, # 0, n > 1, podemos suponer sin pérdida de

generalidad que ay > 0, ya que en otro caso, si es ag < 0 basta multiplicar el polinomio P(z) por —1,

o en caso de ser ag = 0 dividir el polinomio entre la potencia adecuada z* para conseguir que el término
independiente sea no nulo.
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Si a4, g < nesel primer coeficiente no nulo, ademas de ao, el polinomio P(x) es
P(z) =a,z" + -+ ax? +ag, ag>0, a; #0,
y su derivada
P(z) =na,a" "'+ +qaa’ ",

dividiendo entre 29~ obtenemos

P(z)=nax"" "4+ +qa,.

Caso1:a, >0

Es sencillo comprobar que V (P) = V(P;) ya que hemos supuesto que ay > 0y la sucesion de coeficientes
de ambos es

A, Ap—1, R ag
Nan, M—1an_1, ... ..., qag M
Ademds, Z,(P) < Z,(P,) pues si Z,.(P) = m el teorema de Rolle nos garantiza que hay una raiz
de P’'(x) entre dos ceros consecutivos y distintos de P(X) (si 71 y 72 son dichas raices, dicho teorema al
intervalo I = [ry, 5] implica que existe un punto o € I con P'(«)(ry — 1) = P(re) — P(ry) = 0). Por
otro lado, si r es raiz multiple de P de multiplicidad %, entonces es también raiz de P’ de multiplicidad
k — 1. Contando todas estas raices positivas de P’ tenemos Z, (P;) > m — 1

A mayores, en el intervalo [0, 7], siendo r la raiz positiva de P(x) mds cercana a cero, se cumple que P’ (x)
tiene una raiz ya que tenemos que P(0) = ao > 0 y también P;(0) = g a, > 0. Por continuidad, podemos
encontrar ¢ > 0 suficientemente pequefio cumpliendo que si z € I, = (0, ¢), P(x) >0, Pi(x) >0
y P'(x) = z%71 - P(x) > 0. Este hecho supone que en dicho intervalo I, el polinomio P(x) es creciente
y dado que se anulaen r > € > 0 y que es una funcién continua, necesariamente presenta un maximo en
(0,7] y P'(x) y Pi(x) se anulan en dicho mdximo. Concluimos, por tanto, que Z, (P;) > my

V(P)=V(P), Z(P)<Z(P). (2)
Aplicando la hipétesis de induccion a Py (x) tenemos que Z,(P;) < V(P;) y finalmente

Z(P) < Zo(P) SV(P) =V(P) = Z(P) < V(P).

Caso 2: a4 < 0.
La sucesién de coeficientes de Py P; que observamos en (1) nos muestra claramente que
V(P)=V(P)+ 1.

Por otro lado, en el intervalo [0, 7], siendo r la raiz positiva de P(x) mds cercana a cero, se cumple que
P(0) =ay >0y Pi(0) = ga, < 0. Por continuidad, podemos encontrar £, > 0 suficientemente pequefio
cumpliendo que si z € I3 = (0, e2), P(z) >0, Pi(z) <0y P'(z) =29 P(z) < 0. Este hecho
supone que en dicho intervalo I el polinomio P(x) es decreciente y aunque se anulaenr > £, > 0y es una
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funcién continua, ya no podemos garantizar que P(x) presenta un extremo en (0, 7] y que P'(z)y Pi(x) se
(P)—1

anulen en dicho intervalo. Concluimos, por tanto, que Z, (P;) > m — 1, es decir, Z, (P;) > Z, y

V(P)=V(Ph)+1, Z.(P)<Z.(P)+1 3)

Aplicando la hipétesis de induccién a Py (x) tenemos que Z, (P;) < V(P;) y finalmente
Z,(P)<Z (P)+1<V(P)+1=V(P)= Z,.(P) <V(P).

En cualquiera de los dos casos hemos probado que

Zi(P) < V(P)

Falta probar que V (P) — Z,(P) es miltiplo de 2, es decir, V(P) = Z,(P) (mod 2) y para ello haremos
uso del siguiente Lema.

Lema: Consideremos el polinomio P(x) € R[z] dado por P(z) = a,a"™ + - - + a,x? + ag, se cumple
que si ag-a, <0 entonces Z,(P) esimpar,ysi ag-a, >0 entonces Z,(P) es par.

Demostracion:
—Sia, >0y ag>0 parax > 0 podemos distinguir dos tipos de raices, r, positivas:

1. Aquellas en las que la grifica de P(x) atraviesa el eje z, en cuyo caso podemos encontrar un entorno
(r—e,r+¢), e>0con Plx—¢)-Plx+¢)<0.

2. Aquellas en las que la grifica de P(x) no atraviesa el eje y en tal caso podemos encontrar un entorno
(r—e,r+e), e>0 con Plx —¢)-P(x+¢)>0.
Ademads, como a, >0 y ay > 0 se cumple
P(0)=ap>0

= Z(P) es impar.
lim P(z) = —00 <0

T—>00

-Sia, <0y ap >0 paraz > 0 podemos distinguir dos tipos de raices, r, positivas:
1. Aquellas en las que la grifica de P(z) atraviesa el eje x, en cuyo caso podemos encontrar un entorno
(r—e,r+e¢), e>0con Plx —¢)-Plx+e)<0.
2. Aquellas en las que la grafica de P(z) no atraviesa el eje y en tal caso podemos encontrar un entorno
(r—e,r+¢), e>0con Plx—¢)-Plx+¢e)>0.
Ademds, como a, <0 y ap > 0 se cumple

P(O):CLO>0

= Z,(P) es par.
lim P(z) =400 >0

T—r00
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El resto de los casos se probaria de forma similar. |

Retomemos la demostraciéon y razonemos por induccién matemdtica. Es claro que para el caso n = 1
(que analizamos previamente) se cumple que V(P) = Z,(P) (mod 2) y supongamos que es cierto para
polinomios de grado menor o igual que n — 1 y veamos que ocurre para grado n.

Para ello, recordemos que hemos supuesto sin pérdida de generalidad que ap > 0y

P(x) = ap2"+---+a,x9+ay — sucesion de coeficientes — ( @y, ..., aq, ao)
P'(z) =na,z" '+ -+ qa,x?' — sucesion de coeficientes — (nay, ...,qa,)
Pi(z) =na,xz" 94+ - +qa, — sucesion de coeficientes — (nay, ...,qa,)

Casol:a, >0y a, > 0. Entonces
V(P)=V(P)=V(F) ‘
an-ag>0=>na, qa; >0= Z,(P')espar (Lema xxxx)

— V(P) = Z,(P) (mod 2)
an, - ag > 0= Z,(P) espar (Lema xxxx) =— Z,(P) = Z,(P’) (mod 2)

V(P'") = Z,(P') (mod2) hipétesis de induccion

Caso2:a, <0 y a, > 0. Entonces
V(P)=V(P)=V(F) )
an - ag <0=>na, qa, < 0= Z,(P') esimpar (Lema XXXX)

— V(P) = Z4(P) (mod 2)
ay - ag < 0= Z,(P) esimpar (Lema xxxx) = Z,(P) = Z(P’) (mod 2)

V(P') = Z,(P') (mod2) hipdtesis de induccién

Caso 3:a, >0 y a, <0. Entonces
V(P)=V(P)+1=V(P)+1 )
an-a; < 0= na, -qa, <0= Z,(P') esimpar (Lema XXxx)

— V(P) = Z,(P) (mod 2)
an - a9 > 0= Z,(P)espar = Z,(P) = Z,(P')+ 1 (mod 2)

V(P') = Z4(P') (mod 2) (induccién) = V(P') + 1= Z (P') +1(mod 2) )
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Caso4:a, <0 y a, <0. Entonces
V(P)=V(P)+1=V(P)+1 )
an-ag>0=>na, qa; >0= Z,(P') es par (Lema xxxx)

— V(P) = Z,(P) (mod 2)
ay, - ag < 0= Z,(P)esimpar — Z (P)= Z,.(P') + 1 (mod 2)

V(P') = Z4(P') (mod 2) (induccién) = V(P') + 1= Z,(P') + 1 (mod 2) )

Finalmente

V(P) = Z,(P) (mod 2)

La regla de los signos de Descartes para raices negativas

Dado P(z) € K[z] podemos aplicar la regla de Descartes al polinomio P(—x) para obtener el
nimero de raices reales negativas de P(z).

Observaciones:

= El resultado es valido también para raices multiples, ya que cada raiz con multiplicidad m contribuye
m veces a la reduccién de la variacion.

= Laregla aplicada a P(—x) permite obtener informacidn sobre raices reales negativas.

= Laregla de Descartes da una cota superior, pero no garantiza la existencia de raices reales ni distin-
gue entre reales y complejas.

= No proporciona ubicacién ni aproximacion de raices.

Ejemplo:

Sea P(x) = x* — 323 + 32% + x — 2.
Sus coeficientes son: +1, —3, 43, +1, —2. Podemos observar 3 variaciones de signo.

Ahora estudiamos P(—z) = z* + 323 4+ 322 — 2 — 2.
Sus coeficientes son: +1, +3, +3, —1, —2. Podemos observar 1 variacién de signo.

De acuerdo con la regla de Descartes tenemos que:
= El nimero de raices reales positivas es tres, una o ninguna.

= Hay exactamente una raiz real negativa.
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4.6. Siglos XVII y XVIII

A caballo entre estos dos siglos hay que destacar la figura de Isaac Newton (1642-1727). Fisico, ma-
temadtico, astronomo y filésofo inglés es considerado una de las figuras mds influyentes en la historia de la
ciencia.

Durante la peste bubdnica de 1665, la universidad cerré y Newton regreso a su casa. Durante este aislamien-
to, desarroll6 el calculo, formul6 sus leyes del movimiento y la gravitacion universal, y realiz6 experimentos
fundamentales en Optica.

Tenia un caricter reservado y, a veces, conflictivo. Mantuvo intensas disputas con otros cientificos, como
con Gottfried Leibniz por la invencidon del cédlculo diferencial, o como Robert Hooke Hooke que habia
formulado antes que Newton la idea de que la fuerza de gravedad disminuye con el cuadrado de la distancia,
aunque no logré demostrarlo matemdaticamente. Aunque Hooke habia influido en los estudios de Newton
acerca de las leyes del movimiento y la gravitacion universal, Newton omitié deliberadamente cualquier
menciéon a Hooke. El resentimiento de Newton era enorme e minimizar la contribuciéon de Hooke a la
ciencia. La enemistad llegé a tal punto que, tras la muerte de Hooke y cuando Newton fue nombrado
presidente de la Royal Society de Londres, se dice que Newton intent6 borrar el legado de Hooke: eliminé
referencias a sus trabajos en sus propias publicaciones y, segin algunos relatos, incluso desaparecieron
instrumentos y el unico retrato auténtico de Hooke de los archivos de la Royal Society.

La anécdota mds famosa es la que Newton relat6 a sus amigos donde la caida de una manzana le llevé a
reflexionar sobre la fuerza que mantiene a la Luna en 6rbita y a los objetos pegados a la Tierra.

También estudio los polinomios con raices multiples y estableci6 bases para el estudio del comportamiento
local de funciones polinémicas.

Destacamos las conocidas como formulas de Newton (también llamadas identidades de Newton o rela-
ciones de Newton) que permiten calcular las sumas de potencias de las raices de un polinomio en funcién
de sus coeficientes y son una herramienta fundamental para el estudio de polinomios simétricos con una
profunda conexién con el teorema de Viete (véase la Seccion 4.4).
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Las formulas de Newton

Sea P(z) = 2™ + a 2"+ axx™ % + -+ + a,_17 + a,, con raices ry, 7, . .., r, (contadas con su
multiplicidad) entonces:

S = —ay,

Sy = —a151 — 2ay,

53 = —a152 — CLQSl — 3(13,

Sy = —a153 — aSy — a3S57 — 4ay,

Sk = —a1Sk—1 — a2Sk—2 — - -+ — ap_151 — kay,

siendo

Sp=rf 44k

para k < n, considerando a; = 0 para j > n.

Aplicaciones didacticas de las formulas de Newton:

= Permiten calcular sumas de potencias de raices sin conocer las raices explicitamente.

= Introducen conceptos de recursividad y combinatoria algebraica.

= Facilitan la comprension de la estructura interna de los polinomios y su simetria.

Ademds de sus aportaciones en fisica y otros campos, Newton desarrollé métodos para aproximar raices
de ecuaciones, como el método que hoy lleva su nombre (Newton—Raphson). Este fue uno de los primeros
métodos iterativos aplicados sistematicamente y que puede introducirse como puente entre el dlgebra y
andlisis. Por otro lado, el matematico inglés Joseph Raphson public6 una versién mas general del método
en 1690, que lo extendi6 para su aplicacidon a ecuaciones mds generales y fue quien lo dio a conocer en
vida, por lo cual lleva también su nombre. Raphson, ademds, fue una de las pocas personas a las que
Newton permitia consultar sus trabajos matematicos.
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El método de Newton—Raphson

Sea f(x) una funcién derivable en un intervalo I C R, con derivadas primera y segunda continuas es
I, sea r una raiz simple de f en [ verificando que f’(r) # 0, entonces el proceso iterativo dado por

Tn41 = Tp —

f'(@n)

converge a la raiz r de f para un iterante inicial x suficientemente cercano a la raiz.

El método se basa en que podemos aproximar f(z) cerca de x, por su recta tangente en dicho punto

f(@) = f(zo) + (o) (z — o).

Sustituyendo = 7 en la expresion anterior resulta:

0~ f(f[)o) + f/(l’o)(r — ZL’()).

y despejando r tenemos

r g f (o)
f'(xo)
Si repetimos el proceso tomando ahora como nueva aproximacién
Ty = Ty — —f<$0)
f'(xo)

es de esperar que se obtenga una aproximacion mejor a la raiz. De esta forma, se obtiene el método iterativo
siguiente:

Tpy1 = Tp — f/(l’ )
n

Hemos de tener en cuenta que un polinomio, P(z), es una funcién continua, con derivadas primera y
segunda también continuas en R. Si r es una raiz simple del mismo y partimos de una aproximacion, z,
suficientemente cercana a dicha raiz, el método nos garantiza la convergencia a la raiz. Es preciso hacer
notar que para poder aplicar este método debe cumplirse que P'(x,,) # 0 en cada paso.

Se trata de un método rdpido y eficiente que converge en condiciones adecuadas y su convergencia es
cuadrética. Pero a pesar de su potencia, el método de Newton—Raphson presenta varias limitaciones que es
importante tener en cuenta:

1. Necesidad de una buena aproximacion inicial: si el valor inicial x( no esté suficientemente cerca de la
raiz buscada, el método puede: converger lentamente, converger hacia una raiz no deseada o diverger.

2. Requiere calcular derivadas: si f'(x) es dificil de obtener o costosa de evaluar, el método se vuelve
poco préactico.
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3. Si f'(x,) = 0: la férmula de iteracion

Tpy1 — Tp — f’(l’ )
n

no estd definida, lo que provoca un fallo en el algoritmo.

4. Raices multiples: si la raiz tiene multiplicidad mayor que 1, la convergencia es mds lenta e incluso
puede volverse inestable.

Ejemplo:

Queremos encontrar una raiz de P(x) = 2% — x — 1.

Su derivada es P'(z) = 3z% — 1.

Tomamos xy = 1 como valor inicial.

Aplicamos la férmula iterativa z,, 11 = x,, — Plzn) .
P'(xy)

Iteracion 1:
ZEO:1
Pl =13-1-1=-1
P(1)=3-12-1=2#0

—1
n=1-—2=1+05=15

Iteracion 2:

T = 1,5

P(15) = (153 —-15-1=3375—1,5—1=0875

P(15)=3-(1,5)2—1=3-225—1=6,75—1=575#0
0,875

Ty =15 — =~ ~1,5—0,152 = 1,348
5,75

Iteracion 3:

o ~ 1,348

P(1,348) ~ (1,348)% — 1,348 — 1 ~ 2,452 — 1,348 — 1 = 0,104

P'(1,348) ~ 3 - (1,348)* =1~ 31,818 — 1 = 5454 — 1 = 4,454 # 0

r3 = 1,348 — g% ~ 1,348 — 0,023 = 1,325
El proceso continua hasta alcanzar la precision deseada y para ello se controla que la diferencia entre
dos iterantes consecutivos sea suficientemente pequefia. En la Figura 1 podemos observar una grafica del
polinomio anterior junto con las tres aproximaciones obtenidas previamente. Podemos observar como las
aproximaciones se van acercando a la raiz real del polinomio (que es el punto de corte del polinomio con el
eje de abscisas).
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4.7. Siglos XVIII y XIX: Bezout, Ruffini, Galois, Budan y Sturm

En el siglo XVIII, Etienne Bézout (1730-1783) introdujo la idea de eliminar una variable de un sistema
de ecuaciones polinémicas dentro del contexto de su estudio de la teorfa de ecuaciones algebraicas. Etienne
Bézout y Joseph—Louis Lagrange realizaron importantes avances en el estudio de relaciones entre polino-
mios, dando origen a herramientas algebraicas para determinar si dos polinomios tienen raices comunes sin
resolver explicitamente las ecuaciones y la nocion de resultante aparece como un paso intermedio en estos
métodos de eliminacion y en el siglo XIX, con la formalizacion del dlgebra conmutativa y el desarrollo
del 4lgebra computacional, matematicos como Sylvester, Cayley y Macaulay dieron definiciones mas pre-
cisas usando determinantes. Fue el siglo XX, cuando la resultante se convirtié en una herramienta clave en
algoritmos de eliminacidn, teoria de sistemas no lineales y dlgebra conmutativa.

Paolo Ruffini (1765-1765) en su obra Teoria generale delle equazioni publicada en 1799, dio una for-
mulacioén sistemadtica del proceso de divisién de polinomios mediante un algoritmo que permite aplicar de
forma practica el Teorema del Resto cuando el divisor es un binomio lineal (x — 7) y que es especialmente
util cuando se trabaja con raices enteras (Seccion 3). Basicamente, es una notacién y organizacion practica
de la divisidn algebraica que se ha mantenido en el curriculo de Educacién secundaria debido a su eficacia
para encontrar raices enteras y comprobar factores lineales.

Ruffini fue un matemaético, médico, filésofo y literato italiano que siendo estudiante sustituyé para dar
clases en la universidad a un profesor suyo que fue elegido concejal. En 1798 fue apartado de la docencia
y de cargos publicos por negarse a jurar fidelidad a la Republica instaurada por Napoledn. La mayoria de
los matematicos de su época ignoraron sus descubrimientos y su trabajo fue reconocido y completado mas
tarde por Abel y Galois. Se adelant6 a su tiempo en el uso de permutaciones y alterné su labor docente con
la practica médica, llegando a ser rector de la Universidad de Mdédena.

A comienzos del siglo XIX, se demostré que no existe una férmula general con radicales para resolver
ecuaciones polindmicas de grado cinco o superior, y, aunque Paolo Ruffini ya habia esbozado esta idea, su
demostracion no fue rigurosamente aceptada hasta que Niels Henrik Abel la complet6 en 1799 demostrando
que no puede encontrarse una solucién por radicales para la ecuacioén general de grado 5.

Evariste Galois (1811-1832) desarroll6 una teoria general para estudiar la resolucién de ecuaciones
mediante simetrias algebraicas, fundando la teoria de grupos. Introdujo la nocion de grupo de permutaciones
asociado a las raices de una ecuacién y un criterio para saber si una ecuacion es resoluble por radicales en
funcién de las propiedades de dicho grupo.

En 1829, Charles Sturm desarrollé6 un método para contar el nimero de raices reales distintas de un
polinomio en un intervalo dado sin resolver la ecuacién, utilizando para ello una sucesién de polinomios
obtenidos a partir de las derivadas del polinomio original (sucesion de Sturm) y observando los cambios
de signo. Este método es un procedimiento cualitativo, que permite estudiar las raices sin obtener su valor
exacto. Fue un gran avance en el andlisis real.

En la Seccién 3 ya se reviso la regla de Ruffini. En esta seccion, definiremos el concepto de resultante y

su uso para determinar si dos polinomios tienen raices comunes, y se enunciaran los teoremas de Budan y
Sturm.

37



4.7.1. Laresultante

La resultante

Sean P(x) y G(x) dos polinomios con coeficientes en un cuerpo K, de grados m y n:

P(z) = apx™ + a12™ '+ +a,,  G(z) =bor" + by + -+ by,

La resultante de P y (G, denotada por Res, (P, ), se define como el determinante de la matriz de
Sylvester, construida a partir de los coeficientes de Py G:

Res, (P, G) = det(S(P,G))

donde S(P, G) es una matriz cuadrada de tamafio (m+n) x (m+ n) formada por las siguientes filas:

filal — ap @y -+ Qanp

fila2 — ap @y -+ Gy

filan — ap aip -+ G
filal— |[bo - by

fila2 — bp - by

filam — by -+ by,

Podemos observar que
= Las primeras n filas constan de en los coeficientes de P, desplazados hacia la derecha.

= Las m filas siguientes contienen los coeficientes de G' que también se van desplazando.

Proposicion

Res, (P, Q) = det(S(P,Q)) =0 <= P(x) y Q(z) tienen raices comunes.

Ejemplo

Consideremos P(z) = 22 — 1y G(z) = x — 1 conm = 2y n = 1. Estos polinomios comparten la raiz
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x = 1. Su matriz de Sylvester es:

1
SPa=(0 1 0] = det(S(PG) =0
1 -1 0

La resultante se anula, lo cual confirma que P y G tienen una raiz comun.

Uno de los usos mds importantes de la resultante es la eliminacion de variables en sistemas de ecuaciones
polinémicas. Asi, si P(x,y) y G(z,y) son polinomios en dos variables, y queremos eliminar =, podemos
calcular Res, (P, G), que serd un polinomio en y. Las soluciones comunes a P(z,y) = 0y G(z,y) = 0 se
corresponderdn con las raices del polinomio resultante en .

4.7.2. El teorema de Budan-Fourier

Francois Budan de Boislaurent (1761-1840) fue un médico de carrera, inspector educativo, matemético
apasionado y polemista francés. Recibié una formacion clasica y mostr6 gran interés por las ciencias, reci-
biendo clases particulares de matematicas fuera del curriculo habitual. Estudié medicina en Paris y ejercio
como médico y después como inspector general de instruccién publica en Francia. Se le recuerda como ins-
pector por profesion, matemdtico por pasion, mondrquico por conviccion y polemista por temperamento.
A pesar de su pasion por las matemadticas, era autodidacta y preferia métodos elementales y aritméticos.

La principal contribucién de Budan (1807) es el teorema que lleva su nombre. Este resultado, que permite
acotar el nimero de raices reales de un polinomio en un intervalo. El método de Budan, fue eclipsado
después por la version de Fourier (1820) que utilizaba otro tipo de notacidn y una redacciéon més rigurosa.
Aunque no lo generalizo, si lo divulgé con mayor eficacia entre la comunidad cientifica.

El teorema de Budan—Fourier es una mejora natural de la regla de los signos de Descartes y proporciona
una cota superior del niimero de raices reales en un intervalo concreto, utilizando el mismo principio que
Descartes: analizar el nimero de variaciones de signo en una sucesion. Sin embargo, en lugar de considerar
s6lo los coeficientes del polinomio, se tienen en cuenta los valores de sus derivadas evaluadas en los
extremos del intervalo (Bronstein et al., 2009)

Comencemos definiendo el concepto de variaciones de signo de una sucesién de polinomios para pasar
después a enunciar el teorema de Budan—Fourier.

Variacion de signos de una sucesion de polinomios

Sean Py (z),...,P,(x), n €N, Py(z) € K[z] y la sucesién
(Pi(z), Py(x),...,P.(x).)

Si a € K definimos V' (a) como el nimero de veces que cambia el signo al pasar de un término al
siguiente sin tener en cuenta los términos nulos de la sucesion

(Pi(a), Ps(a),...,P,(a)).

39



Teorema de Budan—Fourier

Sea P(x) € R[z] un polinomio de grado n, y sean a < b dos niimeros reales. Entonces, el nimero
de raices reales (contadas con multiplicidad) de P en el intervalo abierto (a,b), denotado Nap)»
satisface:

Nagy) < V(a) =V (b)

Ademis, V(a) — V(b) — N(ap) s un nimero par.

Demostracion:
Dado un polinomio P(z) € R[z] de grado n, y un punto x € R, se define la sucesion de Budan en x como:
B, = (P(z), P'(z), P"(x),. .. , p™ (2))
y se denota V' (x) al nimero de variaciones de signo en esta sucesion, ignorando los ceros intermedios.
Probemos primero el siguiente lema auxiliar.
Lema. Si P(z) € R[z| tiene una raiz r € (a,b) de multiplicidad m, entonces la sucesion

(P®)(r))r_, comienza con m ceros, seguidos de un primer término no nulo e implica como
minimo una disminucién de V' (x) cerca de r.

Demostracion.

Si r es una raiz de multiplicidad m, entonces:
Pr)y=P(r)=---=P"™ D(r)=0, P"™(r)#0

y la derivada de orden m introduce un nuevo signo no nulo en la sucesién, que puede o no
alterar la secuencia de signos respecto a puntos cercanos. En general, cruzar una raiz de P

afecta al signo de P(x) y quizés al de las derivadas superiores, produciendo una disminucién
de V(z). |

Los signos de P*)(x) sélo pueden cambiar en puntos donde alguna derivada P*)(z) = 0 (por la continui-
dad) y esto ocurre en raices de P y de sus derivadas.

Cada raiz real de P en (a,b) provoca una alteracion en la sucesioén B,, disminuyendo el nimero total de
variaciones V' (x) al avanzar de © = a hasta = = b.

Por tanto, la disminucién total de variaciones estd entonces acotada por:
V(a) =V(b) = Nap)
donde N, es el nimero de raices reales (contadas con multiplicidad) de P en el intervalo abierto (a, b).

Ademas, debido al comportamiento continuo de las derivadas y a que cada raiz real cambia como médximo
una transicion de signo, se cumple:

V((l) — V(b) — N(a,b) =0 mébd 2
es decir, V(a) — V(b) — N4 €s un nimero par. |

Observaciones:
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= La desigualdad puede ser estricta si algunas raices estin fuera del intervalo o si hay raices complejas.
= El teorema proporciona una cota superior localizada mas precisa que la regla de Descartes.

= SiV(a) — V(b) = 0, entonces P no tiene raices reales en (a, b).

= Puede utilizarse de forma recursiva para aislar raices en subintervalos mas pequefios.

= Este teorema es especialmente util para el aislamiento de raices reales, como paso previo a métodos

numéricos de aproximacion como el método de biseccion.

Ejemplo:

Consideremos el polinomio P(x) = 2% — 62 + 11z — 6 con raices reales son: z = 1,2, 3.
Sus derivadas son:

P(z)=32> - 12z + 11, P’(z)=6x—12, P"(z)=6.

La sucesion de Budan en a = 0 es:

P(0)=—6, P'(0)=11, P"(0)=—12, P"(0)=6=>(—6,11,-12,6) = V(0) =3

Y la sucesion de Budan en b = 4 es:

P(4)=6, P4)=11, P'(4)=12, P"(4)=6,—= (6,11,12,6) =V (4) =0

Entonces:
V(0) — V(4) = 3 = El niimero de raices reales en (0,4) es < 3.

En este caso, como P tiene exactamente tres raices reales en ese intervalo, la cota es exacta.

En general, nos proporciona s6lo una cota superior, no garantiza el nimero exacto de raices reales, ni que
estén todas en ese intervalo.

4.7.3. El teorema de Sturm

Jacques C. F. Sturm (1803-1855) fue un matemadtico francés de origen suizo—aleman, célebre por su
contribucion fundamental a la teoria de ecuaciones y, en particular, por el teorema que lleva su nombre,
que permite determinar el nimero exacto de raices reales de un polinomio en un intervalo dado. Mientras
el teorema de Budan—Fourier ofrece una cota superior del nlimero de raices, el teorema de Sturm propor-
ciona el nimero exacto a costa de mayor complejidad algoritmica. Sturm es preferible en aplicaciones que
requieren precision, mientras Budan—Fourier es util para anélisis iniciales.

Jacques C. F. Sturm naci6 en Ginebra en el seno de una familia protestante que habia emigrado desde
Estrasburgo. Tras la muerte de su padre cuando tenia 16 afos tuvo que dar clases particulares para ayudar a
mantener a su familia.
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En 1826, junto a Colladon, realizé la primera medicién experimental precisa de la velocidad del sonido en
el agua y en 1829, publicé su famoso teorema sobre raices de polinomios, resolviendo un problema abierto
desde tiempos de Descartes.

La revolucion de 1830 en Francia le permitié acceder a la docencia publica, de la que habia estado excluido
por su fe protestante.

Como curiosidad, hacer notar que Sturm es uno de los 72 cientificos e ingenieros cuyo nombre aparece
grabado en la Torre Eiffel (jni mds ni menos que la cuarta parte son matematicos!).

Junto a Joseph Liouville, desarroll6 la teoria Sturm—Liouville, fundamental en el estudio de ecuaciones
diferenciales. Esta teoria es una de las bases de la fisica matematica moderna.

El teorema de Sturm proporciona un procedimiento sistemético para determinar el niimero exacto de raices
reales de un polinomio en un intervalo dado, sin necesidad de calcularlas explicitamente.

El método se basa en construir una sucesion de polinomios (sucesion de Sturm) mediante un algoritmo
similar a la division euclidea de polinomios, pero con ciertos signos cambiados, y posteriormente evaluar
los cambios de signo en los extremos de un intervalo real. El nimero de raices reales simples en ese intervalo
es igual a la diferencia entre el nimero de cambios de signo en los extremos (Benedetti y Risler, 1990).

Teorema de Sturm

Sea P(z) € R[z] un polinomio de grado n > 1 con coeficientes reales que no tiene raices muiltiples,
la sucesion asociada a P(x) (sucesion de Sturm) de la forma (FPy(x), Pi(x), ..., Ps(z)) siendo

Py(x) = P(z), Pi(x)=P'(z), P_i(x)=Px) Qi(x)— P(x), i=2,...,s

con grado(P;) < grado(P,_1) y Ps o(z) = Ps_1(x)-Qs_1(z) — P, siendo P,(x) = P, constante
(Ps € R).

Si a y b son dos nimeros reales tales que P(z) no se anula ni en z = a ni en = b entonces, el
niimero exacto de raices reales simples y distintas de P(z) en el intervalo (a, b) viene dado por:

v(a) — v (b)

siendo v(x) el nimero de cambios de signo (ignorando los ceros) de la sucesién de Sturm evaluada
en .

Demostracion

En primer lugar, es sencillo observar que la sucesién de Sturm
Py(z) = P(z), Py(z) = P'(2), Po(x),..., P(a)

cumple que P;.i(x) es el resto cambiado de signo de la division euclidea de P,_;(z) entre P;(x) para
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1 <7< s—1 yque podemos observar en la siguiente tabla:

Po(z) = P(x)
Py(z) = P'(x)
Py(z) = Pi(x) - Q1(x) + Ry (x) = Py(z) = —Ri(v)

Ademas, se cumple que:

RESULTADO 1: La sucesion de Sturm es finita.

En efecto, en el Algoritmo de Euclides el grado del resto en cada una de las divisiones euclideas es inferior
al grado del divisor. Esto significa que el grado de los polinomios de la sucesion construida decrece en, al
menos, una unidad en cada paso. Como partimos de un polinomio de grado finito, habrd un momento en el
que el resto de la division sea un polinomio de grado cero y Ps(x) = P; constante.

RESULTADO 2: P, #£0, Vi=1,...,s.

() no son idénticamene nulos ya que partimos de un polinomio P(x) de grado al menos 1y

= P(z) y suderivada P;(z) = P'(x), son no nulos.

P()(l’)

Ademds, P(x) no tiene raices muiltiples, por tanto, P(z) y P’(x) no tienen factores comunes y, por tanto,
m.c.d(P(z), P'(x)) = 1.

Razonando por reduccién al absurdo y supongamos que para un cierto natural s; € Ncon 1 < 51 < s
tenemos que P;, = 0. Como Py, () = —Rs,_1(z) entonces Ry, _1(x) = 0. Por el enunciado del teorema
sabemos que

Bia(z) = Bi(x) - Qi(x) — Piya(2) ®)

denotando r;(z) = —Pi11(z), 1 <i<s —2 yusando (5) la sucesion quedaria de la forma

43



=
=
!

—

—

Pi(z) - Q1(x) — Py(x) —

Pi(z) = Py(x) - Qa(x)

Py(x) = Pi(x) - Q1(x) + ri(z) | — 7 (x) = —Pa(x)

Pi(z) =r1(2) - go(x) + o)

P3(x) — Pi(z) = —ri(z) - Qa(x) + 7o)

— r2(2) = —P3(x), 2(r) = —Qa(2)

Py(z) = P3(x) - Q3() — Py(z) — —ri(z) = —ro(z) - Q3(7) + 13(7)

ri(z) = ra(x) - Q3(x) + (—13(x)) | — r3(x) = —Py(z),

Py(z) = P5(x) - Qs(z) — Ps(x) —> —r3(x) = —ru(z) - Q5(x) + 15(2)

—r3(z) = (=ry(z)) - Qs(x) + 15(2) | — 15(2) = —Ps()

Poy_a(2) = Poys(2) - Quya(t) — Poys(2)

\ P31,2<Z’> = Pslfl(x) ’ Qs171(x) +0 pues

P, (z)=0

(6)

Podemos observar en (6) que las expresiones encerradas en un cuadro constituyen el algoritmo de la division

euclidea cuando se utiliza para calcular el maximo comun divisor de los polinomios Fy(z) y P ().

Por tanto, m.c.d(FPy(z), Pi(x)) = Ps,—1(z) que es un polinomio de grado mayor o igual que 1 (s; < s), en
contra de que ambos polinomios no tienen ningun factor comun.

RESULTADO 3: Si existen r € [a,b] y s;1 € Ncon 0 < s; <s y Py (r) = 0 entonces se cumple que
Py _1(r) #0, Ps41(r) #0, yademds Ps,_(r)- Py 41(r) <O0.

Para demostrarlo razonemos por reduccion al absurdo y supongamos sin pérdida de generalidad que también

P51+1(T‘> =0.
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De nuevo, la expresion (5)
Pia(z) = Pi(x) - Qi(x) — Piya(z)
haciendo x = r y tomando 7 — 1 = s; tenemos
PSl (T) = 51+1< ) Q81+1( ) - P51+2<7n)
como P;, (r) = 0 entonces

Paa(r) = Poga(r) - Qua(r) @)
Como hemos supuesto que Py, 1(r) = 0 al sustituir en (9) resulta
Py 42(r) =0 (®)

Repetimos el proceso y hacemos x = 7 y tomamos ¢ = s; + 1 tenemos

Py 11(r) = Psi4a(r) - Qs 4+2(r) — Poy43(r)
como Py, 1(r) = 0 entonces
Psl+3(7’) = 51+2( ) Qs1+2( ) )
LLevando (9) a (8) resulta
Py i3(r)=0

De forma que suponer nulos dos valores consecutivos de la sucesion de Sturm evaluados en x = 7 supone

Psl+k(7") = 0, k Z 1

conlo que Ps(r) = 0, en contra de que ;(z) = P, # 0 (Resulatdo 1). Y no podemos suponer que Ps, 1(r) =
0.

Por otro lado, sustituyendo en (5) tenemos

PS1*1(7’) ( ) QS1( )_ 51+1(7’)

y como P, (r) = 0 resulta

Poya(r) = =Poa(r) (10)

y concluimos la demostracion del Resultado 3.

RESULTADO 4: Si existe r € [a,b] con Py(r) = 0 entonces existe ¢ > 0 cumpliendo (Fy-P;)(r—e) <0
y (PO'Pl)(T+€> > 0.

En efecto, si r es raiz de Py(x) = P(x) entonces

Fo(x) = (x —r) - h(z), h(r)#0,
derivando
Py(z) = Fy(x) = h(z) + (z —r) - W' (),
multiplicando por Py(z) = (z — r) - h(x) tenemos
Py-Pi(z)=(z—7r)-h(z)*+ (x —r)* - h(z) - B'(z),
y tomando z suficientemente cerca de r tenemos que (P - P;)(z) tiene el mismo signo que (z —7) - h(z)?,

es decir, existe € > 0 verificando:
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-Size(r—er)= (F-P)(x) <0,
-Size(r+e,r)= (P P)(x) >0,

Tras estos resultados preliminares, estamos ya en posicion de continuar con la demostracion del teorema de
Sturm.

Sea r € [a,b], y veamos qué ocurre con v(r). Tenemos las siguientes situaciones:
» Pi(r)#0, Vie{0,1,...,s}ylasucesion de Sturm evaluadaen x = r
Py(r), Py(r), ..., Ps(r)
estd formada por elementos no nulos y puede haber en ella a lo sumo un total de s cambios de signo

w(r)).

Como cada uno de los polinomios P;(z), ¢ = 1,...,s es una funcién continua, podemos encontrar
para cada P;(x) un entorno de r de la forma (r — ;, r +¢;) con ¢; > 0 donde P;(x) tiene el mismo
signo que P;(r) y tomando £ = min(ey,... ;) lasucesion

Pﬂ(z)a Pl(x)a s 7Ps(l')
tiene el mismo nimero de cambios de signo que la sucesion correspondiente a x = r cuando = €

(r—e, r+¢). Deformaque v(z) =v(r), * € (r—e, r+¢) y v(z)esconstante en un entorno
de r.

= Si Py(r) # 0, pero existe al menos un polinomio de la sucesién de Sturm que se anula en x = r. Sea
sy el primer indice de dicha sucesién, s; € {1,...,s} con Py, (r) = 0. El Resultado 3 nos garantiza
que Py -1(r) #0, Poya(r) #0 y Pyo1(r) - Psysa(r) <O0.

Un razonamiento similar al realizado en el punto anterior nos permite asegurar que existe un entorno
de x = r de la forma (r — ¢, r + ¢) donde los polinomios P;,_1(x) y Py 1(z) tienen signo
constantey Py, _1(z)- Ps,11(z) <0, z € (r—e, r+¢) (secumpliaque Py, _1(r)- Ps,+1(r) < 0).
Por tanto, v(x) = 1y es constante en dicho entorno.

= Si Py(r) = 0 el Resultado 4 nos garantiza que existe ¢ > 0 de forma que
.(PO'Pl)(x)<07 {EE(’T‘—E,T),
e (Py-P)(x)>0, ze€(r,r+e),
y podemos tomar dicho entorno de manera que P; () tenga signo constante.

Veamos entonces qué ocurre con el ndimero de variaciones de signo, v(z), en el entorno reducido (r —¢, r+
)\ {r}, para ello tendremos en cuenta las siguientes tablas

| | Pol) | Pi(z) [ v(x) | Py(z) [ Pi() [ v(x)
+ |1
+ |0

r—e<ax<r + — 1 r—e<ax<r —
r<z<r-+e — — 0 r<r<r+4e +
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que en total nos dan 1 variacién de signo, es decir,

lim v(z) — lim v(z) = 1.
=TT z—rt

Si Py(r) # 0 podriamos tener las 4 posibilidades siguientes

| | Po(x) | Pi(x) [ v(z) | Po(z) | Pa(z) | v(z)
r—e<z<r| + — 1 r-—e<xsr| = + 1
r<x<r+e + — 1 r<x<r-+e — + 1

H Py(x) \ Pi(x) \ l/(ib')‘ Py(z) | Pi(z) | v(z)
r—e<z<r| + + 1 r—e<x<r) + + 1
r<z<r+4el| + + 1 r<r<r+e| + + 1

que en total nos dan 2 variaciones de signo. De forma que pasar por una raiz de Py(x) las variaciones de
signo disminuye en 1y si r = a tenemos que v(z) permanece constante.

Hemos visto que el nimero de cambios de signo de la sucesién S(z) puede cambiar Gnicamente cuando se
cruzaunaraiz r deP(z), es decir, cuando Py(r) = 0 ya que en el resto de los puntos permanece constante.

A medida que = avanza desde a hasta b, el valor v(x) solo puede disminuir en pasos de 1, y sélo en los
puntos donde z es una raiz simple de P(x), ya que por hipétesis P(x) no tiene raices miltiples, siendo, por
tanto, una funcién mondtona.

Como P(x) no tiene raices multiples y los tinicos puntos donde v(z) puede cambiar son las raices reales
simples de P(x) en el intervalo, se concluye que:

v(a) — v(b) = nimero de raices reales simples de P(x) en (a, b).

Teorema de Sturm en polinomios con raices miiltiples

Sea P(x) € R[z| un polinomio de grado n > 2 con coeficientes reales, y sea G(x) =
m.c.d(P(z), P'(x)) entonces el nimero de raices de P(x) es el mismo que el de P(z)/G(z) y
si a 'y b son dos niimeros reales tales que P(x)/G(z) no se anula ni en x = a ni en z = b entonces,
el nimero exacto de raices reales simples y distintas de P(x)/G(z) en el intervalo (a, b) viene dado
por:

v(a) —v(b)

siendo v(z) la variacion de signos de la sucesion de Sturm aplicada a P(x)/G(z).

Ejemplo:
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Sea P(z) = P(x) = ® — 62% + 11z — 6 y contemos las raices que tiene en el intervalo [0, 4].

— Comenzamos construyendo la sucesion de Sturm:

Py(z) = 2* — 62 + 112 — 6

1 2
Py(r) = 32* — 122 + 11 — divisién de Py(x) entre P;(x) — cociente: Q,(x) = 33
2 4 2 4
— resto: R(z) = —3% + 3 Py(z) = —R(x) = 3% 3
2 4 C . 9
Py(z) = 3¢5 divisién de P (x) entre P»(x) — cociente: Qa(x) = 7%~ 9
— resto: Ry(z) = —1
Pg(f,E) =1

— Evaluamos ahora la sucesidén de Sturm en z = 0.

Py(0) =—-6 (-

Pi(0) =11 (+) . |

Py(0) = —4/3 () — 3 cambios de signo = v(0) = 3
Py0) =1 (+)

— Evaluamos ahora la sucesion de Sturmen z = 4

Py(4)=6 (+)

Pi(4)=11 (+) ' '

Py(4) = 4/3 (+) = 0 cambios de signo = v(4) =0
P4)=1 (+)

— Como ninguno de los polinomios de la sucesiéon de Sturm se anula en los extremos del intervalo, podemos
aplicar dicho teorema segtin el cual el nimero de ceros en el intervalo [0, 4] es v(0) — v(4) = 3. En efecto,
sus raices son 1, 2y 3.

4.8. Siglos XIX y XX

En el siglo XVIII el estudio de la dependencia de las raices de un polinomio respecto a sus coeficientes
comenzo despertando el interés de los matematicos pero su formalizacién rigurosa se hizo en el siglo XIX
con el auge del andlisis complejo y la teoria de funciones. Hoy en dia, este principio se conoce como
continuidad de las raices. Sus aplicaciones son tanto tedricas como practicas, por ejemplo, en la estabilidad
de sistemas dindmicos, en andlisis numérico y en control de errores en cdlculos computacionales.
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4.8.1. Continuidad de las raices de polinomios

La dependencia de las raices de un polinomio respecto a sus coeficientes, es decir, qué ocurre con las
raices de un polinomio si modificamos ligeramente sus coeficientes.

Consideremos la familia de polinomios P;(x), dependiente de un pardmetro ¢ € [0, 1] dada por
Pi(z) =2"+ay(t)z" ' + -+ +a, € Clz],

un polinomio de grado 7, con coeficientes que son funciones continuas de ¢. Sean 7 (), . .., r,, () sus raices
(contadas con su multiplicidad). La pregunta que nos hacemos es: ;cémo varian las raices r;(t) de P;(z) en
funcién de t?

Teorema de continuidad de las raices

Sea P,(z) una familia continua de polinomios complejos de grado fijo n. Entonces, las raices de
P,(x), contadas con multiplicidad, varfan de forma continua con ¢.

El resultado asegura que toda perturbacién arbitrariamente pequefia o cambio en los coeficientes (por ejem-
plo, por errores de redondeo en célculo numérico) da lugar a un polinomio perturbado cuyas raices se
encuentran cerca de las raices originales (contando multiplicidades y ordenadas adecuadamente), es decir,
se produce sélo un pequefio cambio en las raices.

Entre sus aplicaciones podemos citar:
» Analisis de estabilidad en sistemas dinimicos.
= Estudio de bifurcaciones en ecuaciones diferenciales.

= Algoritmos numéricos para busqueda de raices.

A pesar de su utilidad, el teorema de continuidad de las raices presenta algunas limitaciones importantes:

» No garantiza continuidad ordenada: aunque las raices dependen continuamente de los coeficientes,
no hay correspondencia individual entre las raices de los polinomios sucesivos. La convergencia es
de conjuntos de raices (con multiplicidad), no de cada raiz en particular.

» [nestabilidad de raices miiltiples: las raices con multiplicidad mayor que uno son especialmente sen-
sibles a pequefias perturbaciones en los coeficientes. Si una raiz tiene multiplicidad m, una pequefia
perturbacién puede dar lugar incluso a m raices. Asi por ejemplo,una raiz doble puede descomponerse
en dos raices distintas y separadas en el plano complejo.

» Falta de informacion cualitativa: Pequefios cambios en los coeficientes pueden hacer que, por ejem-
plo, dos raices reales se conviertan en un par de raices complejos conjugadas.
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4.8.2. El método de biseccion

En los siglos XIX y XX, con el desarrollo del célculo diferencial y el avance de la tecnologia, se popu-
larizaron métodos numéricos para aproximar raices de polinomios con precision alta. Ademds, el anélisis
de la convergencia y la estabilidad de estos métodos contribuyeron al nacimiento del andlisis numérico
como una disciplina matemadtica formal, con importantes aplicaciones tanto tedricas como computaciona-
les. Entre los métodos numéricos para aproximacién de raices de funciones, y en concreto, de polinomios,
podemos citar el método de biseccion, el método de regula falsi, el método de la secante, y variantes del
método de Newton—Raphson adaptadas a polinomios (Burden y Faires, 2010). En la subseccion 4.6 ya ex-

pusimos el método de Newton—Raphson, ahora mostraremos el método de biseccion. Este, es un método
numeérico iterativo para aproximar la raiz real de una funcién continua que cambia de signo en los extremos
de un intervalo cerrado y que contine a la raiz. Tiene su base en el teorema de Bolzano que enunciaremos
seguidamente.

Teorema de Bolzano

Si f(z) : [a,b] — R una funcién continua tal que f(a) - f(b) < 0. Entonces, existe al menos un
nimero real ¢ € (a, b) tal que f(c) = 0.

Para poder aplicar con garantia de convergencia el método de bisecciéon se debe cumplir el teorema de
Bolzano en un intervalo [a, b] en el cual debe haber una tnica raiz.

En las condiciones anteriores el algoritmo de biseccion genera una sucesion de intervalos encajados [a,,, b,]
que contienen la raiz y que se construyen como sigue:

Si r es la tnica raiz de P(z) € K[z] en [a, b], a,b € Rcon P(a)- P(b) < 0, tomamos a; =
a, by = b y se repite el siguiente proceso para n > 1 hasta llegar a la tolerancia de error deseada

n bTL . .
s Secalculac, = % el punto medio del intervalo [a,,, b,].

» Si P(¢,) = 0, hemos encontrado la raiz exacta.
= Si P(a,) - P(c,) < 0, entonces r € [a,, ¢,], y se redefine b, 1 = ¢,, api1 = ay.

» Si P(c,) - P(b,) < 0, entonces r € [c,, b,], y se redefinen a,1 = ¢,y b1 = by

Como la longitud de los intervalos

se reduce en cada paso, tenemos que
lim (b, — a,) =0

n—oo
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a, + by,

y, por tanto, la sucesién de puntos ¢, = converge a un valor r € [a,b]. Como f(x) es continua

resulta

lim f(c,) = f(r) =0.

n—oo

El error cometido al aproximar r por c,, tiene la siguiente cota

b—a
|T’—Cn|§2—n, TLZl

Ejemplo.

Consideremos de nuevo el polinomio:
Px)=a*—2—1.

Para aplicar con garantias el método de biseccion debemos asegurarnos de que se cumplen las condiciones
para su aplicacion.

Un polinomio es siempre una funcion continua en R. Basta encontrar intervalos donde haya una tnica raiz.
Podemos empezar aplicando el teorema de Sturm para aislar las raices y tomar [1, 2] donde se cumple que

Ply=1¥-1-1=-1
P2)=2-2-1=8-2-1=5

que tienen distinto signo.

Primera iteracion:

1+2
612%21,5

P(15)=(15)3-15-1=3375—15—1=0,875

P(1) = -1y P(1,5) = 0,875 tienen signos opuestos, la raiz estd en [1, 1'5].

Segunda iteracion:

1+1,5
2

0y = = 1,25
P(1,25) = (1,25)3 — 1,25 — 1 = 1,953125 — 1,25 — 1 = —0,296875

P(1,25) y P(1,5)tienen signos opuestos, la raiz estd en [1'25, 1'5].
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Figura 2: Método de biseccion
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Tercera iteracion:

125415

= 1,375
2 )

C3

P(1,375) = (1,375)% — 1,375 — 1 = 2,595703125 — 1,375 — 1 = 0,220703125

la raiz estd en [1'25, 1'375].

ay, b, Cn P(cy)
1.0000 | 2.0000 | 1.5000 | 0,8750
1.0000 | 1.5000 | 1.2500 | —0,2969
1.2500 | 1.5000 | 1.3750 | 0,2246
1.2500 | 1.3750 | 1.3125 | —0,0515

W~ O3

Tabla 1: M. de biseccién . f(z) = 2° —x — 1, x € [1,2].

Con 3 iteraciones obtenemos como aproximacion a la raiz x5 = c¢3 = 1,375. La Tabla 1 muestra un resumen
de las iteraciones realizadas.

En la Figura 2 vemos como partiendo del intervalo inicial [ag, by] = [a, b] se van produciendo sucesivas
divisiones de los subintervalos dando lugar a aproximaciones cada vez mds cercanas a la raiz.

Con 3 iteraciones obtenemos como aproximacion a la raiz x5 = c¢3 = 1,375. La Tabla 1 muestra un resumen
de las iteraciones realizadas.

4.8.3. El método de Regula Falsi

El método de regula falsi (0 método de la falsa posicion) es un algoritmo numérico para aproximar una
raiz real de una funcion continua f(z) en un intervalo [a, b] con f(a)- f(b) < 0 que toma como aproximacién
el punto de interseccién ¢ de la recta que une (a, f(a))y (b, f(b)) con el eje x:

- f(b) b fla)
)~ J(a)

Tras esto, se evalia f(c) y:

= Si f(a) - f(c) <0, laraiz estd en [a, c|, entonces se reasigna a b el valor de c.

= Si f(b) - f(c) <0, laraiz estd en [c, ], y se reemplaza a por c.

El proceso se repite el hasta que f(c) sea suficientemente cercano a cero o se alcance la tolerancia de error
deseada.
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Si r es la tnica raiz de P(z) € K[z] en [a, b], a,b € Rcon P(a) - P(b) < 0, tomamos a; =
a, by = b y se repite el siguiente proceso para n > 1 hasta llegar a la tolerancia de error deseada
an - P(b,) — b, - P(a,)

P(b,) — P(ay)

Se calcula ¢, =

= Si P(¢,) = 0, hemos encontrado la raiz exacta.
= Si P(a,) - P(c,) < 0, entonces r € [a,, ¢,], y se redefine b, 1 = ¢,y pi1 = Q.

= Si P(c,) - P(b,) < 0, entonces r € [c,, b,], y se redefine a, 1 = ¢,, b1 = by

El método de regula falsi garantiza la convergencia del método de biseccion (la raiz siempre permanece en
el intervalo de partida).

Ejemplo.

Tomamos de nuevo el polinomio 2 —z — 1 y el intervalo [1, 2] que ya tomamos en la subseccién del método
de biseccion. Se cumple que P(1) = —1y P(2) =5

Primera iteracion:

C1-5-2-(=1)  5+2

C1

5 (1) 6
7
=5 ~ 1,1667P(c;) = (1,1667)3 —1,1667 — 1 ~ 1,589 — 1,1667 — 1 = —0,5777
a; =C = 1,1667, b1 =2

Segunda iteracion:

Play) ~ —05777, P(b)) =5

_ 1,1667-5—2-(—0,5777)  5,8335+1,1554  6,9889
N 5— (—0,5777) N 5,5777 55777

Co ~ 1,2531

P(c;) = (1,2531)% — 1,2531 — 1 ~ 1,967 — 1,2531 — 1 = —0,2861

o = Co = 1,2531, b2 =2
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Tercera iteracion:

P(ay) ~ —0,2861, P(by) =5

1,2531-5—2-(—0,2861)  6,2655+ 0,5722  6,8377
5 — (—0,2861) B 5,2861 ~ 5,2861

c3 = ~ 1,2938

Ples) = (1,2938)3 — 1,2938 — 1 ~ 2,166 — 1,2038 — 1 = —0,1278

La Tabla 2 muestra los resultados obtenidos al aplicar el método de Regula—Falsi. Podemos observar la

(7% bn Cn P<Cn)
1.0000 | 2.0000 | 1.1667 | —0,5787
1.1667 | 2.0000 | 1.2531 | —0,2854
1.2531 | 2.0000 | 1.2934 | —0,1295
1.2934 | 2.0000 | 1.3113 | —0,0566
1.3113 | 2.0000 | 1.3190 | —0,0243

A WO = O3

Tabla 2: M. de regula falsi para P(z) = 23 —x — 1 en [1, 2].

convergencia del método a la raiz del polinomio.

La Figura 3 muestra el comportamiento grafico del método de Regula—Falsi.
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- Primera iteracion
-— Segunda iteracion

-— Tercera iteracion

| ——————————————————————————

Figura 3: Método de Regula Falsi
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4.8.4. El método de la secante

El método de la secante recibe este nombre porque, en cada iteracion, utiliza una recta secante para
aproximar la raiz de una funcion. En lugar de calcular la derivada en la expresion del método de Newton—
Raphson, el método de la secante aproxima la pendiente de la curva utilizando la recta que une dos puntos
consecutivos de la funcidn, es decir, una secante a la grafica de la funcién. En cada paso, la interseccion de
esta recta secante con el eje x proporciona la siguiente aproximacion para la raiz.

La recta que pasa por los puntos (z,_1, f(x,-1)) ¥ (zn, f(x,)) es

f(@n) = f(@n)

Tp — Tn—1

y=f(r,1)+ (T —2n1),

su interseccion con el eje x se obtiene al hacer y = 0 en la expresion anterior

f(xn> - f(ﬁn—l)

Tp — Tp—1

0= f(z,_1) + (x — Tp_1),

despejando z se obtiene

Tp — Tn—1

= o= fen) T T G

de donde la expresion del método de la secante es

Tp — Tp—1

Tt = tnc = S e NG T

Siresraizde P(x) € Klz], xp y x; son dos aproximaciones suficientemente cercanas a r el
método de la secante realiza el siguiente proceso

Tp — Tp—1

P(z,) — P(zn1)

Si P(¢,) = 0, hemos encontrado la raiz exacta y se concluye.

Se calcula z,, 11 = 21 — P(2y_1) -

Si P(c,) # 0, se calcula estepror = |Tni1 — Tn| que se usa como una estimacion del error.

Si esterror < Tolerancite,.o, se concluye.

En otro caso, se redefine z,,_1 = x,, T, = Tpi1-

Observaciones.

El método de la secante necesita dos aproximaciones iniciales suficientemente cercanas a la raiz para iniciar
el proceso, pero no se tiene una medida de lo cercanas que deben estar. Estos dos iterantes iniciales pueden
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tomarse a partir del método de biseccién y para la convergencia se necesitan las mismas condiciones que
el método de Newton—Raphson, y, aunque su velocidad de convergencia es menor, es mas rapido que el
método de biseccion y no necesita el calculo de derivadas.

Ejemplo.

Consideremos de nuevo el polinomio:

Plz) =2 -2 -1,

conraiz r ~ 1,3247179, y tomamos como iterantes iniciales los proporcionados por el método de biseccion,
es decir, xg = 1,25y x1 = 1,375.

Primera iteracion:

1 — Zo

P(x1) — P(xo)

) :xl—P(xl)-

1,375 — 1,25

= 1,375 — 0,220703125 -
’ ’ 0,220703125 — (—0,296875)

0,125

=1 — 0,22 125 ——————
375 — 0,220703125 0,517578125

— 1,375 — 0,220703125 - 0,2414 = 1,375 — 0,0533 = 1,3217

Segunda iteracion:

To — X1
B pr— — P .
vy =@ = Ploa) - 5SS
1,3217 — 1,375 —0,0533
=1,3217 — (—0,0166) - — ’ =1,3217 4+ 0,0166 - ———
’ (=0, ) —0,0166 — 0,2207 ’ +0 —0,2373

= 1,3217 + 0,0166 - 0,2246 ~ 1,3217 + 0,0037 = 1,3254

Tercera iteracion:

T3 — X9
— e — P(x2) -
o= a = P B T )
1.3254 — 1.3217 0.0037
= 1.3254 — 0.0007 - ’ ! = 1.3254 — 0.0007 - =
’ ’ 0,0007 — (—0,0166) ’ ’ 0,0173

= 1,3254 — 0,0007 - 0,2139 ~ 1,3254 — 0,0001 = 1,3253
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Tn P(z,)
1.25000 | —0,296875
1.37500 | 0,224609
1.32116 | —0,015119
1.32456 | —0,000689
1.32472 | —0,000002

AW = O3

Tabla 3: M. de la secante. P(z) = 2% —x — 1, g = 1,25y x; = 1,375.

Un resumen de las iteraciones realizadas nos las proporciona la Tabla 3.

La Figura 4 muestra el comportamiento grafico del método, que se basa en ir trazando las sucesivas rectas
que unen parejas de puntos y que al intersecarse con el eje = nos da un nuevo iterante, es decir,

= 7y : recta que une los puntos xy y 1 y cuyo corte con el eje x nos da z5.
= 7 :recta que une los puntos x; y x5 y cuyo corte con el eje = nos da zs.
= El proceso continua.

Ejemplo.

Consideramos el ejemplo anterior pero tomando ahora como aproximaciones iniciales los extremos del
intervalo, es decir, zg = 1y 1 = 2.

Primera iteracion:

T =m— Pl P(xf; : CICDO(JUO)
22‘5'_53?—0_1) SRR R R ERE B R
Segunda iteracion:
e S
03333 — (1.2963) % — 0,3333 + 1,2063 - %gg;

= 0,3333 + 1,2963 - 0,2648 ~ 0,3333 + 0,3433 = 0,6766
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Figura 4: Método de la secante
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Tercera iteracion:

T3 — T2
L4 T3 ($3) P(ZBg) — P($2)
0,6766 — 0,3333 0,3433
= —(~1 R ’ = 1 00710
0,6766 — (—1,3673) 13673 — (—1.2963) 0,6766 + 1,3673 00710

= 0,6766 + 1,3673 - (—4,8366) ~ 0,6766 — 6,6151 = —5,9385

Con 3 iteraciones obtenemos como aproximacion x, = —5'9385 que se aleja de la raiz. La Tabla 4 muestra
un resumen de las iteraciones realizadas. Podemos observar que los resultados. Este ejemplo muestra lo
sensible e importante que es la eleccion de los iterantes iniciales, por ello, es frecuente, tanto en el método
de Newton como en el método de la secante partir de aproximaciones adecuadas y estas pueden tomarse
después de aplicar el método de biseccion un cierto nimero de veces.

T P(x,)
1.0000 —1,0000
2.0000 5,0000
0.3333 —1,2963
0.6766 | —1,3673
-5.9385 | —204,4795

AW~ O3

Tabla 4: M. de la secante.P(z) = 2° — 2 — 1, zp = 1y z; = 2.

La Tabla 5 muestra un resumen de los resultados obtenidos por todos los métodos numéricos. Podemos
observar, que tomando los iterantes adecuados, el método de Newton—Raphson converge rapidamente a la
raiz seguido del método de la secante. Es preciso hacer notar que no tenemos una medida de lo cerca que
debemos estar de la solucion exacta para arrancar estos métodos. El método de biseccidn, sin embargo,
garantiza siempre la convergencia a la solucién cuando lo aplicamos en las condiciones adecuadas.

Iteracion (n) | Biseccién ¢,, | Regula Falsi ¢,, | Secante x,, | Newton—Raphson x,,
0 1.5000 1.1667 1.2500 1.2500
1 1.2500 1.2531 1.3750 1.3472
2 1.3750 1.2934 1.32116 1.3252
3 1.3125 1.3113 1.32456 1.3247
4 1.3438 1.3190 1.32472 1.3247

Tabla 5: Aproximaciones para P(z) = 2 — x — 1 en [1,2] con los métodos de biseccion, regula falsi,
secante y Newton-Raphson. Raiz 1, 3247179

Los métodos de biseccion y Regula Falsi, aunque garantizan convergencia hacia la raiz del polinomio,
lo hacen mas lentamente que el método de Newton—Raphson y el de la secante. No obstante, estos dos
métodos son sensibles a los iterantes iniciales y el método de Newton—Raphson necesita ademas el calculo
de la derivada primera.
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4.8.5. Técnicas de acotacion de raices de polinomios

De cara a localizar las raices reales de un polinomio, es fundamental contar con un intervalo en el que
dichas raices puedan encontrarse. Por ello, las técnicas de acotacion permiten establecer limites superior e
inferior dentro de los cuales se encuentran todas las soluciones reales del polinomio. Con ello, se reduce
el dominio de biisqueda a un intervalo finito que permite interpretar graficamente la funcién polinémica,
optimizar los métodos numéricos, en caso de usarlos, etc.

Como hemos visto, la regla de los signos de Descartes (1637) permite estimar el nimero de raices reales
positivas. El teorema de Budan—Fourier refina el método anterior para intervalos y proporciona una cota
superior al nimero de raices reales en un intervalo (a, b) y el Teorema de Sturm (1829) determina el nimero
exacto de raices reales de un polinomio en un intervalo.

Cauchy (1831) establecid la siguiente cota superior para las raices reales positivas de un polinomio

Cota de Cauchy para las raices reales positivas

an

Sea P(z) = ana" +---+ap € R[z] ysea M = max , entonces, toda raiz positiva r de

0<i<n

P(z) cumple
r<1l+ M.

y todas las raices reales positivas de P(x) estdn en el intervalo (0, 1 4+ M].

Posteriormente, Lagrange (siglo XIX) mejora la cota de Cauchy a través de la férmula

a; ) 1/(k—1)

r§1+(méx —
ay

donde a; son los coeficientes negativos anteriores a ay, aunque esta expresion es menos utilizada.

Cota inferior para las raices reales positivas

Sea P(x) = a,a" + ---+ ap € R[z] y hagamos el cambio de variable x = 1/¢. La acotacion de
Cauchy para Q(t) con
1

proporciona una cota superior K que se transforma en la siguiente cota inferior para las raices posi-
tivas de P(z):
1

7A>?.
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Acotacion de las raices reales negativas

Basta aplicar las cotas anteriores a P(—x).
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5. Propuesta de integracion curricular de contenidos avanzados so-
bre raices de polinomios

En el marco de la Educacion Secundaria Obligatoria en Castilla y Leén y conforme a los principios esta-
blecidos por la LOMLOE (Ley Orgénica 3/2020), el estudio de polinomios se introduce de forma progresiva
a lo largo de la etapa, con especial énfasis en el uso del lenguaje algebraico, las operaciones elementales,
la factorizacion, y la resolucién de ecuaciones de segundo grado. En concreto, la bisqueda de raices poli-
nomicas se trabaja de manera explicita en los cursos de 3° y 4° de ESO mediante procedimientos como la
Regla de Ruffini, el Teorema del Resto, la factorizacién mediante identidades notables y la resolucién de
ecuaciones de segundo grado. Esta aproximacion, aunque adecuada como introduccién, puede ampliarse
de forma significativa, més alld del enfoque tradicional incorporando otras técnicas como el teorema de
Sturm, la acotacién de raices y su aproximacion con métodos numéricos, contribuyendo asi a enriquecer la
comprension del alumno y su competencia matematica.

En esta seccion se propone un enfoque ampliado y secuenciado que, sin apartarse de los objetivos curri-
culares oficiales, introduce gradualmente en el aula los resultados mateméticos que han sido desarrollados
en las secciones previas del presente Trabajo de Fin de Méster.

Por tanto, esta propuesta no pretende modificar el curriculo vigente, sino mostrar de qué forma puede
enriquecerse el tratamiento de los polinomios dentro del aula para potenciar el desarrollo de la competen-
cia matematica y la comprension profunda del concepto de raiz. También, se justifica desde la necesidad
de favorecer el pensamiento algebraico, la exploraciéon numérica y la argumentacién en el aula, mediante
actividades accesibles y motivadoras para el alumnado de ESO.

En las siguientes subsecciones se presenta una propuesta de secuenciacion gradual de contenidos por
niveles educativos, en concreto para 3°y 4.° de ESO y 1° de Bachillerato, indicando en cada caso los con-
ceptos matematicos implicados, las competencias especificas asociadas y las sugerencias didacticas para
su implementacion gradual. La finalidad es mostrar cémo en 3° y 4° de ESO y 1° de Bachillerato, pueden
trabajarse diferentes métodos de obtencion de raices polindmicas con diferentes grados de profundidad, en-
riqueciendo el curriculo actual mediante recursos visuales, tecnoldgicos (como GeoGebra) o de exploracion
numérica (Larson et al., 2007).

5.1. 3°de ESO

Tomando como base el curriculo de 1°y 2° de ESO (véase la Seccién 2) donde se introduce el len-
guaje algebraico bésico para el tratamiento de polinomios, las operaciones elementales y la resolucion de
ecuaciones y sistemas lineales, el curriculo oficial de tercer curso de Educacion Secundaria Obligatoria,
introduce de forma sistematica el tratamiento simbdlico del dlgebra. En concreto, el bloque de “Sentido
algebraico” establece como objetivo que el alumno reconozca y manipule expresiones algebraicas, opere
con polinomios (suma, resta, multiplicacién y divisién), aplique identidades notables y aborde la factoriza-
cidn, introduciendo también la Regla de Ruffini y la resolucion de ecuaciones de segundo grado con una
incognita. Esta etapa es, por tanto, clave para consolidar el lenguaje algebraico y abrir la puerta al estudio
mads profundo de las raices de polinomios.
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En este contexto, se propone una ampliacién razonada de los contenidos minimos establecidos, que se
irdn introduciendo de manera progresiva y adaptada al nivel de los alumnos. Esta ampliacién no preten-
de sustituir los contenidos obligatorios, sino reforzarlos y conectarlos con una vision mas realista de la
naturaleza de las raices de polinomios.

Contenidos clave
= Estudio, consolidacion y practica guiada de la Regla de Ruffini y del Teorema del Resto.
= Representacion grifica de polinomios para la estimacion visual de raices reales.
= Aplicacién de las cotas de Cauchy para limitar el conjunto de bisqueda de raices.
» Introduccién al método de Sturm.

= Aplicacién de los métodos de biseccion y regula—falsi con apoyo digital y tablas de valores para
ilustrar la aproximacién de raices y el comportamiento de los métodos numéricos.

Competencias especificas trabajadas

= CE3. Utilizar el razonamiento matemdtico para identificar, modelizar y resolver problemas relacio-
nados con el dlgebra y la representacion de funciones.

» CEA4. Interpretar y comunicar situaciones y relaciones matematicas utilizando lenguaje algebraico y
representaciones graficas.

Posibles propuestas didacticas asociadas

= Actividades con GeoGebra para representar polinomios de segundo y tercer grado y observar el com-
portamiento de sus raices.

= Mini—investigaciones guiadas para aplicar cotas superiores/inferiores y reflexionar sobre el nimero
de soluciones posibles.

= Ejercicios contextualizados para aplicar la Regla de Sturm.

= Experimentos numéricos con tablas de valores para identificar cambios de signo y aplicar el método
de biseccion.

Justificacion pedagdgica Introducir estas técnicas desde una perspectiva grafica y experimental permite
al alumno un pensamiento mds estructurado y funcional, sentando las bases del andlisis matematico poste-
rior. Al mismo tiempo, se favorece la comprension del concepto de raiz como solucién y favorece el uso de
estimaciones promoviendo el uso de TIC y estrategias de resolucion estructurada.
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5.2. 4°de ESO (Itinerario Académico Matematicas B)

En el itinerario académico de 4° de ESO, el curriculo amplia el trabajo realizado en cursos anteriores con
el estudio de funciones polindmicas y su andlisis grafico. También, se introduce de forma opcional o trans-
versal el concepto inicial de derivada, especialmente en relacion con el andlisis cualitativo del crecimiento
y decrecimiento de funciones.

En esta linea, se propone la consolidacion del Teorema de Sturm para la determinacién de forma exacta
del ndmero de raices reales en un intervalo dado, asi los métodos de biseccidon y Regula—Falsi, que per-
mite aproximar raices reales sin requerir derivadas para la aproximacion de raices y se incluyen el método
de la secante y, ya con el uso de derivadas el método de Newton—Raphson. Por supuesto, el apoyo con
herramientas digitales serd imprescindible ya que permiten contrastar enfoques algebraicos y numéricos,
desarrollar estrategias de estimacion y reforzar la conexidn entre los conceptos funcionales y las soluciones
algebraicas.

Contenidos clave

= Resolucion de ecuaciones polindmicas de mayor grado mediante técnicas graficas, factorizacion y
métodos iterativos.

= Consolidacién del Teorema de Sturm como método analitico para determinar el nimero de raices
reales de un polinomio dentro de un intervalo cerrado.

= Presentacion del método de la secante como algoritmo numérico para la localizacion de raices reales.
= Introduccion del método de Newton—Raphson como algoritmo numérico para la aproximacién de
raices reales que requiere el célculo de la derivada primera del polinomio y que en condiciones ade-

cuadas proporciona mayor velocidad de convergencia.

= Exploracion de funciones polinémicas mediante software matematico (GeoGebra o WolframAlpha),
incluyendo derivadas elementales y andlisis de comportamiento gréfico.

Competencias especificas trabajadas
= CE3. Formular, modelizar y resolver problemas con funciones polindmicas contextualizadas.

» CE4. Representar, interpretar y analizar funciones y sus caracteristicas a partir de diferentes formas
de representacion.

= CES. Utilizar herramientas tecnoldgicas para explorar y verificar propiedades de funciones.
= CE6. Elaborar argumentaciones matemadticas y justificar soluciones de forma razonada.

= CE7. Conectar contenidos matemadticos con su contexto histérico y su aplicacién en situaciones
reales.
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Posibles actividades de aula

= Actividades guiadas con GeoGebra para visualizar el nimero de raices de un polinomio y el efecto
de los coeficientes en su comportamiento grafico.

= Resolucién de problemas contextualizados de ingenieria, fisica o economia que requieran la localiza-
cién o la aproximacién de raices reales.

= Implementacién en aula de actividades gamificadas (por ejemplo un Escape Room matematico) en el
que los métodos de conteo y aproximacion de raices se integren como pruebas a resolver.

= Microproyectos de investigacion donde el alumnado explore el origen histérico y la utilidad de méto-
dos como el de Sturm, la secante o0 Newton—Raphson.

Justificacion pedagogica El trabajo en 4° de ESO debe orientarse no solo a la resolucién instrumental de
ecuaciones, sino también a la comprension de las funciones polindmicas como objetos matematicos dind-
micos, con propiedades graficas, raices reales interpretables y vinculos histéricos significativos. Incluir el
método de Sturm, la secante y el método de Newton—Raphson (de forma adaptada) promueve una vision
mas completa y realista de las estrategias disponibles para trabajar con polinomios en situaciones reales o
modeladas. La incorporacion de herramientas tecnoldgicas permite superar la barrera técnica que suponen
algunos métodos analiticos, facilitando su comprension conceptual y la experimentacién matemaética.

5.3. 1.°de Bachillerato

En 1.° de Bachillerato, el curriculo consolida y amplia los conocimientos algebraicos adquiridos durante
la etapa de Educacion Secundaria Obligatoria. El bloque de Andlisis incluye el estudio de funciones poli-
nomicas y racionales, asi como la derivacion y el anélisis local y global de funciones reales de una variable.
Esto proporciona un marco ideal para abordar de forma rigurosa métodos mas complejos de obtencion y
andlisis de raices, tanto desde la dptica algebraica como desde una perspectiva funcional y numérica.

En este nivel, se propone incorporar de manera mds formal y completa el uso de técnicas como el
método de Sturm para determinar el nimero exacto de raices reales en un intervalo dado, asi como métodos
iterativos como el de Newton—Raphson, que, junto con la derivacion, permiten hallar aproximaciones mas
precisas a las soluciones de ecuaciones polindmicas no factorizables por métodos elementales.

Ademads, se refuerza el uso de software mateméatico como GeoGebra o WolframAlpha para representar
funciones, visualizar raices, derivadas y tangentes, lo que facilita la interpretacion geométrica y numérica
de los métodos introducidos.

Contenidos clave

= Resolucion de ecuaciones polindmicas mediante métodos exactos (factorizacion, Ruffini) y numéri-
cos (biseccion, Newton—Raphson, secante).

= Aplicacion del método de Sturm con tablas de signos para determinar el nimero de raices reales.

= Derivacion de funciones polindmicas para localizar extremos y puntos de inflexion, y contextualizar
métodos iterativos.
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= Representacion grafica de funciones con interpretacion de las raices como puntos de corte con el eje
de abscisas.

= Estudio del comportamiento local de las funciones en torno a las raices: multiplicidad, tangencia y
cambio de signo.

Competencias especificas trabajadas

= CE2. Comprender, utilizar y justificar procedimientos de resolucién de ecuaciones y sistemas en
contextos funcionales.

» CE3. Analizar el comportamiento local y global de funciones mediante derivacion, representacion
gréfica y estudio de intervalos.

= CEA4. Utilizar tecnologia para experimentar, verificar resultados y simular modelos funcionales reales.

= CE6. Argumentar con rigor matemaético en exposiciones, informes o ejercicios.

Propuestas didacticas asociadas

= Resolucion de problemas contextualizados donde se deban aplicar distintos métodos de aproximacion
de raices comparando su eficiencia.

= Andlisis critico de los errores en métodos iterativos: convergencia, dependencia de la eleccion del
iterante inicial, etc.

= Visualizacién simultdnea de una funcién y sus derivadas para interpretar el comportamiento en torno
a las raices.

= Trabajos de investigacion breves sobre la evolucion histdrica de los métodos iterativos y su papel en
el desarrollo del andlisis numérico.

Competencias clave desarrolladas

= CCM (Competencia matematica): resolucion de problemas complejos, integracion de conceptos
algebraicos y analiticos, aplicacion del razonamiento 16gico y formal.

= CD (Competencia digital): uso de software para simulacién, validacién de conjeturas y comunica-
cién matematica.

» CCL (Comunicacion lingiiistica): elaboracion de informes y explicaciones formales y orales con
rigor terminoldgico.

= CPSAA (Aprender a aprender): reflexion critica sobre los métodos utilizados y autovaloracién del
proceso.

= CEC (Conciencia cultural): contextualizacién histérica del desarrollo del dlgebra y del andlisis co-
mo parte de la cultura cientifica.
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Justificacion pedagdgica En este nivel educativo, el alumnado se encuentra en condiciones de abor-
dar métodos numéricos avanzados y razonamientos mds abstractos, por lo que resulta oportuno introducir
herramientas que les permitan resolver ecuaciones polindmicas con raices no racionales y analizar su com-
portamiento con precision. La utilizacion de derivadas como herramienta complementaria permite reforzar
la conexién entre el dlgebra y el andlisis. Asimismo, se fomenta la autonomia, el rigor matematico y la ca-
pacidad critica para valorar la adecuacién de distintos métodos en funcién del tipo de funcién considerada.

5.4. Tabla resumen

Curso Contenidos clave Métodos introducidos | Herramientas Competencias
didacticas destacadas
3°ESO | Regla de Ruffini, Teo- | Ruffini, Resto, Cotas | GeoGebra, tablas | CE3, CE4
rema del Resto, Co- | de Cauchy, Sturm, Bi- | de valores, soft-
tas de Cauchy, Méto- | seccidn, Regula—Falsi | ware grafico basi-
do de Sturm (introduc- co

ciéon) Métodos de Bi-
seccion y Regula—Falsi,
Representacion gréfica
4° ESO | Método de Sturm, Mé- | Método de la Secante, | GeoGebra, Wol- | CE3, CE4,
todo de la secante, Mé- | Newton—Raphson framAlpha, Esca- | CES, CE6,
todo de Newton (in- pe Room CE7
troduccion), Represen-
tacion gréfica avanza-
da, Analisis de funcio-
nes polinémicas

1°Bach | Método de Sturm, | Newton—Raphson GeoGebra, Wol- | CE2, CE3,
Método de Newton— framAlpha, CE4, CE6
Raphson, Derivacion y calculadoras
comportamiento local, graficas

Raices multiples

Tabla 6: Resumen por curso de contenidos, métodos y competencias trabajadas
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6. Propuestas de actividades de aula

La seccion que se presenta a continuacion constituye la culminacioén del presente trabajo, en la que se
proponen tres posibles actividades de aula disefiadas para trabajar algunos de los contenidos matematicos
revisados en los bloques anteriores.

Tradicionalmente, el estudio de las raices de polinomios en la Eduaciéon Secundaria Obligatoria ha estado
fuertemente centrado en métodos algebraicos cldsicos como la factorizacién por inspeccion, la regla de
Ruffini o el teorema del resto. Sin embargo, dichos métodos resultan limitados cuando se aplican fuera
de contextos muy estructurados en los que los polinomios no presentan raices enteras ni factorizaciones
evidentes. Asi, el uso casi exclusivo de estos enfoques puede alejar al alumnado de la complejidad real que
implica hallar las raices de un polinomio.

con el objetivo de ofrecer una vision mds realista se describen a continuacion tres propuestas de actividades
de aula dirigidas al alumnado de Educacion Secundaria Obligatoria, concretamente para 4° de ESO. En ellas
se exploran distintas formas de introducir y profundizar en los métodos para obtener raices de polinomios.
Cada propuesta busca proporcionar un aprendizaje mas significativo, basado en la exploracién, la visua-
lizacidn, la reflexion matemadtica y el uso de recursos tecnolégicos como GeoGebra, con el fin de que el
alumnado comprenda mejor la naturaleza de las raices y reconozca los limites de aplicacién de los distintos
métodos.

La primera propuesta, un trabajo de investigacion, promueve el desarrollo auténomo y la indagacion guiada
mediante el trabajo cooperativo en torno a diversos métodos cldsicos y de aproximacion. La segunda, de
orientacién mas técnica y visual, se centra en la comprensién y aplicacién de métodos numéricos de apro-
ximacién con herramientas digitales como GeoGebra o Wolfram Alpha. Finalmente, la tercera propuesta
adopta un enfoque gamificado, a través de un proyecto contextualizado en una narrativa motivadora ins-
pirada en situaciones reales (Chapra y Canale, 2015), promoviendo una visién transversal del aprendizaje
matematico.

6.1. Propuesta 1: Proyecto de investigacion

Se propone una actividad en la que el alumnado de 4° de ESO desarrollara un trabajo de investigacion
por equipos. Donde cada grupo se dedicard a la exploracion del contexto histdrico, tedrico y practico de
diversos métodos para hallar raices de polinomios. El objetivo es que los estudiantes se conviertan en “es-
pecialistas” en el método que les haya sido asignado y que lo comprendan, no solo desde una perspectiva
algoritmica, sino también conceptual, critica e historica.

Posteriormente, los grupos presentardn sus conclusiones mediante una exposicion oral, y la actividad finali-
zard tras llevar a cabo un debate matematico en el que se contrastardn las distintas estrategias, favoreciendo
asi la reflexion sobre la eficacia de los distintos métodos en funcién del tipo de polinomio.

Este planteamiento busca, no solo reforzar conceptos matematicos clave, sino también desarrollar compe-
tencias transversales como la bisqueda de informacion, el andlisis de fuentes, la argumentacidn, la expre-
sién escrita y oral, y la toma de decisiones en grupo. A su vez, permite al docente evaluar tanto el dominio
de los contenidos como el desarrollo de competencias clave como el discurso matematico, la colaboracion
y la argumentacion.
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Fundamentacion curricular

La actividad se enmarca en el area de Matematicas B (orientadas a las ensefianzas académicas) de 4° de
ESO, dentro del Sentido algebraico. Contribuye especialmente al desarrollo de las siguientes competencias

clave:

Competencia matemadtica y competencias bdsicas en ciencia y tecnologia. (CMCT).
Competencia personal, social y de aprender a aprender (CPSAA).

Competencia en comunicacion lingiiistica (CCL).

Ademds, contribuye al desarrollo de diversas competencias especificas del curriculo de Matematicas de 4°
de ESO. En particular, se relaciona con los criterios 1.1, 1.3, 2.2, 3.1, 3.2, 6.1, 6.2, 8.1, 8.2, 10.1 y 10.2, al
promover que el alumnado:

Reformule y resuelva problemas matemaéticos contextualizados, seleccionando estrategias adecuadas
en funcién del método investigado (Ruffini, Sturm, Viete, etc.)

Justifique la adecuacion y los limites de cada método tanto desde una perspectiva formal como desde
un enfoque histérico-matematico.

Realice conjeturas, identifique patrones y valide resultados mediante razonamiento matemético rigu-
roso.

Establezca conexiones entre los métodos estudiados y su aplicabilidad en problemas reales o modeli-
zados.

Comunique sus hallazgos de forma clara, precisa y estructurada, tanto de manera oral como escrita,
empleando un lenguaje matemético apropiado.

Colabore de manera efectiva en equipos de trabajo, participando en la planificacidon, desarrollo y
exposicion final del trabajo cooperativo.

Objetivos didacticos

Con esta actividad esperamos que los alumnos sean capaces de:

Comprender los origenes historicos de algunos métodos cldsicos para hallar raices polindmicas.
Desarrollar habilidades de btisqueda, seleccion y sintesis de informacién matematica.

Aplicar los métodos investigados a polinomios reales proporcionados por el docente.

Elaborar un trabajo escrito estructurado y realizar una exposicién oral cooperativa.

Comunicar oralmente ideas y resultados mateméticos de forma clara, estructurada y argumentada.

Participar de forma razonada y respetuosa en un debate matematico.
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Temporalizacion

La propuesta estd pensada para desarrollarse durante cuatro sesiones de aula de aproximadamente 50
minutos cada una:

= 1? sesion: Presentacion de la actividad, formacion de equipos, asignaciéon de métodos, orientacién
bibliografica.

= 2%sesion: Inicio del trabajo de investigacién por equipos, consultas al docente, aplicaciéon de métodos
a funciones polindmicas concretas y preparacion de la exposicion.

= 3" sesion: Finalizacién del desarrollo del trabajo de investigacion durante la primera mitad de la
sesion. Comienzo de las exposiciones orales durante la segunda mitad de la sesion.

= 4 sesion: Continuacion de las exposiciones orales durante la primera mitad. Entrega del informe final
y reflexién grupal durante la dltima mitad de la sesion.

Metodologia didactica

La actividad se fundamenta en el Aprendizaje Basado en Proyectos (ABP), la indagacién histérica y
el trabajo cooperativo por equipos. Se promueve un aprendizaje activo, donde el alumnado asume roles de
responsabilidad compartida y reflexiona sobre las matematicas.

Los equipos trabajan como grupos de expertos sobre un método asignado, consultando fuentes bibliogra-
ficas y digitales, resolviendo ejemplos comunes al resto de grupos y elaborando dos productos finales: un
soporte visual (presentacion, péster, infografia...) que acompaiie su exposiciéon oral y un informe escrito
detallado.

El docente actia como guia y facilitador del aprendizaje ofreciendo orientacién bibliografica, resolu-
cién de dudas de los grupos y evaluacion formativa del proceso. Ademads, en la dltima sesion y tras las
exposiciones orales, durante el debate matematico el docente serd el moderador de este con el objetivo de
comparar estrategias, extraer conclusiones y fomentar la argumentacion.

Actividades

Los métodos que se asignaran a los equipos son:
= Método de Sturm.

M¢étodo de biseccion.

Regla de Ruffini.

Regla de los signos de Descartes.

Férmulas de Viete (para polinomios de grado 3).

Las tareas comunes que cada grupo debera llevar a cabo son:
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= [nvestigar el contexto histérico del método (época, matemético asociado, aplicacidn inicial).
= Explicar el método y su fundamentacion tedrica de forma clara y rigurosa.

= Aplicar el método a tres polinomios comunes dados por el profesor. En concreto, se proponen los
siguientes polinomios: P(x) = x? — 3z + 2, G(x) = 423 — 32® + 42 — 3y H(z) = 2% — 2042% —
640x + 288000.

= Elaborar unas conclusiones donde se recojan: ventajas del método, limitaciones, aplicabilidad y va-
loracién personal.

= Redactar un documento escrito con todo lo anterior estructurado.
= Preparar un soporte visual para una breve exposicion oral en clase.
= Participar en un debate matematico moderado por el docente con el objetivo de comparar estrategias,
extraer conclusiones y fomentar la argumentacién matematica.
Evaluacion

Se evaluard tanto el producto final (presentacién y ficha) como el proceso seguido por el grupo y la
participacion individual mediante una evaluacion formativa. Los instrumentos utilizados para ello seran:

= Rubrica del informe escrito: contenido, claridad, redaccién matematica, fundamentacién y aplica-
cién de ejemplos.

= Rubrica de la exposicion oral: claridad comunicativa, uso del lenguaje técnico, rigor matematico,
dominio del contenido, creatividad, uso de soportes visuales y estructura.

= Autoevaluacion individual: grado de implicacidn, reflexion sobre el aprendizaje y el trabajo en equi-
po.
= Seguimiento del proceso: observacion directa, resolucién de dudas, calidad del trabajo en progreso,

actitud y participacion.

Atencion a la diversidad

La actividad estd pensada para ser inclusiva, con distintos niveles de entrada y salida segun el perfil del
alumnado. Se contempla:

= Distribucién equitativa de tareas dentro de los equipos, atendiendo a fortalezas individuales.

= Posibilidad de usar diversos formatos para la exposicion oral (video, mural digital, exposicion clési-
ca).

= Andamiaje del proceso por parte del docente: fuentes seleccionadas, plantillas orientativas y ejemplos
previos.

= Flexibilizacion del producto escrito para alumnos con necesidades especificas: redaccion compartida,
soporte visual complementario, revision intermedia.
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6.2. Propuesta 2: Exploracion de métodos numéricos con TIC

Esta propuesta se centra en el estudio de métodos numéricos de aproximacion de raices reales de po-
linomios, utilizando herramientas tecnoldgicas accesibles como GeoGebra y Wolfram Alpha. Frente a la
ensefanza tradicional se apuesta por un enfoque realista y funcional que conecta la representacion gréfica,
la visualizacién geométrica y los procedimientos numéricos.

El objetivo principal es que el alumnado transite desde la interpretacion gréfica de una funcién hasta el
dominio de algoritmos de aproximaciodn, interiorizando asi el significado de hallar raices mds alla del célculo
exacto. De forma que se refuerzan la comprension conceptual, el razonamiento 16gico y el pensamiento
computacional, sin perder de vista el uso de TIC como apoyo y no como fin en si mismo.

Fundamentacion curricular

Esta propuesta se enmarca en el drea de Matematicas Académicas de 4° de ESO, dentro del Sentido
Algebraico, y conecta con las siguiente competencias clave:

= Competencia matemadtica y competencias bdsicas en ciencia y tecnologia. (CMCT).
= Competencia personal, social y de aprender a aprender (CPSAA).
= Competencia digital (CD).

Ademas se alinea con diversos criterios de evaluacion del curriculo de Matematicas de 4.° de ESO,
particularmente con los criterios 1.2, 1.3,3.3,4.2,5.2,6.1,7.1, 7.2y 8.1, ya que permite que el alumnado:

= Compare métodos numéricos de aproximacion (como el método de biseccion, Regula Falsi o el mé-
todo de la secante), seleccionando estrategias de resolucion adecuadas y fundamentadas.

= Emplee herramientas tecnolégicas como GeoGebra y Wolfram Alpha para representar, aplicar y va-
lidar los métodos propuestos en situaciones concretas.

= Analice visualmente el comportamiento de las funciones polindmicas, comprendiendo la relacién
entre su representacion gréfica y la estimacion de sus raices.

= Transite de una comprension inicial visual-intuitiva hacia una comprensién mds formal y abstracta
del método matematico, desarrollando su pensamiento algebraico.

= Explore situaciones que requieran el uso de técnicas numéricas de aproximacién y razone sobre la
viabilidad y los limites de estas estrategias.

= Utilice adecuadamente representaciones graficas, simbodlicas y numéricas en su trabajo, valorando la
complementariedad entre ellas.

= Comunique los procedimientos y conclusiones con precision y rigor, haciendo uso del vocabulario
matematico adecuado y de las funciones propias del software utilizado.
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Objetivos didacticos
Con esta actividad esperamos que los alumnos sean capaces de:
= Visualizar el comportamiento grifico de polinomios y relacionarlo con el concepto de raiz.

= Aplicar los métodos de biseccion, regula falsi y secante para estimar raices reales en intervalos deter-
minados.

= Interpretar y validar resultados mediante herramientas tecnoldgicas.

= Comparar los métodos aplicados desde el punto de vista de la eficiencia, precision y aplicabilidad.

Temporalizacion

La propuesta estd disefiada para desarrollarse durante tres sesiones consecutivas de aproximadamente 50
minutos cada una:

= Sesion 1: Exploracion grafica con GeoGebra. Interpretacion de raices como cortes con el eje x. De-
teccion de cambios de signo. Identificacion de intervalos donde aplicar métodos numéricos.

= Sesion 2: Aplicacién de los métodos de biseccion, regula falsi y secante con ayuda del docente.
Registro de iteraciones en tablas.

= Sesion 3: Verificacion con Wolfram Alpha. Elaboracién de tabla comparativa de métodos. Reflexién
critica sobre ventajas, limitaciones y uso real de los procedimientos.

Metodologia didactica

La propuesta se basa en un enfoque de aprendizaje por descubrimiento guiado, combinando trabajo
cooperativo y uso autonomo de TIC. La progresion se organiza de forma visual a formal: el alumnado
explora las raices reales de polinomios mediante GeoGebra, construyendo una comprensiéon geométrica
previa, y posteriormente formaliza los métodos numéricos de aproximacion.

El docente proporciona fichas guia, plantea retos progresivos y orienta el uso de las herramientas. El
trabajo se realiza en parejas o trios para fomentar la interaccion y el debate matematico. La verificacion con
Wolfram Alpha sirve como cierre analitico y comprobacion de resultados.

Actividades

Actividad 1: Exploracion grafica con GeoGebra:
= Introducir polinomios de tercer y cuarto grado.
= Acotar las raices mediante el método de Sturm.

= Dividir los intervalos proporcionados por el Teorema de Sturm en intervalos mds pequefios que con-
tengan una Unica raiz real.

= Observar que en los extremos de los intervalos elegidos se produce un cambio de signo.
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Actividad 2: Aplicacién guiada de los métodos:

Aplicar el método de biseccion al primer intervalo detectado.

Aplicar regula falsi al segundo intervalo.

Aplicar el método de la secante al tercero.

Registrar todas las iteraciones en una tabla organizada.

Actividad 3: Verificacion y reflexion comparativa:

Usar Wolfram Alpha para obtener una raiz aproximada del mismo polinomio.

= Comparar resultados y numero de iteraciones.

Elaborar una tabla comparativa con las siguientes columnas: nombre del método, ventajas, limitacio-
nes, rapidez, claridad gréfica.

Reflexion final escrita: ;cudl usarias y por qué?

Evaluacion

La evaluacién serd continua y se basara en:

= Cuaderno de trabajo: finalizacién de las tareas, correccion en el calculo de iteraciones, registro
ordenado.

= Informe de grupo (individual o cooperativo): tabla comparativa y claridad en la reflexion final.
= Actitud y participacion: observacion directa del docente.

= Autoevaluacion: breve cuestionario donde cada estudiante valore su comprensioén y uso de herra-
mientas.

Atencion a la diversidad

= Apoyos visuales constantes: colores, etiquetas, graficos con zoom.
= Grupos equilibrados que favorezcan el apoyo entre iguales.

» Flexibilidad ofreciendo posibilidad de fijar como obligatorio solo dos métodos y explorar el dltimo
opcionalmente.
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6.3. Propuesta 3: Actividad gamificada

La tercera propuesta consiste en una actividad de aula gamificada, distribuida en varias sesiones, ba-
jo el titulo general Proyecto POLYROOT. Esta propuesta se articula como una macroactividad narrativa y
cooperativa dirigida al alumnado de 4° de Educacién Secundaria Obligatoria, centrada en el estudio y la
aplicacidn significativa de diversos métodos de cédlculo de raices de funciones polinémicas.

Proyecto POLYROOT se desarrolla a través de tres misiones encadenadas, cada una de ellas con una na-
rrativa especifica basada en un contexto histérico o cientifico real. Estas misiones permiten al alumnado
enfrentarse a retos de creciente complejidad que implican el uso de métodos cldsicos y aproximados co-
mo el Teorema de Sturm, la Regla de Ruffini, el método de la biseccion, la regula falsi, el método de la
secante y la acotacion de raices mediante la cota de Cauchy, todos ellos desarrollados previamente en el
bloque tedrico del trabajo. A diferencia de otras propuestas mds técnicas o formales, esta macroactividad
busca dotar de sentido préctico y motivador a dichos métodos mediante una narrativa inmersiva y verosimil.

El disefio de la propuesta responde a varios principios metodolégicos: aprendizaje activo, trabajo coopera-
tivo, integracion de herramientas digitales y gamificacion narrativa. Se pretende no solo consolidar conte-
nidos especificos del bloque de dlgebra, sino también promover el desarrollo de competencias transversales
como el trabajo en equipo, la resolucién de problemas y el uso critico de las TIC.

A través del contexto de una mision cientifica simulada, inspirada en situaciones reales, se favorece que
el alumnado comprenda la relevancia de los métodos matematicos en situaciones de toma de decisiones,
prediccion o modelizacion. Cada fase de la propuesta esta inspirada en hechos o aplicaciones reales en los
que el célculo de raices de polinomios resulta crucial: desde el andlisis de trayectorias espaciales hasta el
diseno estructural o la simulacién de reentrada atmosférica.

En definitiva, esta propuesta constituye una forma integral y contextualizada de trabajar los métodos
de resolucion de raices polindmicas, conectando los saberes matematicos con su contexto historico, su
aplicacion cientifica y su dimension didactica.

Fundamentacion curricular

La presente propuesta didactica se enmarca en el cuarto curso de la Educacion Secundaria Obligatoria,
dentro del drea de Matematicas orientadas a las ensefianzas académicas. Atendiendo al curriculo establecido
por la LOMLOE y el correspondiente decreto autondmico, esta unidad gamificada estd orientada a desarro-
llar competencias especificas del drea mediante la resolucidn de situaciones problemdticas que requieren el
andlisis, manipulacion y aproximacion de raices de polinomios.

La propuesta contribuye a desarrollar las siguientes competencias clave:

= Competencia matemdtica y competencias bésicas en ciencia y tecnologia (CMCT): Al analizar fun-
ciones polinémicas y aplicar métodos diversos para hallar sus raices.

= Competencia digital (CD): Mediante el uso de herramientas tecnoldgicas para la visualizacion, calcu-
lo y validacién de resultados.
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= Competencia personal, social y de aprender a aprender (CPSAA): Favoreciendo la autonomia, la
reflexioén y la autoevaluacion.

Los saberes basicos implicados se relacionan con el Sentido algebraico, especificamente:
= Resolucidén de ecuaciones polindmicas de segundo y tercer grado mediante distintos procedimientos.
= Aplicacion de métodos graficos y analiticos para la localizacién de raices reales.
= Uso de estrategias de estimacion, intervalos de confianza y continuidad para acotar soluciones.

Ademds, esta propuesta gamificada permite desarrollar de forma transversal competencias clave del cu-
rriculo de Matematicas de 4° de ESO, especialmente a través de los criterios 1.1, 1.3, 2.2, 3.1, 4.1, 6.3, 9.1,
9.2,10.1 y 10.2. A lo largo del proyecto, el alumnado:

= Reformula, afronta y resuelve situaciones problemdticas contextualizadas dentro de una narrativa de
ciencia aplicada, movilizando distintos métodos para encontrar raices de polinomios en escenarios
realistas (como Orbitas espaciales o célculos de estructuras).

= Selecciona con criterio y justifica las estrategias de resolucion utilizadas, valorando la adecuacion y
los limites de los métodos desde una perspectiva matemadtica y préctica.

= Aplica el razonamiento inductivo y deductivo para realizar inferencias, validar soluciones y adaptar
los procedimientos a las particularidades de cada reto planteado.

= Participa en una experiencia de aprendizaje situada, en la que la matemdtica aparece integrada en
fendmenos naturales o tecnoldgicos, reconociendo su poder explicativo y predictivo.

= Muestra una actitud positiva hacia el aprendizaje de las matematicas, implicindose en la superacion
de los retos del juego con perseverancia, responsabilidad y sentido del logro.

= Se implica activamente en el trabajo cooperativo, asumiendo roles diferenciados dentro del equipo y
contribuyendo al progreso del grupo con autonomia y habilidades comunicativas.

Objetivos didacticos

Con esta actividad esperamos que el alumnado sea capaz de:

= Comprender y aplicar diferentes métodos cldsicos y numéricos para el cdlculo de raices reales de
funciones polinémicas.

= Reconocer la utilidad de los métodos histéricos como herramientas vélidas en la resolucién de pro-
blemas actuales.

= Establecer relaciones entre modelos mateméticos, representaciones gréficas y soluciones algebraicas.
= Valorar el papel de las matematicas en contextos cientificos, histdricos y tecnoldgicos reales.

= Desarrollar habilidades de trabajo cooperativo, gestion del tiempo y argumentacion matematica.
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Temporalizacion

La propuesta estd disefiada para ser implementada en un total de cuatro sesiones de clase de 50-60
minutos, distribuidas del siguiente modo:

Sesion 1: Presentacién narrativa del proyecto POLYROOT. Formacion de equipos y desarrollo de la
Misién 1: La orbita secreta.

Sesion 2: Desarrollo de la Mision 2: El error en la presa.

Sesion 3: Desarrollo de la Mision 3: Apolo XXI: Mision de reentrada.

Sesion 4: Presentacion de resultados, reflexion final, autoevaluacion y ribricas de grupo.

Metodologia didactica

La metodologia empleada en la presente propuesta se fundamenta en principios de la ensefianza activa,
la gamificacion y el aprendizaje cooperativo. Se pretende crear una experiencia didactica inmersiva en la
que el alumnado se convierta en protagonista de su propio aprendizaje a través de la resolucién de situacio-
nes contextualizadas y significativas.

Gamificacién narrativa: La estructura en forma de misiones encadenadas permite introducir elementos
de narrativa, progresion, reto y cooperacion. La historia que enmarca la actividad confiere coherencia a
los contenidos, favorece la motivacién y sitda el aprendizaje en un contexto con sentido. Esta narrativa se
inspira en hechos histéricos y cientificos reales, adaptados a una ficcién verosimil con tension y objetivos
claros.

Aprendizaje cooperativo: Los alumnos trabajardn en equipos reducidos, con roles rotativos (analista,
portavoz, programador, verificador) para fomentar la responsabilidad compartida y la toma de decisiones
conjunta. Esta dindmica promueve la argumentacién matemadtica, el desarrollo del lenguaje especifico y la
gestion de tiempos.

Uso integrado de TIC: La propuesta incorpora el uso de herramientas digitales como GeoGebra o Wol-
fram Alpha, permitiendo la visualizacién de funciones, el andlisis grafico y la ejecucion de algoritmos de
aproximacién. Se fomenta un uso critico y funcional de las tecnologias como apoyo al razonamiento mate-
matico.

Evaluacién formativa integrada: A lo largo de cada misién se implementan estrategias de coevaluacion,
autoevaluacidn, registro de decisiones y reflexién final, en consonancia con un enfoque formativo del apren-
dizaje.

En conjunto, se busca crear un entorno desafiante pero accesible, donde los conceptos matematicos se re-
valoricen al ser utilizados con propdsito y dentro de un marco narrativo atractivo y exigente.

79



Narrativa integradora del Proyecto POLYROOT

En un futuro cercano, la humanidad ha lanzado una ambiciosa mision espacial llamada POLYROOT, cu-
yo objetivo es explorar y comprender fendémenos complejos mediante el uso avanzado de matemaéticas y
tecnologia. El equipo de ingenieros matematicos (td y tus compaiieros) formadis parte de esta expedicion
cientifica de élite encargada de resolver desafios criticos que surgen en el transcurso de la mision.

Cada mision que enfrentaréis es una pieza clave para asegurar el éxito de POLYROQOT vy la seguridad de
sus sistemas. Desde la 6rbita de un planeta desconocido hasta la estabilidad de infraestructuras vitales y la
reentrada segura de cépsulas espaciales, deberéis aplicar vuestros conocimientos sobre raices de polinomios
para tomar decisiones precisas y salvar la mision.

Mision 1: La 6rbita secreta

Tras una tormenta electromagnética, el satélite POLYROOT-01 pierde la sincronizacién de su sistema
de navegacion. Solo disponéis de una funcién polinémica que describe su distancia al planeta para localizar
puntos criticos y reorientar el satélite con éxito.

Misién 2: El error en la presa

Un antiguo archivo revela fallos potenciales en una presa hidrdulica crucial. Debéis analizar la funcién
polinémica que modela la presién del agua para identificar umbrales criticos y evitar una catastrofe estruc-
tural.

Misién 3: Apolo XXI — Mision de reentrada

La capsula POLYROOT XXI enfrenta una reentrada atmosférica sin enlace de posicionamiento. Usando
métodos numéricos, tendréis que calcular con precisién el momento exacto de aterrizaje para garantizar la
seguridad de la tripulacion.

A lo largo de esta aventura, cada reto os exigird aplicar diferentes métodos matematicos, trabajar en equipo
y utilizar herramientas digitales para interpretar, calcular y validar soluciones. Solo con vuestra pericia y
colaboraciodn, el Proyecto POLYROOT podra cumplir su mision y abrir nuevas fronteras en la exploracion
cientifica.

Actividades - Misiones del Proyecto POLYROOT

Las tres misiones gamificadas que se disefian responden a una narrativa comin aunque cada una se
inspira en un hecho o aplicacion cientifica real donde el célculo de raices de polinomios adquiere un papel
importante. A continuacion se describe cada mision, el contexto que la ha inspirado, sus objetivos y las
tareas matematicas.

Mision 1: La érbita secreta
Inspiracion histdrica: La mision se inspira en los cdlculos orbitales realizados durante los siglos XVI

y XVII por astrénomos como Kepler y Newton, quienes, a partir de observaciones, ajustaron trayectorias
planetarias a curvas geométricas como las elipses, utilizando las herramientas mateméticas de su época.
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Aunque no disponian de métodos numéricos modernos, su trabajo sentd las bases para el célculo de rai-
ces de ecuaciones, un paso fundamental para predecir posiciones planetarias. En la actualidad, el ajuste de
trayectorias y la prediccion de puntos criticos pueden requerir el uso de funciones polindmicas y métodos
numéricos de aproximacion.

Narrativa: El satélite experimental POLYROOT-01 ha sido lanzado para estudiar la atmésfera superior
de un planeta. Sin embargo, tras una tormenta electromagnética, se pierde la sincronizacién del sistema de
navegacion. Los datos parciales recuperados ofrecen una funcién polinémica que modela la distancia del
satélite respecto al planeta en funcién del tiempo, pero no hay informacién sobre sus puntos criticos de
giro. El equipo de estudiantes, en su rol de ingenieros matemadticos, debe estimar la cantidad y localizacion
de las raices reales que representan estos puntos criticos. Para ello, deberdn aplicar el Teorema de Sturm y
visualizar el comportamiento de la funcién con GeoGebra. La reorientacion del satélite depende de su éxito.

Objetivos especificos:

= Estimar el nimero de raices reales de un polinomio.

= [ocalizar intervalos donde se producen cambios de signo.

= Interpretar graficamente los ceros de una funcién polinémica.

Tareas:

= Usar el Método de Sturm para calcular el niimero exacto de raices reales en un intervalo.

» Utilizar GeoGebra para representar graficamente el polinomio y validar los resultados obtenidos.

Mision 2: El error en la presa

Inspiracion historica: La ingenierfa hidraulica desde el siglo XIX ha requerido el uso de modelos mate-
maticos para estimar presiones, caudales y comportamientos estructurales. Muchos de estos modelos adop-
tan forma polinémica en funcién de pardmetros como la altura del agua.

Narrativa ampliada: Un archivo técnico olvidado revela los célculos originales de una presa construida
en 1889. Una funcién polinémica de tercer grado representa la presion ejercida por el agua en distintos
puntos de la compuerta. Recientemente, se ha detectado una grieta que coincide con un cambio brusco de
presion. El equipo POLYROQT debe verificar las raices reales de la funcién para determinar en qué alturas
se cruzan umbrales criticos. La mision exige aplicar la Regla de Ruffini, verificar posibles raices exactas
y reflexionar sobre su significado fisico. Herramientas como Wolfram Alpha (o Python con uso guiado)
permitirdn validar los resultados de forma auténoma.

Objetivos especificos:

= Resolver polinomios con raices exactas mediante factorizacion.

= Establecer correspondencias entre valores reales y propiedades fisicas.
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Tareas:

= Aplicar la Regla de Ruffini para encontrar raices enteras y factorizar el polinomio.
= [nterpretar el significado fisico de las raices en relacion con el nivel de presion.

= Verificar los resultados con herramientas como Wolfram Alpha.

Mision 3: Apolo XXI — Mision de reentrada

Inspiracion historica: Durante misiones reales como Apolo 13 o las sondas Viking, fue esencial calcular
con precision los puntos de reentrada o desaceleracion. Estos cdlculos implicaban encontrar los ceros de
funciones polindmicas que modelaban trayectorias o fuerzas.

Narrativa: La cdpsula de reentrada del médulo POLYROOT XXI ha perdido su enlace de posiciona-
miento durante la maniobra de entrada atmosférica. Los sensores muestran una funcién polinémica que
modela la altitud en funcién del tiempo, pero se desconoce en qué momento exacto tocard superficie. Para
evitar un impacto descontrolado, los ingenieros deberdn usar métodos de aproximacion para determinar la
raiz (altura cero) con la mayor precision posible. Comenzaran con el método de biseccion por su seguridad,
y explorardn después la regula falsi y el método de la secante para refinar sus resultados. Ademas de resolver
el problema, deberdn analizar el niimero de iteraciones y justificar la eleccion del método mas eficaz.

Objetivos especificos:

= Comprender y aplicar métodos de aproximacion de raices.

= Comparar la eficiencia de distintos procedimientos numéricos.

Tareas:

= Aplicar el método de biseccion para acotar con seguridad una raiz real.

= Utilizar la regula falsi y el método de la secante para mejorar la precision.

= Registrar y analizar el nimero de iteraciones, el error cometido y las diferencias entre métodos.

Evaluacion

La evaluacién de esta propuesta didactica se fundamenta en un enfoque competencial, formativo y con-
tinuo. Se pretende valorar no solo los productos finales obtenidos por el alumnado (resoluciones correctas),
sino también los procesos de razonamiento, la toma de decisiones, el uso de herramientas tecnoldgicas y el
trabajo en equipo.

Instrumentos de evaluacion:

= Rubrica de resolucion de misiones: Cada grupo serd evaluado en aspectos como la correccién ma-
tematica, la eleccion justificada de métodos, el uso adecuado de TIC y la presentacion clara de resul-
tados.
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= Hoja de seguimiento del equipo: los equipos completardn una plantilla donde registrardn las estra-
tegias utilizadas, dificultades encontradas y decisiones tomadas.

= Autoevaluacion individual: cada alumno/a reflexionard sobre su aportacién, lo aprendido y los as-
pectos a mejorar.

= Coevaluacion: los integrantes del equipo valorardn de forma anénima la implicacién de sus compa-

feros.

Atencion a la diversidad

La propuesta estd diseflada para favorecer la inclusion y permitir la adaptacion a distintos niveles de
competencia matematica. Algunas estrategias previstas son:

= Trabajo cooperativo con roles rotativos: permite que cada alumno/a aporte segun sus fortalezas y
aprenda de sus compaieros/as.

= Miiltiples vias de representacion: se combinan razonamientos algebraicos, representaciones grafi-
cas y herramientas digitales, facilitando la comprension a distintos estilos cognitivos.

= Reto multinivel: las misiones incluyen tareas de complejidad escalable, permitiendo que cada grupo
profundice segin su ritmo.

= Tutoria entre iguales: se promovera el apoyo mutuo dentro del grupo y entre grupos para reforzar la
comprension sin competitividad negativa.

= Apoyos especificos: se podran ofrecer pistas, andamiajes o desdoblamientos breves a alumnado con
necesidades especificas, sin modificar los objetivos globales.

Estas medidas permiten mantener la exigencia matemaética y el sentido de reto, al tiempo que se garantiza
la equidad y el acceso al aprendizaje para todo el alumnado.
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7. ANEXO: Marco legal de la ensenanza de polinomios en Bachille-
rato

Segtin el Decreto 40/2022, entre los saberes basicos para este curso se incluyen:
D. Sentido algebraico

1. Patrones.
= Generalizacion de patrones en situaciones sencillas.
2. Modelo matematico.
= Relaciones cuantitativas en situaciones sencillas: estrategias de identificacién y determinacion

de la clase o clases de funciones que pueden modelizarlas.

= Ecuaciones, inecuaciones y sistemas: modelizacion de situaciones en diversos contextos.
3. Igualdad y desigualdad.

= Resolucién de ecuaciones (incluyendo polinémicas, con radicales, racionales sencillas, expo-
nenciales y logaritmicas), inecuaciones (polindmicas y racionales sencillas), sistemas de ecua-
ciones no lineales y sistemas de inecuaciones lineales en diferentes contextos.

= Resolucidn de sistemas de ecuaciones lineales con tres incognitas mediante el método de Gauss.
4. Relaciones y funciones.
= Andlisis, representacion grafica e interpretacion de relaciones mediante herramientas tecnoldgi-

cas.

= Propiedades de las distintas clases de funciones, incluyendo, polindmicas, exponenciales, racio-
nales sencillas, irracionales sencillas, logaritmicas, trigonométricas y a trozos: comprension y
comparacion.

= Operaciones con funciones. Composiciéon de funciones. Funcién inversa.Relacion entre la gra-
fica de una funcion y la de su inversa.

= Algebra simbdlica en la representacion y explicacion de relaciones matematicas de la ciencia y
la tecnologia.

En el mencionado Decreto, también se incluyen las competencias especificas asi como los criterios de
evaluacion:

1. Algebra y estructuras algebraicas.

= Operaciones algebraicas:
CE1: Resolver problemas utilizando distintas estrategias.
CE3: Desarrollar procesos de razonamiento 16gico-matemaético.
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= Resolucidn de ecuaciones e inecuaciones

CE1: Resolver problemas utilizando distintas estrategias.

CE2: Interpretar, modelizar y comunicar fendmenos mediante representaciones matematicas.
» Sistemas de ecuaciones

CE1: Resolver problemas utilizando distintas estrategias.

CE2: Interpretar, modelizar y comunicar fendmenos mediante representaciones matematicas.

CE4: Utilizar herramientas tecnoldgicas para representar, calcular y simular.
2. Funciones.

= Analisis de funciones
CE2: Interpretar, modelizar y comunicar fendmenos mediante representaciones matematicas.
CE3: Desarrollar procesos de razonamiento 16gico-matemaético.

= Representaciones graficas
CE2: Interpretar, modelizar y comunicar fendmenos mediante representaciones matematicas.
CE4: Utilizar herramientas tecnoldgicas para representar, calcular y simular.

» Modelizacién con funciones
CELl: Resolver problemas utilizando distintas estrategias.

CES: Valorar las matematicas como instrumento util en la vida diaria, la ciencia y la tecnologia.
3. Matematicas aplicadas y razonamiento logico.

= Problemas de contexto

CE1: Resolver problemas utilizando distintas estrategias.

CES: Valorar las matematicas como instrumento Uutil en la vida diaria, la ciencia y la tecnologia.
» Ldgica matematica

CE2: Interpretar, modelizar y comunicar fendmenos mediante representaciones matematicas.
= Uso de calculadora o GeoGebra

CE4: Utilizar herramientas tecnoldgicas para representar, calcular y simular.

Criterio de evaluacion:

= Resolver problemas contextualizados o puramente matematicos que requieran el uso de expresiones
algebraicas, ecuaciones o sistemas, aplicando estrategias personales o convencionales, y valorando la
coherencia de los resultados.

Desarrolla: CE1, CE2, CES

= Aplicar transformaciones y simplificaciones algebraicas, como la factorizacion o la simplificacion de
fracciones algebraicas, para resolver expresiones o facilitar la resolucion de problemas.

Desarrolla: CE1, CE3
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» Utilizar procedimientos algebraicos para representar, analizar y resolver ecuaciones, inecuaciones y
sistemas de ecuaciones, interpretando graficamente las soluciones cuando sea pertinente.

Desarrolla: CE1, CE2, CE4

= [nterpretar el significado de las soluciones obtenidas en un contexto dado y justificar el procedimiento
utilizado, tanto en términos algebraicos como graficos.

Desarrolla: CE2, CE3, CES

= Utilizar herramientas tecnoldgicas (calculadoras graficas, hojas de cdlculo, software como GeoGebra)
para representar, resolver y comprobar expresiones algebraicas y sistemas.

Desarrolla: CE4

En lo anterior observamos que se profundiza en el andlisis de expresiones algebraicas: Simplificacion de
polinomios y expresiones racionales, en la factorizacion (sacar factor comun, trinomios, productos notables)
y se trabaja con las operaciones con fracciones algebraicas, con reduccién a comtn denominador.

En cuanto a la resolucion de ecuaciones se consideran los siguiente tipos: ecuaciones polindmicas de pri-
mer y segundo grado; ecuaciones racionales (donde aparece el uso del dominio); ecuaciones con radicales
(raices cuadradas); ecuaciones con valor absoluto; ecuaciones logaritmicas o exponenciales (introduccion,
en algunas comunidades). Entre los métodos utilizados para la resolucion tenemos: la igualacién de expre-
siones, la sustitucidon de expresiones anidadas, la eliminacién del denominador y la representacion gréfica
como apoyo a la solucion.

También se inicia el estudio de sistemas de ecuaciones, en concreto, de sistemas lineales de dos o tres incog-
nitas mediante el método de sustitucion, el método de igualacion, el método de reduccion y, opcionalmente,
se introduce la notacion matricial. Se incluyen también los sistemas no lineales (combinacién de ecuaciones
cuadréticas o racionales).

Se introducen las inecuaciones y sistemas de inecuaciones: inecuaciones de primer y segundo grado; inecua-
ciones racionales y con valor absoluto; representacion grafica de soluciones en la recta real y tablas de
signos.

1° de Bachillerato. Matematicas Aplicadas a las Ciencias Sociales.

Segin el Decreto 40/2022, entre los saberes basicos para este curso se incluyen:

C. Sentido algebraico
1. Patrones.
= Generalizacién de patrones en situaciones sencillas.
2. Modelo matematico.

= Relaciones cuantitativas esenciales en situaciones sencillas: estrategias de identificacion y de-
terminacion de la clase o clases de funciones que pueden modelizarlas.

= Ecuaciones, inecuaciones y sistemas: modelizacion de situaciones de las ciencias sociales y de
la vida real.
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3. Igualdad y desigualdad.

= Resolucién de ecuaciones (incluyendo polindmicas, con radicales, racionales sencillas, expo-
nenciales y logaritmicas), inecuaciones (polindmicas y racionales sencillas), sistemas de ecua-
ciones no lineales y sistemas de inecuaciones lineales en diferentes contextos.

= Resolucién de sistemas de ecuaciones lineales con tres incégnitas mediante el método de Gauss.
4. Relaciones y funciones.

» Representacion gréifica de funciones utilizando la expresion simbdlica més adecuada y transfor-
maciones lineales en modelos funcionales sencillos.

= Propiedades de las distintas clases de funciones, incluyendo, polindmica, exponencial, racional
sencilla, irracional sencilla, logaritmica, periddica y a trozos: comprension y comparacion.

= Operaciones con funciones. Composicion de funciones. Relacion entre la grafica de una funcién
y la de su inversa.

= Uso de la interpolacién y extrapolacion para aproximar el valor de una funcion.

= Algebra simbdlica en la representacion y explicacion de relaciones matemadticas de las ciencias
sociales.

Estos contenidos en el Decreto se vinculan especialmente con las siguientes competencias especificas y
criterios de evaluacion:

1. Nimeros y algebra. Resolver un problema de repartos proporcionales con expresiones algebraicas y
justificar los pasos.

= Resolver problemas de interés econdmico, social o cotidiano mediante expresiones algebraicas,
ecuaciones, sistemas o funciones.

CE1: Resolver problemas relacionados con situaciones de la vida real, econémica o social, me-
diante el uso de herramientas matematicas.

CE3: Elaborar e interpretar modelos matematicos de fendmenos sociales y econdmicos utilizan-
do funciones, ecuaciones y sistemas.

= Justificar los pasos en un procedimiento de resolucién de problemas, identificando errores y
defendiendo resultados obtenidos.

CE4: Desarrollar estrategias de razonamiento 16gico y argumentacion matemdtica para justificar
soluciones.

2. Funciones. Representar ingresos y beneficios mediante funciones lineales o cuadréticas, y analizar
puntos de equilibrio.

= Resolver problemas de interés econdmico, social o cotidiano mediante expresiones algebraicas,
ecuaciones, sistemas o funciones.

CE1: Resolver problemas relacionados con situaciones de la vida real, econémica o social, me-
diante el uso de herramientas matematicas.

CE3: Elaborar e interpretar modelos matemaéticos de fendmenos sociales y econdmicos utilizan-
do funciones, ecuaciones y sistemas.
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= Interpretar datos representados en tablas, graficas o diagramas, y elaborar representaciones ade-
cuadas a partir de informacién dada.

CE2: Representar, interpretar y comunicar informacion cuantitativa mediante graficos, férmulas,
tablas o diagramas.

CES: Utilizar tecnologias digitales para representar, calcular y simular situaciones matematicas.

» Utilizar el lenguaje algebraico y funcional para modelizar fenémenos econdmicos (como costes,
ingresos, beneficios, porcentajes).

CE1: Resolver problemas relacionados con situaciones de la vida real, econdmica o social, me-
diante el uso de herramientas matematicas.

CE3: Elaborar e interpretar modelos matematicos de fendmenos sociales y econdmicos utilizan-
do funciones, ecuaciones y sistemas.

CE6: Valorar la utilidad de las matematicas aplicadas para comprender el mundo social y econ6-
mico, y tomar decisiones informadas.

En resumen, se realiza el estudio del dlgebra elemental: polinomios, identidades notables y fracciones
algebraicas. Se analiza la resolucidn de ecuaciones e inecuaciones de primer y segundo grado y los sistemas
de ecuaciones lineales. Se estudia el concepto de funcién como relacidn entre magnitudes, su representacion
grifica y andlisis cualitativo. En cuanto a las funciones se ven la lineales y afines, cuadréticas, una intro-
duccidn a las exponenciales y las racionales basicas asi como el estudio a partir de su expresion algebraica
y su representacion grafica. Andlisis de crecimiento y decrecimiento, maximos y minimos, simetria.

1° Bachillerato. Matematicas Generales.

Segtn el Decreto 40/2022, entre los saberes basicos para este curso se incluyen:

D. Sentido algebraico y pensamiento computacional
1. Patrones.
= Generalizacion de patrones en situaciones sencillas.
2. Modelo matematico.

= Funciones afines, cuadréticas, racionales sencillas, exponenciales, logaritmicas, a trozos y pe-
riddicas: modelizacién de situaciones del mundo real con herramientas digitales.

» Programacion lineal: modelizacién de problemas reales y resolucion preferentemente con apoyo
de herramientas digitales.

3. Igualdad y desigualdad.

» Resolucién de sistemas de ecuaciones e inecuaciones en diferentes contextos preferentemente
con apoyo de herramientas digitales.

4. Relaciones y funciones.

= Propiedades de las clases de funciones, incluyendo afines, cuadraticas, racionales sencillas, ex-
ponenciales y logaritmicas.
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Estos contenidos en el Decreto se vinculan especialmente con las siguientes competencias especificas y
criterios de evaluacion:

1. Nimeros y proporcionalidad: Calcular descuentos, IVA, intereses o repartos proporcionales

= Plantear y resolver problemas relacionados con situaciones cotidianas o sociales utilizando es-
trategias matematicas basicas (porcentajes, proporcionalidad, ecuaciones simples, etc.).

CE1: Resolver problemas de la vida cotidiana, cientifica o social mediante estrategias personales
y herramientas matemadticas.

CE3: Modelizar fendmenos cotidianos con funciones, ecuaciones o relaciones matematicas sim-
ples.

2. Funciones elementales: Modelar el coste de una actividad segin el niimero de asistentes

= Modelizar relaciones cuantitativas sencillas con expresiones algebraicas o funciones bdsicas
(lineales, cuadraticas, proporcionales).

CE1: Resolver problemas de la vida cotidiana, cientifica o social mediante estrategias personales
y herramientas matematicas.

CE3: Modelizar fendmenos cotidianos con funciones, ecuaciones o relaciones matematicas sim-
ples.

Se estudia de las expresiones algebraicas la simplificacién y factorizacion. Asimismo se ven las ecua-
ciones e inecuaciones de primer y segundo grado. Se analiza el concepto de funcién y variable dependiente
e independiente, una introduccion a funciones lineales, cuadraticas, afines y exponenciales asi como la in-
terpretacion grafica en cuanto al dominio, imagen, crecimiento y decrecimiento modelizando situaciones
reales con funciones.

2° de Bachillerato

Segun el Decreto 40/2022, entre los saberes basicos para este curso se incluyen:

D. Sentido algebraico

1. Patrones.
= Generalizacion de patrones en situaciones diversas.
2. Modelo matematico.

= Relaciones cuantitativas en situaciones complejas: estrategias de identificacion y determinacion
de la clase o clases de funciones que pueden modelizarlas.

= Sistemas de ecuaciones: modelizacion de situaciones en diversos contextos.

= Técnicas y uso de matrices para, al menos, modelizar situaciones en las que aparezcan sistemas
de ecuaciones lineales o grafos.

3. Igualdad y desigualdad.
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= Formas equivalentes de expresiones algebraicas en la resolucion de sistemas de ecuaciones e
inecuaciones, mediante calculo mental, algoritmos de lapiz y papel, y con herramientas digitales.

» Estudio de la compatibilidad de los sistemas lineales (Teorema de Rouché-Frobenius).

= Resolucion de sistemas de ecuaciones lineales con tres incdgnitas y un pardmetro a lo sumo, en
diferentes contextos y con métodos diversos (Cramer, Gauss).

= Resolucion de ecuaciones y sistemas matriciales.
4. Relaciones y funciones.

= Representacion andlisis e interpretacion de funciones con apoyo de herramientas digitales.

= Propiedades de las distintas clases de funciones: identificacion a partir de la grafica, interpreta-
cién y comprension.

» Utilizacién de las herramientas del cdlculo algebraico y diferencial en la determinacion precisa

de las propiedades funcionales.

» Comparacion de las propiedades de las distintas clases de funciones.

Estos contenidos en el Decreto se vinculan especialmente con las siguientes competencias especificas y
criterios de evaluacion:

1. Algebra y estructuras algebraicas.

= Operaciones algebraicas:
CEl: Resolver problemas utilizando distintas estrategias.
CE3: Desarrollar procesos de razonamiento 16gico-matemaético.

= Resolucion de ecuaciones e inecuaciones
CELl: Resolver problemas utilizando distintas estrategias.

CE2: Interpretar, modelizar y comunicar fendmenos mediante representaciones matematicas.

= Sistemas de ecuaciones
CE1: Resolver problemas utilizando distintas estrategias.
CE2: Interpretar, modelizar y comunicar fenOmenos mediante representaciones matematicas.
CE4: Utilizar herramientas tecnoldgicas para representar, calcular y simular.

2. Funciones.

= Analisis de funciones
CE2: Interpretar, modelizar y comunicar fendmenos mediante representaciones matematicas.

CE3: Desarrollar procesos de razonamiento 16gico-matemaético.

= Representaciones graficas
CE2: Interpretar, modelizar y comunicar fendmenos mediante representaciones matematicas.

CEA4: Utilizar herramientas tecnoldgicas para representar, calcular y simular.
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= Modelizacién con funciones
CELl: Resolver problemas utilizando distintas estrategias.
CES: Valorar las matematicas como instrumento util en la vida diaria, la ciencia y la tecnologia.

3. Matematicas aplicadas y razonamiento logico.

= Problemas de contexto

CELl: Resolver problemas utilizando distintas estrategias.

CES: Valorar las matematicas como instrumento Uutil en la vida diaria, la ciencia y la tecnologia.
» Loégica matemadtica

CE2: Interpretar, modelizar y comunicar fendmenos mediante representaciones matematicas.

» Uso de calculadora o GeoGebra

CEA4: Utilizar herramientas tecnoldgicas para representar, calcular y simular.

Criterio de evaluacion:

= Resolver problemas contextualizados o puramente matemadticos que requieran el uso de expresiones
algebraicas, ecuaciones o sistemas, aplicando estrategias personales o convencionales, y valorando la
coherencia de los resultados.

Desarrolla: CE1, CE2, CE5

= Aplicar transformaciones y simplificaciones algebraicas, como la factorizacion o la simplificacion de
fracciones algebraicas, para resolver expresiones o facilitar la resolucioén de problemas.
Desarrolla: CE1, CE3

= Utilizar procedimientos algebraicos para representar, analizar y resolver ecuaciones, inecuaciones y
sistemas de ecuaciones, interpretando graficamente las soluciones cuando sea pertinente.
Desarrolla: CE1, CE2, CE4

= [nterpretar el significado de las soluciones obtenidas en un contexto dado y justificar el procedimiento
utilizado, tanto en términos algebraicos como graficos.
Desarrolla: CE2, CE3, CES

= Utilizar herramientas tecnoldgicas (calculadoras graficas, hojas de cdlculo, software como GeoGebra)
para representar, resolver y comprobar expresiones algebraicas y sistemas.

Desarrolla: CE4

En resumen, se realiza el estudio de funciones reales, entre ella las polindmicas. Se amplia el estudio
del dlgebra con el estudio de matrices y su aplicacion a los sistemas lineales de ecuaciones mediante: el
Método de Gauss, la Regla de Cramer y la inversa de matrices (cuando se introducen matrices).

2° de Bachillerato. Matematicas Aplicadas a las Ciencias Sociales.
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Segin el Decreto 40/2022, entre los saberes basicos para este curso se incluyen:
C. Sentido algebraico

1. Patrones.
= Generalizacion de patrones en situaciones diversas.
2. Modelo matematico.
= Relaciones cuantitativas en situaciones complejas: estrategias de identificacion y determinacion
de la clase o clases de funciones que pueden modelizarlas.

= Sistemas de ecuaciones: modelizacion de situaciones en diversos contextos.

= Técnicas y uso de matrices para, al menos, modelizar situaciones en las que aparezcan sistemas
de ecuaciones lineales o grafos.

= Programacion lineal bidimensional: modelizacién de problemas reales y resoluciéon mediante
herramientas digitales y manuales.
3. Igualdad y desigualdad.
= Formas equivalentes de expresiones algebraicas en la resolucion de sistemas de ecuaciones e
inecuaciones, mediante calculo mental, algoritmos de lapiz y papel, y con herramientas digitales.
= Resolucidn de sistemas de ecuaciones lineales con tres incognitas mediante el método de Gauss
e inecuaciones lineales con dos incdgnitas de forma grafica, en diferentes contextos.

4. Relaciones y funciones.

= Representacion, andlisis e interpretacion de funciones con el apoyo de herramientas digitales.

= Propiedades de las distintas clases de funciones: identificacion a partir de la grafica, interpreta-
cién y comprension.

s Utilizacion de las herramientas del cdlculo algebraico y diferencial en la determinacion precisa
de las propiedades funcionales.

= Comparacion de las propiedades de las distintas clases de funciones.

Estos contenidos en el Decreto se vinculan especialmente con las siguientes competencias especificas y
criterios de evaluacion:

1. Funciones y derivadas: Analizar la funcién de beneficio de una empresa para optimizar la produc-
cién

= Plantear, resolver y justificar problemas econdmicos o sociales utilizando funciones, derivadas,
matrices o probabilidades.

CE1: Resolver problemas de naturaleza social, econémica o cotidiana mediante herramientas
matematicas como funciones, matrices, derivadas o probabilidades.

93



CE2: Modelizar situaciones reales utilizando funciones, ecuaciones y representaciones graficas,
interpretando los resultados.

CE3: Analizar la evolucion de magnitudes y tomar decisiones fundamentadas a partir del estudio
de funciones y derivadas..

= Analizar el comportamiento de funciones (crecimiento, maximos, minimos, puntos de inflexién)
a partir de su derivada, y aplicar este anélisis a la toma de decisiones.
CE2: Modelizar situaciones reales utilizando funciones, ecuaciones y representaciones graficas,
interpretando los resultados.

CE3: Analizar la evolucion de magnitudes y tomar decisiones fundamentadas a partir del estudio
de funciones y derivadas.

2. Matrices y sistemas: Resolver sistemas econémicos mediante matrices o regla de Cramer.

= Plantear, resolver y justificar problemas econémicos o sociales utilizando funciones, derivadas,
matrices o probabilidades.

CEl: Resolver problemas de naturaleza social, econdmica o cotidiana mediante herramientas
matemadticas como funciones, matrices, derivadas o probabilidades.

CE2: Modelizar situaciones reales utilizando funciones, ecuaciones y representaciones graficas,
interpretando los resultados.

Estudio de matrices y operaciones bdsicas (suma, producto, trasposicién), matriz inversa y resolucién
de sistemas lineales por métodos matriciales. en el campo de la programacién lineal el planteamiento de
problemas, su representacion grafica de restricciones y la optimizacion de funciones objetivo (maximos y
minimos), en cuanto a las funciones, repaso y profundizacién en funciones lineales, afines, cuadréticas,
exponenciales y logaritmicas, su composicion y transformaciones.
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