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Resumen

El glaucoma es una de las principales causas de ceguera irreversible en todo el mundo.
Un diagnóstico precoz de esta patoloǵıa podŕıa evitar la pérdida progresiva de visión. Aśı,
surge la necesidad de desarrollar herramientas que faciliten esta labor.

A lo largo de este trabajo se exploran diversas técnicas de aprendizaje profundo con
el objetivo de detectar el glaucoma a partir de una retinograf́ıa. Además, se construye
una aplicación la cual integra todos los desarrollos conseguidos, de manera que permite
utilizar el estudio realizado en el entorno médico.

Respecto a las técnicas empleadas, van desde algoritmos propios del campo del Apren-
dizaje Automático como Support Vector Machine oMulti-Layer Perceptron para el análisis
de datos y la construcción de ensembles, hasta estrategias espećıficas del Aprendizaje Pro-
fundo para la visión por computador, como clasificación y segmentación, para lo que se
utilizarán arquitecturas de tipo YOLO y U-Net.

En referencia a los resultados obtenidos, se verá cómo se ha conseguido detectar y
segmentar de manera exitosa las distintas estructuras que se pueden reconocer en una
retinograf́ıa, llegando a obtener más de un 95% para la métrica escogida accuracy camvid.
Además, también se explicará cómo se llega a diagnosticar el glaucoma con un 97% de
recall y un 94.96% de aciertos. Lo que implica superar el resto de soluciones propuestas
para los datos utilizados.

Palabras claves: Detección del glaucoma, Aprendizaje Automático, Machine Lear-
ning, Aprendizaje profundo, Deep Learning, Segmentación de imágenes, Clasificación de
retinograf́ıas, Visión por computador, Bioinformática.





Abstract

Glaucoma is one of the leading causes of irreversible blindness worldwide. Early diag-
nosis of this pathology could prevent progressive vision loss. Thus, the need arises to
develop tools to facilitate this task.

Throughout this work, several Deep Learning techniques are explored with the aim
of detecting glaucoma from a retinography. In addition, an application is built which
integrates all the developments achieved, so that the study can be used in the medical
environment.

About the techniques used, they include algorithms of Machine Learning, such as
Support Vector Machine or Multi-Layer Perceptron for data analysis and ensemble cons-
truction, to specific strategies of Deep Learning for computer vision, such as classification
and segmentation, for which YOLO and U-Net architectures will be used.

In reference to the results obtained, it will be shown how the different structures
that can be recognised in a retinography have been successfully detected and segmented,
obtaining more than 95% for the chosen metric accuracy camvid. In addition, it will also
be explained how glaucoma is diagnosed with a 97% of recall and a 94.96% of successes.
This means outperforming the rest of the solutions proposed for the data used.

Keywords: Glaucoma detection, Machine Learning, Deep Learning, Deep Learning,
Image segmentation, Retinography classification, Computer vision, Bioinformatics.
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4.1. Número de datos de cada clase en el dataset Rotterdam. . . . . . . . . . . 79
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4.24. Parámetros empleados en el preentrenamiento de los modelos de la iteración 4111
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Parte I

Descripción del proyecto
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Caṕıtulo 1

Introducción

1.1. Planteamiento del problema

En las últimas décadas, el uso intensivo de dispositivos electrónicos como teléfonos
móviles y ordenadores se ha convertido en una constante en la vida diaria. Esta exposición
prolongada a pantallas se ha relacionado con un incremento en la prevalencia de mioṕıa
a nivel mundial [1]. Además, otros factores relacionados con el uso continuado de estas
tecnoloǵıas, como la fatiga ocular o el enfoque continuo en distancias cortas, aumentan
las posibilidades de padecer mioṕıa.

La mioṕıa no solo es una afección en śı misma, sino que resulta un factor de riesgo
para sufrir otras patoloǵıas oculares como el glaucoma [4]. Según [3], el glaucoma es
una enfermedad ocular que daña el nervio óptico, cuya principal causa es la tensión
ocular elevada. Como consecuencia, genera puntos ciegos en la visión. Estas áreas ciegas
van en aumento hasta la pérdida completa de la visión. Además, el glaucoma puede
desencadenarse por otras circunstancias, como infecciones oculares [4].

Para evitar que se dé esta pérdida paulatina de visión, es de vital importancia un
diagnóstico y seguimiento precoz de la enfermedad. En caso contrario, como la disminución
de la visión se produce de manera gradual, el paciente no será consciente de los signos
hasta que el glaucoma haya progresado a fases avanzadas y el daño al nervio óptico
sea significativo. Por su parte, el diagnóstico del glaucoma requiere un examen ocular
completo. Para llevarlo a cabo, como explica la Academia de Oftalmoloǵıa Americana [2],
se debe medir la presión ocular, examinar el nervio óptico, tomar una imagen del mismo
(retinograf́ıa), hacer una prueba de visión periférica y medir el espesor de la córnea, entre
otros.

Debido a la serie de pruebas que se deben realizar para poder detectar el glaucoma,
junto con la necesidad de realizar un diagnóstico precoz, surge la posibilidad de desa-
rrollar herramientas automáticas de apoyo al diagnóstico. Además, la revolución de la
Inteligencia Artificial no ha dejado a ningún área de conocimiento indiferente, y ya se
están produciendo los primeros avances mediante el uso de esta tecnoloǵıa en el sector
médico, y más concretamente, en la detección de patoloǵıas oculares [6]. Aśı, surge de
manera natural la posibilidad de aplicar estas técnicas para desarrollar una herramienta
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Caṕıtulo 1. Introducción

de diagnóstico del glaucoma rápida y eficaz.

No abundan conjuntos de datos públicos para la construcción de herramientas médicas
mediante técnicas de Inteligencia Artificial dada las restricciones establecidas para la
compartición de este tipo de información. En la actualidad se encuentran algunos datasets
de referencia para el estudio del glaucoma mediante Inteligencia Artificial como los de
RIM-ONE DL [13] o EyePACS-AIROGS-light-V2 [9]. Estos bancos de datos públicos
permiten el estudio de los mismos con fines de investigación.

Este trabajo se centra en el desarrollo de una herramienta de Inteligencia Artificial con
el objetivo de realizar un diagnóstico rápido y eficaz del glaucoma a partir de imágenes
oculares denominadas retinograf́ıas. De esta forma, se busca construir una herramienta ca-
paz de asistir a los oftalmólogos en esta tarea de detección de la enfermedad del glaucoma,
para contribuir al desarrollo de sistemas más accesibles, rápidos y precisos.

Con este objetivo, a lo largo de este trabajo se desarrollarán modelos basados en técni-
cas espećıficas dentro del campo de la Inteligencia Artificial, denominadas Aprendizaje
Automático (Machine Learning), y a su vez dentro de las mismas, algoritmos de Apren-
dizaje Profundo (Deep Learning), para la detección del glaucoma. Con este propósito,
se utilizarán técnicas de segmentación para imágenes, es decir, para señalar partes es-
pećıficas, junto con otras para clasificar entre ojos sanos y glaucomatosos. Aśı, se persigue
mejorar la precisión y la eficiencia en la detección temprana de la enfermedad.

1.2. Objetivos del trabajo

Los principales objetivos que abarca este proyecto y orientan su desarrollo son los
siguientes:

OBJ-01. Elaborar una herramienta para la detección del glaucoma en retinograf́ıas
mediante técnicas de aprendizaje profundo.

OBJ-02. Dotar a dicha herramienta de un módulo capaz de identificar las estruc-
turas propias de las retinograf́ıas empleando métodos de segmentación.

OBJ-03. Estudiar el rendimiento en la clasificación y segmentación de retinograf́ıas
de ojos sanos y glaucomatosos mediante técnicas de aprendizaje profundo en base
a las métricas más adecuadas para cada uno de ellos.

1.2.1. Restricciones

Además, dada la naturaleza del proyecto, surge el siguiente conjunto de restricciones:

R-01 Limitación temporal de entre 300 y 360 horas correspondientes a la carga de
trabajo establecida de 12 ECTS.

4 Carlos Jiménez Vaquero



1.3. Estructura de la memoria

1.3. Estructura de la memoria

A lo largo de esta memoria se exponen todas las etapas abordadas durante la elabora-
ción del proyecto planteado. Como consecuencia, este documento se divide en tres partes
fundamentales:

Descripción del proyecto. En esta primera parte se establecen los objetivos del
proyecto, se contempla la planificación de los recursos disponibles y se describen
aquellos conceptos relacionados con el trabajo que se va a desarrollar. A su vez se
divide en los siguientes caṕıtulos:

• Introducción: incluida en el Caṕıtulo 1 expone el problema que se aborda en
el proyecto sobre la detección del glaucoma, acompañándolo de los objetivos y
restricciones planteados.

• Planificación: incluida en el Caṕıtulo 2 y detalla la estrategia elaborada para
gestionar correctamente los recursos temporales y gestionar los riesgos presen-
tados, se especifica la metodoloǵıa de trabajo, y se explican el presupuesto y
balance real.

• Antecedentes: incluidos en el Caṕıtulo 3 tratan los conceptos cient́ıfico-técni-
cos y médicos que se abordan en el proyecto, además de analizar el estado del
arte.

Desarrollo de propuestas y resultados. Esta parte se divide en:

• Desarrollo de la propuesta y experimentación: a lo largo del Caṕıtu-
lo 4 se trata el desarrollo de las propuestas que permiten la consecución de
los objetivos planteados. Se detalla el proceso de entrenamiento de modelos
de aprendizaje profundo, la extracción de las caracteŕısticas relevantes en las
predicciones hechas por los modelos, y el análisis de estos datos mediante al-
goritmos de Machine Learning para clasificar las retinograf́ıas entre pacientes
sanos y con glaucoma.

• Evaluación de los resultados: a lo largo del Caṕıtulo 4 se analizan los
resultados obtenidos tanto por los modelos de aprendizaje profundo para cla-
sificación y segmentación, como de los algoritmos de Machine Learning. Este
análisis se consigue estableciendo unas métricas adecuadas.

• Conclusiones y trabajo futuro: en el Caṕıtulo 6 se realiza una reflexión
tanto a nivel técnico como personal sobre el desarrollo realizado, estudiando
los objetivos planteados en un inicio y las propuestas de valor elaboradas;
además, se detallan posibles v́ıas de evolución del proyecto.

Apéndices. En esta última parte se explica el procedimiento para poder hacer uso
de los modelos construidos mediante los siguientes documentos:

• Manual de Instalación.

• Contenido adjunto.
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Caṕıtulo 2

Planificación

2.1. Metodoloǵıa de trabajo

Durante el desarrollo del proyecto se ha utilizado una reinterpretación de la meto-
doloǵıa Scrum [15] para la organización del mismo, la cual es una metodoloǵıa ágil que
promueve la colaboración, flexibilidad y entrega iterativa e incremental de productos que
aporten valor. Su flujo de trabajo viene descrito en la Figura 2.1. Dadas las caracteŕısticas
propias de un Trabajo de Fin de Grado (TFG), se utiliza una adaptación de Scrum de-
nominada SCORE [19]. Por otra parte, para el desarrollo de la propuesta se ha empleado
una metodoloǵıa complementaria a SCORE orientada a la realización de proyectos de
análisis de datos. Se trata de la metodoloǵıa CRISP-DM [17].

Figura 2.1: Flujo de trabajo de la metodologı́a SCRUM [16].
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Caṕıtulo 2. Planificación

2.1.1. Ciclo de vida: SCORE

La metodoloǵıa SCORE [19] adopta prácticas de los marcos de trabajo ágiles que per-
miten organizar el ciclo de vida del TFG en torno a los objetivos definidos en el proyecto.
Su objetivo principal es alcanzar las metas establecidas en el proyecto, garantizando la
participación y comunicación efectiva de todos los involucrados para optimizar la calidad
del producto final.

SCORE se puede utilizar para establecer una serie de objetivos centrados en estructu-
rar cualquier TFG, facilitando el aprendizaje y aportando una visión de alto nivel sobre el
trabajo que se pretende desarrollar. Además, estos objetivos se fundamentan en historias
de aprendizaje. Cada historia se caracteriza por un conjunto de resultados alcanzables
que funcionan como criterios de aceptación y favorecen la consecución del objetivo. Para
que una historia se considere completa, cada uno de los resultados debe quedar satisfecho.
Los objetivos que se contemplan para la consecución del Trabajo de Fin de Grado son los
siguientes:

Proyecto. El primer objetivo es plantear un proyecto con el fin de resolver un
problema de la vida real. Para ello, se define el problema a resolver, se establecen los
objetivos que se persiguen y se lleva a cabo una planificación que permita ajustarse
a la carga de trabajo prevista.

Antecedentes. Puesto que a lo largo del proyecto se tratan conceptos y temas
que pueden resultar desconocidos, se realiza un trabajo previo de contextualización
para comprender el planteamiento del problema y los objetivos del TFG. Aśı, se
pretende obtener el conocimiento necesario para abordar el ámbito de negocio y
cient́ıfico-técnico.

Desarrollo. Este objetivo se centra en la construcción de un producto de valor. Las
historias de aprendizaje que aqúı se tratan para conseguir el objetivo dependerán de
la naturaleza del proyecto en función de si este es de desarrollo o de investigación.

Aceptación. Se trata de evaluar si el producto se adecúa a los resultados que
se pretende obtener. Al igual que el objetivo anterior, las historias en las que se
fundamenta dependerán de si el proyecto es de desarrollo o de investigación. Por
otra parte, el estudiante discute los resultados obtenidos, incluyendo una valoración
de los métodos utilizados.

Comunicación. Este objetivo combina habilidades de comunicación oral y escritas,
y se materializa en las historias de aprendizaje que tratan de la redacción de una
memoria técnica y del acto de defensa del proyecto. La memoria técnica condensará
todo el trabajo realizado, desde las primeras fases de adquisición de conocimientos
hasta el desarrollo del proyecto y los resultados obtenidos. Por su parte, el acto de
defensa consistirá en explicar el trabajo realizado ante un tribunal.
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2.1. Metodoloǵıa de trabajo

Como se ha explicado anteriormente, esta metodoloǵıa se fundamenta en Scrum, la
cual define en [15] una serie de roles, eventos y artefactos. Estos materiales se adaptan al
contexto académico de elaboración de un TFG.

Roles

Las metodoloǵıas tradicionales para el desarrollo de un Trabajo de Fin de Grado tan
solo contemplan la relación entre tutor y estudiante. Por su parte, con la metodoloǵıa
utilizada, se tienen en cuenta un mayor número de roles y relaciones entre ellos, pues es
un factor clave para el éxito en la ejecución del TFG.

Estudiante. Es el rol fundamental dado que desarrolla cada tarea especificada en las
historias de aprendizaje para la consecución de los objetivos. Además, el estudiante
funciona como un rol central, pues se comunica con el resto de roles participantes
en el proyecto, asumiendo el feedback proporcionado por los mismos para mejorar
el producto construido.

Tutor. Este rol lo desempeñan uno o más profesores que orientan el aprendizaje
del estudiante a través de un plan de seguimiento establecido por ellos mismos.
Durante el seguimiento, se encargan de aportar retroalimentación sobre el desarrollo
del proyecto y orientan su avance. Además, colaboran en las primeras fases del
proyecto, ayudando al planteamiento del problema, la definición de los objetivos y
facilitando las referencias que consideren oportunas para consolidar el conocimiento
necesario durante la realización del TFG.

Comunidad. Este rol incluye a un amplio abanico de personas (estudiantes, pro-
fesores, expertos en la materia,...) capaces de aportar valor al proyecto. No tienen
ninguna responsabilidad espećıfica. Su función es la de aportar valor a través de
comentarios objetivos acerca del producto, lo que incrementa las oportunidades de
mejora.

Tribunal. Comisión encargada de evaluar el TFG durante el acto de defensa del
mismo, adecuándose a la satisfacción de los objetivos y la calidad tanto del producto
construido como de la defensa del mismo.

Eventos

Aunque SCORE adopta los métodos de SCRUM, los eventos que se definen en ambos
son diferentes, puesto que SCRUM es un marco más genérico para todo tipo de proyectos;
mientras que SCORE se centra en identificar una serie de reuniones adaptadas a los pro-
cesos de investigación. Con esta premisa, define dos tipos principales de eventos que serán
los mismos que se utilizarán para la realización del TFG, aunque debido a limitaciones
temporales y de atención a otros compromisos, se modifican ligeramente los eventos de
esta metodoloǵıa para adecuarse a la situación personal de cada uno de los conformantes
del proyecto:
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Status meetings: son análogos a las reuniones de SCRUM denominadas daily
meetings, que tienen lugar diariamente. Por su parte, SCORE recomienda tener tres
de estas reuniones de manera semanal, manteniendo fijos los d́ıas de su realización,
salvo causas justificadas. Para el caso concreto de este proyecto, dado que se debe
realizar en conjunto con otro TFG y otras asignaturas, se ha considerado oportuno
realizar una reunión de manera semanal para que las reuniones tengan contenido y
aporten valor al proceso.

Durante una status meeting, el estudiante se encarga de comunicar todas las tareas
que se han llevado a cabo desde la anterior reunión, los resultados alcanzados y las
posibles dudas u obstáculos encontrados en el proceso. Por su parte, los tutores del
proyecto aportan la correspondiente retroalimentación de los avances que se les han
comunicado. Para finalizar la reunión, se establecen las ĺıneas de progreso que se
seguirán hasta la siguiente reunión.

Al igual que ocurre con las daily meetings en SCRUM, la metodoloǵıa SCORE
establece una duración para las status meetings de en torno a 15 o 20 minutos,
evitando ahondar en detalles técnicos y dejando los mismos para el otro tipo de
reunión: las on-demand meetings.

Para este proyecto, se ha establecido que una de cada dos reuniones tenga esta
duración, y se le denominará weekly. Las restantes serán de una hora, dado que los
avances se producen de manera rápida y tan solo se cuenta con una reunión a la
semana por motivos temporales y de otras obligaciones. A estas últimas se hará
referencia con el propio nombre de reuniones”.

On-demand meetings . Dado que las status meetings deben servir para actualizar
el estado actual del proyecto evitando mencionar detalles técnicos, las on-demand
meetings suplen esta necesidad de tratar aspectos técnicos. Como indica su nombre,
las on-demand meetings se conciben bajo demanda expresa del estudiante. En estas
se discuten aspectos sobre la investigación, resultados o métodos de una manera
más profunda si fuese necesario.

Además de estos dos tipos de eventos, en ocasiones se comunica el estado del proyecto
si se considera necesario v́ıa correo electrónico, lo que la metodoloǵıa SCORE define como
e-mail status reports. También por este canal se harán consultas breves, por ejemplo,
sobre aspectos técnicos del desarrollo. Esta comunicación se hará v́ıa Teams y/o correo
electrónico para tener un contacto directo en caso de necesitar algo más de ayuda o una
respuesta más urgente.

Artefactos

Los artefactos son elementos clave durante el desarrollo del proyecto que permiten
la transparencia y una visión clara del trabajo y el progreso del proyecto. Los artefactos
propuestos por SCORE se fundamentan en los ya establecidos por SCRUM [15], recibiendo
el mismo nombre:
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2.1. Metodoloǵıa de trabajo

Incremento: resultado utilizable propio de cada sprint que aporta valor por śı mis-
mo al proyecto satisfaciendo uno o más de los objetivos propuestos. La superposición
de incrementos a lo largo de los sprints conformará el producto final.

Retroalimentación: feedback recibido por el estudiante principalmente al final de
cada sprint. La retroalimentación es un proceso continuo que se obtiene durante las
reuniones entre el estudiante y el resto de roles part́ıcipes. Este artefacto permite
adaptarse a cambios propuestos y mejorar la calidad del producto.

2.1.2. Proceso de desarrollo: CRISP-DM

CRISP-DM [17] es una metodoloǵıa ampliamente utilizada en proyectos de desarrollo
enfocados en un análisis profundo de datos. En concreto, promueve un enfoque iterativo
y ćıclico que permite revisar y ajustar el desarrollo a medida que avanza el proyecto. Este
proceso se resume en la ilustración de la Figura 2.2.

Figura 2.2: Esquema de desarrollo propuesto por la metodologı́a CRISP-DM [18].

Como se determina en la misma imagen, CRISP-DM establece una serie de etapas
de manera ćıclica, que serán las que se lleven a cabo para cada sprint definido usando la
metodoloǵıa SCORE. A continuación se describen las fases en que se basa el desarrollo
siguiendo la metodoloǵıa CRISP-DM.
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Caṕıtulo 2. Planificación

Etapas de desarrollo según CRISP-DM

A continuación se enumeran y explican cada una de las etapas que determina el proceso
de desarrollo de CRSIP-DM.

1. Comprensión del negocio (Business Understanding). Esta fase se centra en de-
finir el problema que se aborda con el proyecto, aśı como entender los objetivos del
mismo. En esta etapa también se analizan los recursos necesarios para abordar el
problema, aśı como de los que se dispone, se analizan los riesgos y se estiman los
costes.

De esta manera, el resultado final de esta fase es un presupuesto de los costes que
acarrea el proyecto, un análisis de los riesgos que presenta su construcción, y un
estudio del negocio en el que se enmarca.

2. Comprensión de los datos (Data Understanding). Una vez entendido el negocio
en el que se enmarca el proyecto, puesto que el mismo se centra en el uso de datos,
se pasa a comprender los mismos. Por tanto, se recopilan los datos disponibles y se
realiza un análisis inicial para evaluar su calidad, su relevancia y la relación con los
objetivos del proyecto.

Aśı, se hace un análisis de los datos que se tienen disponibles, analizando la calidad,
patrones o problemas de los mismos. Además, se estudian las variables que hay, si
faltan valores y qué tipo de datos son.

3. Preparación de los datos (Data Preparation). En esta fase se preparan los datos
para ser utilizados en los modelos. Es una fase cŕıtica que suele ocupar gran parte
del tiempo. En esta, se lleva a cabo una limpieza de los datos eliminando valores
nulos, duplicados, o que presenten algún otro problema en función del contexto del
proyecto.

Además, se seleccionan las variables que se van a tener en cuenta para el posterior
entrenamiento y se realizan las transformaciones necesarias sobre los datos como
normalización o escala de grises. Otro tipo de transformaciones incluyen la aplicación
de filtros si los datos son imágenes. Además, si fuera necesario, en esta etapa se
etiquetan los datos con sus correpondientes categoŕıas.

4. Modelado (Modeling). Se trata de seleccionar y entrenar los modelos de Inteligencia
Artificial que se consideren oportunos de acuerdo a los datos del problema. En
concreto, durante este proyecto se emplearán tanto técnicas de Machine Learning
como de Deep Learning, que más adelante se explicarán en las Secciones 3.2.1 y
3.2.3, respectivamente.

5. Evaluación (Evaluation). En esta etapa se evalúa el modelo de manera objetiva
para comprobar su rendimiento. Esto se consigue estableciendo una serie de métricas
como las que se definirán en la Sección 3.2.4, que como su nombre indica, miden la
calidad del resultado obtenido.
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2.2. Planificación temporal

En esta fase, se comprueba si el modelo construido durante la etapa de modelado
es fiable y tiene utilidad para resolver el problema que se plantea; es decir, se debe
analizar si se ajusta a los objetivos del proyecto.

6. Despliegue (Deployment). En esta última fase se implementa el modelo construido
en un entorno real o se entrega de forma que los resultados puedan usarse en la
práctica. Luego, el resultado del despliegue puede ser en forma de informe, API o
de una aplicación, por ejemplo. En este proyecto el resultado del despliegue será
una aplicación en la que se integren los modelos construidos, que se presentará en
el Caṕıtulo 5. Para su construcción, se debe tener en cuenta quién usará el modelo
y cómo se interpretan los resultados.

Aśı, en este proyecto se realiza una planificación temporal en base a los fundamentos
de SCORE, dividiendo el ciclo de vida en iteraciones. Por su parte, el proceso de desarrollo
dentro de cada iteración viene determinado por la metodoloǵıa CRISP-DM a la que se ha
modificado ligeramente el esquema representado en la Figura 2.2. En vez de realizar un
análisis del entorno del negocio y de los datos para cada iteración, tan solo se realizará
una única vez al comienzo del desarrollo estas fases y cada iteración consistirá en la
preparación de los datos, el modelado y la evaluación de los resultados.

2.2. Planificación temporal

La planificación temporal para este proyecto abarca el peŕıodo comprendido entre el
16 de diciembre de 2024 y el 21 de mayo de 2025. Durante el mismo, se estructura el
tiempo en base a un total de cinco sprints, de los que se supone que tendrán una duración
cada uno de ellos de entre 60 y 72 horas de trabajo, aproximadamente, para completar
las 300-360 horas que se supone que debeŕıa durar la ejecución de este proyecto.

Aśı, teniendo en cuenta situaciones como los peŕıodos de exámenes, cada una de estas
cinco iteraciones se enmarca en las siguientes fechas:

Sprint 1: 16 de diciembre - 19 de febrero

Sprint 2: 19 de febrero - 20 de marzo

Sprint 3: 20 de marzo - 9 de abril

Sprint 4: 9 de abril - 30 de abril

Sprint 5: 30 de abril - 21 de mayo

Los estándares a abordar durante el trabajo en torno a los que se estructura la plani-
ficación temporal son: Proyecto, Antecedentes, Desarrollo y Comunicación, representados
en la Estructura de Desglose del Trabajo (EDT) en tonos morados, naranjas, verdes y
azules, respectivamente. Cada uno de estos estándares abarca un conjunto de tareas con-
cretas:
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Caṕıtulo 2. Planificación

Proyecto.

• Planificación del sprint . Abarca las tareas relacionadas con la organización
del sprint, definiendo el alcance y los plazos temporales de cada una de las
tareas concretas existentes.

• Caracterización del proyecto. Se refiere a la gestión del propio proyecto; es
decir, a la definición de la motivación, los objetivos, la metodoloǵıa, la planifi-
cación y las conclusiones del proyecto.

• Desarrollo del sprint . Se trata de las tareas relativas al seguimiento del
sprint. Esto consiste en actualizar el tablero del proyecto y la previsión de las
reuniones, que serán en su mayoŕıa de manera semanal.

• Finalización del sprint . Se trata de comunicar los progresos realizados du-
rante el sprint aśı como de la recepción del feedback generado por los tutores
para orientar el avance del proyecto. En este caso, como ya se ha explicado
anteriormente, el feedback se dará en cada reunión de manera semanal, por lo
que este objetivo se incluye dentro del estándar de desarrollo del sprint.

Antecedentes.

• Estado del arte. Consiste en investigar a cerca de trabajos similares relacio-
nados con el área de estudio. Con esto, se valorarán las ventajas y limitaciones
de otras soluciones en el entorno de negocio para justificar la consecución del
proyecto.

• Contexto cient́ıfico-técnico. Marco teórico sobre el que se inscribe el trabajo
desarrollado. Consiste en desarrollar las tareas necesarias para entender los
contenidos teóricos que involucra el proyecto.

Desarrollo.

• Construcción. Se trata de la implementación del producto en cuestión que se
trata a lo largo del proyecto.

• Diseño experimental. Se establece todo lo necesario para poder construir los
modelos involucrados en la solución propuesta. Esto se refiere a la definición de
los parámetros del experimento, de los conjuntos de prueba y de las métricas
necesarias.

• Experimentación y Análisis de Resultados. Implica el correspondiente
estudio de los resultados obtenidos y su relación con el cumplimiento de los
objetivos definidos.

Comunicación.

• Presentación. Construcción de una presentación orientada al acto de defensa
del TFG. Se caracteriza por una contextualización del proyecto, seguida del

14 Carlos Jiménez Vaquero



2.2. Planificación temporal

desarrollo realizado, para acabar con una valoración sobre el cumplimiento de
la planificación y de los objetivos establecidos.

• Memoria. Se fundamenta en la elaboración de la documentación necesaria
sobre el proyecto.

Teniendo todo lo anterior en cuenta, se han organizado una serie de reuniones como
son las Status meetings y on-demand meetings ya tratadas. Estas han tenido lugar a lo
largo de toda la realización del proyecto, según se muestra en la Tabla 2.3.

Sprint 1
16-dic.-24 Status meeting
19-feb.-25 Status meeting

Sprint 2
19-feb.-25 Status meeting
05-mar.-25 Status meeting
20-mar.-25 Status meeting

Sp
ri
nt
3

20-mar.-25 Status meeting
26-mar.-25 Status meeting
02-abr.-25 Status meeting
09-abr.-25 Status meeting

Sp
ri
nt
4

09-abr.-25 Status meeting
16-abr.-25 Status meeting
23-abr.-25 Status meeting
30-abr.-25 Status meeting

Sp
ri
nt
5

30-abr.-25 Status meeting
07-may.-25 On-demand meeting
14-may.-25 Status meeting
21-may.-25 Status meeting

Figura 2.3: Planificación de las reuniones en cada sprint.

A continuación se detalla la planificación y el alcance individual de cada uno de los
sprints haciendo uso de una EDT y reflejando la relación entre las actividades, su secuen-
ciación y duración mediante un cronograma. En este caso, el cronograma se trata de un
diagrama de Gantt.

2.2.1. Sprint 1

En este primer sprint se tratan las tareas pertenecientes a los objetivos: Proyecto, An-
tecedentes, Desarrollo y Comunicación. Para poder organizar de una manera adecuada el
trabajo en esta primera iteración, se ha elaborado una Estructura de Desglose del Trabajo
(EDT) que se puede observar en la Figura 2.4. Además, a partir de este mismo diagra-
ma, se ha especificado la duración que debeŕıa tener cada una de las tareas dispuestas,
construyendo aśı el diagrama de Gantt correspondiente que se recoge en la Figura 2.5.

En general, este primer sprint está enfocado en investigar el marco sobre el que se
encuadra el proyecto, adquiriendo conocimiento sobre las soluciones existentes al problema
que se plantea, además de comenzar con la construcción de los primeros modelos para
la detección del glaucoma. Como se irá viendo, con la consecución de los sprints se irá
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Caṕıtulo 2. Planificación

reduciendo la parte dedicada a la investigación del problema tratado y de los métodos
que se pueden usar en favor de más trabajo en la parte de desarrollo.

2.2.2. Sprint 2

En este segundo sprint se aborda el problema de igual forma que en el primero. Se or-
ganiza el trabajo a desarrollar a partir del desglose de tareas que se encuentra representado
en la EDT de la Figura 2.6. Por otra parte, a partir de la misma se planifica de manera
temporal cada tarea, como se puede consultar en el diagrama de Gantt correspondiente
a la Figura 2.7.

Este sprint ya presenta una aproximación más real al problema, pues en el primero,
la parte técnica tan solo se encarga de construir modelos básicos a partir de los datos en
posesión y no se manipulan los datos como se hará de aqúı en adelante. En particular, en
este sprint se resuelve el problema de la segmentación de las estructuras necesarias dentro
de una retinograf́ıa, referido tanto a la parte de estudio e investigación de estas técnicas
junto con el desarrollo de las mismas. Además, también se trata de abordar el problema
de la clasificación a partir de los resultados obtenidos en la fase de segmentación.

Aqúı se trata de abordar de una manera más contundente los métodos necesarios para
alcanzar los objetivos propuestos, y esta será la tónica en las siguientes iteraciones, donde
se disminuye la parte de investigación, porque ya ha sido completada, en favor de una
mayor aportación al desarrollo de propuestas que mejoren los resultados buscados.

2.2.3. Sprint 3

A lo largo de este sprint se profundiza en las técnicas para la clasificación entre reti-
nograf́ıas de ojos glaucomatosos y sanos. Además, se utilizarán los resultados obtenidos
en la iteración anterior para tratar de mejorar los resultados. Tras esto, se realizará una
comparativa con otras soluciones previas para comprobar si los nuevos métodos aportan
más información en forma de mejores resultados.

Como se puede apreciar en la EDT de la Figura 2.8, una vez superadas las primeras
iteraciones en las que se divide el proyecto, la parte de recogida de información de los
antecedentes ocupa una menor parte del tiempo; mientras que la mayor parte del mismo
se destina al desarrollo de la propuesta de solución.

Además, la organización temporal completa en base a las tareas establecidas se recoge
en el diagrama de Gantt de la Figura 2.9.

2.2.4. Sprint 4

En este sprint se prevé el refinamiento de los métodos realizados en el sprint anterior
para conseguir mejorar las métricas obtenidas. Las tareas que se van a desempeñar se
encuentran recogidas en la EDT de la Figura 2.10 y consisten en una evolución de las de
la etapa anterior.

16 Carlos Jiménez Vaquero



2.2. Planificación temporal

Por su parte, la planificación derivada de la EDT de la Figura 2.10 se recoge en el
diagrama de Gantt de la Figura 2.11.

2.2.5. Sprint 5

Este sprint contiene las tareas basadas en la agrupación de los resultados de las ite-
raciones anteriores. De este forma, se espera que combinando los resultados se obtengan
otros aún mejores. Esto se hace mediante ensembles, que serán explicados en la Sección
3.2, para lo cual, se realiza un pequeño estudio de en qué consisten.

Junto con los antecedentes y la construcción de la solución, se desarrolla el objetivo
Proyecto para planificar el sprint. Todo esto se recoge en la EDT de la Figura 2.12,
completando la explicación de la planificación temporal de estas tareas en base al diagrama
de Gantt de la Figura 2.13.
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Figura 2.4: EDT del Sprint 1.
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Figura 2.5: Diagrama de Gantt del Sprint 1.
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Figura 2.6: EDT del Sprint 2.
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2.2. Planificación temporal
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Figura 2.7: Diagrama de Gantt del Sprint 2.
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Figura 2.8: EDT del Sprint 3.
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2.2. Planificación temporal
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Figura 2.9: Diagrama de Gantt del Sprint 3.
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Figura 2.10: EDT del Sprint 4.
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2.2. Planificación temporal
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Figura 2.11: Diagrama de Gantt del Sprint 4.
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Figura 2.12: EDT del Sprint 5.
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2.2. Planificación temporal
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Figura 2.13: Diagrama de Gantt del Sprint 5.
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2.3. Presupuestos

En esta sección se muestra un análisis detallado de los presupuestos que se deben
afrontar para la realización del trabajo. El presupuesto desempeña un papel clave en la
planificación y ejecución de cualquier proyecto. Esto se debe a que facilita la estimación
de los recursos necesarios para alcanzar los objetivos establecidos. Por ello, a continuación
se detallan los costes en materia humana, software y hardware.

2.3.1. Hardware

Respecto a los recursos hardware, es fundamental para la realización de este trabajo
el uso de un ordenador y de una conexión Wi-Fi. Respecto al primer componente, se
ha hecho uso de un ordenador portátil OMEN con procesador Intel i7-7700HQ, tarjeta
gráfica NVIDIA GeForce GTX 1050 y memoria RAM de 16 GB. Además, respecto a la
capacidad de almacenamiento, cuenta con 128 GB de disco HDD y 1 TB de SSD. Este
portátil se ha completado con un monitor AOC de 144 Hz y 27 pulgadas, junto con un
teclado Razer Huntsman Mini y un ratón inalámbrico.

Respecto al Wi-Fi, se dispone de una tarifa plana mensual de la que se emplea para la
realización de este proyecto en torno a un 70%. En la Tabla 2.1 se muestra el porcentaje
de uso de cada uno de los elementos descritos hasta el momento, además del coste que
representa para la realización del proyecto.

Componente Coste total Porcentaje de uso Total

Ordenador portátil 1000 e 8% 80 e

Teclado 65 e 15% 9.75 e

Monitor 165 e 18% 29.70 e

Ratón inalámbrico 12 e 7% 0.84 e

Conexión Wi-Fi 20 e/mes 70% (7 meses) 98 e

218.29 e

Tabla 2.1: Costes hardware previstos

2.3.2. Software

Los componentes software que se han empleado en el desarrollo del proyecto son todos
software libre sin coste, aunque en caso de que se tratase de una empresa, los costes seŕıan
distintos. Para la redacción de la memoria se ha utilizado Overleaf, mientras que Trello
y Microsoft Teams han facilitado la gestión del trabajo colaborativo, el seguimiento del
proyecto y la comunicación.

Por su parte, Google Colab ha sido la plataforma principal para el desarrollo y en-
trenamiento de los modelos de inteligencia artificial, dado que proporciona un entorno
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de ejecución con GPU sin coste. Por otro lado, el entorno Spyder ha sido empleado para
realizar pruebas con filtros de imágenes u organizar los conjuntos de datos, por ejemplo.
Para la elaboración de diagramas y esquemas representativos, se ha utilizado Draw.io, y
para la planificación temporal se ha recurrido a Gantt PRO.

Todo este software será ejecutado a través del mismo ordenador portátil descrito en
la Sección 2.3.1 con sistema operativo Windows 10. La Tabla 2.2 recoge los componentes
software que se usan a lo largo del proyecto, aśı como sus respectivos costes.

Componente Coste Total

Google Colab 0 e 0 e

Spyder 0 e 0 e

Overleaf 0 e 0 e

Trello 0 e 0 e

Microsoft Teams 0 e 0 e

Draw.io 0 e 0 e

Gantt PRO 0 e 0 e

Windows 10 0 e 0 e

0e

Tabla 2.2: Costes software previstos

2.3.3. Recursos humanos

Los recursos humanos han sido distribuidos para el desarrollo de un proyecto con una
duración prevista de 360 horas. En este caso, como se trata de un TFG personal, todos los
roles son encarnados por una misma persona. En total, se han distinguido los siguientes
roles en función de la tarea que se desarrolla:

Gestor de proyectos. Planifica y organiza el proyecto. En particular, se encarga
de los plazos y los recursos disponibles. Además, será el medio de comunicación entre
el equipo y los interesados. Su salario por hora es de 19.23 e/hora, según recoge
[73].

Analista y Diseñador. Recoge los requisitos del proyecto, define las funciona-
lidades que se deben desarrollar para satisfacerlos y diseña la arquitectura de la
aplicación antes del desarrollo. Su salario por hora es de 14.23 e/hora, como se
observa en [74].

Cient́ıfico de datos. Se encarga de procesar y analizar los datos, entrenando mode-
los de Inteligencia Artificial y extrayendo la información que sea útil de los mismos.
Como se menciona en [75], su salario por hora es de 18.61 e/hora.
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Programador y Tester. El programador implementa el código según los diseños,
integra los modelos y construye la aplicación o sistema funcional. Además, para este
proyecto también hará las labores de tester. Para ello, se encarga de verificar que la
aplicación construida funciona correctamente, detectando los errores de la misma.
Su salario por hora es de 14.33 e/hora, como se menciona en [76].

En la Tabla 2.3 se calcula el coste total en materia de recursos humanos que conlleva
la realización de este proyecto, teniendo en cuenta las horas de trabajo desempeñadas
por cada rol y el sueldo por hora indicado anteriormente. Como se puede comprobar, en
las referencias dadas aparece el sueldo anual, por lo que se ha usado [77] para calcular el
sueldo por hora.

Cargo Nº. puestos Sueldo (por hora) Horas totales Salario total

Gestor de proyectos 1 19.23 e/hora 20 horas 384.60 e

Analista/Diseñador 1 14.23 e/hora 65 horas 924.95 e

Cient́ıfico de datos 1 18.61 e/hora 145 horas 2698.45 e

Programador/Tester 1 14.33 e/hora 130 horas 1862.90 e

5870.90 e

Tabla 2.3: Costes en materia de recursos humanos previstos

Adicionalmente al coste total en materia de recursos humanos, se debe asumir el coste
que supone dar de alta a un trabajador en la Seguridad Social (SS). Esto supone el 28.30%
del salario bruto [55]. Luego, el coste total para afrontar los recursos humanos necesarios
para la realización del proyecto es

CosteRRHH = Total + SS = 5870.90e+ 28.30% · 5870.90e = 7532.36e

2.3.4. Costes totales

En las Secciones 2.3.1, 2.3.2 y 2.3.3 se analiza detalladamente cada uno de los tipos
fundamentales de recursos que interaccionan durante el proyecto. Una vez se ha desglosado
cada parte fundamental del presupuesto, se puede hacer un cómputo de los costes totales
que presenta el trabajo como se sigue en la Tabla 2.4.

Concepto Coste

Hardware 218.29 e

Software 0 e

Recursos humanos 7532.36 e

Total 7750.65 e

Tabla 2.4: Costes totales previstos.
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2.4. Gestión de riesgos

La gestión de riesgos es un proceso fundamental para identificar, analizar y mitigar los
posibles eventos que podŕıan afectar al desarrollo del proyecto. Lo que se busca al realizar
una gestión de riesgos es garantizar que los objetivos del proyecto se cumplan dentro de
los plazos, costos y calidad establecidos.

Con este propósito, se identifican los riesgos que pueden hacer peligrar el proyecto.
Además, se analizan y evalúan para clasificar según su probabilidad de ocurrencia e im-
pacto para priorizar la atención según su importancia, y se planifica un plan de respuesta
para solucionar el problema ocasionado si el riesgo se materializa.

2.4.1. Identificación factores de riesgo

El primer paso para poder gestionar un riesgo es tener constancia de él. La identifica-
ción de riesgos consiste en detectar y describir los riesgos potenciales que pueden afectar
al desarrollo del proyecto. Un estudio profundo sobre los riesgos que se pueden producir a
lo largo del proyecto permite anticiparse a ellos, pudiendo reducir el impacto que tienen
sobre el proyecto. En la Tabla 2.5 se recogen los posibles riesgos identificados para este
trabajo.

Riesgo

R-01 Retraso del proyecto respecto a la planificación inicial

R-02 Falta de balanceo en los datos de entrenamiento

R-03 Limitación temporal de uso de GPU en Google Colab

R-04 Falta de experiencia con técnicas de segmentación de imágenes

R-05 Retraso y/o denegación en la obtención de permisos y datos

R-06
Las caracteŕısticas como el brillo, el contraste o la saturación
disminuyen significativamente el rendimiento del modelo

R-07 Diferencias entre los datos de entrenamiento y cĺınicos reales

R-08 Modelos de segmentación no detectan con alta precisión las estructuras

R-09 Dificultad para validar los resultados del modelo con expertos médicos

R-10 Las métricas de clasificación no alcanzan valores satisfactorios

Tabla 2.5: Identificación de riesgos.
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2.4.2. Estimación de los riesgos

Para cada riesgo identificado se lleva a cabo su debido análisis. En él, se estima la pro-
babilidad de que ocurra el evento estudiado, y el impacto que tiene en caso de ocurrencia.
Para poder cuantificar estas estimaciones, se utiliza un valor entero entre 0 y 5.

En la Tabla 2.6 se recoge la estimación sobre la probabilidad que tiene un riesgo
de producirse. En concreto, la probabilidad de ocurrencia es la probabilidad de que se
produzca el evento que identifica el riesgo si no se lleva a cabo una acción preventiva.
Además, en esta tabla, junto con el valor entero del rango [0, 5], se precisará el valor de
la probabilidad de ocurrencia entre 0% y 100%. Esta probabilidad tiene relación directa
con el valor numérico dado previamente.

Riesgo
Probabilidad
de ocurrencia

Valor
Probabilidad

Justificación

R-01 20% 2
El proyecto se realiza

simultáneamente con otras
asignaturas, incluido otro TFG

R-02 40% 3

Es habitual en investigaciones
médicas que los datos contengan
muchos ejemplos sanos y pocos

casos con la patoloǵıa en cuestión

R-03 80% 5

Google Colab restringe el uso
temporal de la CPU, y los

modelos a entrenar requieren
de mucho tiempo de entrenamiento

R-04 50% 3
No se ha trabajado nunca con
técnicas de segmentación,

tan solo clasificación

R-05 40% 3

Los datos utilizados para la
investigación se solicitan al

Hospital Cĺınico de Valladolid y
requieren de autorización previa

R-06 20% 2
Las imágenes pueden presentar
zonas con brillos que afecten
a la segmentación y detección

R-07 35% 2
Dependiendo de la diversidad

de ejemplos puede que los datos
no cubran todos los casos reales

R-08 30% 2
Los modelos entrenados pueden
no cumplir con las expectativas

de rendimiento
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Riesgo
Probabilidad
de ocurrencia

Valor
Probabilidad

Justificación

R-09 10% 1
Se conocen expertos en la materia
a los que habŕıa que contactar para

evaluar el producto final

R-10 15% 1
Puesto que se trata de una investi-
gación, es posible no obtener resu-

tados relevantes

Tabla 2.6: Análisis probabilidad de ocurrencia de cada riesgo.

Por su parte, en la Tabla 2.8 se analiza el impacto que tendrá cada uno de los riesgos
identificados en caso de que se produzcan. Además del valor numérico entre [0, 5], el
estudio del impacto recoge la pérdida operacional y el impacto en los costes. La pérdida
operacional se refiere a las pérdidas económicas que supondŕıa no hacer frente a un riesgo;
mientras que el impacto en los costes mide el incremento sobre los costes totales si el
riesgo se produce.

Riesgo
Pérdida

operacional
Impacto en
los costes

Impacto Justificación

R-01
95.30 epor cada
d́ıa de retraso

5.8% 3
Como consecuencia no se entrega
en la fecha prevista el proyecto

R-02 - - 1
Repercute en los resultados, pero
no tiene impacto en los costes

R-03
95.30 epor cada
d́ıa de retraso

11.6% 5
No tener capacidad suficiente de
procesamiento puede retrasar el

desarrollo del proyecto

R-04
95.30 epor cada
d́ıa de retraso

3.6% 2
El peŕıodo de aprendizaje
puede retrasar el proyecto

R-05
95.30 epor cada
d́ıa de retraso

4.3% 3
La búsqueda de otras fuentes de
datos puede retrasar el proyecto

R-06
95.30 epor cada
d́ıa de retraso

2.9% 1
La construcción de filtros que

mitiguen los brillos de las imágenes
puede retrasar el proyecto

R-07 - - 1
Repercute en la utilidad de la

investigación, pero no tiene impacto
en los costes

R-08 - - 1
Repercute en los resultados, pero
no tiene impacto en los costes

R-09 - - 1
El producto final no tendrá el mismo

respaldo, sin afectar a los costes
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Riesgo
Pérdida

operacional
Impacto en
los costes

Impacto Justificación

R-10 - - 1
Repercute en los resultados, pero
no tiene impacto en los costes

Tabla 2.7: Análisis impacto de cada riesgo.

2.4.3. Matriz de Probabilidad × Impacto

La matriz de Probabilidad × Impacto es un artefacto que ayuda a organizar la prio-
ridad que se debe dar a un riesgo. Para ello, se calcula la exposición, que viene dada
por

Exposición = Probabilidad× Impacto.

De esta forma, se asociada cada riesgo a un único valor, denominado exposición, que con-
templa tanto la probabilidad de ocurrencia como el impacto. Este valor permite clasificar
los riesgos según la prioridad con la que se deben tratar:

Prioridad alta (en color rojo): Exposición ≥ 10.

Prioridad media (en color amarillo): 5 ≤ Exposición ≤ 10.

Prioridad baja (en color verde): Exposición ≤ 5.

En la Tabla 2.8 se muestra la probabilidad e impacto de cada riesgo identificado, aśı
como su valor de exposición.

Riesgo Probabilidad Impacto Exposición

R-01 2 3 6

R-02 3 1 3

R-03 5 5 25

R-04 3 2 6

R-05 3 3 9

R-06 2 1 2

R-07 2 1 2

R-08 2 1 2

R-09 1 1 1

R-10 1 1 1

Tabla 2.8: Matriz de Probabilidad × Impacto
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Atendiendo al valor de exposición presentado en la Tabla 2.8, se observa que el único
riesgo con prioridad alta es R-03. Este riesgo necesita de una actuación inmediata para
que no interfiera con la actividad del proyecto. A continuación se presentará un plan de
contingencia tanto para los riesgos con más prioridad como para el resto.

2.4.4. Plan de contingencia

Tras analizar en detalle cada uno de los riesgos identificados, se plantea el plan de
contingencia para cada uno de ellos recogido en la Tabla 2.9. Además, se presentan en
orden de prioridad atendiendo a su valor de exposición.

Riesgo Plan de contingencia

R-01 Establecer una planificación realista teniendo en cuenta peŕıodos
de exámenes y ritmo de trabajo

R-02 Usar técnicas de data-augmentation

R-03 Tener disponible más de un entorno de Google Colab

R-04 Dedicar tiempo de investigación y lectura a la adquisición de los
conocimientos necesarios

R-05 Explorar distintas v́ıas de obtención de los datos

R-06 Experimentar con distintos filtros en el preprocesado de imágenes
y analizar los resultados obtenidos con cada uno

R-07 Controlar una amplia variedad de imágenes de prueba para com-
probar la correcta funcionalidad independientemente de la imagen
analizada

R-08 Plantear distintas soluciones en la construcción de los modelos y
realizar un postprocesado para mejorar la segmentación

R-09 Controlar una amplia variedad de imágenes de prueba para com-
probar la correcta funcionalidad independientemente de la imagen
analizada

R-10 Explorar distintas v́ıas de clasificación desde Machine Learning a
partir de los parámetros extráıdos en las segmentaciones como cla-
sificación con Deep Learning. Mostrar un análisis detallado con ide-
pendencia de los resultados.

Tabla 2.9: Plan de contingencia de riesgos
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2.5. Balance temporal y económico

Esta sección tiene como objetivo analizar dos aspectos fundamentales del desarrollo de
un proyecto: el tiempo y los recursos económicos que se han utilizado para su realización.

2.5.1. Balance temporal

En el balance temporal del proyecto se presentan los recursos temporales requeridos
para realizar las distintas fases de trabajo. De esta forma, se especificarán a continuación
las desviaciones ocurridas respecto a la planificación prevista que se describió en la Sección
2.2.

La primera de las desviaciones respecto a la planificación temporal repercute en el
estándar Comunicación. Las tareas que se recopilaron en las EDT de cada sprint se refeŕıan
a la elaboración de la memoria. Sin embargo, no se reservó tiempo para la redacción de
la memoria. En consecuencia, se retrasa la finalización del proyecto completo y de la
preparación para la defensa dos d́ıas respecto de la planificación inicial.

Por otra parte, aunque en la planificación temporal no quedó reflejado, dada la po-
tencial aplicación en el campo de la medicina para apoyar el diagnóstico del glaucoma a
través de una solución como la que se propone desarrollar, se consideró oportuno realizar
una solicitud de acceso a un conjunto de retinograf́ıas en posesión del Hospital Cĺınico
Universitario de Valladolid, con el objetivo de contar con datos cĺınicos reales y represen-
tativos. El objetivo de esta petición es poder colaborar con el sistema de sanidad pública,
desarrollando una herramienta de manera gratuita para su mejora o evolución.

Sin embargo, tras un total de tres meses de trámites burocráticos, la autorización para
la concesión del dataset fue rechazada por el Comité de Ética de Investigación Cĺınica del
Área de Salud de Valladolid, quedando supeditada a una posible revisión y aprobación
por parte de la Consejeŕıa de Sanidad. Como se pretend́ıa acabar con la realización de este
proyecto durante el curso 2024-2025, frente al aplazamiento y demora para la autorización
de acceso a las imágenes, se optó por paralizar esta v́ıa y comenzar este estudio a partir
de conjuntos de datos públicos.

Luego, como se ha mencionado con anterioridad, en la planificación temporal no quedó
reflejado este hecho porque no se realizó la misma, ni se comenzó el proyecto, hasta que
no se tuvo la resolución de la solicitud. Aún aśı, se ha optado por explicar este hecho
como parte del balance temporal, ya que tiene repercusiones en cuanto al retraso en el
comienzo del proyecto.

2.5.2. Balance económico

Aqúı se detalla el coste que acarrea este proyecto y su desviación respecto al presu-
puesto estimado descrito en la Sección 2.3. Igual que se hizo para el presupuesto, para el
balance económico se describen los costes en recursos humanos, software y hardware.

Respecto al software y hardware utilizados para el desarrollo del proyecto, no se ha
requerido del uso de ningún recurso adicional. Por otro lado, como se ha indicado en
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el balance temporal de la Sección 2.5.1, la no reserva de tiempo para la elaboración de
la presentación que se utilizará en el evento de defensa del TFG retrasa en dos d́ıas la
finalización del proyecto, que, como se describió en la Sección 2.4, conlleva un coste de
95.30 epor cada d́ıa de retraso. Por tanto, esto eleva los costes finales a un total de

7750.65 e+ 2 · 95.30 e = 7941.25 e.
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Caṕıtulo 3

Antecedentes

En este caṕıtulo se describe en detalle el contexto cient́ıfico-técnico del proyecto; es
decir, la presente sección trata de ubicar el marco teórico general sobre el cual se asienta
la solución propuesta al problema planteado de detección del glaucoma. Para ello, se
dividen los antecedentes en tres partes claramente diferenciadas en función del área de
conocimiento en el que se incluyen:

Área médica. Para entender con claridad el objetivo que se persigue con este
proyecto y las soluciones definidas, es importante conocer el contexto médico sobre
el que se trabaja. Con este propósito, en la Sección 3.1 se ilustra la anatomı́a y
fisioloǵıa del sistema ocular. Tras esto, se presenta la patoloǵıa que se pretende
diagnosticar, el glaucoma.

Además, se explica qué es una retinograf́ıa, puesto que es el tipo de dato que se usa
para construir la solución que se pretende que detecte el glaucoma. Junto con la
retinograf́ıa, se explican las estructuras que se identifican en la misma, pues serán
de utilidad a lo largo del proyecto.

Área informática y de ciencia de datos. A la vista de los objetivos del proyecto
descritos en la Sección 1.2, este es el campo de conocimiento principal sobre el
que se desarrolla este trabajo. A lo largo de la Sección 3.2 se tratan las técnicas de
Machine Learning, y Deep Learning que pueden ser de interés para la persecución de
los objetivos. Junto con el concepto de Deep Learning, se trata el de redes neuronales
sobre el que se sustenta.

Por otra parte, para evaluar los modelos de predicción construidos a través de las
técnicas de Machine Learning y Deep Learning, es necesario el uso de métricas que
permitan identificar cuál es la mejor solución. Por este motivo, en la Sección 3.2.4
se explican las métricas utilizadas para este trabajo. Además, en la construcción de
los modelos se contemplan distintas variaciones de los datos aplicando una serie de
filtros que se describen en la Sección 3.2.5.

Área matemática. Tras encontrar las estructuras propias de una retinograf́ıa, se
lleva a cabo un postprocesado de la imagen. Con este fin, se explotan técnicas
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que emplean conceptos matemáticos como el de envolvente convexa o componentes
conexas, definidos a lo largo de la Sección 3.3.

3.1. Contexto médico

A lo largo de esta sección se detalla la anatomı́a y fisioloǵıa del sistema ocular. Tras
entender esto, se estará en disposición de presentar qué es el glaucoma, sus causas y
sus consecuencias. Finalmente, se explica en qué consiste una retinograf́ıa, aśı como las
estructuras que se distinguen en la misma.

3.1.1. Anatomı́a y fisioloǵıa ocular

A grandes rasgos, el funcionamiento del ojo es similar al de una cámara fotográfica. Su
funcionamiento consiste en capturar los rayos de luz entrantes en el globo ocular para que
el cerebro los interprete. A continuación se explica este proceso en detalle, describiendo
cada uno de los elementos que conforman el sistema óptico representado en la Figura 3.1.

Figura 3.1: Anatomı́a del sistema óptico [82].

En primera instancia, cuando la luz llega a la parte frontal del globo ocular, se topa
con dos lentes. Estas lentes son la córnea y, tras esta, el cristalino. Además, entre estas
dos estructuras se localiza el iris, y la cavidad que genera, la pupila. La función de la
pupila es regular la cantidad de luz entrante en el globo ocular; mientras que el iris es
quien controla el tamaño de la pupila para que esto suceda.

Por tanto, los rayos de luz atraviesan una primera lente, que es la córnea. A continua-
ción, pasan por la pupila para llegar al cristalino. Este último es una lente flexible que se
encarga de enfocar la luz para proyectarla contra las paredes del fondo del globo ocular,
como se representa en la Figura 3.2. Estas paredes son la retina.

La retina es una capa de tejido nervioso que recubre la parte interna y posterior del
ojo. Siguiendo con la analoǵıa de la cámara, la retina es el sensor de esta. Como se ha
explicado, su función principal es captar la luz y convertirla en señales eléctricas para
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Figura 3.2: Diagrama representativo del funcionamiento del ojo [83].

que viajen hasta el cerebro a través del nervio óptico. Con este fin, la retina contiene una
serie de subcapas, recogidas en la Figura 3.3, cada una con una función espećıfica, para
recoger los distintos colores que se proyectan sobre la retina y reportar esta información
al cerebro a través del nervio óptico.

Figura 3.3: Diagrama representativo del funcionamiento del ojo [84].

Esta última estructura mencionada, el nervio óptico, está compuesto por más de un
millón de fibras nerviosas que son los axones de las neuronas que recogen la informa-
ción proyectada sobre la retina [36]. Para entenderlo con una analoǵıa propuesta por la
Academia Americana de Oftalmoloǵıa [2], el nervio óptico es similar a un cable eléctrico
compuesto por muchos alambres pequeños que conducen la información al cerebro.

Una vez entendido a grandes rasgos cómo funciona el sentido de la vista, queda destacar
un elemento importante en este sistema previo a la introducción del glaucoma, el humor
acuoso. Este es un ĺıquido transparente que se encarga de lubricar las dos lentes del ojo:
la córnea y el cristalino. Como relata la Academia Americana de Oftalmoloǵıa [2], el ojo
produce humor acuoso constantemente, y a medida que fluye nuevo humor acuoso en el
ojo, debe drenarse la misma cantidad. Además, cabe mencionar que la transparencia de
este ĺıquido permite el paso de la luz.
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3.1.2. Glaucoma

El glaucoma es una enfermedad ocular que daña el nervio óptico. Generalmente, se
produce cuando aumenta la presión en el ojo. Como se ha explicado en la sección anterior,
el sistema ocular genera humor acuoso de manera sostenida. Si no se drena por completo,
se acumula este fluido, aumentando la presión ocular. Este aumento en la presión ocular
puede dañar al nervio óptico, lo que conlleva el surgimiento del glaucoma [2].

Como consecuencia al aumento de la presión, las fibras nerviosas del nervio óptico
mueren. Debido a la pérdida de las fibras nerviosas, no se recoge la luz proyectada en
los lugares donde han muerto; de esta forma, se desarrollan puntos ciegos en la visión.
En general, las fibras que se pierden primero son las más alejadas del nervio óptico, lo
que hace que el campo de visión se vaya cerrando. Puesto que este proceso es paulatino,
puede que el paciente no note los puntos ciegos hasta que hayan muerto la mayoŕıa de las
fibras del nervio óptico. En caso de que todas las fibras mueran, el usuario que padezca
glaucoma se quedará ciego.

Estad́ısticas

El glaucoma es una enfermedad relevante por su frecuencia y potencial gravedad, ya
que, como asegura la Sociedad Española del Glaucoma (SEG) [3], esta enfermedad es,
junto con la diabetes (retinopat́ıa diabética), la principal causa evitable de ceguera en
España; además de afectar a más del 3% de la población. Como reportaba la Cadena
SER el pasado mes de abril de 2025 [37], en un solo hospital, en este caso el Hospital
Universitario de Elche, se diagnostican más de 400 casos de glaucoma anualmente.

Según el Instituto Catalán de la Retina (ICR) [4] y la SEG [3], esta enfermedad
es crónica, progresiva e irreversible. Luego, la ceguera podŕıa evitarse diagnosticando y
tratando la enfermedad de manera adecuada, cobrando especial relevancia facilitar el
diagnóstico precoz de la enfermedad.

Ampliando el foco al contexto internacional, según la Glaucoma Research Foundation
de Estados Unidos [38], la prevalencia en el páıs es de alrededor de 4.22 millones de
personas. Globalmente, esta cifra alcanzó en 2020 los 80 millones de personas. Reforzando
la proposición de que es una causa importante de ceguera evitable junto con la diabetes,
según este mismo organismo, el glaucoma encabeza las causas de ceguera globales, solo
por detrás de las cataratas, siendo responsable de entre el 9% y el 12% de los casos, lo
que representa 5.9 millones de personas.

3.1.3. Retinograf́ıa

Una retinograf́ıa es una prueba diagnóstica no invasiva que permite capturar imágenes
detalladas de la parte posterior del ojo; es decir, del fondo del ojo [39]. Para llevar a cabo
una retinograf́ıa, se emplea un microscopio adaptado junto con una cámara de manera que
proporcionan una vista de en torno a 50º en torno al nervio óptico para una retinograf́ıa
central, o si se trata de una retinograf́ıa de campo amplio, más de 200º de amplitud [40].
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Para llevar a cabo esta prueba, si se trata de una retinograf́ıa central, se deben aplicar
unas gotas de un colirio ciclopéjico en la superficie del ojo para dilatar la pupila. Como
indica el Instituto de Microciruǵıa Ocular [40], en ambos casos se tarda entre 5 y 10
minutos en tomar la imagen, aunque para el caso de la retinograf́ıa central hay que
esperar previamente en torno a 15 minutos para que el colirio dilatador haga efecto.

Una retinograf́ıa es de utilidad para la detección de enfermedades que afectan a la
parte posterior del ojo; en particular, el glaucoma. Además, presenta un aspecto como el
que se muestra en la Figura 3.3, pudiendo identificar una serie de estructuras clave:

Mácula. Es la parte central de la retina y aparece de color más oscuro en las
retinograf́ıas. En la Figura 3.4, aparece una parte con mayor brillo, y a su izquierda
otra región con mayor sombreado. Esta segunda es la mácula. Esta estructura se
puede identificar en la representación de la Figura 3.2 como el punto focal. La
mácula es la zona con más conos; es decir, fotorreceptores especializados en el color
y el detalle. Además, a la parte central de la mácula se le denomina fóvea.

Figura 3.4: Diagrama identificativo del disco y la copa en una retinografı́a [9].

Nervio óptico. Esta parte se ha explicado en la Sección 3.1.1. Además, en la
retinograf́ıa es fácilmente distinguible por tener tonalidades más claras y presentar
un mayor brillo, como en el ejemplo de la Figura 3.4. Por otra parte, la región del
nervio óptico se identifica cuando se localizan las dos estructuras que se tratan a
continuación, y se denomina comúnmente zona o región ONH.

Disco óptico. Punto de unión entre el nervio óptico y el ojo. Es una estructura re-
donda y clara, visible en las retinograf́ıas como se muestra en la Figura 3.5. Además,
por esta región del ojo es por donde entran y salen los vasos sangúıneos.
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Caṕıtulo 3. Antecedentes

Figura 3.5: Diagrama identificativo del disco y la copa en una retinografı́a [11].

Copa óptica. Parte central del disco óptico. Su disposición frente a la del disco
viene identificada en la Figura 3.5. Su tamaño vaŕıa dependiendo de la persona.
Además, en presencia de glaucoma, la copa puede agrandarse. Para la detección de
esta patoloǵıa, cuanto más grande es la copa respecto al disco, es más probable que
el nervio óptico esté dañado.

3.2. Contexto teórico

Este proyecto se sustenta sobre el área de conocimiento de la Inteligencia Artificial.
Su objetivo es la construcción de modelos. En el campo de la Inteligencia Artificial, un
modelo es una representación computacional que, por lo general, aprende a realizar una
tarea espećıfica a partir de los datos. También puede hacerlo a partir de reglas si se trata
de sistemas expertos. En concreto, es un sistema que aprende patrones de los datos para
predecir, clasificar, detectar o generar información nueva.

En la propuesta de solución del proyecto, se emplearán distintos procesos para la
construcción de modelos. A lo largo de esta sección, se repasará de manera teórica cada
una de estas técnicas, desde los algoritmos t́ıpicos de Machine Learning, pasando por las
redes neuronales, hasta la construcción de modelos propios del Deep Learning.

3.2.1. Machine Learning

El Machine Learning o Aprendizaje Automático es la rama de la Inteligencia Artificial
que se centra en el diseño y desarrollo de algoritmos que permiten a los ordenadores
mejorar su desempeño en la realización de una tarea a partir de la experiencia [20]. Esta
experiencia viene dada en forma de datos. Luego, como se explica en [21], el Machine
Learning permite a los sistemas aprender y mejorar de forma autónoma a partir de datos.
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Siguiendo [21], según la forma en la que se utilicen los datos para adquirir conocimiento,
podemos dividir los algoritmos de Machine Learning en distintas categoŕıas: aprendizaje
supervisado, no supervisado, semisupervisado, autosupervisado y por refuerzo [28]. A
continuación se explica con más detalle cada una de ellas, prestando más atención a las
dos primeras, pues son las que aparecen en el desarrollo de la propuesta de solución del
problema que se explica en la parte II de este documento.

Tipos de algoritmos de Machine Learning

Aprendizaje supervisado: Este tipo de Machine Learning se basa en entrenar
modelos con datos etiquetados; es decir, de los que se conoce el resultado esperado
[23]. El objetivo es aprender un cierto concepto a partir de ejemplos de los que se
conocen un conjunto de atributos y los resultados esperados (variable objetivo). Co-
mo se distingue en [28], a su vez el aprendizaje supervisado comprende dos variantes
principales:

• Algoritmos de regresión: la variable objetivo es una variable numérica con-
tinua [23]. Estos algoritmos tratan de encontrar una función que lleve un con-
junto de atributos conocidos en el valor de la variable objetivo. Luego, tratan
de ajustar los datos a una función minimizando el error cometido, surgiendo
aśı algoritmos como los de regresión lineal o regresión loǵıstica.

• Algoritmos de clasificación: la variable objetivo es discreta [23]; es decir, se
busca clasificar cada elemento en una de las categoŕıas definidas. Este tipo de
algoritmos se basan en la búsqueda de patrones que sigan las caracteŕısticas de
cada clase y usar ese conocimiento para determinar la clase a la que pertenecen
nuevos elementos.

Entre los algoritmos de aprendizaje supervisado que se emplearán en este proyecto,
se incluyen algunos como K-NN (K-Nearest Neighbors - K vecinos más cercanos)
[30], SVM (Support Vector Machines - Máquinas de Vectores Soporte) [31], árboles
de decisión [24] o aprendizaje bayesiano [23]. Todos ellos se revisitarán más adelante
para dar una explicación detallada de cada uno.

Aprendizaje no supervisado: frente a los algoritmos de aprendizaje supervisado,
se tienen los algoritmos de aprendizaje no supervisado. Estos se emplean cuando no
existe ningún tipo de etiquetado en los datos y no se necesita ningún conocimiento
previo [28]. Además, como se explica en [29], se pueden dar tres enfoques principales
para los algoritmos de aprendizaje no supervisado:

• Algoritmos de clustering: la agrupación en clústeres es una técnica que
agrupa datos no etiquetados en función de sus similitudes o diferencias [29].
Entre los algoritmos de clustering destaca el de k-means o k-medias [32], del
que se hace uso para la solución propuesta al problema planteado.
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• Algoritmos de asociación: método basado en una serie de reglas que se
emplean para detectar y abstraer las relaciones existentes entre un conjunto de
datos determinado.

• Algoritmos de reducción de dimensionalidad. En ocasiones el conjunto
de atributos o caracteŕısticas que se tiene sobre los datos es demasiado ele-
vado. Esto incide en el rendimiento y dificulta la visualización de los datos.
Para solucionar este problema se lleva a cabo la técnica de reducción de di-
mensionalidad, que consiste en disminuir el número de entradas de datos a
un tamaño manejable, tratando de perder la menor cantidad de información
posible. Como se describe en [29], los principales algoritmos de reducción de
la dimensionalidad son: el análisis de componentes principales (PCA) [33], la
descomposición en valores singulares [35], y los codificadores automáticos [34].

Aprendizaje por refuerzo: entrenamiento de los algoritmos a través de un sistema
de recompensa y castigo [23]. T́ıpicamente, se define un agente que realiza acciones
en un entorno espećıfico para alcanzar un objetivo determinado. Por otra parte,
se contempla una métrica para recompensar o penalizar las acciones que el agente
toma para lograr el objetivo. Se usan con frecuencia para enseñar a los robots a
reproducir tareas humanas.

Aprendizaje semisupervisado: combina el aprendizaje supervisado y el no su-
pervisado; es decir, dentro del conjunto de datos con el que se construye el modelo,
se tiene un conjunto de datos no etiquetados, y otro etiquetado [23] que gúıa el
proceso de aprendizaje. Usualmente, el conjunto de datos sin etiquetar es mucho
mayor que el etiquetado [28].

Aprendizaje autosupervisado: estos modelos, también llamados de aprendizaje
predictivo, usan datos no etiquetados. Emplean parte de la entrada para aprender de
la otra parte, generando aśı etiquetas y transformando los problemas no supervisados
en supervisados [28]. Este tipo de algoritmos es usado para problemas de computer
visión o procesamiento del lenguaje natural.

Algoritmos Machine Learning

A continuación se van a definir brevemente ciertos algoritmos de Machine Learning,
que t́ıpicamente son de los más utilizados, puesto que se hará uso de ellos en el desarro-
llo de la propuesta del Caṕıtulo 4. Estas explicaciones están extráıdas en su mayoŕıa de
[23]. La mayor parte de los algoritmos que se mencionan son de aprendizaje supervisado,
puesto que conocemos los resultados esperados; es decir, el valor objetivo. Aunque tam-
bién se menciona algún algoritmo de aprendizaje no supervisado, más concretamente, de
clustering.

K-Nearest Neighbors (K-NN). Este algoritmo de aprendizaje supervisado almace-
na los ejemplos de entrenamiento. Para clasificar una nueva instancia, utiliza una función
de distancia para determinar los K elementos más cercanos. Por ejemplo, supongamos
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que la nueva instancia es x = (x1, . . . , xn) donde n es el número de atributos conocidos.
Si usamos K = 1 y tomamos la distancia eucĺıdea, clasificaremos el nuevo elemento igual
que el elemento conocido y = (y1, . . . , yn) que minimice

d(x, y) =
√

(x1 − y1)2 + · · ·+ (xn − yn)2.

En resumen, para K = 1, el nuevo elemento que se pretende clasificar se encasilla en
la misma clase del elemento conocido más cercano, como se representa en la Figura 3.6.
En general, se clasifica a partir de los K elementos más próximos de manera análoga a
partir de la clase a la que pertenecen.

Figura 3.6: Representación de una predicción con el algoritmo K-NN [85].

Aprendizaje bayesiano. Dado un conjunto de atributos, permite determinar la
hipótesis más probable (h) para un conjunto de entrenamiento (D) a partir del teore-
ma de Bayes:

P (h|D) =
P (D|h)P (h)

P (D)
.

Naive Bayes es el algoritmo principal, aunque existen otras técnicas como Bernoulli-Naive
Bayes o Redes Bayesianas.

Árboles de decisión. Esta técnica consiste en la construcción de un árbol en función
de los valores de los distintos atributos que forman el problema a resolver. Los árboles
van dividiendo el espacio de caracteŕısticas de los datos de entrenamiento en rectángulos
paralelos a los ejes como se ilustra en la Figura 3.7, siendo útiles tanto para clasificación
como para regresión.

De esta forma, en los nodos interiores del árbol construido aparecen los atributos sobre
los que se pregunta; en los arcos, los posibles valores que pueden tomar los atributos del
nodo interior donde salen; y en las hojas del árbol se recoge el valor objetivo.

Regresión lineal. Este algoritmo trata de aproximar la distribución de los datos a
una recta para calcular la variable de salida y. Para el caso en el que solo tengamos una
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Figura 3.7: Representación de un árbol de decisión y su división del espacio de caracterı́sticas [86].

variable de entrada x (regresión lineal simple), la recta tiene la forma y = mx + b, y el
aprendizaje trata de encontrar los parámetros b y m que mejor se ajustan a los datos de
entrenamiento.

Por otra parte, es usual que tengamos más de una variable de entrada. En este caso,
diremos que el algoritmo es de regresión lineal múltiple. Suponiendo que tenemos las
variables de entrada x1, x2, . . . , xn, y siguiendo el caso de la regresión lineal simple, se
busca aproximar los datos con una función de la forma y = α1x1+ . . . αnxn+b. El proceso
de aprendizaje tratará de determinar los valores b y αi con 1 ≤ i ≤ n.

Regresión polinómica. De igual forma que surgen los algoritmos de regresión lineal
para ajustar los datos a rectas, se pueden usar otras funciones para modelar la relación
entre los datos de entrada y salida. En caso de que la función sea un polinomio sobre las
variables de entrada, diremos que la regresión es polinómica. No obstante, podemos caer
en problemas de sobreajuste si escogemos polinomios de grado muy alto.

Regresión loǵıstica. La regresión loǵıstica es otra de las posibles variantes de regre-
sión que se tienen en función de la aplicación elegida. Se utiliza para clasificación. Para
llevar a cabo este algoritmo, se emplea una función loǵıstica; es decir, una sigmoide, que
viene dada por la ecuación
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f(x) =
1

1 + e−x
, (3.1)

cuya gráfica se representa en la Figura 3.8. De esta forma, a partir de la función sigmoidea,
que se puede probar que su imagen es el intervalo (0, 1), se determina la probabilidad de
pertenecer a una u otra clase.

Figura 3.8: Gráfica de la función sigmoidea dada por la ecuación (3.1) [87].

SVM - Máquinas de Vectores Soporte (Support Vector Machines). Las
SVMs tratan de encontrar la mejor separación entre clases. Consisten en encontrar una
función que deje a cada lado elementos de clases diferentes. La solución óptima será la
que maximice la anchura de la “calle” entre las clases como se representa en la Figura 3.9.

Figura 3.9: Elección de la solución óptica en un SVM de tipo lineal [88].

Existen distintos tipos de Support Vector Machine dependiendo de la función que se-
para las clases. Si es lineal, como la de la Figura 3.9, el algoritmo se denomina SVM lineal.
En caso de que los datos no sean linealmente separables, se pueden llevar a dimensiones
superiores en las que el conjunto de entrenamiento sea separable, surgiendo aśı subtipos
del algoritmo SVM como el SVM polinómico o el SVM radial.

Carlos Jiménez Vaquero 49
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K-medias (K-means). Este es un algoritmo propio del clustering [25]. Los problemas
de clustering, como ya se explicó en la Sección 3.2.1, buscan el particionado óptimo de
los datos en N clústers independientes. Cada uno de estos clústers tiene asociado un
centroide, que es el centro geométrico de la nube de datos que contiene. Los puntos se
asignan al clúster cuyo centroide esté más próximo.

Ensembles

Un ensemble consiste en combinar múltiples modelos en uno solo para resolver un
problema a partir de las salidas de los mismos [24]. Por lo general, mejoran la precisión y
la robustez frente a la utilización de modelos individuales. El inconveniente que presentan
es que computacionalmente son muy exigentes, aunque esto no impide que sea de las
soluciones más utilizadas de Machine Learning hoy en d́ıa. Las principales aproximaciones
son:

Votación. Para cada nuevo dato, se pasa a todos los algoritmos que conforman el
ensemble. De cada modelo se obtiene una salida y se escoge como resultado final la
más votada; es decir, la que más veces aparezca.

Bagging - Bootstrap AGGregatING. Partiendo de un mismo algoritmo de Ma-
chine Learning se entrenan distintos modelos usando un subconjunto del conjunto
de datos de entrenamiento. El subconjunto de entrenamiento se selecciona eligien-
do muestras aleatorias con repetición (bootstrap). La salida de todos los modelos
se combina entre śı para dar el resultado final. Este proceso se puede realizar por
votación o cálculo de medias aritméticas entre otros. Se implementa con el Random
Forest.

Los ensembles de árboles de decisión mediante bagging se conocen como Random
Forest. La gran ventaja de hacer ensembles únicamente con árboles de decisión
es su eficiencia. Además permiten que se pueda paralelizar su ejecución (algo que
con boosting no podemos hacer). Para problemas de clasificación los resultados se
combinan con soft-voting. Para problemas de regresión se usa la media aritmética.

Boosting. Los algoritmos se entrenan de manera secuencial. El siguiente modelo
se centra en los datos mal clasificados. Los datos de entrenamiento son distintos ya
que cada algoritmo usa un subconjunto del total, pero no es aleatorio, se centra en
los mal clasificados por el modelo anterior dando más peso a los mal clasificados. La
precisión que obtiene Boosting suele ser muy buena, aunque es más lento que Bag-
ging. Algunas implementaciones de este tipo de ensemble son AdaBoost, XGBoost
o CatBoost.

Stacking. En esta forma de ensemble, se tienen una serie de modelos apilados. A
partir de distintos modelos, todos entrenados con los mismos datos, se obtiene una
salida de todos ellos, que se usa como entrada para otro modelo de ML. La salida
de este último modelo de ML es el que toma la decisión final.
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3.2.2. Redes Neuronales

Las redes neuronales [26] son un modelo computacional sobre el que se cimentan
potentes algoritmos de aprendizaje automático. En concreto, en la Sección 3.2.3 se explica
el uso de las redes neuronales en el campo del Deep Learning.

La unidad fundamental de toda red neuronal es la neurona artificial. Esta construcción
recibe el nombre de neurona artificial puesto que se inspira en la estructura de una neurona
biológica como la de la Figura 3.10. A continuación se explica su funcionamiento a través
de la analoǵıa con una neurona biológica:

Cada neurona biológica consta de un conjunto de dendritas que reciben información;
mientras que, para la neurona artificial, cada conexión tiene un valor de entrada y
está caracterizada por un peso; es decir, un factor que modifica la entrada.

La información que llega a la neurona a través de las dendritas se reúne en el cuerpo
de la neurona, al igual que en la neurona artificial se tiene una función sumatoria
que calcula la suma de todas las entradas.

Al final de la neurona biológica se generan impulsos eléctricos. Por su parte, al
final de la neurona artificial se contempla una función de activación que limita la
amplitud de la salida de la neurona.

Figura 3.10: Comparación entre una neurona natural y una artificial [89].

El inicio de esta revolución parte del modelo de McCulloch y Pitts. Esta es la base sobre
la que se comenzaron a construir redes neuronales y permit́ıa simular comportamientos
booleanos. Una neurona artificial t́ıpica consta de las siguientes componentes que vienen
representadas en la Figura 3.11:

Vector de entrada x. Conjunto de datos que se van a procesar en la neurona
arificial. Lo constituye un vector x = [x1, x2, . . . , xn]

T donde cada elemento es un
dato de entrada.
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Vector de pesos w. Factor por el que se modifica cada uno de los datos de entrada.
Significa una ponderación de cada elemento de entrada. A partir del vector w =
[w1, w2 . . . , wn]

T , se multiplica el elemento xi por el factor wi.

Sesgo b. Umbral de activación de la neurona. Representa la facilidad con la que se
dispara una neurona.

Función de propagación. Representa la suma de los elementos de entrada pon-
deradas junto con el sesgo.

Función de activación f . Función encargada de transformar el resultado de la
función de propagación para limitar la amplitud de sus valores. T́ıpicamente, se
utilizan funciones continuas monótonas crecientes, siendo la más sencilla la función
identidad que no representa ningún cambio en los datos. Algunas de las más usuales
se recogen en la Tabla 3.1.

Salida. Dato final obtenido mediante las transformaciones oportunas de los datos
del vector de entrada.

b

Figura 3.11: Modelo neurona artificial [90].

Luego, una red neuronal se forma a partir de un conjunto de estas neuronas artificiales.
Para ello, se conectan unas a otras, estructurándolas en capas.

La necesidad de construir redes neuronales surge dado que usar una única neurona
es una práctica muy limitada en cuanto a capacidad. De esta forma, una red neuronal
posee una capa de entrada, una o varias capas ocultas y una capa de salida. Cada una de
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Nombre Función Gráfica

Lineal f(x) = x

Sigmoidea f(x) = 1
1+e−x

Tangente
hiperbólica

f(x) = ex−e−x

ex+e−x

ReLU f(x) = máx{0, x}

Tabla 3.1: Resumen funciones de activación comunes

estas capas tendrá, por lo general, un gran número de neuronas. Además, cada una de las
mismas posee su propio vector de pesos y su sesgo.

Por otra parte, como se verá en la sección siguiente, surge el concepto de Deep Learning.
El requisito para que una red neuronal se considere un modelo de Deep Learning reside en
el número de capas ocultas que posea. Si la red posee más de una capa oculta, un mayor
número de neuronas por capa o neuronas de diverso tipo, entonces el modelo generado es
considerado un algoritmo dentro del ámbito del Deep Learning.

Por lo general, la capa de entrada está formada por tantas neuronas como atributos
tengan los datos que se utilizarán como entrada para el modelo. Posteriormente, esta capa
de entrada se comunica con una o más capas ocultas; es decir, aquellas que no son capas
de entrada ni de salida. Por último, se tiene la capa de salida, que es la responsable de
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producir el resultado final.
El proceso de aprendizaje consiste en ajustar los pesos y el sesgo de cada una de las

neuronas que componen la red neuronal. De esta forma, se pretende abstraer la distri-
bución de los datos para generar la salida deseada a partir de ajustes en los parámetros
de la red. El proceso de entrenamiento de estas redes en el caso concreto del aprendizaje
supervisado, que será el empleado a lo largo del proyecto, sigue los siguientes pasos:

Se introduce el conjunto de datos de entrada en la capa de entrada de la red. La
red procesa los datos y produce una salida para cada elemento.

Se calcula una función de pérdida atendiendo al valor real y al valor obtenido por
la red.

Se emplean algoritmos mediante los que se pretende optimizar los parámetros de la
red de forma que minimicen el error arrojado por la función de pérdida.

Este proceso se repite de manera iterativa para tratar de abstraer los datos. Además,
cada iteración recibe el nombre de época.

3.2.3. Deep Learning

El Deep Learning [27] o aprendizaje profundo es el campo del Machine Learning que
trata de extraer conocimiento a partir de un conjunto de datos mediante una jerarqúıa
de múltiples capas de neuronas artificiales. Los datos de entrada pueden ser de tipo muy
diverso, como imágenes, audios o texto. En cada capa, los datos de entrada se transfor-
marán en representaciones más abstractas que se combinan a medida que se profundiza
en la red.

La clave en las técnicas de Deep Learning es aportar una gran cantidad de datos con
los que entrenar los modelos. Aśı, se pueden crear modelos flexibles capaces de abstraer
las caracteŕısticas de los conjuntos de datos de manera más eficiente de lo que lo hacen
las técnicas clásicas de Machine Learning como las descritas en la Sección 3.2.1. Entre las
aplicaciones del Deep Learning se encuentran la clasificación de imágenes, la detección de
objetos, la segmentación o la generación de voz e imágenes. Las tres primeras se explotarán
en la propuesta de solución en el Caṕıtulo 4.

Instrumentos Redes Neuronales Profundas

Función de activación. Este concepto ya ha sido introducido en la Sección 3.2.2.
Pero existe una problemática, pues algunas de estas funciones presentan un problema
para el entrenamiento de algoritmos basados en Deep Learning, como la función
sigmoidea y la tangente hiperbólica. Como se observa en sus gráficas de la Tabla 3.1,
el gradiente de la función vaŕıa. En el intervalo [−2, 2] no existe ningún problema;
sin embargo, fuera de él, el gradiente es muy pequeño y la función apenas vaŕıa.
Este problema recibe el nombre de vanishing gradient.
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El vanishing gradient ocasiona que la red no aprenda. Para solucionar esta casúıstica,
surge la función ReLU, también tratada en la Tabla 3.1. Esta es la más utilizada para
Deep Learning puesto que no presenta vanishing gradient para valores positivos.
Además, cualquier función puede aproximarse como combinación de ReLUs y como
no tiene ĺımite superior, es mucho más rápida de entrenar.

Softmax. Esta es una capa que se suele utilizar en la salida de la red. Si en la salida
hubiera una capa normal, dada su construcción, el resultado seŕıa un valor numérico
para cada una de las clases posibles. Esto dificulta su interpretación. Para solucio-
narlo, se implementa una función softmax que transforma los valores numéricos en
el rango [0, 1], identificando la salida con la probabilidad de ocurrencia de cada una
de las posibles predicciones.

Loss function o cost function. La función de pérdida o loss function tiene como
objetivo medir lo bien que modela la red los datos de entrenamiento, siendo una
pieza fundamental en el entrenamiento de redes neuronales con Deep Learning. La
función de pérdida mide la diferencia entre las estimaciones de la red y el resultado
real. Luego, si la red no funciona correctamente, la loss function tendrá un valor
alto. Por tanto, el entrenamiento consiste en minimizar el valor de la función de
pérdida en cada etapa. Las principales funciones de pérdida son:

• Error cuadrático medio (mean squared error, MSE). Usado t́ıpicamente
para predicción de escalares.

• Cosine similarity. Se suele aplicar para problemas que tratan el procesamien-
to del lenguaje natural (NLP).

• Cross-entropy. Mide la distancia entre dos distribuciones de probabilidad.
Por tanto, sólo se puede aplicar sobre distribuciones de probabilidad; es decir,
para datos en el rango [0, 1]. Por ejemplo, después de aplicar una capa softmax.

Optimizador. Como se ha explicado, el objetivo a lo largo de los entrenamientos
es el de minimizar la función de pérdida. Esta tarea la desarrolla el optimizador de
manera iterativa. Para ello, el optimizador ajusta los pesos en cada etapa, buscando
siempre hacer menor el valor de la función de pérdida. Existen numerosos algoritmos
de optimización para crear redes, siendo el del descenso del gradiente el algoritmo
básico.

Sobreaprendizaje

Al comienzo de esta sección se explicó que el propósito fundamental de las técnicas de
Deep Learning es generalizar el conocimiento extráıdo de los datos de entrenamiento. El
overfitting o sobreajuste [41] ocurre cuando un algoritmo se ajusta demasiado a los datos
de entrenamiento y no puede generalizar los nuevos datos. En consecuencia, de todo el
conjunto de datos de entrenamiento, se suele reservar una parte para validación; es decir,
para comprobar el sobreajuste.
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El problema del overfitting no es único del Deep Learning, sino que se da en el Machine
Learning en general, aunque tiene especial relevancia para redes neuronales profundas
debido a la gran cantidad de parámetros a entrenar. La regularización es un proceso
que tiene como propósito evitar el sobreajuste. Luego, se encarga de realizar pequeños
cambios sobre el algoritmo de aprendizaje para que generalice mejor. Los principales
tipos de regularización son:

L2 y L1. Agregan un valor de regularización a la función de pérdida consiguiendo
que los pesos disminuyan en mayor medida. De esta forma, se consiguen modelos
más sencillos, lo que ocasiona un menor sobreajuste. Siguiendo [42] y [43], el término
de regularización viene dado por

regularización L2 = |w1|2 + · · ·+ |wn|2,
regularización L1 = |w1|+ · · ·+ |wn|.

(3.2)

Además, ese término se escala con una tasa de regularización λ para ajustar el
impacto que tiene en el modelo. Luego, el objetivo final es minimizar una función
de coste de la forma

coste (loss+ λ ∗ r),
donde el término de regularización r es uno de los dados en la ecuación (3.2) en
función del método utilizado L2 o L1.

Figura 3.12: Comparación entre una red neuronal antes y después de aplicar dropout [91].

Dropout. Este término se refiere a la eliminación temporal de algunos nodos de la
red neuronal [44]. Se pueden eliminar tanto nodos de las capas ocultas como de la
entrada. Además, cuando se elimina una neurona también se desechan de manera
temporal todas las conexiones con ella, creando aśı una nueva estructura de red
como se ilustra en la Figura 3.12. Los nodos que se eliminarán se determinan con
una probabilidad que viene dada como un hiperparámetro p.
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3.2. Contexto teórico

Early Stopping. Consiste en parar el entrenamiento antes de tiempo. Cuando el
conjunto de validación empeora o no mejora tras un determinado número de épocas
se detiene el entrenamiento.

Data Augmentation. Esta técnica de regulación surge ante la posibilidad de un
mayor sobreajuste cuanto menos datos tengamos para entrenar. Luego, trata de
ampliar el conjunto de datos de entrenamiento. Por ejemplo, si se trata de imágenes,
que es cuando más se utiliza, se aplican rotaciones o escalados para tener mayor
variedad de imágenes.

Redes Neuronales Convolucionales - CNN

Una Red Neuronal Convolucional o CNN (Convolucional Neural Network) es un ti-
po de red neuronal con una serie de capas especializadas en el tratamiento de imágenes.
Las CNN operan de manera jerárquica, de forma que en las primeras capas se identifi-
can elementos básicos y estos se van combinando para formar objetos en las capas más
profundas.

Figura 3.13: Ejemplificación del proceso de convolución [92].

Para tratar con imágenes en una red neuronal, estas se representan como una matriz
con el valor de los ṕıxeles. Si la imagen es a color (RGB), entonces se utilizan tres canales;
es decir, tres matrices apiladas. Por otra parte, si la imagen es en escala de grises, tan solo
es necesario un único canal. Además, es adecuado que los datos estén normalizados (basta
dividir el valor del ṕıxel por 255). A partir de este tratamiento de las imágenes se puede
construir de manera sencilla una CNN integrando los siguientes componentes principales:
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Capa de Convolución: es la capa encargada de extraer las caracteŕısticas de la
imagen. La operación de convolución trata de aplicar un filtro o kernel sobre la ima-
gen para construir un mapa de caracteŕısticas. El kernel es una matriz, t́ıpicamente
de tamaño 3× 3 o 5× 5, con valores numéricos que llamaremos pesos. La aplicación
de convolución utiliza un kernel y consiste en multiplicar los ṕıxeles de la imagen
por los pesos definidos en el filtro y sumar el total como se representa en la Figura
3.13.

La capa de convolución puede configurarse a partir de tres parámetros fundamen-
tales:

• Profundidad: número de filtros que se aplican sobre la imagen de entrada.
Una mayor profundidad indicará un mayor número de filtros, luego se crearán
más mapas de caracteŕısticas.

• Stride : Número de ṕıxeles que se desplaza el kernel sobre la imagen. Un mayor
stride producirá mapas de caracteŕısticas más pequeños.

Figura 3.14: Ejemplificación del proceso de convolución - stride [93].

• Padding : se refiere a un marco de ceros que se añade alrededor de la imagen.
El padding indica el número de filas y columnas que enmarcan la imagen con
ṕıxeles nulos. El objetivo que se busca con esta técnica es el de aplicar mejor
los filtros sobre los elementos de los bordes.

Función de Activación (ReLU). Se aplica la función de activación ReLU para
anular los valores negativos que se hayan obtenido al aplicar los filtros de la capa
de convolución, manteniendo los valores positivos.

Capa de Pooling: utilizada para reducir el tamaño de la matriz. Se trata de
aplicar un filtro sobre la salida de la capa anterior y seleccionar un único número
como salida. Como se verá a continuación, el siguiente componente de la CNN es
una red neuronal multicapa normal. Luego, esta capa busca disminuir el tamaño de
la matriz para que la red entrene a mayor velocidad. Los tipos principales de pooling
son:

• Max Pooling: se selecciona el valor máximo.
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Padding

Filtro

Mapa de características

Figura 3.15: Ejemplificación del proceso de convolución - padding.

• Average Pooling: se calcula el valor medio.

• Sum Pooling: se escoge la suma de los valores.

Capa Fully Connected. Tras iterar sobre las anteriores etapas, se pasa finalmente
a la capa fully connected. Esta capa consiste en una red neuronal multicapa normal.
El objetivo es combinar de manera eficiente todas las caracteŕısticas extráıdas en
las capas anteriores, transformando la matriz de caracteŕısticas que se genera en las
convoluciones en un vector unidimensional. Para concluir, a este vector unidimen-
sional se le aplica posteriormente Softmax para obtener la probabilidad de que la
salida sea de una clase o de otra.

Objetivos principales de las Redes Neuronales Convolucionales

Gracias a la capacidad de las CNNs para extraer caracteŕısticas y patrones dentro
de las imágenes, estas se utilizan en una amplia variedad de tareas dentro del campo de
la visión por computadora. Los objetivos que pueden abordarse con este tipo de redes
neuronales vaŕıan según el tipo de salida deseada. De esta forma, las CNNs varian según
la naturaleza del problema. Aśı, se pueden utilizar para resolver los siguientes problemas
recogidos en [72]:

Clasificación. El objetivo más básico. Consiste en tomar una imagen como dato
de entrada y predecir a que clase pertenece dentro de unas preestablecidas. De esta
forma, para el entrenamiento se tiene una única etiqueta asociada a cada imagen
que indicará la clase a la que pertenece la misma.

Detección. Además de identificar la clase del objeto esta técnica señala la ubicación
del mismo mediante una caja que delimita la zona donde aparece. La detección
permite no solo encontrar un objeto, sino varios dentro de la misma imagen.
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La detección implica dos procesos claramente separadados. Por una parte, la red
neuronal localiza un objeto. Por la otra, clasifica el objeto encontrado dentro de las
clases que hay predefinidas. Aśı, en ocasiones se contempla la localización como un
problema aparte que trata de buscar objetos de una misma clase, y la detección se
explica como una combinación de las técnicas de localización y clasificación.

Segmentación. La segmentación trata de señalar los ṕıxeles que corresponden a
un objeto. Luego, supone una mayor precisión que la detección. Mientras que los
problemas de detección marcan la zona de aparición, la segmentación busca los
ṕıxeles exactos que corresponden al objeto buscado.

Por otra parte, se pueden distinguir dos tipos de segmentación: semántica y por
instancias. Para el primer caso, se clasifican directamente los ṕıxeles según la clase
a la que pertenecen. Para la segmentación por instancias, además de hacer esto
mismo, se distingue si los ṕıxeles pertenecen a un objeto u otro del mismo tipo.

Estos tres objetivos son los más usados comúnmente. De hecho, las técnicas usadas a lo
largo de este proyecto se pueden enmarcar en cada uno de los mismos. Sin embargo, existen
otras formas de usar redes neuronales convolucionales como la regresión, que consiste en
una clasificación donde el propósito no es conocer un dato discreto como es la clase del
objeto, sino obtener un dato continuo del mismo. Por ejemplo, predecir la edad de una
persona a partir de una imagen seŕıa una forma de regresión. Se puede considerar esto
como una particularización de la clasificación.

Luego, las CNNs son muy útiles en el campo del Deep Learning y permiten abordar
diferentes problemas cuando el dato de entrada es una imagen. De hecho, existen otras
técnicas que emplean capas convolucionales en su arquitectura como la estimación de
poses (pose estimation) o la generación de imágenes.

Amplicación sobre Redes Neuronales Convolucionales

En este trabajo se tratan, para una mayor completitud, tanto con modelos YOLO
como con otros proporcionados por la biblioteca FastAI. Cada uno de ellos se entrena
con una arquitectura distinta; mientras que YOLO tiene su propia arquitectura interna,
los modelos de FastAI se utilizan a partir de la arquitectura U-Net. Por este motivo, a
continuación se explica cada una de estas dos situaciones:

Arquitectura U-Net. Esta arquitectura se enfoca en resolver problemas de seg-
mentación de imágenes [64]. Es un tipo especial de red neuronal convolucional que
tiene una estructura como la que se muestra en la Figura 3.16. Se puede dividir el
proceso que se sigue en esta en dos partes bien diferenciadas: encoder y decoder ;
esto es, fases de codificación y decodificación o de contracción y expansión:

• Fase de codificación. Durante la etapa de contracción se aplican de manera
secuencial capas de convolución con ReLU como función y una capa de pooling,
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en concreto, demax-pooling. De esta forma se va decreciendo la dimensión espa-
cial del mapa de caracteŕısticas mientras que se extrae la información relevante
de la imagen.

• Fase de decodificación. Esta etapa tiene como objetivo adaptar el mapa de
caracteŕısticas a la imagen y producir un mapa de segmentación utilizando los
patrones aprendidos en la fase de contracción [65].

Figura 3.16: Diagrama representativo de la arquitectura U-Net [65].

YOLO. Se basa en el paradigma ”You Only Look Once”. Es un modelo de detección
de objetos y segmentación de imágenes en tiempo real [66]. Además, presenta un
muy buen rendimiento en cuanto a velocidad se refiere.

Respecto a su arquitectura, esta se divide en tres partes, las cuales se explican a
continuación siguiendo [67] y [68]:

• Backbone . Como su traducción al español significa, esta parte es la columna
vertebral de la arquitectura; es decir, la parte fundamental de la red. Su diseño
consiste en la estructura proporcionada por la arquitectura Darknet [69], que
no deja de ser una serie de capas convolucionales. Además, con cada versión
de YOLO se actualiza y aumentan estas capas, haciendo la red más profunda
y poderosa. Este incremento en la profundidad permite extraer caracteŕısticas
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más complejas de las imágenes, lo que repercute en un mejor rendimiento de
la red.

• Neck . Esta componente sirve de intermediaria entre las otras dos: backbone
y head. Además, utiliza la arquitecturas de SPPF (Spatial Pyramid Pooling
- Fast) [70], que es un conjunto de capas de pooling, y la de PANet Path
Aggregation Network [71], que combina los mapas de caracteŕısticas de las
fases del backbone.

• Head . Esta es la parte final, la cual se encarga de generar la salida de la red.

3.2.4. Métricas

Hasta ahora, a lo largo de las secciones 3.2.1, 3.2.2 y 3.2.3, se explican los algoritmos
tanto de Deep Learning como de Machine Learning que se valorarán para la elaboración
de la propuesta de solución, aśı como sus fundamentos. No obstante, se necesita una
manera de cuantificar qué técnica funciona mejor en el problema a estudiar. Aśı es como
surgen las métricas.

Una métrica de evaluación sirve para valorar el rendimiento de un modelo de aprendi-
zaje automático y su capacidad para generalizar con precisión los datos [45]. Puesto que
en la construcción de la solución se utilizan clasificadores y segmentación de imágenes, a
continuación se presentan métricas utilizadas en el estudio de estas técnicas.

Métricas para clasificadores

Para evaluar el rendimiento de un clasificador se atiende a su matriz de confusión. Una
matriz de confusión es cuadrada y tiene la dimensión del número de clases existentes. A
continuación vamos a definir una matriz binaria; es decir, de dos dimensiones, pues son
la base para el resto de matrices de confusión y serán las utilizadas en la propuesta
construida.

Una matriz de confusión binaria, como la que se muestra en la Tabla 3.2, es una
representación matricial de los resultados de las predicciones de cualquier prueba binaria
que se utiliza para describir el rendimiento del modelo de clasificación [45]. Cada predicción
puede ser de uno y solo uno de los cuatro tipos siguientes:

Verdadero Positivo (VP): El modelo predice el dato como verdadero y cierta-
mente es verdaero.

Verdadero Negativo (VN): se predice el dato como negativo y su valor real es
negativo.

Falso Positivo (FP): el valor predicho es verdadero, frente al real, que es falso.

Falso Negativo (FN): la predicción establece que es falso pero el valor real es
verdadero
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Clasificados
positivos

Clasificados
negativos

Ejemplos
positivos

Verdadero
Positivo (V P )

Falso
Negativo (FN)

Ejemplos
negativos

Falsos
Positivos (FP )

Verdadero
Negativo (V N)

Tabla 3.2: Representación Matriz de Confusión

A cada uno de estos tipos le corresponderá un lugar en la matriz de confusión 2 × 2
como se muestra en la Tabla 3.2.

Como se aprecia en la Figura 3.2 y como se explicó anteriormente, existen dos tipos
de errores. Estos son los falsos positivos y falsos negativos. En función del objetivo que
tenga el clasificador y del área de negocio para el que se construye, un error será más
importante que otro. Por este motivo, surgen distintas medidas de evaluación en función
de los errores que se consideren. Siguiendo la webgraf́ıa existente [46], las métricas más
importantes y usuales son:

Accuracy o Exactitud: mide la proporción de predicciones correctas. Su expresión
viene dada por

accuracy =
V P + V N

V P + FP + V N + FN
=

clasificados correctamente

todos los ejemplos
.

Esta métrica tendrá un valor entre 0 y 1, siendo preferible un valor alto; puesto que
indicará mayor proporción de predicciones correctas.

False positive rate o tasa de falsos positivos (FPR): proporción de todos
los negativos reales que se clasificaron incorrectamente como positivos. Se define de
manera matemática de la siguiente manera:

fpr =
FP

FP + V N
=

clasificados erróneamente como positivos

todos los negativos
.

Esta métrica también tomará valores entre 0 y 1; sin embargo, al contrario de lo que
ocurre con el accuracy, será preferible un valor próximo al 0. Esto es, cuanto menor
sea la tasa de falsos positivos, mejor será el rendimiento del algoritmo entrenado.

Precisión: proporción de todas las clasificaciones positivas del modelo que realmen-
te son positivas. La precisión se expresa como

precision =
V P

V P + FP
=

clasificados correctamente como positivos

todos los clasificados como positivos
.

Una vez más, puesto que el numerador es mayor que el denominador, la precisión
será un valor entre 0 y 1. Además, cuanto mayor sea este valor, mejor será el modelo
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entrenado. Esto se debe a que una mayor precisión indica que más valores predichos
como positivos son realmente positivos.

Recall o tasa de verdaderos positivos (TPR): es la proporción de todos los
positivos reales que se clasifican correctamente como positivos; es decir, se expresa
como

recall =
V P

V P + FN
=

clasificados correctamente como positivos

todos los positivos
.

El recall en ocasiones también se denomina probabilidad de detección. De hecho, esta
métrica es muy útil en aplicaciones médicas, pues como su nombre indica, identifica
la probabilidad de detectar una patoloǵıa cuando un paciente la presenta. De igual
forma que con el resto de métricas comentadas, como el valor del numerador es
menor que el del denominador, el recall está entre un rango de 0 y 1.

F1 Score : promedio calculado como la media armónica entre la precisión y el recall ;
es decir,

F1 = 2 · Precision ·Recall

Precision+Recall
.

Esta métrica toma valores entre 0 y 1, siendo preferibles valores cercanos a 1.
Además, como se explica en [46], esta es una métrica muy utilizada en problemas
en los que el conjunto de datos a analizar está desbalanceado.

Esta métrica combina el precision y el recall, para obtener un valor mucho más
objetivo. En el caso en el que estas dos métricas sean similares, F1 también tendrá
un valor parecido. Por otra parte, si la precisión y el recall están muy separadas,
entonces F1 será similar a la métrica que sea peor.

F-β Score . Generalización de la métrica F1-Score. Viene dada por

Fβ =
(1 + β2) · Precision ·Recall

β2 · Precision+Recall
.

A partir de esta métrica, introduciendo el parámetro β, se puede dar más peso a
la precision o al recall según se desee. Aśı, para β > 1, se da mayor peso al recall ;
mientras que para β < 1, la precision cobra más importancia. La elección de β
mayor o menor que 1 dependerá de la importancia que se le dé a detectar todos los
positivos y a no tener falsos positivos, respectivamente.

En el uso de aplicaciones médicas, donde lo importante es detectar todos los casos
positivos de una enfermedad, cobrará mayor importancia el recall con el objetivo de
minimizar el número de pacientes que presentan la patoloǵıa en los que no ha sido
detectada. En caso de que no se quiera favorecer o destacar una métrica por encima
de la otra, se utilizará β = 1, coincidiendo la métrica Fβ con F1, siendo esta última
un caso particular de Fβ.
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Curva ROC. Representación gráfica del rendimiento de un modelo de clasificación.
Esta curva relaciona la métrica recall (TPR) en el eje Y con la tasa de falsos positivos
(FPR) en el eje X. Como el objetivo es tener un TPR alto y un FPR bajo, cuanto
mayor sea la pendiente de la curva para que se acerque con valores pequeños de FPR
a valores altos de TPR, mejor será el entrenamiento. Esto es justo lo que muestra
la Figura 3.17.

Es posible establecer una medida objetivo de lo buena que es la curva ROC. Cuanto
mayor pendiente tenga la curva, mayor área abarcará. Como lo que se pretende es
que la curva crezca rápido, el objetivo es que el área sea mayor. A la métrica que
mide el área bajo la curva ROC se le denomina AUC (área bajo la curva - area
under curve). Por otra parte, como la curva está representada en [0, 1] × [0, 1], el
área máxima y por tanto el valor de AUC está limitado entre 0 y 1.

Figura 3.17: Relación curvas ROC con la separabilidad de los datos [94].

Métricas para localización y segmentación

La salida para clasificación de dos clases será un valor binario en función de si el
valor predicho es uno u otro. Para este tipo de salidas se han definido unas métricas.
Sin embargo, para problemas de segmentación la salida no es la clase predicha, sino una
máscara que indica dónde se sitúa el objeto buscado. Por tanto, como la salida es diferente,
no podemos usar las mismas métricas y será necesario definir otras nuevas; o al menos,
adaptarlas para el caso de uso de la segmentación. A continuación se define las principales
métricas utilizadas en problemas de segmentación:
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Coeficiente Dice: se emplea para medir la similitud entre dos conjuntos. Si A es
la máscara real y B es la máscara predicha, el coeficiente Dice se define como

Dice =
2|A ∩B|
|A|+ |B|

,

donde |C| representa el número de ṕıxeles del conjunto C. Este coeficiente toma
valores entre 0 y 1. Además, un valor mayor indica mejor coincidencia entre la
segmentación predicha y la real.

Índice de Jaccard: evalúa la superposición entre la predicción y el valor real de
la máscara. Esta métrica, también denominada Intersection over Union (IoU) se
calcula como sigue:

IoU =
|A ∩B|
|A ∪B|

.

El cálculo permite conocer la proporción de la segmentación o localización real que
forma parte de la predicción.

mAP. Métrica que combina la precisión y el recall entre diferentes clases para
comprobar el rendimiento del modelo construido. Se usa para la detección de objetos.
La métrica tomará valores entre 0 y 1. Cuanto más cercana sea la métrica a 1, mejor
será el rendimiento. Para calcular el valor mAP, mean Average Precision, se siguen
los siguientes pasos descritos en [48]:

1. Se calcula la precisión y el recall para cada clase.

2. Se construye la curva precisión-recall para cada clase (véase la referencia [47]).

3. Se calcula el valor AP, que se corresponde con el área bajo la curva construida
en el paso anterior.

4. Una vez se tiene el valor AP calculado para cada clase, mean Average Precision
se obtiene a partir de la media de estos valores; es decir, si se tienen N clases
y APi es el área bajo la curva precisión-recall de la clase i,

mAP =
1

N

n∑
i=1

APi.

Accuracy Camvid. Métrica proveniente de un dataset de segmentación semántica
que recibe el mismo nombre. Establece la proporción de ṕıxeles clasificados correc-
tamente una vez descartados los ṕıxeles del fondo; esto es,

Accuracy Camvid =
ṕıxeles clasificados correctamente

total ṕıxeles
.
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3.2.5. Procesamiento y representación de imágenes

En muchos casos en los que el objetivo es desarrollar algoritmos de Deep Learning sobre
imágenes, la manipulación de las mismas permite obtener mejores resultados durante el
proceso. De esta forma, surge la necesidad de entender cómo se representan las imágenes
computacionalmente y los distintos tipos de procesamiento que se pueden realizar sobre
las mismas.

Entre el procesamiento que se puede realizar para obtener variaciones de interés so-
bre las imágenes, se encuentra tomar solo la parte de la imagen con mayor cantidad de
información o la transformación a través de la aplicación de filtros.

Representación de imágenes

Las imágenes digitales se representan como matrices de ṕıxeles. Dada una imagen,
esta se divide en forma de cuadŕıcula, de manera que cada cuadro representa un ṕıxel.
Aśı, cada elemento de la matriz representa el valor de cada ṕıxel en esa posición de la
cuadŕıcula en la que se divide la imagen. No obstante, no es suficiente con un solo valor,
pues no se puede representar de esta forma todos los colores. Para ello, se toma una base
de colores donde se puede obtener el resto de colores a partir de una combinación de los
de la base. Para cada elemento de la base, se toma una capa; es decir, una matriz, y se
almacenan los valores entre 0 y 255 para ese color de cada ṕıxel. Finalmente, se puede
generar la imagen teniendo en cuenta todas las capas de la base. A continuación, se van
a comentar diferentes estilos o formatos de una imagen en cuanto a color se refiere.

RGB. RGB es la base más empleada para representar una imagen. Almacena tres
capas de colores o canales, rojo (R), verde (G) y azul (B), que combinados forman el color
final de cada ṕıxel. Cada canal puede verse como una matriz bidimensional donde cada
valor representa la intensidad de ese color.

Una imagen en formato RGB contiene tres matrices superpuestas, una por cada com-
ponente de color. No obstante, se puede reducir la imagen a un solo canal si los modelos
no requieren información de color, como se verá a continuación.

Escala de grises. Convertir una imagen a escala de grises implica reducir los tres
canales RGB a uno solo. Una forma de obtener un resultado en escala de grises a partir
de la base RGB es calcular la media de los tres valores. Sin embargo, esta solución no
es acorde con la realidad debido a que cada canal no aporta lo mismo. Para ello, existen
distintas recomendaciones de qué valores usar para ponderar cada canal [49]. Algunas de
estas opciones se recogen en la Tabla 3.3.

Nombre ponderación Factor rojo Factor verde Factor azul

CIE 1931 0.2126 0.7152 0.0722

rec601 0.299 0.587 0.114

ITU-R BT.2100 0.2627 0.6780 0.593

Tabla 3.3: Métodos de conversión de RGB a escala de grises con sus respectivas ponderaciones.
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Imágenes binarias. Este tipo de imágenes tiene un solo canal al igual que las imáge-
nes en escala de grises. Sin embargo, son más simples. Como su nombre indica, una imagen
binaria tan solo toma dos valores, que serán el 0 y 255. Luego, se puede considerar como
una particularización de las imágenes en escala de grises donde solo se contempla el blanco
y el negro. Su uso para el desarrollo de técnicas de Deep Learning está muy extendido.
T́ıpicamente, se utilizan para localizar con uno de los colores la región de interés de otra
imagen a la que acompañan; mientras que la parte que presenta el otro color no tiene
relevancia.

Filtro de Gabor

Los filtros de Gabor son filtros lineales cuya respuesta es una función sinusoidal mul-
tiplicada por una función gaussiana [50]. A colación de lo anterior, se pueden construir
una infinidad de este tipo de filtros dado que cabe la posibilidad de modificar parámetros
como la amplitud de la función sinusoidal o la orientación de la misma. En la Figura 3.18
se muestra una variedad de filtros de Gabor, aśı como su resultado sobre una imagen.

Figura 3.18: Resultados obtenidos a partir de filtros de Gabor sobre una circunferencia [95].

Los filtros de Gabor son de especial utilidad para remarcar estructuras dentro de las
imágenes. Eso se debe a que pueden resaltar, por ejemplo, contornos. En la Figura 3.19 se
muestra un ejemplo de los resultados que se pueden obtener a través de filtros de Gabor.
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Figura 3.19: Resultado obtenido tras la aplicación de un filtro de Gabor [95].

3.3. Conceptos matemáticos

Motivación

El objetivo que se persigue con la introducción de conceptos matemáticos en el desa-
rrollo de la propuesta será el perfeccionamiento de las detecciones. En algunos casos, en
la detección del objeto pueden aparecer ciertas veśıculas que no representan al mismo.
También sucede que, queriendo buscar un objeto único en la imagen, se detecta un mayor
número de elementos. Aśı, para solucionar estos problemas puede ser útil la aplicación de
algunos métodos matemáticos.

Cada proceso de segmentación produce una máscara binaria indicando dónde se en-
cuentra la estructura buscada. Esta máscara consiste en una matriz de unos y ceros donde
el 1 indica que ese ṕıxel forma parte del objeto buscado y el 0 implica que el ṕıxel no for-
ma parte del objeto. Aśı, podemos suponer el conjunto de ṕıxeles como el conjunto total
V , y la parte de ṕıxeles que se identifican con unos en la máscara como un subconjunto
S. De esta forma, surgen una serie de conceptos para tratar y perfeccionar las máscaras
predichas.

Envolvente convexa

Previo a conocer qué es una envolvente convexa, se introduce el término de conjunto
convexo[56]. Se dice que el subconjunto S es convexo si para cualquier par de puntos de
S, el segmento que los une está contenido en S; es decir, para cada x, y ∈ S,

λx+ (1− λ)y ∈ S ∀λ ∈ [0, 1].

Conociendo esta definición se puede introducir el concepto de envolvente convexa [56]. La
envolvente convexa de un conjunto S en un espacio V es el conjunto convexo más pequeño
que contiene a S. Formalmente, la envolvente convexa de S, denotada como conv(S), es
el conjunto de todas las combinaciones convexas de puntos en S; es decir,

conv(S) =

{
n∑

i=1

λixi | xi ∈ S, λi ≥ 0,
n∑

i=1

λi = 1, n ∈ N

}
En la Figura 3.20 se ejemplifica cómo se obtiene la componente convexa de una máscara.
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Figura 3.20: Diagrama de ejemplo del cálculo de la envolvente convexa.

Diámetro de un conjunto

Llamaremos diámetro de un conjunto S a la mayor distancia entre dos puntos de ese
mismo conjunto. Formalmente, si d es una distancia (véase [56]) se define el diámetro de
S [56] como

diametro(S) = sup{d(x, y) | x, y ∈ S}.

Considerando la máscara obtenida en una predicción como el conjunto de los ṕıxeles cuyo
valor asociado en la máscara es 1, el cálculo de la distancia de ese conjunto permitirá
extraer caracteŕısticas sobre el objeto detectado.

Componente conexa

Para introducir formalmente lo que es una componente conexa [56] se necesitan conocer
muchos conocimientos previos fuera del alcance de este proyecto. Por ello, en este apartado
se busca dar una idea de lo que este concepto significa y cómo se ha usado para tratar de
mejorar los resultados obtenidos por los modelos de segmentación entrenados.

Para entenderlo de manera sencilla, se dice que las componentes conexas son las partes
de un conjunto que están completamente unidas. Se establece ahora una analoǵıa para
aclarar este concepto siguiendo la representación de la Figura 3.21.

Figura 3.21: Diagrama separación en componentes conexas de un conjunto.

Si se tiene un archipiélago de islas, que seŕıa nuestro conjunto, cada isla representa una
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región conectada independiente, lo que es comparable con cada una de las componentes
conexas de un conjunto. Cada isla seŕıa una componente conexa porque dentro de ella
todo está conectado, pero no hay conexión entre diferentes islas.

3.4. Estado del arte

El diagnóstico del glaucoma es una necesidad creciente en el ámbito de la oftalmoloǵıa,
dado que tiene un pronóstico más favorable si se diagnostica en etapas tempranas, como
ya se ha explicado en la Sección 1.1. Sin embargo, en la actualidad siguen sin utilizarse
herramientas automatizadas que asistan en la detección de esta patoloǵıa, lo que repre-
senta una oportunidad para el desarrollo de modelos basados en aprendizaje profundo,
capaces de identificar patrones a partir de retinograf́ıas que ayuden con el diagnóstico del
glaucoma.

Como se ha planteado en la Sección 1.2, el objetivo principal es tratar las imágenes
tomadas sobre el fondo del ojo para detectar el glaucoma mediante técnicas de aprendizaje
profundo. En lo siguiente, se verán soluciones similares para este tipo de problemas en el
campo de la medicina, para centrarse a continuación en las aplicaciones existentes para
el diagnóstico de otras enfermedades oculares, aśı como del glaucoma.

Avances en el área médica

Además de la oftalmoloǵıa, las redes neuronales han sido aplicadas exitosamente para
la construcción de diversas herramientas en el área médica. Como se recoge en la revisión
de [6], en el año 2017 ya se hab́ıan realizado más de 300 contribuciones en el análisis de
imágenes médicas mediante Deep Learning. Además, en este mismo art́ıculo se repasan
soluciones diversas que atañen a las zonas pulmonares, card́ıaca, abdominal o cerebral.
Aśı, el uso de técnicas de aprendizaje profundo representa una herramienta real de apoyo
para los especialistas de la salud.

Concretando con algunos casos de éxito en el uso de estas técnicas, se encuentra la
detección del cáncer de piel, que también se trata en [6]. Para este tipo de problemáticas
se han desarrollado soluciones como las que se presentan en [52] y [53]. Para este segundo
art́ıculo, se ha alcanzado un accuracy del 84.4% y una sensibilidad del 92.8% para algunos
de los modelos contemplados. Estas métricas indican la posibilidad de crear modelos de
aprendizaje profundo con un buen rendimiento en el campo médico.

Otro caso de estudio interesante se trata en [51], donde se hace uso de redes neuro-
nales para detectar la presencia de tumores cerebrales y poder realizar una clasificación
de los mismos. En este caso se ha logrado un accuracy de 96.7% y 88.25% en los datos
de validación y test, respectivamente. Estos avances subrayan el potencial del aprendiza-
je profundo para diagnosticar patoloǵıas, lo que convierte a la oftalmoloǵıa en un área
potencial de desarrollo de herramientas similares.
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Avances previos en el área oftalmológica

Como se ha introducido previamente con ejemplos de otras áreas médicas, el uso de
técnicas basadas en aprendizaje profundo ha mostrado un rendimiento sobresaliente en la
interpretación de imágenes médicas. En particular, las redes neuronales convolucionales
han demostrado su capacidad para identificar caracteŕısticas en las imágenes médicas y
realizar predicciones con precisión. Estas tecnoloǵıas ofrecen una promesa significativa
para mejorar los métodos no invasivos y complementarios de diagnóstico en oftalmoloǵıa.

Los sistemas de aprendizaje profundo han logrado resultados destacados en la detec-
ción de patoloǵıas oculares, como se evidencia en algunos trabajos como los recogidos
en [8], donde se revisitan y resumen nuevos sistemas de Deep Learning en aplicaciones
oftalmológicas. Por otra parte, existen diversos ejemplos de aplicación, como ocurre en [7],
donde se prueba que una CNN entrenada para la detección de retinopat́ıa diabética puede
obtener resultados comparables a los de especialistas. Estos trabajos han establecido una
base sólida para el uso de CNN en imágenes oftalmológicas. Sin embargo, la detección de
glaucomas oculares sigue siendo un área de investigación en desarrollo.

Avances previos en la detección del glaucoma

Recientemente, el periódico Huffington Post [57] publicaba un art́ıculo que haćıa refe-
rencia a otro art́ıculo de prensa publicado por la Universidad de Tohoku [58], en Japón.
En este, se hace eco de una investigación [59] para la detección del glaucoma, en la que se
obtuvo un método con un 93.52% de sensibilidad y un 95% de especificidad. El proceso
que se sigue para la detección del glaucoma según esta solución se representa en la Figura
3.22, que comparte ciertas analoǵıas con la solución que se propondrá más adelante.

Figura 3.22: Diagrama de flujo para la detección del glaucoma según la Universidad de Tohoku [59].

Por otra parte, en plataformas como Kaggle, se encuentran diversos trabajos y conjun-
tos de datos en los que se emplea Deep Learning para clasificación de imágenes, separando
conjuntos de retinograf́ıas según representan un ojo sano o con glaucoma. En particular,
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[9] es uno de estos datasets. Una segunda v́ıa de estudio en estos proyectos es la segmenta-
ción de imágenes para delimitar dos áreas fundamentales para la detección del glaucoma,
como son la copa y el disco ópticos. En este segundo marco se tienen los conjuntos de
datos [11] y [13] Sin embargo, analizando estos trabajos resaltan algunos problemas. Para
el primer enfoque, el de clasificación de imágenes, surgen las siguientes dificultades:

Falta de interpretabilidad. Para la clasificación con Deep Learning, no se indica
qué regiones de la imagen contribuyen al diagnóstico al trabajar como una “caja
negra”.

Dependencia de los datos. Requiere una gran cantidad de imágenes bien etiqueta-
das, lo cual puede ser un desaf́ıo en medicina, dado que, en ocasiones, es complicada
incluso la obtención de datasets públicos como los de la Sección 4.2 por motivos de
protección de datos.

Poca sensibilidad a estructuras espećıficas. Puede ignorar detalles importan-
tes, como el tamaño de la copa óptica, que son cruciales para la detección del
glaucoma.

Por su parte, el enfoque basado en segmentación de las retinograf́ıas representa prin-
cipalmente un problema al no tener continuidad en el proceso de diagnóstico; es decir,
los modelos segmentan las imágenes y esto no se utiliza con ningún propósito. De este
modo, surge una oportunidad de elaborar una herramienta que combine ambos enfoques,
tomando la mejor parte de cada uno, mejorando las soluciones existentes. Además, para
el dataset contenido en [9], que como se verá a lo largo del Caṕıtulo 4 será sobre el que se
desarrollen los modelos de clasificación, se han encontrado otras soluciones, de entre las
cuales los mejores resultados se muestran en la Tabla 3.4.

Modelo Accuracy Precision Recall
Conjunto
de datos

[78] 0.9416 0.9315 0.9532 Test

[79] 0.9391 0.8756 0.8791 Validación

[79] 0.9313 0.8518 0.9028 Test

[80] 0.9376 0.9079 0.9740 Test

[80] 0.9493 0.9458 0.9532 Test

[81] 0.8889 0.8662 0.92 Test

Tabla 3.4: Modelos estado del arte del dataset contenido en [9].
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Caṕıtulo 4

Desarrollo de la propuesta y
resultados

En este caṕıtulo se explican todas las técnicas que se han probado para la construcción
de la propuesta final a lo largo de todas las iteraciones que comprende el proyecto. Como
se indicó en la Sección 2.1.2, el proceso de desarrollo se efectúa siguiendo CRISP-DM,
luego para la explicación de este caṕıtulo se seguirán las mismas fases que alĺı se trataron.

4.1. Entendimiento del negocio

Esta fase se corresponde con el estudio del estado del arte tratado en la Sección 3.4.

4.2. Comprensión de los datos

Esta sección se corresponde con la etapa Data Understanding de la metodoloǵıa
CRISP-DM. Se trata de llevar a cabo un análisis sobre los datos que se van a utilizar
en el posterior entrenamiento de modelos. Este estudio consiste en identificar los conjun-
tos de datos que se van a emplear, el tipo de datos de cada conjunto y comprobar la
distribución de los mismos.

4.2.1. Dataset Rotterdam

El dataset EyePACS-AIROGS-light-V2 [9] será el principal conjunto de datos sobre el
que se desarrollarán algoritmos de clasificación. A este dataset se hará referencia por el
nombre de Rotterdam, dado que es un subconjunto balanceado de imágenes estandariza-
das de retinograf́ıas del conjunto de datos Rotterdam EyePACS AIROGS.

Descripción de los datos

El dataset rotterdam contiene más de 9500 imágenes retinográficas entre pacientes que
presentan glaucoma y otros en los que no se ha detectado esta patoloǵıa. Algunas de las
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Tabla 4.1: Ejemplos de retinografı́as del dataset rotterdam [9]

imágenes que incluye el dataset rotterdam se presentan a modo de ejemplo en la Tabla
4.1.

El conjunto de datos de Rotterdam está dividido en los grupos de test, train y valida-
tion. Cada uno de estos subconjuntos se divide a su vez entre retinograf́ıas de pacientes
con glaucoma y otros sin él. En la Tabla 4.2 se indica el número de imágenes que contiene
cada carpeta para cada clase.

Carpeta Clase Número de imágenes

test
Glaucoma 385

Normal 385

train
Glaucoma 4000

Normal 4000

validation
Glaucoma 385

Normal 385

Tabla 4.2: Resumen de las imágenes disponibles de cada clase en el dataset Rotterdam.

Distribución de los datos

Los datos siguen la distribución que se muestra en la Figura 4.1; es decir, cada una de
las dos clases está representada por un total de 4770 imágenes. Además, como el número
de retinograf́ıas que se tienen de cada clase es igual, los datos no presentan ningún tipo
de problema respecto al balanceo de los mismos.

4.2.2. Dataset RIM-ONE

El dataset RIM-ONE [13] se utilizará como un conjunto de datos auxiliar a lo largo de
este proyecto, puesto que se tienen datasets más interesantes para las tareas de clasificación
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4.2. Comprensión de los datos

Figura 4.1: Número de datos de cada clase en el dataset Rotterdam.

y segmentación. Este conjunto de datos será usado para preentrenar modelos sobre los
que realizar un segundo entrenamiento a partir del dataset rotterdam.

Tabla 4.3: Ejemplos de retinografı́as del dataset RIM-ONE [13]

Descripción de los datos

Este dataset contiene solo la región del nervio óptico extráıdo de retinograf́ıas como se
muestra en los ejemplos de la Tabla 4.3. En consecuencia, como se busca clasificar retino-
graf́ıas completas, estas imágenes no pueden usarse directamente. Se verá en la propuesta
de solución, que este dataset servirá para preentrenar ciertos modelos que empleen tan
solo la región ONH.

Como se indica en la documentación de este dataset [12], originalmente fue concebi-
do como un conjunto de imágenes de referencia para la segmentación del disco óptico a
partir de imágenes tomadas en distintos hospitales de España. De hecho, aunque no se
vaya a nombrar pues no se ha utilizado, existe un segundo repositorio con las segmenta-
ciones correspondientes a las retinograf́ıas [13]. No obstante, su uso ha degenerado hacia
el entrenamiento y evaluación de modelos de Deep Learning como es el caso.
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Carpeta Subcarpeta Clase Número de imágenes

partitioned
by hospital

test set
Glaucoma 56

Normal 118

training set
Glaucoma 116

Normal 195

partitioned
randomly

test set
Glaucoma 52

Normal 94

training set
Glaucoma 120

Normal 219

Tabla 4.4: Resumen de la disposición original de los datos de RIM-ONE.

A colación de lo anterior, en un origen exist́ıan tres versiones distintas, pero se com-
binaron en una nueva versión pública, denominada RIM-ONE DL (RIM-ONE for Deep
Learning). Esta nueva versión es la que se utiliza a lo largo de este proyecto. La ver-
sión utilizada de este conjunto de datos incluye 313 retinograf́ıas de pacientes sanos y
172 retinograf́ıas de pacientes con glaucoma. Además, todas ellas se acompañan de las
correspondientes segmentaciones del disco y la copa ópticos. Las retinograf́ıas vienen or-
ganizadas siguiendo el esquema de la Tabla 4.4.

Por su parte, existe otro directorio con las segmentaciones. Estas vienen almacenadas
siguiendo la organización de la Tabla 4.5. En el recuento de archivos del directorio que
representa a cada clase, se tienen 4 archivos para cada imagen. Estos archivos se corres-
ponden con dos imágenes con la segmentación de la copa y el disco, y dos archivos de
texto con los puntos del contorno del disco y la copa.

Clase Número de archivos

Glaucoma 688

Normal 1252

Tabla 4.5: Resumen de la disposición original de los datos de RIM-ONE.

Distribución de los datos

Los datos siguen la distribución que se muestra en la Figura 4.2; es decir, la clase
que representa a las imágenes de la región ONH con glaucoma alberga un total de 172
ejemplos. Por su parte, se tienen 313 imágenes de la región ONH de pacientes sanos. A
pesar de que el número de retinograf́ıas que se tienen de cada clase es bastante disparejo,
pues tan solo en torno a un tercio son retinograf́ıas de ojos glaucomatosos, los datos
están suficientemente balanceados. Además, el balanceo no es tan importante en este caso,
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Figura 4.2: Número de datos de cada clase en el dataset RIM-ONE.

siempre que no supere unos ĺımites, pues los datos tan solo sirven como un preentramiento,
y el conjunto donde el balanceo es más importante es para el dataset rotterdam que es
con el que se hace el entrenamiento principal.

4.2.3. Dataset DRISHTI-GS

El dataset DRISHTI-GS [11] es un conjunto de datos que alberga retinograf́ıas com-
pletas junto con otros archivos que identifican partes destacadas del nervio óptico. Este
dataset será el conjunto de datos sobre el que se desarrollarán algoritmos de segmentación.

Tabla 4.6: Ejemplos de retinografı́as del dataset DRISHTI-GS [11]

Descripción de los datos

Como ya se ha mencionado, DRISHTI-GS es un conjunto de datos que alberga reti-
nograf́ıas completas como las de la Tabla 4.6. Además, para cada una de estas imágenes
se tiene una serie de archivos adicionales con ṕıxeles destacados y otras imágenes. Por
una parte, los archivos que identifican ciertos ṕıxeles son tres. Estos señalan el contorno
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del disco, de la copa y dónde se encuentra el centro del nervio óptico. Por otra parte, las
imágenes son de carácter binario, e indican dónde se encuentra la copa o el disco, según
corresponda. En las tablas 4.7 y 4.8 se muestran ejemplos de cada tipo de imágenes,
respectivamente.

Tabla 4.7: Ejemplos de segmentaciones de la copa en el dataset DRISHTI-GS [11]

Tabla 4.8: Ejemplos de segmentaciones del disco en el dataset DRISHTI-GS [11]

De esta forma, podemos construir modelos de segmentación a partir de las imágenes
binarias o de los archivos que indican el contorno correspondiente. Para el desarrollo de
este trabajo se ha optado por la opción de las imágenes binarias por la facilidad que
ofrecen en el entrenamiento de los modelos que se presentarán más adelante.

Este conjunto de datos contiene un total de 101 imágenes de retinograf́ıas completas
con sus respectivos archivos asociados. A continuación, se analiza la distribución de los
datos, aunque no será de especial relevancia, pues, independientemente de si la retinograf́ıa
corresponde a una persona que tenga o no glaucoma, la segmentación debe producir el
mismo resultado identificando las estructuras correspondientes del nervio óptico, que son
las mismas en ambos casos; aunque, si bien es cierto que, en función de si se presenta o
no la patoloǵıa, las estructuras pueden variar ligeramente su tamaño, como se explicó en
la Sección 3.1.3 para la copa óptica.

Queda por mencionar la colocación que sigue el conjunto de datos de DRISHTI-GS.
Este está dividido en dos grupos: train y test. Cada uno de estos subconjuntos se divide
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Carpeta Clase Número de imágenes

test
Glaucoma 38

Normal 13

train
Glaucoma 32

Normal 18

Tabla 4.9: Resumen de las imágenes disponibles de cada clase en el dataset DRISHTI-GS.

a su vez entre retinograf́ıas de pacientes con glaucoma y otros sin él. En la Tabla 4.9 se
indica el número de imágenes que alberga cada carpeta para cada clase.

Distribución de los datos

En el dataset DRISHTI-GS, los datos siguen la distribución que se muestra en la
Figura 4.3; es decir, la clase del glaucoma está representada por un total de 70 imágenes,
mientras que para la clase normal se tienen 31 imágenes.

Figura 4.3: Número de datos de cada clase en el dataset DRISHTI-GS.

Aunque la diferencia entre imágenes pueda denotar que los datos están desbalancea-
dos, esto no sucede. Como se ha indicado previamente, este dataset está orientado a
segmentación. A la detección y localización de las estructuras correspondientes del ner-
vio óptico, que son las mismas en ambos casos y tan solo pueden variar ligeramente su
tamaño. Luego, la división en las clases de glaucoma y normal no es relevante, pues no se
tiene en cuenta para el desarrollo del modelo que se construya a partir de estos datos.
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4.3. Iteración 1. Clasificación de la retinograf́ıa com-

pleta

La aproximación más básica a la solución del problema planteado de detectar el glauco-
ma pasa por la construcción de un algoritmo de clasificación a partir de su entrenamiento
con las imágenes de las retinograf́ıas. Para ello, se parte del dataset orientado a este
propósito de entre los que se tiene; es decir, el de Rotterdam. Con él, se entrena el modelo
y se evalúan los resultados. Este proceso se detalla en cada uno de los apartados siguientes.

4.3.1. Preparación de los datos

Puesto que el problema que se pretende solucionar en esta primera iteración es el de
clasificación, se parte del conjunto de datos de Rotterdam descrito en la Sección 4.2.1.
Esto se debe a que este dataset es el que alberga una mayor cantidad de datos dispuestos
para clasificación. Los datos de esta fuente han sido reordenados de la siguiente manera:

Conjunto de entrenamiento [train]. Este segmento de datos ha de ser el que mayor
cantidad de los mismos albergue. T́ıpicamente se reserva en torno a un 70% del
total de datos disponibles. En particular, para el entrenamiento de los modelos de
esta propuesta se ha separado un 64% de cada una de las clases.

Conjunto de validación [val ]. Este conjunto de datos se empleará durante la fase de
entrenamiento. Durante este proceso, al finalizar cada época, se valida el resultado
obtenido mediante este subconjunto de datos, lo que permite ajustar los parámetros
de la red en función de los resultados obtenidos para mejorar el modelo en construc-
ción. Con este fin, se ha reservado un 16% de las retinograf́ıas con glaucoma y un
16% de las retinograf́ıas de pacientes sanos.

Es una práctica de uso habitual tomar un porcentaje de los datos de entrenamiento
para la validación; y aśı es como se ha hecho en este caso. Para el proceso de
entrenamiento en total se toma un 80%, y de este se divide un 20% para validación,
lo que resulta en un 16% del total, y el resto, un 64% del total, para lo que es
propiamente el entrenamiento.

Conjunto de test [test ]. Este conjunto de datos se empleará para probar el modelo
construido. Se utilizará para obtener las métricas que miden la capacidad del modelo.
En concreto, está compuesto por un 20% de las retinograf́ıas con glaucoma y un
20% de las retinograf́ıas de pacientes sanos.

Esta reordenación que se ha tomado sobre los datos tiene su motivo. En vez de reservar
un 8% para validación durante el entrenamiento y otro 8% para prueba del modelo como
se menciona en 4.2.1, se coge un 16% y un 20% respectivamente. Esta nueva disposición
de los datos presenta dos ventajas diferenciadoras:
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La evaluación final del rendimiento del modelo es más robusta. Al contar con un
mayor número de datos de prueba, se mejora la estimación del rendimiento real del
modelo.

El ajuste de los parámetros internos del modelo mejora. Con más datos para validar,
las métricas de validación son más representativas.

Bien es cierto que no todo son ventajas, pues el aumento en estos subconjuntos de
datos se produce a costa de reducir el número de datos de entrenamiento. Esto puede
afectar a la capacidad del modelo para extraer patrones, especialmente si los datos son
limitados. Sin embargo, como tenemos un total de 9540 imágenes, estas son suficientes y
se puede permitir esta disminución de imágenes en el conjunto de entrenamiento.

Además de procesar las retinograf́ıas originales, que están a color, también se realiza
un entrenamiento para la predicción del glaucoma a partir de las mismas imágenes pero en
escala de grises durante esta iteración. La disposición de los datos es la misma en ambos
casos, y solo cambia el número de canales que tiene la imagen. A esta modificación del
dataset original se le ha denominado Rotterdam grises.

4.3.2. Entrenamiento

En la etapa de entrenamiento se procede a construir los modelos que se pretenden
que clasificaquen retinograf́ıas entre las de pacientes sanos y los que presenten glaucoma.
Como se ha indicado previamente, en esta primera iteración se consideran dos modelos:
uno orientado a clasificación con retinograf́ıas a color, y otro análogo con retinograf́ıas en
escala de grises.

Durante esta fase se ajustan los parámetros internos de los modelos de Deep Learning
a partir de los datos disponibles siguiendo la teoŕıa explicada en la Sección 3.2.3. Para ello,
se indican una serie de hiperparámetros que determinan algunos procesos que se llevan
a cabo. En concreto, se indica el número de épocas que se debe entrenar el modelo; la
paciencia, para evitar el sobreajuste; o el tamaño de entrada de las imágenes. Además, se
indica el modelo base sobre el que se entrena para no tener que construir la red desde cero.
En la Tabla 4.10, se detallan los hiperparámetros empleados durante el entrenamiento de
cada uno de los dos modelos. Para seleccionarlos, se han tenido en cuenta aspectos como
el coste computacional del proceso.

Como se observa en la Tabla 4.10, se ha empleado para realizar el entrenamiento el
sistema YOLO. Este se ha importado desde la biblioteca ultralytics. Durante las iteraciones
se verá que se usa tanto FastAI como YOLO, teniendo más presencia este último. Esto se
debe a la rapidez del algoritmo, pues se basa en el paradigma ”You Only Look Once”[60].

4.3.3. Evaluación

Una vez entrenados los modelos, han sido evaluados utilizando el subconjunto de los
datos que se reservó para prueba: el conjunto de test. Para cuantificar la capacidad de
clasificación de cada modelo adecuadamente, se ha empleado la métrica accuracy definida
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Modelo Descripción Hiperparámetros

rotterdam
rotterdam
a color

Algoritmo YOLO

Modelo base YOLO 11

Dataset Rotterdam

Épocas 100

Paciencia 15

Tamaño imagen 256

rotterdam
grises

Modelo escala
de grises

Algoritmo YOLO

Modelo base YOLO 11

Dataset Rotterdam grises

Épocas 100

Paciencia 15

Tamaño imagen 256

Tabla 4.10: Parámetros empleados en el entrenamiento de los modelos de la iteración 1

en la Sección 3.2.4. En la Tabla 4.11 se resumen los resultados obtenidos tanto para el
conjunto de datos val como para el de test.

Modelo Épocas Accuracy validación Accuracy test

rotterdam 52 0.938 0.933

rotterdam grises 41 0.921 0.912

Tabla 4.11: Resultados obtenidos en la iteración 1 tras el entrenamiento

A partir de los resultados obtenidos en la Tabla 4.11 se puede comparar de manera
cuantitativa el rendimiento de los modelos considerados, identificando el que mejor com-
portamiento presenta en términos de la métrica accuracy. Atendiendo a los mismos, se
observan mejores resultados para el modelo que recibe como datos de entrada imágenes
a color en vez del modelo para escala de grises, tanto en el conjunto de validación como
en el de test. Lo más representativo siempre será el de test, pues los datos de validación
han sido empleados para ajustar los parámetros durante la etapa de entrenamiento y no
representan fielmente el rendimiento que pueda tener el modelo en la realidad.

De esta forma, el resultado más destacado en términos de accuracy durante esta ite-
ración, orientada a clasificación, ha sido de un 93.3%. Esto implica que menos 7 de cada
100 imágenes son clasificadas de manera errónea, lo que significa un gran avance para esta
primera iteración del proyecto. Además, razonando el motivo por el que se puede haber
obtenido un mejor resultado para imágenes a color que para imágenes en escala de grises,
puede deberse a la propia construcción de las imágenes en cada caso. Frente a los tres
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canales RGB que componen la imagen a color, para la imagen en escala de grises tan solo
se tiene uno, lo que supone una disminución en la cantidad de información que aporta
cada retinograf́ıa en términos computacionales.

4.4. Iteración 2. Segmentación con Deep Learning y

clasificación con Machine Learning

Una vez tratado el problema de clasificar las retinograf́ıas entre las de pacientes sanos
y las de aquellos que presentan indicios de glaucoma, surge la necesidad de abordar el
otro objetivo principal recogido en la Sección 1.2. Este se trata de la identificación de las
estructuras propias de las retinograf́ıas empleando técnicas de segmentación.

A lo largo de esta sección, se explicará el dataset del que se parte, el entrenamiento
del modelo, y el correspondiente análisis de los resultados que se han llevado a cabo para
la consecución de este objetivo. A continuación, se detalla cada una de las partes de este
proceso.

4.4.1. Preparación de los datos

Puesto que el problema que se pretende solucionar en esta segunda iteración es el de
segmentación a partir de una retinograf́ıa, se parte del conjunto de datos DRISHTI-GS
descrito en la Sección 4.2.3. Esto se debe a que este dataset es el único del que se dispone
que alberga la información necesaria para segmentar las estructuras del disco y la copa
ópticos a partir de retinograf́ıas completas.

Por otra parte, puesto que la segmentación se ha entrenado mediante YOLO, o los
modelos que facilita FastAI, la disposición del conjunto de datos que se ha empleado para
entrenar los modelos vaŕıa en función de los mismos:

FastAI. Para los modelos que se entrenarán usando las arquitecturas que facilita
FastAI, se dispone de una carpeta con las imágenes y otra con las segmentaciones que
se pretenden obtener. Puesto que se van a probar distintos formatos de imágenes,
como RGB, escala de grises o aplicando filtros de Gabor, tan solo será necesario
cambiar la carpeta de donde se toman las imágenes. Puesto que para los filtros de
Gabor, las pruebas iniciales determinaron un bajo rendimiento, en lo que sigue solo
se tendrá en cuenta las imágenes a color y en escala de grises, sin ningún filtro.

Aśı, se tienen las carpetas: cup segmentations, con las segmentaciones de la copa;
disc segmentations, que almacena las segmentaciones del disco; fundus, que alberga
las retinograf́ıas a color; y fundus filtered, con las imágenes de la retinograf́ıa en
escala de grises.

Para los modelos entrenados a partir de FastAI no es necesario dividir los directorios
para determinar los conjuntos de entrenamiento y validación. Esto se hace con el
dataloader que es una estructura la cual se construye previo al entrenamiento y
que determina los datos que se usarán. En este se dividen los datos en un 80%
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para entrenamiento y un 20% para validación. Además, también especifica que las
imágenes de entrada a la red neuronal serán de tamaño 224× 224 ṕıxeles.

YOLO. Estos modelos requieren los datos de entrada organizados como se describió
en la iteración 1. De esta manera, para el uso de YOLO se han considerado dos
datasets diferenciados: uno para la segmentación del disco óptico y otro para la de
la copa óptica, denominados dataset yolo disc y dataset yolo cup respectivamente.
En ambos casos, con las imágenes a color. En cada uno de estos datasets se ha
dispuesto una carpeta [train] para el entrenamiento, y otro directorio [val ] para el
proceso de validación.

Además, tanto para el modelo del disco como para el de la copa se han separado
los datos en 80 imágenes para train y 21 para val. Esto representa un 80% y un
20% del total de datos disponibles, respectivamente. En cada uno de los directorios,
la carpeta de imágenes se acompaña con otra denominada labels que contiene un
archivo de texto referido a cada imagen e incluye la información necesaria para
poder determinar la segmentación esperada.

Queda destacar un elemento fundamental que se debe tener previo al entrenamiento
de los modelos. Se trata de un archivo de extensión yaml que describe cómo debe
tomar YOLO los datos. Estos se denominan cup config.yaml y disc config.yaml para
la copa y el disco, respectivamente. Su contenido es el siguiente:

cup config.yaml

path: /content/drive/My Drive/Colab Notebooks/dataset modified/dataset
yolo cup
train: train/images
val: test/images
nc: 1
names: [’copa’]

disc config.yaml

path: /content/drive/My Drive/Colab Notebooks/dataset modified/dataset
yolo disc
train: train/images
val: test/images
nc: 1
names: [’disco’]

Como se puede comprobar, en estos archivos se indica la ruta donde se encuentra el
dataset en cuestión, junto con las rutas relativas de las imágenes dentro del directorio
del dataset. Además, nc informa del número de clases de objetos que se pretenden
segmentar; mientras que names muestra el nombre que recibirá la clase.
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En esta iteración, además de entrenar los modelos de segmentación con los datos
preparados como se ha descrito, también se han entrenado modelos de clasificación, los
cuales están construidos mediante algoritmos de Machine Learning. Para estos, se parte
de la hipótesis mencionada en la Sección 3.1.3 de que la copa aumenta su tamaño en
presencia de glaucoma.

Partiendo de esta idea y mediante los modelos construidos para segmentación, se pasan
a construir una serie de archivos CSV (Comma-separated values) que recogen un conjunto
de medidas y/o proporciones oportunas tanto del disco como de la copa. A continuación,
se describe cada uno de los archivos CSV que se utilizarán en el entrenamiento:

datos DRISHTI.csv . Este fichero se ha construido a partir de las máscaras que
se tienen para las retinograf́ıas del dataset DRISHTI-GS. De esta forma, se puede
comprobar si puede ser útil para la clasificación la hipótesis de la que se parte. En
caso de poder ser útil, se hace lo mismo para las segmentaciones. Aśı, se prueba si
es usable en condiciones ideales para luego comprobarlo con las segmentaciones, que
inevitablemente introducirán errores en las medidas.

En este archivo, se presentan 4 columnas de datos. Las tres primeras, diam disco,
diam copa y prop diam, representan el diámetro del disco y de la copa, aśı como la
proporción entre los mismos, respectivamente. Formalmente,

prop diam =
diam disco

diam copa
.

Cabe recordar que la definición de diámetro se incluyó en la Sección 3.3. Por último,
la cuarta columna indica de manera binaria si la retinograf́ıa corresponde a un globo
ocular con glaucoma, representado por 0, o sin él, representado por 1.

datos fastai.csv . Este fichero coincide en lo referido a los datos que se almacenan
con el archivo datos DRISHTI.csv. La diferencia radica en que para su construcción
no se utilizan las máscaras propias del dataset, sino que se emplean las predicciones
hechas por el modelo FastAI que mejor rendimiento tenga.

datos YOLO.csv . Este fichero es análogo al archivo datos fastai.csv. El único
cambio es que las medidas se toman a partir del modelo construido con YOLO en
vez de con el de FastAI.

datos completo.csv . Este archivo extiende la información que se tiene en los fi-
cheros datos fastai.csv y datos YOLO.csv. En concreto, las primeras columnas se
refieren a medidas tomadas de la predicción YOLO; las siguientes, a la predicción
FastAI; y la última es la clasificación esperada. Respecto a las columnas que recogen
atributos de las segmentaciones, tenemos los siguientes datos:

• min radio disco yolo: denota la distancia mı́nima entre el centroide del disco
detectado con el modelo YOLO y el contorno del mismo.
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• max radio disco yolo: es la distancia máxima entre el centroide del disco
detectado y el contorno del mismo con el modelo YOLO.

• min radio copa yolo: mı́nimo de las distancias entre el centroide de la copa
detectada con el modelo YOLO y el contorno de la misma.

• max radio copa yolo: es la distancia máxima entre el centroide de la copa
segmentada y el contorno de la misma con el modelo YOLO.

• prop radios max yolo: cociente entremax radio disco yolo ymax radio copa yolo.

• prop radios min yolo: división demin radio disco yolo entremin radio copa yolo.

• prop radios disco yolo: proporción entre los radios mı́nimo y máximo de la
segmentación del disco con el modelo YOLO; es decir, entremin radio disco yolo
y max radio disco yolo, respectivamente.

• prop radios copa yolo: proporción para la copa detectada con el modelo
YOLO entre el mı́nimo (min radio copa yolo)y máximo (max radio copa yolo)
de sus radios.

• min radio disco: denota la distancia mı́nima entre el centroide del disco de-
tectado con el modelo construido con FastAI y el contorno del mismo.

• max radio disco: es la distancia máxima entre el centroide del disco detec-
tado y el contorno del mismo con el modelo construido con FastAI.

• min radio copa: mı́nimo de las distancias entre el centroide de la copa detec-
tada con el modelo construido con FastAI y el contorno de la misma.

• max radio copa: es la distancia máxima entre el centroide de la copa seg-
mentada y el contorno de la misma con el modelo construido con FastAI.

• prop radios max: cociente entre max radio disco y max radio copa.

• prop radios min: división de min radio disco entre min radio copa.

• prop radios disco: proporción entre los radios mı́nimo y máximo de la seg-
mentación del disco con el modelo construido con FastAI; es decir, entremin radio disco
y max radio disco, respectivamente.

• prop radios copa: proporción para la copa detectada con el modelo construi-
do con FastAI entre el mı́nimo (min radio copa)y máximo (max radio copa) de
sus radios.

4.4.2. Entrenamiento

Dentro de esta fase de la segunda iteración, se pueden distinguir distintas clases de
entrenamiento en función del objetivo o la biblioteca de modelos usada; es decir, si se trata
de un problema de segmentación o clasificación, y si se emplea YOLO o FastAI. Luego,
a continuación se da una explicación para cada uno de los casos de manera análoga para
todos ellos.
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FastAI para el disco óptico

Usando la biblioteca FastAI para segmentar el disco óptico, se han contemplado una
serie de arquitecturas que esta misma biblioteca recoge. En particular, se ha probado a
construir modelos a partir de Transfer Learning [61] con las arquitectura Resnet, Alexnet,
Densenet y VGG, donde para las que ofrecen la oportunidad se han utilizado variantes
con más o menos parámetros, como sucede con Resnet34 y Resnet152 o con VGG-16 y
VGG-19.

Además de seleccionar la arquitectura con la que se construirán los modelos, también
se ha de escoger el número de épocas que se van a entrenar los mismos. En este caso, se han
ido probando diferentes ajustes y se ha tomado la opción que mejores resultados aportaba.
Este trabajo se ha realizado de manera manual examinando el ajuste a lo largo de las
épocas para que el modelo no sobreentrene y haya un sobreajuste, pero también para que
ajuste lo suficiente y no quede sin entrenar. Otra forma podŕıa haber sido introducir un
hiperparámetro de patience o paciencia.

Finalmente, para terminar de definir los hiperparámetros del modelo, se debe escoger
el conjunto de métricas en las que se basará FastAI para realizar los correspondientes
ajustes en los parámetros para adaptar la red neuronal a la solución. Para esta fase de
entrenamiento se ha empleado la métrica accuracy camvid definida en la Sección 3.2.4 para
todos los modelos. En la fase de evaluación se estudiará una mayor cantidad métricas para
examinar en detalle los modelos escogidos.

De esta forma, en la Tabla 4.12 se recoge la arquitectura, el número de épocas y la
métrica utilizada para ajustar el modelo tanto para la imagen en escala de grises como a
color en la base RGB.

Arquitectura
modelos

Resultado disco
escala de grises

Resultado
disco a color

Número
etapas

Métrica
Número
etapas

Métrica

Resnet34 13 accuracy camvid 13 accuracy camvid

Resnet152 20 accuracy camvid 20 accuracy camvid

Alexnet 25 accuracy camvid 25 accuracy camvid

Densenet 12 accuracy camvid 12 accuracy camvid

VGG-16 12 accuracy camvid 12 accuracy camvid

VGG-19 17 accuracy camvid 17 accuracy camvid

Tabla 4.12: Parámetros modelos FastAI de segmentación del disco en la iteración 2.

FastAI para la copa

De manera análoga a como se ha tratado el entrenamiento de los modelos para la
segmentación del disco óptico, se construyen los modelos para la segmentación de la

Carlos Jiménez Vaquero 91
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copa. Aśı, se debe definir la arquitectura sobre la que se entrenará el modelo. Se han
considerado las mismas que en el caso del disco. Además, también se define el número
de épocas que se entrenará el modelo y la métrica para hacerlo. De igual modo que para
el entrenamiento de los modelos de segmentación del disco, se ha ajustado el número de
épocas para obtener los mejores resultados. Además, la métrica considerada también es
la misma: accuracy camvid. En la Tabla 4.13 se detallan los hiperparámetros a partir de
los cuales se construyen los distintos modelos.

Arquitectura
modelos

Resultado copa
escala de grises

Resultado
copa a color

Número
etapas

Métrica
Número
etapas

Métrica

Resnet34 12 accuracy camvid 12 accuracy camvid

Resnet152 18 accuracy camvid 18 accuracy camvid

Alexnet 25 accuracy camvid 25 accuracy camvid

Densenet 12 accuracy camvid 12 accuracy camvid

VGG-16 11 accuracy camvid 11 accuracy camvid

VGG-19 16 accuracy camvid 16 accuracy camvid

Tabla 4.13: Parámetros modelos FastAI de segmentación de la copa en la iteración 2.

YOLO para el disco

En la etapa de entrenamiento para el modelo YOLO se empleará YOLO11. Para la
construcción del modelo que segmenta el disco se parte del dataset DRISHTI-GS con las
retinograf́ıas a color. Además, se debe especificar durante esta fase una serie de carac-
teŕısticas que acoten el funcionamiento del entrenamiento.

Modelo Hiperparámetros

yolo disc

Algoritmo YOLO

Modelo base YOLO 11

Dataset máscaras disc segmentations

Épocas 100

Paciencia -

Tamaño imagen 256

Tabla 4.14: Parámetros modelo YOLO de segmentación del disco en la iteración 2.

Para ello, se indican una serie de hiperparámetros que determinan algunos procesos
que se llevan a cabo. En concreto, se indica el número de épocas que se debe entrenar el
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modelo; la paciencia, para evitar el sobreajuste; o el tamaño de entrada de las imágenes.
Además, se indica el modelo base sobre el que se entrena para no tener que construir la
red desde cero.

A colación de lo anterior, en la Tabla 4.14 se detallan los hiperparámetros empleados
durante el entrenamiento del modelo que segmenta el disco óptico a partir de retinograf́ıas
a color. Para seleccionar dichos hiperparámetros se han tenido en cuenta aspectos como
el coste computacional del proceso.

YOLO para la copa

De manera análoga a como se ha tratado el entrenamiento del modelo construido a
partir de YOLO para la segmentación del disco óptico, se construye el modelo para la
segmentación de la copa. Aśı, se debe definir la arquitectura sobre la que se entrenará el
modelo, el número de épocas que se entrenará el mismo, la dirección donde se encuentran
las máscaras a partir de las que se entrenará y el tamaño de la imagen de entrada a la
red neuronal.

Modelo Hiperparámetros

yolo cup

Algoritmo YOLO

Modelo base YOLO 11

Dataset máscaras cup segmentations

Épocas 100

Paciencia -

Tamaño imagen 256

Tabla 4.15: Parámetros modelo YOLO de segmentación de la copa en la iteración 2

En la Tabla 4.15 se detallan los hiperparámetros a partir de los cuales se construye el
modelo capaz de identificar la región de la copa óptica.

Entrenamiento de los algoritmos de Machine Learning para clasificación

Para el entrenamiento de los modelos de clasificación mediante técnicas de Machine
Learning se usarán los algoritmos propuestos en la Sección 3.2.1. Además, para los que se
pueda establecer una serie de hiperparámetros, se elegirán los óptimos; es decir, los que
mejores resultados arroje su correspondiente entrenamiento. Esto es, para los modelos de
KNN, elegir el número óptimo de vecinos a partir de los que se hace la predicción, o para
el clustering, el conjunto de atributos que se manejan aśı como la cantidad de clústers en
los que se divide el conjunto de datos.

Además, para todos los algoritmos que se contemplan, se medirán sus resultados en
base al accuracy que presenten. De hecho, esta métrica será la que se use por los algoritmos
de entrenamiento para ajustar las soluciones de los modelos. Pero no solo eso, sino que
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también se considerará para cada clase, glaucoma y normal, la precision obtenida, junto
con el recall, y a partir de las cuales, el F1-score. Para entender su significado, todas estas
métricas aparecen definidas en la Sección 3.2.4.

4.4.3. Postprocesado

Tras el entrenamiento de los modelos de esta segunda iteración, se distinguen dos
tipos de modelos. Por una parte, los construidos siguiendo técnicas propias del Machine
Learning, y por otra, los modelos de segmentación sobre imágenes entrenados con redes
neuronales profundas que se enmarcan dentro del campo Deep Learning.

Respecto a los segundos, las segmentaciones de las imágenes pueden contener ciertas
imperfecciones solucionables de manera automática con las debidas técnicas de trata-
miento de imagen. En esta sección se van a revisar las problemáticas que se han apreciado
respecto a las mismas aśı como la solución abordada. Es aqúı donde se aplicará todo el
conocimiento matemático de teoŕıa de conjuntos relatado en la Sección 3.3 de los antece-
dentes. En una primera instancia se revisarán las soluciones construidas usando modelos
YOLO, para continuar con las proporcionadas a través de la biblioteca FastAI.

Problemas segmentación YOLO

Con YOLO se han construido dos modelos para segmentación: uno para el disco y
otro para la copa óptica, que reciben el nombre de yolo disc y yolo cup, respectivamente.
Para probar su funcionamiento, además de comprobar su rendimiento con el conjunto
de datos DRISHTI-GS que se ha usado para entrenar los modelos, también se hacen las
respectivas pruebas con el dataset rotterdam. Aunque no se tengan las segmentaciones de
las clases identificadas en una retinograf́ıa para este último conjunto de datos, se puede
comprobar visualmente si el modelo funciona adecuadamente.

Figura 4.4: Ejemplo de error yolo disc Figura 4.5: Solución de errores yolo disc
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En primer lugar, se estudia el modelo construido para el disco, denominado yolo disc.
De entre todas las retinograf́ıas que alberga el dataset rotterdam, solo se ha apreciado un
error. Este consiste en la identificación de más de un disco. Este error se muestra en la
Figura 4.4.

Como se puede comprobar en la Figura 4.4, YOLO aporta junto con la segmentación,
un recuadro de localización, aśı como la probabilidad de que la región señalada se haya
identificado correctamente. El error se soluciona sin más que tomando la región con ma-
yor probabilidad. Se ha comprobado que siempre que ocurre este error, la máscara que
identifica el disco real presenta una certeza mucho mayor como ocurre en el ejemplo de la
Figura 4.4.

Cabe destacar además el buen funcionamiento del modelo, pues al probarlo en otro
dataset completamente distinto al del entrenamiento sigue identificando correctamente el
disco óptico. No obstante, en la posterior Sección 4.4.4 se evaluará de manera numérica
el rendimiento de este modelo.

Una vez analizados y solucionados los errores que pueden cometerse al tratar de seg-
mentar el disco óptico, se pasa a estudiar si para la copa óptica también se produce alguna
desviación respecto del resultado esperado. Análogamente a como se hizo para el modelo
del disco, además de comprobar su rendimiento con el dataset DRISHTI-GS que se ha
usado para entrenar, también se harán pruebas con el conjunto de datos rotterdam. Aśı
es como se ha observado no un error, pero śı una posible mejora a la solución facilitada
por el modelo. Dicha mejora se ejemplifica en las figuras 4.6, 4.7 y 4.8.

Figura 4.6: Resultado inicial Figura 4.7: Segmentación Figura 4.8: Predicción final

En la primera de las figuras, la 4.6 se muestra la predicción hecha con el modelo
construido para la copa. Para poder ver mejor el resultado, en la Figura 4.7 se destaca la
segmentación hecha por dicho modelo. Aqúı, como se puede comprobar, aparecen ciertas
veśıculas. Para eliminarlas, se aplica un kernel para obtener el resultado de la Figura 4.8.

Finalmente, cabe destacar que, puesto que el disco óptico y la copa óptica se supone
que deben ser conjuntos convexos, para mejorar el resultado se ha decidido calcular la en-
volvente convexa de las máscaras que identifican estas estructuras. Aśı, para la aplicación
final se mostrarán tanto la solución inicial con las mejoras descritas, como el resultado
que se obtiene al calcular la envolvente convexa.
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Problemas segmentación FastAI

Análogamente a los modelos construidos con YOLO, se han escogido dos modelos
para segmentación con FastAI: uno para el disco y otro para la copa óptica, que reciben
el nombre de fastai disc y fastai cup, respectivamente, ambos construidos con el modelo
Resnet152. Para probar su funcionamiento, además de comprobar su rendimiento con el
conjunto de datos DRISHTI-GS, usado para entrenar los modelos, también se hacen las
respectivas pruebas con el dataset rotterdam. Aunque no se tenga las segmentaciones de las
clases identificadas en una retinograf́ıa para este último conjunto de datos, se comprobará
visualmente si el modelo funciona adecuadamente.

Igual que para los modelos YOLO, en primer lugar, se estudia el modelo construido
para el disco, fastai disc. De entre todas las retinograf́ıas que alberga el dataset rotterdam,
se han detectado dos tipos de desviaciones respecto a la segmentación esperada. Estas
fallas en las segmentaciones, aśı como las soluciones planteadas, son las siguientes:

Más de una componente conexa. En ocasiones, el modelo devuelve una segmen-
tación formada por varias regiones disjuntas como se muestra en la Figura 4.9. En
la mayoŕıa de casos en los que esto sucede, suele deberse a la existencia de regiones
con intensidad similar a la del disco óptico; es decir, a la presencia de brillos en la
retinograf́ıa. Como consecuencia, el modelo interpreta erróneamente cada uno de los
brillos como un disco.

Figura 4.9: Ejemplo de segmentación con más de una componente conexa.

Solución. La respuesta esperada para el modelo es una única identificación de
disco, pues para cada retinograf́ıa se sabe que solo puede existir uno. Luego, la
solución pasa por seleccionar únicamente la componente conexa que identifica al
disco. Sin embargo, esto es una tarea muy complicada. El motivo es que habŕıa que
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4.4. Iteración 2. Segmentación con Deep Learning y clasificación con Machine Learning

establecer condiciones para determinar cuál de todas las componentes conexas es la
que identifica el disco óptico.

Otra solución pasa por aplicar filtros a partir de la transformada de Fourier [62].
Con esta técnica, se busca reducir los brillos que causan problemas en el proceso
de segmentación. Aśı, reduciendo el efecto de estos brillos, se pretende obtener una
única componente conexa que coincida con el disco óptico.

Sin embargo, aunque se hayan contemplado estas opciones e incluso implementado
la primera de ellas, no es necesario hacer uso de las mismas para solventar esta
cuestión. En su lugar, la solución que se ha tomado para el otro obstáculo que se
presenta a continuación, también sirve para controlar el este problema.

Se identifica un área mayor como disco. Otro problema que surge al segmentar
la región del disco óptico es detectar un área mayor a la que le corresponde, como
ocurre en el ejemplo de la Figura 4.10. El motivo de esta desviación respecto del
resultado esperado es un menor contraste entre la zona del disco óptico respecto a
la región inmediatamente exterior a él.

Figura 4.10: Desviación en la
segmentación del disco

Figura 4.11: Detección del fon-
do de la retinografı́a

Figura 4.12: Solución aplicada
al disco en FastAI

Solución. Una primera solución pasa por la aplicación de un kernel. Igual que
para eliminar las veśıculas, como se hizo con las predicciones de YOLO, se trata de
aplicar un kernel que reduzca la región que no corresponde con el disco óptico. Esto
funciona cuando las regiones mal detectadas son pequeñas. Sin embargo, para un
caso como el de la Figura 4.10, donde las regiones mal detectadas son grandes, esto
no representa una solución real.

Otra solución planteada es tratar de elaborar otro modelo para predicción de las
segmentaciones a partir de un conjunto de datos diferente y combinar el resulta-
do. Con este propósito, se ha entrenado un modelo para detectar el fondo de la
retinograf́ıa; es decir, el área complementaria al disco en la imagen.

Para llevar a cabo esto, el conjunto de datos de entrenamiento consiste en las reti-
nograf́ıas del dataset DRISHTI-GS a color, frente a las imágenes en escala de grises
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de este mismo conjunto de datos con las que se ha entrenado el modelo yolo disc.
Aśı, se alteran los datos de entrada, obteniendo resultados distintos para combinar-
los posteriormente. El modelo que identifica el fondo, el área complementaria a la
región del disco, recibe el nombre de fastai disc background.

Aśı, aplicando este modelo construido como solución al problema por el que se iden-
tifica un área mayor como disco óptico para la retinograf́ıa de la Figura 4.10, se
consigue un resultado como el de la Figura 4.11. Para conseguir la solución espe-
rada a partir de los modelos que detectan el disco y su fondo, se calcula la región
complementaria al fondo y se obtiene la solución final a partir de la intersección
entre esta última zona y el área del disco calculada por el primer modelo. De esta
forma, se alcanza la solución representada en la Figura 4.12.

De igual forma que se hizo para el disco y la copa con los modelos a base de YOLO,
para mejorar la solución y reducir ciertas veśıculas que pudieran aparecer, se aplica
un kernel. Además, puesto que el disco óptico y la copa óptica deben ser conjuntos
convexos, también se ha decidido calcular la envolvente convexa de las máscaras que
identifican estas estructuras.

A partir del proceso descrito anteriormente, se alcanza un resultado mucho más
fiel a la realidad. En las imágenes 4.13, 4.14, 4.15 y 4.16 se muestra cada etapa
principal en ese orden. Como se identifica en la Figura 4.16, el resultado final tras
el postprocesado se adecúa en mayor medida a la región original del disco óptico.
A todo este proceso se le ha denotado con el nombre de fastai process, el cual se
mencionará para valorar los resultados obtenidos.

Figura 4.13: Predicción inicial del disco Figura 4.14: Predicción del fondo

Respecto a la copa, apenas se ha mencionado su postprocesado puesto que es muy
simple y ya ha sido relatado con anterioridad. Simplemente se hace la intersección
de la segmentación predicha con la región del disco, dado que la copa se encuentra
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Figura 4.15: Resultado de la combinación de
las dos segmentaciones realizadas

Figura 4.16: Predicción final tras aplicar un ker-
nel y calcular la envolvente convexa

dentro del disco. Tras esto, se aplica un kernel para reducir las veśıculas que pueda
presentar la máscara y se calcula la envolvente convexa para obtener el resultado
final que identifica la copa. Realmente es un proceso muy similar al que se ha
explicado para la segmentación de la copa en los modelos YOLO.

4.4.4. Evaluación

Métricas para los modelos elegidos para el disco

El mejor modelo producido para la segmentación del disco utilizando la biblioteca
FastAI es el entrenado con Resnet152 para imágenes en escala de grises. A este modelo
se le ha denominado fastai disc. Por su parte, se tiene un modelo a partir de YOLO que
se denomina yolo disc. Junto con estos dos, también se ha considerado relevante calcular
las métricas para el proceso descrito en la Sección 4.4.3 para la segmentación del disco
óptico a partir de FastAI, al que se le ha nombrado como fastai process.

La Tabla 4.16 presenta las métricas clave para evaluar la calidad de las segmentaciones
producidas por el modelo de YOLO, junto con el mejor modelo de los de FastAI; además
del proceso completo denominado fastai process. En la Tabla 4.16 se evalúan los modelos
escogidos, sin calcular ninguna mejora como lo de la envolvente convexa. Como se puede
apreciar, el mejor modelo es fastai disc, pues supera al resto en todas las métricas, a ex-
cepción de accuracy camvid, donde es un 0.5% inferior al modelo yolo disc, lo que resulta
despreciable en comparación con la superioridad que muestra en el resto de métricas frente
a este último modelo.

Además, se observa que el proceso completo, al que se hace referencia como fas-
tai process y que se describió en la Sección 4.4.3 anterior, obtiene métricas un tanto
inferiores para las imágenes del dataset DRISHTI-DS. Sin embargo, esto supone una solu-
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Modelo
Coeficiente de
Jaccard (IoU)

Coeficiente
Dice

Pixel accuracy Accuracy camvid

fastai disc 0.9471 0.9726 0.9983 0.9726

fastai process 0.9243 0.9603 0.9976 0.9313

yolo disc 0.8822 0.9371 0.9959 0.9778

Tabla 4.16: Métricas de los modelos que segmentan el disco

ción para contemplar una mayor variedad de imágenes, pues también resuelve el problema
para las segmentaciones del dataset rotterdam. De esta forma, se sacrifica ligeramente el
rendimiento para el conjunto de las 101 imágenes sobre las que se calculan las métricas
(las del dataset DRISHTI-DS ), en favor de una mayor generalización para resolver el
problema propuesto.

A continuación se relata el resultado obtenido para cada métrica:

Coeficiente de Jaccard (IoU). Los valores para esta métrica indican que el mo-
delo fastai disc presenta la mayor superposición entre predicción y etiqueta real,
lo que indica una segmentación muy precisa. Por su parte, yolo disc tiene el peor
desempeño en esta métrica, aunque sigue siendo aceptable.

Coeficiente Dice. Para esta métrica, nuevamente fastai disc lidera con la mejor
segmentación general; mientras que yolo disc es la que peor coeficiente Dice muestra,
aunque mantiene un desempeño razonable.

Pixel Accuracy . Todos los modelos tienen una precisión de ṕıxeles extremada-
mente alta, indicando que la mayoŕıa de los ṕıxeles se clasifican correctamente. Sin
embargo, esta métrica puede ser engañosa si hay clases dominantes, como es el caso.
Aśı, esta métrica no resulta representativa para la selección de un modelo u otro,
puesto que en cada retinograf́ıa la mayor parte de la misma representa el fondo.
Esto incrementa el valor del pixel Accuracy en todos los casos, consiguiendo que
esta métrica no resulte representativa.

Accuracy camvid . A pesar de que el modelo yolo disc tiene peor IoU y Dice, logra
el mejor accuracy camvid. Esto sugiere que su clasificación global por clase es buena.
Aunque la segmentación precisa, distinguiendo adecuadamente la frontera entre el
disco óptico y el fondo, sea inferior.

Otros entrenamientos para la segmentación del disco

También se ha entrenado un modelo con ayuda de FastAI sobre el conjunto de datos
DRISHTI-DS sobre el que se ha aplicado un filtro de Gabor como los descritos en la
Sección 3.2.5. Para ello, se utilizó la arquitectura U-net con Resnet34. Desde un inicio se
ha descartado la v́ıa que proporciona la aplicación de filtros de este tipo, pues se obtienen
métricas peores que para los modelos escogidos que se acaban de comentar.
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En concreto, para el modelo a base de Resnet34 con filtros de Gabor, se ha obtenido
para la métrica accuracy camvid, la que se utiliza para el entrenamiento del modelo, un
valor de 0.92. De esta forma, usar el filtro de Gabor empeora en un 5% las segmentaciones
de los modelos sin filtro; es decir, de yolo disc y fastai disc, que presentan un 0.9778 y
0.9726 para accuracy camvid, respectivamente.

Métricas para los modelos elegidos para la copa

El mejor modelo producido para la segmentación de la copa óptica utilizando la bi-
blioteca FastAI es el entrenado con Resnet152 para imágenes en escala de grises. A este
modelo se le ha denominado fastai cup. Por su parte, se tiene un modelo a partir de YOLO
que se denomina yolo cup.

La Tabla 4.17 presenta las métricas clave para evaluar la calidad de las segmentaciones
producidas por el modelo de YOLO, junto con el mejor modelo de los de FastAI.

Modelo
Coeficiente de
Jaccard (IoU)

Coeficiente
Dice

Pixel accuracy Accuracy camvid

fastai cup 0.8913 0.9413 0.9982 0.9231

yolo cup 0.8034 0.8887 0.9964 0.9573

Tabla 4.17: Métricas de los modelos que segmentan la copa

Como se puede apreciar en la Tabla 4.17, fastai cup supera en 3 de 4 métricas al
modelo yolo cup. Entre esas tres métricas, se incluyen las más sensibles a la segmentación
precisa, como son IoU y Dice. Esto indica que realiza una mejor segmentación a nivel
de detalle y contornos, siendo especialmente útil si se requiere precisión en los bordes de
la copa. La otra métrica en la que es mejor es pixel accuracy, que ya se explicó para la
segmentación del disco óptico, que no resulta relevante para este problema.

Por su parte, yolo cup aunque tiene métricas de segmentación más bajas, logra un me-
jor accuracy camvid, de en torno a un 2.5% superior. Esto indica que indica correctamente
la copa y el fondo, aunque no delinea con tanta precisión.

Observación sobre las métricas para segmentación

De la evaluación de las métricas realizada se desprenden dos ideas:

1. La métrica que se ha utilizado para ajustar los modelos ha sido en todos los casos
accuracy camvid. Además, resulta interesante que los modelos entrenados con YOLO
solo superan al resto en esta misma métrica. De aqúı, se desprende la idea de que la
arquitectura YOLO optimiza mejor para la métrica indicada en el entrenamiento.

2. Para el resto de métricas que no son accuracy camvid, FastAI presenta mejores
resultados. En concreto, muestra un rendimiento superior respecto a los coeficientes
IoU y Dice. Esto implica que FastAI identifica de una forma más fina los bordes;
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mientras que YOLO localiza muy bien la región, pero no afina tanto en los bordes
del objeto buscado.

Todo esto se puede comprobar sin más que observar ejemplos como los de las figuras
4.4 y 4.7, para ver como YOLO identifica perfectamente la región pero con más
vértices, y la Figura 4.10 para los modelos de FastAI, en la que se aprecia como,
quizá no detecta la región tan bien, pero la segmentación no tiene tantas aristas.

Métricas de los modelos de Machine Learning

De igual manera que se establecen métricas para los modelos de Deep Learning en-
trenados con imágenes como datos de entrada, se tiene una serie de métricas para los
algoritmos de Machine Learning empleados para la clasificación a partir de los datos ex-
tráıdos de las segmentaciones. Esto permite comparar los modelos de manera objetiva
para escoger el que mejor rendimiento tenga y obtener conclusiones valiosas sobre los
datos a los que se aplican.

A colación de lo anterior, se van a medir los modelos construidos según su accuracy ; es
decir, los casos que aciertan. Además, en caso de que se esté interesado en un modelo en
espećıfico, se pueden analizar otras métricas como el recall, la precisión o el F1-score para
cada una de las clases. Para comenzar, se presenta la métrica accuracy para cada uno
de los conjuntos de datos tratados con cada uno de los algoritmos de Machine Learning
considerados. Esto se presenta en la Tabla 4.18.

Algoritmo
Machine Learning

Accuracy
original

Accuracy
completo

Accuracy
YOLO

Accuracy
FastAI

KNN 87.10% 76.39% 77.70% 67.35%

KNN con K-Fold 87.09% 72.10% 77.70% 63.26%

Naive Bayes 87.10% 72.53% 78.38% 46.26%

Bernoulli-Naive Bayes 67.74% 51.07% 50.68% 50.34%

Árboles de decisión 74.19% 66.09% 67.57% 61.90%

Random Forest 90.32% 75.54% 66.22% 62.59%

Regresión loǵıstica 83.87% 73.82% 79.05% 57.14%

SVM lineal 87.10% 74.68% 78.38% 53.74%

SVM radial 80.65% 73.82% 75.68% 60.54%

MLP 87.10% 75.54% 78.38% 57.82%

Clustering 84.28% 70.24% 69.09% 52.18%

Tabla 4.18: Parámetros empleados en el entrenamiento de los modelos de la iteración 2

Antes de comenzar con el análisis de los resultados, caben destacar una serie de con-
sideraciones sobre los mismos:
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Para K-NN se calculan los parámetros óptimos previamente, tanto para el algoritmo
K-NN propiamente, como para el mismo con la introducción de K-Fold.

Para el clustering se toman los dos atributos que mayor información aportan y se
utilizan dos clústers. La decisión del número de clústers que se usa se determina
a partir del método del codo [63]. En todas las situaciones, las opciones han sido
escoger entre 2, 3 y 4 clústers. La decisión final se ha tomado para que haya el mismo
número de clústers que de clases en las que clasificar los datos.

En todos los algoritmos que hacen uso de árboles de decisión, el resultado de train
es 100% de accuracy siempre. El motivo es que se va dividiendo el espacio hasta que
todos los datos están clasificados en su grupo correctamente. En la Tabla 4.18 solo
se muestran los datos de test, por esto no aparece el valor de 100% en el accuracy.

Con esto se pretende remarcar que los resultados obtenidos para cada uno de los
algoritmos recogidos en la Tabla 4.18 son óptimos; es decir, estos resultados son los que se
han alcanzado utilizando los parámetros que maximizan el rendimiento. Si bien es cierto
que también se pueden contemplar otras opciones para tratar de mejorarlo, como escalar
los datos. Para el caso contemplado, se hicieron pruebas y no mejoraron los resultados;
luego no hab́ıa motivo para escoger utilizar alguna de estas técnicas.

Ahora śı se está en disposición de comenzar con el análisis de los resultados. Como
es de esperar, los mejores resultados obtenidos para todos los algoritmos contemplados
son los que se corresponden al conjunto de datos que extrae las medidas a partir de las
máscaras originales. El resto de datasets parte de caracteŕısticas fruto de la segmentación.
En consecuencia, se introduce un error que afecta al rendimiento de los algoritmos. Otro
detalle a destacar es que, como ocurre con el algoritmo de Bernoulli-Naive Bayes, los
clasificadores construidos no superan el 50%. Esto implica que este algoritmo no supera
el rendimiento que tendŕıa un clasificador aleatorio.

Además, como las métricas de clasificación son inferiores para esta iteración que para
la primera, no se analizarán en mayor profundidad los modelos, pues el interés reside en
obtener el modelo que mejor resultados aporte. Luego, no corresponde realizar un análisis
exhaustivo en esta ocasión.

Para finalizar con esta segunda iteración, cabe mencionar que los resultados obtenidos
para la clasificación entre sistema ocular sano y con glaucoma son mejores si se emplean
técnicas de Deep Learning y no de Machine Learning. El motivo de esta afirmación es
que se han obtenido mejores resultados para la primera iteración, en la que se usó Deep
Learning, que en la segunda iteración con Machine Learning. Por consiguiente, se aban-
dona la v́ıa de clasificar el estado del ojo en lo referido al glaucoma mediante técnicas de
Machine Learning. En cada iteración que se haga a continuación, todos los modelos se
desarrollarán con técnicas de Deep Learning. Además, como estas últimas contemplan una
mayor cantidad de datos, es de esperar que arrojen mejores resultados que los modelos
de Machine Learning a los que se proporciona una cantidad baja de atributos.
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4.5. Iteración 3. Clasificación Deep Learning sin pre-

entrenar a partir de segmentación

En las dos primeras iteraciones, descritas en las secciones 4.3 y 4.4, se han resuelto
los dos objetivos principales de este proyecto: el de clasificación y el de segmentación del
disco y la copa ópticos. Sin embargo, en base a los antecedentes médicos recopilados en la
Sección 3.1 surge una cuestión. Si la enfermedad afecta al nervio óptico deteriorando la
visión, la información que permita decidir si el paciente sufre de glaucoma debe localizarse
en esa región.

De esta forma, parece natural emplear la segmentación realizada para extraer la parte
del nervio óptico de la retinograf́ıa completa y atacar el problema de clasificación desde
el mismo conjunto de datos, pero solo teniendo en cuenta la parte segmentada. Aśı, se
puede tratar de probar que la región del nervio óptico es la que posee una mayor cantidad
de información sobre la patoloǵıa del glaucoma.

En esta sección se explicará el proceso para la construcción de un dataset con imágenes
que solo contengan la región del nervio óptico, y las diferentes variantes que se pueden
tomar en la forma de los datos. Tras esto, se especificarán los hiperparámetros utilizados
para la construcción de los modelos, para terminar con un análisis de los resultados
obtenidos en esta iteración.

4.5.1. Preparación de los datos

Con el objetivo descrito para esta iteración de obtener una clasificación entre ojos
sanos y con glaucoma a partir de la región del nervio óptico en las retinograf́ıas, se debe
preparar un conjunto de datos adecuado. Para ello, a partir del dataset denominado como
rotterdam en la Sección 4.3, se extrae la región de interés.

A la vista de los resultados descritos en la Sección 4.4 durante la segunda iteración,
ambos modelos son útiles para localizar la región del disco óptico. Sin embargo, el modelo
desarrollado a partir de YOLO presenta una clara ventaja, pues no solo segmenta la región
buscada, sino que también la localiza dentro de una caja. De esta forma, se ha procesado
el dataset rotterdam para quedarse con las cajas en torno al nervio óptico, y construir el
nuevo conjunto de datos siguiendo el siguiente proceso:

1. Se abre una de las carpetas del dataset rotterdam.

2. Se procesan sus archivos recortando la parte predicha por el modelo de segmentación
yolo disc. En caso de que se localicen dos zonas, se toma la que mayor porcentaje
de confianza aporta, pues solo puede existir una única zona para el nervio óptico.

3. Se almacenan los recortes obtenidos a partir de la carpeta correspondiente del dataset
Rotterdam en una carpeta igual dentro del nuevo dataset rotterdam RIM-ONE.

4. Se repite el proceso con cada uno de los subdirectorios que contienen retinograf́ıas
del dataset rotterdam.

104 Carlos Jiménez Vaquero
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Queda añadir un pequeño detalle. Para asegurar que la imagen recortada de la reti-
nograf́ıa abarca la región del nervio óptico al completo, se amplia un 5% los márgenes
del cuadro obtenido a partir del modelo yolo disc utilizado. Aśı, partiendo del proceso
descrito, se construye el dataset denominado como rotterdam RIM-ONE.

Por otra parte, se pueden considerar una serie de variaciones de este dataset para
estudiar un abanico más amplio de posibilidades. En esta iteración, se ha tomado el
mismo conjunto de datos considerando una sola capa de escala de grises. De igual manera
que se ha procesado el dataset rotterdam RIM-ONE construido para extraer cada capa, se
opera para obtener el nuevo conjunto de datos con las mismas regiones del nervio óptico
en escala de grises. Este último dataset se ha denominado rotterdam RIM-ONE grises.

4.5.2. Entrenamiento

En la etapa de entrenamiento se procede a construir los modelos que se pretenden
que clasifiquen retinograf́ıas entre las de pacientes sanos y los que presenten glaucoma
analizando únicamente la región del nervio óptico. Como se ha indicado previamente, en
esta tercera iteración se consideran dos modelos: uno orientado a clasificación con la parte
del nervio óptico de las retinograf́ıas a color, y otro análogo con retinograf́ıas en escala de
grises.

Durante esta fase se ajustan los parámetros internos de los modelos de Deep Learning
a partir de los datos disponibles siguiendo la teoŕıa explicada en la Sección 3.2.3. Para
ello, se indican una serie de hiperparámetros que determinan algunos procesos que se
llevan a cabo en el proceso de entrenamiento. En concreto, se indica el número de épocas
que se debe entrenar el modelo; la paciencia, para evitar el sobreajuste; o el tamaño de
entrada de las imágenes. Además, se indica el modelo base sobre el que se entrena para
no tener que construir la red desde cero. En la Tabla 4.19, se detallan los hiperparámetros
empleados durante el entrenamiento de cada uno de los dos modelos. Para seleccionarlos,
se han tenido en cuenta aspectos como el coste computacional del proceso.

Como se observa en la Tabla 4.19, se ha empleado para realizar el entrenamiento el
sistema YOLO de igual forma que se hizo en la primera iteración, importándolo desde la
biblioteca ultralytics. Como también se destacó en la primera iteración, la clasificación de
imágenes siempre se hace a lo largo de este proyecto a partir de modelos YOLO; puesto
que, dado el gran número de imágenes a procesar, se utiliza un algoritmo que opera con
rapidez.

4.5.3. Evaluación

Una vez entrenados los modelos, han sido evaluados utilizando el subconjunto de los
datos que se reservó con este propósito. Estos datos residen en el directorio de test de cada
dataset, que es el mismo en ambos casos con la distinción entre color y escala de grises
en función del conjunto de datos. Para cuantificar la capacidad de clasificación de cada
modelo adecuadamente, se ha empleado la métrica accuracy definida en la Sección 3.2.4.
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Modelo Descripción Hiperparámetros

rotterdam
RIM-ONE

Nervio óptico
de rotterdam

a color

Algoritmo YOLO

Modelo base YOLO 11

Dataset rotterdam RIM-ONE

Épocas 100

Paciencia 15

Tamaño imagen 256

rotterdam
RIM-ONE

grises

Nervio óptico
de rotterdam
en escala
de grises

Algoritmo YOLO

Modelo base YOLO 11

Dataset rotterdam RIM-ONE grises

Épocas 100

Paciencia 15

Tamaño imagen 256

Tabla 4.19: Parámetros empleados en el entrenamiento de los modelos de la iteración 3

En la Tabla 4.20 se resumen los resultados obtenidos tanto para el conjunto de datos val
como para el de test.

Modelo Épocas Accuracy validación Accuracy test

rotterdam RIM-ONE 68 0.948 0.947

rotterdam RIM-ONE grises 34 0.928 0.921

Tabla 4.20: Resultados obtenidos en la iteración 3 tras el entrenamiento

A partir de los resultados obtenidos en la Tabla 4.20 se puede comparar de manera
cuantitativa el rendimiento de los modelos considerados, identificando el que mejor com-
portamiento presenta en términos de la métrica accuracy. Atendiendo a los mismos, se
observan mejores resultados para el modelo que recibe como datos de entrada la región
del nervio óptico a color en vez del modelo en escala de grises, tanto en el conjunto de
validación como en el de test. Una vez más, se remarca que el conjunto de test es el
de mayor relevancia, pues los datos de validación han sido empleados para ajustar los
parámetros durante la etapa de entrenamiento y no representan, con la misma fidelidad
que lo hace el conjunto de datos de test, el rendimiento que pueda tener el modelo en la
realidad.

De esta forma, para la métrica accuracy, el modelo rotterdam RIM-ONE que utiliza
la región del nervio óptico a color alcanza un mejor rendimiento que el modelo rotter-
dam RIM-ONE grises con la región del nervio óptico en escala de grises. En concreto,
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para el primero de ellos se clasifica un 94.7% de las imágenes de manera correcta; mien-
tras que para el segundo, se clasifica un 92.1% de las retinograf́ıas correctamente.

Aterrizando estos porcentajes, para el modelo rotterdam RIM-ONE se clasifican 53 de
cada 1000 retinograf́ıas de manera incorrecta. Por su parte, para el modelo rotterdam RIM-
ONE grises, se clasifican erróneamente 79 de cada 1000 retinograf́ıas. En consecuencia, el
modelo en escala de grises clasifica en torno a 25 retinograf́ıas más de manera errónea que
el modelo a color. Esto también sucedió para la iteración 1, donde se obteńıan mejores
resultados para unas imágenes a color que para las mismas en escala de grises. Además,
igual que se razonó en ese momento, esto puede deberse a la propia construcción de las
imágenes en cada caso. Frente a los tres canales RGB que componen la imagen a color,
para la imagen en escala de grises tan solo se tiene uno, lo que supone una disminución
en la cantidad de información que aporta cada retinograf́ıa en términos computacionales.

Queda una comparación de gran relevancia por hacer. La motivación de esta tercera
iteración es poder comparar si los resultados mejoran al contemplar únicamente la región
del nervio óptico. En otras palabras, el objetivo de esta iteración es comprobar la hipótesis
de que la región del nervio óptico es la que aporta mayor información en una retinograf́ıa
para la detección del glaucoma. Por este motivo, en la Tabla 4.21 se recogen los resultados
para la métrica accuracy para el conjunto de test obtenidos con cada uno de los modelos
construidos para clasificación mediante Deep Learning durante las iteraciones primera y
tercera.

Iteración Modelo Accuracy test

Iteración 1
rotterdam 0.933

rotterdam grises 0.912

Iteración 3
rotterdam RIM-ONE 0.947

rotterdam RIM-ONE grises 0.921

Tabla 4.21: Resumen de la métrica accuracy para los modelos de las iteraciones 1 y 3

Para poder realizar una comparación objetiva, se divide la Tabla 4.21 en dos partes.
Una primera donde se recogen los modelos a color, y una segunda para los modelos en
escala de grises. Esto se considera aśı, dado que no es comparable para aprobar o rechazar
la hipótesis de que el análisis del nervio óptico aporta mayor cantidad de información,
tomar un modelo con datos a color con uno en escala de grises. El motivo es que si se
detecta una pérdida o aumento de información, puede deberse a otras causas como la
diferencia de capas de la imagen. En consecuencia, se construyen las tablas 4.22 y 4.23
para comparar los resultados de manera adecuada.

En la Tabla 4.22 se presentan los valores de la métrica accuracy para los modelos
a color durante las iteraciones 1 y 3. Como se puede comprobar, para el modelo que
contempla el área circundante al nervio óptico, se obtiene un valor superior al del modelo
que emplea la retinograf́ıa completa para la detección del glaucoma. Concretamente, la
métrica accuracy es un 1.4% superior cuando el modelo se enfoca de manera exclusiva en
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Iteración Modelo Accuracy test

Iteración 1 rotterdam 0.933

Iteración 3 rotterdam RIM-ONE 0.947

Tabla 4.22: Comparación accuracy para los modelos a color de las iteraciones 1 y 3

la región del nervio óptico. En términos de clasificaciones correctas, esta mejora implica
que de cada 1000 imágenes hay 14 más que se clasifican correctamente para el modelo
rotterdam RIM-ONE, el de la iteración 3.

Iteración Modelo Accuracy test

Iteración 1 rotterdam grises 0.912

Iteración 3 rotterdam RIM-ONE grises 0.921

Tabla 4.23: Comparación accuracy de los modelos en escala de grises de las iteraciones 1 y 3

Por su parte, en la Tabla 4.23 se presentan los valores de la métrica accuracy para
los modelos en escala de grises durante las iteraciones 1 y 3. Como se puede comprobar,
para el modelo que contempla el área circundante al nervio óptico, se obtiene un valor
superior al del modelo que emplea la retinograf́ıa completa para la detección del glaucoma.
Concretamente, la métrica accuracy es un 0.9% superior cuando el modelo se enfoca de
manera exclusiva en la región del nervio óptico. En términos de clasificaciones correctas,
esta mejora implica que de cada 1000 imágenes hay 9 más que se clasifican correctamente
para el modelo rotterdam RIM-ONE grises, el de la iteración 3.

Tanto con los modelos a color como con los modelos en escala de grises, se obtiene
un mejor resultado si se toma solo la región del nervio óptico en lugar de la retinograf́ıa
completa. De esta forma, se puede concluir que la hipótesis que se pretend́ıa demostrar
en esta iteración es correcta. En consecuencia, para determinar la presencia de glaucoma
será suficiente - de hecho mejor - tomar el área del nervio óptico en las retinograf́ıas.

4.6. Iteración 4. Clasificación Deep Learning preen-

trenando a partir de segmentación

En las iteraciones realizadas hasta el momento, se han resuelto los dos objetivos prin-
cipales de este proyecto y se ha probado la hipótesis de que la región del nervio óptico
es la que mayor información aporta para la detección del glaucoma. En esta iteración se
plantea una nueva cuestión. Se pretende comprobar si se mejora el resultado cuando se
preentrena el modelo con otro conjunto de datos para realizar un ajuste previo de los
parámetros de la red neuronal sobre la que se fundamenta.

En esta sección se explicará el proceso que se ha llevado a cabo para manipular el ter-
cero de los datasets contemplados, el de RIM-ONE. Además, los modelos se entrenarán
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teniendo en cuenta que se obtienen mejores resultados recortando una parte de las reti-
nograf́ıas. A colación de lo anterior, se contemplará una mayor variedad de los modelos
para poder determinar cuál es la mejor solución al problema abordado.

4.6.1. Preparación de los datos

En primer lugar, se ha de llevar a cabo las manipulaciones oportunas en el dataset
RIM-ONE para usarlo durante el preentrenamiento de los modelos. Análogamente a lo
que se describió en la Sección 4.3 para la iteración 1 con el dataset rotterdam, se dividen
los datos en los mismos subconjuntos y con la misma fracción de imágenes en cada uno
de ellos. A continuación se describe esta situación:

Conjunto de entrenamiento [train]. Para este conjunto se han reservado un 64% de
cada una de las clases de imágenes que se tienen.

Conjunto de validación [val ]. De igual forma que con el dataset rotterdam, se ha
tomado un 16% del total de imágenes con el nervio óptico propio del glaucoma y
un 16% de las que muestran la región ONH de un ojo sano.

Conjunto de test [test ]. En total se tendrá un 20% de cada clase de imágenes para
probar el modelo construido.

Además, para la primera iteración también se consideró el mismo conjunto de datos
pero con las imágenes en escala de grises. En esta iteración se ha ido más allá. Como se han
validado las hipótesis que se queŕıan probar previamente, se crea una mayor variedad en la
forma de los datos para generar más modelos y tener un abanico amplio para elegir el que
mejor rendimiento aporte. En consecuencia, se ha considerado la misma distribución para
los datos de RIM-ONE con distintas variaciones: un conjunto de datos en escala de grises
y otro para cada uno de los canales de la base RGB. Aśı, para esta iteración se tienen los
siguientes datasets de preentrenamiento: RIM-ONE, RIM-ONE grises, RIM-ONE rojo,
RIM-ONE verde y RIM-ONE azul.

Por otra parte, los datasets de los que se parte para la segunda fase del entrenamiento
son los mismos que los descritos en la Sección 4.5 para la iteración 3. Además, se consi-
deran una serie de variaciones de estos datasets para estudiar un abanico más amplio de
posibilidades, que son los mismos que para el conjunto de datos RIM-ONE. Aqúı también
se toman datasets en función de las capas RGB y escala de grises.

Las imágenes recortadas a partir de las retinograf́ıas completas siguen teniendo tres
capas de color en la base RGB. Se ha considerado construir un dataset con cada una
de las capas de manera independiente. Esto permite estudiar qué capas reportan una
mayor cantidad de información. Aśı, se han construido los siguientes datasets a partir
del dataset rotterdam RIM-ONE : rotterdam RIM-ONE rojo para la capa roja; rotter-
dam RIM-ONE verde para la capa verde; y rotterdam RIM-ONE azul para la capa azul.
Estos conjuntos de datos se añaden a los que se teńıan previamente, que eran rotterdam
y rotterdam grises.
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4.6.2. Entrenamiento

Como ya se ha mencionado, en esta iteración el entrenamiento tendrá dos fases bien
diferenciadas. Por una parte, se preentrenarán los modelos con cada uno de los datasets
construidos a partir del conjunto de datos de RIM-ONE. Una vez terminado este proceso,
se llevará a cabo un segundo entrenamiento con el conjunto de datos de rotterdam co-
rrespondiente; es decir, el que presente el mismo estilo que con el que se ha preentrenado
para RIM-ONE.

En las tablas 4.24 y 4.25 se muestran los hiperparámetros que se han usado para
entrenar en la primera y segunda etapa, respectivamente. Como se observa en las tablas
mencionadas, los modelos de RIM-ONE se entrenan a partir de los modelos base de
YOLO, y los de rotterdam se construyen sobre los propios de RIM-ONE. Además, el
tamaño de imagen de la entrada es igual en ambos casos, pues si no, el preentrenamiento
no tendŕıa la misma utilidad.
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Modelo Descripción Hiperparámetros

RIM-ONE
RIM-ONE
a color

Algoritmo YOLO

Modelo base YOLO 11

Dataset RIM-ONE

Épocas 100

Paciencia 15

Tamaño imagen 256

RIM-ONE
grises

RIM-ONE
en escala
de grises

Algoritmo YOLO

Modelo base YOLO 11

Dataset RIM-ONE grises

Épocas 100

Paciencia 15

Tamaño imagen 256

RIM-ONE
rojo

RIM-ONE
capa roja
de RGB

Algoritmo YOLO

Modelo base YOLO 11

Dataset RIM-ONE rojo

Épocas 100

Paciencia 15

Tamaño imagen 256

RIM-ONE
verde

RIM-ONE
capa verde
de RGB

Algoritmo YOLO

Modelo base YOLO 11

Dataset RIM-ONE verde

Épocas 100

Paciencia 15

Tamaño imagen 256

RIM-ONE
azul

RIM-ONE
capa azul
de RGB

Algoritmo YOLO

Modelo base YOLO 11

Dataset RIM-ONE azul

Épocas 100

Paciencia 15

Tamaño imagen 256

Tabla 4.24: Parámetros empleados en el preentrenamiento de los modelos de la iteración 4
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Modelo Descripción Hiperparámetros

rotterdam
RIM-ONE

preentrenado

Nervio óptico
de rotterdam

a color

Algoritmo YOLO

Modelo base RIM-ONE

Dataset
rotterdam RIM-ONE

preentrenado

Épocas 100

Paciencia 15

Tamaño imagen 256

rotterdam
RIM-ONE

grises
preentrenado

Nervio óptico
de rotterdam
en escala
de grises

Algoritmo YOLO

Modelo base RIM-ONE grises

Dataset
rotterdam RIM-ONE
grises preentrenado

Épocas 120

Paciencia 20

Tamaño imagen 256

rotterdam
RIM-ONE

rojo

Nervio óptico
de rotterdam
capa roja

Algoritmo YOLO

Modelo base RIM-ONE rojo

Dataset rotterdam RIM-ONE rojo

Épocas 120

Paciencia 20

Tamaño imagen 256

rotterdam
RIM-ONE

verde

Nervio óptico
de rotterdam
capa verde

Algoritmo YOLO

Modelo base RIM-ONE verde

Dataset rotterdam RIM-ONE verde

Épocas 100

Paciencia 15

Tamaño imagen 256

rotterdam
RIM-ONE

azul

Nervio óptico
de rotterdam
capa azul

Algoritmo YOLO

Modelo base RIM-ONE azul

Dataset rotterdam RIM-ONE azul

Épocas 100

Paciencia 15

Tamaño imagen 256

Tabla 4.25: Parámetros empleados en el entrenamiento de los modelos de la iteración 4
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4.6.3. Evaluación

En las tablas 4.26 y 4.27 se muestran los resultados de cada una de las etapas de los
entrenamientos.

Modelo Épocas Accuracy validación Accuracy test

RIM-ONE 39 0.922 0.888

RIM-ONE grises 29 0.922 1

RIM-ONE rojo 46 0.857 0.816

RIM-ONE verde 42 0.909 0.867

RIM-ONE azul 32 0.935 0.897

Tabla 4.26: Resultados obtenidos en la iteración 4 tras el entrenamiento

Para los datasets construidos a partir de RIM-ONE, vemos que no se obtienen valores
tan altos como para los de rotterdam en anteriores iteraciones respecto a la clasificación
de los datos de prueba, con la excepción del caso de escala de grises. La principal causa
que puede tener esto es la baja cantidad de datos con los que se entrena. No obstante,
esto no supone un problema, pues el propósito aqúı es establecer unos parámetros que se
aproximen a los de la solución buscada.

Por otra parte, se tienen los resultados para la segunda etapa del entrenamiento en
la Tabla 4.27. En esta fase, como era de esperar por la cantidad de datos con la que se
entrena, se mejoran significativamente los datos respecto a los de los modelos de la primera
etapa de entrenamiento. Además, la parte interesante de esta iteración es comparar los
modelos resultado de la misma con los de la iteración 3.

Modelo Épocas Accuracy validación Accuracy test

rotterdam RIM-ONE
color preentrenado

52 0.94 0.943

rotterdam RIM-ONE
grises preentrenado

105 0.949 0.937

rotterdam
RIM-ONE rojo

101 0.92 0.912

rotterdam
RIM-ONE verde

57 0.934 0.939

rotterdam
RIM-ONE azul

32 0.898 0.897

Tabla 4.27: Resultados obtenidos en la iteración 4 tras el entrenamiento

Ya se ha visto que los modelos de la tercera iteración mejoran los de las iteraciones
anteriores al fijar la atención en la región del nervio óptico y utilizar Deep Learning. Por
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tanto, queda comparar si los modelos preentrenados aportan mejores resultados que en el
caso de que no se haga este proceso al inicio. En la Tabla 4.28 se comparan los resultados
en los conjuntos de prueba para los modelos a color con la métrica accuracy.

Modelo Accuracy test

rotterdam RIM-ONE
color

0.947

rotterdam RIM-ONE
color preentrenado

0.943

Tabla 4.28: Resultados obtenidos en la iteración 4 tras el entrenamiento

En la Tabla 4.28, se puede apreciar que el preentrenamiento no tiene siempre un
resultado positivo. En este caso, preentrenar el modelo implica una reducción de un 0.4%
de accuracy. Que en términos absolutos, de las 1908 imágenes que se tienen para test,
implica errar en el diagnóstico de 8 casos más. Queda ver qué ocurre con los modelos
que trabajan con imágenes en escala de grises. Los resultados relativos a los mismos se
presentan en la Tabla 4.28 en base a la métrica accuracy.

Modelo Accuracy test

rotterdam RIM-
ONE grises

0.921

rotterdam RIM-ONE
grises preentrenado

0.937

Tabla 4.29: Resultados obtenidos en la iteración 4 tras el entrenamiento

En la Tabla 4.29, se observa que en este caso el preentrenamiento ha tenido un resultado
favorable. En este caso, preentrenar el modelo aumenta significativamente el accuracy del
modelo, incrementando el mismo hasta en un 1.6%. Analizando igual que con los modelos
a color en términos absolutos, de las 1908 imágenes que se tienen para test, implica fallar
en el diagnóstico de 30 casos más.

Como conclusión para esta cuarta iteración, se han construido modelos con un ren-
dimiento muy alto y se han mejorado algunos de los que ya se teńıan. Este es el caso
del modelo en escala de grises, o del modelo del canal de color verde, que ha resultado
incluso en un incremento del rendimiento del de escala de grises, aunque la diferencia se
hace menor con el debido preentrenamiento. Sin embargo, aunque es habitual que con
un preentrenamiento de la red neuronal se obtengan mejores resultados puesto que los
parámetros internos son más cercanos a los óptimos, esto no siempre ocurre como se ha
podido comprobar con los datasets a color.
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4.7. Iteración 5. Construcción de ensembles

Como se ha explicado en la Sección 3 de antecedentes, la construcción de ensembles
es una técnica que combina múltiples modelos individuales para crear un modelo más
robusto y preciso. La ventaja que presenta la adición de esta estrategia es que aprovecha los
puntos fuertes de cada modelo individual y compensa las debilidades tomando decisiones
en común. La estructura de los ensembles que se contemplan en esta propuesta queda
representada por el diagrama de la Figura 4.17.

Modelo 1 Modelo 2 Modelo 4Modelo 3 Modelo 5

Ensemble

Salida 1 Salida 2 Salida 3 Salida 5Salida 4

Salida
Final

Figura 4.17: Diagrama ilustrativo entradas y salidas del ensemble construido.

4.7.1. Ensemble por votación

En una primera aproximación a la solución mediante la construcción de ensembles,
se ha analizado la elaboración de un ensemble por medio de votación mayoritaria. Este
ensemble es de los más sencillos que se pueden construir. Consiste en que cada modelo
que lo compone predice una clase, y la clase más votada es la que se elige como predicción
final.

De esta forma, se han escogido tres modelos para comprobar el funcionamiento de este
tipo de ensembles. En particular, los modelos con los que se han hecho la prueba son rot-
terdam RIM-ONE preentrenado, rotterdam RIM-ONE verde y rotterdam RIM-ONE azul.
A partir de los mismos, se han obtenido los resultados recogidos en la Tabla 4.30, donde
se han utilizado los datos de test del dataset rotterdam.

A partir de los resultados mostrados en la Tabla 4.30 se pueden calcular las métricas
que cuantifican el rendimiento del modelo para el propósito que se persigue. Estas se
muestran en la Tabla 4.31.

Para una segunda versión del ensemble por votación, se podŕıan elegir como modelos
base los 5 modelos que mejor resultados de clasificación han aportado para el conjunto de
datos de test, que representan a los modelos del 1 al 5 en el diagrama de la Figura 4.17,
y se elige como predicción final la que más modelos base voten.
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Número
de fallos

Número total
de imágenes

Porcentaje
fallos

Porcentaje
aciertos

Glaucoma 41 948 4.32% 95.68%

Normal 80 955 8.37% 91.63%

Tabla 4.30: Resultados obtenidos para la prueba del ensemble por votación construido

Accuracy fpr Precisión Recall F1

Glaucoma 0.9364 0.0429 0.9189 0.9567 0.9374

Normal 0.9389 0.0810 0.9227 0.9588 0.9404

Tabla 4.31: Métricas ensemble de prueba por votación

Esta es una primera propuesta para la construcción de ensembles por votación que
ayuden a resolver el problema. Versiones más sofisticadas pueden incluir sistemas como,
por ejemplo, votación ponderada. El análisis de esta variante queda fuera del alcance
del proyecto, pero puede ser interesante, pues algún modelo puede aportar una mayor
fiabilidad, favoreciendo aśı más a los modelos con mayor tasa de aciertos.

Dada la facilidad de la elaboración de los ensembles con votación, estos son muy útiles
para ejemplificar cómo funciona la combinación de modelos para construir un ensemble
que pueda mejorar los resultados. Esta posibilidad es muy básica y existen otras formas
de construcción de ensembles mejores como la que se verá posteriormente. Esto se debe a
que la votación, ya sea ponderada o no, puede aportar robustez dado que se consideran
predicciones de distintos modelos; sin embargo, por la propia naturaleza del método, los
resultados serán una media o media ponderada, según corresponda, de los obtenidos para
cada modelo. A continuación se explica cómo se ha abordado esta situación para este
proyecto: mediante técnicas de Machine Learning.

4.7.2. Ensemble mediante algoritmos de Machine Learning

Frente al enfoque mediante votación, cabe la posibilidad del uso de técnicas más avan-
zadas. En particular, es posible el desarrollo de algoritmos de Machine Learning para la
construcción de un ensemble. Esta es la otra posibilidad que se ha contemplado en la
elaboración del ensemble que combina los datos de clasificación para producir uno solo.

Preparación de los datos

Para construir el conjunto de datos con los que se construirá el ensemble, se par-
te de los 5 modelos que mejores resultados de clasificación han aportado para el con-
junto de datos de test durante las 4 iteraciones descritas anteriormente, de igual for-
ma que se hace para el ensemble por votación de la Sección 4.7.1. Estos modelos re-
presentan a los nombrados del 1 al 5 en el diagrama de la Figura 4.17, y son rot-
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terdam, rotterdam RIM-ONE, rotterdam RIM-ONE grises preentrenado, rotterdam RIM-
ONE rojo y rotterdam RIM-ONE verde. Nótese que rotterdam RIM-ONE preentrenado
aporta un mejor rendimiento en la clasificación de imágenes que algunos de los escogidos,
pero se ha descartado puesto que se considera el mismo modelo sin preentrenar, y se
pretende tomar opciones distintas para mejorar la generalización del modelo.

La construcción del conjunto completo de datos consta de dos partes análogas la una
a la otra. En primer lugar, se crea un archivo tipo csv donde se almacena para cada
retinograf́ıa del conjunto de datos de validación del dataset rotterdam, la clasificación
obtenida por cada uno de los modelos y su clasificación real, ambos en forma binaria; es
decir, con 0 para representar el glaucoma y 1 para el normal. Para cada modelo, el dato de
entrada será la retinograf́ıa completa o la región del nervio óptico con la modificación en
cuanto a las capas de la imagen que corresponda. En un segundo paso, se opera de igual
forma para procesar las clasificaciones de las imágenes de la parte del dataset rotterdam
orientada a test. Aśı, se crea un nuevo archivo CSV con las mismas caracteŕısticas que el
creado con la parte del dataset rotterdam de validación.

En resumen, los datos de entrada para esta etapa, en la que se busca construir un
ensemble utilizando técnicas de Machine Learning, constan de dos archivos csv con las
clasificaciones de las retinograf́ıas obtenidas con los mejores modelos construidos durante
las 4 primeras iteraciones, junto con la clasificación real de las mismas imágenes. Estos
archivos csv tienen la forma que se muestra en la Tabla 4.32.

completa color onh color onh gris onh verde onh rojo clasif real

0 0 0 0 0 0

0 1 0 0 0 0
...

...
...

...
...

...

0 0 1 1 1 1

1 1 1 0 1 1
...

...
...

...
...

...

Tabla 4.32: Formato csv empleado para construir el ensemble

Por último, se analiza el número de datos referidos a retinograf́ıas con glaucoma y
normales que se tienen para cada uno de los dos csv, tanto el de validación como el de
test. En la Figura 4.18 se recogen los datos que se tienen para el csv construido con el
subconjunto val ; y, por su parte, en la Figura 4.19 los del subconjunto test.

En la Figura 4.18 se observa que los datos están perfectamente balanceados y se tienen
más de 750 ejemplos de cada una de las clases, lo que será suficiente para poder entrenar el
modelo. Por su parte, en la Figura 4.19 se observa que los datos también están balanceados
y se tienen del orden de 950 ejemplos de cada una de las clases. Estos datos serán usados
para tratar de aproximar el rendimiento que presente el modelo. A colación de lo anterior,
dado el gran número de datos de prueba que se tienen, los resultados obtenidos serán
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suficientemente representativos. pues los datos están balanceados y se tienen un total de
más de 1900 ejemplos para test.

Figura 4.18: Número de datos que se tiene para cada clase en el csv de validación.

Figura 4.19: Número de datos que se tiene para cada clase en el csv de test.
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4.7. Iteración 5. Construcción de ensembles

Entrenamiento

Como se acaba de introducir el describir los datos utilizados, se utilizará el CSV
construido a partir de los datos de validación para entrenar el modelo de Machine Learning
desarrollado; mientras que, para el CSV elaborado con los datos orientados a test, se
mantendrá su propósito.

El motivo de introducir los datos de validación para entrenar, y no los dispuestos en el
subconjunto de train para este objetivo, se debe a que los datos ya han sido utilizados para
entrenar los modelos previos. El uso de los mismos datos para entrenar tanto el ensemble
como los modelos sobre los que se sustenta, tiene el inconveniente del sobreajuste y la
falta de generalización. Si los modelos y el ensemble se entrenan con los mismos datos, el
ensemble puede aprender a replicar el comportamiento de los modelos sobre ese conjunto,
incluyendo sus errores, sin realmente aprender a generalizar.

En la construcción del ensemble no se ha contemplado un único algoritmo de Machine
Learning, sino un conjunto de ellos para poder escoger el que mejor resultados arroje. En
particular, se ha utilizado SVM lineal, radial, polinomial y sigmoidea; además de MLP.
Para la construcción de los modelos a partir de estos algoritmos, se dividen los datos de
validación entre los atributos y el resultado esperado. Todos estos datos se usarán para
entrenar. Por otra parte, para los datos que se usarán para probar el modelo construido,
se opera de igual forma estableciendo la misma división de los datos de test.

Evaluación de los resultados

En primer lugar, se van a comparar los modelos obtenidos a partir de la métrica ac-
curacy. Esta mostrará el porcentaje de clasificaciones correctas tanto para las detecciones
de glaucoma como para las de pacientes sanos. La recopilación de esta métrica para cada
uno de los modelos entrenados se muestra en la Tabla 4.33. Como ocurre con todos los
modelos construidos mediante algoritmos propios del Machine Learning, los datos con los
que se entrena tendrán un accuracy superior al de los datos de test.

Modelo Accuracy train Accuracy test

SVM lineal 95.46% 94.85%

SVM radial 95.59% 94.01%

SVM polinomial 95.13% 94.96%

SVM sigmoideo 92.11% 91.28%

MLP 95.72% 94.75%

Tabla 4.33: Resultados accuracy de los ensembles entrenados mediante Machine Learning

En la Tabla 4.33 se observa que todos los modelos superan el 90% de accuracy. Esto
es de esperar, pues todos los modelos previos en los que se sustenta el ensemble superan
el 90%. En caso contrario, el ensemble estaŕıa empeorando el rendimiento de las predic-
ciones. Por otra parte, para comparar fielmente los resultados, debe fijarse la vista en los
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resultados para el conjunto de prueba. Además, cabe mencionar que, como el accuracy en
entrenamiento y test con muy similares en todos los casos, los ensembles aqúı construi-
dos no presentan sobreajuste. Por tanto, estos ensembles generalizan bien y mantienen el
rendimiento para nuevos datos de prueba.

En la columna accuracy test, se observa que para el modelo SVM sigmoidal no se
alcanza ni siquiera un 92% de acierto, siendo el peor de los ensembles construidos. Si-
guiendo esta tónica, otro ensemble que no corresponde usar es el SVM radial, pues es el
otro que peor rendimiento tiene en cuanto a nivel de aciertos totales. Continuando con el
análisis, se comprueba que el SVM polinomial se adapta mejor a los datos que el SVM
lineal, como es de esperar. Dado que una recta es un caso particular de polinomio, el
algoritmo SVM lineal tiene menor alcance que el SVM polinomial. Además, estos dos son
los que mejor accuracy tienen, con un 94.85% y un 94.96%, respectivamente; es decir,
son los que clasifican más casos correctamente. Otra opción a contemplar como ensemble
es el perceptrón multicapa (MLP), pues les sigue muy de cerca con un 94.75% de casos
totales acertados.

Por otra parte, se van a ir analizando por separado cada una de las métricas, explicadas
en la Sección 3.2.4, que se tienen de todos los ensembles construidos. Finalmente, se dará
una conclusión de cuál es el ensemble a utilizar.

SVM lineal. Vamos a analizar las métricas obtenidas con este ensemble recogidas
en la Tabla 4.34. Estas métricas se obtienen a partir de los datos de la matriz de
confusión de la Figura 4.20.

Figura 4.20: Matriz de confusión del ensemble construido con el algoritmo SVM lineal
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Precision Recall F1

Glaucoma 0.95 0.95 0.95

Normal 0.95 0.95 0.95

Tabla 4.34: Métricas utilizadas para el ensemble construido con el algoritmo SVM lineal

Comenzando con el análisis de las métricas, se observa que para ambas clases el
modelo alcanza un 95% de precisión. Luego, hay solo un 5% de falsos positivos
para cada clase. Además, como el recall de ambas clases es de un 0.95, para cada
clase hay un 5% de falsos negativos. Por último, cabe destacar que estas métricas son
fiables puesto que como se vio en la imagen 4.18, las clases están bien balanceadas
y existen en torno a 950 datos de prueba de cada clase.

Queda por interpretar estas métricas en el ámbito médico del problema que se está
tratando. Por una parte, el recall del glaucoma indica que no se omiten diagnósticos
positivos; es decir, hay un 5% de probabilidad de que el modelo no detecte un
paciente realmente enfermo. Por otra parte, la precisión significa que el 95% de los
diagnosticados con glaucoma realmente lo presentan.

SVM radial. Las métricas para este ensemble, obtenidas a partir de los datos de
la matriz de confusión de la Figura 4.20, se muestran en la Tabla 4.35.

Figura 4.21: Matriz de confusión del ensemble construido con el algoritmo SVM radial.
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Precision Recall F1

Glaucoma 0.94 0.94 0.94

Normal 0.94 0.94 0.94

Tabla 4.35: Métricas utilizadas para el ensemble construido con el algoritmo SVM radial

En primer lugar, se tiene que para ambas clases el modelo alcanza un 94% de
precisión. Luego, hay un 6% de falsos positivos para cada clase. Además, el recall
de ambas clases es de 0.94, y para cada clase hay un 6% de falsos negativos. Por
último, cabe destacar que estas métricas son fiables puesto que como se vio en la
imagen 4.18, las clases están balanceadas y existe un total de 1900 datos de prueba
de cada clase.

Queda por interpretar estas métricas referidas al problema de detección del glaucoma
que se está abordando. Por una parte, el recall del glaucoma indica que existe un
6% de probabilidad de que el modelo no detecte un paciente realmente enfermo.
Por otra parte, la precisión implica que el 94% de los diagnosticados con glaucoma
realmente padecen la enfermedad.

SVM polinomial. El ensemble construido con este algoritmo presenta las métricas
recogidas en la Tabla 4.36. Estas se calculan a partir de los datos de la matriz de
confusión de la Figura 4.22.

Figura 4.22: Matriz de confusión del ensemble construido con el algoritmo SVM polinomial.
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Precision Recall F1

Glaucoma 0.93 0.97 0.95

Normal 0.97 0.93 0.95

Tabla 4.36: Métricas utilizadas para el ensemble construido con el algoritmo SVM polinomial

En primer lugar, se tiene que para el glaucoma el modelo alcanza un 93% de pre-
cisión; mientras que, para los casos donde no se presenta glaucoma, se tiene una
precisión del 97%. Luego, hay un 7% de falsos positivos para la clase “Glaucoma”,
y un 3% para la “Normal”. Además, el recall de la clase “Glaucoma” es de 0.93, y
para la clase “Normal” alcanza un 97%. Aśı, hay un 7% de falsos negativos para
la predicción del ojo glaucomatoso, y un 3% para la del ojo sano. Por último, cabe
destacar que estas métricas son fiables puesto que, como se vio en la imagen 4.18,
cada clase tiene aproximadamente el mismo número de ejemplos, y este es alto.

Queda por interpretar estas métricas referidas al problema de detección del glauco-
ma que se está abordando. A partir de las métricas comentadas, el ensemble está
orientado a evitar falsos negativos de glaucoma. Además, el recall del glaucoma
indica que existe un 3% de probabilidad de que el modelo no detecte un paciente
realmente enfermo. Por otra parte, la precisión implica que el 93% de los diagnos-
ticados con glaucoma realmente padecen la enfermedad.

SVM sigmoideo. Aqúı se van a analizar las métricas recogidas en la Tabla 4.37
para el ensemble construido a partir del algoritmo SVM con kernel sigmoideo. Para
ello, se calculan en base a los datos de la matriz de confusión de la Figura 4.23

Precision Recall F1

Glaucoma 0.97 0.85 0.91

Normal 0.87 0.98 0.92

Tabla 4.37: Métricas utilizadas para el ensemble SVM sigmoideo

Aqúı se presenta el caso contrario al descrito para el ensemble con SVM polinomial.
Para el glaucoma, el modelo alcanza un 97% de precisión; mientras que, para los
casos sin glaucoma, se tiene una precisión del 87%. Luego, hay un 3% de falsos po-
sitivos para la clase “Glaucoma”, y un 13% para la “Normal”. Además, siguiendo
la métrica recall, hay un 15% de falsos negativos para la predicción del ojo glauco-
matoso, y un 2% para la del ojo sano. Queda mencionar que, como se observa en
la imagen 4.18, los datos están balanceados y se tienen suficientes ejemplos de cada
clase, luego las métricas obtenidas son fiables.

Queda por interpretar estas métricas referidas al problema de detección del glauco-
ma que se está abordando. A partir de las métricas comentadas, el ensemble está
orientado a evitar falsos negativos de glaucoma. Además, el recall del glaucoma
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Figura 4.23: Matriz de confusión del ensemble con algoritmo SVM sigmoideo.

indica que existe un 3% de probabilidad de que el modelo no detecte un paciente
realmente enfermo. Por otra parte, la precisión implica que el 93% de los diagnos-
ticados con glaucoma realmente padecen la enfermedad.

MLP. Para este ensemble se tienen los datos de la matriz de confusión de la Figura
4.24, a partir de los cuales se aportan las métricas recogidas en la Tabla 4.38.

Precision Recall F1

Glaucoma 0.94 0.95 0.95

Normal 0.95 0.94 0.95

Tabla 4.38: Métricas utilizadas para el ensemble MLP

Por una parte, se tiene que para el glaucoma el modelo alcanza un 94% de precisión;
mientras que, para los casos donde no se presenta glaucoma, se tiene una precisión del
95%. Esto representa que hay un 6% de falsos positivos para la clase “Glaucoma”, y
un 5% para la “Normal”. Además, el recall de la clase “Glaucoma” es de 0.95, y para
la clase “Normal”, de 0.94. Aśı, hay un 5% de falsos negativos para la predicción de
casos con glaucoma, y un 6% para los casos del ojo sano. Queda por mencionar que
estas métricas son fiables dada la cantidad de ejemplos que se tienen y el balanceo
en los datos como se ilustra en la imagen 4.18.

Queda por interpretar estas métricas referidas al problema de detección del glauco-
ma que se está abordando. A partir de las métricas comentadas, el ensemble está
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Figura 4.24: Matriz de confusión del ensemble construido con el algoritmo MLP.

orientado a evitar falsos negativos de glaucoma. Además, el recall del glaucoma
indica que existe un 3% de probabilidad de que el modelo no detecte un paciente
realmente enfermo. Por otra parte, la precisión implica que el 93% de los diagnos-
ticados con glaucoma realmente padecen la enfermedad.

Balance y elección entre los ensembles construidos

El objetivo de esta sección es elegir el mejor de los ensembles construidos. Para ello, se
realizará un balance entre las métricas de cada uno de ellos, es estudiará su significado y
se terminará el análisis decidiendo cuál de todos los ensembles es el mejor para el entorno
médico.

Puesto que el propósito es determinar el mejor de los ensembles, una métrica impor-
tante será el accuracy, que queda recogido en la Tabla 4.33. Esto se debe a que se busca
un modelo capaz de clasificar la mayor parte de casos de manera correcta, independiente-
mente de su tipo. Teniendo esto en cuenta, los ensembles que menor porcentaje de casos
clasifican correctamente son el SVM sigmoideo y el SVM radial, con un 91.28% y un
94.01%, respectivamente. Una vez descartados los dos modelos que peor rendimiento tie-
nen respecto a la métrica accuracy, quedan los ensembles construidos con los algoritmos
SVM lineal, SVM polinómico y MLP, con un 94.85%, 94.96% y 94.75%, respectivamen-
te. En este caso, se siguen teniendo en cuenta estos tres últimos ensembles, puesto que la
diferencia en el valor accuracy de ellos no es suficiente como para escoger uno en concreto
y es preferible estudiarlos siguiendo otras métricas.

Continuando con el estudio, podemos observar que para la métrica F1 de los ensembles
construidos con los algoritmos SVM lineal, SVM polinómico y MLP, se tiene para todos

Carlos Jiménez Vaquero 125



Caṕıtulo 4. Desarrollo de la propuesta y resultados

los mismos valores de 0.95 tanto para la clase ”normalçomo ”glaucoma”. Este valor mide
la eficacia global del modelo a partir de las métricas precision y recall. Luego, los tres
modelos son muy buenos, dado que detectan correctamente los casos positivos y evitan
falsos positivos. No obstante, da la igualdad de valores, no se puede determinar cuál es
mejor en el proceso de diagnóstico siguiendo la métrica F1.

Finalmente, queda estudiar la relación entre las precisiones y recalls de los distintos
modelos para elegir el que mejores resultados aporte, aunque en cualquiera de los tres
casos contemplados vayan a ser buenos dadas las métricas que ya se han tratado. En
primer lugar, se puede apreciar que para todas las métricas del ensemble SVM lineal se
tienen valores de 0.95 como se muestra en la Tabla 4.34, y para el ensemble MLP, de 0.94
y 0.95 como se recoge en la Tabla 4.38. Aśı, como MLP empeora alguno de los valores
en precision y recall a los del SVM lineal, y el accuracy también es inferior, se descarta.
Luego, quedan por elegir un ensemble entre el SVM lineal y el SVM polinomial.

Para el SVM polinomial, se recuerda que el accuracy era ligeramente superior al del
SVM lineal. La diferencia principal entre los ensembles radica en que el SVM lineal es un
modelo equilibrado, dado que clasifica ambas clases por igual, sin sesgo hacia ninguna,
al contrario que el SVM polinomial. En concreto, para el ensemble construido con SVM
polinomial, de todos los pacientes que realmente tienen glaucoma, se detecta el 97%, dado
que este es el recall para el glaucoma. Luego, se tienen pocos falsos negativos; es decir,
pocos enfermos se quedan sin ser diagnosticados. Además, la precisión en la clasificación
de pacientes sanos es de un 97%. Esto indica que para esta clase hay un 3% de falsos
positivos; lo que radica en pocos sanos mal diagnosticados como enfermos.

Dependiendo del contexto, puede ser que uno de los ensembles sea más favorable
que otro. En algunos casos, es interesante que las métricas estén más equilibradas. Sin
embargo, para el caso médico lo primordial es un alto recall para la clase de la enfermedad
y una alta precisión en la clase de pacientes sanos. El motivo es que, como se ha explicado,
se pretende que queden el menor número de enfermos sin detectar, aśı como el menor
número posible de pacientes sanos mal diagnosticados como enfermos. Esto se debe a que
dejar sin diagnosticar a un enfermo puede tener graves consecuencias, como la aparición
de la ceguera; mientras que diagnosticar como enfermo a un paciente sano también tiene
sus implicaciones, como una serie de costos en el tratamiento, además de tener que estar
expuesto al mismo de manera innecesaria. Bajo estas condiciones, el mejor ensemble es el
construido mediante el algoritmo SVM polinomial.

Comparando con los resultados que han obtenido los trabajos mencionados en el es-
tado del arte en la Sección 3.4, el único que se aproxima a los resultados obtenidos aqúı
es el segundo de los modelos de [80]. Para este modelo se han obtenido unos resultados
casi idénticos que para el ensemble lineal construido en este trabajo, siendo superado por
este último en casi un 1% de accuracy. Luego, si el método mencionado en el estado
del arte proporciona un rendimiento ligeramente inferior al SVM lineal, con los mismos
razonamientos que se han dado anteriormente, se tiene que el ensemble a partir de SVM
polinomial que aqúı se ha elaborado, aporta mejores resultados. Luego, la solución cons-
truida en este trabajo supera todas las existentes para la detección del glaucoma a partir
del dataset rotterdam.
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Otra propuesta para mejorar los resultados

Como se ha explicado, las métricas más importantes, las que se pretenden maximizar
sus resultados, son el recall para el glaucoma y la precision para el normal, pues no se
quiere dejar ningún caso de glaucoma sin diagnosticar. No obstante, también se debe
seguir prestando atención al resto de métricas.

Para llevar esto a cabo, se introduce aqúı el uso de la métrica F-β explicada en la
Sección 3.2.4. Aśı, se han comparado los modelos entrenados a través del valor F2 para
el glaucoma, F0.5 para el normal y F1 para ambos casos. A esto se añade la métrica
accuracy ya estudiada. Toda esta información se recopila en la Tabla 4.39.

Modelo accuracy F2 Glaucoma F1 Glaucoma F0.5 Normal F1 Normal

rotterdam 0.933 0.935 0.933 0.935 0.933

rotterdam
grises

0.912 0.927 0.914 0.924 0.910

rotterdam
RIM-ONE

0.947 0.950 0.947 0.950 0.947

rotterdam
RIM-ONE

preentrenado
0.943 0.938 0.943 0.940 0.944

rotterdam
RIM-ONE

grises
0.921 0.943 0.924 0.939 0.919

rotterdam
RIM-ONE

grises
preentrenado

0.937 0.938 0.937 0.938 0.938

rotterdam
RIM-ONE

rojo
0.912 0.914 0.912 0.914 0.912

rotterdam
RIM-ONE

verde
0.939 0.947 0.940 0.946 0.938

rotterdam
RIM-ONE

azul
0.897 0.898 0.897 0.898 0.897

Tabla 4.39: Comparación de las métricas más relevantes de los modelos de clasificación
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Los resultados han sido ordenados en función del F2 para el glaucoma, y en caso de
empate, teniendo en cuenta el resto de métricas. Aśı, los mejores siete modelos siguen la
clasificación:

1. rotterdam RIM-ONE

2. rotterdam RIM-ONE verde

3. rotterdam RIM-ONE grises

4. rotterdam RIM-ONE preentrenado. Este se descarta por tener el mismo modelo pero
sin preentrenar en una mejor posición.

5. rotterdam RIM-ONE grises preentrenado. Este se descarta por tener el mismo mo-
delo pero sin preentrenar en una mejor posición.

6. rotterdam

7. rotterdam grises

La primera observación que surge es que, cuando se tienen en cuenta todas estas
métricas, se observa que los modelos sin preentrenar ofrecen mejores resultados. Sin em-
bargo, esto puede deberse a que el preentrenamiento se hace con imágenes de otro dataset ;
mientras que el entrenamiento final y el test se hacen con el mismo dataset. Aunque las
imágenes de entrenamiento y test sean diferentes, pueden tener similitudes por pertene-
cer a un mismo dataset, por lo que habŕıa que contar con más datos para comprobar si
realmente preentrenando con otro conjunto de datos el modelo generaliza mejor.

Otra observación es que, ahora que se consideran más métricas, se observa como todos
los mejores modelos de los que se muestran en la lista son los que se fijan en la parte del
nervio óptico. Esto corrobora una vez más que esta región es la que mayor información
aporta para la detección del glaucoma.

Por otra parte, los resultados coinciden en su mayor parte con la clasificación hecha
para el accuracy. Esto sugiere que, en este caso, el criterio de selección basado en el
accuracy es suficiente y consistente con otras métricas más sensibles al balance entre
precision y recall. No obstante, se han entrenado los mismos ensembles con estos modelos
para tratar de mejorar los resultados.

El entrenamiento de los ensembles a partir de los modelos que mejor recall han mos-
trado por separado no ha mostrado resultados relevantes. En ninguno de ellos el recall
para el glaucoma supera el 94%. Además, tampoco se identifica ninguna mejora en el
accuracy del ensemble final, pues tampoco supera el 94% para esta métrica.
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Integración de los modelos.
Construcción de una aplicación.

Una vez desarrollados los modelos para el diagnóstico del glaucoma, aśı como los de
segmentación de las estructuras de la región del nervio óptico, el siguiente paso es su
integración en una aplicación funcional. Esta etapa corresponde con la fase de despliegue
de la metodoloǵıa CRISP-DM. Esto permite trasladar la funcionalidad desarrollada para
la detección del glaucoma a un entorno más accesible para que pueda ser usada por
oftalmólogos, sin necesidad de tener conocimiento en programación.

Este caṕıtulo presenta la construcción de dicha aplicación. Para ello, se realizan los
procesos de análisis, diseño, implementación y pruebas en los que se basa el desarrollo de
la misma. Se presentan los principales workflows de desarrollo de la aplicación de forma
resumida, ya que el grueso del trabajo se lo ha llevado la construcción, entrenamiento y
evaluación de los modelos, y esta aplicación es un prototipo para integrar todo el desarrollo
previo. A continuación se va a ir detallando una por una cada fase implicada.

5.1. Análisis - Especificación de requisitos

La fase de análisis en el desarrollo de software establece qué debe hacer el sistema.
Esta etapa precede a la de diseño, en la que se define cómo se va a hacer. Por tanto,
el objetivo principal del análisis es comprender, documentar y especificar los requisitos
funcionales y no funcionales del sistema que se va a desarrollar, aśı como los requisitos de
usuario.

5.1.1. Requisitos de usuario

Los requisitos de usuario describen lo que el usuario espera que el sistema haga. Por
otro lado, un caso de uso es una descripción detallada de cómo un usuario o actor inter-
actúa con el sistema para lograr un objetivo espećıfico. Para ello, la descripción de los
requisitos de usuario contempla un diagrama de casos de uso, los especifica y produce de
una manera ordenada los requisitos buscados.
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Diagrama de casos de uso

En la Figura 5.1 se presenta el diagrama de casos de uso que resume de manera visual
lo que el usuario espera del sistema.

Sistema Diagnóstico Glaucoma

Médico

Terminar Diagnóstico

Cambiar Vista

Hacer Diagnóstico

Calcular estructuras
retinografía

Seleccionar tipo visualización
<<extend>>

<<include>>

<<extend>>

<<extend>>

Figura 5.1: Diagrama de casos de uso de la aplicación construida.
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Especificación de los casos de uso

A lo largo de las tablas 5.1, 5.2, 5.3, 5.4 y 5.5 se especifican cada uno de los casos de
uso recogidos en el diagrama de la Figura 5.1.

CU 01 Hacer Diagnóstico

Precondición -

Descripción
El sistema permite subir una retinograf́ıa y realiza
el diagnóstico en base a la misma

Secuencia

Secuencia normal:
1. El usuario sube una retinograf́ıa.
2. Se realiza el diagnóstico.
3. Se muestra el diagnóstico y la retinograf́ıa por
pantalla.
4. Si el usuario decide cambiar la vista <<Punto de
extensión>> Cambiar Vista.
5. Si el usuario decide segmentar <<Punto de
extensión>> Calcular estructuras retinograf́ıa.

Postcondición -

Excepciones -

Rendimiento 15-20 segundos

Importancia Alta

Frecuencia Una vez por diagnóstico

Tabla 5.1: Caso de Uso 1

CU 02 Cambiar vista
Precondición Haber subido la imagen de una retinograf́ıa

Descripción
El sistema cambia la visualización de la retinograf́ıa
completa a la región del nervio óptico y viceversa.

Secuencia

Secuencia normal:
1. Usuario hace click en el botón <<Cambiar vista>>.
2. Se toma la región buscada.
3. Se cambia la vista.
Alternativa 1:
1. Usuario hace click en el botón.
2. No se detecta la región
3. No se cambia la vista.

Postcondición La región de la retinograf́ıa que se muestra es distinta
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Excepciones

- Excepción 1:
El sistema no detecta el disco óptico

- Flujo alternativo para la excepción 2:
Secuencia Alternativa 1

- Excepción 2:
Se introduce una imagen que no sea una
retinograf́ıa

- Flujo alternativo para la excepción 2:
Secuencia Alternativa 1

Rendimiento Inmediato
Importancia Normal
Frecuencia Las veces que el usuario lo utilice

Tabla 5.2: Caso de Uso 2

CU 03 Calcular estructuras retinograf́ıa

Precondición Haber subido la imagen de una retinograf́ıa

Descripción
Cálculo de las segmentaciones del disco óptico y la
copa.

Secuencia

Secuencia normal:
1. El usuario solicita las segmentaciones
2. El módulo correspondiente calcula las segmentaciones
3. Se muestra la opción de escoger la segmentación que
se quiere contrastar.
4. Si el usuario decide seleccionar una segmentación
<<Punto de extensión>> Seleccionar tipo
visualización.

Postcondición La opción para elegir la segmentación es visible

Excepciones -

Rendimiento
30 segundos si solo aparece modelo YOLO
1 minuto y 30 segundos si también se muestra la
solución con FastAI

Importancia Alta

Frecuencia Una vez por diagnóstico

Tabla 5.3: Caso de Uso 3
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CU 04 Seleccionar tipo visualización

Precondición Haber calculado las estructuras de la retinograf́ıa

Descripción
El usuario puede ver las segmentaciones calculadas
para el disco y la copa

Secuencia

Secuencia normal:
1. El usuario selecciona el tipo de segmentación que
quiere comprobar
2. El sistema muestra la segmentación escogida por
pantalla.

Postcondición La segmentación seleccionada es visible

Excepciones -

Rendimiento Inmediato

Importancia Alta

Frecuencia Las veces que el usuario lo requiera

Tabla 5.4: Caso de Uso 4

CU 05 Terminar Diagnóstico

Precondición Haber subido la imagen de una retinograf́ıa

Descripción
Finalización del diagnóstico para poder realizar uno
nuevo

Secuencia

Secuencia Normal:
1. El usuario selecciona la opción de terminar
diagnóstico.
2. El sistema elimina los archivos generados para el
diagnóstico.
3. El sistema vuelve al punto de inicio para realizar
otro diagnóstico

Postcondición Se eliminan los archivos generados

Excepciones -

Rendimiento 10 segundos

Importancia Baja

Frecuencia Una vez por diagnóstico

Tabla 5.5: Caso de Uso 5
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Requisitos de usuario

Una vez descritos los casos de uso que se han recogido para la implementación de la
aplicación, se pasa a enumerar cada uno de las requisitos de usuario encontrados:

RU 01. El usuario podrá subir una retinograf́ıa a la aplicación.

RU 02. El usuario consultará el diagnóstico para la retinograf́ıa adjuntada.

RU 03. El usuario podrá ver entre ver la retinograf́ıa completa o solo la parte del
nervio óptico.

RU 04. El usuario podrá ver la segmentación de las estructuras básicas de una
retinograf́ıa.

RU 05. El usuario puede visualizar las segmentaciones ordenadas.

RU 06. El usuario cerrará el diagnóstico para poder realizar otro.

5.1.2. Requisitos funcionales y no funcionales

Los requisitos funcionales y no funcionales son dos tipos fundamentales de requisitos
en el desarrollo de software que ayudan a definir qué debe hacer el sistema y cómo debe
hacerlo, respectivamente.

Requisitos funcionales

RF 01. El sistema almacenará la imagen subida por el usuario.

RF 02. El sistema hará un diagnóstico de si la retinograf́ıa tiene glaucoma o no.

RF 03. El sistema recortará y almacenará la parte del nervio óptico de la retino-
graf́ıa.

RF 04. El sistema permitirá las distintas vistas de la retinograf́ıa; es decir, la reti-
nograf́ıa completa y la parte del nervio óptico.

RF 05. El sistema segmentará las estructuras de la retinograf́ıa.

RF 06. El sistema permitirá consultar las segmentaciones construidas.

RF 07. El sistema permitirá terminar el diagnóstico borrando todas las imágenes
generadas.
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Requisitos no funcionales

Requisitos de eficiencia:

RNF 01. El sistema debe tardar un máximo de 2 minutos en realizar el diagnóstico.

RNF 02. El sistema deberá emplear un tiempo máximo de 6 minutos en calcular
todas las segmentaciones.

RNF 03. Las operaciones que consisten en un cambio en la visualización de los
datos deben tener un tiempo de ejecución máximo de 1 segundo.

RNF 04. Las imágenes generadas por el sistema deben ser visibles en menos de 3
segundos.

Requisitos de fiabilidad:

RNF 05. La localización del nervio óptico debe realizarse correctamente el 98% de
las veces.

RNF 06. La tasa de fallo de las segmentaciones ejecutadas debe ser menor al 5%.

Requisitos de usabilidad:

RNF 07. El sistema será accesible desde ordenador y dispositivos móviles, siendo
el primero de ellos donde se usará principalmente la aplicación.

RNF 08. La interfaz de usuario debe ser clara, intuitiva y “amigable” para un uso
sencillo.

RNF 09. La aplicación tendrá un diseño responsive que se adecúe al tamaño del
viewport.

RNF 10. La curva de aprendizaje para familiarizarse con el sistema de detección
del glaucoma debe ser inferior a 10 minutos.

RNF 11. El sistema contará con manuales de usuario para facilitar el uso por parte
de los mismos.

Otros requisitos no funcionales:

RNF 12. La aplicación desarrollada deberá ser compatible con todo tipo de dispo-
sitivos; es decir, será multiplataforma.

RNF 13. El tratamiento de los datos se hará respetando lo establecido en la Ley
Orgánica de Protección de Datos (Ley Orgánica 3/2018, de 5 de diciembre, de
Protección de Datos Personales y garant́ıa de los derechos digitales).

RNF 14. Se empleará dash para el desarrollo de la aplicación.

RNF 15. El sistema no debe estar fuertemente acoplado para permitir la reutiliza-
ción y portabilidad de parte del código.
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5.2. Diseño

Como se ha mencionado con anterioridad, la fase de diseño en el desarrollo de software
es la etapa en la que se planifica cómo se va a construir el sistema definido en la fase de
análisis. Por tanto, representa un v́ınculo entre los requisitos - el qué debe hacer el sistema
- y la codificación - el cómo se va a implementar.

Para la fase de diseño de la aplicación que se está describiendo, se ha considerado opor-
tuno explicar la arquitectura lógica de la aplicación, aśı como los diagramas de secuencia
que explican los proceso más complejos que llevará a cabo y una primera aproximación
de su interfaz.

5.2.1. Arquitectura lógica

La arquitectura lógica del sistema representa de una manera organizada los componen-
tes funcionales del sistema y la relación entre ellos, sin tener en cuenta su implementación
f́ısica en materia de servidores y otros componentes hardware. En la Figura 5.2 queda
descrita la arquitectura lógica para la aplicación construida, la cual sigue el patrón arqui-
tectónico “Capas”.

Clientes del
explorador web

Cliente del
explorados web DashDash

Segmentation
Server

Diagnosis
(Classification)

Server

Servidor
Segmentación

Servidor
Diagnóstico

(Clasificación)

Servidor Directorio

LDAP

Capa de cliente Capa de presentación Capa de negocio Capa de datos

Figura 5.2: Diagrama descriptivo de la arquitectura lógica de la aplicación.

A continuación se detallan cada uno de los componentes que constituyen la arquitec-
tura lógica según la capa a la que pertenecen:

Capa de cliente. Representa la capa de acceso del usuario a la aplicación. Esta se
dispone para poder ser usada como aplicación web.

Capa de presentación. Se trata de la parte de la aplicación encargada de interactuar
directamente con el usuario, mostrando la interfaz y gestionando las entradas. Con
este propósito se ha hecho uso de la biblioteca Dash.
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Capa de negocio. Parte de la arquitectura que implementa la lógica y las reglas de
negocio de una aplicación. Para este caso, la lógica fundamental la componen dos
módulos: Segmentation Server y Diagnosis (Clasification) Server, que se encargan
de segmentar y clasificar las imágenes (realizar el diagnóstico), respectivamente.

Capa de datos. Se refiere a la organización y gestión de los datos. En concreto, define
cómo se estructuran los datos, cómo se relacionan entre śı y cómo se accede a los
mismos.

5.2.2. Diagramas de secuencia

En las figuras 5.3 y 5.4 se modela la interacción entre los componentes del sistema
para realizar los procesos de diagnóstico y de segmentación, respectivamente.
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Figura 5.3: Diagrama de secuencia para el proceso de diagnóstico.
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Figura 5.4: Diagrama de secuencia para el proceso de segmentación.
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5.2.3. Diseño de interfaz

En las figuras 5.5, 5.6 y 5.7 se representan unos bocetos con el diseño propuesto para
la aplicación construida.

Pie de página - Copyright

Nombre Aplicación Mensaje subida de imagen

Botón subida de
retinografía

Retinografía

Aquí irá la retinografía

Figura 5.5: Interfaz de usuario propuesta inicio aplicación pre-diagnóstico.

Pie de página - Copyright

Nombre Aplicación Diagnóstico Glaucoma

Botón hacer zoom

Retinografía

Retinografía subida

Botón para ejecutar segmentaciones

Botón terminar diagnóstico

Figura 5.6: Interfaz de usuario propuesta tras diagnóstico antes de segmentar.
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Pie de página - Copyright

Nombre Aplicación Diagnóstico Glaucoma

Botón hacer zoom

Retinografía

Retinografía subida

Botón para elegir segmentación

Botón terminar diagnóstico

Figura 5.7: Interfaz de usuario propuesta tras segmentación.

5.3. Implementación

5.3.1. Tecnoloǵıas y herramientas utilizadas

Para el desarrollo de la aplicación se han empleado las siguientes tecnoloǵıas:

Dash. Esta biblioteca ha sido empleada para construir la aplicación, tanto la parte
de frontend como la de las llamadas a los módulos que se encargan de la predicción
de diagnósticos y estructuras.

Ultralytics YOLO. Implementación optimizada del modelo de detección de obje-
tos YOLO, desarrollada por la empresa Ultralytics. Ofrece modelos rápidos y preci-
sos sobre los que es fácil entrenar y desplegar otros modelos tanto para clasificación
como para segmentación. Está escrito en Python y usa PyTorch como backend.

FastAI. FastAI es una biblioteca de alto nivel construida sobre PyTorch, diseñada
para facilitar el entrenamiento rápido y eficaz de modelos de Deep Learning usando
menos código.

Por otra parte, se ha hecho uso de una serie de herramientas tanto en la parte de
programación como para llevar a cabo el diseño y análisis de la aplicación:
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Google Colab. Entorno basado en Jupyter Notebook que permite ejecutar código
Python desde el navegador con acceso a recursos GPU. Sobre esta herramienta se
construye todo el código de la aplicación desarrollada.

Google Drive. Herramienta utilizada para almacenar todos los archivos generados
por su facilidad para acceder desde distintos dispositivos que permite conectarse con
Google Colab.

Draw.io. Herramienta que se ha empleado en la elaboración de todos los diagramas:
diagrama de casos de uso, diagramas de secuencia y representación de las interfaces
de usuario previstas.

5.3.2. Interfaz de usuario implementada

Con el uso de las tecnoloǵıas y herramientas descritas en la Sección 5.3.1 se implementa
finalmente la aplicación que se ha venido describiendo a lo largo del Caṕıtulo 5. Además,
en las figuras 5.8, 5.9, 5.10, 5.11, 5.12, 5.13, 5.14 y 5.15 se incluye la interfaz de usuario
que se ha desarrollado a partir de la propuesta en la Sección 5.2.3.

Figura 5.8: Interfaz de usuario del programa pre-diagnóstico.
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Figura 5.9: Interfaz de usuario del programa cuando no se diagnostica glaucoma.

Figura 5.10: Interfaz de usuario del programa haciendo zoom en el nervio óptico.
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Figura 5.11: Interfaz de usuario del programa cuando se diagnostica el glaucoma.

Figura 5.12: Interfaz de usuario del programa tras segmentación.
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Figura 5.13: Interfaz de usuario del programa con la segmentación de YOLO.

Figura 5.14: Interfaz de usuario del programa con la segmentación de YOLO convexo.
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Figura 5.15: Interfaz de usuario del programa con la segmentación de FastAI.

5.3.3. Pruebas

Una vez implementada la aplicación, queda realizar las pruebas oportunas para com-
probar su buen funcionamiento. Con este propósito, se ha decidido hacer pruebas de caja
negra, en concreto pruebas de sistema, ya que se efectúan sobre el sistema completo. Se
describen a continuación.

Caja negra - Test E2E (End to end)

En las tablas 5.6, 5.7, 5.8, 5.9 y 5.10 se proponen una serie de casos de prueba de caja
negra para confirmar que cada caso de uso propuesto se ha implementado de acuerdo a
los objetivos esperados:

PR-E2E 1 Procesar diagnóstico

Propósito
Comprobar si al subir una retinograf́ıa se aporta un
diagnóstico

Datos de entrada Imagen de una retinograf́ıa

Resultado esperado Diagnóstico y muestra de la imagen

Resultado obtenido Diagnóstico y muestra de la imagen

Tabla 5.6: Prueba de caja negra 1
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PR-E2E 2
Cambio entre la región ONH y la retino-
graf́ıa completa

Propósito
Comprobar que el cambio entre la región ONH y
la retinograf́ıa completa se realiza correctamente

Datos de entrada -

Resultado esperado
Se cambia la imagen de la retinograf́ıa completa
a la región ONH y viceversa

Resultado obtenido
Se cambia la imagen de la retinograf́ıa completa
a la región ONH y viceversa

Tabla 5.7: Prueba de caja negra 2

PR-E2E 3 Procesar diagnóstico

Propósito
Comprobar que el botón de cálculo de segmen-
tación cambia a una lista de selección

Datos de entrada -

Resultado esperado
El botón de cálculo de segmentación cambia a
una lista de selección

Resultado obtenido
El botón de cálculo de segmentación cambia a
una lista de selección

Tabla 5.8: Prueba de caja negra 3

PR-E2E 4 Seleccionar tipo de visualización

Propósito Comprobar si se muestra la segmentación elegida

Datos de entrada Opción de los tipos de segmentación

Resultado esperado
Se muestra muestra la retinograf́ıa y la región
ONH con la segmentación esperada

Resultado obtenido
Se muestra muestra la retinograf́ıa y la región
ONH con la segmentación esperada

Tabla 5.9: Prueba de caja negra 4

Carlos Jiménez Vaquero 147
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PR-E2E 5 Terminar diagnóstico

Propósito
Comprobar que al terminar el diagnóstico se eliminan los
datos generados y se vuelve a la página de inicio

Datos de entrada -

Resultado esperado
Se eliminan los archivos de las retinograf́ıas y se regresa a
la página inicial

Resultado obtenido
Se eliminan los archivos de las retinograf́ıas y se regresa a
la página inicial

Tabla 5.10: Prueba de caja negra 5
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Caṕıtulo 6

Conclusiones y trabajo futuro

Como uno de los últimos puntos a tratar, se presentan las conclusiones que se han
alcanzado a lo largo de este proyecto. En esta sección se aportará una reflexión cŕıtica
y global sobre el desarrollo del Trabajo de Fin de Grado. Para ello, se analiza el grado
de cumplimiento de los objetivos propuestos inicialmente, aśı como la idoneidad de la
metodoloǵıa empleada en cada una de las fases del proyecto. Del mismo modo, se expone
una valoración personal sobre la experiencia adquirida a lo largo del proceso, destacando
tanto los aspectos positivos como los desaf́ıos encontrados. Para finalizar, se incluye una
perspectiva propia sobre la proyección de este proyecto, aśı como las v́ıas futuras para
mejorarlo.

6.1. Conclusiones

En esta parte del caṕıtulo se analiza de manera objetiva el avance que ha tenido el
proyecto en base a sus objetivos. Además, se aportará una valoración personal del mismo.

6.1.1. Perspectiva del proyecto

A continuación se va a justificar el cumplimiento de los objetivos propuestos en un
primer momento, los cuales han sido satisfechos por completo:

Se ha construido una aplicación que permite el diagnóstico del glaucoma a partir
de retinograf́ıas mediante técnicas de Deep Learning, lo que se corresponde con el
cumplimiento del objetivo OBJ-01.

Se han entrenado modelos capaces de identificar el disco y la copa ópticos. Esto
conlleva la consecución del objetivo OBJ-02 al construir con ellos un módulo que
emplea métodos de segmentación sobre las retinograf́ıas.

Se ha estudiado el rendimiento de los modelos construidos para la clasificación y
segmentación de retinograf́ıas respecto a las métricas más adecuadas para cada uno
de ellos. Aśı, se cumple el objetivo OBJ-03.
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Fruto de la realización de los objetivos anteriores, en este Trabajo Fin de Grado se ha
conseguido elaborar una aplicación capaz de detectar el glaucoma con un rendimiento
incluso superior a algunos trabajos cient́ıficos publicados recientemente. En concreto,
del dataset rotterdam utilizado, los resultados obtenidos superan a todos los que se han
consultado. Por otra parte, también mejora a otras soluciones mencionadas a lo largo
de esta memoria como la de la Universidad de Tohoku [59]. Además, este desarrollo ha
permitido identificar las estructuras propias de una retinograf́ıa. Con todo lo anterior, se
han podido comprobar hipótesis como, por ejemplo, si la región del nervio óptico es la
que mayor información reporta para la detección del glaucoma, o si la dimensión de la
copa óptica aumenta en casos con esta misma patoloǵıa.

Para llevar esto a cabo, siguiendo unas restricciones temporales y produciendo una
solución de calidad, es necesario el empleo de una metodoloǵıa que permita estructurar
el trabajo para maximizar el rendimiento. En particular, las metodoloǵıas escogidas han
sido SCORE y CRISP-DM. Ha sido un acierto contar con metodoloǵıas ágiles para la
planificación temporal del proyecto, como ha sido SCORE, aśı como para estructurar el
desarrollo de la solución, para lo que se ha utilizado CRISP-DM. Seguir estas metodoloǵıas
ha permitido mantener un ritmo constante en la realización del proyecto, aśı como recibir
una buena retroalimentación por parte de los tutores del TFG, permitiendo mejorar las
soluciones construidas.

6.1.2. Perspectiva y valoración personal

La realización de este Trabajo de Fin de Grado ha sido una experiencia muy enrique-
cedora. El desarrollo del mismo me ha permitido profundizar en temas de mi interés en el
campo del aprendizaje automático. En particular, he podido aprender técnicas de Deep
Learning nuevas para mı́, como las de segmentación, y profundizar en otras ya conocidas,
como las de clasificación.

Por otra parte, el tema elegido para la realización del proyecto ha sido un completo
acierto, pues me ha permitido aplicar mis conocimientos para resolver un problema real
como es la detección del glaucoma, lo que ha despertado mi interés en la utilización
de técnicas de aprendizaje profundo en el campo de la medicina. Además, resulta muy
satisfactorio poder desarrollar una herramienta con un impacto social positivo como la que
se ha construido para la consecución de los objetivos propuestos en el inicio del proyecto.

A colación de lo anterior, en un principio las expectativas se basaban en la consecución
de los objetivos establecidos para resolver el problema de manera adecuada. Sin embargo,
estas han ido cambiando durante el desarrollo. La obtención de unos resultados de alto
valor que apuntaban a superar las soluciones existentes para la detección automática
del glaucoma ha ido elevando las expectativas del producto final aśı como la motivación.
Finalmente, estas expectativas se han cumplido, consiguiendo una herramienta que supera
otras soluciones planteadas a este problema.

Como se ha explicado con anterioridad, todas las soluciones construidas para la de-
tección del glaucoma mediante el dataset rotterdam presentan peores resultados que los
obtenidos en el presente trabajo. No solo esto, sino que otros trabajos como del que se hace
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eco el Huffington Post [57] de la Universidad de Tohoku [59], también obtienen métricas
inferiores a las de este proyecto.

Además, como se ha mencionado anteriormente, se han adquirido y consolidado co-
nocimientos técnicos. No solo esto, sino que los conocimientos adquiridos van más allá,
pues he empleado metodoloǵıas con las que no hab́ıa tenido la oportunidad de trabajar,
aunque ya hubiese tratado con la metodoloǵıa SCRUM de la que proceden. En general,
puesto que este trabajo abarca áreas de conocimiento tan diversas como la ciencia de
datos, la topoloǵıa, el procesamiento de imágenes o la anatomı́a ocular, ha sido muy in-
teresante poder aprender una gran cantidad de conceptos nuevos y tan diversos. Además
de aprender conceptos teóricos y de uso de metodoloǵıas, he podido usar herramientas
nuevas como la libreŕıa dash para poder mostrar los resultados de una manera más visual,
aśı como la biblioteca ultralytics para entrenar modelos usando YOLO.

Queda destacar que durante la realización del presente TFG también se han presenta-
do dificultades o problemas a solventar. Entre ellos, ha sido la mejora de las predicciones
de las segmentaciones que se han mostrado en la Sección 4.4.3. En particular, los corres-
pondientes a la segmentación del disco óptico con los modelos de FastAI son los que han
supuesto un mayor reto. Otro problema que ha surgido, y quizá uno de los más relevantes
pues ha obligado a retrasar el inicio del proyecto, ha sido la obtención del dataset de
entrenamiento, pues en un principio se iba a disponer de un conjunto de datos al que
finalmente se denegó su acceso. Por otra parte, cabe destacar la incertidumbre de realizar
una planificación durante un curso académico en el que se tiene que atender a otras obliga-
ciones como exámenes o prácticas, lo que dificulta las cosas. Para solventar este problema
ha sido de vital importancia contar con metodoloǵıas ágiles que permiten adaptarse mejor
a la situación.

Espero que este proyecto pueda tener un impacto positivo con su implementación en
centros cĺınicos para facilitar la detección del glaucoma y conseguir una herramienta de
apoyo fundamental para los especialistas de la salud. Resulta algo conmovedor el valor
que puede tener el buen uso de la Inteligencia Artificial para facilitar y mejorar la vida
de las personas, y en particular, de su salud.

6.2. Trabajo futuro

En el contexto de este Trabajo Fin de Grado, resulta especialmente relevante señalar
que, al igual que sucede con otros proyectos de software, requiere de una mejora y revisión
continuas. Esto se debe a que los sistemas basados en aprendizaje automático dependen
en gran medida de los datos disponibles. También de otros factores como la evolución
de las arquitecturas, pues sin ir más lejos, en este proyecto se ha utilizado YOLO 11
y recientemente se ha actualizado a una versión YOLO 12. Esto implica la necesidad
constante de actualizar y validar los modelos construidos.

Por otra parte, este proyecto puede utilizarse como punto de partida para desarrollos
más complejos. En consecuencia, este trabajo no debe considerarse un producto final
cerrado, sino una base sobre la que seguir construyendo para alcanzar soluciones más
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precisas, robustas y aplicables en el ámbito cĺınico. A continuación, se presentan algunas
v́ıas de investigación futuras y otras acciones oportunas, aśı como mejoras que se pueden
implementar a partir de la investigación aqúı realizada:

Disponer de un dataset real de las retinograf́ıas del centro médico donde se va a usar
la solución. En un inicio, esta era la fuente de donde se iban a tomar los datos, pero el
Comité de Ética de Investigación Cĺınica del Área de Salud de Valladolid no concedió
la solicitud. De esta forma, hubo que prescindir de esta v́ıa por motivos temporales,
ya que solicitarlo a la Consejeŕıa de Sanidad retrasaŕıa mucho los tiempos previstos.

Seŕıa de gran utilidad tener acceso a estos datos para poder adaptar la solución a las
imágenes tomadas con los dispositivos del Hospital Cĺınico. En general, aumentar y
diversificar el dataset incorporando retinograf́ıas de distintas poblaciones, disposi-
tivos y calidades de imagen tendrá implicaciones positivas sobre el rendimiento del
modelo.

Integrar la aplicación construida en el entorno médico-hospitalario; es decir, realizar
un despliegue en cĺınicas o centros de atención primaria como herramienta de apoyo
para el diagnóstico del glaucoma.

Llevar a cabo una validación cĺınica. Para comprobar la eficacia del modelo construi-
do, seŕıa de gran utilidad estudiar su rendimiento con pacientes reales y adaptarlo
para mejorar su capacidad de predicción. Además, también seŕıa de interés comparar
su rendimiento frente al de oftalmólogos.

Predicción de la evolución del glaucoma. Esta seŕıa una nueva v́ıa de investigación.
El objetivo de esta mejora seŕıa avanzar desde la detección temprana del glauco-
ma hacia la predicción de su evolución en el tiempo. De este modo, se trataŕıa
de desarrollar un modelo capaz de estimar la velocidad o el patrón de progresión
del glaucoma, permitiendo mejorar la toma de decisiones cĺınicas, como ajustar la
frecuencia de las revisiones o personalizar los tratamientos.

Clasificación de tipos de glaucoma. Existe más de un tipo de glaucoma, como el de
ángulo abierto o el de ángulo cerrado [4]. En esta investigación se ha primado el
hecho de distinguir pacientes sanos de los que presentan glaucoma. En una segunda
versión se podŕıa tratar de diferenciar qué tipo de glaucoma se presenta. Una opción
de adaptarlo a los modelos construidos seŕıa entrenar un modelo que distinga las
clases de glaucoma. Con el modelo actual, si se predice la presencia de la patoloǵıa,
se pasaŕıa la imagen a este segundo modelo para clasificar de qué tipo de glaucoma
se trata.

Desarrollar un plan para introducir a los oftalmólogos en el uso de la herramienta.

Implementar técnicas de Active Learning o aprendizaje activo [61]. Con estos méto-
dos, el modelo enviaŕıa los casos más inciertos a un experto para su revisión. Una
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vez fueran validados, esos casos se usaŕıan para seguir entrenando al modelo. De esta
forma, se promueve un aprendizaje continuo con la consiguiente mejora del modelo.

Otra opción que se podŕıa implementar consistiŕıa en un método de entrenamiento
continuo en el que el sistema se pueda actualizar continuamente a medida que se
confirma si las predicciones son correctas o no, para tratar de mejorar los resultados.

Carlos Jiménez Vaquero 153
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Parte III
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Apéndice A

Manual de instalación

La aplicación se presenta en un cuaderno Jupyter Notebook de extensión .ipynb deno-
minado app.ipynb. Para poder poner en marcha la misma, basta con ejecutar de manera
secuencial los cuadros de código del cuaderno mencionado. En concreto, el proceso que se
sigue durante esta ejecución secuencial es:

1. Instalar las libreŕıas necesarias: ultralytics, dash y dash-iconify. Para ello se utilizan
los comandos:

pip install ultralytics

pip install dash dash-iconify

Además, se importan las bibliotecas imprescindibles con:

from google.colab import drive

from fastai.vision.all import *

from ultralytics import YOLO

import cv2

import numpy as np

import os

from scipy.spatial import ConvexHull

import joblib

y se definen las rutas a las que se accederá para importar los modelos utilizados en
la aplicación. Todo esto corresponde con el punto 1 del archivo app.ipynb.

2. Ejecutar el código imprescindible para importar los modelos. YOLO no requiere
ningún código adicional. Por su parte para FastAI se deben definir las métricas y
otros datos que usaron los modelos. Esto corresponde con los puntos 2 y 3.1 del
archivo app.ipynb.

3. Se define la funcionalidad que utilizará la aplicación para realizar los diagnósticos y
las segmentaciones. Lo que corresponde con el punto 3.2 del fichero app.ipynb.
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4. Se inicia la aplicación y se está en disposición de usarla. Para ello, se ejecuta el
código del punto 3.3 del archivo app.ipynb o del punto 3.4 del mismo fichero en
función de si se quiere utilizar o no FastAI en las segmentaciones. La primera de las
opciones es mucho más rápida.

Nota. En el archivo app.ipynb se muestran dos opciones de ejecución de la aplicación.
Son iguales, pero en una se ha quitado la opción de segmentar con los modelos de FastAI
para mejorar el rendimiento. Estos modelos tienen una gran cantidad de parámetros
y pueden resultar lentos. En la Sección 5.3.2 se muestra un ejemplo de los resultados
producidos con esta opción. Tras el apartado de ejecución de la aplicación sin FastAI, se
puede ejecutar la aplicación con FastAI en la sección siguiente del archivo app.ipynb.
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Contenido adjunto

En esta sección se recopilan los archivos y recursos adicionales que complementan el
desarrollo del proyecto. Estos elementos incluyen las implementaciones de código, gráficas
obtenidas y otros materiales relevantes que han sido generados o utilizados durante la
elaboración del trabajo, como es el caso de los datasets construidos para el entrenamiento
de los modelos.

Comencemos por explicar los archivos que corresponden con el código implementado.
El proyecto consta de dos cuadernos de Jupyter Notebooks, los cuáles se describen a
continuación:

app.ipynb. Este cuaderno de Jupyter contiene el código necesario para inicializar
la aplicación. De esta forma, como se explicó en el apéndice A, ejecutando este
archivo de manera secuencial se puede probar la aplicación desarrollada. Además,
se puede observar el funcionamiento de los modelos construidos para la propuesta
de la solución, ya que aqúı se integran todos los seleccionados por tener un buen
rendimiento.

Por otra parte, en este cuaderno se incluyen dos versiones de la aplicación. En la
primera, no se incluyen los modelos de segmentación con FastAI. Esta es mucho
más rápida que la segunda, la cual también contiene los modelos de segmentación
de FastAI.

development.ipynb. En este cuaderno se incluye el proceso seguido para la cons-
trucción de la solución. Para organizarlo de una mejor manera, este archivo se divide
en distintos puntos, en los que se explica:

• Solución mediante clasificación de retinograf́ıas con Deep Learning.
En este apartado se incluye el entrenamiento de todos los modelos destinados a
clasificación mediante Deep Learning. Además, también se recogen las métricas
para cada uno de ellos.

• Solución mediante segmentación de retinograf́ıas con Deep Learning
y clasificación con Machine Learning. En este apartado se incluye todo
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lo referido al problema de segmentación. Costa de dos partes principales. En
la primera, los modelos destinados a segmentación construidos tanto mediante
YOLO como mediante FastAI. Por otra parte, también se incluye un apartado
en el que se aborda el problema de clasificación mediante Machine Learning.
Cabe mencionar que para todos los modelos de esta sección del cuaderno tam-
bién se recogen las métricas para cada uno de ellos.

• Propuesta de implementación. En este apartado se construyen los ensem-
bles descritos en la presente memoria a lo largo de la Sección 4.7. Además,
también se recoge el proceso para desarrollar la aplicación final que se tiene en
el archivo app.ipynb explicada en el Caṕıtulo 5.

Dada la cantidad de memoria necesaria para almacenar todo el contenido generado a
lo largo del TFG, en la carpeta habilitada para subir el contenido adjunto se suben los
dos cuadernos de Jupyter Notebooks mencionados y los datasets originales. Estos siguen
la siguiente estructura:

GRP-GestionINF5G - TFG/

datasets/

drishti-gs/

rim-one/

rotterdam/

development.ipynb

app.ipynb

Por otra parte, para acceder al contenido completo, se tiene una cuenta de Google
Drive a la que se podrá acceder en caso de querer ejecutar la aplicación desarrollada; es
decir, el archivo app.ipynb. En este mismo lugar, también se disponen todos los datasets
con las modificaciones hechas para todos los tipos de entrenamiento tratados.

Para acceder a la cuenta de Google Drive se debe utilizar el siguiente correo y contra-
seña:

Correo: tfg.informatica.carlos@gmail.com

Contraseña: TFG informatica jvc 24-25
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A continuación se describe la estructura de directorios que se tiene en Google Drive:

Colab Notebooks/

datasets/

segmentacion/

clasificacion/

csv/

ensembles/

clasificacion/

modelos/

segmentacion/

clasificacion/

development.ipynb

app.ipynb

Aqúı, se tienen los datasets utilizados para entrenar todos los modelos, los archivos
csv construidos para entrenar los ensembles y la clasificación mediante Machine Learning
a partir de segmentación, los modelos seleccionados a lo largo del proyecto y los dos
cuadernos de Jupyter que se acaban de explicar.
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de 2025. Disponible en: https://www.aao.org/salud-ocular/enfermedades/que-
es-la-glaucoma
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[33] Maćkiewicz A., Ratajczak W., Principal components analysis (PCA), Computers &
Geosciences, vol. 19, no. 3, pp. 303–342, 1 de marzo de 1993. DOI: https://doi.
org/10.1016/0098-3004(93)90090-r

[34] Bank D., Koenigstein N., Giryes R., Autoencoders, arXiv (Cornell University), 2020.
DOI: https://arxiv.org/abs/2003.05991

[35] Stewart G.W., On the Early History of the Singular Value Decomposition, SIAM
Review, vol. 35, no. 4, pp. 551–566, 1 de diciembre de 1993. DOI: https://doi.
org/10.1137/1035134

[36] Documento sin t́ıtulo. Disponible en: https://sociedadoftalmologicademadrid.
com/revistas/revista-2013/m2013-03.html

[37] Cadena Ser C., Cadena SER, 11 de marzo de 2025. Disponible en:
https://cadenaser.com/comunitat-valenciana/2025/03/11/el-hospital-

universitario-del-vinalopo-de-elche-diagnostica-mas-de-400-casos-de-

glaucoma-cada-ano-radio-elche/

[38] Heydari A., Glaucoma Facts and Stats - Glaucoma Research Foundation, 16 de mayo
de 2025. Disponible en: https://glaucoma.org/articles/glaucoma-facts-and-
stats
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Time Object Detection, 2015. [En ĺınea]. Disponible en: https://arxiv.org/abs/
1506.02640.

[67] J. Pedro, Detailed Explanation of YOLOv8 Architecture — Part 1, 2023. [En ĺınea].
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[87] Regresión loǵıstica: Cómo calcular una probabilidad con la función sigmoidea. Dis-
ponible en: https://developers.google.com/machine-learning/crash-course/
logistic-regression/sigmoid-function?hl=es-419

[88] Birch. Photo by Carl Warner - SlideServe. 21 de marzo de 2019. Disponible
en: https://www.slideserve.com/birch/photo-by-carl-warner-powerpoint-

ppt-presentation

[89] Yosvani Orlando Lao-León, Ariam Rivas-Méndez, Milagros Caridad Pérez-Pravia,
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