Universidad deValladolid

ESCUELA DE INGENERIA INFORMATICA DE SEGOVIA

TRABAJO DE FIN DE GRADO

Grado en Informatica de Servicios y Aplicaciones

Dragon’s Memoir

Autor: Ivan Nieves Stantcheva
Tutor: Fernando Diaz Gdmez
Curso 2024-2025

Dedicated to my parents,
who many a time have asked when this project would be done.

No generative Al models have been

used in the creation of this project.

created by
@ a human
with a heart

https://cadence.moe/blog/2024-10-05-created-by-a-human-badges

Contents

Abstract

1 Introduction

1.1 Document Structure

1.2 Overview and History
1.3 PriorArt............
1.3.1 Fire Emblem series

1.3.2 Tactics series

1.3.3 Warsseries

2 Game Design

2.1 Gameplay

2.1.1 Gameplay Loops . . .
2.1.2 Game Mechanics . . .
2.1.3 UlandInput
2.1.4 Runtime Regs.
2.2 Worldbuilding

3 Development Plan

3.1 Software and Tooling
3.2 Budget Estimates
3.3 Dev. Methodology

4 Implementation and Testing
4.1 Software Architecture

4.2 Implementation Details

4.3 Testing and Debugging . . .

5 Conclusions

Articles Referenced

Wiki Articles Referenced

Games Referenced

[N

| =

oy 1 I W - =

—
= O 1O IO

15 160 1 |

|N
o

Abstract

Dragon’s Memoir is a work-in-progress tactical role-playing game inspired by the Fire Emblem
video-game series. From a game-play perspective, it tries to expand upon already established
mechanics rather than create a completely new genre of its own. From a world-building view-
point, Dragon’s Memoir’s story takes place in a world loosely based on that of Chroma: Bloom
and Blight?® and on Brandon Sanderson’s Cosmere, featuring an original magic system and
unique mythology.

This project elaborates on three video-game series that have inspired to varying degrees
some features of Dragon’s Memoir before going into detail on the game’s design and develop-

ment process.

Key words: fantasy, hard fantasy, role-playing games, turn-based strategy, video games.

Resumen

Dragon’s Memoir es un videojuego de rol tactico inspirado en la saga de videojuegos Fire
Emblem. En lugar de reinventar el género, el juego trata de expandir mecdnicas ya asentadas
en él. El mundo en el que ocurre la trama de Dragon’s Memoir estd muy vagamente inspirado

en el de Chroma: Bloom and Blight2®

y en el Cosmere de Brandon Sanderson, junto con mitologia
y un sistema de magia originales.

Este trabajo describe tres sagas de videojuegos que han inspirado algunas caracteristicas
de Dragon’s Memoir y después detalla el proceso de disefio y desarrollo seguido para la imple-
mentacion de este.

Palabras clave: estrategia por turnos, fantasia, fantasia dura, juegos de rol, videojuegos.

d

1.1

1.2

Introduction

Document Structure

This project report is split into five chapters, roughly corresponding to the five stages of
a project: introduction, design, development, implementation, and finally a short conclusion
chapter.

This introductory chapter will describe Dragon’s Memoir in broad strokes, explain some of
its history and delve into prior art in the genre that it belongs to.

The second chapter will go into more detail regarding the game’s mechanics and design,
concluding with a brief description of the universe Dragon’s Memoir plot takes place in.

The third and fourth chapters deal with development and implementation, explaining the
tools and methodology used to develop the game, as well as some implementation and testing
notes.

Each chapter is split into several sections, as appropriate for each of them; a broad overview
paragraph that sums up the content of one or more sections is included before them together

with links to the previous, table of contents, and next sections.

° . . *
Pro_]ect Overview and HIStOI’)’_ This is your story. It all begins here.

ToC — Next Path to Exile’s flavor text, in
Magic: the Gathering.

tl;dr — Dragon’s Memoir is a tactical role-playing game inspired by

Fire Emblem Awakening®® that has been in development for eight

years, at some point being written in C++, Xtend, and Java. It

doesn’t try to blaze a trail as much as expand on well-established

tropes in its genre.

*External links in this section have been last accessed on 2025—05-25; dates throughout this document are
specified in the format YYYY-MM-DD.

https://scryfall.com/card/fic/248/path-to-exile

Introduction

Design and development of Dragon’s Memoir began back in 2017 after finishing a play-
through of Fire Emblem Awakening.2® It was originally conceived as a spiritual successor to that
game, and at the time it seemed a relatively simple project with which to learn programming.

Originally the game was to be written in C++ using Qt Creator as a front-end library.The
project would eventually be rewritten in Java so as to avoid possible licensing issues regarding
the usage of Qt Creator’s community edition.

While Java was the language Dragon’s Memoir was rewritten into, for three years Xtend
was used instead as a Java transpiler; IDE performance issues and the eventual conclusion of
Xtend’s development motivated another rewrite of the game’s code back into Java, language
Dragon’s Memoir has been written in since late 2021.

Concurrently with code development, the game’s world and plot was being refined little by
little, with features inspired by Dungeons and Dragon’s campaigns and Brandon Sanderson’s
books on the Cosmere.

Dragon’s Memoir does not intend to revolutionize the tactical role-playing game genre and
instead expands on well-established mechanics without bringing in an overwhelming amount
of changes to these well-known systems. Of note among these revised mechanics is Dragon’s
Memoir’s weapon system, which features partially breaking weapons and a unique advantage
system expanding upon Awakening’s3® without being as complex as Dark Deity’s.?

Unlike in the former game, Dragon’s Memoir’s players don’t directly participate in the game’s
plotand is relegated to a spectator role. This is not to say that the player’s choices do not affect
the game’s plot at all (cf. Dark Deity?8), but that the player lacks an “avatar” representing them
in-world.

At the time of writing, Dragon’s Memoir is undergoing a relatively large user interface refac-
tor, adding some much needed visual pizzazz and removing some limitations that have plagued
the game for years, particularly the inability to resize the game’s window to any size other
than 800 px by 600 px. That aside, the game currently features ten playable chapters (and
a sneak-peek into the eleventh) featuring fifteen playable characters (and a sneak-peek into

three more).

https://www.qt.io/product/development-tools
https://eclipse.dev/Xtext/xtend/index.html
https://github.com/eclipse-xtext/xtext/issues/1721
https://github.com/eclipse-xtext/xtext/issues/1721

1.3

1.3. Prior Art

Prior Art

Name three examples.

Prev — ToC — Next Epigrams, GWERN BRANWEN

tl;dr — Dragon’s Memoir is a turn- and grid-based tactical role-
playing game, varyingly related to the Fire Emblem, Final Fantasy
Tactics and Wars game series. Fire Emblem Awakening?® is the pri-

mary inspiration of the game.

If we were to fully detail the genres Dragon’s Memoir belongs to, we would categorize it as
a turn- and grid-based tactical role-playing game.

“Grid-based” simply means that the placement of characters and structures are bound to
a relatively coarse grid, like the squares of a chessboard. Each character occupies their own
square regardless of size, and movement requires an empty square to traverse (like the move-
ment of a rook in chess, for example). There are plenty of games in which this is not the case,
where characters and objects aren’t restricted to “integer steps” and where a unit’s size affects
the space they occupy; a notable example of this variation is Baldur’s Gate 32 (which perhaps
misleadingly is mechanically closer to the Divinity: Original Sin series?®3° than to the first two
Baldur’s Gate games?!:22).,

A game being grid-based often implies that it is also “turn-based”, although exceptions
abound, such as One Step from Eden*® and Crypt of the Necrodancer.?” In this context, turn-
based (as opposed to “real-time”) indicates that gameplay advances in discrete time steps
rather than continuously (compare Brogue?* with Unicorn Overlord,* for example). Within this
paradigm, there are two common ways to determine the order in which units act: either all
units of a given side (player-controlled, enemy, or neutral) act at the same time (or consecu-
tively, as in the XCOM series*®%’), or turns are interleaved, the exact order being determined
by a given unit’s abilities and/or with an “initiative roll”; Dragon’s Memoir follows the former
round structure.

Lastly, a tactical role-playing game combines mechanics from both strategy and role-playing
games (henceforth “RPGCs”): characters’ abilities grow as the game progresses, and those char-
acters must be controlled in large-scale battles rather than only micro-managed in skirmishes.
This contrasts both with “pure” role-playing games, where fine-grained unit control is restricted
to battles the whole player’s party participates in (as in Ara Fell?®), and with “pure” strategy
games, where an over-arching story and persistent character growth are often missing (such
as Dota 23%).

Even within this three-step classification there is room for further subgenre distinction that
we could descend into, but beyond this point the differences become less significant. Instead,
we will detail three sagas whose games also fall into the turn- and grid-based tactical RPG genre,

examples of their “offspring”, as well as explain their relation to Dragon’s Memoir.

https://gwern.net/epigram

Introduction

1.3.1

Fire Emblem series

Dating back to 1990, the Fire Emblem series by Intelligent Systems is the saga mechanically
closest to Dragon’s Memoir. Also related to this series is Dark Deity,?® a recent indie game
whose origins are akin to Dragon’s Memoir’s? and which could be considered a far relative in
terms of scope.

The games’ stories follow the deeds of a noble or, in more recent games, an avatar of the
player within the context of a war, the player determining their and other members of their
army’s actions in battle. Each unit in the game has a class that determines which weapons
they can use, which skills they learn as they gain experience in combat, to which other classes
they can “promote” to once they reach a high enough experience level, and whether the unit
is particularly weak to a certain type of weapon (flying units are weak to bows in most games
of the series, for instance).

The three main melee weapons in the series are subject to the “weapon triangle”:!’ a rock-
paper-scissors relationship between swords, lances and axes. In combat, swords are effective
against axes, increasing the chance of successful attacks against, and sometimes also increas-
ing damage dealt to, units wielding axes. The same happens to lancers against units that use
swords, and to those that use axes against lances. In some games, this advantage also applies
to weapon types beyond those three, such as magic weapons in the games that feature a three-
way magic system. Weapons in Dragon’s Memoir also abide by this extended weapon triangle,
but effectivities (called “colors” in-world) are completely detached from weapon types; this is
explored in a optional subplot within the game.

There are two other differences between Dragon’s Memoir’s and Fire Emblem’s weapon sys-
tems: First, there are no “weapon levels”1® in Dragon’s Memoir—if a unit’s class allows them
to use a weapon, they can use all weapons of that type. Second, a weapon’s base damage
(its “might”12) can change as its durability decreases*: a sword becomes dull as it is used, and
spellcasters grow frugal as their spells’ reagents wane.

Another prevalent mechanic in the Fire Emblem series are character supports: some pairs of
player-controlled characters build up rapport throughout the game by spending time together—
that s, by fighting enemies when they are near each other—which is told as a series of conversa-
tions in-between main story chapters once enough support is attained between two characters.
The rewards for reaching these support thresholds are stat increases that only apply when the
two units are together in combat; Dragon’s Memoir extends these rewards by granting unique
weapons and skills, on top of intertwining conversation arcs and adding requirements to some

support chains to further deepen the support system.

*Only breakable weapons can have these “durability steps”, which need not decrease damage as the weapon
breaks—the edge of a crystal axe might become sharper as it chips, for example.

1.3.1.1

1.3.2

1.3. Prior Art

Fire Emblem Awakening

As mentioned before Fire Emblem Awakening®® was both a turning point for the series® and
Dragon’s Memoir’s reason for existence. As a matter of fact, it was an issue with single scene
that sparked development: discordance between narration and game interface.

In terms of gameplay, Fire Emblem Awakening has all the characteristics of a Fire Emblem
game as described above, with the weapon triangle being restricted to the three main phys-
ical weapons. Additionally, the game features a two-generation character system: reaching
the maximum possible level of certain support pairs will allow their children to join the player’s
army; this system was also featured in the series’ next game,?” and there are plans for future
plot arcs of Dragon’s Memoir to feature a similar system without resorting to time travel!? in
the way that Awakening and Fates handle it.

Unlike in subsequent games in the Fire Emblem series, the player may travel along the world
map!8 to purchase weapons and fight skirmishes to increase their units’ levels, but not access
their base camp proper.t2 In Dragon’s Memoir the situation is the opposite, as in Fire Emblem
Fates:*’ the player cannot leave their camp, and the shop and training grounds are available
there instead. This base of operation also serves as the level used for some story chapters and
as a backdrop for some support conversations (which in Fire Emblem Awakening all use a generic

background regardless of where the conversations take place in).

Final Fantasy Tactics series

Final Fantasy Tactics is both a 1997 tactical RPG®> and name of the series that game started.
This series is frequently abbreviated to Tactics, word that often appears as part of the title of
games that feature similar mechanics, as in Fae Tactics*3 and Dream Tactics.22 We mention Fell
Seal: Arbiter’s Mark®* as a recent notable game that fits within the series’ paradigm.

Where the Fire Emblem series focus combat on the weapon triangle and character supports,
relegating abilities to a more passive role, Tactics games focus on active skills. The most com-
mon action a unit in a Fire Emblem game takes is to “just attack” another, whereas in Tactics
that character would almost always be ordered to use one of the many skills their class taught
them. In addition to having an overarching experience level that determines their stats, each
unit has their own class levels, which determines which class skills they can use. It is not un-
common for some classes to require reaching a certain level in another class before being able
to “reclass” a unit into the former, which, together with a lower maximum class level, builds
a class promotion tree more complex than those in the Fire Emblem series and facilitates army

diversification.

Introduction

1.3.3

Damage and equipment also work differently in the two series: In the Fire Emblem series dam-
age is either “physical” or “magical” with most units locked into one of them, while in Tactics
skills deal damage of more “concrete” damage types such as “fire” or “slashing” and units have
access to several such damage types at any given time. Similarly, items in the Fire Emblem se-
ries are limited to (almost always breakable) weapons, healing staves, and consumable items;
in Tactics, all equipment is unbreakable (although consumable items exist), and there are dif-
ferent armor pieces that compliment a unit’s innate stats to better defend themselves against
certain damage types. Dragon’s Memoir follows Fire Emblem’s lead and only has physical and
magical damage types, and no armor items.

The most noticeable difference between Fire Emblem and Tactics is in the display of battles:
levels in Fire Emblem are displayed in a square grid (like the squares of a chessboard), and are
vertically flat regardless of the terrain the battle takes place in, whereas in Tactics battles are
often displayed in isometric perspective and height plays a role in determining movement and
skill range.

Somewhat related to isometric perspective, and a mechanic common in Tactics games is unit
facing: at the end of a unit’s turn, they decide on a direction to face along grid lines. Attacks
are more effective when done from the sides or the back of the target. This mechanic was once
considered for Dragon’s Memoir but eventually scrapped during development; some class skills
in the game partially implement this system in a simplified manner.

Also a notable difference between Tactics and Fire Emblem is the reliance on mercenaries:
rather than new characters being added to the player’s army throughout the whole story, the
player is given the option—and heavily encouraged—to hire mercenaries to fill in their ranks.
Currently there are no plans to implement unit recruitment in this manner in Dragon’s Memoir,
although it is not entirely out of the question assuming it can be made to fit within the game’s
narrative.

Overall, the series’ influence on Dragon’s Memoir is limited. While skills in Dragon’s Memoir
are stronger than in the Fire Emblem series, they aren’t the focus of the game’s mechanics, and

the class promotion system is yet to be decided on.

Wars series

One last notable series within the turn-based tactical RPG genre is the Wars series by Intelli-
gent Systems, sometimes called Advance Wars after the 2001 game of the same title.!? Recent
games of note within the series’ paradigm are Wargroove®* and its sequel.*®

Unlike in the Fire Emblem and Tactics series, where the player controls each unit of their army

separately, in Wars the player gives orders to whole squads of their army. Also unlike in the

1.3.3.1

1.3. Prior Art

former series, as a squad’s health pool decreases, so does their combat power (similar to how
the Red Fog option works in XCOM!?), meaning damaged units deal less damage and are more
likely to be completely defeated.

Chapter objectives in Wars vary slightly from those in Fire Emblem, as the most common
goal is not to defeat all enemies, but to defeat the opposing side’s leader and take over the
opponents’ headquarters. Likewise, the losing condition is not just losing the main character’s
squad, but also having an enemy reach the player’s base.

There is little in terms of character progression or customization in the Wars series. Levels
are self-contained and the player is incentivized to “purchase” reinforcements during them
using resources acquired in the level itself. Squads present at the start of a chapter are of a
given, fixed unit type (infantry or ships, for example) that cannot be changed, and similarly,
reinforcements cannot change types once summoned.

One notable feature of some Wars games are the so called “Powers”: powerful active abil-
ities that the player can use once per battle or on a cooldown to help them overcome their
opponents. Dragon’s Memoir does not feature these abilities as they are unjustified from an
in-world perspective and severely warp the game’s balance around them.

Symphony of War: The Nephilim Saga

Symphony of War: The Nephilim Saga* is a game borrows features from all three sagas we
have described: from Fire Emblem, support conversations; from Tactics, the class promotion and
equipment systems; and from Wars, the player controlling squads of units instead of individual
units in combat. Unlike in Wars, however, the player is allowed more granular control over the
units in their squads, being able to freely customize their class and position within the squad,
makRing a broader variety of strategies and army compositions possible.

Rather than bringing in mechanics from Symphony of War*—many of which are already
present by virtue of appearing in the Fire Emblem series,—Dragon’s Memoir brings in lessons
on how to implement them:

» The player needs information and control to decide their course of action. In particular,
combat forecasts should give enough information to roughly determine their outcome

(barring randomness in whether a unit will miss their attack et cetera).

« Information displayed should be clear, accurate, not out-of-date, and displayed in a way
that does not overwhelm the player. Tooltips sometimes work better than text boxes.

Introduction

+ The game’s interface should act in accordance with the player’s input method. When
using mouse input, clicking on a menu element should perform that element’s action,
not select the menu.

» The game’s mechanics should be clear and consistent, and must be explained properly.
If a unit can take a given action, all other units should also be able to take that action; if

this is not the case, the player should clearly be told why.

« It is better to not include a mechanic whose effects are unclear than to include it only
for the sake of realism: Weather and day-night cycles that only affect some units in
unspecified manners should be left out, but fog of war that restricts vision is perfectly
acceptable.

« Abilities need to be carefully balanced, and some are just too strong to be included. Al-
lowing a unit to take multiple actions in a turn without any associated cost is one of the
latter.

The above laundry list of complaints should not be understood as saying that Symphony of
War* is a bad game, or that it is poorly implemented; it merely identifies things Dragon’s
Memoir can improve upon.

2.1

2.1.1

Game Design

Gameplay

Gameplay Loops

Ever tried. Ever failed. No matter.

Prev — ToC — Next Try again. Fail Again. Fail Better.

Worstward Ho, SAMUEL BECKETT
tl;dr — The high-level loop consists of lead-in conversation, battle,
conclusion, and intermission. A turn in battle has the player act
first, then their enemies act automatically. Intermissions allow the
player to prepare for subsequent battles. See figure 2.1

The game’s core gameplay loop can be summarized as alternation between chapters, in
which the game’s plot advances, and intermissions, in which the player is allowed to do house-
keeping in preparation for subsequent chapters.

Most chapters are divided into three parts: a lead-in conversation that advances the plot, a
battle where the player is allowed tactical input, and a second conversation that concludes the
chapter. Depending on its plot, a chapter may not involve fighting, in which case it might not
have a battle and thus only include conversations.

Each battle has a given goal for the player to achieve, and takes place in turns split into
two phases. During the first phase of each turn the player is allowed precise control over
their units, having them act in whichever order they choose; afterwards, during the second
phase, the game automatically controls the remaining units, often with the intent of hindering
the player’s progress. At the lowest level, a unit acts in two steps: first, they may move to a
different position, and second, they may take a concrete action, such as fighting another, or
healing them.

Intermissions are unstructured sections that represent downtime in the overarching plot.
Not all chapters have an intermission following them, depending on the events that happen
during the chapter.

10 Game Design

Unit Movement

Position chosen
Action done l
or cancelled Unit Actions
(Fight, Heal...)
All units acted
Ally Turn
Level Objective
(2 Attained
Conversation EHEMU Turn

Finished

Battle

Chapter Chapter
Introduction Conclusion

_ Inktermission
Preparation

Complete O
Downtime Conversation
Finished

Actions

Supports,
Shopping,
Inventory Mgmt.

Figure 2.1: Overview of Dragon’s Memoir nested gameplay loops. Red arrows represent tran-
sitions between states.

2.1.2

2.1.2.1

2.1. Gameplay

11

Game Mechanics We do not study war because we

Prev — ToC — Next love it, but because we hate it.

Mournful Tutelage’s flavor text, in

Chroma: Bloom and Blight

Unit-related

Each unit has a class. It determines which kinds of weapons they can use and whether they
are weakR to any particular Rind of weapon. It also determines the base mobility a unit has, as
described below.

Units gain experience as they fight in battle, and once enough is accumulated they “level
up”. These level ups increase the unit’s stats and may teach them a new skill depending on
their class once a high enough level is reached.. The chance a given stat increases also depends
on the class: for instance, mages will have a higher chance of their magic stat increasing than
an archer.

Each unit has eleven stats:

+ Two offensive stats (one per damage type; “strength” and “magic”) that increase the
amount of damage the unit’s attack deal.

+ Two defensive stats (also one per damage type; “defense” and “resistance”) that de-
crease the amount of damage taken.

+ One stat (“hit points”, often also called “health” or “HP”) that determines how much
damage the unit can take before falling in battle.

« Three stats (“speed”, “skill” and “dexterity”) that together determine the unit’s hit, crit-
ical hit and dodge chances in combat, and whether the unit will try to attack multiple

times in combat.

+ The three pseudo-stats corresponding to the unit’s hit, critical hit and dodge chances;
their base values are determined by the previous three stats, but can be subsequently
modified by weapons and skills (see below).

+ One pseudo-stat (“mobility”) that determines how far the unit moves in battle. Its base
value is determined by the unit’s class and status.

At the time of writing, permanent player-controllable character death is not implemented,
although conversations do take into account potential character deaths. Characters “revive”
on chapter end; this is sometimes referred to as “Casual Mode” in the Fire Emblem series.

https://antifandom.com/chroma-bloom-and-blight/wiki/Mournful_Tutelage

12

Game Design

2.1.2.2

A unit can have any amount of “skRills”, the effects of which can vary. Classes grant a
unique skill (a “tactic”) to units that belong to it; a unit changing class changes which tactic
they have. Skills may also be learnt in other ways, as appropriate to the skill.

Some pairs of player-controlled units can build up “support” during battle; which pairs
can depends on the character’s personal backstories, attitude and tastes, all of which cannot
be changed by the player. Once enough support is built up, the player can “confirm the support
level” by watching a conversation unfold between the two units during an intermission. Doing
so unlocks certain benefits, the most common of which being temporary stat increases when
the two units are near each other in battle. Support levels can have additional conditions
needed to unlock them, which can include reaching a given support level with a different pair

of units, or not having reached that level, effectively making certain support levels exclusive.

Item-related

Units can carry an arbitrary amount of items, which contain up to one equipped weapon
and staff. A unit will use their equipped weapon when told to fight (or when another unit fights
against them), and their equipped staff when told to heal another unit. Not all player-controlled
units can equip staves; which ones can depend on the character themself.

Each item has a “color”, which modifies the damage their wielders deal and take in combat.
Only the equipped weapon, if any, modifies this damage; a generic no-modification color is
used in the event a unit without an equipped weapon engages in combat.

Items have up to one skill that is active for as long as the item remains in the unit’s inventory.
Weapons and staves may also have one skill that is active when they are equipped.

Weapons have a few additional characteristics:

« Each weapon belongs to a given “weapon type” that determines which classes can
equip it. There are ten weapon types, five of which are “physical” and the rest, “magical”.
This distinction determines which stats are used in combat, as detailed before.

+ They are either breakable or unbreakable. Breakable weapons can have multiple “weapon
steps”, which determine the base damage they deal in combat; unbreakable weapons

can only have one.

+ Aweapon step specifies how many attacks the wielder will attempt each time they make
an attack in combat (most commonly only one) and the base damage of those attacks,
which need not be deterministic.

2.1.2.3

2.1. Gameplay

13

« They have a base hit chance, which, as its name implies, determines the chance its
wielder’s attacks will land in combat. A weapon whose base hit chance is 100% will
never miss, regardless of the target’s dodge chance.

« They have a fixed attack range that determines how distant the wielder can make attacks.

Melee weapons have a range of one, and most ranged weapons have a range of at most
two.

Staves follow the same rules as weapons, except that there is only one “staff type”, staves
heal instead of dealing damage, and staves never miss in their healing.

Unused items in a unit’s inventory may be stashed away during intermissions to be retrieved
later or given to another unit. Some items cannot be put away in this manner, such as those
that represent a physical part of a creature.

Battle-related

Each battle has a win condition (usually defeating all enemies) and a lose condition (usually
having a particular unit fall in combat). Achieving the win condition ends the battle and causes
the game’s plot to advance. Achieving the lose condition results in what could be considered
a “game over” and forces the player to replay and win the battle to continue the game. The
player is told what the win condition and lose conditions for a battle are. At the time of writing,
lose conditions aren’t fully implemented; it is expected that the implementation will require
modifying the conversation parser to account for defeat.

Movement in battle is square-grid-based. How many squares a unit can cover in a given
turn is determined by their stats and the terrain those squares represent; some terrain can
slow certain units down, or prevent their movement altogether. Units move orthogonally
along the grid (that is, along grid lines and not diagonally); effects that measure distance do
so using the Manhattan distance (positions that are diagonally adjacent are at distance two
of each other).

Only one unit can be in any given square. The player moving a unit onto a square occupied
by another of their units allows them to displace the latter to an adjacent square.

After choosing to move a unit (or to not do so), the player may instruct them to change

their equipped items, and then to take an action among the following:

« Fight another unit, possibly without intent to fully defeat them. This will have the two
units engage in combat, and afterwards may grant experience to the involved units. This

will also make supports that involve the attacker and defender progress.

Game Design

+ Heal one of the unit’s allies (or themself), recovering their lost health points.
« Talk to a nearby unit, when a conversation is available.
» Activate any skill of theirs that can be activated at this point.

The player is informed of the (potential) consequences of their actions (eg. as in figure 2.2),
and given a chance to confirm their choice or explore alternative options. Movement can be

fully undone before an action is confirmed.

Valera vs Swordsman

.~ Bronze Lance (50/50)
Bronze Sword (50/50) »

Hit Points: 20/20 vs 16/16
Rating: 30 vs 28

Hit Chance: 82% vs 74%
Crit Chance: 6% vs 3%

Kill Chance: 6% vs 0%
Median damage done: 9 vs 0

Figure 2.2: Prospective information about a fight between two units. Note that median damage
is displayed, not mean damage, as the former is more representative of the fight’s outcome.

The player may also instruct all of their units that are yet to act this turn to do nothing,
ending the player’s phase this turn.

When two units fight, they attempt to deal damage to each other. First, whoever initiates
combat (the “attacker”) makes an attack against the other unit (the “defender”). Then, if the
defender’s weapon’s range allows them to attack the attacker, they try to do so. Finally, if the
difference in speed stats is large enough, the attacker or the defender will attempt a second
attack.

Each attack in a fight has three possible outcomes: miss (the attack deals no damage),
hit (the attack lands, and deals damage), and critical hit (the attack lands and deals extra
damage). The stats and weapons of the involved units determine the likelihood of each of
these outcomes.

Skills can modify a number of aspects of a fight, including who each attack is made against,

and adding extra attacks beyond the usual ones.

2.1.2.4

2.1.3

2.1. Gameplay

15

Intermission-related

Between some chapters the player is allowed to explore their base camp and prepare for
future battles.

Those preparations include buying and selling equipment for their units using money ob-
tained from story events or looted in battle. Which items are available for purchase change
from chapter to chapter and shopping may not be available between some chapters.

Intermissions also allow the player to “cash in” unlocked support levels. Each support
explores small side stories between two characters and once a level is unlocked grants those
units some minor boons, notably including temporary stat increases in battle.

Finally, the player is allowed to play some mini-games once unlocked. Much like supports,
they explore side stories but grant more “tangible” boons in the form of items.

Unlike in Awakening®® and Symphony of War,*' Dragon’s Memoir currently has no way to
“train” units out of combat. This is a downtime action that could be considered, but the
problem it solves is arguably better solved by carefully balancing battles.

Once the player is satisfied with their preparation they can “depart”, moving on to the next
chapter of the story.

User Interface and Input
Novice shopkeeps spend hours deciding how best

Prev — ToC — Next to display their wares. Veterans focus on portability.

Batterhorn’s flavor text, in Magic: The Gathering

tl;dr — A window of at least 800x 600 pixels is needed. Text uses
serif fonts. Tooltips are often used. Both keyboard and mouse can

be used for player input.

The game requires a window of 800-by-600 pixels in size in order to properly display its
content; this represents a minimum window size, not a maximum size—the window may be
enlarged as desired by the player. Currently the option to display the game in full-screen orin a
borderless window is not available (a requirement for those options is an in-game exit button,
which, just as a proper options menu, is yet to be implemented).

Ul elements that the player may interact with are displayed as rectangles with rounded cor-
ners when alone or when displayed in a grid. Elsewhere, interactable elements that represent
options that are mutually exclusive (for example, when the player is about to choose an action

for their units to take, as in figure 2.3) are displayed using a radial menu.

https://scryfall.com/card/rtr/87/batterhorn

16

Game Design

Figure 2.3: Radial menus show exclusive options; here, the possible actions a unit can take.

Text display primarily uses serif fonts so as to evoke a feeling of reading a book. The game’s
two main fonts are visually quite similar: Libre Baskerville is used to display speech in conver-
sations and Kaisei Tokumin is used to display most Ul elements.

Battles are displayed using 2D graphics (see figure 2.4); an image representing terrain serves
as the backdrop atop which units are drawn. Alongside each unit a bar is drawn that visually
represents the amount of health the unit has; this bar is colored in accordance to the unit’s
side (blue for allies, green for neutral units and red for enemies) and its color changes as it de-
pletes. Additionally any number of “sprites” is drawn as needed, for example, to indicate skills
triggering or support being attained. Combat is currently displayed using sprites, although
there are plans to have a separate display system for it.

Most textual information is displayed only when needed using tooltips atop or beside certain
Ul elements. This includes information about units’ stats in battle (figure 2.5), which would
otherwise be overwhelming.

Conversations use either a static image or a level as their backdrop, both of which can change
throughout it as the conversation’s plot advances. The face of up to four characters can be
shown at any given time during a conversation representing who is taking part in it; these char-
acters face towards the center of the scene. Conversation text is shown one letter at a time
so as to simulate actual speech.

Intermissions use the same display system as battles, using separate scenes for each of the
possible “downtime” activities.

In terms of user input, the player may use either keyboard or mouse to interact with the
game. All options available can be chosen with either input method. Pressing the space bar
and left-clicking are consistently used as the “accept” option where appropriate, and pressing
left shift or right-clicking are consistently used as the “cancel” option; more detailed controls
are explained in the attached extra documentation.

“Joystick” input is planned but not currently implemented; it will likewise be usable to take

any and all possible options, just as keyboard and mouse each on their own are.

2.1. Gameplay

Selected unit's movement (blue)
and attack (red) ranges
are shown as underlays

(foes' are also shown
when selected)

Holding Alt shows :[.-!l.-h.-qv

weapon typefcolor 2 ‘@}-
and exact HP "-ﬂ -

The selected unit has a
small outline highlighting
which unit it is

Weapon color advantages
and effectivities are
shown atop enemies

(only when applicable)

Only the edges of

foe's attack ranges

are shown

(and only when turned on) The cursor, marking the

current selected position

) Units in different The path the unit
sides have healthbars will take is marked

in different colors With an arrow B .
(Blue for allies, red for enemies)) Units' images in battle are
(only for allies) temporary programmer art

Figure 2.4: Some information displayed in battle. Most information is only shown when
needed; healthbars are always shown in battle and enemy range is turned off by default.

Figure 2.5: Overhead labels display basic information about hovered units. Holding Alt shows
all information instead.

18

Game Design

2.1.4

Runtime Requirements Everything is HUUUUGE

Prev — ToC — Next Software Disenchantment, Niki TONSKY

tl;dr — Java 24 or newer. 512 MB of RAM. 35 MB of storage.

A Java runtime environment (“JRE”) of version 24 or newer” is required to run the game. The
game requires no internet connection once it and the JRE are installed; Dragon’s Memoir on
its own requires no installation beyond being downloaded since it is distributed as a runnable
Jjar file.

At runtime the game may use up to 200 MB of RAM, thus at least 512 MB of system RAM
is required. Dragon’s Memoir tries to load resources only as needed as opposed to keeping in
memory all assets at all times; most of the RAM used by the game is taken up by the JRE.

In terms of persistent storage, the game requires around 14 MB for the .jar file itself, and
about 20 MB more to store save data and logs. This latter space is used to preserve all past
save points (to allow retrying chapters as desired) and all previous runtime logs (which are
stored in a compressed format; this is to aid in debugging). Dragon’s Memoir will try to not
“litter”: saves and logs are stored in subfolders of the “installation” folder.

It should be noted that the game has only been tested under Windows 10, but in accordance
to Java’s philosophy of “write once, run anywhere”, the game is expected to be able to run
anywhere its required JRE can run.

Dragon’s Memoir intended frame rate is 60 frames per second. The game achieves this by
offloading long-running tasks, notably disk access, outside of the main Ul thread.

*Development usually targets the latest released version of Java, regardless of long-term support. To preserve
forward-compatibility, preview features are not used in code.

https://tonsky.me/blog/disenchantment/

2.2

2.2. Worldbuilding

19

Worldbuilding

“I'm a storyteller,” Wit said, with a flip of

Prev — ToC — Next his fingers. “I have the right to redefine

words.”

Wind and Truth, BRANDON SANDERSON

tl;dr — The game takes place in “Enceladus”, where technology is
lacking. Religion is based on the Dragon and the Drakainas. Magic
is limited and all spells have verbal and material components.

The world Dragon’s Memoir takes place in, called Enceladus, is loosely based on that of Fire
Emblem Awakening®® and Chroma: Bloom and Blight.?® It features five countries spanning two
continents and its history spans five and a half millennia.

In-world technology has hardly progressed at all throughout its history and several discover-
ies and attempts at innovation have been met with strong resistance: steel was only discov-
ered recently and was met with significant backlash, chemistry has barely been explored, and
biology studies are uncommon and unrefined.

Religion in Enceladus is limited to adoration of the Dragon, who is almost universally be-
lieved to have created the planet and life within it; the Disciple, who some consider to be the
creator of magic; and the five Drakainas*!, who are considered priestesses of the Dragon, and
their aides, called Respites. Only one or two Drakainas have lived in Enceladus at the same
time, leading some people to believe that “consecutive” Drakainas follow a mother-daughter
relationship, a statement that the Drakainas and Respites have refused to confirm.

In terms of design, the magic system used in Dragon’s Memoir is created following Brandon
Sanderson’s laws of magic.® Magic in Enceladus is limited in scope (primarily by its practition-
ers’ lack of understanding of it) but has clear usage guidelines: an incantation is needed to
“ignite” a spell’s “fuel”, and each spell requires a different pair of incantation and fuel. This
means that, unlike in the Fire Emblem series, spellcasters do not use spell books in order to
cast their spells; this also helps explain why magic “weapons” break—their users simply run
out of materials to use them. Item colors are also related to this magic system in a way that
Enceladus’ inhabitants don’t fully understand; a subplot within the game explores this further.

Separately from the above, a constructed language has also been designed for the game,
although it is only used in-game in proper nouns since using it for all in-game text is obviously
unreasonable (but do see Tunic*? and Chants of Sennaar?> for games that do this).

*Drakainas are somewhat related to manaketes!! from the Fire Emblem series: both have long lifespans and
feature pointed, elf-like ears, but only manaketes can transform into dragons.

"The word “Drakaina” comes from the Greek mythological figure of the same name; in-world, it also means
“small female dragon”.

3 Development Plan

3.1 Software and Tooling*

A bad workman always blames his tools.

Prev — ToC — Next Proverb

tl;dr — Dependencies: Guava, Lombok, Tinylog, and Yaml|Beans.
Tools: Eclipse, Paint.net, Vim, Tiddlywiki, and Google Docs

Dragon’s Memoir is written in Java and uses Swing as its front-end framework. Its software

dependencies are the following external libraries:

» Guava (Apache License 2.0): Contains generic utilities, notably new collection-like types

including multimaps, bidirectional maps, and networks.

» Project Lombok (MIT License and others): Code generation, particularly auto-generation

of null checks and accessors. Only required during compilation, not at runtime.
« Tinylog (Apache License 2.0): As its name implies, it’s used for logging.
+ YamlBeans (MIT License): Serialization to and from YAML, the format used for save data.

Additionally, Eclipse’s nullity and resource-owning annotations are used at compile time, and
two “home-brew” libraries are used, one containing miscellaneous utilities and another provid-
ing a more fluent API to Swing components.

The following tools are or have been used for development and asset creation:

« IDE: Eclipse, together with SonarQube for IDE (formerly called SonarlLint) and Spotbugs
for linting.

+ Image editor: Paint.net.

» Text editor: Vim through Cygwin. Formerly Notepad++.

*External links in this section have been last accessed on 2025—-04-28

20

https://github.com/google/guava
https://github.com/projectlombok/lombok
https://github.com/tinylog-org/tinylog
https://github.com/EsotericSoftware/yamlbeans
https://eclipseide.org
https://www.sonarsource.com/products/sonarlint
https://spotbugs.github.io
https://getpaint.net
https://www.vim.org
https://cygwin.com
https://notepad-plus-plus.org/

3.1.1

3.1. Software and Tooling

21

« Version control: Sourcetree as a Git for windows front-end.
« Language construction: PolyGlot and Lexique Pro.

+ Documentation: Tiddlywiki and the Google Docs suite.

Use of Generative Artificial Intelligence R .
Generative Al is a parasitic cancer.

Prev — ToC — Next ;
- - FREYA HOLMER

tl:dr — No in the video of the same title.

Dragon’s Memoir is a project developed by humans, to be consumed by humans. The use of
generative artificial intelligence is not contemplated neither for conversation writing (“if you
can’t be bothered to write it, | can’t be bothered to read it”) nor for coding (one of the project’s
main goals is learning to program and “vibe coding” defeats the point).

The only aspect of the game where using generative Al would be somewhat reasonable is in
creating art. Drawing conversation backgrounds would not be difficult, and with some manual
editing it would also be possible to generate level backdrops. Some neural networks are already
capable of generating anime-like faces,®? which unfortunately is not enough for Dragon’s Mem-
oir since it requires almost-full-body images like in Dark Deity.?® Training an ad hoc model for
this purpose is almost feasible, if not for its significant drawbacks:

+ Atraining set would have to be elaborated; an option for the training images would be
Fire Emblem Heroes8-like drawings which could be cleaned versions of other existing art.
Despite certain Al companies having no qualms using copyrighted materials? to train
their models, for this project this is a nonstarter.

« Training itself requires resources that are better spent elsewhere or not consumed alto-
gether, notably electricity.

» Legislation of the copyright of generated images is still undecided, which could harm or
prevent copyright enforcement in the future.

All of this means that generative Al is not and will not be used in Dragon’s Memoir.

https://www.sourcetreeapp.com
https://gitforwindows.org
https://draquet.github.io/PolyGlot
https://software.sil.org/lexiquepro
https://tiddlywiki.com/
https://docs.google.com
https://youtu.be/-opBifFfsMY

22

Development Plan

3.2

Budget and Timing Estimates™

It always takes longer than you expect, even

when you take into account Hofstadter’s Law.
Prev — ToC — Next

Hofstadter’s Law
tl;dr — 100000 $90000 € and 12—15 months.

In terms of timing, Dragon’s Memoir could be reasonably finished in twelve to fifteen months
of full-time work, expecting most of that time to be taken by art production rather than coding.

Estimating the amount of money required to finish the project is a more difficult task. Many
“indie” games rely on Kickstarter to obtain the funding they need; as that could be way to
acquire funding for Dragon’s Memoir, an estimation of its budget could be based on other
games’ Kickstarter projects.

It might seem reasonable to base Dragon’s Memoir estimated budget on Dark Deity’s?® Kick-
starter project, as that game is one of the most similar to Dragon’s Memoir both in terms of
development and scope. However, its initial goal of 12 000 $19300 ¢ is undeniably too low and
would be insufficient for Dragon’s Memoir.

A more realistic picture is painted by Fell Seal’s®* Kickstarter project. By extrapolating the
figures contained therein, assuming the 40 000 $35000 ¢ goal corresponds to 40% of its total
budget, we obtain the figures contained in table 3.1.

Expense Amount

Art 54000 $ 48600 €

Music etc. 280009% 25200€
Marheting 10000% 9000€
Miscellaneous 80008 200¢

Total 100000$% 90000 €

Table 3.1: Estimated budget. The “Miscellaneous” category encompasses potential publishing
fees, any taxes and serves as a small emergency buffer.

The budget in that table does not include code development (programming et cetera) costs
as it assumes coding is done in-house. While that model would also be appropriate for Dragon’s
Memoir, it might be worth estimating how much would be needed to hire someone to program
the game.

If just one person is required to work full-time on coding for twelve months, and assuming a
salary of 2000 $1500 ¢ per month, about 24 000 $,; 600 ¢ more would be needed, for a new total
budget of 124000 $111 600 €-

*External links in this section have been last accessed on 2025—-06—04. USD-EUR conversion rates are current
on 2025-05-13. Converted figures are approximated.

https://kickstarter.com
https://www.kickstarter.com/projects/darkdeity/dark-deity/
https://www.kickstarter.com/projects/darkdeity/dark-deity/
https://www.kickstarter.com/projects/153039232/fell-seal-arbiters-mark-classic-turn-based-tactica

3.3

3.3.

Development Methodology

Development Methodology

Prev —ToC — Next

tl;dr — Primarily feature- and chapter-driven. Refactors and re-
designs are interleaved with feature and chapter additions. A Tid-

dlywiki wiki serves as game design document.

Dragon’s Memoir’s development has been haphazard and unstructured, but in broad strokes,

it could be said that it has been primarily feature-driven, with these features being added as

requ
purs

ired by the chapters being implemented. More concretely, development is most often split
uant the implementation of a story chapter each “prototype”*. Bug fixes are integrated

as soon as they are checked for correctness, following “git-flow”? to some extent.

Besides “forward-progress” versions, refactors are also made from time to time in order to

simplify the implementation so as to reduce code complexity and ease the introduction of

new

features. Similarly, the implementation of design-wise reworked features (eg. skills being

reassigned between unit classes, or changed entirely) and the formalization of previously ad

hoc code (eg. the turn cycle) are also integrated as though they were normal code refactors.

The steps followed to implement a chapter from scratch are:

—

. Design — Decide the main chapter plot and setting.

Level Art — Create the level backdrop, if needed. This includes both art and level data
(size and the tile at each location).

Character Design — Design the playable characters introduced this chapter: decide their
name, write a short blurb explaining their backstory (this backstory may be referenced
in support conversations with this unit), choose a class for them, and draw the images

they’ll use in conversations and in battle.

Class Design — If the new characters have new classes, create them: decide what kinds of
weapons they can use, what weakness they have (eg. “infantry” or “cavalry”), and what
skills the class teaches (including the tactic). Also draw the art used to display “generic”
units of this class in battle as well as any skill icons needed.

Writing — Write the chapter’s conversations; their text can be refined later and/or in
parallel if needed.

*

No real prototypes have been made, as the game is not ready for public testing. Instead, a “prototype” is

considered done once a particular feature set is implemented, typically once a new chapter has been implemented

and tested.

Development Plan

6. Conversation Parser Implementation — Implement and expose to the conversation parser
any newly required actions to be taken as the conversation takes place. This includes
moving units along the backdrop and preparing battles.

7. Other Implementation — If needed, implement any required features needed in battle or
otherwise that can’t or shouldn’t be exposed to the conversation parser (eg. actions that

trigger at a particular turn in battle, or aspects related to user interface or unit Al).

8. Integration — “Inform” the “game engine” of the existence of the new chapter and its
content and “hook them up” to the current implementation. This usually requires up-
dating module-info.java and other files in the META-INF/ folder to register new skills,
and telling implementation classes to expose the new items, characters and classes to
the engine.

9. Gameplay testing — Play through the chapter to test if everything works as intended.

10. Debugging — Make changes (to the conversations, the implementation, or even the de-

sign) as needed to address the issues found during testing, if any.

Newly designed content (chapters, characters, classes, skRills...) is also kept track of in a
Tiddlywiki wiki (Dragon’s Memoir de facto game design document) for ease of (cross-)reference.

This wiki also stores a more detailed explanation of the mechanics described in Section 2.1.2.

4.1

Implementation and Testing

“Pray, Mr. Babbage, if you put into the machine
wrong figures, will the right answers come

out?”

Prev — ToC — Next

Passages from the Life of a Philosopher,
CHARLES BABBAGE
tl;dr — Model-view-controller for battle Ul; factory methods, ser-
vice locators, and lazy initialization elsewhere. See table 4.1. Only
behavioral tests are done; reliance on logging and other custom
debugging tools.

Software Architecture

The main software architectural pattern used for player interaction in battle is a variant
of model-view-controller in which the view and the controller are fused together. This union
stems from the fact that both player input and game display are handled by event listeners
in JPanels. Conversation and intermission display and Ul handling is likewise combined into
one class per “task”.

Other auxiliary design patters are used as needed to implement the game’s features:

« Whenever possible, classes are turned into singletons, or made uninstantiable at all (cf.

the zero-one-infinity rule).

» Factory methods are often preferred for public APIs instead of exposing constructors.

For some complex entities, particularly items and unit classes, builders are used.

+ A variant of the prototype design pattern is used to separate items and item stacks: a
unit may carry any amount of item stacks, each of which references a given prototype

item.

+ Most state-changing events in the game are implemented as commands over the battle
handler. This also includes some actions during conversations, such as moving units and

“summoning” units into battle.
25

26

Implementation and Testing

4.2

« To a minor extent, proxy objects are used to avoid eager initialization of certain objects
whose whole representation is not needed. Generally lazy initialization is preferred over
the use of these objects.

Most of the game’s code runs in a single thread (the AWT event queue), with some lazily
loaded objects being loaded ahead of time in separate threads. For these concurrent accesses
neither volatile fields nor double-checked locking are used”; atomic objects and locks are
used instead.

Service locators (using Java’s own ServicelLoader class) handle the registration of the
game’s content. This avoids hard-coding the game’s characters, classes, items etc., possibly
allowing for the creation of community modifications (“mods”) in the future, at the cost of

introducing a centralized registry to acquire instances of them.

Implementation Details

Dragon’s Memoir’s source code proper is split into separate packages contained in a single
module,’ as described in table 4.1.

Non-code assets (conversations, level data, images, and fonts) are stored in separate folders
as appropriate for each asset. Similarly, localized text other than conversations is split into
several . properties files each with the same name and location as the class that uses them.

Where reasonable, disk access is done in separate threads so as to not block the Ul thread.
This includes reading images and saved data, and writing saved data to disk.

Performance measurements have shown that rendering translucent images (that is, images
with pixels that are neither fully opaque nor fully transparent) in Swing can take up a significant
portion of frame rendering time (upwards of 10 milliseconds) since they are drawn in softwarel.
In order to not incur in this performance penalty, enemy attack ranges in Dragon’s Memoir are
indicated by only highlighting the edges of the threatened area; this contrasts with several
other games (Fire Emblem Awakening,2® Dark Deity,2® and Symphony of War,*! to name a few) in
which attack ranges are shown using translucent underlaid grids.

Dragon’s Memoir also differs from Dark Deity?® and Symphony of War*! in its attack range
calculation. Whereas in the latter two games attack ranges are calculated exclusively on de-
mand, Dragon’s Memoir recalculates attack ranges eagerly, ensuring that the ranges shown to

the player are accurate; this allows skills and other game mechanics to refer to these ranges

*Those idioms don’t work? and should not be used.
This is a Swing/AWT limitation. A possible solution would be to switch to OpenGL or similar back-end, at
the cost of a huge refactor of all Ul and input handling.

https://docs.oracle.com/en/java/javase/24/docs/api/java.base/java/util/concurrent/atomic/package-summary.html
https://docs.oracle.com/en/java/javase/24/docs/api/java.base/java/util/concurrent/locks/package-summary.html
https://docs.oracle.com/en/java/javase/24/docs/api/java.base/java/util/ServiceLoader.html

4.2. Implementation Details

27

(root) Main class, component registries, global game data
al Alinterface and path-finding utilities.
chapters Chapter interface.
combat Combat simulations, damage data, and experience calculations
convos Conversation handling.
display Ulimplementations.
... Level Battle Ul
...units Unit-handling Ul
impl Item, character, chapter etc. implementations.
...Skill Skill implementations.
items Item and item stack interfaces and implementations.
level Battle system implementation.
minigames® Minigames during intermissions.
pers Unitinterfaces and implementations. Unit supports.
...Cpers Unit classes and skRills interfaces.
save Serialization and save handling.
utils Miscellaneous utilities.

Table 4.1: Dragon’s Memoir code packages.

Package names are relative to

ivaniestal4.pfe® orto the previous package when beginning with an ellipsis.

2 This package and children thereof.
® “PFE” was Dragon’s Memoir in-development name. Its origins are unclear: “FE”

does not stand for “Fire Emblem”, and original design documents use “FI” in
place of “FE”.

without calculating them themselves. Performance-wise this only takes between two and four
milliseconds per recalculation, not including the time required to draw the overlay (which is

done asynchronously in separate threads).

The calculation of unit movement ranges in Dragon’s Memoir relies on Dijkstra’s algorithm to
determine all locations a unit can reach from their position in battle given their current mobility:
all positions that are at a distance equal or lower to their mobility, taking into account tile costs,
are considered part of the unit’s movement range. Once a unit’s movement range is calculated
determining their attack range is easy: simply determine all positions that are at a distance
equal to the weapon’s attack range (or equal to any of the weapon’s attack ranges, if it has
more than one); this calculation is done in linear time on each of the amount of positions the
unit can move to, the number of weapon ranges, and the weapon range itself (larger weapon

ranges take linearly longer to explore).

Unit Al and certain minor features also make use of the A* (“A-star”) path-finding algorithm
to compute the least-expensive path between two positions. The heuristic used for these com-

28 Implementation and Testing
putations uses a “shifted down” Manhattan distance® (two is subtracted from the distance,
to a minimum of zero); directly using the Manhattan distance results in sub-optimal paths in
the presence of zero-cost edges that don’t immediately decrease distance.

4.3 Testing and Debugging

Dragon’s Memoir’s implementation doesn’t lend itself well to unit testing since most of the
content is registered via ServicelLoader and mocking it would require significant architec-
tural changes to the code. Instead, testing relies on integration (behavioral) testing, checking
whether the game does what it’s supposed to from the player’s perspective rather than whether
each component of the game works in isolation. More thorough testing will be performed once
the game is ready for an alpha or beta release.

Runtime log analysis is the technique most commonly used during debugging; the game’s
frequent usage of logging is another reason why unit-testing Dragon’s Memoir is not doable—
mocRing or disabling Tinylog in a test environment is not feasible. The game’s logs come in
two “flavors”: standard output console, serving mostly as sanity checks, and log files, which
store plenty of information about what happens in the game.

Contained within these latter logs are also timing measurements of code paths that have
been identified as potential performance bottlenecks. These timed spots include conversation
and level parsing, in-battle unit movement and attack range calculations and drawing, and
overall frame drawing time (which is only logged when the duration of a frame exceeds a certain
threshold).

Measuring frame drawing time has identified two surprisingly expensive features: first, as
mentioned before, Swing handles semi-transparent image drawing in software; and second,
text outlining requires drawing raw shapes and is also fairly expensive. These features are used
sparingly so as to not reduce frame rate.

As a last measure to ease debugging, the game exposes some of its internal state to be

queried when needed via the standard input console! and certain key combinations.

*Both the Manhattan distance and the shifted down Manhattan distance are inadmissible heuristics (they
overestimate path costs) in the presence of many zero-cost edges. Using the latter is a compromise between
being able to handle a few zero-cost edges and having a reasonable heuristic when there are none.

TSince all console input in Java is blocking, this “console listener” can cause the game’s process to not termi-
nate when instructed, which is why it is disabled by default.

https://docs.oracle.com/en/java/javase/24/docs/api/java.base/java/util/ServiceLoader.html

Conclusions

Every story, even a faerie tale, comes to

Prev — ToC an end.

Declaration of Naught’s flavor text, in

Magic: The Gathering

Despite more getting close to a decade of development time Dragon’s Memoir is quite far
from being done. Currently only ten out of the possibly fifteen chapters of the first major arc
are fully implemented and most of the support conversations are yet to be written. Most of
the game’s art is “programmer art” not suitable for public release, and there’s no sound at all.

That said, Dragon’s Memoir’s engine is mostly complete, meaning that future development
can be streamlined into creating more of the game’s content.

All'in all, Dragon’s Memoir has succeeded at its original goals and shows promise in what it
can grow into.

29

https://scryfall.com/card/mor/29/declaration-of-naught

Articles Referenced

[1]

Al Art and its Impact on Artists, HARRY H. JIANG, LAWREN BROWN, JESSICA CHENG ET AL.,
Proceedings of the 2023 AAAI/ACM Conference on Al, Ethics, and Society, pp. 363—374,
2023-10-08.

https://doi.org/10.1145/3600211.3604681 WA2025-04-28

[Referenced in page 21]

A successfull Git branching model, VINCENT DRIESEN, 2010—-01-05.
https://nvie.com/posts/a-successful-git-branching-model A 2025-05-14
[Referenced in page 23]

Dark Deity is an ambitious strateqy-RPG from a rookie team that’s out now, JASON WILSON,
GamesBeat, 2021-06-15.

https://venturebeat.com/games/dark-deity-is-an-ambitious-strategy-r

pg-from-a-rookie-team-thats-out-now " 2025-02-28

[Referenced in page 4]

Double-checked locking should not be used, Sonar Rules.
https://rules.sonarsource.com/java/RSPEC-2168 A2025-05-18

[Referenced in page 26]

Java double checked locking, answer 1625180 by YisHAI to question 1625118 by Jim, Stack
Overflow.

https://ao.ngn.tf/questions/1625118/#1625180 520 B vetioworiginal

[Referenced in page 26]

Fire Emblem Awakening podria haber sido el tltimo, FERNANDO MATEUS, Hobby Consolas,

2013-05-26.

https://www.hobbyconsolas.com/noticias/fire-emblem-awakening-podri

a-haber-sido-ultimo-52742 A2025-02-28

[Referenced in page 5]

30

https://doi.org/10.1145/3600211.3604681
https://nvie.com/posts/a-successful-git-branching-model
https://venturebeat.com/games/dark-deity-is-an-ambitious-strategy-rpg-from-a-rookie-team-thats-out-now
https://venturebeat.com/games/dark-deity-is-an-ambitious-strategy-rpg-from-a-rookie-team-thats-out-now
https://rules.sonarsource.com/java/RSPEC-2168
https://ao.ngn.tf/questions/1625118/#1625180
https://stackoverflow.com/questions/1625118/#1625180
https://www.hobbyconsolas.com/noticias/fire-emblem-awakening-podria-haber-sido-ultimo-52742
https://www.hobbyconsolas.com/noticias/fire-emblem-awakening-podria-haber-sido-ultimo-52742

Articles Referenced

31

[7]

JEP 261: Module System, ALAN BATEMAN, ALEX BUCKLEY, JONATHAN GIBBONS, MARK REIN-
HoLD, Open)DK.

https://openjdk.org/jeps/261A202>-0>-18

[Referenced in page 26]

Making Anime Faces With StyleGAN, GWERN BRANWEN, 2022—-10-19.
https://gwern.net/face A2025-04-28

[Referenced in page 21]

This Waifu Does Not Exist, GWERN BRANWEN, 2020—-01-20.
https://gwern.net/twdne " 2025-04-28

[Referenced in page 21]

What Are Sanderson’s Laws Of Magic?, BRANDON SANDERSON!?, ca. 201817,

https://fag.brandonsanderson.com/knowledge-base/what-are-sanderson
s-laws-of-magic/ A2025-04-26

[Referenced in page 19]

https://openjdk.org/jeps/261
https://gwern.net/face
https://gwern.net/twdne
https://faq.brandonsanderson.com/knowledge-base/what-are-sandersons-laws-of-magic/
https://faq.brandonsanderson.com/knowledge-base/what-are-sandersons-laws-of-magic/

Wiki Articles Referenced

[11]

[12]

[13]

Manakete, FIRE EMBLEM WIKI.
https://fireemblemwiki.org/wiki/Manakete K?9532%5285 at 00:52

[Referenced in page 19]

Might, FIRE EMBLEM WIKI.

https://fireemblemwiki.org/wiki/Might k5933593581 at 18:45
[Referenced in page 4]

My Castle, FIRE EMBLEM WIKI.

https://fireemblemwiki.org/wiki/My Castle Ka?9332%30°10 ot 19:37

[Referenced in page 5]

[14] Second Wave, XCOM Wik

[15]

[16]

[17]

[18]

https://antifandom.com/xcom/wiki/Second_Wave H 202259228

REV 2023-08—20 at 04:14
[Referenced in page 7]
Time Travel, FIRE EMBLEM FANDOM WIKI

https://antifandom.com/fireemblem/wiki/Time_Travel f5222 9% 28

REv 2024—11-03 at 16:35

[Referenced in page 5]

Weapon level, FIRE EMBLEM WIKI.

https://fireemblemwiki.org/wiki/Weapon level Kp?8%35%5% 2t 17:58
[Referenced in page 4]

Weapon triangle, FIRE EMBLEM WIKI.

https://fireemblemwiki.org/wiki/Weapon_ triangle K29%35%5%%s ot 0404
[Referenced in page 4]

World Map, FIRE EMBLEM WIKI.

https://fireemblemwiki.org/wiki/World map Ka?9%35%7%s at 05:16

[Referenced in page 5]

32

https://fireemblemwiki.org/wiki/Manakete
https://fireemblemwiki.org/w/index.php?title=Manakete&oldid=626310
https://fireemblemwiki.org/wiki/Might
https://fireemblemwiki.org/w/index.php?title=Might&oldid=618471
https://fireemblemwiki.org/wiki/My_Castle
https://fireemblemwiki.org/w/index.php?title=My_Castle&oldid=630350
https://antifandom.com/xcom/wiki/Second_Wave
https://xcom.fandom.com/wiki/Second_Wave
https://xcom.fandom.com/wiki/Second_Wave?oldid=55779
https://antifandom.com/fireemblem/wiki/Time_Travel
https://fireemblem.fandom.com/wiki/Time_Travel
https://fireemblem.fandom.com/wiki/Time_Travel?oldid=716401
https://fireemblemwiki.org/wiki/Weapon_level
https://fireemblemwiki.org/w/index.php?title=Weapon_level&oldid=648226
https://fireemblemwiki.org/wiki/Weapon_triangle
https://fireemblemwiki.org/w/index.php?title=Weapon_triangle&oldid=647558
https://fireemblemwiki.org/wiki/World_map
https://fireemblemwiki.org/w/index.php?title=World_map&oldid=647344

Games Referenced

[19] Advance Wars (2001), developed by INTELLIGENT SysTEMS, published by Nintendo.
Wiki: https://warswiki.org/wiki/Advance Wars A 2025-03-11

[Referenced in page 6]

[20] AraFell (2016), developed by STEGOSOFT GAMES, published by Dangen Entertainment.
Official page: https://stegosoftgames.com/Games/AraFell 1 2025-02-21
[Referenced in page 3]

[21] Baldur’s Gate (1998), developed by BIOWARE, published by Black Isle Studios, Interplay
Entertainment, and Sega.

Wiki: https://antifandom.com/baldursgate Badm Gl
[Referenced in page 3]

[22] Baldur’s Gate II: Shadows of Amn (2000), developed by BIOWARE, published by Black Isle

Studios, and Interplay Entertainment.
Wiki: https://antifandom.com/baldursgate F202% 021
[Referenced in page 3]
[23] Baldur’s Gate 3 (2023), developed and published by LARIAN STuDIOS.
Official page: https://baldursgate3.game 4202502719
Wiki: https://bg3.wiki A2025-02-19

[Referenced in page 3]

[24] Brogue: Community Edition (2023), forked from the original by TMEWETT.
Official repository: https://github.com/tmewett/BrogueCE ‘A2025-02-20
Wiki: https://antifandom.com/brogue K2 ey

Fandom Original

[Referenced in page 3]

33

https://warswiki.org/wiki/Advance_Wars
https://stegosoftgames.com/Games/AraFell
https://antifandom.com/baldursgate
https://baldursgate.fandom.com
https://antifandom.com/baldursgate
https://baldursgate.fandom.com
https://baldursgate3.game
https://bg3.wiki
https://sites.google.com/site/broguegame
https://github.com/tmewett/BrogueCE
https://antifandom.com/brogue
https://brogue.fandom.com

34

Games Referenced

[25]

[26]

[27]

[28]

[29]

[30]

Chants of Sennaar (2023), developed by RuNDIsc, published by Focus Entertainment.
Official page: https://www.rundisc.io/chants-of-sennaar/ 202570426
Wiki: https://chantsofsennaar.miraheze.org/ A2025-04-26

[Referenced in page 19]

Chroma: Bloom and Blight (2021), developed by CLARITY GAMES, published by Philipp
Baumgart, and WhisperGames Interplay Entertainment.

WIiki: https://antifandom.com/chroma-bloom-and-blight Kadl% coeiad

[Referenced in pages d and 19]

Crypt of the Necrodancer (2015), developed by BRACE YOURSELF GAMES, published by
Brace Yourself Games, Klei Entertainment, and Spike Chunsoft.

Official page: https://braceyourselfgames.com/crypt-of-the-necrodancer
LA 2025-02-20

Wiki: https://necrodancer.miraheze.org 202>-02-20

[Referenced in page 3]

Dark Deity (2021), developed by SWORD & AXE LLC, published by indie.io.

Official page: https://darkdeitygame. com"A202>-02-24

Wiki: https://darkdeity.wiki.gg 202570224

[Referenced in pages 2, 4, 21, 22, and 26]

Divinity: Original Sin (2014), developed by LARIAN STuDIOS, published by Larian Studios,
Focus Home Interactive, and Spike Chunsoft.

Official page: http://www.divinityoriginalsin.com"2025-02-19 (HTTP only)

Wiki: https://divinityoriginalsin.wiki.fextralife.com?2025-02-19

[Referenced in page 3]

Divinity: Original Sin 2 (2017), developed by LARIAN STuDI0S, published by Larian Studios,
and Bandai Namco Entertainment.

Official page: https://divinity.game 2025702719

Wiki: https://divinityoriginalsin2.wiki.fextralife.com?2025-02-19

[Referenced in page 3]

https://www.rundisc.io/chants-of-sennaar/
https://chantsofsennaar.miraheze.org/
https://antifandom.com/chroma-bloom-and-blight
https://chroma-bloom-and-blight.fandom.com
https://braceyourselfgames.com/crypt-of-the-necrodancer
https://necrodancer.miraheze.org
https://darkdeitygame.com
https://darkdeity.wiki.gg
http://www.divinityoriginalsin.com
https://divinityoriginalsin.wiki.fextralife.com
https://divinity.game
https://divinityoriginalsin2.wiki.fextralife.com

Games Referenced 35

[31]

Dota 2 (2013), developed and published by VALVE.

Official page: http://www.dota2.comA202>-02-21

Wiki: https://liquipedia.net/dota2 A2025-02-21

[Referenced in page 3]

Dream Tactics (2024), developed by SPECTRA ENTERTAINMENT INC., published by indie.io.

Official page: https://www.playdreamtactics.comA2025-03-01

Wiki: https://dreamtactics.wiki.ggA2025-03-01

[Referenced in page 5]

Fae Tactics (2020), developed by ENDLESS FLUFF GAMES, published by Humble Games.

Official page (from the publisher): https://www.humblegames.com/games/faetac

tics LA 2025-03-01

Wiki: https://antifandom.com/fae-tactics Kyala oo

[Referenced in page 5]

Fell Seal: Arbiter’s Mark (2019), developed by 6 Eves Stupio, published by 1C Entertain-

ment.

Snapshot of the official page: https://web.archive.org/web/20221206120714/h

ttps://www.fellseal.com 05853313 06

Wiki: https://antifandom.com/fellseal 2203 L

[Referenced in pages 5 and 22]

Final Fantasy Tactics (1997), developed by SQUARE, published by Square and Sony Com-
puter Entertainment.

Snapshot of the official page: https://web.archive.org/web/20090617052440/h

ttp://www.square-enix-usa.com:80/games/fft/fft-index2.html

LA 2025-03-01

ARCH 2019-06-17

Wiki: https://antifandom.com/finalfantasy/wiki/Final_Fantasy_Tactics
LA 2025-03-01

Fandom Original

[Referenced in page 5]

http://www.dota2.com
https://liquipedia.net/dota2
https://www.playdreamtactics.com
https://dreamtactics.wiki.gg
https://www.humblegames.com/games/faetactics
https://www.humblegames.com/games/faetactics
https://antifandom.com/fae-tactics
https://fae-tactics.fandom.com
https://web.archive.org/web/20221206120714/https://www.fellseal.com
https://web.archive.org/web/20221206120714/https://www.fellseal.com
https://antifandom.com/fellseal
https://fellseal.fandom.com
https://web.archive.org/web/20090617052440/http://www.square-enix-usa.com:80/games/fft/fft-index2.html
https://web.archive.org/web/20090617052440/http://www.square-enix-usa.com:80/games/fft/fft-index2.html
https://antifandom.com/finalfantasy/wiki/Final_Fantasy_Tactics
https://finalfantasy.fandom.com/wiki/Final_Fantasy_Tactics

36

Games Referenced

[36]

[37]

[38]

[39]

[40]

[41]

Fire Emblem Awakening (2012), developed by INTELLIGENT SYSTEMS, published by Nin-

tendo.

Snapshot of the official page: https://web.archive.org/web/20190430083426/h
ttp://www.fireemblemawakening. com §295819%638 30

Wiki: https://fireemblemwiki.org/wiki/Fire Emblem Awakening 'A?2025-02-28

Fire Emblem Fates (2016), developed by INTELLIGENT SYSTEMS, published by Nintendo.

Snapshot of the official page: https://web.archive.org/web/20210117181056/h

ttps://fireemblem.nintendo.com/fates %2058:9%6:817

Wiki: https://fireemblemwiki.org/wiki/Fire Emblem Fates A 2025-02-28

[Referenced in page 5]

Fire Emblem Heroes (2017), developed by INTELLIGENT SYSTEMS, published by Nintendo.

Official page: https://fire-emblem-heroes.com2025-02-24

LA 2025-02-24

Wikis: https://fireemblemwiki.org/wiki/Fire_Emblem_Heroes and

https://antifandom.com/feheroes K i Gaia

[Referenced in page 21]

Fire Emblem: Shadow Dragon & the Blade of Light (1990), developed by INTELLIGENT Sys-
TEMS, published by Nintendo.

Wiki: https://fireemblemwiki.org/wiki/Fire_Emblem:_Shadow_Dragon_%26
_the_Blade_of_Light A2025-02-24

[Referenced in page 4]

One Step From Eden (2020), developed by THOMAS MOON KANG, published by Humble
Bundle.

Official page: https://www.onestepfromeden. com ' 202>-02-20

Wiki: https://antifandom.com/onestepfromeden Fzom coaial

[Referenced in page 3]

Symphony of War: The Nephilim Saga (2022), developed by DANCING DRAGON GAMES, pub-
lished by indie.io.

https://web.archive.org/web/20190430083426/http://www.fireemblemawakening.com
https://web.archive.org/web/20190430083426/http://www.fireemblemawakening.com
https://fireemblemwiki.org/wiki/Fire_Emblem_Awakening
https://web.archive.org/web/20210117181056/https://fireemblem.nintendo.com/fates
https://web.archive.org/web/20210117181056/https://fireemblem.nintendo.com/fates
https://fireemblemwiki.org/wiki/Fire_Emblem_Fates
https://fire-emblem-heroes.com
https://fireemblemwiki.org/wiki/Fire_Emblem_Heroes
https://antifandom.com/feheroes
https://feheroes.fandom.com
https://fireemblemwiki.org/wiki/Fire_Emblem:_Shadow_Dragon_%26_the_Blade_of_Light
https://fireemblemwiki.org/wiki/Fire_Emblem:_Shadow_Dragon_%26_the_Blade_of_Light
https://www.onestepfromeden.com
https://antifandom.com/onestepfromeden
https://onestepfromeden.fandom.com

37

Games Referenced

Official page: https://www.dancingdragongames.com/symphony-of-war

LA 2025-03-11

Wiki: https://symphonyofwar.wiki.gg 42025703711

[Referenced in pages 7, 8, 15, and 26]
[42] Tunic (2022), developed by IsoMETRICORP GAMES, published by Finiji.

Official page: https://tunicgame.com/ 2025-04-26

Wiki: https://antifandom.com/tunic K22 %28

[Referenced in page 19]

[43] Unicorn Overlord (2024), developed by VANILLAWARE, published by Sega and Atlus.
LA 2025-02-19

Official page: https://unicornoverlord.atlus.com

Wiki: https://antifandom.com/unicornoverlord Kalm orginal

[Referenced in page 3]
[44] Wargroove (2019), developed and published by CHUCKLEFISH.

Official page: https://wargroove.com#202>-03-11
Wiki: https://wargroovewiki.com2025-03-11

[Referenced in page 6]

[45] Wargroove 2 (2023), developed and published by CHUCKLEFISH.
Official page: https://wargroove.com " 202>-03-11
Wiki: https://wargroovewiki.com2025-03-11

[Referenced in page 6]
[46] XCOM: Enemy Unknown (2012), developed by Firaxis GAMES, published by 2K.
LA 2025-02-21

Official page: https://www.xcom.com/xcom-enemy-unknown

Wiki: https://antifandom.com/xcom 2220221

[Referenced in page 3]

[47] XCOM 2 (2016), developed by FirAXIS GAMES, published by 2K.

Official page: https://xcom. comA2025-02-21
Wik https://antifandon. com/xcom ek

[Referenced in page 3]

https://www.dancingdragongames.com/symphony-of-war
https://symphonyofwar.wiki.gg
https://tunicgame.com/
https://antifandom.com/tunic
https://tunic.fandom.com
https://unicornoverlord.atlus.com
https://antifandom.com/unicornoverlord
https://unicornoverlord.fandom.com
https://wargroove.com
https://wargroovewiki.com
https://wargroove.com
https://wargroovewiki.com
https://www.xcom.com/xcom-enemy-unknown
https://antifandom.com/xcom
https://xcom.fandom.com
https://xcom.com
https://antifandom.com/xcom
https://xcom.fandom.com

	Abstract
	Introduction
	Document Structure
	Overview and History
	Prior Art
	Fire Emblem series
	Tactics series
	Wars series

	Game Design
	Gameplay
	Gameplay Loops
	Game Mechanics
	UI and Input
	Runtime Reqs.

	Worldbuilding

	Development Plan
	Software and Tooling
	Budget Estimates
	Dev. Methodology

	Implementation and Testing
	Software Architecture
	Implementation Details
	Testing and Debugging

	Conclusions
	Articles Referenced
	Wiki Articles Referenced
	Games Referenced

