
Escuela de Ingenería Informática de Segovia

Trabajo de Fin de Grado

Grado en Informática de Servicios y Aplicaciones

Dragon’s Memoir

Autor: Iván Nieves Stantcheva

Tutor: Fernando Díaz Gómez

Curso 2024–2025

Dedicated to my parents,

who many a time have asked when this project would be done.

No generative AI models have been

used in the creation of this project.

https://cadence.moe/blog/2024-10-05-created-by-a-human-badges

Contents

Abstract d

1 Introduction 1

1.1 Document Structure 1

1.2 Overview and History 1

1.3 Prior Art 3

1.3.1 Fire Emblem series . . 4

1.3.2 Tactics series 5

1.3.3 Wars series 6

2 Game Design 9

2.1 Gameplay 9

2.1.1 Gameplay Loops . . . 9

2.1.2 Game Mechanics . . . 11

2.1.3 UI and Input 15

2.1.4 Runtime Reqs. 18

2.2 Worldbuilding 19

3 Development Plan 20

3.1 Software and Tooling 20

3.2 Budget Estimates 22

3.3 Dev. Methodology 23

4 Implementation and Testing 25

4.1 Software Architecture 25

4.2 Implementation Details . . . 26

4.3 Testing and Debugging 28

5 Conclusions 29

Articles Referenced 30

Wiki Articles Referenced 32

Games Referenced 33

Abstract

Dragon’s Memoir is a work-in-progress tactical role-playing game inspired by the Fire Emblem

video-game series. From a game-play perspective, it tries to expand upon already established

mechanics rather than create a completely new genre of its own. From a world-building view-

point, Dragon’s Memoir’s story takes place in a world loosely based on that of Chroma: Bloom

and Blight26 and on Brandon Sanderson’s Cosmere, featuring an original magic system and

unique mythology.

This project elaborates on three video-game series that have inspired to varying degrees

some features of Dragon’s Memoir before going into detail on the game’s design and develop-

ment process.

Key words: fantasy, hard fantasy, role-playing games, turn-based strategy, video games.

Resumen

Dragon’s Memoir es un videojuego de rol táctico inspirado en la saga de videojuegos Fire

Emblem. En lugar de reinventar el género, el juego trata de expandir mecánicas ya asentadas

en él. El mundo en el que ocurre la trama de Dragon’s Memoir está muy vagamente inspirado

en el de Chroma: Bloomand Blight26 y en el Cosmere de Brandon Sanderson, junto conmitología

y un sistema de magia originales.

Este trabajo describe tres sagas de videojuegos que han inspirado algunas características

de Dragon’s Memoir y después detalla el proceso de diseño y desarrollo seguido para la imple-

mentación de este.

Palabras clave: estrategia por turnos, fantasía, fantasía dura, juegos de rol, videojuegos.

d

1 Introduction

1.1 Document Structure

This project report is split into five chapters, roughly corresponding to the five stages of

a project: introduction, design, development, implementation, and finally a short conclusion

chapter.

This introductory chapter will describe Dragon’s Memoir in broad strokes, explain some of

its history and delve into prior art in the genre that it belongs to.

The second chapter will go into more detail regarding the game’s mechanics and design,

concluding with a brief description of the universe Dragon’s Memoir plot takes place in.

The third and fourth chapters deal with development and implementation, explaining the

tools andmethodology used to develop the game, as well as some implementation and testing

notes.

Each chapter is split into several sections, as appropriate for each of them; a broad overview

paragraph that sums up the content of one or more sections is included before them together

with links to the previous, table of contents, and next sections.

1.2 Project Overview and History*

ToC – Next

This is your story. It all begins here.

Path to Exile’s flavor text, in

Magic: the Gathering.

tl;dr — Dragon’s Memoir is a tactical role-playing game inspired by

Fire Emblem Awakening36 that has been in development for eight

years, at some point being written in C++, Xtend, and Java. It

doesn’t try to blaze a trail as much as expand on well-established

tropes in its genre.

*External links in this section have been last accessed on 2025–05–25; dates throughout this document are
specified in the format YYYY–MM–DD.

1

https://scryfall.com/card/fic/248/path-to-exile

2 Introduction

Design and development of Dragon’s Memoir began back in 2017 after finishing a play-

through of Fire Emblem Awakening.36 It was originally conceived as a spiritual successor to that

game, and at the time it seemed a relatively simple project with which to learn programming.

Originally the game was to be written in C++ using Qt Creator as a front-end library.The

project would eventually be rewritten in Java so as to avoid possible licensing issues regarding

the usage of Qt Creator’s community edition.

While Java was the language Dragon’s Memoir was rewritten into, for three years Xtend

was used instead as a Java transpiler; IDE performance issues and the eventual conclusion of

Xtend’s development motivated another rewrite of the game’s code back into Java, language

Dragon’s Memoir has been written in since late 2021.

Concurrently with code development, the game’s world and plot was being refined little by

little, with features inspired by Dungeons and Dragon’s campaigns and Brandon Sanderson’s

books on the Cosmere.

Dragon’s Memoir does not intend to revolutionize the tactical role-playing game genre and

instead expands on well-established mechanics without bringing in an overwhelming amount

of changes to these well-known systems. Of note among these revised mechanics is Dragon’s

Memoir’s weapon system, which features partially breaking weapons and a unique advantage

system expanding upon Awakening’s36 without being as complex as Dark Deity’s.28

Unlike in the former game, Dragon’sMemoir’s players don’t directly participate in the game’s

plot and is relegated to a spectator role. This is not to say that the player’s choices do not affect

the game’s plot at all (cf. Dark Deity28), but that the player lacks an “avatar” representing them

in-world.

At the time of writing, Dragon’s Memoir is undergoing a relatively large user interface refac-

tor, adding somemuch needed visual pizzazz and removing some limitations that have plagued

the game for years, particularly the inability to resize the game’s window to any size other

than 800 px by 600 px. That aside, the game currently features ten playable chapters (and

a sneak-peek into the eleventh) featuring fifteen playable characters (and a sneak-peek into

three more).

https://www.qt.io/product/development-tools
https://eclipse.dev/Xtext/xtend/index.html
https://github.com/eclipse-xtext/xtext/issues/1721
https://github.com/eclipse-xtext/xtext/issues/1721

1.3. Prior Art 3

1.3 Prior Art

Prev – ToC – Next

Name three examples.

Epigrams, Gwern Branwen

tl;dr — Dragon’s Memoir is a turn- and grid-based tactical role-

playing game, varyingly related to the Fire Emblem, Final Fantasy

Tactics and Wars game series. Fire Emblem Awakening36 is the pri-

mary inspiration of the game.

If we were to fully detail the genres Dragon’s Memoir belongs to, we would categorize it as

a turn- and grid-based tactical role-playing game.

“Grid-based” simply means that the placement of characters and structures are bound to

a relatively coarse grid, like the squares of a chessboard. Each character occupies their own

square regardless of size, and movement requires an empty square to traverse (like the move-

ment of a rook in chess, for example). There are plenty of games in which this is not the case,

where characters and objects aren’t restricted to “integer steps” andwhere a unit’s size affects

the space they occupy; a notable example of this variation is Baldur’s Gate 323 (which perhaps

misleadingly is mechanically closer to the Divinity: Original Sin series29,30 than to the first two

Baldur’s Gate games21,22).

A game being grid-based often implies that it is also “turn-based”, although exceptions

abound, such as One Step from Eden40 and Crypt of the Necrodancer.27 In this context, turn-

based (as opposed to “real-time”) indicates that gameplay advances in discrete time steps

rather than continuously (compare Brogue24 with Unicorn Overlord,43 for example). Within this

paradigm, there are two common ways to determine the order in which units act: either all

units of a given side (player-controlled, enemy, or neutral) act at the same time (or consecu-

tively, as in the XCOM series46,47), or turns are interleaved, the exact order being determined

by a given unit’s abilities and/or with an “initiative roll”; Dragon’s Memoir follows the former

round structure.

Lastly, a tactical role-playing game combines mechanics from both strategy and role-playing

games (henceforth “RPGs”): characters’ abilities grow as the game progresses, and those char-

acters must be controlled in large-scale battles rather than only micro-managed in skirmishes.

This contrasts bothwith “pure” role-playing games, where fine-grained unit control is restricted

to battles the whole player’s party participates in (as in Ara Fell20), and with “pure” strategy

games, where an over-arching story and persistent character growth are often missing (such

as Dota 231).

Even within this three-step classification there is room for further subgenre distinction that

we could descend into, but beyond this point the differences become less significant. Instead,

wewill detail three sagaswhose games also fall into the turn- and grid-based tactical RPG genre,

examples of their “offspring”, as well as explain their relation to Dragon’s Memoir.

https://gwern.net/epigram

4 Introduction

1.3.1 Fire Emblem series

Dating back to 1990,39 the Fire Emblem series by Intelligent Systems is the sagamechanically

closest to Dragon’s Memoir. Also related to this series is Dark Deity,28 a recent indie game

whose origins are akin to Dragon’s Memoir’s3 and which could be considered a far relative in

terms of scope.

The games’ stories follow the deeds of a noble or, in more recent games, an avatar of the

player within the context of a war, the player determining their and other members of their

army’s actions in battle. Each unit in the game has a class that determines which weapons

they can use, which skills they learn as they gain experience in combat, to which other classes

they can “promote” to once they reach a high enough experience level, and whether the unit

is particularly weak to a certain type of weapon (flying units are weak to bows in most games

of the series, for instance).

The three main melee weapons in the series are subject to the “weapon triangle”:17 a rock-

paper-scissors relationship between swords, lances and axes. In combat, swords are effective

against axes, increasing the chance of successful attacks against, and sometimes also increas-

ing damage dealt to, units wielding axes. The same happens to lancers against units that use

swords, and to those that use axes against lances. In some games, this advantage also applies

to weapon types beyond those three, such asmagic weapons in the games that feature a three-

way magic system. Weapons in Dragon’s Memoir also abide by this extended weapon triangle,

but effectivities (called “colors” in-world) are completely detached from weapon types; this is

explored in a optional subplot within the game.

There are two other differences between Dragon’s Memoir’s and Fire Emblem’s weapon sys-

tems: First, there are no “weapon levels”16 in Dragon’s Memoir—if a unit’s class allows them

to use a weapon, they can use all weapons of that type. Second, a weapon’s base damage

(its “might”12) can change as its durability decreases*: a sword becomes dull as it is used, and

spellcasters grow frugal as their spells’ reagents wane.

Another prevalent mechanic in the Fire Emblem series are character supports: some pairs of

player-controlled characters build up rapport throughout the gameby spending time together—

that is, by fighting enemies when they are near each other—which is told as a series of conversa-

tions in-betweenmain story chapters once enough support is attained between two characters.

The rewards for reaching these support thresholds are stat increases that only apply when the

two units are together in combat; Dragon’s Memoir extends these rewards by granting unique

weapons and skills, on top of intertwining conversation arcs and adding requirements to some

support chains to further deepen the support system.

*Only breakable weapons can have these “durability steps”, which need not decrease damage as the weapon
breaks—the edge of a crystal axe might become sharper as it chips, for example.

1.3. Prior Art 5

1.3.1.1 Fire Emblem Awakening

As mentioned before Fire Emblem Awakening36 was both a turning point for the series6 and

Dragon’s Memoir’s reason for existence. As a matter of fact, it was an issue with single scene

that sparked development: discordance between narration and game interface.

In terms of gameplay, Fire Emblem Awakening has all the characteristics of a Fire Emblem

game as described above, with the weapon triangle being restricted to the three main phys-

ical weapons. Additionally, the game features a two-generation character system: reaching

the maximum possible level of certain support pairs will allow their children to join the player’s

army; this system was also featured in the series’ next game,37 and there are plans for future

plot arcs of Dragon’s Memoir to feature a similar system without resorting to time travel15 in

the way that Awakening and Fates handle it.

Unlike in subsequent games in the Fire Emblem series, the player may travel along the world

map18 to purchase weapons and fight skirmishes to increase their units’ levels, but not access

their base camp proper.13 In Dragon’s Memoir the situation is the opposite, as in Fire Emblem

Fates:37 the player cannot leave their camp, and the shop and training grounds are available

there instead. This base of operation also serves as the level used for some story chapters and

as a backdrop for some support conversations (which in Fire EmblemAwakening all use a generic

background regardless of where the conversations take place in).

1.3.2 Final Fantasy Tactics series

Final Fantasy Tactics is both a 1997 tactical RPG35 and name of the series that game started.

This series is frequently abbreviated to Tactics, word that often appears as part of the title of

games that feature similar mechanics, as in Fae Tactics33 and Dream Tactics.32 We mention Fell

Seal: Arbiter’s Mark34 as a recent notable game that fits within the series’ paradigm.

Where the Fire Emblem series focus combat on the weapon triangle and character supports,

relegating abilities to a more passive role, Tactics games focus on active skills. The most com-

mon action a unit in a Fire Emblem game takes is to “just attack” another, whereas in Tactics

that character would almost always be ordered to use one of the many skills their class taught

them. In addition to having an overarching experience level that determines their stats, each

unit has their own class levels, which determines which class skills they can use. It is not un-

common for some classes to require reaching a certain level in another class before being able

to “reclass” a unit into the former, which, together with a lower maximum class level, builds

a class promotion tree more complex than those in the Fire Emblem series and facilitates army

diversification.

6 Introduction

Damage and equipment also work differently in the two series: In the Fire Emblem series dam-

age is either “physical” or “magical” with most units locked into one of them, while in Tactics

skills deal damage ofmore “concrete” damage types such as “fire” or “slashing” and units have

access to several such damage types at any given time. Similarly, items in the Fire Emblem se-

ries are limited to (almost always breakable) weapons, healing staves, and consumable items;

in Tactics, all equipment is unbreakable (although consumable items exist), and there are dif-

ferent armor pieces that compliment a unit’s innate stats to better defend themselves against

certain damage types. Dragon’s Memoir follows Fire Emblem’s lead and only has physical and

magical damage types, and no armor items.

The most noticeable difference between Fire Emblem and Tactics is in the display of battles:

levels in Fire Emblem are displayed in a square grid (like the squares of a chessboard), and are

vertically flat regardless of the terrain the battle takes place in, whereas in Tactics battles are

often displayed in isometric perspective and height plays a role in determining movement and

skill range.

Somewhat related to isometric perspective, and amechanic common in Tactics games is unit

facing: at the end of a unit’s turn, they decide on a direction to face along grid lines. Attacks

are more effective when done from the sides or the back of the target. This mechanic was once

considered for Dragon’sMemoir but eventually scrapped during development; some class skills

in the game partially implement this system in a simplified manner.

Also a notable difference between Tactics and Fire Emblem is the reliance on mercenaries:

rather than new characters being added to the player’s army throughout the whole story, the

player is given the option—and heavily encouraged—to hire mercenaries to fill in their ranks.

Currently there are no plans to implement unit recruitment in this manner in Dragon’s Memoir,

although it is not entirely out of the question assuming it can be made to fit within the game’s

narrative.

Overall, the series’ influence on Dragon’s Memoir is limited. While skills in Dragon’s Memoir

are stronger than in the Fire Emblem series, they aren’t the focus of the game’s mechanics, and

the class promotion system is yet to be decided on.

1.3.3 Wars series

One last notable series within the turn-based tactical RPG genre is the Wars series by Intelli-

gent Systems, sometimes called AdvanceWars after the 2001 game of the same title.19 Recent

games of note within the series’ paradigm are Wargroove44 and its sequel.45

Unlike in the Fire Emblem and Tactics series, where the player controls each unit of their army

separately, in Wars the player gives orders to whole squads of their army. Also unlike in the

1.3. Prior Art 7

former series, as a squad’s health pool decreases, so does their combat power (similar to how

the Red Fog option works in XCOM14), meaning damaged units deal less damage and are more

likely to be completely defeated.

Chapter objectives in Wars vary slightly from those in Fire Emblem, as the most common

goal is not to defeat all enemies, but to defeat the opposing side’s leader and take over the

opponents’ headquarters. Likewise, the losing condition is not just losing the main character’s

squad, but also having an enemy reach the player’s base.

There is little in terms of character progression or customization in the Wars series. Levels

are self-contained and the player is incentivized to “purchase” reinforcements during them

using resources acquired in the level itself. Squads present at the start of a chapter are of a

given, fixed unit type (infantry or ships, for example) that cannot be changed, and similarly,

reinforcements cannot change types once summoned.

One notable feature of some Wars games are the so called “Powers”: powerful active abil-

ities that the player can use once per battle or on a cooldown to help them overcome their

opponents. Dragon’s Memoir does not feature these abilities as they are unjustified from an

in-world perspective and severely warp the game’s balance around them.

1.3.3.1 Symphony of War: The Nephilim Saga

Symphony of War: The Nephilim Saga41 is a game borrows features from all three sagas we

have described: from Fire Emblem, support conversations; from Tactics, the class promotion and

equipment systems; and fromWars, the player controlling squads of units instead of individual

units in combat. Unlike in Wars, however, the player is allowed more granular control over the

units in their squads, being able to freely customize their class and position within the squad,

making a broader variety of strategies and army compositions possible.

Rather than bringing in mechanics from Symphony of War41—many of which are already

present by virtue of appearing in the Fire Emblem series,—Dragon’s Memoir brings in lessons

on how to implement them:

• The player needs information and control to decide their course of action. In particular,

combat forecasts should give enough information to roughly determine their outcome

(barring randomness in whether a unit will miss their attack et cetera).

• Information displayed should be clear, accurate, not out-of-date, and displayed in a way

that does not overwhelm the player. Tooltips sometimes work better than text boxes.

8 Introduction

• The game’s interface should act in accordance with the player’s input method. When

using mouse input, clicking on a menu element should perform that element’s action,

not select the menu.

• The game’s mechanics should be clear and consistent, and must be explained properly.

If a unit can take a given action, all other units should also be able to take that action; if

this is not the case, the player should clearly be told why.

• It is better to not include a mechanic whose effects are unclear than to include it only

for the sake of realism: Weather and day-night cycles that only affect some units in

unspecified manners should be left out, but fog of war that restricts vision is perfectly

acceptable.

• Abilities need to be carefully balanced, and some are just too strong to be included. Al-

lowing a unit to take multiple actions in a turn without any associated cost is one of the

latter.

The above laundry list of complaints should not be understood as saying that Symphony of

War41 is a bad game, or that it is poorly implemented; it merely identifies things Dragon’s

Memoir can improve upon.

2 Game Design

2.1 Gameplay

2.1.1 Gameplay Loops

Prev – ToC – Next

Ever tried. Ever failed. No matter.

Try again. Fail Again. Fail Better.

Worstward Ho, Samuel Beckett

tl;dr — The high-level loop consists of lead-in conversation, battle,

conclusion, and intermission. A turn in battle has the player act

first, then their enemies act automatically. Intermissions allow the

player to prepare for subsequent battles. See figure 2.1

The game’s core gameplay loop can be summarized as alternation between chapters, in

which the game’s plot advances, and intermissions, in which the player is allowed to do house-

keeping in preparation for subsequent chapters.

Most chapters are divided into three parts: a lead-in conversation that advances the plot, a

battle where the player is allowed tactical input, and a second conversation that concludes the

chapter. Depending on its plot, a chapter may not involve fighting, in which case it might not

have a battle and thus only include conversations.

Each battle has a given goal for the player to achieve, and takes place in turns split into

two phases. During the first phase of each turn the player is allowed precise control over

their units, having them act in whichever order they choose; afterwards, during the second

phase, the game automatically controls the remaining units, often with the intent of hindering

the player’s progress. At the lowest level, a unit acts in two steps: first, they may move to a

different position, and second, they may take a concrete action, such as fighting another, or

healing them.

Intermissions are unstructured sections that represent downtime in the overarching plot.

Not all chapters have an intermission following them, depending on the events that happen

during the chapter.

9

10 Game Design

Figure 2.1: Overview of Dragon’s Memoir nested gameplay loops. Red arrows represent tran-
sitions between states.

2.1. Gameplay 11

2.1.2 Game Mechanics

Prev – ToC – Next

We do not study war because we

love it, but because we hate it.

Mournful Tutelage’s flavor text, in

Chroma: Bloom and Blight

2.1.2.1 Unit-related

Each unit has a class. It determines which kinds of weapons they can use and whether they

are weak to any particular kind of weapon. It also determines the base mobility a unit has, as

described below.

Units gain experience as they fight in battle, and once enough is accumulated they “level

up”. These level ups increase the unit’s stats and may teach them a new skill depending on

their class once a high enough level is reached.. The chance a given stat increases also depends

on the class: for instance, mages will have a higher chance of their magic stat increasing than

an archer.

Each unit has eleven stats:

• Two offensive stats (one per damage type; “strength” and “magic”) that increase the

amount of damage the unit’s attack deal.

• Two defensive stats (also one per damage type; “defense” and “resistance”) that de-

crease the amount of damage taken.

• One stat (“hit points”, often also called “health” or “HP”) that determines how much

damage the unit can take before falling in battle.

• Three stats (“speed”, “skill” and “dexterity”) that together determine the unit’s hit, crit-

ical hit and dodge chances in combat, and whether the unit will try to attack multiple

times in combat.

• The three pseudo-stats corresponding to the unit’s hit, critical hit and dodge chances;

their base values are determined by the previous three stats, but can be subsequently

modified by weapons and skills (see below).

• One pseudo-stat (“mobility”) that determines how far the unit moves in battle. Its base

value is determined by the unit’s class and status.

At the time of writing, permanent player-controllable character death is not implemented,

although conversations do take into account potential character deaths. Characters “revive”

on chapter end; this is sometimes referred to as “Casual Mode” in the Fire Emblem series.

https://antifandom.com/chroma-bloom-and-blight/wiki/Mournful_Tutelage

12 Game Design

A unit can have any amount of “skills”, the effects of which can vary. Classes grant a

unique skill (a “tactic”) to units that belong to it; a unit changing class changes which tactic

they have. Skills may also be learnt in other ways, as appropriate to the skill.

Some pairs of player-controlled units can build up “support” during battle; which pairs

can depends on the character’s personal backstories, attitude and tastes, all of which cannot

be changed by the player. Once enough support is built up, the player can “confirm the support

level” by watching a conversation unfold between the two units during an intermission. Doing

so unlocks certain benefits, the most common of which being temporary stat increases when

the two units are near each other in battle. Support levels can have additional conditions

needed to unlock them, which can include reaching a given support level with a different pair

of units, or not having reached that level, effectively making certain support levels exclusive.

2.1.2.2 Item-related

Units can carry an arbitrary amount of items, which contain up to one equipped weapon

and staff. A unit will use their equippedweaponwhen told to fight (or when another unit fights

against them), and their equipped staffwhen told to heal another unit. Not all player-controlled

units can equip staves; which ones can depend on the character themself.

Each item has a “color”, which modifies the damage their wielders deal and take in combat.

Only the equipped weapon, if any, modifies this damage; a generic no-modification color is

used in the event a unit without an equipped weapon engages in combat.

Items have up to one skill that is active for as long as the item remains in the unit’s inventory.

Weapons and staves may also have one skill that is active when they are equipped.

Weapons have a few additional characteristics:

• Each weapon belongs to a given “weapon type” that determines which classes can

equip it. There are ten weapon types, five of which are “physical” and the rest, “magical”.

This distinction determines which stats are used in combat, as detailed before.

• They are either breakable or unbreakable. Breakableweapons can havemultiple “weapon

steps”, which determine the base damage they deal in combat; unbreakable weapons

can only have one.

• A weapon step specifies howmany attacks the wielder will attempt each time they make

an attack in combat (most commonly only one) and the base damage of those attacks,

which need not be deterministic.

2.1. Gameplay 13

• They have a base hit chance, which, as its name implies, determines the chance its

wielder’s attacks will land in combat. A weapon whose base hit chance is 100% will

never miss, regardless of the target’s dodge chance.

• They have a fixed attack range that determines how distant thewielder canmake attacks.

Melee weapons have a range of one, and most ranged weapons have a range of at most

two.

Staves follow the same rules as weapons, except that there is only one “staff type”, staves

heal instead of dealing damage, and staves never miss in their healing.

Unused items in a unit’s inventory may be stashed away during intermissions to be retrieved

later or given to another unit. Some items cannot be put away in this manner, such as those

that represent a physical part of a creature.

2.1.2.3 Battle-related

Each battle has a win condition (usually defeating all enemies) and a lose condition (usually

having a particular unit fall in combat). Achieving the win condition ends the battle and causes

the game’s plot to advance. Achieving the lose condition results in what could be considered

a “game over” and forces the player to replay and win the battle to continue the game. The

player is told what the win condition and lose conditions for a battle are. At the time of writing,

lose conditions aren’t fully implemented; it is expected that the implementation will require

modifying the conversation parser to account for defeat.

Movement in battle is square-grid-based. How many squares a unit can cover in a given

turn is determined by their stats and the terrain those squares represent; some terrain can

slow certain units down, or prevent their movement altogether. Units move orthogonally

along the grid (that is, along grid lines and not diagonally); effects that measure distance do

so using the Manhattan distance (positions that are diagonally adjacent are at distance two

of each other).

Only one unit can be in any given square. The player moving a unit onto a square occupied

by another of their units allows them to displace the latter to an adjacent square.

After choosing to move a unit (or to not do so), the player may instruct them to change

their equipped items, and then to take an action among the following:

• Fight another unit, possibly without intent to fully defeat them. This will have the two

units engage in combat, and afterwardsmay grant experience to the involved units. This

will also make supports that involve the attacker and defender progress.

14 Game Design

• Heal one of the unit’s allies (or themself), recovering their lost health points.

• Talk to a nearby unit, when a conversation is available.

• Activate any skill of theirs that can be activated at this point.

The player is informed of the (potential) consequences of their actions (eg. as in figure 2.2),

and given a chance to confirm their choice or explore alternative options. Movement can be

fully undone before an action is confirmed.

Figure 2.2: Prospective information about a fight between two units. Note thatmedian damage
is displayed, not mean damage, as the former is more representative of the fight’s outcome.

The player may also instruct all of their units that are yet to act this turn to do nothing,

ending the player’s phase this turn.

When two units fight, they attempt to deal damage to each other. First, whoever initiates

combat (the “attacker”) makes an attack against the other unit (the “defender”). Then, if the

defender’s weapon’s range allows them to attack the attacker, they try to do so. Finally, if the

difference in speed stats is large enough, the attacker or the defender will attempt a second

attack.

Each attack in a fight has three possible outcomes: miss (the attack deals no damage),

hit (the attack lands, and deals damage), and critical hit (the attack lands and deals extra

damage). The stats and weapons of the involved units determine the likelihood of each of

these outcomes.

Skills can modify a number of aspects of a fight, including who each attack is made against,

and adding extra attacks beyond the usual ones.

2.1. Gameplay 15

2.1.2.4 Intermission-related

Between some chapters the player is allowed to explore their base camp and prepare for

future battles.

Those preparations include buying and selling equipment for their units using money ob-

tained from story events or looted in battle. Which items are available for purchase change

from chapter to chapter and shopping may not be available between some chapters.

Intermissions also allow the player to “cash in” unlocked support levels. Each support

explores small side stories between two characters and once a level is unlocked grants those

units some minor boons, notably including temporary stat increases in battle.

Finally, the player is allowed to play some mini-games once unlocked. Much like supports,

they explore side stories but grant more “tangible” boons in the form of items.

Unlike in Awakening36 and Symphony of War,41 Dragon’s Memoir currently has no way to

“train” units out of combat. This is a downtime action that could be considered, but the

problem it solves is arguably better solved by carefully balancing battles.

Once the player is satisfied with their preparation they can “depart”, moving on to the next

chapter of the story.

2.1.3 User Interface and Input

Prev – ToC – Next

Novice shopkeeps spend hours deciding how best

to display their wares. Veterans focus on portability.

Batterhorn’s flavor text, in Magic: The Gathering

tl;dr — A window of at least 800×600 pixels is needed. Text uses

serif fonts. Tooltips are often used. Both keyboard andmouse can

be used for player input.

The game requires a window of 800-by-600 pixels in size in order to properly display its

content; this represents a minimum window size, not a maximum size—the window may be

enlarged as desired by the player. Currently the option to display the game in full-screen or in a

borderless window is not available (a requirement for those options is an in-game exit button,

which, just as a proper options menu, is yet to be implemented).

UI elements that the player may interact with are displayed as rectangles with rounded cor-

ners when alone or when displayed in a grid. Elsewhere, interactable elements that represent

options that are mutually exclusive (for example, when the player is about to choose an action

for their units to take, as in figure 2.3) are displayed using a radial menu.

https://scryfall.com/card/rtr/87/batterhorn

16 Game Design

Figure 2.3: Radial menus show exclusive options; here, the possible actions a unit can take.

Text display primarily uses serif fonts so as to evoke a feeling of reading a book. The game’s

two main fonts are visually quite similar: Libre Baskerville is used to display speech in conver-

sations and Kaisei Tokumin is used to display most UI elements.

Battles are displayed using 2D graphics (see figure 2.4); an image representing terrain serves

as the backdrop atop which units are drawn. Alongside each unit a bar is drawn that visually

represents the amount of health the unit has; this bar is colored in accordance to the unit’s

side (blue for allies, green for neutral units and red for enemies) and its color changes as it de-

pletes. Additionally any number of “sprites” is drawn as needed, for example, to indicate skills

triggering or support being attained. Combat is currently displayed using sprites, although

there are plans to have a separate display system for it.

Most textual information is displayed only when needed using tooltips atop or beside certain

UI elements. This includes information about units’ stats in battle (figure 2.5), which would

otherwise be overwhelming.

Conversations use either a static image or a level as their backdrop, both ofwhich can change

throughout it as the conversation’s plot advances. The face of up to four characters can be

shown at any given time during a conversation representing who is taking part in it; these char-

acters face towards the center of the scene. Conversation text is shown one letter at a time

so as to simulate actual speech.

Intermissions use the same display system as battles, using separate scenes for each of the

possible “downtime” activities.

In terms of user input, the player may use either keyboard or mouse to interact with the

game. All options available can be chosen with either input method. Pressing the space bar

and left-clicking are consistently used as the “accept” option where appropriate, and pressing

left shift or right-clicking are consistently used as the “cancel” option; more detailed controls

are explained in the attached extra documentation.

“Joystick” input is planned but not currently implemented; it will likewise be usable to take

any and all possible options, just as keyboard and mouse each on their own are.

2.1. Gameplay 17

Figure 2.4: Some information displayed in battle. Most information is only shown when
needed; healthbars are always shown in battle and enemy range is turned off by default.

Figure 2.5: Overhead labels display basic information about hovered units. Holding Alt shows
all information instead.

18 Game Design

2.1.4 Runtime Requirements

Prev – ToC – Next

Everything is HUUUUGE

Software Disenchantment, Niki Tonsky

tl;dr — Java 24 or newer. 512MB of RAM. 35MB of storage.

A Java runtime environment (“JRE”) of version 24 or newer* is required to run the game. The

game requires no internet connection once it and the JRE are installed; Dragon’s Memoir on

its own requires no installation beyond being downloaded since it is distributed as a runnable

.jar file.

At runtime the game may use up to 200 MB of RAM, thus at least 512 MB of system RAM

is required. Dragon’s Memoir tries to load resources only as needed as opposed to keeping in

memory all assets at all times; most of the RAM used by the game is taken up by the JRE.

In terms of persistent storage, the game requires around 14 MB for the .jar file itself, and

about 20 MB more to store save data and logs. This latter space is used to preserve all past

save points (to allow retrying chapters as desired) and all previous runtime logs (which are

stored in a compressed format; this is to aid in debugging). Dragon’s Memoir will try to not

“litter”: saves and logs are stored in subfolders of the “installation” folder.

It should be noted that the game has only been tested underWindows 10, but in accordance

to Java’s philosophy of “write once, run anywhere”, the game is expected to be able to run

anywhere its required JRE can run.

Dragon’s Memoir intended frame rate is 60 frames per second. The game achieves this by

offloading long-running tasks, notably disk access, outside of the main UI thread.

*Development usually targets the latest released version of Java, regardless of long-term support. To preserve
forward-compatibility, preview features are not used in code.

https://tonsky.me/blog/disenchantment/

2.2. Worldbuilding 19

2.2 Worldbuilding

Prev – ToC – Next

“I’m a storyteller,” Wit said, with a flip of

his fingers. “I have the right to redefine

words.”

Wind and Truth, Brandon Sanderson

tl;dr — The game takes place in “Enceladus”, where technology is

lacking. Religion is based on the Dragon and the Drakainas. Magic

is limited and all spells have verbal and material components.

The world Dragon’s Memoir takes place in, called Enceladus, is loosely based on that of Fire

Emblem Awakening36 and Chroma: Bloom and Blight.26 It features five countries spanning two

continents and its history spans five and a half millennia.

In-world technology has hardly progressed at all throughout its history and several discover-

ies and attempts at innovation have been met with strong resistance: steel was only discov-

ered recently and was met with significant backlash, chemistry has barely been explored, and

biology studies are uncommon and unrefined.

Religion in Enceladus is limited to adoration of the Dragon, who is almost universally be-

lieved to have created the planet and life within it; the Disciple, who some consider to be the

creator of magic; and the five Drakainas*†, who are considered priestesses of the Dragon, and

their aides, called Respites. Only one or two Drakainas have lived in Enceladus at the same

time, leading some people to believe that “consecutive” Drakainas follow a mother-daughter

relationship, a statement that the Drakainas and Respites have refused to confirm.

In terms of design, the magic system used in Dragon’s Memoir is created following Brandon

Sanderson’s laws of magic.10 Magic in Enceladus is limited in scope (primarily by its practition-

ers’ lack of understanding of it) but has clear usage guidelines: an incantation is needed to

“ignite” a spell’s “fuel”, and each spell requires a different pair of incantation and fuel. This

means that, unlike in the Fire Emblem series, spellcasters do not use spell books in order to

cast their spells; this also helps explain why magic “weapons” break—their users simply run

out of materials to use them. Item colors are also related to this magic system in a way that

Enceladus’ inhabitants don’t fully understand; a subplot within the game explores this further.

Separately from the above, a constructed language has also been designed for the game,

although it is only used in-game in proper nouns since using it for all in-game text is obviously

unreasonable (but do see Tunic42 and Chants of Sennaar25 for games that do this).

*Drakainas are somewhat related to manaketes11 from the Fire Emblem series: both have long lifespans and
feature pointed, elf-like ears, but only manaketes can transform into dragons.

†The word “Drakaina” comes from the Greek mythological figure of the same name; in-world, it also means
“small female dragon”.

3 Development Plan

3.1 Software and Tooling*

Prev – ToC – Next

A bad workman always blames his tools.

Proverb

tl;dr — Dependencies: Guava, Lombok, Tinylog, and YamlBeans.

Tools: Eclipse, Paint.net, Vim, Tiddlywiki, and Google Docs

Dragon’s Memoir is written in Java and uses Swing as its front-end framework. Its software

dependencies are the following external libraries:

• Guava (Apache License 2.0): Contains generic utilities, notably new collection-like types

including multimaps, bidirectional maps, and networks.

• Project Lombok (MIT License and others): Code generation, particularly auto-generation

of null checks and accessors. Only required during compilation, not at runtime.

• Tinylog (Apache License 2.0): As its name implies, it’s used for logging.

• YamlBeans (MIT License): Serialization to and from YAML, the format used for save data.

Additionally, Eclipse’s nullity and resource-owning annotations are used at compile time, and

two “home-brew” libraries are used, one containing miscellaneous utilities and another provid-

ing a more fluent API to Swing components.

The following tools are or have been used for development and asset creation:

• IDE: Eclipse, together with SonarQube for IDE (formerly called SonarLint) and Spotbugs

for linting.

• Image editor: Paint.net.

• Text editor: Vim through Cygwin. Formerly Notepad++.

*External links in this section have been last accessed on 2025–04–28

20

https://github.com/google/guava
https://github.com/projectlombok/lombok
https://github.com/tinylog-org/tinylog
https://github.com/EsotericSoftware/yamlbeans
https://eclipseide.org
https://www.sonarsource.com/products/sonarlint
https://spotbugs.github.io
https://getpaint.net
https://www.vim.org
https://cygwin.com
https://notepad-plus-plus.org/

3.1. Software and Tooling 21

• Version control: Sourcetree as a Git for windows front-end.

• Language construction: PolyGlot and Lexique Pro.

• Documentation: Tiddlywiki and the Google Docs suite.

3.1.1 Use of Generative Artificial Intelligence

Prev – ToC – Next

Generative AI is a parasitic cancer.

Freya Holmér

in the video of the same title.tl;dr — No.

Dragon’s Memoir is a project developed by humans, to be consumed by humans. The use of

generative artificial“intelligence”is not contemplated neither for conversation writing (“if you

can’t be bothered towrite it, I can’t be bothered to read it”) nor for coding (one of the project’s

main goals is learning to program and “vibe coding” defeats the point).

The only aspect of the game where using generative AI would be somewhat reasonable is in

creating art. Drawing conversation backgrounds would not be difficult, and with some manual

editing it would also be possible to generate level backdrops. Someneural networks are already

capable of generating anime-like faces,8,9 which unfortunately is not enough for Dragon’sMem-

oir since it requires almost-full-body images like in Dark Deity.28 Training an ad hoc model for

this purpose is almost feasible, if not for its significant drawbacks:

• A training set would have to be elaborated; an option for the training images would be

Fire Emblem Heroes38-like drawings which could be cleaned versions of other existing art.

Despite certain AI companies having no qualms using copyrighted materials1 to train

their models, for this project this is a nonstarter.

• Training itself requires resources that are better spent elsewhere or not consumed alto-

gether, notably electricity.

• Legislation of the copyright of generated images is still undecided, which could harm or

prevent copyright enforcement in the future.

All of this means that generative AI is not and will not be used in Dragon’s Memoir.

https://www.sourcetreeapp.com
https://gitforwindows.org
https://draquet.github.io/PolyGlot
https://software.sil.org/lexiquepro
https://tiddlywiki.com/
https://docs.google.com
https://youtu.be/-opBifFfsMY

22 Development Plan

3.2 Budget and Timing Estimates*

Prev – ToC – Next

It always takes longer than you expect, even

when you take into account Hofstadter’s Law.

Hofstadter’s Law
tl;dr — 100 000 $90 000 € and 12–15 months.

In terms of timing, Dragon’sMemoir could be reasonably finished in twelve to fifteenmonths

of full-time work, expectingmost of that time to be taken by art production rather than coding.

Estimating the amount of money required to finish the project is a more difficult task. Many

“indie” games rely on Kickstarter to obtain the funding they need; as that could be way to

acquire funding for Dragon’s Memoir, an estimation of its budget could be based on other

games’ Kickstarter projects.

It might seem reasonable to base Dragon’s Memoir estimated budget on Dark Deity’s28 Kick-

starter project, as that game is one of the most similar to Dragon’s Memoir both in terms of

development and scope. However, its initial goal of 12 000 $10 800 € is undeniably too low and

would be insufficient for Dragon’s Memoir.

A more realistic picture is painted by Fell Seal’s34 Kickstarter project. By extrapolating the

figures contained therein, assuming the 40 000 $36 000 € goal corresponds to 40% of its total

budget, we obtain the figures contained in table 3.1.

Expense Amount

Art 54 000 $ 48 600 €
Music etc. 28 000 $ 25 200 €
Marketing 10 000 $ 9000 €

Miscellaneous 8000 $ 7200 €

Total 100 000 $ 90 000 €

Table 3.1: Estimated budget. The “Miscellaneous” category encompasses potential publishing
fees, any taxes and serves as a small emergency buffer.

The budget in that table does not include code development (programming et cetera) costs

as it assumes coding is done in-house. While thatmodel would also be appropriate for Dragon’s

Memoir, it might be worth estimating howmuch would be needed to hire someone to program

the game.

If just one person is required to work full-time on coding for twelve months, and assuming a

salary of 2000 $1800 € per month, about 24 000 $21 600 € more would be needed, for a new total

budget of 124 000 $111 600 €.

*External links in this section have been last accessed on 2025–06–04. USD-EUR conversion rates are current
on 2025–05–13. Converted figures are approximated.

https://kickstarter.com
https://www.kickstarter.com/projects/darkdeity/dark-deity/
https://www.kickstarter.com/projects/darkdeity/dark-deity/
https://www.kickstarter.com/projects/153039232/fell-seal-arbiters-mark-classic-turn-based-tactica

3.3. Development Methodology 23

3.3 Development Methodology

Prev – ToC – Next

tl;dr — Primarily feature- and chapter-driven. Refactors and re-

designs are interleaved with feature and chapter additions. A Tid-

dlywiki wiki serves as game design document.

Dragon’sMemoir’s development has been haphazard and unstructured, but in broad strokes,

it could be said that it has been primarily feature-driven, with these features being added as

required by the chapters being implemented. More concretely, development ismost often split

pursuant the implementation of a story chapter each “prototype”*. Bug fixes are integrated

as soon as they are checked for correctness, following “git-flow”2 to some extent.

Besides “forward-progress” versions, refactors are also made from time to time in order to

simplify the implementation so as to reduce code complexity and ease the introduction of

new features. Similarly, the implementation of design-wise reworked features (eg. skills being

reassigned between unit classes, or changed entirely) and the formalization of previously ad

hoc code (eg. the turn cycle) are also integrated as though they were normal code refactors.

The steps followed to implement a chapter from scratch are:

1. Design — Decide the main chapter plot and setting.

2. Level Art — Create the level backdrop, if needed. This includes both art and level data

(size and the tile at each location).

3. Character Design — Design the playable characters introduced this chapter: decide their

name, write a short blurb explaining their backstory (this backstory may be referenced

in support conversations with this unit), choose a class for them, and draw the images

they’ll use in conversations and in battle.

4. Class Design — If the new characters have new classes, create them: decide what kinds of

weapons they can use, what weakness they have (eg. “infantry” or “cavalry”), and what

skills the class teaches (including the tactic). Also draw the art used to display “generic”

units of this class in battle as well as any skill icons needed.

5. Writing — Write the chapter’s conversations; their text can be refined later and/or in

parallel if needed.

*No real prototypes have been made, as the game is not ready for public testing. Instead, a “prototype” is
considered done once a particular feature set is implemented, typically once a new chapter has been implemented
and tested.

24 Development Plan

6. Conversation Parser Implementation — Implement and expose to the conversation parser

any newly required actions to be taken as the conversation takes place. This includes

moving units along the backdrop and preparing battles.

7. Other Implementation — If needed, implement any required features needed in battle or

otherwise that can’t or shouldn’t be exposed to the conversation parser (eg. actions that

trigger at a particular turn in battle, or aspects related to user interface or unit AI).

8. Integration — “Inform” the “game engine” of the existence of the new chapter and its

content and “hook them up” to the current implementation. This usually requires up-

dating module-info.java and other files in the META-INF/ folder to register new skills,

and telling implementation classes to expose the new items, characters and classes to

the engine.

9. Gameplay testing — Play through the chapter to test if everything works as intended.

10. Debugging — Make changes (to the conversations, the implementation, or even the de-

sign) as needed to address the issues found during testing, if any.

Newly designed content (chapters, characters, classes, skills…) is also kept track of in a

Tiddlywiki wiki (Dragon’sMemoir de facto game design document) for ease of (cross-)reference.

This wiki also stores a more detailed explanation of the mechanics described in Section 2.1.2.

4 Implementation and Testing

Prev – ToC – Next

“Pray, Mr. Babbage, if you put into themachine

wrong figures, will the right answers come

out?”

Passages from the Life of a Philosopher,

Charles Babbage

tl;dr — Model-view-controller for battle UI; factory methods, ser-

vice locators, and lazy initialization elsewhere. See table 4.1. Only

behavioral tests are done; reliance on logging and other custom

debugging tools.

4.1 Software Architecture

The main software architectural pattern used for player interaction in battle is a variant

of model-view-controller in which the view and the controller are fused together. This union

stems from the fact that both player input and game display are handled by event listeners

in JPanels. Conversation and intermission display and UI handling is likewise combined into

one class per “task”.

Other auxiliary design patters are used as needed to implement the game’s features:

• Whenever possible, classes are turned into singletons, or made uninstantiable at all (cf.

the zero-one-infinity rule).

• Factory methods are often preferred for public APIs instead of exposing constructors.

For some complex entities, particularly items and unit classes, builders are used.

• A variant of the prototype design pattern is used to separate items and item stacks: a

unit may carry any amount of item stacks, each of which references a given prototype

item.

• Most state-changing events in the game are implemented as commands over the battle

handler. This also includes some actions during conversations, such as moving units and

“summoning” units into battle.
25

26 Implementation and Testing

• To a minor extent, proxy objects are used to avoid eager initialization of certain objects

whose whole representation is not needed. Generally lazy initialization is preferred over

the use of these objects.

Most of the game’s code runs in a single thread (the AWT event queue), with some lazily

loaded objects being loaded ahead of time in separate threads. For these concurrent accesses

neither volatile fields nor double-checked locking are used*; atomic objects and locks are

used instead.

Service locators (using Java’s own ServiceLoader class) handle the registration of the

game’s content. This avoids hard-coding the game’s characters, classes, items etc., possibly

allowing for the creation of community modifications (“mods”) in the future, at the cost of

introducing a centralized registry to acquire instances of them.

4.2 Implementation Details

Dragon’s Memoir’s source code proper is split into separate packages contained in a single

module,7 as described in table 4.1.

Non-code assets (conversations, level data, images, and fonts) are stored in separate folders

as appropriate for each asset. Similarly, localized text other than conversations is split into

several .properties files each with the same name and location as the class that uses them.

Where reasonable, disk access is done in separate threads so as to not block the UI thread.

This includes reading images and saved data, and writing saved data to disk.

Performance measurements have shown that rendering translucent images (that is, images

with pixels that are neither fully opaque nor fully transparent) in Swing can take up a significant

portion of frame rendering time (upwards of 10milliseconds) since they are drawn in software†.

In order to not incur in this performance penalty, enemy attack ranges in Dragon’s Memoir are

indicated by only highlighting the edges of the threatened area; this contrasts with several

other games (Fire Emblem Awakening,36 Dark Deity,28 and Symphony of War,41 to name a few) in

which attack ranges are shown using translucent underlaid grids.

Dragon’s Memoir also differs from Dark Deity28 and Symphony of War41 in its attack range

calculation. Whereas in the latter two games attack ranges are calculated exclusively on de-

mand, Dragon’s Memoir recalculates attack ranges eagerly, ensuring that the ranges shown to

the player are accurate; this allows skills and other game mechanics to refer to these ranges

*Those idioms don’t work5 and should not be used.4
†This is a Swing/AWT limitation. A possible solution would be to switch to OpenGL or similar back-end, at

the cost of a huge refactor of all UI and input handling.

https://docs.oracle.com/en/java/javase/24/docs/api/java.base/java/util/concurrent/atomic/package-summary.html
https://docs.oracle.com/en/java/javase/24/docs/api/java.base/java/util/concurrent/locks/package-summary.html
https://docs.oracle.com/en/java/javase/24/docs/api/java.base/java/util/ServiceLoader.html

4.2. Implementation Details 27

(root) Main class, component registries, global game data
ai AI interface and path-finding utilities.

chapters Chapter interface.
combat Combat simulations, damage data, and experience calculations
convos Conversation handling.
display UI implementations.
….level Battle UI.
….units Unit-handling UI.

impl Item, character, chapter etc. implementations.
….skill Skill implementations.
items Item and item stack interfaces and implementations.
level Battle system implementation.

minigamesa Minigames during intermissions.
pers Unit interfaces and implementations. Unit supports.

….cpers Unit classes and skills interfaces.
save Serialization and save handling.
utils Miscellaneous utilities.

Table 4.1: Dragon’s Memoir code packages. Package names are relative to
ivaniesta14.pfeb or to the previous package when beginning with an ellipsis.

a This package and children thereof.
b “PFE” was Dragon’s Memoir in-development name. Its origins are unclear: “FE”
does not stand for “Fire Emblem”, and original design documents use “FI” in
place of “FE”.

without calculating them themselves. Performance-wise this only takes between two and four

milliseconds per recalculation, not including the time required to draw the overlay (which is

done asynchronously in separate threads).

The calculation of unitmovement ranges inDragon’sMemoir relies onDijkstra’s algorithm to

determine all locations a unit can reach from their position in battle given their currentmobility:

all positions that are at a distance equal or lower to theirmobility, taking into account tile costs,

are considered part of the unit’s movement range. Once a unit’s movement range is calculated

determining their attack range is easy: simply determine all positions that are at a distance

equal to the weapon’s attack range (or equal to any of the weapon’s attack ranges, if it has

more than one); this calculation is done in linear time on each of the amount of positions the

unit can move to, the number of weapon ranges, and the weapon range itself (larger weapon

ranges take linearly longer to explore).

Unit AI and certain minor features also make use of the A* (“A-star”) path-finding algorithm

to compute the least-expensive path between two positions. The heuristic used for these com-

28 Implementation and Testing

putations uses a “shifted down” Manhattan distance* (two is subtracted from the distance,

to a minimum of zero); directly using the Manhattan distance results in sub-optimal paths in

the presence of zero-cost edges that don’t immediately decrease distance.

4.3 Testing and Debugging

Dragon’s Memoir’s implementation doesn’t lend itself well to unit testing since most of the

content is registered via ServiceLoader and mocking it would require significant architec-

tural changes to the code. Instead, testing relies on integration (behavioral) testing, checking

whether the gamedoeswhat it’s supposed to from the player’s perspective rather thanwhether

each component of the gameworks in isolation. More thorough testingwill be performed once

the game is ready for an alpha or beta release.

Runtime log analysis is the technique most commonly used during debugging; the game’s

frequent usage of logging is another reason why unit-testing Dragon’s Memoir is not doable—

mocking or disabling Tinylog in a test environment is not feasible. The game’s logs come in

two “flavors”: standard output console, serving mostly as sanity checks, and log files, which

store plenty of information about what happens in the game.

Contained within these latter logs are also timing measurements of code paths that have

been identified as potential performance bottlenecks. These timed spots include conversation

and level parsing, in-battle unit movement and attack range calculations and drawing, and

overall frame drawing time (which is only loggedwhen the duration of a frame exceeds a certain

threshold).

Measuring frame drawing time has identified two surprisingly expensive features: first, as

mentioned before, Swing handles semi-transparent image drawing in software; and second,

text outlining requires drawing raw shapes and is also fairly expensive. These features are used

sparingly so as to not reduce frame rate.

As a last measure to ease debugging, the game exposes some of its internal state to be

queried when needed via the standard input console† and certain key combinations.

*Both the Manhattan distance and the shifted down Manhattan distance are inadmissible heuristics (they
overestimate path costs) in the presence of many zero-cost edges. Using the latter is a compromise between
being able to handle a few zero-cost edges and having a reasonable heuristic when there are none.

†Since all console input in Java is blocking, this “console listener” can cause the game’s process to not termi-
nate when instructed, which is why it is disabled by default.

https://docs.oracle.com/en/java/javase/24/docs/api/java.base/java/util/ServiceLoader.html

5 Conclusions

Prev – ToC

Every story, even a faerie tale, comes to

an end.

Declaration of Naught’s flavor text, in

Magic: The Gathering

Despite more getting close to a decade of development time Dragon’s Memoir is quite far

from being done. Currently only ten out of the possibly fifteen chapters of the first major arc

are fully implemented and most of the support conversations are yet to be written. Most of

the game’s art is “programmer art” not suitable for public release, and there’s no sound at all.

That said, Dragon’s Memoir’s engine is mostly complete, meaning that future development

can be streamlined into creating more of the game’s content.

All in all, Dragon’s Memoir has succeeded at its original goals and shows promise in what it

can grow into.

29

https://scryfall.com/card/mor/29/declaration-of-naught

Articles Referenced
[1] AI Art and its Impact on Artists, Harry H. Jiang, Lawren Brown, Jessica Cheng et al.,

Proceedings of the 2023 AAAI/ACM Conference on AI, Ethics, and Society, pp. 363–374,

2023–10–08.

https://doi.org/10.1145/3600211.3604681 LA 2025–04–28

[Referenced in page 21]

[2] A successfull Git branching model, Vincent Driesen, 2010–01–05.

https://nvie.com/posts/a-successful-git-branching-model LA 2025–05–14

[Referenced in page 23]

[3] Dark Deity is an ambitious strategy-RPG from a rookie team that’s out now, Jason Wilson,

GamesBeat, 2021–06–15.

https://venturebeat.com/games/dark-deity-is-an-ambitious-strategy-r
pg-from-a-rookie-team-thats-out-now LA 2025–02–28

[Referenced in page 4]

[4] Double-checked locking should not be used, Sonar Rules.

https://rules.sonarsource.com/java/RSPEC-2168 LA 2025–05–18

[Referenced in page 26]

[5] Java double checked locking, answer 1625180 by Yishai to question 1625118 by Jim, Stack

Overflow.

https://ao.ngn.tf/questions/1625118/#1625180 LA 2025–05–18
Stack Overflow original

[Referenced in page 26]

[6] Fire Emblem Awakening podría haber sido el último, Fernando Mateus, Hobby Consolas,

2013–05–26.

https://www.hobbyconsolas.com/noticias/fire-emblem-awakening-podri
a-haber-sido-ultimo-52742 LA 2025–02–28

[Referenced in page 5]

30

https://doi.org/10.1145/3600211.3604681
https://nvie.com/posts/a-successful-git-branching-model
https://venturebeat.com/games/dark-deity-is-an-ambitious-strategy-rpg-from-a-rookie-team-thats-out-now
https://venturebeat.com/games/dark-deity-is-an-ambitious-strategy-rpg-from-a-rookie-team-thats-out-now
https://rules.sonarsource.com/java/RSPEC-2168
https://ao.ngn.tf/questions/1625118/#1625180
https://stackoverflow.com/questions/1625118/#1625180
https://www.hobbyconsolas.com/noticias/fire-emblem-awakening-podria-haber-sido-ultimo-52742
https://www.hobbyconsolas.com/noticias/fire-emblem-awakening-podria-haber-sido-ultimo-52742

Articles Referenced 31

[7] JEP 261: Module System, Alan Bateman, Alex Buckley, Jonathan Gibbons, Mark Rein-

hold, OpenJDK.

https://openjdk.org/jeps/261 LA 2025–05–18

[Referenced in page 26]

[8] Making Anime Faces With StyleGAN, Gwern Branwen, 2022–10–19.

https://gwern.net/face LA 2025–04–28

[Referenced in page 21]

[9] This Waifu Does Not Exist, Gwern Branwen, 2020–01–20.

https://gwern.net/twdne LA 2025–04–28

[Referenced in page 21]

[10] What Are Sanderson’s Laws Of Magic?, Brandon Sanderson[?], ca. 2018[?].

https://faq.brandonsanderson.com/knowledge-base/what-are-sanderson
s-laws-of-magic/ LA 2025–04–26

[Referenced in page 19]

https://openjdk.org/jeps/261
https://gwern.net/face
https://gwern.net/twdne
https://faq.brandonsanderson.com/knowledge-base/what-are-sandersons-laws-of-magic/
https://faq.brandonsanderson.com/knowledge-base/what-are-sandersons-laws-of-magic/

Wiki Articles Referenced
[11] Manakete, Fire Emblem Wiki.

https://fireemblemwiki.org/wiki/Manakete LA 2025–04–26
Rev 2024–09–28 at 00:52

[Referenced in page 19]

[12] Might, Fire Emblem Wiki.

https://fireemblemwiki.org/wiki/Might LA 2025–03–04
Rev 2025–09–01 at 18:45

[Referenced in page 4]

[13] My Castle, Fire Emblem Wiki.

https://fireemblemwiki.org/wiki/My_Castle LA 2025–03–01
Rev 2024–10–10 at 19:37

[Referenced in page 5]

[14] Second Wave, XCOM Wiki

https://antifandom.com/xcom/wiki/Second_Wave LA 2025–02–28
Fandom original
Rev 2023–08–20 at 04:14

[Referenced in page 7]

[15] Time Travel, Fire Emblem Fandom Wiki

https://antifandom.com/fireemblem/wiki/Time_Travel LA 2025–02–28
Fandom original
Rev 2024–11–03 at 16:35

[Referenced in page 5]

[16] Weapon level, Fire Emblem Wiki.

https://fireemblemwiki.org/wiki/Weapon_level LA 2025–03–04
Rev 2025–02–21 at 17:58

[Referenced in page 4]

[17] Weapon triangle, Fire Emblem Wiki.

https://fireemblemwiki.org/wiki/Weapon_triangle LA 2025–02–24
Rev 2025–02–13 at 04:04

[Referenced in page 4]

[18] World Map, Fire Emblem Wiki.

https://fireemblemwiki.org/wiki/World_map LA 2025–03–01
Rev 2025–02–08 at 05:16

[Referenced in page 5]

32

https://fireemblemwiki.org/wiki/Manakete
https://fireemblemwiki.org/w/index.php?title=Manakete&oldid=626310
https://fireemblemwiki.org/wiki/Might
https://fireemblemwiki.org/w/index.php?title=Might&oldid=618471
https://fireemblemwiki.org/wiki/My_Castle
https://fireemblemwiki.org/w/index.php?title=My_Castle&oldid=630350
https://antifandom.com/xcom/wiki/Second_Wave
https://xcom.fandom.com/wiki/Second_Wave
https://xcom.fandom.com/wiki/Second_Wave?oldid=55779
https://antifandom.com/fireemblem/wiki/Time_Travel
https://fireemblem.fandom.com/wiki/Time_Travel
https://fireemblem.fandom.com/wiki/Time_Travel?oldid=716401
https://fireemblemwiki.org/wiki/Weapon_level
https://fireemblemwiki.org/w/index.php?title=Weapon_level&oldid=648226
https://fireemblemwiki.org/wiki/Weapon_triangle
https://fireemblemwiki.org/w/index.php?title=Weapon_triangle&oldid=647558
https://fireemblemwiki.org/wiki/World_map
https://fireemblemwiki.org/w/index.php?title=World_map&oldid=647344

Games Referenced

[19] Advance Wars (2001), developed by Intelligent Systems, published by Nintendo.

Wiki: https://warswiki.org/wiki/Advance_Wars LA 2025–03–11

[Referenced in page 6]

[20] Ara Fell (2016), developed by Stegosoft Games, published by Dangen Entertainment.

Official page: https://stegosoftgames.com/Games/AraFell LA 2025–02–21

[Referenced in page 3]

[21] Baldur’s Gate (1998), developed by BioWare, published by Black Isle Studios, Interplay

Entertainment, and Sega.

Wiki: https://antifandom.com/baldursgate LA 2025–02–19
Fandom Original

[Referenced in page 3]

[22] Baldur’s Gate II: Shadows of Amn (2000), developed by BioWare, published by Black Isle

Studios, and Interplay Entertainment.

Wiki: https://antifandom.com/baldursgate LA 2025–02–19
Fandom Original

[Referenced in page 3]

[23] Baldur’s Gate 3 (2023), developed and published by Larian Studios.

Official page: https://baldursgate3.game LA 2025–02–19

Wiki: https://bg3.wiki LA 2025–02–19

[Referenced in page 3]

[24] Brogue: Community Edition (2023), forked from the original by tmewett.

Official repository: https://github.com/tmewett/BrogueCE LA 2025–02–20

Wiki: https://antifandom.com/brogue LA 2025–02–20
Fandom Original

[Referenced in page 3]

33

https://warswiki.org/wiki/Advance_Wars
https://stegosoftgames.com/Games/AraFell
https://antifandom.com/baldursgate
https://baldursgate.fandom.com
https://antifandom.com/baldursgate
https://baldursgate.fandom.com
https://baldursgate3.game
https://bg3.wiki
https://sites.google.com/site/broguegame
https://github.com/tmewett/BrogueCE
https://antifandom.com/brogue
https://brogue.fandom.com

34 Games Referenced

[25] Chants of Sennaar (2023), developed by Rundisc, published by Focus Entertainment.

Official page: https://www.rundisc.io/chants-of-sennaar/ LA 2025–04–26

Wiki: https://chantsofsennaar.miraheze.org/ LA 2025–04–26

[Referenced in page 19]

[26] Chroma: Bloom and Blight (2021), developed by Clarity Games, published by Philipp

Baumgart, and WhisperGames Interplay Entertainment.

Wiki: https://antifandom.com/chroma-bloom-and-blight LA 2025–04–26
Fandom Original

[Referenced in pages d and 19]

[27] Crypt of the Necrodancer (2015), developed by Brace Yourself Games, published by

Brace Yourself Games, Klei Entertainment, and Spike Chunsoft.

Official page: https://braceyourselfgames.com/crypt-of-the-necrodancer
LA 2025–02–20

Wiki: https://necrodancer.miraheze.org LA 2025–02–20

[Referenced in page 3]

[28] Dark Deity (2021), developed by Sword & Axe LLC, published by indie.io.

Official page: https://darkdeitygame.com LA 2025–02–24

Wiki: https://darkdeity.wiki.gg LA 2025–02–24

[Referenced in pages 2, 4, 21, 22, and 26]

[29] Divinity: Original Sin (2014), developed by Larian Studios, published by Larian Studios,

Focus Home Interactive, and Spike Chunsoft.

Official page: http://www.divinityoriginalsin.com LA 2025–02–19 (HTTP only)

Wiki: https://divinityoriginalsin.wiki.fextralife.com LA 2025–02–19

[Referenced in page 3]

[30] Divinity: Original Sin 2 (2017), developed by Larian Studios, published by Larian Studios,

and Bandai Namco Entertainment.

Official page: https://divinity.game LA 2025–02–19

Wiki: https://divinityoriginalsin2.wiki.fextralife.com LA 2025–02–19

[Referenced in page 3]

https://www.rundisc.io/chants-of-sennaar/
https://chantsofsennaar.miraheze.org/
https://antifandom.com/chroma-bloom-and-blight
https://chroma-bloom-and-blight.fandom.com
https://braceyourselfgames.com/crypt-of-the-necrodancer
https://necrodancer.miraheze.org
https://darkdeitygame.com
https://darkdeity.wiki.gg
http://www.divinityoriginalsin.com
https://divinityoriginalsin.wiki.fextralife.com
https://divinity.game
https://divinityoriginalsin2.wiki.fextralife.com

Games Referenced 35

[31] Dota 2 (2013), developed and published by Valve.

Official page: http://www.dota2.com LA 2025–02–21

Wiki: https://liquipedia.net/dota2 LA 2025–02–21

[Referenced in page 3]

[32] Dream Tactics (2024), developed by Spectra Entertainment Inc., published by indie.io.

Official page: https://www.playdreamtactics.com LA 2025–03–01

Wiki: https://dreamtactics.wiki.gg LA 2025–03–01

[Referenced in page 5]

[33] Fae Tactics (2020), developed by Endless Fluff Games, published by Humble Games.

Official page (from the publisher): https://www.humblegames.com/games/faetac
tics LA 2025–03–01

Wiki: https://antifandom.com/fae-tactics LA 2025–03–01
Fandom Original

[Referenced in page 5]

[34] Fell Seal: Arbiter’s Mark (2019), developed by 6 Eyes Studio, published by 1C Entertain-

ment.

Snapshot of the official page: https://web.archive.org/web/20221206120714/h
ttps://www.fellseal.com LA 2025–03–11

Arch 2022–12–06

Wiki: https://antifandom.com/fellseal LA 2025–03–11
Fandom Original

[Referenced in pages 5 and 22]

[35] Final Fantasy Tactics (1997), developed by Square, published by Square and Sony Com-

puter Entertainment.

Snapshot of the official page: https://web.archive.org/web/20090617052440/h
ttp://www.square-enix-usa.com:80/games/fft/fft-index2.html
LA 2025–03–01
Arch 2019–06–17

Wiki: https://antifandom.com/finalfantasy/wiki/Final_Fantasy_Tactics
LA 2025–03–01
Fandom Original

[Referenced in page 5]

http://www.dota2.com
https://liquipedia.net/dota2
https://www.playdreamtactics.com
https://dreamtactics.wiki.gg
https://www.humblegames.com/games/faetactics
https://www.humblegames.com/games/faetactics
https://antifandom.com/fae-tactics
https://fae-tactics.fandom.com
https://web.archive.org/web/20221206120714/https://www.fellseal.com
https://web.archive.org/web/20221206120714/https://www.fellseal.com
https://antifandom.com/fellseal
https://fellseal.fandom.com
https://web.archive.org/web/20090617052440/http://www.square-enix-usa.com:80/games/fft/fft-index2.html
https://web.archive.org/web/20090617052440/http://www.square-enix-usa.com:80/games/fft/fft-index2.html
https://antifandom.com/finalfantasy/wiki/Final_Fantasy_Tactics
https://finalfantasy.fandom.com/wiki/Final_Fantasy_Tactics

36 Games Referenced

[36] Fire Emblem Awakening (2012), developed by Intelligent Systems, published by Nin-

tendo.

Snapshot of the official page: https://web.archive.org/web/20190430083426/h
ttp://www.fireemblemawakening.com LA 2025–02–28

Arch 2019–04–30

Wiki: https://fireemblemwiki.org/wiki/Fire_Emblem_Awakening LA 2025–02–28

[Referenced in pages 1, 2, 3, 5, 15, 19, and 26]

[37] Fire Emblem Fates (2016), developed by Intelligent Systems, published by Nintendo.

Snapshot of the official page: https://web.archive.org/web/20210117181056/h
ttps://fireemblem.nintendo.com/fates LA 2025–02–28

Arch 2021–01–17

Wiki: https://fireemblemwiki.org/wiki/Fire_Emblem_Fates LA 2025–02–28

[Referenced in page 5]

[38] Fire Emblem Heroes (2017), developed by Intelligent Systems, published by Nintendo.

Official page: https://fire-emblem-heroes.com LA 2025–02–24

Wikis: https://fireemblemwiki.org/wiki/Fire_Emblem_Heroes LA 2025–02–24 and

https://antifandom.com/feheroes LA 2025–02–24
Fandom Original

[Referenced in page 21]

[39] Fire Emblem: Shadow Dragon & the Blade of Light (1990), developed by Intelligent Sys-

tems, published by Nintendo.

Wiki: https://fireemblemwiki.org/wiki/Fire_Emblem:_Shadow_Dragon_%26
_the_Blade_of_Light LA 2025–02–24

[Referenced in page 4]

[40] One Step From Eden (2020), developed by Thomas Moon Kang, published by Humble

Bundle.

Official page: https://www.onestepfromeden.com LA 2025–02–20

Wiki: https://antifandom.com/onestepfromeden LA 2025–02–20
Fandom Original

[Referenced in page 3]

[41] Symphony of War: The Nephilim Saga (2022), developed by Dancing Dragon Games, pub-

lished by indie.io.

https://web.archive.org/web/20190430083426/http://www.fireemblemawakening.com
https://web.archive.org/web/20190430083426/http://www.fireemblemawakening.com
https://fireemblemwiki.org/wiki/Fire_Emblem_Awakening
https://web.archive.org/web/20210117181056/https://fireemblem.nintendo.com/fates
https://web.archive.org/web/20210117181056/https://fireemblem.nintendo.com/fates
https://fireemblemwiki.org/wiki/Fire_Emblem_Fates
https://fire-emblem-heroes.com
https://fireemblemwiki.org/wiki/Fire_Emblem_Heroes
https://antifandom.com/feheroes
https://feheroes.fandom.com
https://fireemblemwiki.org/wiki/Fire_Emblem:_Shadow_Dragon_%26_the_Blade_of_Light
https://fireemblemwiki.org/wiki/Fire_Emblem:_Shadow_Dragon_%26_the_Blade_of_Light
https://www.onestepfromeden.com
https://antifandom.com/onestepfromeden
https://onestepfromeden.fandom.com

Games Referenced 37

Official page: https://www.dancingdragongames.com/symphony-of-war
LA 2025–03–11

Wiki: https://symphonyofwar.wiki.gg LA 2025–03–11

[Referenced in pages 7, 8, 15, and 26]

[42] Tunic (2022), developed by Isometricorp Games, published by Finji.

Official page: https://tunicgame.com/ LA 2025–04–26

Wiki: https://antifandom.com/tunic LA 2025–04–26
Fandom Original

[Referenced in page 19]

[43] Unicorn Overlord (2024), developed by Vanillaware, published by Sega and Atlus.

Official page: https://unicornoverlord.atlus.com LA 2025–02–19

Wiki: https://antifandom.com/unicornoverlord LA 2025–02–19
Fandom Original

[Referenced in page 3]

[44] Wargroove (2019), developed and published by Chucklefish.

Official page: https://wargroove.com LA 2025–03–11

Wiki: https://wargroovewiki.com LA 2025–03–11

[Referenced in page 6]

[45] Wargroove 2 (2023), developed and published by Chucklefish.

Official page: https://wargroove.com LA 2025–03–11

Wiki: https://wargroovewiki.com LA 2025–03–11

[Referenced in page 6]

[46] XCOM: Enemy Unknown (2012), developed by Firaxis Games, published by 2K.

Official page: https://www.xcom.com/xcom-enemy-unknown LA 2025–02–21

Wiki: https://antifandom.com/xcom LA 2025–02–21
Fandom Original

[Referenced in page 3]

[47] XCOM 2 (2016), developed by Firaxis Games, published by 2K.

Official page: https://xcom.com LA 2025–02–21

Wiki: https://antifandom.com/xcom LA 2025–02–21
Fandom Original

[Referenced in page 3]

https://www.dancingdragongames.com/symphony-of-war
https://symphonyofwar.wiki.gg
https://tunicgame.com/
https://antifandom.com/tunic
https://tunic.fandom.com
https://unicornoverlord.atlus.com
https://antifandom.com/unicornoverlord
https://unicornoverlord.fandom.com
https://wargroove.com
https://wargroovewiki.com
https://wargroove.com
https://wargroovewiki.com
https://www.xcom.com/xcom-enemy-unknown
https://antifandom.com/xcom
https://xcom.fandom.com
https://xcom.com
https://antifandom.com/xcom
https://xcom.fandom.com

	Abstract
	Introduction
	Document Structure
	Overview and History
	Prior Art
	Fire Emblem series
	Tactics series
	Wars series

	Game Design
	Gameplay
	Gameplay Loops
	Game Mechanics
	UI and Input
	Runtime Reqs.

	Worldbuilding

	Development Plan
	Software and Tooling
	Budget Estimates
	Dev. Methodology

	Implementation and Testing
	Software Architecture
	Implementation Details
	Testing and Debugging

	Conclusions
	Articles Referenced
	Wiki Articles Referenced
	Games Referenced

