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Abstract

La resolución de ecuaciones polinómicas, en particular la búsqueda de raíces de polinomios con coefi-
cientes enteros, es un tema fundamental en Educación Secundaria.

En el presente trabajo se analiza el tratamiento que estos contenidos reciben actualmente en el currículo
oficial de Educación Secundaria Obligatoria y Bachillerato, atendiendo tanto a la legislación estatal estable-
cida por la LOMLOE como a su concreción normativa en la Comunidad Autónoma de Castilla y León. A
partir de este análisis, se constata que el estudio de las raíces de polinomios se centra fundamentalmente en
la aplicación de la Regla de Ruffini, que sólo es útil para polinomios previamente seleccionados que tengan
raíces enteras y limita la comprensión del alumnado sobre la generalidad y profundidad del problema.

Paralelamente, se realiza una revisión histórica de los principales métodos desarrollados para la resolu-
ción de raíces de polinomios, desde los procedimientos algebraicos clásicos hasta técnicas más avanzadas,
como el método de Sturm, o las aproximaciones numéricas de dichas raíces. Esta perspectiva histórica per-
mite comprender la evolución del álgebra de polinomios y valorar la riqueza conceptual que ha acompañado
a la búsqueda de soluciones de ecuaciones polinómicas a lo largo de la historia.

El objetivo de este trabajo es, por tanto, doble: por un lado, recuperar y contextualizar históricamente
distintos métodos para la resolución de ecuaciones polinómicas; y por otro, con base en esta revisión his-
tórica y, teniendo en cuenta el actual currículo de Educación Secundaria, valorar cuáles de estos métodos
pueden ser adaptados o simplificados didácticamente para su inclusión en el aula de Secundaria de cara a
proporcionar una mayor variedad de métodos. De esta forma, y con el fin de enriquecer la enseñanza del
álgebra de polinomios y ofrecer al alumnado una visión más completa, se propone una ampliación del enfo-
que tradicional, incorporando (de forma accesible) resultados como el método de Sturm o algunos métodos
de aproximación numérica con interpretación geométrica sencilla e intuitiva.

Abstract
The resolution of polynomial equations, particularly the search for roots of polynomials with integer

coefficients, is a fundamental topic in Educación Secundaria.

This work analyzes how these contents are currently addressed in the official curriculum in Educación
Secundaria and Bachillerato, considering both the national legislation established by the LOMLOE and
its specific implementation in the Autonomous Community of Castilla y León. Based on this analysis, it is
evident that the study of polynomial roots is mainly limited to the application of Ruffini’s Rule, which is only
effective for carefully selected polynomials with integer roots, and which restricts students’ understanding
of the general scope and depth of the problem.

In parallel, this work presents a historical review of the main methods developed for solving polynomial
roots, ranging from classical algebraic procedures to more advanced techniques, such as Sturm’s method
or numerical approaches for approximating roots. This historical perspective highlights the evolution of
polynomial algebra and reveals the conceptual richness that has accompanied the search for solutions to
polynomial equations throughout history.
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The aim of this work is therefore twofold: on the one hand, to recover and contextualize various histori-
cal methods for solving polynomial equations; and on the other, to assess—based on this historical review
and in light of the current Educación Secundaria curriculum—which of these methods could be adapted or
simplified for classroom use. Ultimately, this study proposes broadening the traditional approach by incor-
porating (in an accessible way) An expansion of the traditional approach is proposed, incorporating (in an
accessible way) results such as the Sturm method or some numerical approximation methods with a simple
and intuitive geometric interpretation.
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1. Introducción

La determinación de raíces de polinomios constituye un aspecto fundamental del álgebra que se abor-
da en la Educación Secundaria. No obstante, en el aula, su tratamiento suele estar restringido a métodos
elementales como la Regla de Ruffini, el Teorema del Resto o la factorización por inspección. Todos estos
métodos son aplicables únicamente a polinomios con coeficientes enteros y raíces racionales fácilmente
identificables. Esta restricción metodológica empobrece la comprensión del concepto de raíz por parte del
alumno, y dificulta el desarrollo de una visión más realista, general y profunda del problema.

El presente trabajo parte de la hipótesis de que es posible y pedagógicamente deseable ampliar la pers-
pectiva desde la que se enseña la resolución de ecuaciones polinómicas, incorporando métodos de reso-
lución más generales que permitan al alumno de Educación Secundaria comprender, tanto la naturaleza
estructural de los polinomios, como el significado de sus raíces (reales, racionales o aproximadas), junto
con su interpretación gráfica y funcional.

Con este objetivo, y tras revisar el currículo oficial de Educación Secundaria, se realiza un recorrido his-
tórico del tratamiento de las raíces de polinomios, desde los desarrollos de la Antigüedad hasta aportaciones
clave de matemáticos como Tartaglia, Cardano, Viète, Ruffini, Sturm,... De esta forma, utilizamos la his-
toria como recurso didáctico, fomentando así la interdisciplinariedad y ofreciendo una visión que conecta
con la historia, la filosofía y la cultura y, en concreto, con la evolución de la ciencia y el pensamiento lógico
a través de matemáticos de diferentes épocas. También permite mostrar a los alumnos que el álgebra, tal y
como se usa hoy, tiene raíces multiculturales y multidisciplinares. Esta forma de presentar los contenidos
ha estado motivada por la asignatura Ideas y conceptos matemáticos a través de la historia que cursé en el
Máster y que me animó a investigar acerca de la vida de algunos matemáticos (Población, 2025).

El trabajo también explora el uso de herramientas digitales como pueden ser GeoGebra o WolframAlpha
que facilitan la visualización gráfica de polinomios y sus raíces, la automatización de procedimientos sim-
bólicos y numéricos, y el diseño de actividades interactivas que permiten un aprendizaje más significativo
y contextualizado.

Desde una perspectiva aplicada, la búsqueda de raíces de polinomios es una competencia transversal
que trasciende el ámbito escolar. Algunas de sus aplicaciones más relevantes incluyen:

Ingeniería de control: Las raíces de los polinomios característicos determinan la estabilidad y el
comportamiento dinámico de sistemas como los de navegación aérea o vehículos autónomos.

Física: En mecánica celeste, por ejemplo, se resuelven ecuaciones polinómicas cuyas raíces corres-
ponden a posiciones, tiempos o velocidades.

Economía y finanzas: Permiten determinar puntos de equilibrio o valores críticos en modelos de
costes, beneficios o tasas de crecimiento.

Cálculo de máximos y mínimos: A través del análisis de las raíces de la derivada, se pueden localizar
extremos relativos o puntos de inflexión.

Resolución de ecuaciones algebraicas: La factorización y resolución de polinomios de diversos
grados es esencial tanto en álgebra pura como aplicada.
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Algoritmos computacionales: Se usan en interpolación, ajuste de curvas, simulaciones y otros pro-
cesos numéricos.

Electrónica y teoría de circuitos: Las raíces del polinomio característico determinan la respuesta
temporal de sistemas eléctricos complejos.

Estas aplicaciones refuerzan la importancia de que el alumno comprenda no sólo qué es una raíz, sino
también su multiplicidad, localización aproximada y su interpretación gráfica como punto de partida para
conectar el saber matemático con la resolución de problemas reales.

Este trabajo consta de siete secciones incluyendo la presente introducción y un anexo final.

Tras la introducción, en la Sección 2 se realiza un análisis curricular y legal basado en la la LOMLOE
(ley educativa actualmente vigente en España y es la Ley Orgánica de Educación 3/2020, de 29 de diciem-
bre, por la que se modifica la Ley Orgánica 2/2006, de 3 de mayo) y en el marco de la Educación Secundaria
Obligatoria en Castilla y León que contextualiza la presencia de los polinomios en los distintos cursos de
esta etapa educativa.

La Sección 3 muestra los conceptos básicos y los métodos clásicos que se desarrollan en Educación
Secundaria y que son el punto de partida del recorrido histórico, que se lleva a cabo en la Sección 4, de
los principales avances en la resolución de polinomios, desde la antigüedad hasta la actualidad, destacando
la evolución de los métodos clásicos y la aparición de técnicas avanzadas y de gran potencial como son:
el método de Sturm (Benedetti, 1990), cuya demostración se incluye y para la que han sido de ayuda los
apuntes de la asignatura del Máster Complementos matemáticos. Bloque de Álgebra) (Cano, 2025); y los
métodos de aproximación numérica (Burden y Faires, 2010).

A partir del marco normativo y las técnicas descritas a lo largo de la Sección 4, se propone una inte-
gración curricular progresiva de contenidos y estrategias didácticas innovadoras para 3º y 4º de ESO, que
ampliamos también, a 1º de Bachillerato, todo ello con el objetivo de enriquecer el aprendizaje más allá del
uso tradicional de la regla de Ruffini para lo que nos han sido de gran utilidad los apuntes proporcionados
en la asignatura Metodología y evaluación Matemática cursada en el Máster (González, 2025).

Finalmente, se presentan diversas propuestas de actividades de aula, fundamentadas pedagógicamente,
cuyo objetivo es favorecer el desarrollo competencial del alumno y promover una visión más amplia y
profunda del estudio de los polinomios en la Educación Secundaria Obligatoria.
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2. Análisis curricular. Marco legal en la enseñanza de polinomios.
La enseñanza de los polinomios está regulada en la comunidad de Castilla y León por los siguientes

documentos legales que podemos encontrar en el BOCYL:

Decreto 39/2022, de 29 de junio, por el que se establece el currículo de la Educación Secundaria
Obligatoria.

Decreto 40/2022, de 29 de junio, por el que se establece el currículo de Bachillerato.

En concreto, en el currículo de 1º y 2º de la ESO se introducen los conocimientos previos que preparan al
alumno para un estudio más formal del álgebra que se desarrolla en cursos superiores, principalmente en 3º
y 4º dentro del bloque Sentido algebraico del área de Matemáticas.

1º de ESO.

Según el Decreto 39/2022, entre los saberes básicos para este curso se incluyen:

D. Sentido algebraico

3. Variable

Variable: Comprensión del concepto como incógnita en ecuaciones lineales con coeficientes
enteros y como cantidades variables en fórmulas.

Comprensión del significado del lenguaje algebraico como un avance en la historia y el desarro-
llo de las matemáticas frente al lenguaje retórico sin símbolos matemáticos de la antigüedad.

4. Igualdad y desigualdad

Equivalencia de expresiones algebraicas involucradas en ecuaciones lineales con coeficientes
enteros, utilizando representaciones concretas (balanzas, discos algebraicos, etc.), matemáticas
y simbólicas.

Ecuaciones lineales con coeficientes enteros: resolución mediante cálculo mental o métodos
manuales apoyados por material manipulativo si es necesario.

Además, en el Decreto 39/2022, estos contenidos se vinculan especialmente con las siguientes competen-
cias específicas y con los correspondientes criterios de evaluación:

CE1: Reconocer patrones y relaciones. Identifica patrones sencillos (números pares, múltiplos, se-
cuencias simples).

CE2: Resolver problemas. Resuelve problemas aritméticos básicos.

CE3: Representar e interpretar. Usa representaciones gráficas simples (gráficas de barras, líneas).
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CE4: Razonar y argumentar. Justifica procedimientos básicos (por qué una operación es correcta).

CE5: Usar tecnología. Calculadora básica. Inicios en el uso de hojas de cálculo.

CE6: Comunicar matemáticamente.Expresa ideas básicas con lenguaje numérico y verbal.

CE7: Aplicar las matemáticas. Aplica a situaciones cotidianas (precios, tiempo, distancias).

CE8: Actitud positiva. Participa en resolución de retos sencillos.

Criterio de evaluación:

Comprender y utilizar el lenguaje algebraico para representar relaciones y operaciones.

Resolver problemas sencillos utilizando expresiones algebraicas básicas.

Podemos concluir, que se introduce el uso de letras para representar números y comenzar a expresar rela-
ciones (introducción al lenguaje algebraico), la traducción de expresiones verbales a expresiones algebraicas
sencillas y la evaluación de expresiones algebraicas simples sustituyendo letras por números. También se
realizan operaciones con expresiones algebraicas muy básicas, como monomios sencillos y se presentan
propiedades de las operaciones: distributiva, conmutativa, asociativa.

2º de ESO.

Según el Decreto 39/2022, entre los saberes básicos para este curso se incluyen:

D. Sentido algebraico

3. Variable

Variable: Comprensión del concepto de variable como incógnita en ecuaciones lineales con
coeficientes racionales, como indeterminadas en expresión de patrones o identidades y como
cantidades variables en fórmulas y funciones afines.

Monomios. Operaciones básicas.

4. Igualdad y desigualdad

Relaciones lineales en situaciones de la vida cotidiana o matemáticamente relevantes: expresión
mediante álgebra simbólica.

Equivalencia de expresiones algebraicas en la resolución de problemas, especialmente aquellos
basados en relaciones lineales.

Estrategias de búsqueda de soluciones en ecuaciones lineales con coeficientes racionales y sis-
temas de ecuaciones lineales en situaciones de la vida cotidiana.
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Ecuaciones lineales y sistemas de ecuaciones lineales: resolución mediante cálculo mental, mé-
todos manuales o el uso de la tecnología según el grado de dificultad.

Además, en el Decreto 39/2022, estos contenidos se vinculan especialmente con las siguientes competen-
cias específicas y con los correspondientes criterios de evaluación:

CE1: Reconocer patrones y relaciones. Generaliza reglas en tablas y gráficos.

CE2: Resolver problemas. Usa expresiones algebraicas en problemas contextualizados.

CE3: Representar e interpretar. Interpreta y elabora representaciones algebraicas y gráficas.

CE4: Razonar y argumentar. Da razones simples en problemas geométricos y numéricos.

CE5: Usar tecnología. Uso de software gráfico o simuladores.

CE6: Comunicar matemáticamente. Utiliza notación simbólica más estructurada.

CE7: Aplicar las matemáticas. Relaciona con otras áreas: física, tecnología.

CE8: Actitud positiva. Acepta el error y busca soluciones alternativas.

También se indican los Criterio de evaluación:

Aplicar técnicas básicas de manipulación algebraica en la resolución de problemas.

Resolver ecuaciones de primer grado y sistemas sencillos.

Podemos observar, que se profundiza en el uso del lenguaje algebraico, en las operaciones con monomios:
suma, resta, multiplicación. Se introducen las igualdades notables simples y la resolución de ecuaciones de
primer grado con expresiones algebraicas y se comienza la formulación de problemas con álgebra.

3º de ESO.

Según el Decreto 39/2022, entre los saberes básicos para este curso se incluyen:

C. Sentido algebraico

3. Variable

Comprensión del concepto de variable como incógnita en ecuaciones cuadráticas, como inde-
terminadas en identidades notables y como cantidades variables en fórmulas y funciones cua-
dráticas.

Polinomios en una variable, operaciones básicas y factorización.
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4. Igualdad y desigualdad

Relaciones cuadráticas en situaciones de la vida cotidiana o matemáticamente relevantes: ex-
presión mediante álgebra simbólica.

Equivalencia de expresiones algebraicas en la resolución de problemas, especialmente aquellos
basados en relaciones cuadráticas. Identidades notables.

Estrategias de búsqueda de soluciones en ecuaciones cuadráticas en situaciones de la vida coti-
diana.

Ecuaciones cuadráticas: resolución mediante cálculo mental, métodos manuales o el uso de la
tecnología según el grado de dificultad.

También, en el Decreto 39/2022, estos contenidos se vinculan especialmente con las siguientes competen-
cias específicas y con los correspondientes criterios de evaluación:

CE1: Reconocer patrones y relaciones. Reconoce relaciones algebraicas y funcionales.

CE2: Resolver problemas. Aplica álgebra y geometría para modelar situaciones.

CE3: Representar e interpretar. Trabaja con coordenadas, funciones y polinomios.

CE4: Razonar y argumentar. Argumenta sobre propiedades y demuestra con ejemplos.

CE5: Usar tecnología. Aplica TIC para representar funciones y resolver problemas.

CE6: Comunicar matemáticamente. Explica procedimientos con propiedad formal.

CE7: Aplicar las matemáticas. Modeliza fenómenos reales con ecuaciones o proporciones.

CE8: Actitud positiva. Muestra persistencia en problemas complejos.

Criterio de evaluación:

Utilizar el álgebra para modelizar y resolver situaciones problemáticas más complejas.

Aplicar técnicas de factorización y simplificación de expresiones algebraicas.

Por tanto, en este curso se pide que el alumno reconozca y manipule expresiones algebraicas, realice opera-
ciones con polinomios: suma, resta, multiplicación y división de polinomios entre monomios. Se introducen
la Regla de Ruffini y la factorización de polinomios sencillos y se aborda la resolución de ecuaciones poli-
nómicas de segundo grado con una incógnita, aplicado todo ello en problemas contextualizados.
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4º de ESO. Opción A.

Según el Decreto 39/2022, entre los saberes básicos para este curso se incluyen:

D. Sentido algebraico

3. Variable

Variables: asociación de expresiones simbólicas al contexto del problema y diferentes usos (co-
mo incógnita en ecuaciones, inecuaciones y sistemas, indeterminada en patrones e identidades,
para expresar cantidades que varían en fórmulas y funciones elementales y como constantes o
parámetros en modelos funcionales).

Características del cambio en la representación gráfica de relaciones lineales y cuadráticas.

4. Igualdad y desigualdad

Relaciones lineales, cuadráticas y de proporcionalidad inversa en situaciones de la vida cotidiana
o matemáticamente relevantes: expresión mediante álgebra simbólica.

Formas equivalentes de expresiones algebraicas (incluyendo la factorización) en la resolución
de ecuaciones polinómicas y sistemas de ecuaciones e inecuaciones lineales.

Estrategias de discusión y búsqueda de soluciones en ecuaciones lineales y cuadráticas en situa-
ciones de la vida cotidiana.

Ecuaciones polinómicas, sistemas de ecuaciones e inecuaciones lineales: resolución mediante
cálculo mental, métodos manuales o el uso de la tecnología según el grado de dificultad.

Además, en el Decreto 39/2022, estos contenidos se vinculan especialmente con las siguientes competen-
cias específicas y con los correspondientes criterios de evaluación:

CE1: Reconocer patrones y relaciones. Estudia progresiones, patrones algebraicos complejos.

CE2: Resolver problemas. Utiliza funciones, sistemas y ecuaciones en situaciones reales.

CE3: Representar e interpretar. Interpreta gráficas complejas de funciones reales (lineales, cuadráti-
cas, racionales).

CE4: Razonar y argumentar. Elabora razonamientos matemáticos formales.

CE5: Usar tecnología. Usa tecnología para resolver y validar resultados.

CE6: Comunicar matemáticamente. Presenta informes con lenguaje matemático preciso.

CE7: Aplicar las matemáticas. Utiliza funciones y modelos para interpretar fenómenos sociales, cien-
tíficos.

CE8: Actitud positiva. Trabaja de forma autónoma, creativa y crítica.

Criterio de evaluación:
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Analizar y resolver problemas utilizando herramientas algebraicas avanzadas.

Interpretar y representar funciones polinómicas y racionales.

Podemos observar que se incluye la factorización de polinomios (factor común, trinomios cuadrados per-
fectos, diferencias de cuadrados) y su aplicación a la resolución de ecuaciones algebraicas.

4º de ESO. Opción B.

Según el Decreto 39/2022, entre los saberes básicos para este curso se incluyen:

D. Sentido algebraico

3. Variable

Variables: asociación de expresiones simbólicas al contexto del problema y diferentes usos (co-
mo incógnita en ecuaciones, inecuaciones y sistemas, indeterminada en patrones e identidades,
para expresar cantidades que varían en fórmulas y funciones elementales y como constantes o
parámetros en modelos funcionales).

Relaciones entre cantidades y sus tasas de cambio.

4. Igualdad y desigualdad

Álgebra simbólica: representación de relaciones funcionales en contextos diversos.

Formas equivalentes de expresiones algebraicas (incluyendo factorización y fracciones algebrai-
cas sencillas) en la resolución de ecuaciones polinómicas, exponenciales y logarítmicas sencillas
e irracionales, inecuaciones lineales y cuadráticas y sistemas de ecuaciones lineales y no linea-
les.

Ecuaciones polinómicas, exponenciales y logarítmicas sencillas e irracionales, inecuaciones li-
neales y cuadráticas y sistemas de ecuaciones lineales y no lineales: resolución mediante cálculo
mental, métodos manuales o el uso de la tecnología según el grado de dificultad.

Además, en el Decreto 39/2022, estos contenidos se vinculan especialmente con las siguientes competen-
cias específicas y con los correspondientes criterios de evaluación:

CE1: Reconocer patrones y relaciones. Estudia progresiones, patrones algebraicos complejos.

CE2: Resolver problemas. Utiliza funciones, sistemas y ecuaciones en situaciones reales.

CE3: Representar e interpretar. Interpreta gráficas complejas de funciones reales (lineales, cuadráti-
cas, racionales).

CE4: Razonar y argumentar. Elabora razonamientos matemáticos formales.
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CE5: Usar tecnología. Usa tecnología para resolver y validar resultados.

CE6: Comunicar matemáticamente. Presenta informes con lenguaje matemático preciso.

CE7: Aplicar las matemáticas. Utiliza funciones y modelos para interpretar fenómenos sociales, cien-
tíficos.

CE8: Actitud positiva. Trabaja de forma autónoma, creativa y crítica.

Criterio de evaluación:
Analizar y resolver problemas utilizando herramientas algebraicas avanzadas.

Interpretar y representar funciones polinómicas y racionales.

Observamos que se estudia la factorización de polinomios (factor común, trinomios cuadrados perfectos,
diferencias de cuadrados) y su uso en la resolución de ecuaciones algebraicas con aplicaciones en funciones
polinómicas simples.

Aunque nuestra atención se centra fundamentalmente en Educación Secundaria, hemos querido plasmar
la presencia de los polinomios en el currículo de Bachillerato, constatando que se continúa su estudio,
especialmente en la asignatura Matemáticas I de 1.º de Bachillerato dentro del bloque Álgebra y funciones
contribuyendo al desarrollo de la competencia matemática y competencias básicas en ciencia y tecnología,
así como a la competencia en razonamiento y resolución de problemas. Además, se articula con los criterios
de evaluación establecidos para cada etapa y curso, con un enfoque competencial y contextualizado. En
esta etapa se refuerzan las competencias específicas relativas a la resolución de problemas algebraicos, la
modelización y el análisis de funciones. Hemos incluido en el Anexo 7 la normativa relativa a los estudios de
Bachillerato con el fin de completar la información normativa proporcionada en relación con los polinomios.

3. Conocimientos básicos y métodos clásicos utilizados en Educación
Secundaria

En lo que sigue, denotaremos por K[x] al anillo de polinomios con coeficientes en un cuerpo K (ya sea Q,
R, o C) y consideraremos P (x) ∈ K[x]. Como referencias bibliográficas podemos citar (Larson, 2007) o
(Artin, 2011).

Definición de polinomio

Un polinomio en una variable x con coeficientes en un cuerpo K es una expresión de la forma:

P (x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0

con n ∈ N, a0, a1, . . . , an ∈ K, y an ̸= 0.
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El número natural n se denomina grado del polinomio.

Raíz de un polinomio

Una raíz o cero de un polinomio P (x) es un número r que cumple que P (r) = 0.

Es decir, la raíz de un polinomio es un valor de la variable para el cual el polinomio se anula.

Ejemplo: sea P (x) = x2 − 4, entonces r = 2 y r = −2 son raíces, ya que P (2) = 22 − 4 = 0 y
P (−2) = (−2)2 − 4 = 0.

Multiplicidad de una raíz

Si P (x) = (x− r)k · g(x), con g(r) ̸= 0, diremos que r es una raíz de P (x) de multiplicidad k.

Ejemplo: P (x) = (x− 1)3(x+2) tiene una raíz de multiplicidad 3 en x = 1, y una raíz simple en x = −2.

Teorema del Resto

Sea P (x) ∈ K[x] un polinomio con coeficientes en un cuerpo K. Si se divide P (x) entre x− a, con
a ∈ R, entonces el resto de dicha división es P (a).

Demostración:

Usamos el algoritmo de la división de polinomios en K[x] y sabemos que existe un polinomio cociente
Q(x) y un resto R ∈ K (pues el grado del divisor (x− r) es 1) tales que:

P (x) = (x− r) ·Q(x) +R.

Sustituyendo x = r en la identidad obtenida:

P (r) = (r − r) ·Q(r) +R = 0 ·Q(r) +R = R.

Por tanto, R = P (r). ■
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Teorema Fundamental de Álgebra

Sea P (x) ∈ C[x] un polinomio con coeficientes en un cuerpo C.

P (x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0, con an ̸= 0 y ai ∈ C,

entonces existen z1, z2, . . . , zn ∈ C, (no necesariamente distintos), tales que

P (x) = an(x− z1)(x− z2) . . . (x− zn).

Es decir, un polinomio de grado n tiene exactamente n raíces complejas, contando sus multiplicidades.

En cuanto a los métodos clásicos de búsqueda de raíces, fundamentalmente son procedimientos de carácter
algorítmico y de aplicación directa como la factorización por inspección, el uso de identidades notables y,
de forma destacada, la Regla de Ruffini.

La Regla de Ruffini se presenta habitualmente como un método eficiente para dividir un polinomio de
grado n entre un binomio de la forma x−a, y se utiliza, sobre todo, como herramienta para la factorización
de polinomios con coeficientes enteros.

En Secundaria, su uso se limita a comprobar si un número entero dado es raíz de un polinomio (teorema
del resto) y, en caso afirmativo, dividirlo para reducir el grado de la ecuación. Este método resulta eficaz
únicamente cuando el polinomio tiene raíces enteras y el alumno es capaz de encontrarlas mediante ensayo
y error entre los divisores del término independiente. Su uso se puede extender también a raíces racionales.

Pese a su utilidad práctica, la regla de Ruffini puede fomentar un enfoque muy mecánico del álgebra, en el
que la noción de raíz queda reducida a una técnica de búsqueda sin conexión con el significado matemático
ni con el comportamiento gráfico del polinomio. Además, este método excluye aquellas situaciones en las
que las raíces no son enteras ni racionales, lo que limita gravemente la comprensión estructural del concepto.

La Regla de Ruffini

Sea P (x) ∈ K[x] y sea r ∈ K. Entonces, existe un polinomio Q(x) y un número R ∈ K tales que:

P (x) = (x− r)Q(x) +R

con R = P (r) y Q(x) es el cociente de la división de P (x) entre (x− r).

En particular, r es raíz de P (x) si y sólo si R = 0, es decir, si y sólo si P (r) = 0.

Demostración:

Sea P (x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0 ∈ K[x].

Aplicamos el algoritmo de división en el anillo K[x]: dado un polinomio P (x) y un binomio lineal (x− r),
existen únicos polinomios Q(x) ∈ K[x] y un escalar R ∈ K tales que:
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P (x) = (x− r) ·Q(x) +R.

Evaluamos en x = r:

P (r) = (r − r) ·Q(r) +R = 0 ·Q(r) +R = R.

Por tanto, R = P (r), lo que demuestra que:

P (x) = (x− r) ·Q(x) + P (r).

En consecuencia, (x− r) divide a P (x) si y sólo si P (r) = 0, es decir, r es raíz de P (x) si y sólo si el resto
de la división es nulo.

Si se encuentra un número r tal que P (r) = 0, entonces se sabe que (x − r) es un factor de P (x), lo que
permite dividir y continuar el proceso con el cociente. ■

Ejemplo:

Consideremos el polinomio P (x) = x3 − 6x2 + 11x− 6.

usando el Teorema del Factor, probamos con los divisores del término independiente: ±1,±2,±3,±6.

Aplicamos la regla de Ruffini con x = 1

1 −6 11 −6
1 1 −5 6

1 −5 6 0 −→ resto 0, raíz 1, cociente Q1(x) = x2 − 5x+ 6
2 2 −6 −→ −→ resto 0, raíz 2, cociente Q2(x) = x− 3

1 −3 0

Finalmente, P (x) = (x− 1) · (x− 2) · (x− 3) y las raíces son: x = 1, x = 2, x = 3.

Otro método clásico para la búsqueda de raíces supone aplicar el Teorema del Factor.

Teorema del factor
Sea P (x) ∈ K[x] y sea r ∈ K. Entonces, r es raíz de P (x) si y solo si existe un polinomio
Q(x) ∈ K[x] tal que P (x) = (x− r) ·Q(x).

Demostración:

Supongamos que r es raíz de P (x), entonces P (r) = 0.

Dividiendo en K[x], se sabe que existen polinomios Q(x) y R(x), con grado de R(x) menor estrictamente
que el grado de (x− r) (que es 1 y por tanto, R(x) = R ∈ K ) con:

P (x) = (x− r) ·Q(x) +R.
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Evaluando en x = r,

P (r) = (r − r) ·Q(r) +R = 0 +R = R =⇒ R = P (r) = 0.

Por tanto, P (x) = (x− r) ·Q(x).

Recíprocamente, si P (x) = (x− r) ·Q(x), entonces

P (r) = (r − r) ·Q(r) = 0 ·Q(r) = 0 =⇒ r es raíz de P (x).

■

La factorización directa es otra estrategia común que se usa a partir de productos notables conocidos,
como el cuadrado de una suma, la diferencia de cuadrados o el trinomio cuadrado perfecto. Este enfoque
se aplica principalmente a polinomios de segundo grado o a expresiones cuidadosamente diseñadas para
ajustarse a patrones reconocibles.

Este tipo de factorización, suele suponer un punto complicado para el alumno que no siempre utiliza estos
productos notables de forma correcta.

Identidades notables

(a+ b)2 = a2 + 2ab+ b2

(a− b)2 = a2 − 2ab+ b2

(a+ b)(a− b) = a2 − b2

(x+ a)(x+ b) = x2 + (a+ b)x+ ab

(a+ b+ c)2 = a2 + b2 + c2 + 2ab+ 2ac+ 2bc

(a+ b)3 = a3 + 3a2b+ 3ab2 + b3

(a− b)3 = a3 − 3a2b+ 3ab2 − b3

a3 + b3 = (a+ b)(a2 − ab+ b2)

a3 − b3 = (a− b)(a2 + ab+ b2)

Estas identidades notables también se usan cuando intentamos factorizar por inspección. Se trata de un
método empírico que consiste en identificar visual o intuitivamente factores de un polinomio, basándose en
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propiedades conocidas, identidades algebraicas o candidatos a raíces racionales utilizando el teorema del
factor y el teorema del resto.

El procedimiento habitual incluye:

Buscar raíces enteras o racionales usando el teorema del resto y la Regla de Ruffini.

Aplicar identidades notables (cuadrado de una suma, diferencia de cuadrados, trinomio cuadrado
perfecto).

Utilizar propiedades del número de términos y signos para deducir posibles factores.

En el currículo actual de Educación Secundaria en España (según la LOMLOE y su concreción en
Castilla y León), la resolución de ecuaciones de segundo grado constituye un contenido clave del bloque
de Álgebra. Se introduce habitualmente en 3º de ESO y se consolida en 4º de ESO y 1º de Bachillerato,
con especial énfasis en el uso de la fórmula general, la interpretación del discriminante y la representación
gráfica de funciones cuadráticas.

La ecuación de segundo grado

La ecuación polinómica de grado 2 con coeficientes reales

ax2 + bx+ c = 0, a ̸= 0,

admiten una solución general mediante la conocida fórmula

x =
−b±

√
b2 − 4ac

2a
.

La cantidad ∆ = b2 − 4ac se llama discriminante e indica la naturaleza de las raíces:

Si ∆ > 0, existen dos soluciones reales y distintas.

Si ∆ = 0, existe una única solución real doble.

Si ∆ < 0, las soluciones son complejas conjugadas.

Las ecuaciones cuadráticas fueron tratadas ya por los babilonios hacia el año 2000 a. C., aunque de forma
implícita y sin simbolismo algebraico. Más adelante, en la Antigüedad clásica, matemáticos griegos como
Euclides abordaron este tipo de ecuaciones con herramientas geométricas. En la India, en el siglo XII,
Bhaskara presentó métodos para encontrar raíces de ecuaciones cuadráticas.

Fue en el mundo islámico donde se sistematizaron los procedimientos para resolver ecuaciones cuadrá-
ticas. En particular, Al–Khwarizmi (siglo IX) describió métodos algorítmicos para resolver ecuaciones
cuadráticas mediante procedimientos equivalentes al completado del cuadrado, aunque sin el uso de letras
ni símbolos.
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La versión simbólica moderna de la fórmula no apareció hasta el desarrollo del álgebra en Europa, durante
los siglos XVI y XVII, con matemáticos como François Viète y René Descartes.

Estas técnicas mencionadas previamente, son útiles en muchos aspectos, pero tienen ciertas limitaciones
acerca de la visión que el alumno adquiere del concepto de raíz de un polinomio. De hecho, son procedi-
mientos cerrados, eficaces sólo en casos particulares y habitualmente diseñados para ofrecer soluciones
exactas. Se plantean varias limitaciones:

No es sistemático ni generalizable a polinomios de grado alto o con raíces no racionales.

Se excluye la posibilidad de trabajar con raíces irracionales o complejas, lo que impide mostrar la
completitud del cuerpo de los números complejos.

No se promueve la comprensión de las raíces como soluciones de una ecuación ni como puntos de
intersección con el eje de abscisas en una representación gráfica.

Se pierde la oportunidad de conectar con métodos de aproximación, con el comportamiento global
de la función polinómica o con herramientas informáticas que permiten representar, experimentar y
conjeturar.

Por todo ello, resulta necesario complementar estos enfoques tradicionales mediante técnicas que introduz-
can nuevas perspectivas, que sean asequibles para el alumno, pero que amplíen su visión matemática.
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4. Evolución histórica de la búsqueda de raíces de polinomios

El currículo LOMLOE para Castilla y León (ESO y Bachillerato) destaca la resolución de ecuaciones y
polinomios como eje transversal del pensamiento algebraico y se promueve la competencia matemática y
el sentido histórico, integrando contextos que ayuden a dar significado profundo al álgebra.

En este sentido, hemos decidido complementar diferentes métodos para la búsqueda de las raíces de un
polinomio con un recorrido histórico que nos permite situar esos métodos en un proceso evolutivo. De esta
forma, utilizamos la historia como recurso didáctico, fomentando así la interdisciplinariedad y ofreciendo
una visión que conecta con la historia, la filosofía y la cultura y, en concreto, con la evolución de la ciencia
y el pensamiento lógico a través de matemáticos de diferentes épocas. Esta decisión ha sido el resultado de
cursar la asignatura Ideas y conceptos matemáticos a través de la historia donde comprobé que, los datos
históricos y las anécdotas, captaban mi atención y la de mis compañeros al tiempo que nos servían como
paréntesis cuando estudiabamos temas matemáticos más profundos.

Por otro lado, permite mostrar a los alumnos que el álgebra, tal y como la usan hoy, tiene raíces multicultu-
rales y multidisciplinares.

Comenzaremos revisando primero algunos conceptos importantes acerca de los polinomios para seguir
después con el recorrido histórico.

4.1. Los polinomios en la antigüedad

En el Antiguo Egipto y Mesopotamia (aproximadamente entre los siglos XVIII y XVI a.C.), se en-
cuentran los primeros indicios de resolución de ecuaciones, aunque aun no se hablaba de polinomios. Los
problemas se formulaban a partir de situaciones prácticas como el reparto de cosechas, cálculos de áreas, vo-
lumen de graneros... Así, se documentan procedimientos para resolver ecuaciones de la forma ax2+ bx = c
a través de métodos numéricos que a menudo se apoyaban en reglas geométricas o mediante ensayo y error
como era el caso de los antiguos egipcios.

4.2. La época helénistica: Euclides

Los matemáticos griegos usaban un enfoque más geométrico de las ecuaciones. Cabe destacar la figura
del matemático y geómetra griego Euclides (siglo III a.C.). Su obra más famosa, Los Elementos, es una
recopilación en 13 libros de los conocimientos matemáticos de su época, especialmente sobre geometría y
aritmética, y ha sido uno de los libros más editados y estudiados de la historia, sólo superado por la Biblia.

El algoritmo de Euclides es uno de los algoritmos más antiguos conocidos en la historia de las mate-
máticas. Aparece en los Elementos de Euclides (Libro VII) y estaba originalmente formulado para enteros
positivos. Su generalización al contexto de polinomios se produjo con el desarrollo del álgebra en el Rena-
cimiento y posteriormente fue formalizada en la teoría de anillos y dominios de integridad.

En álgebra moderna, el algoritmo de Euclides se aplica en dominios euclídeos, entre ellos Z y K[x], y
es de gran importancia tanto a nivel teórico como en cálculo simbólico (por ejemplo, para factorización,
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simplificación de fracciones algebraicas o resolución de ecuaciones diofánticas polinómicas).

El algoritmo de Euclides

Sean P (x), G(x) ∈ K[x], con K un cuerpo y G(x) ̸= 0. Entonces se puede calcular el máximo
común divisor de P (x) y G(x), (que denotaremos m.c.d.(P,G)), mediante el siguiente procedimiento
recursivo:

1. Se divide P (x) entre G(x) obteniendo cociente Q1(x) y resto R1(x):

P (x) = Q1(x)G(x) +R1(x), deg(R1) < deg(G)

2. Se repite el proceso:
G(x) = Q2(x)R1(x) +R2(x)

R1(x) = Q3(x)R2(x) +R3(x)

...

3. Se termina en la etapa k si el resto Rk(x) = 0. Entonces m.c.d.(P,G) = Rk−1(x).

Demostración:

El algoritmo se basa en la siguiente propiedad: Si P = Q ·G + R, entonces m.c.d.(P,G) = m.c.d.(G,R).
En efecto, como:

P = Q ·G+R =⇒ R = P −Q ·G.

Si d es un divisor común de P y G, entonces, d divide a P, y lo denotaremos por d | P , y también d divide a
G, es decir, (d | G). En virtud de la implicación anterior tenemos que d | R. Por tanto, todo divisor común
de P y G también divide R.

Inversamente, todo divisor común de G y R divide a P . Por lo tanto, el conjunto de divisores comunes de
P y G coinciden con el conjunto de divisores comunes de G y R y, en particular, el máximo común divisor
es el mismo. ■

Ejemplo:

Calculemos m.c.d.(P (x), G(x)) siendo: P (x) = x3 − 6x2 + 11x− 6 y G(x) = 3x2 − 12x+ 11.

Paso 1. Dividimos P (x) entre G(x) y se cumple

P (x) = Q1(x) ·G(x) +R1(x),

es decir,

3x2 − 12x+ 11 =

(
1

3
x− 2

3

)
· (3x2 − 12x+ 11) +

(
−2

3
x+

4

3

)
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Paso 2. Dividimos G(x) entre R1(x) para obtener G(x) = Q2(x) ·R1(x) +R2(x), con

x3 − 6x2 + 11x− 6 =

(
−9

2
x− 9

)
·
(
−2

3
x+

4

3

)
− 1

Paso 3. Dividimos R1(x) entre R2(x):

R1(x) = Q3(x) ·R2(x) +R3(x) =⇒ −2

3
x+

4

3
=

(
2

3
x+

4

3

)
· (−1) + 0

Por tanto, el m.c.d.(P (x), Q(x)) = −1

4.3. Matemáticos árabes: Al–Khwarizmi y el nacimiento del álgebra
El gran avance se produce con la llegada de la matemática islámica en los siglos VIII–IX cuando la

resolución de ecuaciones se percibe como un proceso más general, no sólo como la resolución de casos
concretos.

El matemático persa Al–Khwarizmi (siglo IX), sistematizó los métodos para resolver ecuaciones linea-
les y cuadráticas. Resolvía ecuaciones del tipo ax2 + bx = c, ax2 = bx y ax2 = c sin símbolos, mediante
lenguaje y razonamiento geométrico.

En esta época se recopilaron y tradujeron conocimientos griegos, indios y babilónicos, lo que dio lugar a
una síntesis que influiría profundamente en el desarrollo del álgebra en Europa durante la Baja Edad Media
y el Renacimiento.

4.4. El Renacimiento: Tartaglia, Cardano, Viète y Ferrari

Durante el Renacimiento, especialmente en los siglos XV y XVI, se produjo un gran interés por el
álgebra en Europa. Las matemáticas dejaron de verse sólo como una herramienta para la contabilidad y la
astronomía, y empezó a estudiarse también como disciplina teórica. Uno de los grandes retos de la época
era encontrar soluciones generales a ecuaciones de tercer y cuarto grado.

El matemático italiano Scipione del Ferro fue el primero en resolver una forma reducida de la ecuación
cúbica (x3 + ax = b).

Posteriormente, Niccolò Tartaglia redescubrió métodos similares y reveló su método a Gerolamo Car-
dano (siglo XVI) bajo promesa de secreto. Sin embargo, Cardano lo publicó y desató una famosa disputa
por la autoría de la fórmula. Casi simultáneamente, François Viète, formuló explícitamente las relaciones
entre las raíces de una ecuación polinómica y sus coeficientes. Algunos detalles curiosos de la vida de estos
matemáticos son:

Tartaglia: es un matemático e ingeniero italiano (1499–1557) cuya infancia estuvo marcada por la
pobreza y la tragedia, durante el saqueo francés de Brescia, con doce años, sufrió graves heridas en la cara
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y la mandíbula y quedó con una tartamudez permanente, apodo que él mismo adoptó y con el que firmó
sus obras (Tartaglia significa tartamudo en italiano). De educación fundamentalmente autodidacta. Ganó
fama al ganar el desafío planteado por el matemático Antonio Maria del Fiore al descubrir un método para
resolver ciertas ecuaciones de tercer grado. Tartaglia fue de los primeros en aplicar las matemáticas a la
artillería.

Cardano: (1501–1576, Italia) fue un médico, matemático, físico, astrónomo, filósofo, escritor y jugador
profesional. Fue arrestado por la Inquisición en 1570, acusado de herejía, en parte por haber publicado un
horóscopo de Jesucristo. Pasó meses en prisión hasta abjurar. Era tan supersticioso que, según la leyenda,
predijo el día exacto de su muerte y, para cumplir su profecía, se dejó morir ese día.

Publicó la primera solución general para resolver ecuaciones cúbicas y supusieron un avance funda-
mental en la historia del álgebra durante el Renacimiento. Cardano atribuyó el descubrimiento de estas
fórmulas a su alumno Tartaglia, quien inicialmente halló métodos para resolver ciertos casos particulares
de ecuaciones cúbicas.

Fórmula de Cardano

Dada la ecuación x3 + px+ q = 0, su solución puede obtenerse mediante la fórmula:

x =
3

√
−q

2
+

√
q2

4
+

p3

27
+

3

√
−q

2
−
√

q2

4
+

p3

27
.

François Viète: (1540—1603) fue un matemático, jurista y consejero real francés, considerado el padre
del álgebra moderna. Fue autodidacta en matemáticas y ejerció principalmente como abogado y funciona-
rio público, dedicando su tiempo libre a las matemáticas. Su método de descifrado de mensajes fue tan
eficaz que, tras romper un complicado código español, el rey Felipe II protestó ante el Papa acusando a
los franceses de usar artes mágicas. Viète fue pionero en expresar soluciones de ecuaciones mediante fór-
mulas generales y en usar letras para representar constantes y variables, práctica que hoy es universal en
matemáticas.

Formuló explícitamente las relaciones entre las raíces de una ecuación polinómica y sus coeficientes, sen-
tando las bases de lo que hoy llamamos las fórmulas de Viète.
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Las fórmulas de Viète

Sea P (x) ∈ K[x] un polinomio de grado n de la forma:

P (x) = xn + a1x
n−1 + a2x

n−2 + · · ·+ an−1x+ an

y sean r1, r2, . . . , rn ∈ C sus raíces (reales o complejas y contadas con su multiplicidad). Entonces
se cumplen las fórmulas de Viète:

r1 + r2 + · · ·+ rn = −a1∑
1≤i<j≤n

rirj = a2

∑
1≤i<j<k≤n

rirjrk = −a3

...
r1r2 · · · rn = (−1)nan

Demostración:

Como r1, r2, . . . , rn ∈ C son las raíces, podemos expresar el polinomio de la forma:

P (x) = (x− r1)(x− r2) · · · (x− rn).

Desarrollando esta expresión, se obtiene:

P (x) = xn −
(∑

ri

)
xn−1 +

(∑
i<j

rirj

)
xn−2 − · · ·+ (−1)n · r1r2 · · · rn

Basta comparar esta expresión con el polinomio P (x) = xn + a1x
n−1 + a2x

n−2 + · · ·+ an para obtener:

a1 = −
∑

ri, a2 =
∑
i<j

rirj, . . . , an = (−1)n
n∏

i=1

ri.

■

Las fórmulas anteriores son notaciones algebraicas que permiten expresar relaciones entre las raíces de
las ecuaciones y sus coeficientes y son la base de los polinomios simétricos. La teoría de estos polinomios
se desarrolló formalmente en el siglo XIX con el nacimiento de la teoría de invariantes y de la teoría de
Galois, donde los polinomios simétricos desempeñan un papel crucial en la caracterización de extensiones
algebraicas y en la formulación de resolubilidad por radicales. Las fórmulas de Viète ponen de relieve que
los coeficientes del polinomio (con signo alternado) son los polinomios simétricos elementales evaluados
en las raíces (Stewart, 2004).
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Polinomios simétricos

Sean x1, x2, . . . , xn variables indeterminadas. Un polinomio P (x1, x2, . . . , xn) ∈ K[x1, x2, . . . , xn]
se dice que es simétrico si permanece invariante bajo cualquier permutación de sus variables, es
decir:

P (x1, x2, . . . , xn) = P (xσ(1), xσ(2), . . . , xσ(n)) ∀σ ∈ Sn

donde Sn es el grupo simétrico de permutaciones de n elementos.

Los polinomios simétricos elementales forman una base canónica del conjunto de todos los polinomios
simétricos de n variables.

Polinomios simétricos elementales

e1(x1, . . . , xn) =
∑

1≤i≤n

xi

e2(x1, . . . , xn) =
∑

1≤i<j≤n

xixj

...

ek(x1, . . . , xn) =
∑

1≤i1<i2<···<ik≤n

xi1xi2 · · ·xik

...

en(x1, . . . , xn) = x1x2 · · ·xn

Además, un polinomio P (x) ∈ K[x] de grado n cuyas raíces son r1, r2, . . . , rn puede expresarse de
la forma

P (x) = xn − e1(r1, . . . , rn) · xn−1 + e2(r1, . . . , rn) · xn−2 − · · ·+ (−1)n · en(r1, . . . , rn).

El interés en los polinomios simétricos elementales no es meramente histórico sino que constituyen la base
del teorema de Viète, son fundamentales en álgebra computacional (por ejemplo, en cálculo de discrimi-
nantes), y su estructura algebraica permite entender cómo varían las raíces de un polinomio al modificar
sus coeficientes. Por su parte, Isaac Newton (1642—1727) profundizó en el estudio de las expresiones
simétricas en las raíces de un polinomio. Introdujo las sumas de potencias de las raíces y desarrolló fórmu-
las recursivas para calcularlas en función de los coeficientes del polinomio, conocidas hoy como fórmulas
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de Newton. Estos desarrollos se consolidaron a finales del siglo XVII, aunque no se publicaron de forma
sistemática hasta el siglo XVIII.

El siguiente teorema sintetiza estas dos aportaciones

Teorema de Newton–Viète

Todo polinomio simétrico en n variables con coeficientes en un cuerpo K puede expresarse de forma
única como un polinomio en los polinomios simétricos elementales e1, . . . , en.

Ejemplo: El polinomio
P (x1, x2, x3) = x2

1x2 + x2
2x3 + x2

3x1,

es simétrico pero no es elemental. Sin embargo, puede escribirse como combinación de e1, e2, e3. El proceso
para obtener esa expresión se puede realizar mediante algoritmos (como el de Newton–Girard) o manipu-
lación simbólica utilizando software algebraico (por ejemplo, Maple o Mathematica).

En la subsección 4.6 ahondaremos en los resultados y estudios realizados por Newton.

Observaciones:

Las fórmulas de Viète son válidas para cualquier polinomio con raíces bien definidas, incluso si no
son conocidas de forma explícita.

Son útiles para construir polinomios a partir de sus raíces y para analizar simetrías algebraicas.

Ejemplo: Aplicación al caso cuadrático:

P (x) = x2 + a1x+ a2, raíces r1, r2 ⇒

{
r1 + r2 = −a1

r1r2 = a2

Ejemplo: Aplicación al caso cúbico:

P (x) = x3 + a1x
2 + a2x+ a3, raíces r1, r2, r3 ⇒


r1 + r2 + r3 = −a1

r1r2 + r1r3 + r2r3 = a2

r1r2r3 = −a3

4.5. Siglo XVII: Descartes
René Descartes (Francia, 1596–1650) fue un filósofo, matemático y científico francés, considerado el

padre de la filosofía moderna y de la geometría analítica. Tras licenciarse en Derecho, ingresó en el ejército
y en sus viajes conoció al matemático Isaac Beeckman, quien influyó en su vocación científica. Mientras
estaba acuartelado en Alemania (1619) y, tras una serie de tres sueños muy vívidos, sintió que había recibido
la inspiración para crear un método universal basado en las matemáticas, que aplicaría tanto a la ciencia
como a la filosofía y le llevaría más tarde a expresar su célebre frase Cogito, ergo sum.
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En matemáticas, Descartes fue el creador de la geometría analítica, que unió el álgebra y la geometría y
permitió expresar curvas mediante ecuaciones algebraicas.

En el campo de los polinomios, su contribución más famosa es la regla de los signos de Descartes. Esta regla
permite determinar, a partir de los cambios de signo en los coeficientes de un polinomio, el número máximo
posible de raíces reales positivas y negativas que puede tener dicho polinomio, es decir, proporciona una
cota del número exacto de raíces reales. La regla, sin embargo, no da información sobre la multiplicidad de
las raíces, ni sobre las raíces complejas.

A partir de la siguiente definición enunciaremos la Regla de los signos de Descartes. Véase (Lang,2002) o
(Birkhoff y Mac Lane, 1999).

Variación de signos de un polinomio P (x)

Sea P (x) = anx
n+an−1x

n−1+ · · ·+a0 ∈ R[x], con an ̸= 0. Llamamos variación de signos de P (x)
al número de veces que los coeficientes no nulos de P cambian de signo (tienen signos opuestos)
cuando se disponen en orden decreciente de potencias de x.

Regla de los signos de Descartes

El número de raíces reales positivas de un polinomio con coeficientes reales anxn+an−1x
n−1+ · · ·+

a0 ∈ R[x], con an ̸= 0, es, como máximo, igual al número de cambios de signo que se produce entre
los coeficientes del polinomio (ordenados de mayor a menor grado), ignorando los ceros. Si no se
alcanza esa cota, el número real de raíces positivas será menor que ese número en una cantidad par
(es decir, la diferencia será 0, 2, 4,...).

Demostración:

Denotemos por V (P ) a la variación de signos de P (x) y por Z+(P ) al número de ceros positivos de P (x)
contando su multiplicidad.

Utilizaremos inducción matemática sobre el grado n del polinomio. El caso n = 1, es claro, pues si P (x) =

a1x+ a0, con a1, a0 ̸= 0, la raíz de dicho polinomio es −a0
a1

que será positiva si y solo si a y b tienen

signos distintos, con lo cual V (P (x)) = 1 ⇐⇒ Z+(P ) = 1, de donde, Z+(P ) ≤ V (P (x)).

Supongamos que el resultado es cierto para polinomios de grado menor o igual que n− 1.

Sea P (x) = anx
n + an−1x

n−1 + · · · + a0 ∈ R[x], con an ̸= 0, n > 1, podemos suponer sin pérdida de
generalidad que a0 > 0, ya que en otro caso, si es a0 < 0 basta multiplicar el polinomio P (x) por −1,
o en caso de ser a0 = 0 dividir el polinomio entre la potencia adecuada xk para conseguir que el término
independiente sea no nulo.
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Si aq, q ≤ n es el primer coeficiente no nulo, además de a0, el polinomio P (x) es

P (x) = anx
n + · · ·+ aqx

q + a0, a0 > 0, aq ̸= 0,

y su derivada
P ′(x) = n anx

n−1 + · · ·+ q aqx
q−1,

dividiendo entre xq−1 obtenemos

P1(x) = n anx
n−q + · · ·+ q aq.

Caso 1: aq > 0

Es sencillo comprobar que V (P ) = V (P1) ya que hemos supuesto que a0 > 0 y la sucesión de coeficientes
de ambos es

an, an−1, . . . . . . , aq, a0
n an, (n− 1) an−1, . . . . . . , q aq,

(1)

Además, Z+(P ) ≤ Z+(P1) pues si Z+(P ) = m el teorema de Rolle nos garantiza que hay una raíz
de P ′(x) entre dos ceros consecutivos y distintos de P (X) (si r1 y r2 son dichas raíces, dicho teorema al
intervalo I = [r1, r2] implica que existe un punto α ∈ I con P ′(α)(r2 − r1) = P (r2) − P (r1) = 0). Por
otro lado, si r es raíz múltiple de P de multiplicidad k, entonces es también raíz de P ′ de multiplicidad
k − 1. Contando todas estas raíces positivas de P ′ tenemos Z+(P1) ≥ m− 1

A mayores, en el intervalo [0, r], siendo r la raíz positiva de P (x) más cercana a cero, se cumple que P ′(x)
tiene una raíz ya que tenemos que P (0) = a0 > 0 y también P1(0) = q aq > 0. Por continuidad, podemos
encontrar ε > 0 suficientemente pequeño cumpliendo que si x ∈ I2 = (0, ε), P (x) > 0, P1(x) > 0
y P ′(x) = xq−1 · P1(x) > 0. Este hecho supone que en dicho intervalo I2 el polinomio P (x) es creciente
y dado que se anula en r > ε > 0 y que es una función continua, necesariamente presenta un máximo en
(0, r] y P ′(x) y P1(x) se anulan en dicho máximo. Concluimos, por tanto, que Z+(P1) ≥ m y

V (P ) = V (P1), Z+(P ) ≤ Z+(P1). (2)

Aplicando la hipótesis de inducción a P1(x) tenemos que Z+(P1) ≤ V (P1) y finalmente

Z+(P ) ≤ Z+(P1) ≤ V (P1) = V (P ) =⇒ Z+(P ) ≤ V (P ).

Caso 2: aq < 0.

La sucesión de coeficientes de P y P1 que observamos en (1) nos muestra claramente que

V (P ) = V (P1) + 1.

Por otro lado, en el intervalo [0, r], siendo r la raíz positiva de P (x) más cercana a cero, se cumple que
P (0) = a0 > 0 y P1(0) = q aq < 0. Por continuidad, podemos encontrar ε2 > 0 suficientemente pequeño
cumpliendo que si x ∈ I3 = (0, ε2), P (x) > 0, P1(x) < 0 y P ′(x) = xq−1 · P1(x) < 0. Este hecho
supone que en dicho intervalo I2 el polinomio P (x) es decreciente y aunque se anula en r > ε2 > 0 y es una
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función continua, ya no podemos garantizar que P (x) presenta un extremo en (0, r] y que P ′(x) y P1(x) se
anulen en dicho intervalo. Concluimos, por tanto, que Z+(P1) ≥ m− 1, es decir, Z+(P1) ≥ Z+(P )− 1 y

V (P ) = V (P1) + 1, Z+(P ) ≤ Z+(P1) + 1. (3)

Aplicando la hipótesis de inducción a P1(x) tenemos que Z+(P1) ≤ V (P1) y finalmente

Z+(P ) ≤ Z+(P1) + 1 ≤ V (P1) + 1 = V (P ) =⇒ Z+(P ) ≤ V (P ).

En cualquiera de los dos casos hemos probado que

Z+(P ) ≤ V (P )

Falta probar que V (P )− Z+(P ) es múltiplo de 2, es decir, V (P ) ≡ Z+(P ) (mod 2) y para ello haremos
uso del siguiente Lema.

Lema: Consideremos el polinomio P (x) ∈ R[x] dado por P (x) = anx
n + · · · + aqx

q + a0, se cumple
que si a0 · an < 0 entonces Z+(P ) es impar, y si a0 · an > 0 entonces Z+(P ) es par.

Demostración:

– Si an > 0 y a0 > 0 para x > 0 podemos distinguir dos tipos de raíces, r, positivas:

1. Aquellas en las que la gráfica de P (x) atraviesa el eje x, en cuyo caso podemos encontrar un entorno
(r − ε, r + ε), ε > 0 con P (x− ε) · P (x+ ε) < 0.

2. Aquellas en las que la gráfica de P (x) no atraviesa el eje y en tal caso podemos encontrar un entorno
(r − ε, r + ε), ε > 0 con P (x− ε) · P (x+ ε) > 0.

Además, como an > 0 y a0 > 0 se cumple

P (0) = a0 > 0

ĺım
x−→∞

P (x) = −∞ < 0

 =⇒ Z+(P ) es impar.

– Si an < 0 y a0 > 0 para x > 0 podemos distinguir dos tipos de raíces, r, positivas:

1. Aquellas en las que la gráfica de P (x) atraviesa el eje x, en cuyo caso podemos encontrar un entorno
(r − ε, r + ε), ε > 0 con P (x− ε) · P (x+ ε) < 0.

2. Aquellas en las que la gráfica de P (x) no atraviesa el eje y en tal caso podemos encontrar un entorno
(r − ε, r + ε), ε > 0 con P (x− ε) · P (x+ ε) > 0.

Además, como an < 0 y a0 > 0 se cumple

P (0) = a0 > 0

ĺım
x−→∞

P (x) = +∞ > 0

 =⇒ Z+(P ) es par.
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El resto de los casos se probaría de forma similar. ■

Retomemos la demostración y razonemos por inducción matemática. Es claro que para el caso n = 1
(que analizamos previamente) se cumple que V (P ) ≡ Z+(P ) (mod 2) y supongamos que es cierto para
polinomios de grado menor o igual que n− 1 y veamos que ocurre para grado n.

Para ello, recordemos que hemos supuesto sin pérdida de generalidad que a0 > 0 y

P (x) = anx
n + · · ·+ aqx

q + a0 −→ sucesión de coeficientes −→ ( an, . . . , aq, a0)
P ′(x) = n anx

n−1 + · · ·+ q aqx
q−1 −→ sucesión de coeficientes −→ (n an, . . . , q aq)

P1(x) =n anx
n−q + · · ·+ q aq −→ sucesión de coeficientes −→ (n an, . . . , q aq)

Caso 1: an > 0 y aq > 0. Entonces

V (P ) = V (P1) = V (P ′)

an · aq > 0 =⇒ n an · q aq > 0 =⇒ Z+(P
′) es par (Lema xxxx)

an · a0 > 0 =⇒ Z+(P ) es par (Lema xxxx) =⇒ Z+(P ) ≡ Z+(P
′) (mod 2)

V (P ′) ≡ Z+(P
′) (mod 2) hipótesis de inducción


=⇒ V (P ) ≡ Z+(P ) (mod 2)

Caso 2: an < 0 y aq > 0. Entonces

V (P ) = V (P1) = V (P ′)

an · aq < 0 =⇒ n an · q aq < 0 =⇒ Z+(P
′) es impar (Lema xxxx)

an · a0 < 0 =⇒ Z+(P ) es impar (Lema xxxx) =⇒ Z+(P ) ≡ Z+(P
′) (mod 2)

V (P ′) ≡ Z+(P
′) (mod 2) hipótesis de inducción


=⇒ V (P ) ≡ Z+(P ) (mod 2)

Caso 3: an > 0 y aq < 0. Entonces

V (P ) = V (P1) + 1 = V (P ′) + 1

an · aq < 0 =⇒ n an · q aq < 0 =⇒ Z+(P
′) es impar (Lema xxxx)

an · a0 > 0 =⇒ Z+(P ) es par =⇒ Z+(P ) ≡ Z+(P
′) + 1 (mod 2)

V (P ′) ≡ Z+(P
′) (mod 2) (inducción) =⇒ V (P ′) + 1 ≡ Z+(P

′) + 1 (mod 2)


=⇒ V (P ) ≡ Z+(P ) (mod 2)
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Caso 4: an < 0 y aq < 0. Entonces

V (P ) = V (P1) + 1 = V (P ′) + 1

an · aq > 0 =⇒ n an · q aq > 0 =⇒ Z+(P
′) es par (Lema xxxx)

an · a0 < 0 =⇒ Z+(P ) es impar =⇒ Z+(P ) ≡ Z+(P
′) + 1 (mod 2)

V (P ′) ≡ Z+(P
′) (mod 2) (inducción) =⇒ V (P ′) + 1 ≡ Z+(P

′) + 1 (mod 2)


=⇒ V (P ) ≡ Z+(P ) (mod 2)

Finalmente

V (P ) ≡ Z+(P ) (mod 2)

■

La regla de los signos de Descartes para raíces negativas

Dado P (x) ∈ K[x] podemos aplicar la regla de Descartes al polinomio P (−x) para obtener el
número de raíces reales negativas de P (x).

Observaciones:

El resultado es válido también para raíces múltiples, ya que cada raíz con multiplicidad m contribuye
m veces a la reducción de la variación.

La regla aplicada a P (−x) permite obtener información sobre raíces reales negativas.

La regla de Descartes da una cota superior, pero no garantiza la existencia de raíces reales ni distin-
gue entre reales y complejas.

No proporciona ubicación ni aproximación de raíces.

Ejemplo:

Sea P (x) = x4 − 3x3 + 3x2 + x− 2.
Sus coeficientes son: +1,−3,+3,+1,−2. Podemos observar 3 variaciones de signo.

Ahora estudiamos P (−x) = x4 + 3x3 + 3x2 − x− 2.
Sus coeficientes son: +1,+3,+3,−1,−2. Podemos observar 1 variación de signo.

De acuerdo con la regla de Descartes tenemos que:

El número de raíces reales positivas es tres, una o ninguna.

Hay exactamente una raíz real negativa.
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4.6. Siglos XVII y XVIII

A caballo entre estos dos siglos hay que destacar la figura de Isaac Newton (1642–1727). Físico, ma-
temático, astrónomo y filósofo inglés es considerado una de las figuras más influyentes en la historia de la
ciencia.

Durante la peste bubónica de 1665, la universidad cerró y Newton regresó a su casa. Durante este aislamien-
to, desarrolló el cálculo, formuló sus leyes del movimiento y la gravitación universal, y realizó experimentos
fundamentales en óptica.

Tenía un carácter reservado y, a veces, conflictivo. Mantuvo intensas disputas con otros científicos, como
con Gottfried Leibniz por la invención del cálculo diferencial, o como Robert Hooke Hooke que había
formulado antes que Newton la idea de que la fuerza de gravedad disminuye con el cuadrado de la distancia,
aunque no logró demostrarlo matemáticamente. Aunque Hooke había influido en los estudios de Newton
acerca de las leyes del movimiento y la gravitación universal, Newton omitió deliberadamente cualquier
mención a Hooke. El resentimiento de Newton era enorme e minimizar la contribución de Hooke a la
ciencia. La enemistad llegó a tal punto que, tras la muerte de Hooke y cuando Newton fue nombrado
presidente de la Royal Society de Londres, se dice que Newton intentó borrar el legado de Hooke: eliminó
referencias a sus trabajos en sus propias publicaciones y, según algunos relatos, incluso desaparecieron
instrumentos y el único retrato auténtico de Hooke de los archivos de la Royal Society.

La anécdota más famosa es la que Newton relató a sus amigos donde la caída de una manzana le llevó a
reflexionar sobre la fuerza que mantiene a la Luna en órbita y a los objetos pegados a la Tierra.

También estudió los polinomios con raíces múltiples y estableció bases para el estudio del comportamiento
local de funciones polinómicas.

Destacamos las conocidas como fórmulas de Newton (también llamadas identidades de Newton o rela-
ciones de Newton) que permiten calcular las sumas de potencias de las raíces de un polinomio en función
de sus coeficientes y son una herramienta fundamental para el estudio de polinomios simétricos con una
profunda conexión con el teorema de Viète (véase la Sección 4.4).
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Las fórmulas de Newton

Sea P (x) = xn + a1x
n−1 + a2x

n−2 + · · · + an−1x + an, con raíces r1, r2, . . . , rn (contadas con su

multiplicidad) entonces:

S1 = −a1,

S2 = −a1S1 − 2a2,

S3 = −a1S2 − a2S1 − 3a3,

S4 = −a1S3 − a2S2 − a3S1 − 4a4,

...
Sk = −a1Sk−1 − a2Sk−2 − · · · − ak−1S1 − kak,

siendo
Sk = rk1 + rk2 + · · ·+ rkn

para k ≤ n, considerando aj = 0 para j > n.

Aplicaciones didácticas de las fórmulas de Newton:

Permiten calcular sumas de potencias de raíces sin conocer las raíces explícitamente.

Introducen conceptos de recursividad y combinatoria algebraica.

Facilitan la comprensión de la estructura interna de los polinomios y su simetría.

Además de sus aportaciones en física y otros campos, Newton desarrolló métodos para aproximar raíces
de ecuaciones, como el método que hoy lleva su nombre (Newton–Raphson). Este fue uno de los primeros
métodos iterativos aplicados sistemáticamente y que puede introducirse como puente entre el álgebra y
análisis. Por otro lado, el matemático inglés Joseph Raphson publicó una versión más general del método
en 1690, que lo extendió para su aplicación a ecuaciones más generales y fue quien lo dio a conocer en
vida, por lo cual lleva también su nombre. Raphson, además, fue una de las pocas personas a las que
Newton permitía consultar sus trabajos matemáticos.
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El método de Newton–Raphson

Sea f(x) una función derivable en un intervalo I ⊆ R, con derivadas primera y segunda continuas es
I, sea r una raíz simple de f en I verificando que f ′(r) ̸= 0, entonces el proceso iterativo dado por

xn+1 = xn −
f(xn)

f ′(xn)
.

converge a la raíz r de f para un iterante inicial x0 suficientemente cercano a la raíz.

El método se basa en que podemos aproximar f(x) cerca de x0 por su recta tangente en dicho punto

f(x) ≈ f(x0) + f ′(x0)(x− x0).

Sustituyendo x = r en la expresión anterior resulta:

0 ≈ f(x0) + f ′(x0)(r − x0).

y despejando r tenemos

r ≈ x0 −
f(x0)

f ′(x0)
.

Si repetimos el proceso tomando ahora como nueva aproximación

x1 = x0 −
f(x0)

f ′(x0)
.

es de esperar que se obtenga una aproximación mejor a la raíz. De esta forma, se obtiene el método iterativo
siguiente:

xn+1 = xn −
f(xn)

f ′(xn)
.

Hemos de tener en cuenta que un polinomio, P (x), es una función continua, con derivadas primera y
segunda también continuas en R. Si r es una raíz simple del mismo y partimos de una aproximación, x0,
suficientemente cercana a dicha raíz, el método nos garantiza la convergencia a la raíz. Es preciso hacer
notar que para poder aplicar este método debe cumplirse que P ′(xn) ̸= 0 en cada paso.

Se trata de un método rápido y eficiente que converge en condiciones adecuadas y su convergencia es
cuadrática. Pero a pesar de su potencia, el método de Newton–Raphson presenta varias limitaciones que es
importante tener en cuenta:

1. Necesidad de una buena aproximación inicial: si el valor inicial x0 no está suficientemente cerca de la
raíz buscada, el método puede: converger lentamente, converger hacia una raíz no deseada o diverger.

2. Requiere calcular derivadas: si f ′(x) es difícil de obtener o costosa de evaluar, el método se vuelve
poco práctico.
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3. Si f ′(xn) = 0: la fórmula de iteración

xn+1 = xn −
f(xn)

f ′(xn)

no está definida, lo que provoca un fallo en el algoritmo.

4. Raíces múltiples: si la raíz tiene multiplicidad mayor que 1, la convergencia es más lenta e incluso
puede volverse inestable.

Ejemplo:

Queremos encontrar una raíz de P (x) = x3 − x− 1.

Su derivada es P ′(x) = 3x2 − 1.

Tomamos x0 = 1 como valor inicial.

Aplicamos la fórmula iterativa xn+1 = xn −
P (xn)

P ′(xn)
.

Iteración 1:
x0 = 1
P (1) = 13 − 1− 1 = −1
P ′(1) = 3 · 12 − 1 = 2 ̸= 0

x1 = 1− −1

2
= 1 + 0,5 = 1,5

Iteración 2:

x1 = 1,5
P (1,5) = (1,5)3 − 1,5− 1 = 3,375− 1,5− 1 = 0,875
P ′(1,5) = 3 · (1,5)2 − 1 = 3 · 2,25− 1 = 6,75− 1 = 5,75 ̸= 0

x2 = 1,5− 0,875

5,75
≈ 1,5− 0,152 = 1,348

Iteración 3:

x2 ≈ 1,348
P (1,348) ≈ (1,348)3 − 1,348− 1 ≈ 2,452− 1,348− 1 = 0,104
P ′(1,348) ≈ 3 · (1,348)2 − 1 ≈ 3 · 1,818− 1 = 5,454− 1 = 4,454 ̸= 0
x3 = 1,348− 0,104

4,454
≈ 1,348− 0,023 = 1,325

El proceso continua hasta alcanzar la precisión deseada y para ello se controla que la diferencia entre
dos iterantes consecutivos sea suficientemente pequeña. En la Figura 1 podemos observar una gráfica del
polinomio anterior junto con las tres aproximaciones obtenidas previamente. Podemos observar como las
aproximaciones se van acercando a la raíz real del polinomio (que es el punto de corte del polinomio con el
eje de abscisas).
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Figura 1: Método de Newton–Raphson
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4.7. Siglos XVIII y XIX: Bezout, Ruffini, Galois, Budan y Sturm

En el siglo XVIII, Étienne Bézout (1730–1783) introdujo la idea de eliminar una variable de un sistema
de ecuaciones polinómicas dentro del contexto de su estudio de la teoría de ecuaciones algebraicas. Étienne
Bézout y Joseph–Louis Lagrange realizaron importantes avances en el estudio de relaciones entre polino-
mios, dando origen a herramientas algebraicas para determinar si dos polinomios tienen raíces comunes sin
resolver explícitamente las ecuaciones y la noción de resultante aparece como un paso intermedio en estos
métodos de eliminación y en el siglo XIX, con la formalización del álgebra conmutativa y el desarrollo
del álgebra computacional, matemáticos como Sylvester, Cayley y Macaulay dieron definiciones más pre-
cisas usando determinantes. Fue el siglo XX, cuando la resultante se convirtió en una herramienta clave en
algoritmos de eliminación, teoría de sistemas no lineales y álgebra conmutativa.

Paolo Ruffini (1765–1765) en su obra Teoria generale delle equazioni publicada en 1799, dio una for-
mulación sistemática del proceso de división de polinomios mediante un algoritmo que permite aplicar de
forma práctica el Teorema del Resto cuando el divisor es un binomio lineal (x− r) y que es especialmente
útil cuando se trabaja con raíces enteras (Sección 3). Básicamente, es una notación y organización práctica
de la división algebraica que se ha mantenido en el currículo de Educación secundaria debido a su eficacia
para encontrar raíces enteras y comprobar factores lineales.

Ruffini fue un matemático, médico, filósofo y literato italiano que siendo estudiante sustituyó para dar
clases en la universidad a un profesor suyo que fue elegido concejal. En 1798 fue apartado de la docencia
y de cargos públicos por negarse a jurar fidelidad a la República instaurada por Napoleón. La mayoría de
los matemáticos de su época ignoraron sus descubrimientos y su trabajo fue reconocido y completado más
tarde por Abel y Galois. Se adelantó a su tiempo en el uso de permutaciones y alternó su labor docente con
la práctica médica, llegando a ser rector de la Universidad de Módena.

A comienzos del siglo XIX, se demostró que no existe una fórmula general con radicales para resolver
ecuaciones polinómicas de grado cinco o superior, y, aunque Paolo Ruffini ya había esbozado esta idea, su
demostración no fue rigurosamente aceptada hasta que Niels Henrik Abel la completó en 1799 demostrando
que no puede encontrarse una solución por radicales para la ecuación general de grado 5.

Évariste Galois (1811–1832) desarrolló una teoría general para estudiar la resolución de ecuaciones
mediante simetrías algebraicas, fundando la teoría de grupos. Introdujo la noción de grupo de permutaciones
asociado a las raíces de una ecuación y un criterio para saber si una ecuación es resoluble por radicales en
función de las propiedades de dicho grupo.

En 1829, Charles Sturm desarrolló un método para contar el número de raíces reales distintas de un
polinomio en un intervalo dado sin resolver la ecuación, utilizando para ello una sucesión de polinomios
obtenidos a partir de las derivadas del polinomio original (sucesión de Sturm) y observando los cambios
de signo. Este método es un procedimiento cualitativo, que permite estudiar las raíces sin obtener su valor
exacto. Fue un gran avance en el análisis real.

En la Sección 3 ya se revisó la regla de Ruffini. En esta sección, definiremos el concepto de resultante y
su uso para determinar si dos polinomios tienen raíces comunes, y se enunciarán los teoremas de Budan y
Sturm.
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4.7.1. La resultante

La resultante

Sean P (x) y G(x) dos polinomios con coeficientes en un cuerpo K, de grados m y n:

P (x) = a0x
m + a1x

m−1 + · · ·+ am , G(x) = b0x
n + b1x

n−1 + · · ·+ bn

La resultante de P y G, denotada por Resx(P,G), se define como el determinante de la matriz de
Sylvester, construida a partir de los coeficientes de P y G:

Resx(P,G) = det(S(P,G))

donde S(P,G) es una matriz cuadrada de tamaño (m+n)× (m+n) formada por las siguientes filas:

fila 1 −→
fila 2 −→

...
fila n −→
fila 1 −→
fila 2 −→

fila m −→



a0 a1 · · · am
a0 a1 · · · am

. . . . . . . . . . . .
a0 a1 · · · am

b0 · · · bn
b0 · · · bn

. . . . . . . . .
b0 · · · bn



Podemos observar que

Las primeras n filas constan de en los coeficientes de P , desplazados hacia la derecha.

Las m filas siguientes contienen los coeficientes de G que también se van desplazando.

Proposición

Resx(P,Q) = det(S(P,Q)) = 0 ⇐⇒ P (x) y Q(x) tienen raíces comunes.

Ejemplo

Consideremos P (x) = x2 − 1 y G(x) = x − 1 con m = 2 y n = 1. Estos polinomios comparten la raíz
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x = 1. Su matriz de Sylvester es:

S(P,G) =

1 0 −1
0 1 0
1 −1 0

 ⇒ det(S(P,G)) = 0

La resultante se anula, lo cual confirma que P y G tienen una raíz común.

Uno de los usos más importantes de la resultante es la eliminación de variables en sistemas de ecuaciones
polinómicas. Así, si P (x, y) y G(x, y) son polinomios en dos variables, y queremos eliminar x, podemos
calcular Resx(P,G), que será un polinomio en y. Las soluciones comunes a P (x, y) = 0 y G(x, y) = 0 se
corresponderán con las raíces del polinomio resultante en y.

4.7.2. El teorema de Budan–Fourier

François Budan de Boislaurent (1761–1840) fue un médico de carrera, inspector educativo, matemático
apasionado y polemista francés. Recibió una formación clásica y mostró gran interés por las ciencias, reci-
biendo clases particulares de matemáticas fuera del currículo habitual. Estudió medicina en París y ejerció
como médico y después como inspector general de instrucción pública en Francia. Se le recuerda como ins-
pector por profesión, matemático por pasión, monárquico por convicción y polemista por temperamento.
A pesar de su pasión por las matemáticas, era autodidacta y prefería métodos elementales y aritméticos.

La principal contribución de Budan (1807) es el teorema que lleva su nombre. Este resultado, que permite
acotar el número de raíces reales de un polinomio en un intervalo. El método de Budan, fue eclipsado
después por la versión de Fourier (1820) que utilizaba otro tipo de notación y una redacción más rigurosa.
Aunque no lo generalizó, sí lo divulgó con mayor eficacia entre la comunidad científica.

El teorema de Budan–Fourier es una mejora natural de la regla de los signos de Descartes y proporciona
una cota superior del número de raíces reales en un intervalo concreto, utilizando el mismo principio que
Descartes: analizar el número de variaciones de signo en una sucesión. Sin embargo, en lugar de considerar
sólo los coeficientes del polinomio, se tienen en cuenta los valores de sus derivadas evaluadas en los
extremos del intervalo (Bronstein et al., 2009)

Comencemos definiendo el concepto de variaciones de signo de una sucesión de polinomios para pasar
después a enunciar el teorema de Budan–Fourier.

Variación de signos de una sucesión de polinomios

Sean P1(x), . . . , Pn(x), n ∈ N, Pi(x) ∈ K[x] y la sucesión

(P1(x), P2(x), . . . , Pn(x).)

Si a ∈ K definimos V (a) como el número de veces que cambia el signo al pasar de un término al
siguiente sin tener en cuenta los términos nulos de la sucesión

(P1(a), P2(a), . . . , Pn(a)) .
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Teorema de Budan–Fourier

Sea P (x) ∈ R[x] un polinomio de grado n, y sean a < b dos números reales. Entonces, el número
de raíces reales (contadas con multiplicidad) de P en el intervalo abierto (a, b), denotado N(a,b),
satisface:

N(a,b) ≤ V (a)− V (b)

Además, V (a)− V (b)−N(a,b) es un número par.

Demostración:

Dado un polinomio P (x) ∈ R[x] de grado n, y un punto x ∈ R, se define la sucesión de Budan en x como:

Bx =
(
P (x), P ′(x), P ′′(x), . . . , P (n)(x)

)
y se denota V (x) al número de variaciones de signo en esta sucesión, ignorando los ceros intermedios.

Probemos primero el siguiente lema auxiliar.

Lema. Si P (x) ∈ R[x] tiene una raíz r ∈ (a, b) de multiplicidad m, entonces la sucesión
(P (k)(r))nk=0 comienza con m ceros, seguidos de un primer término no nulo e implica como
mínimo una disminución de V (x) cerca de r.

Demostración.

Si r es una raíz de multiplicidad m, entonces:

P (r) = P ′(r) = · · · = P (m−1)(r) = 0, P (m)(r) ̸= 0

y la derivada de orden m introduce un nuevo signo no nulo en la sucesión, que puede o no
alterar la secuencia de signos respecto a puntos cercanos. En general, cruzar una raíz de P
afecta al signo de P (x) y quizás al de las derivadas superiores, produciendo una disminución
de V (x). ■

Los signos de P (k)(x) sólo pueden cambiar en puntos donde alguna derivada P (k)(x) = 0 (por la continui-
dad) y esto ocurre en raíces de P y de sus derivadas.

Cada raíz real de P en (a, b) provoca una alteración en la sucesión Bx, disminuyendo el número total de
variaciones V (x) al avanzar de x = a hasta x = b.

Por tanto, la disminución total de variaciones está entonces acotada por:

V (a)− V (b) ≥ N(a,b)

donde N(a,b) es el número de raíces reales (contadas con multiplicidad) de P en el intervalo abierto (a, b).

Además, debido al comportamiento continuo de las derivadas y a que cada raíz real cambia como máximo
una transición de signo, se cumple:

V (a)− V (b)−N(a,b) ≡ 0 mód 2

es decir, V (a)− V (b)−N(a,b) es un número par. ■

Observaciones:
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La desigualdad puede ser estricta si algunas raíces están fuera del intervalo o si hay raíces complejas.

El teorema proporciona una cota superior localizada más precisa que la regla de Descartes.

Si V (a)− V (b) = 0, entonces P no tiene raíces reales en (a, b).

Puede utilizarse de forma recursiva para aislar raíces en subintervalos más pequeños.

Este teorema es especialmente útil para el aislamiento de raíces reales, como paso previo a métodos
numéricos de aproximación como el método de bisección.

Ejemplo:

Consideremos el polinomio P (x) = x3 − 6x2 + 11x− 6 con raíces reales son: x = 1, 2, 3.
Sus derivadas son:

P ′(x) = 3x2 − 12x+ 11, P ′′(x) = 6x− 12, P ′′′(x) = 6.

La sucesión de Budan en a = 0 es:

P (0) = −6, P ′(0) = 11, P ′′(0) = −12, P ′′′(0) = 6 =⇒ (−6, 11,−12, 6) =⇒ V (0) = 3

Y la sucesión de Budan en b = 4 es:

P (4) = 6, P ′(4) = 11, P ′′(4) = 12, P ′′′(4) = 6,=⇒ (6, 11, 12, 6) =⇒ V (4) = 0

Entonces:
V (0)− V (4) = 3 =⇒ El número de raíces reales en (0, 4) es ≤ 3.

En este caso, como P tiene exactamente tres raíces reales en ese intervalo, la cota es exacta.

En general, nos proporciona sólo una cota superior, no garantiza el número exacto de raíces reales, ni que
estén todas en ese intervalo.

4.7.3. El teorema de Sturm

Jacques C. F. Sturm (1803–1855) fue un matemático francés de origen suizo–alemán, célebre por su
contribución fundamental a la teoría de ecuaciones y, en particular, por el teorema que lleva su nombre,
que permite determinar el número exacto de raíces reales de un polinomio en un intervalo dado. Mientras
el teorema de Budan–Fourier ofrece una cota superior del número de raíces, el teorema de Sturm propor-
ciona el número exacto a costa de mayor complejidad algorítmica. Sturm es preferible en aplicaciones que
requieren precisión, mientras Budan–Fourier es útil para análisis iniciales.

Jacques C. F. Sturm nació en Ginebra en el seno de una familia protestante que había emigrado desde
Estrasburgo. Tras la muerte de su padre cuando tenía 16 años tuvo que dar clases particulares para ayudar a
mantener a su familia.
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En 1826, junto a Colladon, realizó la primera medición experimental precisa de la velocidad del sonido en
el agua y en 1829, publicó su famoso teorema sobre raíces de polinomios, resolviendo un problema abierto
desde tiempos de Descartes.

La revolución de 1830 en Francia le permitió acceder a la docencia pública, de la que había estado excluido
por su fe protestante.

Como curiosidad, hacer notar que Sturm es uno de los 72 científicos e ingenieros cuyo nombre aparece
grabado en la Torre Eiffel (¡ni más ni menos que la cuarta parte son matemáticos!).

Junto a Joseph Liouville, desarrolló la teoría Sturm—Liouville, fundamental en el estudio de ecuaciones
diferenciales. Esta teoría es una de las bases de la física matemática moderna.

El teorema de Sturm proporciona un procedimiento sistemático para determinar el número exacto de raíces
reales de un polinomio en un intervalo dado, sin necesidad de calcularlas explícitamente.

El método se basa en construir una sucesión de polinomios (sucesión de Sturm) mediante un algoritmo
similar a la división euclídea de polinomios, pero con ciertos signos cambiados, y posteriormente evaluar
los cambios de signo en los extremos de un intervalo real. El número de raíces reales simples en ese intervalo
es igual a la diferencia entre el número de cambios de signo en los extremos (Benedetti y Risler, 1990).

Teorema de Sturm

Sea P (x) ∈ R[x] un polinomio de grado n ≥ 1 con coeficientes reales que no tiene raíces múltiples,
la sucesión asociada a P (x) (sucesión de Sturm) de la forma (P0(x), P1(x), . . . , Ps(x)) siendo

P0(x) = P (x), P1(x) = P ′(x), Pi−1(x) = Pi(x) ·Qi(x)− Pi+1(x), i = 2, . . . , s

con grado(Pi) < grado(Pi−1) y Ps−2(x) = Ps−1(x) ·Qs−1(x)−Ps, siendo Ps(x) = Ps constante
(Ps ∈ R).

Si a y b son dos números reales tales que P (x) no se anula ni en x = a ni en x = b entonces, el
número exacto de raíces reales simples y distintas de P (x) en el intervalo (a, b) viene dado por:

ν(a)− ν(b)

siendo ν(x) el número de cambios de signo (ignorando los ceros) de la sucesión de Sturm evaluada
en x.

Demostración

En primer lugar, es sencillo observar que la sucesión de Sturm

P0(x) = P (x), P1(x) = P ′(x), P2(x), . . . , Ps(x)

cumple que Pi+1(x) es el resto cambiado de signo de la división euclídea de Pi−1(x) entre Pi(x) para
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1 ≤ i ≤ s− 1 y que podemos observar en la siguiente tabla:

P0(x) = P (x)
P1(x) = P ′(x)

P0(x) = P1(x) ·Q1(x) +R1(x) =⇒ P2(x) = −R1(x)
P1(x) = P2(x) ·Q2(x) +R2(x) =⇒ P3(x) = −R2(x)
P2(x) = P3(x) ·Q3(x) +R3(x) =⇒ P4(x) = −R3(x)

...
...

...
Ps−3(x) = Ps−2(x) ·Qs−2(x) +Rs−2(x) =⇒ Ps−1(x) = −Rs−2(x)
Ps−2(x) = Ps−1(x) ·Qs−1(x) +Rs−1 =⇒ Ps = −Rs−1

(4)

Ademas, se cumple que:

RESULTADO 1: La sucesión de Sturm es finita.

En efecto, en el Algoritmo de Euclides el grado del resto en cada una de las divisiones euclídeas es inferior
al grado del divisor. Esto significa que el grado de los polinomios de la sucesión construida decrece en, al
menos, una unidad en cada paso. Como partimos de un polinomio de grado finito, habrá un momento en el
que el resto de la división sea un polinomio de grado cero y Ps(x) = Ps constante.

RESULTADO 2: Pi ̸≡ 0, ∀i = 1, . . . , s.

P0(x) y P1(x) no son idénticamene nulos ya que partimos de un polinomio P (x) de grado al menos 1 y
P0(x) = P (x) y su derivada P1(x) = P ′(x), son no nulos.

Además, P (x) no tiene raíces múltiples, por tanto, P (x) y P ′(x) no tienen factores comunes y, por tanto,
m.c.d(P (x), P ′(x)) = 1.

Razonando por reducción al absurdo y supongamos que para un cierto natural s1 ∈ N con 1 < s1 < s
tenemos que Ps1 ≡ 0. Como Ps1(x) = −Rs1−1(x) entonces Rs1−1(x) ≡ 0. Por el enunciado del teorema
sabemos que

Pi−1(x) = Pi(x) ·Qi(x)− Pi+1(x) (5)

denotando ri(x) = −Pi+1(x), 1 ≤ i ≤ s1 − 2 y usando (5) la sucesión quedaría de la forma
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

P0(x) = P (x)
P1(x) = P ′(x)

P0(x) = P1(x) ·Q1(x)− P2(x) −→ P0(x) = P1(x) ·Q1(x) + r1(x) −→ r1(x) = −P2(x)

P1(x) = P2(x) ·Q2(x)− P3(x) −→ P1(x) = −r1(x) ·Q2(x) + r2(x)

−→ P1(x) = r1(x) · q2(x) + r2(x) −→ r2(x) = −P3(x), q2(x) = −Q2(x)

P2(x) = P3(x) ·Q3(x)− P4(x) −→ −r1(x) = −r2(x) ·Q3(x) + r3(x)

−→ r1(x) = r2(x) ·Q3(x) + (−r3(x)) −→ r3(x) = −P4(x),

P3(x) = P4(x) ·Q4(x)− P5(x) −→ −r2(x) = −r3(x) ·Q4(x) + r4(x)
−→ r2(x) = (−r3(x)) · (−Q4(x)) + (−r4(x))

−→ r2(x) = (−r3(x)) · q4(x) + (−r4(x)) −→ r4(x) = −P5(x), q4(x) = −Q4(x)

P4(x) = P5(x) ·Q5(x)− P6(x) −→ −r3(x) = −r4(x) ·Q5(x) + r5(x)

−→ −r3(x) = (−r4(x)) ·Q5(x) + r5(x) −→ r5(x) = −P6(x)
...

...
...

...
...

...
...

...
...

...
...

...
Ps1−3(x) = Ps1−2(x) ·Qs1−2(x)− Ps1−1(x)

Ps1−2(x) = Ps1−1(x) ·Qs1−1(x) + 0 pues Ps1(x) = 0

(6)

Podemos observar en (6) que las expresiones encerradas en un cuadro constituyen el algoritmo de la división
euclídea cuando se utiliza para calcular el máximo común divisor de los polinomios P0(x) y P1(x).

Por tanto, m.c.d(P0(x), P1(x)) = Ps1−1(x) que es un polinomio de grado mayor o igual que 1 (s1 < s), en
contra de que ambos polinomios no tienen ningún factor común.

RESULTADO 3: Si existen r ∈ [a, b] y s1 ∈ N con 0 < s1 < s y Ps1(r) = 0 entonces se cumple que
Ps1−1(r) ̸= 0, Ps1+1(r) ̸= 0, y además Ps1−1(r) · Ps1+1(r) < 0.

Para demostrarlo razonemos por reducción al absurdo y supongamos sin pérdida de generalidad que también
Ps1+1(r) = 0.
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De nuevo, la expresión (5)
Pi−1(x) = Pi(x) ·Qi(x)− Pi+1(x)

haciendo x = r y tomando i− 1 = s1 tenemos

Ps1(r) = Ps1+1(r) ·Qs1+1(r)− Ps1+2(r)

como Ps1(r) = 0 entonces
Ps1+2(r) = Ps1+1(r) ·Qs1+1(r) (7)

Como hemos supuesto que Ps1+1(r) = 0 al sustituir en (9) resulta

Ps1+2(r) = 0 (8)

Repetimos el proceso y hacemos x = r y tomamos i = s1 + 1 tenemos

Ps1+1(r) = Ps1+2(r) ·Qs1+2(r)− Ps1+3(r)

como Ps1+1(r) = 0 entonces
Ps1+3(r) = Ps1+2(r) ·Qs1+2(r). (9)

LLevando (9) a (8) resulta
Ps1+3(r) = 0

De forma que suponer nulos dos valores consecutivos de la sucesión de Sturm evaluados en x = r supone

Ps1+k(r) = 0, k ≥ 1

con lo que Ps(r) = 0, en contra de que s(x) = Ps ̸= 0 (Resulatdo 1). Y no podemos suponer que Ps1+1(r) =
0.

Por otro lado, sustituyendo en (5) tenemos

Ps1−1(r) = Ps1(r) ·Qs1(r)− Ps1+1(r)

y como Ps1(r) = 0 resulta
Ps1−1(r) = −Ps1+1(r) (10)

y concluimos la demostración del Resultado 3.

RESULTADO 4: Si existe r ∈ [a, b] con P0(r) = 0 entonces existe ε > 0 cumpliendo (P0 ·P1)(r−ε) < 0
y (P0 · P1)(r + ε) > 0.

En efecto, si r es raíz de P0(x) = P (x) entonces

P0(x) = (x− r) · h(x), h(r) ̸= 0,

derivando
P1(x) = P ′

0(x) = h(x) + (x− r) · h′(x),

multiplicando por P0(x) = (x− r) · h(x) tenemos

P0 · P1(x) = (x− r) · h(x)2 + (x− r)2 · h(x) · h′(x),

y tomando x suficientemente cerca de r tenemos que (P0 ·P1)(x) tiene el mismo signo que (x− r) ·h(x)2,
es decir, existe ε > 0 verificando:
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- Si x ∈ (r − ε, r) =⇒ (P0 · P1)(x) < 0,

- Si x ∈ (r + ε, r) =⇒ (P0 · P1)(x) > 0,

Tras estos resultados preliminares, estamos ya en posición de continuar con la demostración del teorema de
Sturm.

Sea r ∈ [a, b], y veamos qué ocurre con ν(r). Tenemos las siguientes situaciones:

Pi(r) ̸= 0, ∀i ∈ {0, 1, . . . , s} y la sucesión de Sturm evaluada en x = r

P0(r), P1(r), . . . , Ps(r)

está formada por elementos no nulos y puede haber en ella a lo sumo un total de s cambios de signo
(ν(r)).

Como cada uno de los polinomios Pi(x), i = 1, . . . , s es una función continua, podemos encontrar
para cada Pi(x) un entorno de r de la forma (r− εi, r + εi) con εi > 0 donde Pi(x) tiene el mismo
signo que Pi(r) y tomando ε = mín(ε1, . . . , εs) la sucesión

P0(x), P1(x), . . . , Ps(x)

tiene el mismo número de cambios de signo que la sucesión correspondiente a x = r cuando x ∈
(r − ε, r + ε). De forma que ν(x) = ν(r), x ∈ (r − ε, r + ε) y ν(x) es constante en un entorno
de r.

Si P0(r) ̸= 0, pero existe al menos un polinomio de la sucesión de Sturm que se anula en x = r. Sea
s1 el primer índice de dicha sucesión, s1 ∈ {1, . . . , s} con Ps1(r) = 0. El Resultado 3 nos garantiza
que Ps1−1(r) ̸= 0, Ps1+1(r) ̸= 0 y Ps1−1(r) · Ps1+1(r) < 0.

Un razonamiento similar al realizado en el punto anterior nos permite asegurar que existe un entorno
de x = r de la forma (r − ε, r + ε) donde los polinomios Ps1−1(x) y Ps1+1(x) tienen signo
constante y Ps1−1(x) ·Ps1+1(x) < 0, x ∈ (r− ε, r+ ε) (se cumplía que Ps1−1(r) ·Ps1+1(r) < 0).
Por tanto, ν(x) = 1 y es constante en dicho entorno.

Si P0(r) = 0 el Resultado 4 nos garantiza que existe ε > 0 de forma que

• (P0 · P1)(x) < 0, x ∈ (r − ε, r),

• (P0 · P1)(x) > 0, x ∈ (r, r + ε),

y podemos tomar dicho entorno de manera que P1(x) tenga signo constante.

Veamos entonces qué ocurre con el número de variaciones de signo, ν(x), en el entorno reducido (r−ε, r+
ε) \ {r}, para ello tendremos en cuenta las siguientes tablas

P0(x) P1(x) ν(x)

r − ε < x < r + − 1
r < x < r + ε − − 0

P0(x) P1(x) ν(x)
r − ε < x < r − + 1
r < x < r + ε + + 0
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que en total nos dan 1 variación de signo, es decir,

ĺım
x→r−

ν(x)− ĺım
x→r+

ν(x) = 1.

Si P0(r) ̸= 0 podríamos tener las 4 posibilidades siguientes

P0(x) P1(x) ν(x)

r − ε < x ≤ r + − 1
r ≤ x < r + ε + − 1

P0(x) P1(x) ν(x)
r − ε < x ≤ r − + 1
r < x ≤ r + ε − + 1

P0(x) P1(x) ν(x)

r − ε < x ≤ r + + 1
r ≤ x < r + ε + + 1

P0(x) P1(x) ν(x)
r − ε < x ≤ r + + 1
r < x ≤ r + ε + + 1

que en total nos dan 2 variaciones de signo. De forma que pasar por una raíz de P0(x) las variaciones de
signo disminuye en 1 y si r = a tenemos que ν(x) permanece constante.

Hemos visto que el número de cambios de signo de la sucesión S(x) puede cambiar únicamente cuando se
cruza una raíz r deP (x), es decir, cuando P0(r) = 0 ya que en el resto de los puntos permanece constante.

A medida que x avanza desde a hasta b, el valor ν(x) solo puede disminuir en pasos de 1, y sólo en los
puntos donde x es una raíz simple de P (x), ya que por hipótesis P (x) no tiene raíces múltiples, siendo, por
tanto, una función monótona.

Como P (x) no tiene raíces múltiples y los únicos puntos donde ν(x) puede cambiar son las raíces reales
simples de P (x) en el intervalo, se concluye que:

ν(a)− ν(b) = número de raíces reales simples de P (x) en (a, b).

■

Teorema de Sturm en polinomios con raíces múltiples

Sea P (x) ∈ R[x] un polinomio de grado n ≥ 2 con coeficientes reales, y sea G(x) =
m.c.d(P (x), P ′(x)) entonces el número de raíces de P (x) es el mismo que el de P (x)/G(x) y
si a y b son dos números reales tales que P (x)/G(x) no se anula ni en x = a ni en x = b entonces,
el número exacto de raíces reales simples y distintas de P (x)/G(x) en el intervalo (a, b) viene dado
por:

ν(a)− ν(b)

siendo ν(x) la variación de signos de la sucesión de Sturm aplicada a P (x)/G(x).

Ejemplo:
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Sea P (x) = P (x) = x3 − 6x2 + 11x− 6 y contemos las raíces que tiene en el intervalo [0, 4].

– Comenzamos construyendo la sucesión de Sturm:

P0(x) = x3 − 6x2 + 11x− 6

P1(x) = 3x2 − 12x+ 11 −→ división de P0(x) entre P1(x) −→ cociente: Q1(x) =
1

3
x− 2

3

−→ resto: R(x) = −2

3
x+

4

3
−→ P2(x) = −R(x) =

2

3
x− 4

3

P2(x) =
2

3
x− 4

3
−→ división de P1(x) entre P2(x) −→ cociente: Q2(x) =

9

2
x− 9

−→ resto: R2(x) = −1

P3(x) = 1

– Evaluamos ahora la sucesión de Sturm en x = 0.

P0(0) = −6 (-)
P1(0) = 11 (+)
P2(0) = −4/3 (-)
P3(0) = 1 (+)

 =⇒ 3 cambios de signo =⇒ ν(0) = 3

– Evaluamos ahora la sucesión de Sturm en x = 4

P0(4) = 6 (+)
P1(4) = 11 (+)
P2(4) = 4/3 (+)
P3(4) = 1 (+)

 =⇒ 0 cambios de signo =⇒ ν(4) = 0

– Como ninguno de los polinomios de la sucesión de Sturm se anula en los extremos del intervalo, podemos
aplicar dicho teorema según el cual el número de ceros en el intervalo [0, 4] es ν(0)− ν(4) = 3. En efecto,
sus raíces son 1, 2 y 3.

4.8. Siglos XIX y XX

En el siglo XVIII el estudio de la dependencia de las raíces de un polinomio respecto a sus coeficientes
comenzó despertando el interés de los matemáticos pero su formalización rigurosa se hizo en el siglo XIX
con el auge del análisis complejo y la teoría de funciones. Hoy en día, este principio se conoce como
continuidad de las raíces. Sus aplicaciones son tanto teóricas como prácticas, por ejemplo, en la estabilidad
de sistemas dinámicos, en análisis numérico y en control de errores en cálculos computacionales.
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4.8.1. Continuidad de las raíces de polinomios

La dependencia de las raíces de un polinomio respecto a sus coeficientes, es decir, qué ocurre con las
raíces de un polinomio si modificamos ligeramente sus coeficientes.

Consideremos la familia de polinomios Pt(x), dependiente de un parámetro t ∈ [0, 1] dada por

Pt(x) = xn + a1(t)x
n−1 + · · ·+ an ∈ C[x],

un polinomio de grado n, con coeficientes que son funciones continuas de t. Sean r1(t), . . . , rn(t) sus raíces
(contadas con su multiplicidad). La pregunta que nos hacemos es: ¿cómo varían las raíces ri(t) de Pt(x) en
función de t?

Teorema de continuidad de las raíces

Sea Pt(x) una familia continua de polinomios complejos de grado fijo n. Entonces, las raíces de
Pt(x), contadas con multiplicidad, varían de forma continua con t.

El resultado asegura que toda perturbación arbitrariamente pequeña o cambio en los coeficientes (por ejem-
plo, por errores de redondeo en cálculo numérico) da lugar a un polinomio perturbado cuyas raíces se
encuentran cerca de las raíces originales (contando multiplicidades y ordenadas adecuadamente), es decir,
se produce sólo un pequeño cambio en las raíces.

Entre sus aplicaciones podemos citar:

Análisis de estabilidad en sistemas dinámicos.

Estudio de bifurcaciones en ecuaciones diferenciales.

Algoritmos numéricos para búsqueda de raíces.

A pesar de su utilidad, el teorema de continuidad de las raíces presenta algunas limitaciones importantes:

No garantiza continuidad ordenada: aunque las raíces dependen continuamente de los coeficientes,
no hay correspondencia individual entre las raíces de los polinomios sucesivos. La convergencia es
de conjuntos de raíces (con multiplicidad), no de cada raíz en particular.

Inestabilidad de raíces múltiples: las raíces con multiplicidad mayor que uno son especialmente sen-
sibles a pequeñas perturbaciones en los coeficientes. Si una raíz tiene multiplicidad m, una pequeña
perturbación puede dar lugar incluso a m raíces. Así por ejemplo,una raíz doble puede descomponerse
en dos raíces distintas y separadas en el plano complejo.

Falta de información cualitativa: Pequeños cambios en los coeficientes pueden hacer que, por ejem-
plo, dos raíces reales se conviertan en un par de raíces complejos conjugadas.
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4.8.2. El método de bisección

En los siglos XIX y XX, con el desarrollo del cálculo diferencial y el avance de la tecnología, se popu-
larizaron métodos numéricos para aproximar raíces de polinomios con precisión alta. Además, el análisis
de la convergencia y la estabilidad de estos métodos contribuyeron al nacimiento del análisis numérico
como una disciplina matemática formal, con importantes aplicaciones tanto teóricas como computaciona-
les. Entre los métodos numéricos para aproximación de raíces de funciones, y en concreto, de polinomios,
podemos citar el método de bisección, el método de regula falsi, el método de la secante, y variantes del
método de Newton–Raphson adaptadas a polinomios (Burden y Faires, 2010). En la subsección 4.6 ya ex-

pusimos el método de Newton–Raphson, ahora mostraremos el método de bisección. Este, es un método
numérico iterativo para aproximar la raíz real de una función continua que cambia de signo en los extremos
de un intervalo cerrado y que contine a la raíz. Tiene su base en el teorema de Bolzano que enunciaremos
seguídamente.

Teorema de Bolzano

Si f(x) : [a, b] → R una función continua tal que f(a) · f(b) < 0. Entonces, existe al menos un
número real c ∈ (a, b) tal que f(c) = 0.

Para poder aplicar con garantía de convergencia el método de bisección se debe cumplir el teorema de
Bolzano en un intervalo [a, b] en el cual debe haber una única raíz.

En las condiciones anteriores el algoritmo de bisección genera una sucesión de intervalos encajados [an, bn]
que contienen la raíz y que se construyen como sigue:

Si r es la única raíz de P (x) ∈ K[x] en [a, b], a, b ∈ R con P (a) · P (b) < 0, tomamos a1 =
a, b1 = b y se repite el siguiente proceso para n ≥ 1 hasta llegar a la tolerancia de error deseada

Se calcula cn =
an + bn

2
el punto medio del intervalo [an, bn].

Si P (cn) = 0, hemos encontrado la raíz exacta.

Si P (an) · P (cn) < 0, entonces r ∈ [an, cn], y se redefine bn+1 = cn, an+1 = an.

Si P (cn) · P (bn) < 0, entonces r ∈ [cn, bn], y se redefinen an+1 = cn, bn+1 = bn.

Como la longitud de los intervalos

bn − an =
b− a

2n

se reduce en cada paso, tenemos que
ĺım
n→∞

(bn − an) = 0
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y, por tanto, la sucesión de puntos cn =
an + bn

2
converge a un valor r ∈ [a, b]. Como f(x) es continua

resulta
ĺım
n→∞

f(cn) = f(r) = 0.

El error cometido al aproximar r por cn tiene la siguiente cota

|r − cn| ≤
b− a

2n
, n ≥ 1.

Ejemplo.

Consideremos de nuevo el polinomio:
P (x) = x3 − x− 1.

Para aplicar con garantías el método de bisección debemos asegurarnos de que se cumplen las condiciones
para su aplicación.

Un polinomio es siempre una función continua en R. Basta encontrar intervalos donde haya una única raíz.
Podemos empezar aplicando el teorema de Sturm para aislar las raíces y tomar [1, 2] donde se cumple que

P (1) = 13 − 1− 1 = −1

P (2) = 23 − 2− 1 = 8− 2− 1 = 5

que tienen distinto signo.

Primera iteración:

c1 =
1 + 2

2
= 1,5

P (1,5) = (1,5)3 − 1,5− 1 = 3,375− 1,5− 1 = 0,875

P (1) = −1 y P (1,5) = 0,875 tienen signos opuestos, la raíz está en [1, 1′5].

Segunda iteración:

c2 =
1 + 1,5

2
= 1,25

P (1,25) = (1,25)3 − 1,25− 1 = 1,953125− 1,25− 1 = −0,296875

P (1,25) y P (1,5)tienen signos opuestos, la raíz está en [1′25, 1′5].
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Figura 2: Método de bisección
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Tercera iteración:

c3 =
1,25 + 1,5

2
= 1,375

P (1,375) = (1,375)3 − 1,375− 1 = 2,595703125− 1,375− 1 = 0,220703125

la raíz está en [1′25, 1′375].

n an bn cn P (cn)
0 1.0000 2.0000 1.5000 0,8750
1 1.0000 1.5000 1.2500 −0,2969
2 1.2500 1.5000 1.3750 0,2246
3 1.2500 1.3750 1.3125 −0,0515

Tabla 1: M. de bisección .f(x) = x3 − x− 1, x ∈ [1, 2].

Con 3 iteraciones obtenemos como aproximación a la raíz x3 = c3 = 1,375. La Tabla 1 muestra un resumen
de las iteraciones realizadas.

En la Figura 2 vemos como partiendo del intervalo inicial [a0, b0] = [a, b] se van produciendo sucesivas
divisiones de los subintervalos dando lugar a aproximaciones cada vez más cercanas a la raíz.

Con 3 iteraciones obtenemos como aproximación a la raíz x3 = c3 = 1,375. La Tabla 1 muestra un resumen
de las iteraciones realizadas.

4.8.3. El método de Regula Falsi

El método de regula falsi (o método de la falsa posición) es un algoritmo numérico para aproximar una
raíz real de una función continua f(x) en un intervalo [a, b] con f(a)·f(b) < 0 que toma como aproximación
el punto de intersección c de la recta que une (a, f(a)) y (b, f(b)) con el eje x:

c =
a · f(b)− b · f(a)

f(b)− f(a)
.

Tras esto, se evalúa f(c) y:

Si f(a) · f(c) < 0, la raíz está en [a, c], entonces se reasigna a b el valor de c.

Si f(b) · f(c) < 0, la raíz está en [c, b], y se reemplaza a por c.

El proceso se repite el hasta que f(c) sea suficientemente cercano a cero o se alcance la tolerancia de error
deseada.
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Si r es la única raíz de P (x) ∈ K[x] en [a, b], a, b ∈ R con P (a) · P (b) < 0, tomamos a1 =
a, b1 = b y se repite el siguiente proceso para n ≥ 1 hasta llegar a la tolerancia de error deseada

Se calcula cn =
an · P (bn)− bn · P (an)

P (bn)− P (an)
.

Si P (cn) = 0, hemos encontrado la raíz exacta.

Si P (an) · P (cn) < 0, entonces r ∈ [an, cn], y se redefine bn+1 = cn, an+1 = an.

Si P (cn) · P (bn) < 0, entonces r ∈ [cn, bn], y se redefine an+1 = cn, bn+1 = bn.

El método de regula falsi garantiza la convergencia del método de bisección (la raíz siempre permanece en
el intervalo de partida).

Ejemplo.

Tomamos de nuevo el polinomio x3−x−1 y el intervalo [1, 2] que ya tomamos en la subsección del método
de bisección. Se cumple que P (1) = −1 y P (2) = 5

Primera iteración:

c1 =
1 · 5− 2 · (−1)

5− (−1)
=

5 + 2

6

=
7

6
≈ 1,1667P (c1) = (1,1667)3 − 1,1667− 1 ≈ 1,589− 1,1667− 1 = −0,5777

a1 = c1 = 1,1667, b1 = 2

Segunda iteración:

P (a1) ≈ −0,5777, P (b1) = 5

c2 =
1,1667 · 5− 2 · (−0,5777)

5− (−0,5777)
=

5,8335 + 1,1554

5,5777
=

6,9889

5,5777
≈ 1,2531

P (c2) = (1,2531)3 − 1,2531− 1 ≈ 1,967− 1,2531− 1 = −0,2861

a2 = c2 = 1,2531, b2 = 2
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Tercera iteración:

P (a2) ≈ −0,2861, P (b2) = 5

c3 =
1,2531 · 5− 2 · (−0,2861)

5− (−0,2861)
=

6,2655 + 0,5722

5,2861
=

6,8377

5,2861
≈ 1,2938

P (c3) = (1,2938)3 − 1,2938− 1 ≈ 2,166− 1,2938− 1 = −0,1278

La Tabla 2 muestra los resultados obtenidos al aplicar el método de Regula–Falsi. Podemos observar la

n an bn cn P (cn)
0 1.0000 2.0000 1.1667 −0,5787
1 1.1667 2.0000 1.2531 −0,2854
2 1.2531 2.0000 1.2934 −0,1295
3 1.2934 2.0000 1.3113 −0,0566
4 1.3113 2.0000 1.3190 −0,0243

Tabla 2: M. de regula falsi para P (x) = x3 − x− 1 en [1, 2].

convergencia del método a la raíz del polinomio.

La Figura 3 muestra el comportamiento gráfico del método de Regula–Falsi.
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Figura 3: Método de Regula Falsi
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4.8.4. El método de la secante

El método de la secante recibe este nombre porque, en cada iteración, utiliza una recta secante para
aproximar la raíz de una función. En lugar de calcular la derivada en la expresión del método de Newton–
Raphson, el método de la secante aproxima la pendiente de la curva utilizando la recta que une dos puntos
consecutivos de la función, es decir, una secante a la gráfica de la función. En cada paso, la intersección de
esta recta secante con el eje x proporciona la siguiente aproximación para la raíz.

La recta que pasa por los puntos (xn−1, f(xn−1)) y (xn, f(xn)) es

y = f(xn−1) +
f(xn)− f(xn−1)

xn − xn−1

(x− xn−1),

su intersección con el eje x se obtiene al hacer y = 0 en la expresión anterior

0 = f(xn−1) +
f(xn)− f(xn−1)

xn − xn−1

(x− xn−1),

despejando x se obtiene

x = xn−1 − f(xn−1) ·
xn − xn−1

f(xn)− f(xn−1)

de donde la expresión del método de la secante es

xn+1 = xn−1 − f(xn−1) ·
xn − xn−1

f(xn)− f(xn−1)
.

Si r es raíz de P (x) ∈ K[x], x0 y x1 son dos aproximaciones suficientemente cercanas a r el
método de la secante realiza el siguiente proceso

Se calcula xn+1 = xn−1 − P (xn−1) ·
xn − xn−1

P (xn)− P (xn−1)
.

Si P (cn) = 0, hemos encontrado la raíz exacta y se concluye.

Si P (cn) ̸= 0, se calcula esterror = |xn+1 − xn| que se usa como una estimación del error.

Si esterror < Toleranciaerror se concluye.

En otro caso, se redefine xn−1 = xn, xn = xn+1.

Observaciones.

El método de la secante necesita dos aproximaciones iniciales suficientemente cercanas a la raíz para iniciar
el proceso, pero no se tiene una medida de lo cercanas que deben estar. Estos dos iterantes iniciales pueden
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tomarse a partir del método de bisección y para la convergencia se necesitan las mismas condiciones que
el método de Newton–Raphson, y, aunque su velocidad de convergencia es menor, es más rápido que el
método de bisección y no necesita el cálculo de derivadas.

Ejemplo.

Consideremos de nuevo el polinomio:
P (x) = x3 − x− 1,

con raíz r ≈ 1,3247179, y tomamos como iterantes iniciales los proporcionados por el método de bisección,
es decir, x0 = 1,25 y x1 = 1,375.

Primera iteración:

x2 = x1 − P (x1) ·
x1 − x0

P (x1)− P (x0)

= 1,375− 0,220703125 · 1,375− 1,25

0,220703125− (−0,296875)

= 1,375− 0,220703125 · 0,125

0,517578125

= 1,375− 0,220703125 · 0,2414 ≈ 1,375− 0,0533 = 1,3217

Segunda iteración:

x3 = x2 − P (x2) ·
x2 − x1

P (x2)− P (x1)

= 1,3217− (−0,0166) · 1,3217− 1,375

−0,0166− 0,2207
= 1,3217 + 0,0166 · −0,0533

−0,2373

= 1,3217 + 0,0166 · 0,2246 ≈ 1,3217 + 0,0037 = 1,3254

Tercera iteración:

x4 = x3 − P (x3) ·
x3 − x2

P (x3)− P (x2)

= 1,3254− 0,0007 · 1,3254− 1,3217

0,0007− (−0,0166)
= 1,3254− 0,0007 · 0,0037

0,0173

= 1,3254− 0,0007 · 0,2139 ≈ 1,3254− 0,0001 = 1,3253
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n xn P (xn)
0 1.25000 −0,296875
1 1.37500 0,224609
2 1.32116 −0,015119
3 1.32456 −0,000689
4 1.32472 −0,000002

Tabla 3: M. de la secante. P (x) = x3 − x− 1, x0 = 1,25 y x1 = 1,375.

Un resumen de las iteraciones realizadas nos las proporciona la Tabla 3.

La Figura 4 muestra el comportamiento gráfico del método, que se basa en ir trazando las sucesivas rectas
que unen parejas de puntos y que al intersecarse con el eje x nos da un nuevo iterante, es decir,

r0 : recta que une los puntos x0 y x1 y cuyo corte con el eje x nos da x2.

r1 : recta que une los puntos x1 y x2 y cuyo corte con el eje x nos da x3.

El proceso continua.

Ejemplo.

Consideramos el ejemplo anterior pero tomando ahora como aproximaciones iniciales los extremos del
intervalo, es decir, x0 = 1 y x1 = 2.

Primera iteración:

x2 = x1 − P (x1) ·
x1 − x0

P (x1)− P (x0)

= 2− 5 · 2− 0

5− (−1)
= 2− 5 · 2

6
= 2− 10

6
= 2− 5

3
=

1

3
≈ 0,3333

Segunda iteración:

x3 = x2 − P (x2) ·
x2 − x1

P (x2)− P (x1)

= 0,3333− (−1,2963) · 0,3333− 2

−1,2963− 5
= 0,3333 + 1,2963 · −1,6667

−6,2963

= 0,3333 + 1,2963 · 0,2648 ≈ 0,3333 + 0,3433 = 0,6766
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Figura 4: Método de la secante
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Tercera iteración:

x4 = x3 − P (x3) ·
x3 − x2

P (x3)− P (x2)

= 0,6766− (−1,3673) · 0,6766− 0,3333

−1,3673− (−1,2963)
= 0,6766 + 1,3673 · 0,3433

−0,0710

= 0,6766 + 1,3673 · (−4,8366) ≈ 0,6766− 6,6151 = −5,9385

Con 3 iteraciones obtenemos como aproximación x4 = −5′9385 que se aleja de la raíz. La Tabla 4 muestra
un resumen de las iteraciones realizadas. Podemos observar que los resultados. Este ejemplo muestra lo
sensible e importante que es la elección de los iterantes iniciales, por ello, es frecuente, tanto en el método
de Newton como en el método de la secante partir de aproximaciones adecuadas y estas pueden tomarse
después de aplicar el método de bisección un cierto número de veces.

n xn P (xn)
0 1.0000 −1,0000
1 2.0000 5,0000
2 0.3333 −1,2963
3 0.6766 −1,3673
4 -5.9385 −204,4795

Tabla 4: M. de la secante.P (x) = x3 − x− 1, x0 = 1 y x1 = 2.

La Tabla 5 muestra un resumen de los resultados obtenidos por todos los métodos numéricos. Podemos
observar, que tomando los iterantes adecuados, el método de Newton–Raphson converge rápidamente a la
raíz seguido del método de la secante. Es preciso hacer notar que no tenemos una medida de lo cerca que
debemos estar de la solución exacta para arrancar estos métodos. El método de bisección, sin embargo,
garantiza siempre la convergencia a la solución cuando lo aplicamos en las condiciones adecuadas.

Iteración (n) Bisección cn Regula Falsi cn Secante xn Newton–Raphson xn

0 1.5000 1.1667 1.2500 1.2500
1 1.2500 1.2531 1.3750 1.3472
2 1.3750 1.2934 1.32116 1.3252
3 1.3125 1.3113 1.32456 1.3247
4 1.3438 1.3190 1.32472 1.3247

Tabla 5: Aproximaciones para P (x) = x3 − x − 1 en [1, 2] con los métodos de bisección, regula falsi,
secante y Newton-Raphson. Raíz 1, 3247179

Los métodos de bisección y Regula Falsi, aunque garantizan convergencia hacia la raíz del polinomio,
lo hacen más lentamente que el método de Newton–Raphson y el de la secante. No obstante, estos dos
métodos son sensibles a los iterantes iniciales y el método de Newton–Raphson necesita además el cálculo
de la derivada primera.
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4.8.5. Técnicas de acotación de raíces de polinomios

De cara a localizar las raíces reales de un polinomio, es fundamental contar con un intervalo en el que
dichas raíces puedan encontrarse. Por ello, las técnicas de acotación permiten establecer límites superior e
inferior dentro de los cuales se encuentran todas las soluciones reales del polinomio. Con ello, se reduce
el dominio de búsqueda a un intervalo finito que permite interpretar gráficamente la función polinómica,
optimizar los métodos numéricos, en caso de usarlos, etc.

Como hemos visto, la regla de los signos de Descartes (1637) permite estimar el número de raíces reales
positivas. El teorema de Budan—Fourier refina el método anterior para intervalos y proporciona una cota
superior al número de raíces reales en un intervalo (a, b) y el Teorema de Sturm (1829) determina el número
exacto de raíces reales de un polinomio en un intervalo.

Cauchy (1831) estableció la siguiente cota superior para las raíces reales positivas de un polinomio

Cota de Cauchy para las raíces reales positivas

Sea P (x) = anx
n + · · · + a0 ∈ R[x] y sea M = máx

0≤i<n

∣∣∣∣ aian
∣∣∣∣ , entonces, toda raíz positiva r de

P (x) cumple
r < 1 +M.

y todas las raíces reales positivas de P (x) están en el intervalo (0, 1 +M ].

Posteriormente, Lagrange (siglo XIX) mejora la cota de Cauchy a través de la fórmula

r ≤ 1 +

(
máx

∣∣∣∣ aiak
∣∣∣∣)1/(k−i)

,

donde ai son los coeficientes negativos anteriores a ak, aunque esta expresión es menos utilizada.

Cota inferior para las raíces reales positivas
Sea P (x) = anx

n + · · · + a0 ∈ R[x] y hagamos el cambio de variable x = 1/t. La acotación de
Cauchy para Q(t) con

Q(t) = tnP

(
1

t

)
.

proporciona una cota superior K que se transforma en la siguiente cota inferior para las raíces posi-
tivas de P (x):

r >
1

K
.
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Acotación de las raíces reales negativas

Basta aplicar las cotas anteriores a P (−x).
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5. Propuesta de integración curricular de contenidos avanzados so-
bre raíces de polinomios

En el marco de la Educación Secundaria Obligatoria en Castilla y León y conforme a los principios esta-
blecidos por la LOMLOE (Ley Orgánica 3/2020), el estudio de polinomios se introduce de forma progresiva
a lo largo de la etapa, con especial énfasis en el uso del lenguaje algebraico, las operaciones elementales,
la factorización, y la resolución de ecuaciones de segundo grado. En concreto, la búsqueda de raíces poli-
nómicas se trabaja de manera explícita en los cursos de 3º y 4º de ESO mediante procedimientos como la
Regla de Ruffini, el Teorema del Resto, la factorización mediante identidades notables y la resolución de
ecuaciones de segundo grado. Esta aproximación, aunque adecuada como introducción, puede ampliarse
de forma significativa, más allá del enfoque tradicional incorporando otras técnicas como el teorema de
Sturm, la acotación de raíces y su aproximación con métodos numéricos, contribuyendo así a enriquecer la
comprensión del alumno y su competencia matemática.

En esta sección se propone un enfoque ampliado y secuenciado que, sin apartarse de los objetivos curri-
culares oficiales, introduce gradualmente en el aula los resultados matemáticos que han sido desarrollados
en las secciones previas del presente Trabajo de Fin de Máster.

Por tanto, esta propuesta no pretende modificar el currículo vigente, sino mostrar de qué forma puede
enriquecerse el tratamiento de los polinomios dentro del aula para potenciar el desarrollo de la competen-
cia matemática y la comprensión profunda del concepto de raíz. También, se justifica desde la necesidad
de favorecer el pensamiento algebraico, la exploración numérica y la argumentación en el aula, mediante
actividades accesibles y motivadoras para el alumnado de ESO.

En las siguientes subsecciones se presenta una propuesta de secuenciación gradual de contenidos por
niveles educativos, en concreto para 3º y 4.º de ESO y 1º de Bachillerato, indicando en cada caso los con-
ceptos matemáticos implicados, las competencias específicas asociadas y las sugerencias didácticas para
su implementación gradual. La finalidad es mostrar cómo en 3º y 4º de ESO y 1º de Bachillerato, pueden
trabajarse diferentes métodos de obtención de raíces polinómicas con diferentes grados de profundidad, en-
riqueciendo el currículo actual mediante recursos visuales, tecnológicos (como GeoGebra) o de exploración
numérica (Larson et al., 2007).

5.1. 3º de ESO

Tomando como base el currículo de 1º y 2º de ESO (véase la Sección 2) donde se introduce el len-
guaje algebraico básico para el tratamiento de polinomios, las operaciones elementales y la resolución de
ecuaciones y sistemas lineales, el currículo oficial de tercer curso de Educación Secundaria Obligatoria,
introduce de forma sistemática el tratamiento simbólico del álgebra. En concreto, el bloque de “Sentido
algebraico” establece como objetivo que el alumno reconozca y manipule expresiones algebraicas, opere
con polinomios (suma, resta, multiplicación y división), aplique identidades notables y aborde la factoriza-
ción, introduciendo también la Regla de Ruffini y la resolución de ecuaciones de segundo grado con una
incógnita. Esta etapa es, por tanto, clave para consolidar el lenguaje algebraico y abrir la puerta al estudio
más profundo de las raíces de polinomios.
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En este contexto, se propone una ampliación razonada de los contenidos mínimos establecidos, que se
irán introduciendo de manera progresiva y adaptada al nivel de los alumnos. Esta ampliación no preten-
de sustituir los contenidos obligatorios, sino reforzarlos y conectarlos con una visión más realista de la
naturaleza de las raíces de polinomios.

Contenidos clave

Estudio, consolidación y práctica guiada de la Regla de Ruffini y del Teorema del Resto.

Representación gráfica de polinomios para la estimación visual de raíces reales.

Aplicación de las cotas de Cauchy para limitar el conjunto de búsqueda de raíces.

Introducción al método de Sturm.

Aplicación de los métodos de bisección y regula–falsi con apoyo digital y tablas de valores para
ilustrar la aproximación de raíces y el comportamiento de los métodos numéricos.

Competencias específicas trabajadas

CE3. Utilizar el razonamiento matemático para identificar, modelizar y resolver problemas relacio-
nados con el álgebra y la representación de funciones.

CE4. Interpretar y comunicar situaciones y relaciones matemáticas utilizando lenguaje algebraico y
representaciones gráficas.

Posibles propuestas didácticas asociadas

Actividades con GeoGebra para representar polinomios de segundo y tercer grado y observar el com-
portamiento de sus raíces.

Mini–investigaciones guiadas para aplicar cotas superiores/inferiores y reflexionar sobre el número
de soluciones posibles.

Ejercicios contextualizados para aplicar la Regla de Sturm.

Experimentos numéricos con tablas de valores para identificar cambios de signo y aplicar el método
de bisección.

Justificación pedagógica Introducir estas técnicas desde una perspectiva gráfica y experimental permite
al alumno un pensamiento más estructurado y funcional, sentando las bases del análisis matemático poste-
rior. Al mismo tiempo, se favorece la comprensión del concepto de raíz como solución y favorece el uso de
estimaciones promoviendo el uso de TIC y estrategias de resolución estructurada.
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5.2. 4º de ESO (Itinerario Académico Matemáticas B)

En el itinerario académico de 4º de ESO, el currículo amplía el trabajo realizado en cursos anteriores con
el estudio de funciones polinómicas y su análisis gráfico. También, se introduce de forma opcional o trans-
versal el concepto inicial de derivada, especialmente en relación con el análisis cualitativo del crecimiento
y decrecimiento de funciones.

En esta línea, se propone la consolidación del Teorema de Sturm para la determinación de forma exacta
del número de raíces reales en un intervalo dado, así los métodos de bisección y Regula–Falsi, que per-
mite aproximar raíces reales sin requerir derivadas para la aproximación de raíces y se incluyen el método
de la secante y, ya con el uso de derivadas el método de Newton–Raphson. Por supuesto, el apoyo con
herramientas digitales será imprescindible ya que permiten contrastar enfoques algebraicos y numéricos,
desarrollar estrategias de estimación y reforzar la conexión entre los conceptos funcionales y las soluciones
algebraicas.

Contenidos clave

Resolución de ecuaciones polinómicas de mayor grado mediante técnicas gráficas, factorización y
métodos iterativos.

Consolidación del Teorema de Sturm como método analítico para determinar el número de raíces
reales de un polinomio dentro de un intervalo cerrado.

Presentación del método de la secante como algoritmo numérico para la localización de raíces reales.

Introducción del método de Newton–Raphson como algoritmo numérico para la aproximación de
raíces reales que requiere el cálculo de la derivada primera del polinomio y que en condiciones ade-
cuadas proporciona mayor velocidad de convergencia.

Exploración de funciones polinómicas mediante software matemático (GeoGebra o WolframAlpha),
incluyendo derivadas elementales y análisis de comportamiento gráfico.

Competencias específicas trabajadas

CE3. Formular, modelizar y resolver problemas con funciones polinómicas contextualizadas.

CE4. Representar, interpretar y analizar funciones y sus características a partir de diferentes formas
de representación.

CE5. Utilizar herramientas tecnológicas para explorar y verificar propiedades de funciones.

CE6. Elaborar argumentaciones matemáticas y justificar soluciones de forma razonada.

CE7. Conectar contenidos matemáticos con su contexto histórico y su aplicación en situaciones
reales.
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Posibles actividades de aula

Actividades guiadas con GeoGebra para visualizar el número de raíces de un polinomio y el efecto
de los coeficientes en su comportamiento gráfico.

Resolución de problemas contextualizados de ingeniería, física o economía que requieran la localiza-
ción o la aproximación de raíces reales.

Implementación en aula de actividades gamificadas (por ejemplo un Escape Room matemático) en el
que los métodos de conteo y aproximación de raíces se integren como pruebas a resolver.

Microproyectos de investigación donde el alumnado explore el origen histórico y la utilidad de méto-
dos como el de Sturm, la secante o Newton–Raphson.

Justificación pedagógica El trabajo en 4º de ESO debe orientarse no solo a la resolución instrumental de
ecuaciones, sino también a la comprensión de las funciones polinómicas como objetos matemáticos diná-
micos, con propiedades gráficas, raíces reales interpretables y vínculos históricos significativos. Incluir el
método de Sturm, la secante y el método de Newton–Raphson (de forma adaptada) promueve una visión
más completa y realista de las estrategias disponibles para trabajar con polinomios en situaciones reales o
modeladas. La incorporación de herramientas tecnológicas permite superar la barrera técnica que suponen
algunos métodos analíticos, facilitando su comprensión conceptual y la experimentación matemática.

5.3. 1.º de Bachillerato
En 1.º de Bachillerato, el currículo consolida y amplía los conocimientos algebraicos adquiridos durante

la etapa de Educación Secundaria Obligatoria. El bloque de Análisis incluye el estudio de funciones poli-
nómicas y racionales, así como la derivación y el análisis local y global de funciones reales de una variable.
Esto proporciona un marco ideal para abordar de forma rigurosa métodos más complejos de obtención y
análisis de raíces, tanto desde la óptica algebraica como desde una perspectiva funcional y numérica.

En este nivel, se propone incorporar de manera más formal y completa el uso de técnicas como el
método de Sturm para determinar el número exacto de raíces reales en un intervalo dado, así como métodos
iterativos como el de Newton–Raphson, que, junto con la derivación, permiten hallar aproximaciones más
precisas a las soluciones de ecuaciones polinómicas no factorizables por métodos elementales.

Además, se refuerza el uso de software matemático como GeoGebra o WolframAlpha para representar
funciones, visualizar raíces, derivadas y tangentes, lo que facilita la interpretación geométrica y numérica
de los métodos introducidos.

Contenidos clave

Resolución de ecuaciones polinómicas mediante métodos exactos (factorización, Ruffini) y numéri-
cos (bisección, Newton–Raphson, secante).

Aplicación del método de Sturm con tablas de signos para determinar el número de raíces reales.

Derivación de funciones polinómicas para localizar extremos y puntos de inflexión, y contextualizar
métodos iterativos.
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Representación gráfica de funciones con interpretación de las raíces como puntos de corte con el eje
de abscisas.

Estudio del comportamiento local de las funciones en torno a las raíces: multiplicidad, tangencia y
cambio de signo.

Competencias específicas trabajadas

CE2. Comprender, utilizar y justificar procedimientos de resolución de ecuaciones y sistemas en
contextos funcionales.

CE3. Analizar el comportamiento local y global de funciones mediante derivación, representación
gráfica y estudio de intervalos.

CE4. Utilizar tecnología para experimentar, verificar resultados y simular modelos funcionales reales.

CE6. Argumentar con rigor matemático en exposiciones, informes o ejercicios.

Propuestas didácticas asociadas

Resolución de problemas contextualizados donde se deban aplicar distintos métodos de aproximación
de raíces comparando su eficiencia.

Análisis crítico de los errores en métodos iterativos: convergencia, dependencia de la elección del
iterante inicial, etc.

Visualización simultánea de una función y sus derivadas para interpretar el comportamiento en torno
a las raíces.

Trabajos de investigación breves sobre la evolución histórica de los métodos iterativos y su papel en
el desarrollo del análisis numérico.

Competencias clave desarrolladas

CCM (Competencia matemática): resolución de problemas complejos, integración de conceptos
algebraicos y analíticos, aplicación del razonamiento lógico y formal.

CD (Competencia digital): uso de software para simulación, validación de conjeturas y comunica-
ción matemática.

CCL (Comunicación lingüística): elaboración de informes y explicaciones formales y orales con
rigor terminológico.

CPSAA (Aprender a aprender): reflexión crítica sobre los métodos utilizados y autovaloración del
proceso.

CEC (Conciencia cultural): contextualización histórica del desarrollo del álgebra y del análisis co-
mo parte de la cultura científica.
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Justificación pedagógica En este nivel educativo, el alumnado se encuentra en condiciones de abor-
dar métodos numéricos avanzados y razonamientos más abstractos, por lo que resulta oportuno introducir
herramientas que les permitan resolver ecuaciones polinómicas con raíces no racionales y analizar su com-
portamiento con precisión. La utilización de derivadas como herramienta complementaria permite reforzar
la conexión entre el álgebra y el análisis. Asimismo, se fomenta la autonomía, el rigor matemático y la ca-
pacidad crítica para valorar la adecuación de distintos métodos en función del tipo de función considerada.

5.4. Tabla resumen

Curso Contenidos clave Métodos introducidos Herramientas
didácticas

Competencias
destacadas

3º ESO Regla de Ruffini, Teo-
rema del Resto, Co-
tas de Cauchy, Méto-
do de Sturm (introduc-
ción) Métodos de Bi-
sección y Regula–Falsi,
Representación gráfica

Ruffini, Resto, Cotas
de Cauchy, Sturm, Bi-
sección, Regula–Falsi

GeoGebra, tablas
de valores, soft-
ware gráfico bási-
co

CE3, CE4

4º ESO Método de Sturm, Mé-
todo de la secante, Mé-
todo de Newton (in-
troducción), Represen-
tación gráfica avanza-
da, Análisis de funcio-
nes polinómicas

Método de la Secante,
Newton–Raphson

GeoGebra, Wol-
framAlpha, Esca-
pe Room

CE3, CE4,
CE5, CE6,
CE7

1º Bach Método de Sturm,
Método de Newton–
Raphson, Derivación y
comportamiento local,
Raíces múltiples

Newton–Raphson GeoGebra, Wol-
framAlpha,
calculadoras
gráficas

CE2, CE3,
CE4, CE6

Tabla 6: Resumen por curso de contenidos, métodos y competencias trabajadas
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6. Propuestas de actividades de aula
La sección que se presenta a continuación constituye la culminación del presente trabajo, en la que se

proponen tres posibles actividades de aula diseñadas para trabajar algunos de los contenidos matemáticos
revisados en los bloques anteriores.

Tradicionalmente, el estudio de las raíces de polinomios en la Eduación Secundaria Obligatoria ha estado
fuertemente centrado en métodos algebraicos clásicos como la factorización por inspección, la regla de
Ruffini o el teorema del resto. Sin embargo, dichos métodos resultan limitados cuando se aplican fuera
de contextos muy estructurados en los que los polinomios no presentan raíces enteras ni factorizaciones
evidentes. Así, el uso casi exclusivo de estos enfoques puede alejar al alumnado de la complejidad real que
implica hallar las raíces de un polinomio.
con el objetivo de ofrecer una visión más realista se describen a continuación tres propuestas de actividades
de aula dirigidas al alumnado de Educación Secundaria Obligatoria, concretamente para 4º de ESO. En ellas
se exploran distintas formas de introducir y profundizar en los métodos para obtener raíces de polinomios.
Cada propuesta busca proporcionar un aprendizaje más significativo, basado en la exploración, la visua-
lización, la reflexión matemática y el uso de recursos tecnológicos como GeoGebra, con el fin de que el
alumnado comprenda mejor la naturaleza de las raíces y reconozca los límites de aplicación de los distintos
métodos.

La primera propuesta, un trabajo de investigación, promueve el desarrollo autónomo y la indagación guiada
mediante el trabajo cooperativo en torno a diversos métodos clásicos y de aproximación. La segunda, de
orientación más técnica y visual, se centra en la comprensión y aplicación de métodos numéricos de apro-
ximación con herramientas digitales como GeoGebra o Wolfram Alpha. Finalmente, la tercera propuesta
adopta un enfoque gamificado, a través de un proyecto contextualizado en una narrativa motivadora ins-
pirada en situaciones reales (Chapra y Canale, 2015), promoviendo una visión transversal del aprendizaje
matemático.

6.1. Propuesta 1: Proyecto de investigación

Se propone una actividad en la que el alumnado de 4º de ESO desarrollará un trabajo de investigación
por equipos. Donde cada grupo se dedicará a la exploración del contexto histórico, teórico y práctico de
diversos métodos para hallar raíces de polinomios. El objetivo es que los estudiantes se conviertan en “es-
pecialistas” en el método que les haya sido asignado y que lo comprendan, no solo desde una perspectiva
algorítmica, sino también conceptual, crítica e histórica.

Posteriormente, los grupos presentarán sus conclusiones mediante una exposición oral, y la actividad finali-
zará tras llevar a cabo un debate matemático en el que se contrastarán las distintas estrategias, favoreciendo
así la reflexión sobre la eficacia de los distintos métodos en función del tipo de polinomio.

Este planteamiento busca, no solo reforzar conceptos matemáticos clave, sino también desarrollar compe-
tencias transversales como la búsqueda de información, el análisis de fuentes, la argumentación, la expre-
sión escrita y oral, y la toma de decisiones en grupo. A su vez, permite al docente evaluar tanto el dominio
de los contenidos como el desarrollo de competencias clave como el discurso matemático, la colaboración
y la argumentación.
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Fundamentación curricular

La actividad se enmarca en el área de Matemáticas B (orientadas a las enseñanzas académicas) de 4º de
ESO, dentro del Sentido algebraico. Contribuye especialmente al desarrollo de las siguientes competencias
clave:

Competencia matemática y competencias básicas en ciencia y tecnología. (CMCT).

Competencia personal, social y de aprender a aprender (CPSAA).

Competencia en comunicación lingüística (CCL).

Además, contribuye al desarrollo de diversas competencias específicas del currículo de Matemáticas de 4º
de ESO. En particular, se relaciona con los criterios 1.1, 1.3, 2.2, 3.1, 3.2, 6.1, 6.2, 8.1, 8.2, 10.1 y 10.2, al
promover que el alumnado:

Reformule y resuelva problemas matemáticos contextualizados, seleccionando estrategias adecuadas
en función del método investigado (Ruffini, Sturm, Viète, etc.)

Justifique la adecuación y los límites de cada método tanto desde una perspectiva formal como desde
un enfoque histórico-matemático.

Realice conjeturas, identifique patrones y valide resultados mediante razonamiento matemático rigu-
roso.

Establezca conexiones entre los métodos estudiados y su aplicabilidad en problemas reales o modeli-
zados.

Comunique sus hallazgos de forma clara, precisa y estructurada, tanto de manera oral como escrita,
empleando un lenguaje matemático apropiado.

Colabore de manera efectiva en equipos de trabajo, participando en la planificación, desarrollo y
exposición final del trabajo cooperativo.

Objetivos didácticos

Con esta actividad esperamos que los alumnos sean capaces de:

Comprender los orígenes históricos de algunos métodos clásicos para hallar raíces polinómicas.

Desarrollar habilidades de búsqueda, selección y síntesis de información matemática.

Aplicar los métodos investigados a polinomios reales proporcionados por el docente.

Elaborar un trabajo escrito estructurado y realizar una exposición oral cooperativa.

Comunicar oralmente ideas y resultados matemáticos de forma clara, estructurada y argumentada.

Participar de forma razonada y respetuosa en un debate matemático.
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Temporalización

La propuesta está pensada para desarrollarse durante cuatro sesiones de aula de aproximadamente 50
minutos cada una:

1ª sesión: Presentación de la actividad, formación de equipos, asignación de métodos, orientación
bibliográfica.

2ª sesión: Inicio del trabajo de investigación por equipos, consultas al docente, aplicación de métodos
a funciones polinómicas concretas y preparación de la exposición.

3ª sesión: Finalización del desarrollo del trabajo de investigación durante la primera mitad de la
sesión. Comienzo de las exposiciones orales durante la segunda mitad de la sesión.

4ª sesión: Continuación de las exposiciones orales durante la primera mitad. Entrega del informe final
y reflexión grupal durante la última mitad de la sesión.

Metodología didáctica

La actividad se fundamenta en el Aprendizaje Basado en Proyectos (ABP), la indagación histórica y
el trabajo cooperativo por equipos. Se promueve un aprendizaje activo, donde el alumnado asume roles de
responsabilidad compartida y reflexiona sobre las matemáticas.

Los equipos trabajan como grupos de expertos sobre un método asignado, consultando fuentes bibliográ-
ficas y digitales, resolviendo ejemplos comunes al resto de grupos y elaborando dos productos finales: un
soporte visual (presentación, póster, infografía...) que acompañe su exposición oral y un informe escrito
detallado.

El docente actúa como guía y facilitador del aprendizaje ofreciendo orientación bibliográfica, resolu-
ción de dudas de los grupos y evaluación formativa del proceso. Además, en la última sesión y tras las
exposiciones orales, durante el debate matemático el docente será el moderador de este con el objetivo de
comparar estrategias, extraer conclusiones y fomentar la argumentación.

Actividades

Los métodos que se asignarán a los equipos son:

Método de Sturm.

Método de bisección.

Regla de Ruffini.

Regla de los signos de Descartes.

Fórmulas de Viète (para polinomios de grado 3).

Las tareas comunes que cada grupo deberá llevar a cabo son:
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Investigar el contexto histórico del método (época, matemático asociado, aplicación inicial).

Explicar el método y su fundamentación teórica de forma clara y rigurosa.

Aplicar el método a tres polinomios comunes dados por el profesor. En concreto, se proponen los
siguientes polinomios: P (x) = x2 − 3x + 2, G(x) = 4x3 − 3x2 + 4x − 3 y H(x) = x3 − 204x2 −
640x+ 288000.

Elaborar unas conclusiones donde se recojan: ventajas del método, limitaciones, aplicabilidad y va-
loración personal.

Redactar un documento escrito con todo lo anterior estructurado.

Preparar un soporte visual para una breve exposición oral en clase.

Participar en un debate matemático moderado por el docente con el objetivo de comparar estrategias,
extraer conclusiones y fomentar la argumentación matemática.

Evaluación

Se evaluará tanto el producto final (presentación y ficha) como el proceso seguido por el grupo y la
participación individual mediante una evaluación formativa. Los instrumentos utilizados para ello serán:

Rúbrica del informe escrito: contenido, claridad, redacción matemática, fundamentación y aplica-
ción de ejemplos.

Rúbrica de la exposición oral: claridad comunicativa, uso del lenguaje técnico, rigor matemático,
dominio del contenido, creatividad, uso de soportes visuales y estructura.

Autoevaluación individual: grado de implicación, reflexión sobre el aprendizaje y el trabajo en equi-
po.

Seguimiento del proceso: observación directa, resolución de dudas, calidad del trabajo en progreso,
actitud y participación.

Atención a la diversidad

La actividad está pensada para ser inclusiva, con distintos niveles de entrada y salida según el perfil del
alumnado. Se contempla:

Distribución equitativa de tareas dentro de los equipos, atendiendo a fortalezas individuales.

Posibilidad de usar diversos formatos para la exposición oral (vídeo, mural digital, exposición clási-
ca).

Andamiaje del proceso por parte del docente: fuentes seleccionadas, plantillas orientativas y ejemplos
previos.

Flexibilización del producto escrito para alumnos con necesidades específicas: redacción compartida,
soporte visual complementario, revisión intermedia.
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6.2. Propuesta 2: Exploración de métodos numéricos con TIC

Esta propuesta se centra en el estudio de métodos numéricos de aproximación de raíces reales de po-
linomios, utilizando herramientas tecnológicas accesibles como GeoGebra y Wolfram Alpha. Frente a la
enseñanza tradicional se apuesta por un enfoque realista y funcional que conecta la representación gráfica,
la visualización geométrica y los procedimientos numéricos.

El objetivo principal es que el alumnado transite desde la interpretación gráfica de una función hasta el
dominio de algoritmos de aproximación, interiorizando así el significado de hallar raíces más allá del cálculo
exacto. De forma que se refuerzan la comprensión conceptual, el razonamiento lógico y el pensamiento
computacional, sin perder de vista el uso de TIC como apoyo y no como fin en sí mismo.

Fundamentación curricular

Esta propuesta se enmarca en el área de Matemáticas Académicas de 4º de ESO, dentro del Sentido
Algebraico, y conecta con las siguiente competencias clave:

Competencia matemática y competencias básicas en ciencia y tecnología. (CMCT).

Competencia personal, social y de aprender a aprender (CPSAA).

Competencia digital (CD).

Además se alinea con diversos criterios de evaluación del currículo de Matemáticas de 4.º de ESO,
particularmente con los criterios 1.2, 1.3, 3.3, 4.2, 5.2, 6.1, 7.1, 7.2 y 8.1, ya que permite que el alumnado:

Compare métodos numéricos de aproximación (como el método de bisección, Regula Falsi o el mé-
todo de la secante), seleccionando estrategias de resolución adecuadas y fundamentadas.

Emplee herramientas tecnológicas como GeoGebra y Wolfram Alpha para representar, aplicar y va-
lidar los métodos propuestos en situaciones concretas.

Analice visualmente el comportamiento de las funciones polinómicas, comprendiendo la relación
entre su representación gráfica y la estimación de sus raíces.

Transite de una comprensión inicial visual-intuitiva hacia una comprensión más formal y abstracta
del método matemático, desarrollando su pensamiento algebraico.

Explore situaciones que requieran el uso de técnicas numéricas de aproximación y razone sobre la
viabilidad y los límites de estas estrategias.

Utilice adecuadamente representaciones gráficas, simbólicas y numéricas en su trabajo, valorando la
complementariedad entre ellas.

Comunique los procedimientos y conclusiones con precisión y rigor, haciendo uso del vocabulario
matemático adecuado y de las funciones propias del software utilizado.
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Objetivos didácticos

Con esta actividad esperamos que los alumnos sean capaces de:

Visualizar el comportamiento gráfico de polinomios y relacionarlo con el concepto de raíz.

Aplicar los métodos de bisección, regula falsi y secante para estimar raíces reales en intervalos deter-
minados.

Interpretar y validar resultados mediante herramientas tecnológicas.

Comparar los métodos aplicados desde el punto de vista de la eficiencia, precisión y aplicabilidad.

Temporalización

La propuesta está diseñada para desarrollarse durante tres sesiones consecutivas de aproximadamente 50
minutos cada una:

Sesión 1: Exploración gráfica con GeoGebra. Interpretación de raíces como cortes con el eje x. De-
tección de cambios de signo. Identificación de intervalos donde aplicar métodos numéricos.

Sesión 2: Aplicación de los métodos de bisección, regula falsi y secante con ayuda del docente.
Registro de iteraciones en tablas.

Sesión 3: Verificación con Wolfram Alpha. Elaboración de tabla comparativa de métodos. Reflexión
crítica sobre ventajas, limitaciones y uso real de los procedimientos.

Metodología didáctica

La propuesta se basa en un enfoque de aprendizaje por descubrimiento guiado, combinando trabajo
cooperativo y uso autónomo de TIC. La progresión se organiza de forma visual a formal: el alumnado
explora las raíces reales de polinomios mediante GeoGebra, construyendo una comprensión geométrica
previa, y posteriormente formaliza los métodos numéricos de aproximación.

El docente proporciona fichas guía, plantea retos progresivos y orienta el uso de las herramientas. El
trabajo se realiza en parejas o tríos para fomentar la interacción y el debate matemático. La verificación con
Wolfram Alpha sirve como cierre analítico y comprobación de resultados.

Actividades

Actividad 1: Exploración gráfica con GeoGebra:

Introducir polinomios de tercer y cuarto grado.

Acotar las raíces mediante el método de Sturm.

Dividir los intervalos proporcionados por el Teorema de Sturm en intervalos más pequeños que con-
tengan una única raíz real.

Observar que en los extremos de los intervalos elegidos se produce un cambio de signo.
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Actividad 2: Aplicación guiada de los métodos:

Aplicar el método de bisección al primer intervalo detectado.

Aplicar regula falsi al segundo intervalo.

Aplicar el método de la secante al tercero.

Registrar todas las iteraciones en una tabla organizada.

Actividad 3: Verificación y reflexión comparativa:

Usar Wolfram Alpha para obtener una raíz aproximada del mismo polinomio.

Comparar resultados y número de iteraciones.

Elaborar una tabla comparativa con las siguientes columnas: nombre del método, ventajas, limitacio-
nes, rapidez, claridad gráfica.

Reflexión final escrita: ¿cuál usarías y por qué?

Evaluación

La evaluación será continua y se basará en:

Cuaderno de trabajo: finalización de las tareas, corrección en el calculo de iteraciones, registro
ordenado.

Informe de grupo (individual o cooperativo): tabla comparativa y claridad en la reflexión final.

Actitud y participación: observación directa del docente.

Autoevaluación: breve cuestionario donde cada estudiante valore su comprensión y uso de herra-
mientas.

Atención a la diversidad

Apoyos visuales constantes: colores, etiquetas, gráficos con zoom.

Grupos equilibrados que favorezcan el apoyo entre iguales.

Flexibilidad ofreciendo posibilidad de fijar como obligatorio solo dos métodos y explorar el último
opcionalmente.
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6.3. Propuesta 3: Actividad gamificada

La tercera propuesta consiste en una actividad de aula gamificada, distribuida en varias sesiones, ba-
jo el título general Proyecto POLYROOT. Esta propuesta se articula como una macroactividad narrativa y
cooperativa dirigida al alumnado de 4º de Educación Secundaria Obligatoria, centrada en el estudio y la
aplicación significativa de diversos métodos de cálculo de raíces de funciones polinómicas.

Proyecto POLYROOT se desarrolla a través de tres misiones encadenadas, cada una de ellas con una na-
rrativa específica basada en un contexto histórico o científico real. Estas misiones permiten al alumnado
enfrentarse a retos de creciente complejidad que implican el uso de métodos clásicos y aproximados co-
mo el Teorema de Sturm, la Regla de Ruffini, el método de la bisección, la regula falsi, el método de la
secante y la acotación de raíces mediante la cota de Cauchy, todos ellos desarrollados previamente en el
bloque teórico del trabajo. A diferencia de otras propuestas más técnicas o formales, esta macroactividad
busca dotar de sentido práctico y motivador a dichos métodos mediante una narrativa inmersiva y verosímil.

El diseño de la propuesta responde a varios principios metodológicos: aprendizaje activo, trabajo coopera-
tivo, integración de herramientas digitales y gamificación narrativa. Se pretende no solo consolidar conte-
nidos específicos del bloque de álgebra, sino también promover el desarrollo de competencias transversales
como el trabajo en equipo, la resolución de problemas y el uso crítico de las TIC.

A través del contexto de una misión científica simulada, inspirada en situaciones reales, se favorece que
el alumnado comprenda la relevancia de los métodos matemáticos en situaciones de toma de decisiones,
predicción o modelización. Cada fase de la propuesta está inspirada en hechos o aplicaciones reales en los
que el cálculo de raíces de polinomios resulta crucial: desde el análisis de trayectorias espaciales hasta el
diseño estructural o la simulación de reentrada atmosférica.

En definitiva, esta propuesta constituye una forma integral y contextualizada de trabajar los métodos
de resolución de raíces polinómicas, conectando los saberes matemáticos con su contexto histórico, su
aplicación científica y su dimensión didáctica.

Fundamentación curricular

La presente propuesta didáctica se enmarca en el cuarto curso de la Educación Secundaria Obligatoria,
dentro del área de Matemáticas orientadas a las enseñanzas académicas. Atendiendo al currículo establecido
por la LOMLOE y el correspondiente decreto autonómico, esta unidad gamificada está orientada a desarro-
llar competencias específicas del área mediante la resolución de situaciones problemáticas que requieren el
análisis, manipulación y aproximación de raíces de polinomios.

La propuesta contribuye a desarrollar las siguientes competencias clave:

Competencia matemática y competencias básicas en ciencia y tecnología (CMCT): Al analizar fun-
ciones polinómicas y aplicar métodos diversos para hallar sus raíces.

Competencia digital (CD): Mediante el uso de herramientas tecnológicas para la visualización, cálcu-
lo y validación de resultados.
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Competencia personal, social y de aprender a aprender (CPSAA): Favoreciendo la autonomía, la
reflexión y la autoevaluación.

Los saberes básicos implicados se relacionan con el Sentido algebraico, específicamente:

Resolución de ecuaciones polinómicas de segundo y tercer grado mediante distintos procedimientos.

Aplicación de métodos gráficos y analíticos para la localización de raíces reales.

Uso de estrategias de estimación, intervalos de confianza y continuidad para acotar soluciones.

Además, esta propuesta gamificada permite desarrollar de forma transversal competencias clave del cu-
rrículo de Matemáticas de 4º de ESO, especialmente a través de los criterios 1.1, 1.3, 2.2, 3.1, 4.1, 6.3, 9.1,
9.2, 10.1 y 10.2. A lo largo del proyecto, el alumnado:

Reformula, afronta y resuelve situaciones problemáticas contextualizadas dentro de una narrativa de
ciencia aplicada, movilizando distintos métodos para encontrar raíces de polinomios en escenarios
realistas (como órbitas espaciales o cálculos de estructuras).

Selecciona con criterio y justifica las estrategias de resolución utilizadas, valorando la adecuación y
los límites de los métodos desde una perspectiva matemática y práctica.

Aplica el razonamiento inductivo y deductivo para realizar inferencias, validar soluciones y adaptar
los procedimientos a las particularidades de cada reto planteado.

Participa en una experiencia de aprendizaje situada, en la que la matemática aparece integrada en
fenómenos naturales o tecnológicos, reconociendo su poder explicativo y predictivo.

Muestra una actitud positiva hacia el aprendizaje de las matemáticas, implicándose en la superación
de los retos del juego con perseverancia, responsabilidad y sentido del logro.

Se implica activamente en el trabajo cooperativo, asumiendo roles diferenciados dentro del equipo y
contribuyendo al progreso del grupo con autonomía y habilidades comunicativas.

Objetivos didácticos

Con esta actividad esperamos que el alumnado sea capaz de:

Comprender y aplicar diferentes métodos clásicos y numéricos para el cálculo de raíces reales de
funciones polinómicas.

Reconocer la utilidad de los métodos históricos como herramientas válidas en la resolución de pro-
blemas actuales.

Establecer relaciones entre modelos matemáticos, representaciones gráficas y soluciones algebraicas.

Valorar el papel de las matemáticas en contextos científicos, históricos y tecnológicos reales.

Desarrollar habilidades de trabajo cooperativo, gestión del tiempo y argumentación matemática.
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Temporalización

La propuesta está diseñada para ser implementada en un total de cuatro sesiones de clase de 50-60
minutos, distribuidas del siguiente modo:

Sesión 1: Presentación narrativa del proyecto POLYROOT. Formación de equipos y desarrollo de la
Misión 1: La órbita secreta.

Sesión 2: Desarrollo de la Misión 2: El error en la presa.

Sesión 3: Desarrollo de la Misión 3: Apolo XXI: Misión de reentrada.

Sesión 4: Presentación de resultados, reflexión final, autoevaluación y rúbricas de grupo.

Metodología didáctica

La metodología empleada en la presente propuesta se fundamenta en principios de la enseñanza activa,
la gamificación y el aprendizaje cooperativo. Se pretende crear una experiencia didáctica inmersiva en la
que el alumnado se convierta en protagonista de su propio aprendizaje a través de la resolución de situacio-
nes contextualizadas y significativas.

Gamificación narrativa: La estructura en forma de misiones encadenadas permite introducir elementos
de narrativa, progresión, reto y cooperación. La historia que enmarca la actividad confiere coherencia a
los contenidos, favorece la motivación y sitúa el aprendizaje en un contexto con sentido. Esta narrativa se
inspira en hechos históricos y científicos reales, adaptados a una ficción verosímil con tensión y objetivos
claros.

Aprendizaje cooperativo: Los alumnos trabajarán en equipos reducidos, con roles rotativos (analista,
portavoz, programador, verificador) para fomentar la responsabilidad compartida y la toma de decisiones
conjunta. Esta dinámica promueve la argumentación matemática, el desarrollo del lenguaje específico y la
gestión de tiempos.

Uso integrado de TIC: La propuesta incorpora el uso de herramientas digitales como GeoGebra o Wol-
fram Alpha, permitiendo la visualización de funciones, el análisis gráfico y la ejecución de algoritmos de
aproximación. Se fomenta un uso crítico y funcional de las tecnologías como apoyo al razonamiento mate-
mático.

Evaluación formativa integrada: A lo largo de cada misión se implementan estrategias de coevaluación,
autoevaluación, registro de decisiones y reflexión final, en consonancia con un enfoque formativo del apren-
dizaje.

En conjunto, se busca crear un entorno desafiante pero accesible, donde los conceptos matemáticos se re-
valoricen al ser utilizados con propósito y dentro de un marco narrativo atractivo y exigente.
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Narrativa integradora del Proyecto POLYROOT

En un futuro cercano, la humanidad ha lanzado una ambiciosa misión espacial llamada POLYROOT, cu-
yo objetivo es explorar y comprender fenómenos complejos mediante el uso avanzado de matemáticas y
tecnología. El equipo de ingenieros matemáticos (tú y tus compañeros) formáis parte de esta expedición
científica de élite encargada de resolver desafíos críticos que surgen en el transcurso de la misión.

Cada misión que enfrentaréis es una pieza clave para asegurar el éxito de POLYROOT y la seguridad de
sus sistemas. Desde la órbita de un planeta desconocido hasta la estabilidad de infraestructuras vitales y la
reentrada segura de cápsulas espaciales, deberéis aplicar vuestros conocimientos sobre raíces de polinomios
para tomar decisiones precisas y salvar la misión.

Misión 1: La órbita secreta
Tras una tormenta electromagnética, el satélite POLYROOT-01 pierde la sincronización de su sistema

de navegación. Solo disponéis de una función polinómica que describe su distancia al planeta para localizar
puntos críticos y reorientar el satélite con éxito.

Misión 2: El error en la presa
Un antiguo archivo revela fallos potenciales en una presa hidráulica crucial. Debéis analizar la función

polinómica que modela la presión del agua para identificar umbrales críticos y evitar una catástrofe estruc-
tural.

Misión 3: Apolo XXI — Misión de reentrada
La cápsula POLYROOT XXI enfrenta una reentrada atmosférica sin enlace de posicionamiento. Usando

métodos numéricos, tendréis que calcular con precisión el momento exacto de aterrizaje para garantizar la
seguridad de la tripulación.

A lo largo de esta aventura, cada reto os exigirá aplicar diferentes métodos matemáticos, trabajar en equipo
y utilizar herramientas digitales para interpretar, calcular y validar soluciones. Solo con vuestra pericia y
colaboración, el Proyecto POLYROOT podrá cumplir su misión y abrir nuevas fronteras en la exploración
científica.

Actividades - Misiones del Proyecto POLYROOT

Las tres misiones gamificadas que se diseñan responden a una narrativa común aunque cada una se
inspira en un hecho o aplicación científica real donde el cálculo de raíces de polinomios adquiere un papel
importante. A continuación se describe cada misión, el contexto que la ha inspirado, sus objetivos y las
tareas matemáticas.

Misión 1: La órbita secreta

Inspiración histórica: La misión se inspira en los cálculos orbitales realizados durante los siglos XVI
y XVII por astrónomos como Kepler y Newton, quienes, a partir de observaciones, ajustaron trayectorias
planetarias a curvas geométricas como las elipses, utilizando las herramientas matemáticas de su época.
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Aunque no disponían de métodos numéricos modernos, su trabajo sentó las bases para el cálculo de raí-
ces de ecuaciones, un paso fundamental para predecir posiciones planetarias. En la actualidad, el ajuste de
trayectorias y la predicción de puntos críticos pueden requerir el uso de funciones polinómicas y métodos
numéricos de aproximación.

Narrativa: El satélite experimental POLYROOT-01 ha sido lanzado para estudiar la atmósfera superior
de un planeta. Sin embargo, tras una tormenta electromagnética, se pierde la sincronización del sistema de
navegación. Los datos parciales recuperados ofrecen una función polinómica que modela la distancia del
satélite respecto al planeta en función del tiempo, pero no hay información sobre sus puntos críticos de
giro. El equipo de estudiantes, en su rol de ingenieros matemáticos, debe estimar la cantidad y localización
de las raíces reales que representan estos puntos críticos. Para ello, deberán aplicar el Teorema de Sturm y
visualizar el comportamiento de la función con GeoGebra. La reorientación del satélite depende de su éxito.

Objetivos específicos:

Estimar el número de raíces reales de un polinomio.

Localizar intervalos donde se producen cambios de signo.

Interpretar gráficamente los ceros de una función polinómica.

Tareas:

Usar el Método de Sturm para calcular el número exacto de raíces reales en un intervalo.

Utilizar GeoGebra para representar gráficamente el polinomio y validar los resultados obtenidos.

Misión 2: El error en la presa

Inspiración histórica: La ingeniería hidráulica desde el siglo XIX ha requerido el uso de modelos mate-
máticos para estimar presiones, caudales y comportamientos estructurales. Muchos de estos modelos adop-
tan forma polinómica en función de parámetros como la altura del agua.

Narrativa ampliada: Un archivo técnico olvidado revela los cálculos originales de una presa construida
en 1889. Una función polinómica de tercer grado representa la presión ejercida por el agua en distintos
puntos de la compuerta. Recientemente, se ha detectado una grieta que coincide con un cambio brusco de
presión. El equipo POLYROOT debe verificar las raíces reales de la función para determinar en qué alturas
se cruzan umbrales críticos. La misión exige aplicar la Regla de Ruffini, verificar posibles raíces exactas
y reflexionar sobre su significado físico. Herramientas como Wolfram Alpha (o Python con uso guiado)
permitirán validar los resultados de forma autónoma.

Objetivos específicos:

Resolver polinomios con raíces exactas mediante factorización.

Establecer correspondencias entre valores reales y propiedades físicas.
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Tareas:

Aplicar la Regla de Ruffini para encontrar raíces enteras y factorizar el polinomio.

Interpretar el significado físico de las raíces en relación con el nivel de presión.

Verificar los resultados con herramientas como Wolfram Alpha.

Misión 3: Apolo XXI — Misión de reentrada

Inspiración histórica: Durante misiones reales como Apolo 13 o las sondas Viking, fue esencial calcular
con precisión los puntos de reentrada o desaceleración. Estos cálculos implicaban encontrar los ceros de
funciones polinómicas que modelaban trayectorias o fuerzas.

Narrativa: La cápsula de reentrada del módulo POLYROOT XXI ha perdido su enlace de posiciona-
miento durante la maniobra de entrada atmosférica. Los sensores muestran una función polinómica que
modela la altitud en función del tiempo, pero se desconoce en qué momento exacto tocará superficie. Para
evitar un impacto descontrolado, los ingenieros deberán usar métodos de aproximación para determinar la
raíz (altura cero) con la mayor precisión posible. Comenzarán con el método de bisección por su seguridad,
y explorarán después la regula falsi y el método de la secante para refinar sus resultados. Además de resolver
el problema, deberán analizar el número de iteraciones y justificar la elección del método más eficaz.

Objetivos específicos:

Comprender y aplicar métodos de aproximación de raíces.

Comparar la eficiencia de distintos procedimientos numéricos.

Tareas:

Aplicar el método de bisección para acotar con seguridad una raíz real.

Utilizar la regula falsi y el método de la secante para mejorar la precisión.

Registrar y analizar el número de iteraciones, el error cometido y las diferencias entre métodos.

Evaluación

La evaluación de esta propuesta didáctica se fundamenta en un enfoque competencial, formativo y con-
tinuo. Se pretende valorar no solo los productos finales obtenidos por el alumnado (resoluciones correctas),
sino también los procesos de razonamiento, la toma de decisiones, el uso de herramientas tecnológicas y el
trabajo en equipo.

Instrumentos de evaluación:

Rúbrica de resolución de misiones: Cada grupo será evaluado en aspectos como la corrección ma-
temática, la elección justificada de métodos, el uso adecuado de TIC y la presentación clara de resul-
tados.
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Hoja de seguimiento del equipo: los equipos completarán una plantilla donde registrarán las estra-
tegias utilizadas, dificultades encontradas y decisiones tomadas.

Autoevaluación individual: cada alumno/a reflexionará sobre su aportación, lo aprendido y los as-
pectos a mejorar.

Coevaluación: los integrantes del equipo valorarán de forma anónima la implicación de sus compa-
ñeros.

Atención a la diversidad

La propuesta está diseñada para favorecer la inclusión y permitir la adaptación a distintos niveles de
competencia matemática. Algunas estrategias previstas son:

Trabajo cooperativo con roles rotativos: permite que cada alumno/a aporte según sus fortalezas y
aprenda de sus compañeros/as.

Múltiples vías de representación: se combinan razonamientos algebraicos, representaciones gráfi-
cas y herramientas digitales, facilitando la comprensión a distintos estilos cognitivos.

Reto multinivel: las misiones incluyen tareas de complejidad escalable, permitiendo que cada grupo
profundice según su ritmo.

Tutoría entre iguales: se promoverá el apoyo mutuo dentro del grupo y entre grupos para reforzar la
comprensión sin competitividad negativa.

Apoyos específicos: se podrán ofrecer pistas, andamiajes o desdoblamientos breves a alumnado con
necesidades específicas, sin modificar los objetivos globales.

Estas medidas permiten mantener la exigencia matemática y el sentido de reto, al tiempo que se garantiza
la equidad y el acceso al aprendizaje para todo el alumnado.
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7. ANEXO: Marco legal de la enseñanza de polinomios en Bachille-
rato

Según el Decreto 40/2022, entre los saberes básicos para este curso se incluyen:

D. Sentido algebraico

1. Patrones.

Generalización de patrones en situaciones sencillas.

2. Modelo matemático.

Relaciones cuantitativas en situaciones sencillas: estrategias de identificación y determinación
de la clase o clases de funciones que pueden modelizarlas.

Ecuaciones, inecuaciones y sistemas: modelización de situaciones en diversos contextos.

3. Igualdad y desigualdad.

Resolución de ecuaciones (incluyendo polinómicas, con radicales, racionales sencillas, expo-
nenciales y logarítmicas), inecuaciones (polinómicas y racionales sencillas), sistemas de ecua-
ciones no lineales y sistemas de inecuaciones lineales en diferentes contextos.

Resolución de sistemas de ecuaciones lineales con tres incógnitas mediante el método de Gauss.

4. Relaciones y funciones.

Análisis, representación gráfica e interpretación de relaciones mediante herramientas tecnológi-
cas.

Propiedades de las distintas clases de funciones, incluyendo, polinómicas, exponenciales, racio-
nales sencillas, irracionales sencillas, logarítmicas, trigonométricas y a trozos: comprensión y
comparación.

Operaciones con funciones. Composición de funciones. Función inversa.Relación entre la grá-
fica de una función y la de su inversa.

Álgebra simbólica en la representación y explicación de relaciones matemáticas de la ciencia y
la tecnología.

En el mencionado Decreto, también se incluyen las competencias específicas así como los criterios de
evaluación:

1. Álgebra y estructuras algebraicas.

Operaciones algebraicas:
CE1: Resolver problemas utilizando distintas estrategias.
CE3: Desarrollar procesos de razonamiento lógico-matemático.
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Resolución de ecuaciones e inecuaciones
CE1: Resolver problemas utilizando distintas estrategias.
CE2: Interpretar, modelizar y comunicar fenómenos mediante representaciones matemáticas.

Sistemas de ecuaciones
CE1: Resolver problemas utilizando distintas estrategias.
CE2: Interpretar, modelizar y comunicar fenómenos mediante representaciones matemáticas.
CE4: Utilizar herramientas tecnológicas para representar, calcular y simular.

2. Funciones.

Análisis de funciones
CE2: Interpretar, modelizar y comunicar fenómenos mediante representaciones matemáticas.
CE3: Desarrollar procesos de razonamiento lógico-matemático.

Representaciones gráficas
CE2: Interpretar, modelizar y comunicar fenómenos mediante representaciones matemáticas.
CE4: Utilizar herramientas tecnológicas para representar, calcular y simular.

Modelización con funciones
CE1: Resolver problemas utilizando distintas estrategias.
CE5: Valorar las matemáticas como instrumento útil en la vida diaria, la ciencia y la tecnología.

3. Matemáticas aplicadas y razonamiento lógico.

Problemas de contexto
CE1: Resolver problemas utilizando distintas estrategias.
CE5: Valorar las matemáticas como instrumento útil en la vida diaria, la ciencia y la tecnología.

Lógica matemática
CE2: Interpretar, modelizar y comunicar fenómenos mediante representaciones matemáticas.

Uso de calculadora o GeoGebra
CE4: Utilizar herramientas tecnológicas para representar, calcular y simular.

Criterio de evaluación:

Resolver problemas contextualizados o puramente matemáticos que requieran el uso de expresiones
algebraicas, ecuaciones o sistemas, aplicando estrategias personales o convencionales, y valorando la
coherencia de los resultados.

Desarrolla: CE1, CE2, CE5

Aplicar transformaciones y simplificaciones algebraicas, como la factorización o la simplificación de
fracciones algebraicas, para resolver expresiones o facilitar la resolución de problemas.

Desarrolla: CE1, CE3
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Utilizar procedimientos algebraicos para representar, analizar y resolver ecuaciones, inecuaciones y
sistemas de ecuaciones, interpretando gráficamente las soluciones cuando sea pertinente.

Desarrolla: CE1, CE2, CE4

Interpretar el significado de las soluciones obtenidas en un contexto dado y justificar el procedimiento
utilizado, tanto en términos algebraicos como gráficos.

Desarrolla: CE2, CE3, CE5

Utilizar herramientas tecnológicas (calculadoras gráficas, hojas de cálculo, software como GeoGebra)
para representar, resolver y comprobar expresiones algebraicas y sistemas.

Desarrolla: CE4

En lo anterior observamos que se profundiza en el análisis de expresiones algebraicas: Simplificación de
polinomios y expresiones racionales, en la factorización (sacar factor común, trinomios, productos notables)
y se trabaja con las operaciones con fracciones algebraicas, con reducción a común denominador.

En cuanto a la resolución de ecuaciones se consideran los siguiente tipos: ecuaciones polinómicas de pri-
mer y segundo grado; ecuaciones racionales (donde aparece el uso del dominio); ecuaciones con radicales
(raíces cuadradas); ecuaciones con valor absoluto; ecuaciones logarítmicas o exponenciales (introducción,
en algunas comunidades). Entre los métodos utilizados para la resolución tenemos: la igualación de expre-
siones, la sustitución de expresiones anidadas, la eliminación del denominador y la representación gráfica
como apoyo a la solución.

También se inicia el estudio de sistemas de ecuaciones, en concreto, de sistemas lineales de dos o tres incóg-
nitas mediante el método de sustitución, el método de igualación, el método de reducción y, opcionalmente,
se introduce la notación matricial. Se incluyen también los sistemas no lineales (combinación de ecuaciones
cuadráticas o racionales).

Se introducen las inecuaciones y sistemas de inecuaciones: inecuaciones de primer y segundo grado; inecua-
ciones racionales y con valor absoluto; representación gráfica de soluciones en la recta real y tablas de
signos.

1º de Bachillerato. Matemáticas Aplicadas a las Ciencias Sociales.

Según el Decreto 40/2022, entre los saberes básicos para este curso se incluyen:

C. Sentido algebraico

1. Patrones.

Generalización de patrones en situaciones sencillas.

2. Modelo matemático.

Relaciones cuantitativas esenciales en situaciones sencillas: estrategias de identificación y de-
terminación de la clase o clases de funciones que pueden modelizarlas.

Ecuaciones, inecuaciones y sistemas: modelización de situaciones de las ciencias sociales y de
la vida real.
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3. Igualdad y desigualdad.

Resolución de ecuaciones (incluyendo polinómicas, con radicales, racionales sencillas, expo-
nenciales y logarítmicas), inecuaciones (polinómicas y racionales sencillas), sistemas de ecua-
ciones no lineales y sistemas de inecuaciones lineales en diferentes contextos.

Resolución de sistemas de ecuaciones lineales con tres incógnitas mediante el método de Gauss.

4. Relaciones y funciones.

Representación gráfica de funciones utilizando la expresión simbólica más adecuada y transfor-
maciones lineales en modelos funcionales sencillos.

Propiedades de las distintas clases de funciones, incluyendo, polinómica, exponencial, racional
sencilla, irracional sencilla, logarítmica, periódica y a trozos: comprensión y comparación.

Operaciones con funciones. Composición de funciones. Relación entre la gráfica de una función
y la de su inversa.

Uso de la interpolación y extrapolación para aproximar el valor de una función.

Álgebra simbólica en la representación y explicación de relaciones matemáticas de las ciencias
sociales.

Estos contenidos en el Decreto se vinculan especialmente con las siguientes competencias específicas y
criterios de evaluación:

1. Números y álgebra. Resolver un problema de repartos proporcionales con expresiones algebraicas y
justificar los pasos.

Resolver problemas de interés económico, social o cotidiano mediante expresiones algebraicas,
ecuaciones, sistemas o funciones.
CE1: Resolver problemas relacionados con situaciones de la vida real, económica o social, me-
diante el uso de herramientas matemáticas.
CE3: Elaborar e interpretar modelos matemáticos de fenómenos sociales y económicos utilizan-
do funciones, ecuaciones y sistemas.

Justificar los pasos en un procedimiento de resolución de problemas, identificando errores y
defendiendo resultados obtenidos.
CE4: Desarrollar estrategias de razonamiento lógico y argumentación matemática para justificar
soluciones.

2. Funciones. Representar ingresos y beneficios mediante funciones lineales o cuadráticas, y analizar
puntos de equilibrio.

Resolver problemas de interés económico, social o cotidiano mediante expresiones algebraicas,
ecuaciones, sistemas o funciones.
CE1: Resolver problemas relacionados con situaciones de la vida real, económica o social, me-
diante el uso de herramientas matemáticas.
CE3: Elaborar e interpretar modelos matemáticos de fenómenos sociales y económicos utilizan-
do funciones, ecuaciones y sistemas.
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Interpretar datos representados en tablas, gráficas o diagramas, y elaborar representaciones ade-
cuadas a partir de información dada.
CE2: Representar, interpretar y comunicar información cuantitativa mediante gráficos, fórmulas,
tablas o diagramas.
CE5: Utilizar tecnologías digitales para representar, calcular y simular situaciones matemáticas.

Utilizar el lenguaje algebraico y funcional para modelizar fenómenos económicos (como costes,
ingresos, beneficios, porcentajes).
CE1: Resolver problemas relacionados con situaciones de la vida real, económica o social, me-
diante el uso de herramientas matemáticas.
CE3: Elaborar e interpretar modelos matemáticos de fenómenos sociales y económicos utilizan-
do funciones, ecuaciones y sistemas.
CE6:Valorar la utilidad de las matemáticas aplicadas para comprender el mundo social y econó-
mico, y tomar decisiones informadas.

En resumen, se realiza el estudio del álgebra elemental: polinomios, identidades notables y fracciones
algebraicas. Se analiza la resolución de ecuaciones e inecuaciones de primer y segundo grado y los sistemas
de ecuaciones lineales. Se estudia el concepto de función como relación entre magnitudes, su representación
gráfica y análisis cualitativo. En cuanto a las funciones se ven la lineales y afines, cuadráticas, una intro-
ducción a las exponenciales y las racionales básicas asi como el estudio a partir de su expresión algebraica
y su representación gráfica. Análisis de crecimiento y decrecimiento, máximos y mínimos, simetría.

1º Bachillerato. Matemáticas Generales.

Según el Decreto 40/2022, entre los saberes básicos para este curso se incluyen:

D. Sentido algebraico y pensamiento computacional

1. Patrones.

Generalización de patrones en situaciones sencillas.

2. Modelo matemático.

Funciones afines, cuadráticas, racionales sencillas, exponenciales, logarítmicas, a trozos y pe-
riódicas: modelización de situaciones del mundo real con herramientas digitales.

Programación lineal: modelización de problemas reales y resolución preferentemente con apoyo
de herramientas digitales.

3. Igualdad y desigualdad.

Resolución de sistemas de ecuaciones e inecuaciones en diferentes contextos preferentemente
con apoyo de herramientas digitales.

4. Relaciones y funciones.

Propiedades de las clases de funciones, incluyendo afines, cuadráticas, racionales sencillas, ex-
ponenciales y logarítmicas.
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Estos contenidos en el Decreto se vinculan especialmente con las siguientes competencias específicas y
criterios de evaluación:

1. Números y proporcionalidad: Calcular descuentos, IVA, intereses o repartos proporcionales

Plantear y resolver problemas relacionados con situaciones cotidianas o sociales utilizando es-
trategias matemáticas básicas (porcentajes, proporcionalidad, ecuaciones simples, etc.).
CE1: Resolver problemas de la vida cotidiana, científica o social mediante estrategias personales
y herramientas matemáticas.
CE3: Modelizar fenómenos cotidianos con funciones, ecuaciones o relaciones matemáticas sim-
ples.

2. Funciones elementales: Modelar el coste de una actividad según el número de asistentes

Modelizar relaciones cuantitativas sencillas con expresiones algebraicas o funciones básicas
(lineales, cuadráticas, proporcionales).
CE1: Resolver problemas de la vida cotidiana, científica o social mediante estrategias personales
y herramientas matemáticas.
CE3: Modelizar fenómenos cotidianos con funciones, ecuaciones o relaciones matemáticas sim-
ples.

Se estudia de las expresiones algebraicas la simplificación y factorización. Asimismo se ven las ecua-
ciones e inecuaciones de primer y segundo grado. Se analiza el concepto de función y variable dependiente
e independiente, una introducción a funciones lineales, cuadráticas, afines y exponenciales asi como la in-
terpretación gráfica en cuanto al dominio, imagen, crecimiento y decrecimiento modelizando situaciones
reales con funciones.

2º de Bachillerato

Según el Decreto 40/2022, entre los saberes básicos para este curso se incluyen:

D. Sentido algebraico

1. Patrones.

Generalización de patrones en situaciones diversas.

2. Modelo matemático.

Relaciones cuantitativas en situaciones complejas: estrategias de identificación y determinación
de la clase o clases de funciones que pueden modelizarlas.

Sistemas de ecuaciones: modelización de situaciones en diversos contextos.

Técnicas y uso de matrices para, al menos, modelizar situaciones en las que aparezcan sistemas
de ecuaciones lineales o grafos.

3. Igualdad y desigualdad.
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Formas equivalentes de expresiones algebraicas en la resolución de sistemas de ecuaciones e
inecuaciones, mediante cálculo mental, algoritmos de lápiz y papel, y con herramientas digitales.

Estudio de la compatibilidad de los sistemas lineales (Teorema de Rouché-Fröbenius).

Resolución de sistemas de ecuaciones lineales con tres incógnitas y un parámetro a lo sumo, en
diferentes contextos y con métodos diversos (Cramer, Gauss).

Resolución de ecuaciones y sistemas matriciales.

4. Relaciones y funciones.

Representación análisis e interpretación de funciones con apoyo de herramientas digitales.

Propiedades de las distintas clases de funciones: identificación a partir de la gráfica, interpreta-
ción y comprensión.

Utilización de las herramientas del cálculo algebraico y diferencial en la determinación precisa
de las propiedades funcionales.

Comparación de las propiedades de las distintas clases de funciones.

Estos contenidos en el Decreto se vinculan especialmente con las siguientes competencias específicas y
criterios de evaluación:

1. Álgebra y estructuras algebraicas.

Operaciones algebraicas:
CE1: Resolver problemas utilizando distintas estrategias.
CE3: Desarrollar procesos de razonamiento lógico-matemático.

Resolución de ecuaciones e inecuaciones
CE1: Resolver problemas utilizando distintas estrategias.
CE2: Interpretar, modelizar y comunicar fenómenos mediante representaciones matemáticas.

Sistemas de ecuaciones
CE1: Resolver problemas utilizando distintas estrategias.
CE2: Interpretar, modelizar y comunicar fenómenos mediante representaciones matemáticas.
CE4: Utilizar herramientas tecnológicas para representar, calcular y simular.

2. Funciones.

Análisis de funciones
CE2: Interpretar, modelizar y comunicar fenómenos mediante representaciones matemáticas.
CE3: Desarrollar procesos de razonamiento lógico-matemático.

Representaciones gráficas
CE2: Interpretar, modelizar y comunicar fenómenos mediante representaciones matemáticas.
CE4: Utilizar herramientas tecnológicas para representar, calcular y simular.
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Modelización con funciones
CE1: Resolver problemas utilizando distintas estrategias.
CE5: Valorar las matemáticas como instrumento útil en la vida diaria, la ciencia y la tecnología.

3. Matemáticas aplicadas y razonamiento lógico.

Problemas de contexto
CE1: Resolver problemas utilizando distintas estrategias.
CE5: Valorar las matemáticas como instrumento útil en la vida diaria, la ciencia y la tecnología.

Lógica matemática
CE2: Interpretar, modelizar y comunicar fenómenos mediante representaciones matemáticas.

Uso de calculadora o GeoGebra
CE4: Utilizar herramientas tecnológicas para representar, calcular y simular.

Criterio de evaluación:

Resolver problemas contextualizados o puramente matemáticos que requieran el uso de expresiones
algebraicas, ecuaciones o sistemas, aplicando estrategias personales o convencionales, y valorando la
coherencia de los resultados.

Desarrolla: CE1, CE2, CE5

Aplicar transformaciones y simplificaciones algebraicas, como la factorización o la simplificación de
fracciones algebraicas, para resolver expresiones o facilitar la resolución de problemas.

Desarrolla: CE1, CE3

Utilizar procedimientos algebraicos para representar, analizar y resolver ecuaciones, inecuaciones y
sistemas de ecuaciones, interpretando gráficamente las soluciones cuando sea pertinente.

Desarrolla: CE1, CE2, CE4

Interpretar el significado de las soluciones obtenidas en un contexto dado y justificar el procedimiento
utilizado, tanto en términos algebraicos como gráficos.

Desarrolla: CE2, CE3, CE5

Utilizar herramientas tecnológicas (calculadoras gráficas, hojas de cálculo, software como GeoGebra)
para representar, resolver y comprobar expresiones algebraicas y sistemas.

Desarrolla: CE4

En resumen, se realiza el estudio de funciones reales, entre ella las polinómicas. Se amplía el estudio
del álgebra con el estudio de matrices y su aplicación a los sistemas lineales de ecuaciones mediante: el
Método de Gauss, la Regla de Cramer y la inversa de matrices (cuando se introducen matrices).

2º de Bachillerato. Matemáticas Aplicadas a las Ciencias Sociales.
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Según el Decreto 40/2022, entre los saberes básicos para este curso se incluyen:

C. Sentido algebraico

1. Patrones.

Generalización de patrones en situaciones diversas.

2. Modelo matemático.

Relaciones cuantitativas en situaciones complejas: estrategias de identificación y determinación
de la clase o clases de funciones que pueden modelizarlas.

Sistemas de ecuaciones: modelización de situaciones en diversos contextos.

Técnicas y uso de matrices para, al menos, modelizar situaciones en las que aparezcan sistemas
de ecuaciones lineales o grafos.

Programación lineal bidimensional: modelización de problemas reales y resolución mediante
herramientas digitales y manuales.

3. Igualdad y desigualdad.

Formas equivalentes de expresiones algebraicas en la resolución de sistemas de ecuaciones e
inecuaciones, mediante cálculo mental, algoritmos de lápiz y papel, y con herramientas digitales.

Resolución de sistemas de ecuaciones lineales con tres incógnitas mediante el método de Gauss
e inecuaciones lineales con dos incógnitas de forma gráfica, en diferentes contextos.

4. Relaciones y funciones.

Representación, análisis e interpretación de funciones con el apoyo de herramientas digitales.

Propiedades de las distintas clases de funciones: identificación a partir de la gráfica, interpreta-
ción y comprensión.

Utilización de las herramientas del cálculo algebraico y diferencial en la determinación precisa
de las propiedades funcionales.

Comparación de las propiedades de las distintas clases de funciones.

Estos contenidos en el Decreto se vinculan especialmente con las siguientes competencias específicas y
criterios de evaluación:

1. Funciones y derivadas: Analizar la función de beneficio de una empresa para optimizar la produc-
ción

Plantear, resolver y justificar problemas económicos o sociales utilizando funciones, derivadas,
matrices o probabilidades.
CE1: Resolver problemas de naturaleza social, económica o cotidiana mediante herramientas
matemáticas como funciones, matrices, derivadas o probabilidades.
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CE2: Modelizar situaciones reales utilizando funciones, ecuaciones y representaciones gráficas,
interpretando los resultados.
CE3: Analizar la evolución de magnitudes y tomar decisiones fundamentadas a partir del estudio
de funciones y derivadas..

Analizar el comportamiento de funciones (crecimiento, máximos, mínimos, puntos de inflexión)
a partir de su derivada, y aplicar este análisis a la toma de decisiones.
CE2: Modelizar situaciones reales utilizando funciones, ecuaciones y representaciones gráficas,
interpretando los resultados.
CE3: Analizar la evolución de magnitudes y tomar decisiones fundamentadas a partir del estudio
de funciones y derivadas.

2. Matrices y sistemas: Resolver sistemas económicos mediante matrices o regla de Cramer.

Plantear, resolver y justificar problemas económicos o sociales utilizando funciones, derivadas,
matrices o probabilidades.
CE1: Resolver problemas de naturaleza social, económica o cotidiana mediante herramientas
matemáticas como funciones, matrices, derivadas o probabilidades.
CE2: Modelizar situaciones reales utilizando funciones, ecuaciones y representaciones gráficas,
interpretando los resultados.

Estudio de matrices y operaciones básicas (suma, producto, trasposición), matriz inversa y resolución
de sistemas lineales por métodos matriciales. en el campo de la programación lineal el planteamiento de
problemas, su representación gráfica de restricciones y la optimización de funciones objetivo (máximos y
mínimos), en cuanto a las funciones, repaso y profundización en funciones lineales, afines, cuadráticas,
exponenciales y logarítmicas, su composición y transformaciones.
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