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Resumen

El glaucoma es una de las principales causas de ceguera irreversible en todo el mundo.
Un diagnoéstico precoz de esta patologia podria evitar la pérdida progresiva de visién. Asi,
surge la necesidad de desarrollar herramientas que faciliten esta labor.

A lo largo de este trabajo se exploran diversas técnicas de aprendizaje profundo con
el objetivo de detectar el glaucoma a partir de una retinografia. Ademads, se construye
una aplicacion la cual integra todos los desarrollos conseguidos, de manera que permite
utilizar el estudio realizado en el entorno médico.

Respecto a las técnicas empleadas, van desde algoritmos propios del campo del Apren-
dizaje Automéatico como Support Vector Machine o Multi- Layer Perceptron para el analisis
de datos y la construccion de ensembles, hasta estrategias especificas del Aprendizaje Pro-
fundo para la visiéon por computador, como clasificaciéon y segmentacion, para lo que se
utilizaran arquitecturas de tipo YOLO y U-Net.

En referencia a los resultados obtenidos, se vera como se ha conseguido detectar y
segmentar de manera exitosa las distintas estructuras que se pueden reconocer en una
retinografia, llegando a obtener mas de un 95 % para la métrica escogida accuracy_camuvid.
Ademads, también se explicard como se llega a diagnosticar el glaucoma con un 97 % de
recall y un 94.96 % de aciertos. Lo que implica superar el resto de soluciones propuestas
para los datos utilizados.

Palabras claves: Deteccion del glaucoma, Aprendizaje Automatico, Machine Lear-
ning, Aprendizaje profundo, Deep Learning, Segmentacién de imagenes, Clasificacion de
retinografias, Visién por computador, Bioinformatica.






Abstract

Glaucoma is one of the leading causes of irreversible blindness worldwide. Early diag-
nosis of this pathology could prevent progressive vision loss. Thus, the need arises to
develop tools to facilitate this task.

Throughout this work, several Deep Learning techniques are explored with the aim
of detecting glaucoma from a retinography. In addition, an application is built which
integrates all the developments achieved, so that the study can be used in the medical
environment,.

About the techniques used, they include algorithms of Machine Learning, such as
Support Vector Machine or Multi-Layer Perceptron for data analysis and ensemble cons-
truction, to specific strategies of Deep Learning for computer vision, such as classification
and segmentation, for which YOLO and U-Net architectures will be used.

In reference to the results obtained, it will be shown how the different structures
that can be recognised in a retinography have been successfully detected and segmented,
obtaining more than 95 % for the chosen metric accuracy_camuvid. In addition, it will also
be explained how glaucoma is diagnosed with a 97 % of recall and a 94.96 % of successes.
This means outperforming the rest of the solutions proposed for the data used.

Keywords: Glaucoma detection, Machine Learning, Deep Learning, Deep Learning,
Image segmentation, Retinography classification, Computer vision, Bioinformatics.
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Parte 1

Descripcion del proyecto






Capitulo 1

Introduccion

1.1. Planteamiento del problema

En las ultimas décadas, el uso intensivo de dispositivos electronicos como teléfonos
moviles y ordenadores se ha convertido en una constante en la vida diaria. Esta exposicion
prolongada a pantallas se ha relacionado con un incremento en la prevalencia de miopia
a nivel mundial [1]. Ademds, otros factores relacionados con el uso continuado de estas
tecnologias, como la fatiga ocular o el enfoque continuo en distancias cortas, aumentan
las posibilidades de padecer miopia.

La miopia no solo es una afecciéon en si misma, sino que resulta un factor de riesgo
para sufrir otras patologias oculares como el glaucoma [4]. Segin [3], el glaucoma es
una enfermedad ocular que dana el nervio Optico, cuya principal causa es la tension
ocular elevada. Como consecuencia, genera puntos ciegos en la visién. Estas areas ciegas
van en aumento hasta la pérdida completa de la visién. Ademads, el glaucoma puede
desencadenarse por otras circunstancias, como infecciones oculares [4].

Para evitar que se dé esta pérdida paulatina de visién, es de vital importancia un
diagnostico y seguimiento precoz de la enfermedad. En caso contrario, como la disminucion
de la visién se produce de manera gradual, el paciente no sera consciente de los signos
hasta que el glaucoma haya progresado a fases avanzadas y el dano al nervio 6ptico
sea significativo. Por su parte, el diagndstico del glaucoma requiere un examen ocular
completo. Para llevarlo a cabo, como explica la Academia de Oftalmologia Americana [2],
se debe medir la presion ocular, examinar el nervio 6ptico, tomar una imagen del mismo
(retinografia), hacer una prueba de visién periférica y medir el espesor de la cérnea, entre
otros.

Debido a la serie de pruebas que se deben realizar para poder detectar el glaucoma,
junto con la necesidad de realizar un diagnostico precoz, surge la posibilidad de desa-
rrollar herramientas automaticas de apoyo al diagnodstico. Ademads, la revolucién de la
Inteligencia Artificial no ha dejado a ningun area de conocimiento indiferente, y ya se
estan produciendo los primeros avances mediante el uso de esta tecnologia en el sector
médico, y mas concretamente, en la deteccién de patologias oculares [6]. Asi, surge de
manera natural la posibilidad de aplicar estas técnicas para desarrollar una herramienta
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de diagnostico del glaucoma rapida y eficaz.

No abundan conjuntos de datos piblicos para la construccién de herramientas médicas
mediante técnicas de Inteligencia Artificial dada las restricciones establecidas para la
comparticién de este tipo de informacion. En la actualidad se encuentran algunos datasets
de referencia para el estudio del glaucoma mediante Inteligencia Artificial como los de
RIM-ONE DL [13] o EyePACS-AIROGS-light-V2 [9]. Estos bancos de datos publicos
permiten el estudio de los mismos con fines de investigacion.

Este trabajo se centra en el desarrollo de una herramienta de Inteligencia Artificial con
el objetivo de realizar un diagnéstico rapido y eficaz del glaucoma a partir de imagenes
oculares denominadas retinografias. De esta forma, se busca construir una herramienta ca-
paz de asistir a los oftalmdélogos en esta tarea de deteccién de la enfermedad del glaucoma,
para contribuir al desarrollo de sistemas mas accesibles, rapidos y precisos.

Con este objetivo, a lo largo de este trabajo se desarrollaran modelos basados en técni-
cas especificas dentro del campo de la Inteligencia Artificial, denominadas Aprendizaje
Automético (Machine Learning), y a su vez dentro de las mismas, algoritmos de Apren-
dizaje Profundo (Deep Learning), para la deteccion del glaucoma. Con este propdsito,
se utilizaran técnicas de segmentacion para imégenes, es decir, para senalar partes es-
pecificas, junto con otras para clasificar entre ojos sanos y glaucomatosos. Asi, se persigue
mejorar la precision y la eficiencia en la deteccién temprana de la enfermedad.

1.2. Objetivos del trabajo

Los principales objetivos que abarca este proyecto y orientan su desarrollo son los
siguientes:

= OBJ-01. Elaborar una herramienta para la deteccion del glaucoma en retinografias
mediante técnicas de aprendizaje profundo.

= OBJ-02. Dotar a dicha herramienta de un médulo capaz de identificar las estruc-
turas propias de las retinografias empleando métodos de segmentacion.

= OBJ-03. Estudiar el rendimiento en la clasificacion y segmentacion de retinografias

de ojos sanos y glaucomatosos mediante técnicas de aprendizaje profundo en base
a las métricas mas adecuadas para cada uno de ellos.

1.2.1. Restricciones

Ademas, dada la naturaleza del proyecto, surge el siguiente conjunto de restricciones:

= R-01 Limitacién temporal de entre 300 y 360 horas correspondientes a la carga de
trabajo establecida de 12 ECTS.
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1.3. Estructura de la memoria

1.3. Estructura de la memoria

A lo largo de esta memoria se exponen todas las etapas abordadas durante la elabora-
cion del proyecto planteado. Como consecuencia, este documento se divide en tres partes
fundamentales:

= Descripcion del proyecto. En esta primera parte se establecen los objetivos del
proyecto, se contempla la planificacion de los recursos disponibles y se describen
aquellos conceptos relacionados con el trabajo que se va a desarrollar. A su vez se
divide en los siguientes capitulos:

e Introduccion: incluida en el Capitulo 1 expone el problema que se aborda en
el proyecto sobre la deteccién del glaucoma, acompanédndolo de los objetivos y
restricciones planteados.

e Planificacién: incluida en el Capitulo 2 y detalla la estrategia elaborada para
gestionar correctamente los recursos temporales y gestionar los riesgos presen-
tados, se especifica la metodologia de trabajo, y se explican el presupuesto y
balance real.

¢ Antecedentes: incluidos en el Capitulo 3 tratan los conceptos cientifico-técni-
cos y médicos que se abordan en el proyecto, ademas de analizar el estado del
arte.

= Desarrollo de propuestas y resultados. Esta parte se divide en:

e Desarrollo de la propuesta y experimentaciéon: a lo largo del Capitu-
lo 4 se trata el desarrollo de las propuestas que permiten la consecucion de
los objetivos planteados. Se detalla el proceso de entrenamiento de modelos
de aprendizaje profundo, la extraccién de las caracteristicas relevantes en las
predicciones hechas por los modelos, y el andlisis de estos datos mediante al-
goritmos de Machine Learning para clasificar las retinografias entre pacientes
sanos y con glaucoma.

e Evaluacién de los resultados: a lo largo del Capitulo 4 se analizan los
resultados obtenidos tanto por los modelos de aprendizaje profundo para cla-
sificacion y segmentacion, como de los algoritmos de Machine Learning. Este
analisis se consigue estableciendo unas métricas adecuadas.

e Conclusiones y trabajo futuro: en el Capitulo 6 se realiza una reflexion
tanto a nivel técnico como personal sobre el desarrollo realizado, estudiando
los objetivos planteados en un inicio y las propuestas de valor elaboradas;
ademas, se detallan posibles vias de evolucién del proyecto.

= Apéndices. En esta ultima parte se explica el procedimiento para poder hacer uso
de los modelos construidos mediante los siguientes documentos:

e Manual de Instalacién.

e Contenido adjunto.
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Capitulo 2

Planificacion

2.1. Metodologia de trabajo

Durante el desarrollo del proyecto se ha utilizado una reinterpretaciéon de la meto-
dologia Scrum [15] para la organizacién del mismo, la cual es una metodologia agil que
promueve la colaboracién, flexibilidad y entrega iterativa e incremental de productos que
aporten valor. Su flujo de trabajo viene descrito en la Figura 2.1. Dadas las caracteristicas
propias de un Trabajo de Fin de Grado (TFG), se utiliza una adaptaciéon de Scrum de-
nominada SCORE [19]. Por otra parte, para el desarrollo de la propuesta se ha empleado
una metodologia complementaria a SCORE orientada a la realizacién de proyectos de
andlisis de datos. Se trata de la metodologia CRISP-DM [17].

SCRUM PROCESS %

Product
Owner

Daily
Scrum

S

Sprint
Review
+
Sprint
Retrospective

SPRINT
1-4 WEEKS

Product Sprint Planning Sprint Finished
Backlog Meeting Backlog Work

Figura 2.1: Flujo de trabajo de la metodologia SCRUM [16].



Capitulo 2. Planificacion

2.1.1. Ciclo de vida: SCORE

La metodologia SCORE [19] adopta practicas de los marcos de trabajo dgiles que per-
miten organizar el ciclo de vida del TFG en torno a los objetivos definidos en el proyecto.
Su objetivo principal es alcanzar las metas establecidas en el proyecto, garantizando la
participacién y comunicacion efectiva de todos los involucrados para optimizar la calidad
del producto final.

SCORE se puede utilizar para establecer una serie de objetivos centrados en estructu-
rar cualquier TFG, facilitando el aprendizaje y aportando una visién de alto nivel sobre el
trabajo que se pretende desarrollar. Ademas, estos objetivos se fundamentan en historias
de aprendizaje. Cada historia se caracteriza por un conjunto de resultados alcanzables
que funcionan como criterios de aceptacion y favorecen la consecucién del objetivo. Para
que una historia se considere completa, cada uno de los resultados debe quedar satisfecho.
Los objetivos que se contemplan para la consecucién del Trabajo de Fin de Grado son los
siguientes:

= Proyecto. El primer objetivo es plantear un proyecto con el fin de resolver un
problema de la vida real. Para ello, se define el problema a resolver, se establecen los
objetivos que se persiguen y se lleva a cabo una planificaciéon que permita ajustarse
a la carga de trabajo prevista.

= Antecedentes. Puesto que a lo largo del proyecto se tratan conceptos y temas
que pueden resultar desconocidos, se realiza un trabajo previo de contextualizacién
para comprender el planteamiento del problema y los objetivos del TFG. Asi, se
pretende obtener el conocimiento necesario para abordar el d&mbito de negocio y
cientifico-técnico.

= Desarrollo. Este objetivo se centra en la construccién de un producto de valor. Las
historias de aprendizaje que aqui se tratan para conseguir el objetivo dependeran de
la naturaleza del proyecto en funcién de si este es de desarrollo o de investigacion.

= Aceptacion. Se trata de evaluar si el producto se adectia a los resultados que
se pretende obtener. Al igual que el objetivo anterior, las historias en las que se
fundamenta dependeran de si el proyecto es de desarrollo o de investigacién. Por
otra parte, el estudiante discute los resultados obtenidos, incluyendo una valoracion
de los métodos utilizados.

= Comunicacion. Este objetivo combina habilidades de comunicacion oral y escritas,
y se materializa en las historias de aprendizaje que tratan de la redaccién de una
memoria técnica y del acto de defensa del proyecto. La memoria técnica condensara
todo el trabajo realizado, desde las primeras fases de adquisicién de conocimientos
hasta el desarrollo del proyecto y los resultados obtenidos. Por su parte, el acto de
defensa consistira en explicar el trabajo realizado ante un tribunal.
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2.1. Metodologia de trabajo

Como se ha explicado anteriormente, esta metodologia se fundamenta en Scrum, la
cual define en [15] una serie de roles, eventos y artefactos. Estos materiales se adaptan al
contexto académico de elaboracién de un TFG.

Roles

Las metodologias tradicionales para el desarrollo de un Trabajo de Fin de Grado tan
solo contemplan la relacién entre tutor y estudiante. Por su parte, con la metodologia
utilizada, se tienen en cuenta un mayor nimero de roles y relaciones entre ellos, pues es
un factor clave para el éxito en la ejecuciéon del TFG.

= Estudiante. Es el rol fundamental dado que desarrolla cada tarea especificada en las
historias de aprendizaje para la consecucion de los objetivos. Ademas, el estudiante
funciona como un rol central, pues se comunica con el resto de roles participantes
en el proyecto, asumiendo el feedback proporcionado por los mismos para mejorar
el producto construido.

= Tutor. Este rol lo desempenan uno o mas profesores que orientan el aprendizaje
del estudiante a través de un plan de seguimiento establecido por ellos mismos.
Durante el seguimiento, se encargan de aportar retroalimentacién sobre el desarrollo
del proyecto y orientan su avance. Ademds, colaboran en las primeras fases del
proyecto, ayudando al planteamiento del problema, la definicién de los objetivos y
facilitando las referencias que consideren oportunas para consolidar el conocimiento
necesario durante la realizacion del TFG.

» Comunidad. Este rol incluye a un amplio abanico de personas (estudiantes, pro-
fesores, expertos en la materia,...) capaces de aportar valor al proyecto. No tienen
ninguna responsabilidad especifica. Su funcién es la de aportar valor a través de
comentarios objetivos acerca del producto, lo que incrementa las oportunidades de
mejora.

» Tribunal. Comisién encargada de evaluar el TFG durante el acto de defensa del
mismo, adecuandose a la satisfaccién de los objetivos y la calidad tanto del producto
construido como de la defensa del mismo.

Eventos

Aunque SCORE adopta los métodos de SCRUM, los eventos que se definen en ambos
son diferentes, puesto que SCRUM es un marco mas genérico para todo tipo de proyectos;
mientras que SCORE se centra en identificar una serie de reuniones adaptadas a los pro-
cesos de investigacion. Con esta premisa, define dos tipos principales de eventos que seran
los mismos que se utilizaran para la realizacion del TFG, aunque debido a limitaciones
temporales y de atencién a otros compromisos, se modifican ligeramente los eventos de
esta metodologia para adecuarse a la situacién personal de cada uno de los conformantes
del proyecto:
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Capitulo 2. Planificacion

= Status meetings: son analogos a las reuniones de SCRUM denominadas daily
meetings, que tienen lugar diariamente. Por su parte, SCORE recomienda tener tres
de estas reuniones de manera semanal, manteniendo fijos los dias de su realizacion,
salvo causas justificadas. Para el caso concreto de este proyecto, dado que se debe
realizar en conjunto con otro TFG y otras asignaturas, se ha considerado oportuno
realizar una reunion de manera semanal para que las reuniones tengan contenido y
aporten valor al proceso.

Durante una status meeting, el estudiante se encarga de comunicar todas las tareas
que se han llevado a cabo desde la anterior reunion, los resultados alcanzados y las
posibles dudas u obstéculos encontrados en el proceso. Por su parte, los tutores del
proyecto aportan la correspondiente retroalimentacién de los avances que se les han
comunicado. Para finalizar la reunién, se establecen las lineas de progreso que se
seguiran hasta la siguiente reunién.

Al igual que ocurre con las daily meetings en SCRUM, la metodologia SCORE
establece una duracién para las status meetings de en torno a 15 o 20 minutos,
evitando ahondar en detalles técnicos y dejando los mismos para el otro tipo de
reunion: las on-demand meetings.

Para este proyecto, se ha establecido que una de cada dos reuniones tenga esta
duracion, y se le denominara weekly. Las restantes seran de una hora, dado que los
avances se producen de manera rapida y tan solo se cuenta con una reunién a la
semana por motivos temporales y de otras obligaciones. A estas ultimas se hard
referencia con el propio nombre de reuniones”.

» On-demand meetings. Dado que las status meetings deben servir para actualizar
el estado actual del proyecto evitando mencionar detalles técnicos, las on-demand
meetings suplen esta necesidad de tratar aspectos técnicos. Como indica su nombre,
las on-demand meetings se conciben bajo demanda expresa del estudiante. En estas
se discuten aspectos sobre la investigacién, resultados o métodos de una manera
mas profunda si fuese necesario.

Ademas de estos dos tipos de eventos, en ocasiones se comunica el estado del proyecto
si se considera necesario via correo electronico, lo que la metodologia SCORE define como
e-mail status reports. También por este canal se haran consultas breves, por ejemplo,
sobre aspectos técnicos del desarrollo. Esta comunicacién se hara via Teams y/o correo
electronico para tener un contacto directo en caso de necesitar algo mas de ayuda o una
respuesta mas urgente.

Artefactos

Los artefactos son elementos clave durante el desarrollo del proyecto que permiten
la transparencia y una visién clara del trabajo y el progreso del proyecto. Los artefactos
propuestos por SCORE se fundamentan en los ya establecidos por SCRUM [15], recibiendo
el mismo nombre:
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2.1. Metodologia de trabajo

= Incremento: resultado utilizable propio de cada sprint que aporta valor por si mis-
mo al proyecto satisfaciendo uno o méas de los objetivos propuestos. La superposicién
de incrementos a lo largo de los sprints conformara el producto final.

» Retroalimentacion: feedback recibido por el estudiante principalmente al final de
cada sprint. La retroalimentaciéon es un proceso continuo que se obtiene durante las
reuniones entre el estudiante y el resto de roles participes. Este artefacto permite
adaptarse a cambios propuestos y mejorar la calidad del producto.

2.1.2. Proceso de desarrollo: CRISP-DM

CRISP-DM [17] es una metodologia ampliamente utilizada en proyectos de desarrollo
enfocados en un anélisis profundo de datos. En concreto, promueve un enfoque iterativo
y ciclico que permite revisar y ajustar el desarrollo a medida que avanza el proyecto. Este
proceso se resume en la ilustracién de la Figura 2.2.

Business
Understanding

E

Data Modelmg

Data
Understanding

Data
Preparatlon

Figura 2.2: Esquema de desarrollo propuesto por la metodologia CRISP-DM [18].

Como se determina en la misma imagen, CRISP-DM establece una serie de etapas
de manera ciclica, que seran las que se lleven a cabo para cada sprint definido usando la
metodologia SCORE. A continuacién se describen las fases en que se basa el desarrollo
siguiendo la metodologia CRISP-DM.
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Etapas de desarrollo segin CRISP-DM

A continuacién se enumeran y explican cada una de las etapas que determina el proceso

de desarrollo de CRSIP-DM.

12

. Comprensién del negocio (Business Understanding). Esta fase se centra en de-

finir el problema que se aborda con el proyecto, asi como entender los objetivos del
mismo. En esta etapa también se analizan los recursos necesarios para abordar el
problema, asi como de los que se dispone, se analizan los riesgos y se estiman los
costes.

De esta manera, el resultado final de esta fase es un presupuesto de los costes que
acarrea el proyecto, un analisis de los riesgos que presenta su construccion, y un
estudio del negocio en el que se enmarca.

. Comprensién de los datos (Data Understanding). Una vez entendido el negocio

en el que se enmarca el proyecto, puesto que el mismo se centra en el uso de datos,
se pasa a comprender los mismos. Por tanto, se recopilan los datos disponibles y se
realiza un analisis inicial para evaluar su calidad, su relevancia y la relaciéon con los
objetivos del proyecto.

Asi, se hace un analisis de los datos que se tienen disponibles, analizando la calidad,
patrones o problemas de los mismos. Ademads, se estudian las variables que hay, si
faltan valores y qué tipo de datos son.

. Preparacién de los datos (Data Preparation). En esta fase se preparan los datos

para ser utilizados en los modelos. Es una fase critica que suele ocupar gran parte
del tiempo. En esta, se lleva a cabo una limpieza de los datos eliminando valores
nulos, duplicados, o que presenten algin otro problema en funcién del contexto del
proyecto.

Ademas, se seleccionan las variables que se van a tener en cuenta para el posterior
entrenamiento y se realizan las transformaciones necesarias sobre los datos como
normalizacion o escala de grises. Otro tipo de transformaciones incluyen la aplicacién
de filtros si los datos son imédgenes. Ademads, si fuera necesario, en esta etapa se
etiquetan los datos con sus correpondientes categorias.

. Modelado (Modeling). Se trata de seleccionar y entrenar los modelos de Inteligencia

Artificial que se consideren oportunos de acuerdo a los datos del problema. En
concreto, durante este proyecto se emplearan tanto técnicas de Machine Learning
como de Deep Learning, que mas adelante se explicaran en las Secciones 3.2.1 y
3.2.3, respectivamente.

. Evaluacién (FEwvaluation). En esta etapa se evalia el modelo de manera objetiva

para comprobar su rendimiento. Esto se consigue estableciendo una serie de métricas
como las que se definiran en la Seccién 3.2.4, que como su nombre indica, miden la
calidad del resultado obtenido.
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En esta fase, se comprueba si el modelo construido durante la etapa de modelado
es fiable y tiene utilidad para resolver el problema que se plantea; es decir, se debe
analizar si se ajusta a los objetivos del proyecto.

6. Despliegue (Deployment). En esta tltima fase se implementa el modelo construido
en un entorno real o se entrega de forma que los resultados puedan usarse en la
practica. Luego, el resultado del despliegue puede ser en forma de informe, API o
de una aplicacién, por ejemplo. En este proyecto el resultado del despliegue sera
una aplicacion en la que se integren los modelos construidos, que se presentara en
el Capitulo 5. Para su construccion, se debe tener en cuenta quién usara el modelo
y cémo se interpretan los resultados.

Asi, en este proyecto se realiza una planificacién temporal en base a los fundamentos
de SCORE, dividiendo el ciclo de vida en iteraciones. Por su parte, el proceso de desarrollo
dentro de cada iteracion viene determinado por la metodologia CRISP-DM a la que se ha
modificado ligeramente el esquema representado en la Figura 2.2. En vez de realizar un
analisis del entorno del negocio y de los datos para cada iteracién, tan solo se realizara
una unica vez al comienzo del desarrollo estas fases y cada iteracion consistird en la
preparacion de los datos, el modelado y la evaluacion de los resultados.

2.2. Planificacién temporal

La planificaciéon temporal para este proyecto abarca el periodo comprendido entre el
16 de diciembre de 2024 y el 21 de mayo de 2025. Durante el mismo, se estructura el
tiempo en base a un total de cinco sprints, de los que se supone que tendran una duracién
cada uno de ellos de entre 60 y 72 horas de trabajo, aproximadamente, para completar
las 300-360 horas que se supone que deberia durar la ejecucién de este proyecto.

Asi, teniendo en cuenta situaciones como los periodos de examenes, cada una de estas
cinco iteraciones se enmarca en las siguientes fechas:

Sprint 1: 16 de diciembre - 19 de febrero

Sprint 2: 19 de febrero - 20 de marzo

Sprint 3: 20 de marzo - 9 de abril

Sprint 4: 9 de abril - 30 de abril

Sprint 5: 30 de abril - 21 de mayo

Los estandares a abordar durante el trabajo en torno a los que se estructura la plani-
ficacion temporal son: Proyecto, Antecedentes, Desarrollo y Comunicacion, representados
en la Estructura de Desglose del Trabajo (EDT) en tonos morados, naranjas, verdes y
azules, respectivamente. Cada uno de estos estandares abarca un conjunto de tareas con-
cretas:
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= Proyecto.

e Planificacién del sprint. Abarca las tareas relacionadas con la organizacion
del sprint, definiendo el alcance y los plazos temporales de cada una de las
tareas concretas existentes.

e Caracterizacion del proyecto. Se refiere a la gestion del propio proyecto; es
decir, a la definicién de la motivacion, los objetivos, la metodologia, la planifi-
cacion y las conclusiones del proyecto.

e Desarrollo del sprint. Se trata de las tareas relativas al seguimiento del
sprint. Esto consiste en actualizar el tablero del proyecto y la prevision de las
reuniones, que seran en su mayoria de manera semanal.

e Finalizacion del sprint. Se trata de comunicar los progresos realizados du-
rante el sprint asi como de la recepcion del feedback generado por los tutores
para orientar el avance del proyecto. En este caso, como ya se ha explicado
anteriormente, el feedback se dara en cada reunion de manera semanal, por lo
que este objetivo se incluye dentro del estandar de desarrollo del sprint.

s Antecedentes.

e Estado del arte. Consiste en investigar a cerca de trabajos similares relacio-
nados con el area de estudio. Con esto, se valoraran las ventajas y limitaciones
de otras soluciones en el entorno de negocio para justificar la consecucion del
proyecto.

e Contexto cientifico-técnico. Marco tedrico sobre el que se inscribe el trabajo
desarrollado. Consiste en desarrollar las tareas necesarias para entender los
contenidos tedricos que involucra el proyecto.

= Desarrollo.
e Construccién. Se trata de la implementacién del producto en cuestién que se

trata a lo largo del proyecto.

e Diseno experimental. Se establece todo lo necesario para poder construir los
modelos involucrados en la solucién propuesta. Esto se refiere a la definicion de
los parametros del experimento, de los conjuntos de prueba y de las métricas
necesarias.

¢ Experimentacién y Analisis de Resultados. Implica el correspondiente
estudio de los resultados obtenidos y su relacién con el cumplimiento de los
objetivos definidos.

» Comunicacion.

e Presentaciéon. Construccién de una presentacion orientada al acto de defensa
del TFG. Se caracteriza por una contextualizacién del proyecto, seguida del
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desarrollo realizado, para acabar con una valoracién sobre el cumplimiento de
la planificacién y de los objetivos establecidos.

e Memoria. Se fundamenta en la elaboracion de la documentacién necesaria
sobre el proyecto.

Teniendo todo lo anterior en cuenta, se han organizado una serie de reuniones como
son las Status meetings y on-demand meetings ya tratadas. Estas han tenido lugar a lo
largo de toda la realizacion del proyecto, segiin se muestra en la Tabla 2.3.

. 16-dic.-24 | Status meeting . 19-feb 25 | Status meetz.ng
Sprint 1 10-feb 25 | Status meeting Sprint 2 | 05-mar.-25 | Status meeting
: 20-mar.-25 | Status meeting
oy 20-mar.-25 | Status meeting 5 09-abr.-25 | Status meeting
§ 26-mar.-25 | Status meeting §> 16-abr.-25 | Status meeting
%Q(’ 02-abr.-25 | Status meeting %Q* 23-abr.-25 | Status meeting
09-abr.-25 | Status meeting 30-abr.-25 | Status meeting

% 30-abr.-25 Status meeting

é{y 07-may.-25 | On-demand meeting
%Q* 14-may.-25 Status meeting
21-may.-25 Status meeting

Figura 2.3: Planificacién de las reuniones en cada sprint.

A continuacién se detalla la planificacién y el alcance individual de cada uno de los
sprints haciendo uso de una EDT y reflejando la relacion entre las actividades, su secuen-
ciacién y duraciéon mediante un cronograma. En este caso, el cronograma se trata de un
diagrama de Gantt.

2.2.1. Sprint 1

En este primer sprint se tratan las tareas pertenecientes a los objetivos: Proyecto, An-
tecedentes, Desarrollo y Comunicacién. Para poder organizar de una manera adecuada el
trabajo en esta primera iteracion, se ha elaborado una Estructura de Desglose del Trabajo
(EDT) que se puede observar en la Figura 2.4. Ademas, a partir de este mismo diagra-
ma, se ha especificado la duracién que deberia tener cada una de las tareas dispuestas,
construyendo asi el diagrama de Gantt correspondiente que se recoge en la Figura 2.5.

En general, este primer sprint estd enfocado en investigar el marco sobre el que se
encuadra el proyecto, adquiriendo conocimiento sobre las soluciones existentes al problema
que se plantea, ademas de comenzar con la construccion de los primeros modelos para
la deteccion del glaucoma. Como se ird viendo, con la consecucién de los sprints se ird
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reduciendo la parte dedicada a la investigacién del problema tratado y de los métodos
que se pueden usar en favor de mas trabajo en la parte de desarrollo.

2.2.2. Sprint 2

En este segundo sprint se aborda el problema de igual forma que en el primero. Se or-
ganiza el trabajo a desarrollar a partir del desglose de tareas que se encuentra representado
en la EDT de la Figura 2.6. Por otra parte, a partir de la misma se planifica de manera
temporal cada tarea, como se puede consultar en el diagrama de Gantt correspondiente
a la Figura 2.7.

Este sprint ya presenta una aproximacién mas real al problema, pues en el primero,
la parte técnica tan solo se encarga de construir modelos basicos a partir de los datos en
posesién y no se manipulan los datos como se hara de aqui en adelante. En particular, en
este sprint se resuelve el problema de la segmentacion de las estructuras necesarias dentro
de una retinografia, referido tanto a la parte de estudio e investigacién de estas técnicas
junto con el desarrollo de las mismas. Ademas, también se trata de abordar el problema
de la clasificacion a partir de los resultados obtenidos en la fase de segmentacion.

Aqui se trata de abordar de una manera més contundente los métodos necesarios para
alcanzar los objetivos propuestos, y esta sera la tonica en las siguientes iteraciones, donde
se disminuye la parte de investigacion, porque ya ha sido completada, en favor de una
mayor aportacion al desarrollo de propuestas que mejoren los resultados buscados.

2.2.3. Sprint 3

A lo largo de este sprint se profundiza en las técnicas para la clasificacion entre reti-
nografias de ojos glaucomatosos y sanos. Ademas, se utilizaran los resultados obtenidos
en la iteracién anterior para tratar de mejorar los resultados. Tras esto, se realizara una
comparativa con otras soluciones previas para comprobar si los nuevos métodos aportan
mas informacién en forma de mejores resultados.

Como se puede apreciar en la EDT de la Figura 2.8, una vez superadas las primeras
iteraciones en las que se divide el proyecto, la parte de recogida de informacién de los
antecedentes ocupa una menor parte del tiempo; mientras que la mayor parte del mismo
se destina al desarrollo de la propuesta de solucion.

Ademas, la organizacion temporal completa en base a las tareas establecidas se recoge
en el diagrama de Gantt de la Figura 2.9.

2.2.4. Sprint 4

En este sprint se prevé el refinamiento de los métodos realizados en el sprint anterior
para conseguir mejorar las métricas obtenidas. Las tareas que se van a desempenar se
encuentran recogidas en la EDT de la Figura 2.10 y consisten en una evolucion de las de
la etapa anterior.
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2.2. Planificacion temporal

Por su parte, la planificacién derivada de la EDT de la Figura 2.10 se recoge en el
diagrama de Gantt de la Figura 2.11.

2.2.5. Sprint 5

Este sprint contiene las tareas basadas en la agrupacién de los resultados de las ite-
raciones anteriores. De este forma, se espera que combinando los resultados se obtengan
otros aun mejores. Esto se hace mediante ensembles, que seran explicados en la Seccion
3.2, para lo cual, se realiza un pequeno estudio de en qué consisten.

Junto con los antecedentes y la construccién de la solucién, se desarrolla el objetivo
Proyecto para planificar el sprint. Todo esto se recoge en la EDT de la Figura 2.12,
completando la explicacion de la planificacién temporal de estas tareas en base al diagrama,
de Gantt de la Figura 2.13.

Carlos Jiménez Vaquero 17
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2.2. Planificacion temporal
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2.2. Planificacion temporal
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Capitulo 2. Planificacion

2.3. Presupuestos

En esta seccion se muestra un analisis detallado de los presupuestos que se deben
afrontar para la realizacion del trabajo. El presupuesto desempena un papel clave en la
planificacién y ejecucion de cualquier proyecto. Esto se debe a que facilita la estimacion
de los recursos necesarios para alcanzar los objetivos establecidos. Por ello, a continuacion
se detallan los costes en materia humana, software y hardware.

2.3.1. Hardware

Respecto a los recursos hardware, es fundamental para la realizacién de este trabajo
el uso de un ordenador y de una conexién Wi-Fi. Respecto al primer componente, se
ha hecho uso de un ordenador portatil OMEN con procesador Intel i7-7700HQ), tarjeta
grafica NVIDIA GeForce GTX 1050 y memoria RAM de 16 GB. Ademas, respecto a la
capacidad de almacenamiento, cuenta con 128 GB de disco HDD y 1 TB de SSD. Este
portétil se ha completado con un monitor AOC de 144 Hz y 27 pulgadas, junto con un
teclado Razer Huntsman Mini y un ratén inaldmbrico.

Respecto al Wi-Fi, se dispone de una tarifa plana mensual de la que se emplea para la
realizacion de este proyecto en torno a un 70 %. En la Tabla 2.1 se muestra el porcentaje
de uso de cada uno de los elementos descritos hasta el momento, ademas del coste que
representa para la realizacion del proyecto.

Componente Coste total | Porcentaje de uso Total

Ordenador portétil 1000 € 8% 80 €
Teclado 65 € 15% 9.75 €
Monitor 165 € 18% 29.70 €
Ratén inaldémbrico 12 € 7% 0.84 €

Conexion Wi-Fi | 20 €/mes | 70% (7 meses) 98 €
218.29 €

Tabla 2.1: Costes hardware previstos

2.3.2. Software

Los componentes software que se han empleado en el desarrollo del proyecto son todos
software libre sin coste, aunque en caso de que se tratase de una empresa, los costes serian
distintos. Para la redaccion de la memoria se ha utilizado Overleaf, mientras que Trello
y Microsoft Teams han facilitado la gestién del trabajo colaborativo, el seguimiento del
proyecto y la comunicacion.

Por su parte, Google Colab ha sido la plataforma principal para el desarrollo y en-
trenamiento de los modelos de inteligencia artificial, dado que proporciona un entorno
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de ejecucion con GPU sin coste. Por otro lado, el entorno Spyder ha sido empleado para
realizar pruebas con filtros de imagenes u organizar los conjuntos de datos, por ejemplo.
Para la elaboracion de diagramas y esquemas representativos, se ha utilizado Draw.io, y
para la planificacion temporal se ha recurrido a Gantt PRO.

Todo este software sera ejecutado a través del mismo ordenador portatil descrito en
la Seccion 2.3.1 con sistema operativo Windows 10. La Tabla 2.2 recoge los componentes
software que se usan a lo largo del proyecto, asi como sus respectivos costes.

Componente Coste | Total
Google Colab 0€ 0€
Spyder 0€ 0€
Overleaf 0€ 0<€
Trello 0€ 0€
Microsoft Teams | 0 € 0€
Draw.io 0€ 0€
Gantt PRO 0€ 0€
Windows 10 0€ 0€
0€

Tabla 2.2: Costes software previstos

2.3.3. Recursos humanos

Los recursos humanos han sido distribuidos para el desarrollo de un proyecto con una
duracion prevista de 360 horas. En este caso, como se trata de un TFG personal, todos los
roles son encarnados por una misma persona. En total, se han distinguido los siguientes
roles en funcion de la tarea que se desarrolla:

= Gestor de proyectos. Planifica y organiza el proyecto. En particular, se encarga
de los plazos y los recursos disponibles. Ademas, sera el medio de comunicacién entre
el equipo y los interesados. Su salario por hora es de 19.23 €/hora, segtin recoge

[73].

= Analista y Disenador. Recoge los requisitos del proyecto, define las funciona-
lidades que se deben desarrollar para satisfacerlos y disena la arquitectura de la
aplicacién antes del desarrollo. Su salario por hora es de 14.23 € /hora, como se
observa en [74].

» Cientifico de datos. Se encarga de procesar y analizar los datos, entrenando mode-
los de Inteligencia Artificial y extrayendo la informacién que sea 1til de los mismos.
Como se menciona en [75], su salario por hora es de 18.61 €/hora.

Carlos Jiménez Vaquero 29



Capitulo 2. Planificacion

» Programador y Tester. El programador implementa el cédigo segin los disenos,
integra los modelos y construye la aplicacién o sistema funcional. Ademés, para este
proyecto también hara las labores de tester. Para ello, se encarga de verificar que la
aplicacion construida funciona correctamente, detectando los errores de la misma.
Su salario por hora es de 14.33 €/hora, como se menciona en [76].

En la Tabla 2.3 se calcula el coste total en materia de recursos humanos que conlleva
la realizacién de este proyecto, teniendo en cuenta las horas de trabajo desempenadas
por cada rol y el sueldo por hora indicado anteriormente. Como se puede comprobar, en
las referencias dadas aparece el sueldo anual, por lo que se ha usado [77] para calcular el
sueldo por hora.

Cargo N@. puestos | Sueldo (por hora) | Horas totales | Salario total
Gestor de proyectos 1 19.23 €/hora 20 horas 384.60 €
Analista/Disenador 1 14.23 € /hora 65 horas 924.95 €
Cientifico de datos 1 18.61 €/hora 145 horas 2698.45 €
Programador /Tester 1 14.33 € /hora 130 horas 1862.90 €

5870.90 €

Tabla 2.3: Costes en materia de recursos humanos previstos

Adicionalmente al coste total en materia de recursos humanos, se debe asumir el coste
que supone dar de alta a un trabajador en la Seguridad Social (SS). Esto supone el 28.30 %
del salario bruto [55]. Luego, el coste total para afrontar los recursos humanos necesarios
para la realizacién del proyecto es

Costegrrpn = Total + SS = 5870.90€ + 28.30 % - 5870.90€ = 7532.36€

2.3.4. Costes totales

En las Secciones 2.3.1, 2.3.2 y 2.3.3 se analiza detalladamente cada uno de los tipos
fundamentales de recursos que interaccionan durante el proyecto. Una vez se ha desglosado
cada parte fundamental del presupuesto, se puede hacer un cémputo de los costes totales
que presenta el trabajo como se sigue en la Tabla 2.4.

Concepto Coste
Hardware 218.29 €
Software 0€
Recursos humanos | 7532.36 €
Total 7750.65 €

Tabla 2.4: Costes totales previstos.
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2.4. (Gestion de riesgos

La gestion de riesgos es un proceso fundamental para identificar, analizar y mitigar los
posibles eventos que podrian afectar al desarrollo del proyecto. Lo que se busca al realizar
una gestion de riesgos es garantizar que los objetivos del proyecto se cumplan dentro de
los plazos, costos y calidad establecidos.

Con este propésito, se identifican los riesgos que pueden hacer peligrar el proyecto.
Ademas, se analizan y evaliian para clasificar segin su probabilidad de ocurrencia e im-
pacto para priorizar la atencién segtin su importancia, y se planifica un plan de respuesta
para solucionar el problema ocasionado si el riesgo se materializa.

2.4.1. Identificacién factores de riesgo

El primer paso para poder gestionar un riesgo es tener constancia de él. La identifica-
cion de riesgos consiste en detectar y describir los riesgos potenciales que pueden afectar
al desarrollo del proyecto. Un estudio profundo sobre los riesgos que se pueden producir a
lo largo del proyecto permite anticiparse a ellos, pudiendo reducir el impacto que tienen
sobre el proyecto. En la Tabla 2.5 se recogen los posibles riesgos identificados para este
trabajo.

Riesgo

R-01 Retraso del proyecto respecto a la planificacion inicial
R-02 Falta de balanceo en los datos de entrenamiento
R-03 Limitacion temporal de uso de GPU en Google Colab
R-04 Falta de experiencia con técnicas de segmentacién de imagenes
R-05 Retraso y/o denegacion en la obtencién de permisos y datos
R.06 Las.car.acteristi.cas. como el brillo, el con.trajste o la saturacion

disminuyen significativamente el rendimiento del modelo
R-07 Diferencias entre los datos de entrenamiento y clinicos reales

R-08 | Modelos de segmentacion no detectan con alta precision las estructuras

R-09 | Dificultad para validar los resultados del modelo con expertos médicos

R-10 Las métricas de clasificacién no alcanzan valores satisfactorios

Tabla 2.5: Identificacion de riesgos.
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2.4.2. Estimacion de los riesgos

Para cada riesgo identificado se lleva a cabo su debido andlisis. En él, se estima la pro-
babilidad de que ocurra el evento estudiado, y el impacto que tiene en caso de ocurrencia.
Para poder cuantificar estas estimaciones, se utiliza un valor entero entre 0 y 5.

En la Tabla 2.6 se recoge la estimacién sobre la probabilidad que tiene un riesgo
de producirse. En concreto, la probabilidad de ocurrencia es la probabilidad de que se
produzca el evento que identifica el riesgo si no se lleva a cabo una accién preventiva.
Ademas, en esta tabla, junto con el valor entero del rango [0, 5], se precisara el valor de
la probabilidad de ocurrencia entre 0% y 100 %. Esta probabilidad tiene relacién directa
con el valor numérico dado previamente.

Ri Probabilidad Valor Justificacia
16580 de ocurrencia | Probabilidad Hstiicacion

El proyecto se realiza

R-01 20 % 2 simultdneamente con otras
asignaturas, incluido otro TFG
Es habitual en investigaciones

médicas que los datos contengan

R-02 40 % 3 .
muchos ejemplos sanos y pocos
casos con la patologia en cuestion
Google Colab restringe el uso
R.03 80 % 5 temporal de la CPU, y los

modelos a entrenar requieren
de mucho tiempo de entrenamiento

No se ha trabajado nunca con
R-04 50 % 3 técnicas de segmentacion,

tan solo clasificacién

Los datos utilizados para la

investigacion se solicitan al
Hospital Clinico de Valladolid y
requieren de autorizacion previa
Las imagenes pueden presentar
R-06 20 % 2 zonas con brillos que afecten
a la segmentacién y deteccion
Dependiendo de la diversidad
R-07 35% 2 de ejemplos puede que los datos
no cubran todos los casos reales
Los modelos entrenados pueden
R-08 30% 2 no cumplir con las expectativas
de rendimiento

R-05 40 % 3
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Riesgo Probablhda‘d Vak.nj Justificacion
de ocurrencia | Probabilidad
Se conocen expertos en la materia
R-09 10% 1 a los que habria que contactar para
evaluar el producto final
Puesto que se trata de una investi-
R-10 15% 1 gacion, es posible no obtener resu-
tados relevantes

Tabla 2.6: Analisis probabilidad de ocurrencia de cada riesgo.

Por su parte, en la Tabla 2.8 se analiza el impacto que tendra cada uno de los riesgos
identificados en caso de que se produzcan. Ademds del valor numérico entre [0, 5], el
estudio del impacto recoge la pérdida operacional y el impacto en los costes. La pérdida
operacional se refiere a las pérdidas econémicas que supondria no hacer frente a un riesgo;
mientras que el impacto en los costes mide el incremento sobre los costes totales si el

riesgo se produce.

. Pérdi I . .
Riesgo erd%da mpacto en Impacto Justificacion
operacional los costes
R.01 95./30 €por cada 5.8% 3 Como consecuencia 1o se entrega
dia de retraso en la fecha prevista el proyecto
Repercute en los resultados, pero
R-02 - - 1 . .
no tiene impacto en los costes
95.30 €por cada No tener §apac1dad suficiente de
R-03 , 11.6 % 5) procesamiento puede retrasar el
dia de retraso
desarrollo del proyecto
R-04 95.)30 €por cada 3.6% 9 El periodo de aprendizaje
dia de retraso puede retrasar el proyecto
R-05 95.?)0 €por cada 439 5 La busqueda de otras fuentes de
dia de retraso datos puede retrasar el proyecto
La construccion de filtros que
R-06 95',3 0 €por cada 2.9% 1 mitiguen los brillos de las imagenes
dia de retraso
puede retrasar el proyecto
Repercute en la utilidad de la
R-07 - - 1 investigacion, pero no tiene impacto
en los costes
Repercute en los resultados, pero
R-08 - - 1 . .
no tiene impacto en los costes
El producto final no tendra el mismo
R-09 - - 1 .
respaldo, sin afectar a los costes
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. Pérdid I t . .
Riesgo eraida Tpatto en Impacto Justificacion
operacional los costes
Repercute en los resultados, pero
R-10 - - 1 . .
no tiene impacto en los costes

Tabla 2.7: Analisis impacto de cada riesgo.

2.4.3. Matriz de Probabilidad x Impacto

La matriz de Probabilidad x Impacto es un artefacto que ayuda a organizar la prio-
ridad que se debe dar a un riesgo. Para ello, se calcula la exposicion, que viene dada
por

Ezposicion = Probabilidad x Impacto.

De esta forma, se asociada cada riesgo a un unico valor, denominado exposicién, que con-
templa tanto la probabilidad de ocurrencia como el impacto. Este valor permite clasificar
los riesgos segun la prioridad con la que se deben tratar:

» Prioridad alta (en color rojo): Ezposicion > 10.
» Prioridad media (en color amarillo): 5 < Exposicion < 10.

» Prioridad baja (en color verde): Exposicion < 5.

En la Tabla 2.8 se muestra la probabilidad e impacto de cada riesgo identificado, asi
como su valor de exposicion.

Riesgo | Probabilidad | Impacto | Exposicion
R-01 2 3 6
R-02 3 1 3
R-03 5 5 25
R-04 3 2 6
R-05 3 3 9
R-06 2 1 2
R-07 2 1 2
R-08 2 1 2
R-09 1 1 1
R-10 1 1 1

Tabla 2.8: Matriz de Probabilidad x Impacto
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Atendiendo al valor de exposicién presentado en la Tabla 2.8, se observa que el tinico
riesgo con prioridad alta es R-03. Este riesgo necesita de una actuaciéon inmediata para
que no interfiera con la actividad del proyecto. A continuacion se presentard un plan de
contingencia tanto para los riesgos con mas prioridad como para el resto.

2.4.4. Plan de contingencia

Tras analizar en detalle cada uno de los riesgos identificados, se plantea el plan de
contingencia para cada uno de ellos recogido en la Tabla 2.9. Ademas, se presentan en
orden de prioridad atendiendo a su valor de exposicion.

Riesgo | Plan de contingencia

R-01 | Establecer una planificacién realista teniendo en cuenta periodos
de exdmenes y ritmo de trabajo

R-02 | Usar técnicas de data-augmentation

R-03 | Tener disponible més de un entorno de Google Colab

R-04 | Dedicar tiempo de investigacién y lectura a la adquisicion de los
conocimientos necesarios

R-05 | Explorar distintas vias de obtencién de los datos

R-06 | Experimentar con distintos filtros en el preprocesado de imagenes
y analizar los resultados obtenidos con cada uno

R-07 | Controlar una amplia variedad de imagenes de prueba para com-
probar la correcta funcionalidad independientemente de la imagen
analizada

R-08 | Plantear distintas soluciones en la construccién de los modelos y
realizar un postprocesado para mejorar la segmentacion

R-09 | Controlar una amplia variedad de imagenes de prueba para com-
probar la correcta funcionalidad independientemente de la imagen
analizada

R-10 | Explorar distintas vias de clasificacion desde Machine Learning a
partir de los parametros extraidos en las segmentaciones como cla-
sificacion con Deep Learning. Mostrar un analisis detallado con ide-
pendencia de los resultados.

Tabla 2.9: Plan de contingencia de riesgos
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2.5. Balance temporal y econémico

Esta seccién tiene como objetivo analizar dos aspectos fundamentales del desarrollo de
un proyecto: el tiempo y los recursos econémicos que se han utilizado para su realizacion.

2.5.1. Balance temporal

En el balance temporal del proyecto se presentan los recursos temporales requeridos
para realizar las distintas fases de trabajo. De esta forma, se especificaran a continuacion
las desviaciones ocurridas respecto a la planificacién prevista que se describid en la Seccion
2.2.

La primera de las desviaciones respecto a la planificacion temporal repercute en el
estandar Comunicacién. Las tareas que se recopilaron en las EDT de cada sprint se referian
a la elaboracion de la memoria. Sin embargo, no se reservé tiempo para la redaccién de
la memoria. En consecuencia, se retrasa la finalizacion del proyecto completo y de la
preparacién para la defensa dos dias respecto de la planificacion inicial.

Por otra parte, aunque en la planificaciéon temporal no quedé reflejado, dada la po-
tencial aplicacién en el campo de la medicina para apoyar el diagnéstico del glaucoma a
través de una solucién como la que se propone desarrollar, se considerd oportuno realizar
una solicitud de acceso a un conjunto de retinografias en posesién del Hospital Clinico
Universitario de Valladolid, con el objetivo de contar con datos clinicos reales y represen-
tativos. El objetivo de esta peticién es poder colaborar con el sistema de sanidad ptblica,
desarrollando una herramienta de manera gratuita para su mejora o evolucion.

Sin embargo, tras un total de tres meses de tramites burocraticos, la autorizacion para
la concesién del dataset fue rechazada por el Comité de Etica de Investigacion Clinica del
Area de Salud de Valladolid, quedando supeditada a una posible revision y aprobacién
por parte de la Consejeria de Sanidad. Como se pretendia acabar con la realizacién de este
proyecto durante el curso 2024-2025, frente al aplazamiento y demora para la autorizacion
de acceso a las iméagenes, se optd por paralizar esta via y comenzar este estudio a partir
de conjuntos de datos publicos.

Luego, como se ha mencionado con anterioridad, en la planificacién temporal no quedd
reflejado este hecho porque no se realizé la misma, ni se comenz6 el proyecto, hasta que
no se tuvo la resolucion de la solicitud. Aun asi, se ha optado por explicar este hecho
como parte del balance temporal, ya que tiene repercusiones en cuanto al retraso en el
comienzo del proyecto.

2.5.2. Balance econémico

Aqui se detalla el coste que acarrea este proyecto y su desviacion respecto al presu-
puesto estimado descrito en la Seccion 2.3. Igual que se hizo para el presupuesto, para el
balance econémico se describen los costes en recursos humanos, software y hardware.

Respecto al software y hardware utilizados para el desarrollo del proyecto, no se ha
requerido del uso de ningin recurso adicional. Por otro lado, como se ha indicado en
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el balance temporal de la Seccién 2.5.1, la no reserva de tiempo para la elaboracién de
la presentacion que se utilizard en el evento de defensa del TFG retrasa en dos dias la
finalizacién del proyecto, que, como se describi6é en la Seccion 2.4, conlleva un coste de
95.30 €por cada dia de retraso. Por tanto, esto eleva los costes finales a un total de

7750.65 € +2-95.30 € = 7941.25 €.
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Capitulo 3

Antecedentes

En este capitulo se describe en detalle el contexto cientifico-técnico del proyecto; es
decir, la presente seccién trata de ubicar el marco tedrico general sobre el cual se asienta
la solucién propuesta al problema planteado de deteccién del glaucoma. Para ello, se
dividen los antecedentes en tres partes claramente diferenciadas en funcion del area de
conocimiento en el que se incluyen:

» Area médica. Para entender con claridad el objetivo que se persigue con este
proyecto y las soluciones definidas, es importante conocer el contexto médico sobre
el que se trabaja. Con este propdsito, en la Seccién 3.1 se ilustra la anatomia y
fisiologia del sistema ocular. Tras esto, se presenta la patologia que se pretende
diagnosticar, el glaucoma.

Ademas, se explica qué es una retinografia, puesto que es el tipo de dato que se usa
para construir la soluciéon que se pretende que detecte el glaucoma. Junto con la
retinografia, se explican las estructuras que se identifican en la misma, pues seran
de utilidad a lo largo del proyecto.

= Area informética y de ciencia de datos. A la vista de los objetivos del proyecto
descritos en la Seccion 1.2, este es el campo de conocimiento principal sobre el
que se desarrolla este trabajo. A lo largo de la Seccién 3.2 se tratan las técnicas de
Machine Learning, y Deep Learning que pueden ser de interés para la persecucion de
los objetivos. Junto con el concepto de Deep Learning, se trata el de redes neuronales
sobre el que se sustenta.

Por otra parte, para evaluar los modelos de prediccién construidos a través de las
técnicas de Machine Learning y Deep Learning, es necesario el uso de métricas que
permitan identificar cual es la mejor solucién. Por este motivo, en la Seccién 3.2.4
se explican las métricas utilizadas para este trabajo. Ademas, en la construccion de
los modelos se contemplan distintas variaciones de los datos aplicando una serie de
filtros que se describen en la Seccién 3.2.5.

= Area matematica. Tras encontrar las estructuras propias de una retinografia, se
lleva a cabo un postprocesado de la imagen. Con este fin, se explotan técnicas
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que emplean conceptos matematicos como el de envolvente convexa o componentes
conexas, definidos a lo largo de la Secciéon 3.3.

3.1. Contexto médico

A lo largo de esta seccién se detalla la anatomia y fisiologia del sistema ocular. Tras
entender esto, se estard en disposicién de presentar qué es el glaucoma, sus causas y
sus consecuencias. Finalmente, se explica en qué consiste una retinografia, asi como las
estructuras que se distinguen en la misma.

3.1.1. Anatomia y fisiologia ocular

A grandes rasgos, el funcionamiento del ojo es similar al de una camara fotografica. Su
funcionamiento consiste en capturar los rayos de luz entrantes en el globo ocular para que
el cerebro los interprete. A continuacién se explica este proceso en detalle, describiendo
cada uno de los elementos que conforman el sistema 6ptico representado en la Figura 3.1.

humor vitreo

humor 4
acuoso \ )““

cornea ——
pupila —ll
iris %\W
conjuntiva

{

retina

N
I

P

nervio
Optico

cristalino

Figura 3.1: Anatomia del sistema éptico [82].

En primera instancia, cuando la luz llega a la parte frontal del globo ocular, se topa
con dos lentes. Estas lentes son la cérnea y, tras esta, el cristalino. Ademds, entre estas
dos estructuras se localiza el iris, y la cavidad que genera, la pupila. La funcién de la
pupila es regular la cantidad de luz entrante en el globo ocular; mientras que el iris es
quien controla el tamano de la pupila para que esto suceda.

Por tanto, los rayos de luz atraviesan una primera lente, que es la cérnea. A continua-
cién, pasan por la pupila para llegar al cristalino. Este tltimo es una lente flexible que se
encarga de enfocar la luz para proyectarla contra las paredes del fondo del globo ocular,
como se representa en la Figura 3.2. Estas paredes son la retina.

La retina es una capa de tejido nervioso que recubre la parte interna y posterior del
ojo. Siguiendo con la analogia de la camara, la retina es el sensor de esta. Como se ha
explicado, su funcién principal es captar la luz y convertirla en senales eléctricas para
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Retina

Figura 3.2: Diagrama representativo del funcionamiento del ojo [83].

que viajen hasta el cerebro a través del nervio éptico. Con este fin, la retina contiene una
serie de subcapas, recogidas en la Figura 3.3, cada una con una funcién especifica, para
recoger los distintos colores que se proyectan sobre la retina y reportar esta informacion
al cerebro a través del nervio éptico.

Vasos de la Retina

Macula

Mervio Optico

Fotorreceptores
EPR

Membrana de Bruch

Coroldes
Retina Neurosensorial
Esclera

Figura 3.3: Diagrama representativo del funcionamiento del ojo [84].

Esta tltima estructura mencionada, el nervio éptico, estd compuesto por mas de un
millén de fibras nerviosas que son los axones de las neuronas que recogen la informa-
cién proyectada sobre la retina [36]. Para entenderlo con una analogia propuesta por la
Academia Americana de Oftalmologia [2], el nervio éptico es similar a un cable eléctrico
compuesto por muchos alambres pequenos que conducen la informacion al cerebro.

Una vez entendido a grandes rasgos cémo funciona el sentido de la vista, queda destacar
un elemento importante en este sistema previo a la introduccién del glaucoma, el humor
acuoso. Este es un liquido transparente que se encarga de lubricar las dos lentes del ojo:
la cornea y el cristalino. Como relata la Academia Americana de Oftalmologia [2], el ojo
produce humor acuoso constantemente, y a medida que fluye nuevo humor acuoso en el
0jo, debe drenarse la misma cantidad. Ademads, cabe mencionar que la transparencia de
este liquido permite el paso de la luz.
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3.1.2. Glaucoma

El glaucoma es una enfermedad ocular que dana el nervio 6ptico. Generalmente, se
produce cuando aumenta la presion en el ojo. Como se ha explicado en la seccion anterior,
el sistema ocular genera humor acuoso de manera sostenida. Si no se drena por completo,
se acumula este fluido, aumentando la presion ocular. Este aumento en la presion ocular
puede danar al nervio 6ptico, lo que conlleva el surgimiento del glaucoma [2].

Como consecuencia al aumento de la presién, las fibras nerviosas del nervio éptico
mueren. Debido a la pérdida de las fibras nerviosas, no se recoge la luz proyectada en
los lugares donde han muerto; de esta forma, se desarrollan puntos ciegos en la vision.
En general, las fibras que se pierden primero son las mas alejadas del nervio 6ptico, lo
que hace que el campo de visién se vaya cerrando. Puesto que este proceso es paulatino,
puede que el paciente no note los puntos ciegos hasta que hayan muerto la mayoria de las
fibras del nervio 6ptico. En caso de que todas las fibras mueran, el usuario que padezca
glaucoma se quedara ciego.

Estadisticas

El glaucoma es una enfermedad relevante por su frecuencia y potencial gravedad, ya
que, como asegura la Sociedad Espanola del Glaucoma (SEG) [3], esta enfermedad es,
junto con la diabetes (retinopatia diabética), la principal causa evitable de ceguera en
Espana; ademds de afectar a mds del 3% de la poblacién. Como reportaba la Cadena
SER el pasado mes de abril de 2025 [37], en un solo hospital, en este caso el Hospital
Universitario de Elche, se diagnostican mas de 400 casos de glaucoma anualmente.

Segin el Instituto Catalan de la Retina (ICR) [4] y la SEG [3], esta enfermedad
es cronica, progresiva e irreversible. Luego, la ceguera podria evitarse diagnosticando y
tratando la enfermedad de manera adecuada, cobrando especial relevancia facilitar el
diagnéstico precoz de la enfermedad.

Ampliando el foco al contexto internacional, segin la Glaucoma Research Foundation
de Estados Unidos [38], la prevalencia en el pais es de alrededor de 4.22 millones de
personas. Globalmente, esta cifra alcanzé en 2020 los 80 millones de personas. Reforzando
la proposicién de que es una causa importante de ceguera evitable junto con la diabetes,
segliin este mismo organismo, el glaucoma encabeza las causas de ceguera globales, solo
por detrds de las cataratas, siendo responsable de entre el 9% y el 12% de los casos, lo
que representa 5.9 millones de personas.

3.1.3. Retinografia

Una retinografia es una prueba diagnéstica no invasiva que permite capturar imagenes
detalladas de la parte posterior del ojo; es decir, del fondo del ojo [39]. Para llevar a cabo
una retinografia, se emplea un microscopio adaptado junto con una camara de manera que
proporcionan una vista de en torno a 50° en torno al nervio éptico para una retinografia
central, o si se trata de una retinografia de campo amplio, mds de 200° de amplitud [40].
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Para llevar a cabo esta prueba, si se trata de una retinografia central, se deben aplicar
unas gotas de un colirio ciclopéjico en la superficie del ojo para dilatar la pupila. Como
indica el Instituto de Microcirugia Ocular [40], en ambos casos se tarda entre 5 y 10
minutos en tomar la imagen, aunque para el caso de la retinografia central hay que
esperar previamente en torno a 15 minutos para que el colirio dilatador haga efecto.

Una retinografia es de utilidad para la deteccion de enfermedades que afectan a la
parte posterior del ojo; en particular, el glaucoma. Ademads, presenta un aspecto como el
que se muestra en la Figura 3.3, pudiendo identificar una serie de estructuras clave:

= MAacula. Es la parte central de la retina y aparece de color méas oscuro en las
retinografias. En la Figura 3.4, aparece una parte con mayor brillo, y a su izquierda
otra region con mayor sombreado. Esta segunda es la macula. Esta estructura se
puede identificar en la representacién de la Figura 3.2 como el punto focal. La
macula es la zona con maés conos; es decir, fotorreceptores especializados en el color
y el detalle. Ademas, a la parte central de la macula se le denomina fovea.

Figura 3.4: Diagrama identificativo del disco y la copa en una retinografia [9].

= Nervio 6ptico. Esta parte se ha explicado en la Seccién 3.1.1. Ademas, en la
retinografia es facilmente distinguible por tener tonalidades més claras y presentar
un mayor brillo, como en el ejemplo de la Figura 3.4. Por otra parte, la regién del
nervio optico se identifica cuando se localizan las dos estructuras que se tratan a
continuacion, y se denomina cominmente zona o regiéon ONH.

= Disco 6ptico. Punto de unién entre el nervio 6ptico y el ojo. Es una estructura re-
donda y clara, visible en las retinografias como se muestra en la Figura 3.5. Ademas,
por esta regiéon del ojo es por donde entran y salen los vasos sanguineos.
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Copa

1"" Disco
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Figura 3.5: Diagrama identificativo del disco y la copa en una retinografia [11].

» Copa Optica. Parte central del disco éptico. Su disposicién frente a la del disco
viene identificada en la Figura 3.5. Su tamano varia dependiendo de la persona.
Ademas, en presencia de glaucoma, la copa puede agrandarse. Para la deteccion de
esta patologia, cuanto mas grande es la copa respecto al disco, es mas probable que
el nervio 6ptico esté danado.

3.2. Contexto teorico

Este proyecto se sustenta sobre el area de conocimiento de la Inteligencia Artificial.
Su objetivo es la construccion de modelos. En el campo de la Inteligencia Artificial, un
modelo es una representacion computacional que, por lo general, aprende a realizar una
tarea especifica a partir de los datos. También puede hacerlo a partir de reglas si se trata
de sistemas expertos. En concreto, es un sistema que aprende patrones de los datos para
predecir, clasificar, detectar o generar informacién nueva.

En la propuesta de solucién del proyecto, se emplearan distintos procesos para la
construccién de modelos. A lo largo de esta seccién, se repasara de manera tedrica cada
una de estas técnicas, desde los algoritmos tipicos de Machine Learning, pasando por las
redes neuronales, hasta la construccion de modelos propios del Deep Learning.

3.2.1. Machine Learning

El Machine Learning o Aprendizaje Automatico es la rama de la Inteligencia Artificial
que se centra en el diseno y desarrollo de algoritmos que permiten a los ordenadores
mejorar su desempenio en la realizacién de una tarea a partir de la experiencia [20]. Esta
experiencia viene dada en forma de datos. Luego, como se explica en [21], el Machine
Learning permite a los sistemas aprender y mejorar de forma auténoma a partir de datos.
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Siguiendo [21], segiin la forma en la que se utilicen los datos para adquirir conocimiento,
podemos dividir los algoritmos de Machine Learning en distintas categorias: aprendizaje
supervisado, no supervisado, semisupervisado, autosupervisado y por refuerzo [28]. A
continuacion se explica con més detalle cada una de ellas, prestando mas atencion a las
dos primeras, pues son las que aparecen en el desarrollo de la propuesta de solucién del
problema que se explica en la parte I de este documento.

Tipos de algoritmos de Machine Learning

= Aprendizaje supervisado: Este tipo de Machine Learning se basa en entrenar
modelos con datos etiquetados; es decir, de los que se conoce el resultado esperado
[23]. El objetivo es aprender un cierto concepto a partir de ejemplos de los que se
conocen un conjunto de atributos y los resultados esperados (variable objetivo). Co-
mo se distingue en [28], a su vez el aprendizaje supervisado comprende dos variantes
principales:

e Algoritmos de regresion: la variable objetivo es una variable numérica con-
tinua [23]. Estos algoritmos tratan de encontrar una funcién que lleve un con-
junto de atributos conocidos en el valor de la variable objetivo. Luego, tratan
de ajustar los datos a una funcién minimizando el error cometido, surgiendo
asi algoritmos como los de regresion lineal o regresion logistica.

e Algoritmos de clasificacion: la variable objetivo es discreta [23]; es decir, se
busca clasificar cada elemento en una de las categorias definidas. Este tipo de
algoritmos se basan en la busqueda de patrones que sigan las caracteristicas de
cada clase y usar ese conocimiento para determinar la clase a la que pertenecen
nuevos elementos.

Entre los algoritmos de aprendizaje supervisado que se emplearan en este proyecto,
se incluyen algunos como K-NN (K-Nearest Neighbors - K vecinos més cercanos)
[30], SVM (Support Vector Machines - Méquinas de Vectores Soporte) [31], arboles
de decisién [24] o aprendizaje bayesiano [23]. Todos ellos se revisitardn mas adelante
para dar una explicacién detallada de cada uno.

= Aprendizaje no supervisado: frente a los algoritmos de aprendizaje supervisado,
se tienen los algoritmos de aprendizaje no supervisado. Estos se emplean cuando no
existe ningin tipo de etiquetado en los datos y no se necesita ningin conocimiento
previo [28]. Ademads, como se explica en [29], se pueden dar tres enfoques principales
para los algoritmos de aprendizaje no supervisado:

e Algoritmos de clustering: la agrupacion en cliusteres es una técnica que
agrupa datos no etiquetados en funcién de sus similitudes o diferencias [29].
Entre los algoritmos de clustering destaca el de k-means o k-medias [32], del
que se hace uso para la solucién propuesta al problema planteado.
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e Algoritmos de asociacién: método basado en una serie de reglas que se
emplean para detectar y abstraer las relaciones existentes entre un conjunto de
datos determinado.

e Algoritmos de reduccion de dimensionalidad. En ocasiones el conjunto
de atributos o caracteristicas que se tiene sobre los datos es demasiado ele-
vado. Esto incide en el rendimiento y dificulta la visualizacién de los datos.
Para solucionar este problema se lleva a cabo la técnica de reduccion de di-
mensionalidad, que consiste en disminuir el nimero de entradas de datos a
un tamano manejable, tratando de perder la menor cantidad de informacién
posible. Como se describe en [29], los principales algoritmos de reduccién de
la dimensionalidad son: el anélisis de componentes principales (PCA) [33], la
descomposicién en valores singulares [35], y los codificadores autométicos [34].

= Aprendizaje por refuerzo: entrenamiento de los algoritmos a través de un sistema
de recompensa y castigo [23]. Tipicamente, se define un agente que realiza acciones
en un entorno especifico para alcanzar un objetivo determinado. Por otra parte,
se contempla una métrica para recompensar o penalizar las acciones que el agente
toma para lograr el objetivo. Se usan con frecuencia para ensenar a los robots a
reproducir tareas humanas.

= Aprendizaje semisupervisado: combina el aprendizaje supervisado y el no su-
pervisado; es decir, dentro del conjunto de datos con el que se construye el modelo,
se tiene un conjunto de datos no etiquetados, y otro etiquetado [23] que guia el
proceso de aprendizaje. Usualmente, el conjunto de datos sin etiquetar es mucho
mayor que el etiquetado [28].

= Aprendizaje autosupervisado: estos modelos, también llamados de aprendizaje
predictivo, usan datos no etiquetados. Emplean parte de la entrada para aprender de
la otra parte, generando asi etiquetas y transformando los problemas no supervisados
en supervisados [28]. Este tipo de algoritmos es usado para problemas de computer
vision o procesamiento del lenguaje natural.

Algoritmos Machine Learning

A continuacién se van a definir brevemente ciertos algoritmos de Machine Learning,
que tipicamente son de los mas utilizados, puesto que se hara uso de ellos en el desarro-
llo de la propuesta del Capitulo 4. Estas explicaciones estdn extraidas en su mayoria de
[23]. La mayor parte de los algoritmos que se mencionan son de aprendizaje supervisado,
puesto que conocemos los resultados esperados; es decir, el valor objetivo. Aunque tam-
bién se menciona algiin algoritmo de aprendizaje no supervisado, mas concretamente, de
clustering.

K-Nearest Neighbors (K-NN). Este algoritmo de aprendizaje supervisado almace-
na los ejemplos de entrenamiento. Para clasificar una nueva instancia, utiliza una funcion
de distancia para determinar los K elementos mas cercanos. Por ejemplo, supongamos
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que la nueva instancia es © = (x1,...,x,) donde n es el numero de atributos conocidos.
. _ . . ) . N .

Si usamos K = 1 y tomamos la distancia euclidea, clasificaremos el nuevo elemento igual

que el elemento conocido y = (y1, ..., ¥y,) que minimice

d(z,y) = \/(xl —y)? e+ (xn - yn)2'
En resumen, para K = 1, el nuevo elemento que se pretende clasificar se encasilla en

la misma clase del elemento conocido mas cercano, como se representa en la Figura 3.6.
En general, se clasifica a partir de los K elementos mas proximos de manera analoga a

partir de la clase a la que pertenecen.
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Figura 3.6: Representacion de una prediccion con el algoritmo K-NN [85].

Aprendizaje bayesiano. Dado un conjunto de atributos, permite determinar la
hipé6tesis mas probable (h) para un conjunto de entrenamiento (D) a partir del teore-
ma de Bayes:

P(h|p) = LML) “;'Z);; ()

Naive Bayes es el algoritmo principal, aunque existen otras técnicas como Bernoulli-Naive
Bayes o Redes Bayesianas.

Arboles de decisién. Esta técnica consiste en la construccién de un drbol en funcién
de los valores de los distintos atributos que forman el problema a resolver. Los arboles
van dividiendo el espacio de caracteristicas de los datos de entrenamiento en rectangulos
paralelos a los ejes como se ilustra en la Figura 3.7, siendo ttiles tanto para clasificacion
como para regresion.

De esta forma, en los nodos interiores del arbol construido aparecen los atributos sobre
los que se pregunta; en los arcos, los posibles valores que pueden tomar los atributos del
nodo interior donde salen; y en las hojas del arbol se recoge el valor objetivo.

Regresién lineal. Este algoritmo trata de aproximar la distribucion de los datos a
una recta para calcular la variable de salida y. Para el caso en el que solo tengamos una
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Figura 3.7: Representacion de un arbol de decisién y su division del espacio de caracteristicas [86].

variable de entrada z (regresién lineal simple), la recta tiene la forma y = max + b, y el
aprendizaje trata de encontrar los parametros b y m que mejor se ajustan a los datos de
entrenamiento.

Por otra parte, es usual que tengamos mas de una variable de entrada. En este caso,
diremos que el algoritmo es de regresion lineal multiple. Suponiendo que tenemos las
variables de entrada xq,xs,...,2,, vy siguiendo el caso de la regresion lineal simple, se
busca aproximar los datos con una funcién de la forma y = ayx1+. ..z, +b. El proceso
de aprendizaje tratard de determinar los valores b y a; con 1 < i < n.

Regresion polinédmica. De igual forma que surgen los algoritmos de regresiéon lineal
para ajustar los datos a rectas, se pueden usar otras funciones para modelar la relacion
entre los datos de entrada y salida. En caso de que la funcién sea un polinomio sobre las
variables de entrada, diremos que la regresién es polinémica. No obstante, podemos caer
en problemas de sobreajuste si escogemos polinomios de grado muy alto.

Regresién logistica. La regresion logistica es otra de las posibles variantes de regre-
sion que se tienen en funcion de la aplicacion elegida. Se utiliza para clasificacién. Para
llevar a cabo este algoritmo, se emplea una funcién logistica; es decir, una sigmoide, que
viene dada por la ecuacién
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1
f(l') - 1 + 6717
cuya grafica se representa en la Figura 3.8. De esta forma, a partir de la funcién sigmoidea,
que se puede probar que su imagen es el intervalo (0, 1), se determina la probabilidad de
pertenecer a una u otra clase.

(3.1)
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Figura 3.8: Grafica de la funcion sigmoidea dada por la ecuacién (3.1) [87].

SVM - Midquinas de Vectores Soporte (Support Vector Machines). Las
SVMs tratan de encontrar la mejor separacion entre clases. Consisten en encontrar una
funcién que deje a cada lado elementos de clases diferentes. La solucién éptima serd la
que maximice la anchura de la “calle” entre las clases como se representa en la Figura 3.9.

o X
o -
(o] o Maximiié’mog
X2 X2 esta distancia

x1 x1

Figura 3.9: Eleccién de la solucion éptica en un SVM de tipo lineal [88].

Existen distintos tipos de Support Vector Machine dependiendo de la funcién que se-
para las clases. Si es lineal, como la de la Figura 3.9, el algoritmo se denomina SVM lineal.
En caso de que los datos no sean linealmente separables, se pueden llevar a dimensiones
superiores en las que el conjunto de entrenamiento sea separable, surgiendo asi subtipos
del algoritmo SVM como el SVM polinémico o el SVM radial.
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K-medias (K-means). Este es un algoritmo propio del clustering [25]. Los problemas
de clustering, como ya se explicé en la Seccion 3.2.1, buscan el particionado éptimo de
los datos en N clusters independientes. Cada uno de estos clusters tiene asociado un
centroide, que es el centro geométrico de la nube de datos que contiene. Los puntos se
asignan al clister cuyo centroide esté més proximo.

Ensembles

Un ensemble consiste en combinar multiples modelos en uno solo para resolver un
problema a partir de las salidas de los mismos [24]. Por lo general, mejoran la precisién y
la robustez frente a la utilizacién de modelos individuales. El inconveniente que presentan
es que computacionalmente son muy exigentes, aunque esto no impide que sea de las
soluciones mas utilizadas de Machine Learning hoy en dia. Las principales aproximaciones
son:

= Votacion. Para cada nuevo dato, se pasa a todos los algoritmos que conforman el
ensemble. De cada modelo se obtiene una salida y se escoge como resultado final la
mas votada; es decir, la que mas veces aparezca.

» Bagging - Bootstrap AGGregatING. Partiendo de un mismo algoritmo de Ma-
chine Learning se entrenan distintos modelos usando un subconjunto del conjunto
de datos de entrenamiento. El subconjunto de entrenamiento se selecciona eligien-
do muestras aleatorias con repeticién (bootstrap). La salida de todos los modelos
se combina entre si para dar el resultado final. Este proceso se puede realizar por
votacion o calculo de medias aritméticas entre otros. Se implementa con el Random
Forest.

Los ensembles de drboles de decision mediante bagging se conocen como Random
Forest. La gran ventaja de hacer ensembles tnicamente con &arboles de decision
es su eficiencia. Ademds permiten que se pueda paralelizar su ejecucion (algo que
con boosting no podemos hacer). Para problemas de clasificacién los resultados se
combinan con soft-voting. Para problemas de regresion se usa la media aritmética.

» Boosting. Los algoritmos se entrenan de manera secuencial. El siguiente modelo
se centra en los datos mal clasificados. Los datos de entrenamiento son distintos ya
que cada algoritmo usa un subconjunto del total, pero no es aleatorio, se centra en
los mal clasificados por el modelo anterior dando mas peso a los mal clasificados. La
precisién que obtiene Boosting suele ser muy buena, aunque es mas lento que Bag-
ging. Algunas implementaciones de este tipo de ensemble son AdaBoost, XGBoost
o CatBoost.

= Stacking. En esta forma de ensemble, se tienen una serie de modelos apilados. A
partir de distintos modelos, todos entrenados con los mismos datos, se obtiene una
salida de todos ellos, que se usa como entrada para otro modelo de ML. La salida
de este ultimo modelo de ML es el que toma la decisién final.
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3.2.2. Redes Neuronales

Las redes neuronales [26] son un modelo computacional sobre el que se cimentan
potentes algoritmos de aprendizaje automéatico. En concreto, en la Seccién 3.2.3 se explica
el uso de las redes neuronales en el campo del Deep Learning.

La unidad fundamental de toda red neuronal es la neurona artificial. Esta construccion
recibe el nombre de neurona artificial puesto que se inspira en la estructura de una neurona
biolégica como la de la Figura 3.10. A continuaciéon se explica su funcionamiento a través
de la analogia con una neurona biologica:

= Cada neurona bioldgica consta de un conjunto de dendritas que reciben informacién;
mientras que, para la neurona artificial, cada conexién tiene un valor de entrada y
estd caracterizada por un peso; es decir, un factor que modifica la entrada.

» La informacién que llega a la neurona a través de las dendritas se retine en el cuerpo
de la neurona, al igual que en la neurona artificial se tiene una funcion sumatoria
que calcula la suma de todas las entradas.

= Al final de la neurona biolégica se generan impulsos eléctricos. Por su parte, al
final de la neurona artificial se contempla una funciéon de activacién que limita la
amplitud de la salida de la neurona.

Neurona bioldgica Neurona artificial
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Figura 3.10: Comparacién entre una neurona natural y una artificial [89].

El inicio de esta revolucién parte del modelo de McCulloch y Pitts. Esta es la base sobre
la que se comenzaron a construir redes neuronales y permitia simular comportamientos
booleanos. Una neurona artificial tipica consta de las siguientes componentes que vienen
representadas en la Figura 3.11:

= Vector de entrada x. Conjunto de datos que se van a procesar en la neurona
arificial. Lo constituye un vector z = [z1, %9, ...,7,|T donde cada elemento es un
dato de entrada.
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= Vector de pesos w. Factor por el que se modifica cada uno de los datos de entrada.
Significa una ponderacion de cada elemento de entrada. A partir del vector w =
[wy,ws ..., w,]T, se multiplica el elemento z; por el factor w;.

= Sesgo b. Umbral de activacién de la neurona. Representa la facilidad con la que se
dispara una neurona.

= Funcion de propagacién. Representa la suma de los elementos de entrada pon-
deradas junto con el sesgo.

= Funcion de activacién f. Funcién encargada de transformar el resultado de la
funcién de propagacion para limitar la amplitud de sus valores. Tipicamente, se
utilizan funciones continuas mondtonas crecientes, siendo la mas sencilla la funcién
identidad que no representa ningtin cambio en los datos. Algunas de las mas usuales
se recogen en la Tabla 3.1.

= Salida. Dato final obtenido mediante las transformaciones oportunas de los datos
del vector de entrada.
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Figura 3.11: Modelo neurona artificial [90].

Luego, una red neuronal se forma a partir de un conjunto de estas neuronas artificiales.
Para ello, se conectan unas a otras, estructurandolas en capas.

La necesidad de construir redes neuronales surge dado que usar una unica neurona
es una practica muy limitada en cuanto a capacidad. De esta forma, una red neuronal
posee una capa de entrada, una o varias capas ocultas y una capa de salida. Cada una de
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Nombre Funcién Grafica
Lineal flz)==x -
. . _ 1
Sigmoidea f(2) = 5= .
Tangente T )
hiperbolica ¢ &) = ere= )
ReLU f(z) = méx{0,z} 5

Tabla 3.1: Resumen funciones de activacion comunes

estas capas tendra, por lo general, un gran nimero de neuronas. Ademas, cada una de las
mismas posee su propio vector de pesos y su sesgo.

Por otra parte, como se vera en la seccion siguiente, surge el concepto de Deep Learning.
El requisito para que una red neuronal se considere un modelo de Deep Learning reside en
el nimero de capas ocultas que posea. Si la red posee mas de una capa oculta, un mayor
nimero de neuronas por capa o neuronas de diverso tipo, entonces el modelo generado es
considerado un algoritmo dentro del ambito del Deep Learning.

Por lo general, la capa de entrada estd formada por tantas neuronas como atributos
tengan los datos que se utilizardan como entrada para el modelo. Posteriormente, esta capa
de entrada se comunica con una o mas capas ocultas; es decir, aquellas que no son capas
de entrada ni de salida. Por ultimo, se tiene la capa de salida, que es la responsable de

Carlos Jiménez Vaquero 53



Capitulo 3. Antecedentes

producir el resultado final.

El proceso de aprendizaje consiste en ajustar los pesos y el sesgo de cada una de las
neuronas que componen la red neuronal. De esta forma, se pretende abstraer la distri-
bucion de los datos para generar la salida deseada a partir de ajustes en los parametros
de la red. El proceso de entrenamiento de estas redes en el caso concreto del aprendizaje
supervisado, que serd el empleado a lo largo del proyecto, sigue los siguientes pasos:

= Se introduce el conjunto de datos de entrada en la capa de entrada de la red. La
red procesa los datos y produce una salida para cada elemento.

= Se calcula una funciéon de pérdida atendiendo al valor real y al valor obtenido por
la red.

= Se emplean algoritmos mediante los que se pretende optimizar los pardmetros de la
red de forma que minimicen el error arrojado por la funciéon de pérdida.

Este proceso se repite de manera iterativa para tratar de abstraer los datos. Ademas,
cada iteracion recibe el nombre de época.

3.2.3. Deep Learning

El Deep Learning [27] o aprendizaje profundo es el campo del Machine Learning que
trata de extraer conocimiento a partir de un conjunto de datos mediante una jerarquia
de multiples capas de neuronas artificiales. Los datos de entrada pueden ser de tipo muy
diverso, como imagenes, audios o texto. En cada capa, los datos de entrada se transfor-
maran en representaciones mas abstractas que se combinan a medida que se profundiza
en la red.

La clave en las técnicas de Deep Learning es aportar una gran cantidad de datos con
los que entrenar los modelos. Asi, se pueden crear modelos flexibles capaces de abstraer
las caracteristicas de los conjuntos de datos de manera mas eficiente de lo que lo hacen
las técnicas clasicas de Machine Learning como las descritas en la Seccién 3.2.1. Entre las
aplicaciones del Deep Learning se encuentran la clasificacion de iméagenes, la deteccion de
objetos, la segmentacion o la generacion de voz e imagenes. Las tres primeras se explotaran
en la propuesta de solucién en el Capitulo 4.

Instrumentos Redes Neuronales Profundas

= Funcion de activacion. Este concepto ya ha sido introducido en la Seccién 3.2.2.
Pero existe una problematica, pues algunas de estas funciones presentan un problema
para el entrenamiento de algoritmos basados en Deep Learning, como la funcién
sigmoidea y la tangente hiperbdlica. Como se observa en sus graficas de la Tabla 3.1,
el gradiente de la funcién varia. En el intervalo [—2,2] no existe ningin problema;
sin embargo, fuera de él, el gradiente es muy pequeno y la funcién apenas varia.
Este problema recibe el nombre de vanishing gradient.
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El vanishing gradient ocasiona que la red no aprenda. Para solucionar esta casuistica,
surge la funcién ReLLU, también tratada en la Tabla 3.1. Esta es la mas utilizada para
Deep Learning puesto que no presenta wvanishing gradient para valores positivos.
Ademas, cualquier funciéon puede aproximarse como combinacién de ReLLUs y como
no tiene limite superior, es mucho mas rapida de entrenar.

» Softmax. Esta es una capa que se suele utilizar en la salida de la red. Si en la salida
hubiera una capa normal, dada su construccion, el resultado seria un valor numérico
para cada una de las clases posibles. Esto dificulta su interpretacion. Para solucio-
narlo, se implementa una funcién softmax que transforma los valores numéricos en
el rango [0, 1], identificando la salida con la probabilidad de ocurrencia de cada una
de las posibles predicciones.

» Loss function o cost function. La funcién de pérdida o loss function tiene como
objetivo medir lo bien que modela la red los datos de entrenamiento, siendo una
pieza fundamental en el entrenamiento de redes neuronales con Deep Learning. La
funcién de pérdida mide la diferencia entre las estimaciones de la red y el resultado
real. Luego, si la red no funciona correctamente, la loss function tendra un valor
alto. Por tanto, el entrenamiento consiste en minimizar el valor de la funcién de
pérdida en cada etapa. Las principales funciones de pérdida son:

e Error cuadratico medio (mean squared error, MISE). Usado tipicamente
para prediccién de escalares.

e Cosine similarity. Se suele aplicar para problemas que tratan el procesamien-
to del lenguaje natural (NLP).

e Cross-entropy. Mide la distancia entre dos distribuciones de probabilidad.
Por tanto, sélo se puede aplicar sobre distribuciones de probabilidad; es decir,
para datos en el rango [0, 1]. Por ejemplo, después de aplicar una capa softmax.

= Optimizador. Como se ha explicado, el objetivo a lo largo de los entrenamientos
es el de minimizar la funcién de pérdida. Esta tarea la desarrolla el optimizador de
manera iterativa. Para ello, el optimizador ajusta los pesos en cada etapa, buscando
siempre hacer menor el valor de la funcién de pérdida. Existen numerosos algoritmos
de optimizacién para crear redes, siendo el del descenso del gradiente el algoritmo
basico.

Sobreaprendizaje

Al comienzo de esta seccion se explicé que el propdsito fundamental de las técnicas de
Deep Learning es generalizar el conocimiento extraido de los datos de entrenamiento. El
overfitting o sobreajuste [41] ocurre cuando un algoritmo se ajusta demasiado a los datos
de entrenamiento y no puede generalizar los nuevos datos. En consecuencia, de todo el
conjunto de datos de entrenamiento, se suele reservar una parte para validacién; es decir,
para comprobar el sobreajuste.
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El problema del overfitting no es inico del Deep Learning, sino que se da en el Machine

Learning en general, aunque tiene especial relevancia para redes neuronales profundas
debido a la gran cantidad de parametros a entrenar. La regularizaciéon es un proceso
que tiene como proposito evitar el sobreajuste. Luego, se encarga de realizar pequenos
cambios sobre el algoritmo de aprendizaje para que generalice mejor. Los principales
tipos de regularizacion son:

26

= L2 y L1. Agregan un valor de regularizacion a la funcién de pérdida consiguiendo

que los pesos disminuyan en mayor medida. De esta forma, se consiguen modelos
mas sencillos, lo que ocasiona un menor sobreajuste. Siguiendo [42] y [43], el término
de regularizacion viene dado por

reqularizacion Ly = |w;]|* + -+ + |w,|?, (3.2)
reqularizacion Ly = |wq| + -+ - + |wy].

Ademas, ese término se escala con una tasa de regularizacion A para ajustar el

impacto que tiene en el modelo. Luego, el objetivo final es minimizar una funcién

de coste de la forma

coste (loss + A xr),

donde el término de regularizacién r es uno de los dados en la ecuacién (3.2) en
funcion del método utilizado Ly o L.

a) Standard Neural Net (b) After applying dropout.

Figura 3.12: Comparacién entre una red neuronal antes y después de aplicar dropout [91].

Dropout. Este término se refiere a la eliminacion temporal de algunos nodos de la
red neuronal [44]. Se pueden eliminar tanto nodos de las capas ocultas como de la
entrada. Ademas, cuando se elimina una neurona también se desechan de manera
temporal todas las conexiones con ella, creando asi una nueva estructura de red
como se ilustra en la Figura 3.12. Los nodos que se eliminaran se determinan con
una probabilidad que viene dada como un hiperparametro p.
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» Early Stopping. Consiste en parar el entrenamiento antes de tiempo. Cuando el
conjunto de validacién empeora o no mejora tras un determinado niimero de épocas
se detiene el entrenamiento.

= Data Augmentation. Esta técnica de regulacién surge ante la posibilidad de un
mayor sobreajuste cuanto menos datos tengamos para entrenar. Luego, trata de
ampliar el conjunto de datos de entrenamiento. Por ejemplo, si se trata de imagenes,
que es cuando mas se utiliza, se aplican rotaciones o escalados para tener mayor
variedad de imagenes.

Redes Neuronales Convolucionales - CNN

Una Red Neuronal Convolucional o CNN (Convolucional Neural Network) es un ti-
po de red neuronal con una serie de capas especializadas en el tratamiento de imagenes.
Las CNN operan de manera jerarquica, de forma que en las primeras capas se identifi-
can elementos basicos y estos se van combinando para formar objetos en las capas mas
profundas.
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Figura 3.13: Ejemplificacion del proceso de convolucion [92].

Para tratar con imagenes en una red neuronal, estas se representan como una matriz
con el valor de los pixeles. Si la imagen es a color (RGB), entonces se utilizan tres canales;
es decir, tres matrices apiladas. Por otra parte, si la imagen es en escala de grises, tan solo
es necesario un unico canal. Ademas, es adecuado que los datos estén normalizados (basta
dividir el valor del pixel por 255). A partir de este tratamiento de las imdgenes se puede
construir de manera sencilla una CNN integrando los siguientes componentes principales:
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o8

= Capa de Convolucion: es la capa encargada de extraer las caracteristicas de la

imagen. La operacién de convolucién trata de aplicar un filtro o kernel sobre la ima-
gen para construir un mapa de caracteristicas. El kernel es una matriz, tipicamente
de tamano 3 x 3 0 5 x 5, con valores numéricos que llamaremos pesos. La aplicacién
de convolucién utiliza un kernel y consiste en multiplicar los pixeles de la imagen
por los pesos definidos en el filtro y sumar el total como se representa en la Figura
3.13.

La capa de convoluciéon puede configurarse a partir de tres parametros fundamen-
tales:

e Profundidad: numero de filtros que se aplican sobre la imagen de entrada.
Una mayor profundidad indicara un mayor nimero de filtros, luego se crearan
mas mapas de caracteristicas.

e Stride: Numero de pixeles que se desplaza el kernel sobre la imagen. Un mayor
stride producira mapas de caracteristicas mas pequenos.

Convolution Convolution
with Stride=1 Output with Stride=2 Output

Figura 3.14: Ejemplificacién del proceso de convolucién - stride [93].

e Padding: se refiere a un marco de ceros que se anade alrededor de la imagen.
El padding indica el nimero de filas y columnas que enmarcan la imagen con
pixeles nulos. El objetivo que se busca con esta técnica es el de aplicar mejor
los filtros sobre los elementos de los bordes.

» Funcién de Activacién (ReLU). Se aplica la funcién de activaciéon ReLU para

anular los valores negativos que se hayan obtenido al aplicar los filtros de la capa
de convolucion, manteniendo los valores positivos.

Capa de Pooling: utilizada para reducir el tamano de la matriz. Se trata de
aplicar un filtro sobre la salida de la capa anterior y seleccionar un tnico nimero
como salida. Como se vera a continuacion, el siguiente componente de la CNN es
una red neuronal multicapa normal. Luego, esta capa busca disminuir el tamano de
la matriz para que la red entrene a mayor velocidad. Los tipos principales de pooling
son:

e Max Pooling: se selecciona el valor maximo.
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Figura 3.15: Ejemplificacion del proceso de convolucion - padding.

e Average Pooling: se calcula el valor medio.

e Sum Pooling: se escoge la suma de los valores.

= Capa Fully Connected. Tras iterar sobre las anteriores etapas, se pasa finalmente
a la capa fully connected. Esta capa consiste en una red neuronal multicapa normal.
El objetivo es combinar de manera eficiente todas las caracteristicas extraidas en
las capas anteriores, transformando la matriz de caracteristicas que se genera en las
convoluciones en un vector unidimensional. Para concluir, a este vector unidimen-
sional se le aplica posteriormente Softmax para obtener la probabilidad de que la

salida sea de una clase o de otra.

Objetivos principales de las Redes Neuronales Convolucionales

Gracias a la capacidad de las CNNs para extraer caracteristicas y patrones dentro
de las imagenes, estas se utilizan en una amplia variedad de tareas dentro del campo de
la visién por computadora. Los objetivos que pueden abordarse con este tipo de redes
neuronales varian segun el tipo de salida deseada. De esta forma, las CNNs varian segin
la naturaleza del problema. Asi, se pueden utilizar para resolver los siguientes problemas

recogidos en [72]:

» Clasificacion. El objetivo més bésico. Consiste en tomar una imagen como dato
de entrada y predecir a que clase pertenece dentro de unas preestablecidas. De esta
forma, para el entrenamiento se tiene una tnica etiqueta asociada a cada imagen

que indicara la clase a la que pertenece la misma.

= Deteccion. Ademas de identificar la clase del objeto esta técnica senala la ubicacion
del mismo mediante una caja que delimita la zona donde aparece. La deteccién

permite no solo encontrar un objeto, sino varios dentro de la misma imagen.
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La deteccion implica dos procesos claramente separadados. Por una parte, la red
neuronal localiza un objeto. Por la otra, clasifica el objeto encontrado dentro de las
clases que hay predefinidas. Asi, en ocasiones se contempla la localizacién como un
problema aparte que trata de buscar objetos de una misma clase, y la deteccién se
explica como una combinacién de las técnicas de localizacién y clasificacién.

= Segmentacion. La segmentacion trata de senalar los pixeles que corresponden a
un objeto. Luego, supone una mayor precision que la deteccion. Mientras que los
problemas de deteccién marcan la zona de aparicién, la segmentacion busca los
pixeles exactos que corresponden al objeto buscado.

Por otra parte, se pueden distinguir dos tipos de segmentacion: seméantica y por
instancias. Para el primer caso, se clasifican directamente los pixeles segin la clase
a la que pertenecen. Para la segmentacion por instancias, ademés de hacer esto
mismo, se distingue si los pixeles pertenecen a un objeto u otro del mismo tipo.

Estos tres objetivos son los mas usados comunmente. De hecho, las técnicas usadas a lo
largo de este proyecto se pueden enmarcar en cada uno de los mismos. Sin embargo, existen
otras formas de usar redes neuronales convolucionales como la regresién, que consiste en
una clasificacién donde el propdsito no es conocer un dato discreto como es la clase del
objeto, sino obtener un dato continuo del mismo. Por ejemplo, predecir la edad de una
persona a partir de una imagen seria una forma de regresién. Se puede considerar esto
como una particularizacion de la clasificacion.

Luego, las CNNs son muy ttiles en el campo del Deep Learning y permiten abordar
diferentes problemas cuando el dato de entrada es una imagen. De hecho, existen otras
técnicas que emplean capas convolucionales en su arquitectura como la estimacion de
poses (pose estimation) o la generacién de imagenes.

Amplicacién sobre Redes Neuronales Convolucionales

En este trabajo se tratan, para una mayor completitud, tanto con modelos YOLO
como con otros proporcionados por la biblioteca FastAl. Cada uno de ellos se entrena
con una arquitectura distinta; mientras que YOLO tiene su propia arquitectura interna,
los modelos de FastAl se utilizan a partir de la arquitectura U-Net. Por este motivo, a
continuacion se explica cada una de estas dos situaciones:

» Arquitectura U-Net. Esta arquitectura se enfoca en resolver problemas de seg-
mentacion de imégenes [64]. Es un tipo especial de red neuronal convolucional que
tiene una estructura como la que se muestra en la Figura 3.16. Se puede dividir el
proceso que se sigue en esta en dos partes bien diferenciadas: encoder y decoder;
esto es, fases de codificacion y decodificacién o de contraccion y expansion:

e Fase de codificacion. Durante la etapa de contraccion se aplican de manera
secuencial capas de convolucion con ReLLU como funcién y una capa de pooling,
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en concreto, de maz-pooling. De esta forma se va decreciendo la dimension espa-
cial del mapa de caracteristicas mientras que se extrae la informacién relevante
de la imagen.

e Fase de decodificacion. Esta etapa tiene como objetivo adaptar el mapa de
caracteristicas a la imagen y producir un mapa de segmentacién utilizando los
patrones aprendidos en la fase de contraccion [65].
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Figura 3.16: Diagrama representativo de la arquitectura U-Net [65].

= YOLO. Se basa en el paradigma ” You Only Look Once”. Es un modelo de deteccién
de objetos y segmentacién de imégenes en tiempo real [66]. Ademds, presenta un
muy buen rendimiento en cuanto a velocidad se refiere.

Respecto a su arquitectura, esta se divide en tres partes, las cuales se explican a
continuacién siguiendo [67] y [68]:

e Backbone. Como su traduccion al espanol significa, esta parte es la columna
vertebral de la arquitectura; es decir, la parte fundamental de la red. Su diseno
consiste en la estructura proporcionada por la arquitectura Darknet [69], que
no deja de ser una serie de capas convolucionales. Ademads, con cada versién
de YOLO se actualiza y aumentan estas capas, haciendo la red mas profunda
y poderosa. Este incremento en la profundidad permite extraer caracteristicas
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mas complejas de las imagenes, lo que repercute en un mejor rendimiento de
la red.

e Neck. Esta componente sirve de intermediaria entre las otras dos: backbone
y head. Ademas, utiliza la arquitecturas de SPPF (Spatial Pyramid Pooling
- Fast) [70], que es un conjunto de capas de pooling, y la de PANet Path
Aggregation Network [71], que combina los mapas de caracteristicas de las
fases del backbone.

e Head. Esta es la parte final, la cual se encarga de generar la salida de la red.

3.2.4. Meétricas

Hasta ahora, a lo largo de las secciones 3.2.1, 3.2.2 y 3.2.3, se explican los algoritmos
tanto de Deep Learning como de Machine Learning que se valoraran para la elaboraciéon
de la propuesta de solucién, asi como sus fundamentos. No obstante, se necesita una
manera de cuantificar qué técnica funciona mejor en el problema a estudiar. Asi es como
surgen las métricas.

Una métrica de evaluacion sirve para valorar el rendimiento de un modelo de aprendi-
zaje automatico y su capacidad para generalizar con precisién los datos [45]. Puesto que
en la construccién de la solucion se utilizan clasificadores y segmentacién de iméagenes, a
continuacion se presentan métricas utilizadas en el estudio de estas técnicas.

Métricas para clasificadores

Para evaluar el rendimiento de un clasificador se atiende a su matriz de confusién. Una
matriz de confusién es cuadrada y tiene la dimensién del niimero de clases existentes. A
continuacion vamos a definir una matriz binaria; es decir, de dos dimensiones, pues son
la base para el resto de matrices de confusién y seran las utilizadas en la propuesta
construida.

Una matriz de confusion binaria, como la que se muestra en la Tabla 3.2, es una
representacion matricial de los resultados de las predicciones de cualquier prueba binaria
que se utiliza para describir el rendimiento del modelo de clasificacién [45]. Cada prediccién
puede ser de uno y solo uno de los cuatro tipos siguientes:

» Verdadero Positivo (VP): El modelo predice el dato como verdadero y cierta-
mente es verdaero.

» Verdadero Negativo (VN): se predice el dato como negativo y su valor real es
negativo.

» Falso Positivo (FP): el valor predicho es verdadero, frente al real, que es falso.

» Falso Negativo (FN): la prediccién establece que es falso pero el valor real es
verdadero
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Clasificados | Clasificados |
positivos negativos
Ejemplos Verdadero Falso
positivos | Positivo (V' P) | Negativo (F'N)
Ejemplos Falsos Verdadero
negativos | Positivos (F'P) | Negativo (VN)

Tabla 3.2: Representacion Matriz de Confusion

A cada uno de estos tipos le correspondera un lugar en la matriz de confusion 2 x 2

como se muestra en la Tabla 3.2.

Como se aprecia en la Figura 3.2 y como se explicé anteriormente, existen dos tipos
de errores. Estos son los falsos positivos y falsos negativos. En funcién del objetivo que
tenga el clasificador y del darea de negocio para el que se construye, un error serd mas
importante que otro. Por este motivo, surgen distintas medidas de evaluacién en funcion
de los errores que se consideren. Siguiendo la webgrafia existente [46], las métricas més

importantes y usuales son:

s Accuracy o Exactitud: mide la proporcién de predicciones correctas. Su expresién

viene dada por

VP+VN B clasificados correctamente
VP+FP+VN+FN

Esta métrica tendra un valor entre 0 y 1, siendo preferible un valor alto; puesto que
indicard mayor proporcién de predicciones correctas.

accuracy =
4 todos los ejemplos

False positive rate o tasa de falsos positivos (FPR): proporcién de todos
los negativos reales que se clasificaron incorrectamente como positivos. Se define de
manera matematica de la siguiente manera:

f P clasificados erréneamente como positivos
pr = = .
FP+VN

Esta métrica también tomara valores entre 0 y 1; sin embargo, al contrario de lo que
ocurre con el accuracy, sera preferible un valor proximo al 0. Esto es, cuanto menor
sea la tasa de falsos positivos, mejor serd el rendimiento del algoritmo entrenado.

todos los negativos

Precision: proporcion de todas las clasificaciones positivas del modelo que realmen-
te son positivas. La precisién se expresa como

VP clasificados correctamente como positivos

recision = =
p VP+ FP todos los clasificados como positivos

Una vez mas, puesto que el numerador es mayor que el denominador, la precisién
sera un valor entre 0 y 1. Ademas, cuanto mayor sea este valor, mejor sera el modelo
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entrenado. Esto se debe a que una mayor precision indica que més valores predichos
como positivos son realmente positivos.

Recall o tasa de verdaderos positivos (TPR): es la proporcién de todos los
positivos reales que se clasifican correctamente como positivos; es decir, se expresa
como

I VP clasificados correctamente como positivos
recall = = .
VP + FN todos los positivos

El recall en ocasiones también se denomina probabilidad de deteccion. De hecho, esta
métrica es muy 1til en aplicaciones médicas, pues como su nombre indica, identifica
la probabilidad de detectar una patologia cuando un paciente la presenta. De igual
forma que con el resto de métricas comentadas, como el valor del numerador es
menor que el del denominador, el recall estd entre un rango de 0 y 1.

F1 Score: promedio calculado como la media armonica entre la precision y el recall;
es decir,

Fl—o Precision - Recall

" Precision + Recall’

Esta métrica toma valores entre 0 y 1, siendo preferibles valores cercanos a 1.
Ademads, como se explica en [46], esta es una métrica muy utilizada en problemas
en los que el conjunto de datos a analizar esta desbalanceado.

Esta métrica combina el precision y el recall, para obtener un valor mucho mas
objetivo. En el caso en el que estas dos métricas sean similares, F1 también tendra
un valor parecido. Por otra parte, si la precision y el recall estan muy separadas,
entonces F1 serd similar a la métrica que sea peor.

F-3 Score. Generalizacion de la métrica F'1-Score. Viene dada por

(1+ 3?) - Precision - Recall
(B2 - Precision + Recall

Fg =

A partir de esta métrica, introduciendo el parametro 3, se puede dar mas peso a
la precision o al recall segun se desee. Asi, para § > 1, se da mayor peso al recall;
mientras que para < 1, la precision cobra mas importancia. La eleccién de [
mayor o menor que 1 dependerd de la importancia que se le dé a detectar todos los
positivos y a no tener falsos positivos, respectivamente.

En el uso de aplicaciones médicas, donde lo importante es detectar todos los casos
positivos de una enfermedad, cobrara mayor importancia el recall con el objetivo de
minimizar el nimero de pacientes que presentan la patologia en los que no ha sido
detectada. En caso de que no se quiera favorecer o destacar una métrica por encima
de la otra, se utilizard § = 1, coincidiendo la métrica Fjz con F'1, siendo esta ultima
un caso particular de Fjp.
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= Curva ROC. Representacién grafica del rendimiento de un modelo de clasificacion.
Esta curva relaciona la métrica recall (TPR) en el eje Y con la tasa de falsos positivos
(FPR) en el eje X. Como el objetivo es tener un TPR alto y un FPR bajo, cuanto
mayor sea la pendiente de la curva para que se acerque con valores pequenos de FPR
a valores altos de TPR, mejor sera el entrenamiento. Esto es justo lo que muestra

la Figura 3.17.

Es posible establecer una medida objetivo de lo buena que es la curva ROC. Cuanto
mayor pendiente tenga la curva, mayor area abarcard. Como lo que se pretende es
que la curva crezca rapido, el objetivo es que el area sea mayor. A la métrica que
mide el drea bajo la curva ROC se le denomina AUC (4rea bajo la curva - area
under curve). Por otra parte, como la curva estd representada en [0, 1] x [0,1], el
area maxima y por tanto el valor de AUC estd limitado entre 0 y 1.

ROC Curve ROC Curve
’ 7
7’ 7z
,/ 7’
s ROC Curve

£y AuC=100% s ] s =y —

> 7 > 7 > >

£ 7’ £ ’ & £
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Overlap= How well the model seperates Negatives and Positives

Figura 3.17: Relacion curvas ROC con la separabilidad de los datos [94].

Meétricas para localizacién y segmentacién

La salida para clasificacién de dos clases serd un valor binario en funcién de si el
valor predicho es uno u otro. Para este tipo de salidas se han definido unas métricas.
Sin embargo, para problemas de segmentacion la salida no es la clase predicha, sino una
mascara que indica donde se sitia el objeto buscado. Por tanto, como la salida es diferente,
no podemos usar las mismas métricas y sera necesario definir otras nuevas; o al menos,
adaptarlas para el caso de uso de la segmentacién. A continuacion se define las principales

métricas utilizadas en problemas de segmentacion:
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= Coeficiente Dice: se emplea para medir la similitud entre dos conjuntos. Si A es
la mascara real y B es la méascara predicha, el coeficiente Dice se define como

donde |C] representa el nimero de pixeles del conjunto C. Este coeficiente toma
valores entre 0 y 1. Ademads, un valor mayor indica mejor coincidencia entre la
segmentacion predicha y la real.

» Indice de Jaccard: evalia la superposicion entre la prediccion y el valor real de
la méscara. Esta métrica, también denominada Intersection over Union (IoU) se
calcula como sigue:

|AN B|

IToU = )
Y T lAuB

El célculo permite conocer la proporcion de la segmentacion o localizacién real que
forma parte de la prediccion.

= mAP. Métrica que combina la precision y el recall entre diferentes clases para
comprobar el rendimiento del modelo construido. Se usa para la deteccién de objetos.
La métrica tomara valores entre 0 y 1. Cuanto mas cercana sea la métrica a 1, mejor
serd el rendimiento. Para calcular el valor mAP, mean Average Precision, se siguen
los siguientes pasos descritos en [48]:

1. Se calcula la precision y el recall para cada clase.
2. Se construye la curva precisién-recall para cada clase (véase la referencia [47]).

3. Se calcula el valor AP, que se corresponde con el area bajo la curva construida
en el paso anterior.

4. Una vez se tiene el valor AP calculado para cada clase, mean Average Precision
se obtiene a partir de la media de estos valores; es decir, si se tienen N clases
y AP, es el area bajo la curva precisién-recall de la clase 1,

1 n
mAP = N;AB.

s Accuracy Camuid. Métrica proveniente de un dataset de segmentacion semantica
que recibe el mismo nombre. Establece la proporcion de pixeles clasificados correc-
tamente una vez descartados los pixeles del fondo; esto es,

pixeles clasificados correctamente

Accuracy Camuid = -
total pixeles
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3.2.5. Procesamiento y representacion de imagenes

En muchos casos en los que el objetivo es desarrollar algoritmos de Deep Learning sobre
imégenes, la manipulaciéon de las mismas permite obtener mejores resultados durante el
proceso. De esta forma, surge la necesidad de entender cémo se representan las imagenes
computacionalmente y los distintos tipos de procesamiento que se pueden realizar sobre
las mismas.

Entre el procesamiento que se puede realizar para obtener variaciones de interés so-
bre las imagenes, se encuentra tomar solo la parte de la imagen con mayor cantidad de
informacion o la transformacion a través de la aplicacién de filtros.

Representacion de imagenes

Las imagenes digitales se representan como matrices de pixeles. Dada una imagen,
esta se divide en forma de cuadricula, de manera que cada cuadro representa un pixel.
Asi, cada elemento de la matriz representa el valor de cada pixel en esa posicién de la
cuadricula en la que se divide la imagen. No obstante, no es suficiente con un solo valor,
pues no se puede representar de esta forma todos los colores. Para ello, se toma una base
de colores donde se puede obtener el resto de colores a partir de una combinaciéon de los
de la base. Para cada elemento de la base, se toma una capa; es decir, una matriz, y se
almacenan los valores entre 0 y 255 para ese color de cada pixel. Finalmente, se puede
generar la imagen teniendo en cuenta todas las capas de la base. A continuacion, se van
a comentar diferentes estilos o formatos de una imagen en cuanto a color se refiere.

RGB. RGB es la base méds empleada para representar una imagen. Almacena tres
capas de colores o canales, rojo (R), verde (G) y azul (B), que combinados forman el color
final de cada pixel. Cada canal puede verse como una matriz bidimensional donde cada
valor representa la intensidad de ese color.

Una imagen en formato RGB contiene tres matrices superpuestas, una por cada com-
ponente de color. No obstante, se puede reducir la imagen a un solo canal si los modelos
no requieren informacién de color, como se vera a continuacién.

Escala de grises. Convertir una imagen a escala de grises implica reducir los tres
canales RGB a uno solo. Una forma de obtener un resultado en escala de grises a partir
de la base RGB es calcular la media de los tres valores. Sin embargo, esta solucién no
es acorde con la realidad debido a que cada canal no aporta lo mismo. Para ello, existen
distintas recomendaciones de qué valores usar para ponderar cada canal [49]. Algunas de
estas opciones se recogen en la Tabla 3.3.

Nombre ponderacién | Factor rojo | Factor verde | Factor azul
CIE 1931 0.2126 0.7152 0.0722
rec601 0.299 0.587 0.114
ITU-R BT.2100 0.2627 0.6780 0.593

Tabla 3.3: Métodos de conversion de RGB a escala de grises con sus respectivas ponderaciones.
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Imagenes binarias. Este tipo de imagenes tiene un solo canal al igual que las iméage-
nes en escala de grises. Sin embargo, son mas simples. Como su nombre indica, una imagen
binaria tan solo toma dos valores, que seran el 0 y 255. Luego, se puede considerar como
una particularizacion de las imagenes en escala de grises donde solo se contempla el blanco
y el negro. Su uso para el desarrollo de técnicas de Deep Learning estd muy extendido.
Tipicamente, se utilizan para localizar con uno de los colores la region de interés de otra
imagen a la que acompanan; mientras que la parte que presenta el otro color no tiene
relevancia.

Filtro de Gabor

Los filtros de Gabor son filtros lineales cuya respuesta es una funcién sinusoidal mul-
tiplicada por una funcién gaussiana [50]. A colacién de lo anterior, se pueden construir
una infinidad de este tipo de filtros dado que cabe la posibilidad de modificar parametros
como la amplitud de la funcién sinusoidal o la orientaciéon de la misma. En la Figura 3.18
se muestra una variedad de filtros de Gabor, asi como su resultado sobre una imagen.

Inputimage of
acircle

A bank of 16 Gabor Filters

The outputcircle as seenwhen pass
through individual Gabor filter

Figura 3.18: Resultados obtenidos a partir de filtros de Gabor sobre una circunferencia [95].

Los filtros de Gabor son de especial utilidad para remarcar estructuras dentro de las
imégenes. Eso se debe a que pueden resaltar, por ejemplo, contornos. En la Figura 3.19 se
muestra un ejemplo de los resultados que se pueden obtener a través de filtros de Gabor.
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Figura 3.19: Resultado obtenido tras la aplicacion de un filtro de Gabor [95].

3.3. Conceptos matematicos
Motivacion

El objetivo que se persigue con la introduccién de conceptos matematicos en el desa-
rrollo de la propuesta serd el perfeccionamiento de las detecciones. En algunos casos, en
la deteccion del objeto pueden aparecer ciertas vesiculas que no representan al mismo.
También sucede que, queriendo buscar un objeto tinico en la imagen, se detecta un mayor
numero de elementos. Asi, para solucionar estos problemas puede ser 1til la aplicacion de
algunos métodos matematicos.

Cada proceso de segmentacién produce una mascara binaria indicando dénde se en-
cuentra la estructura buscada. Esta méscara consiste en una matriz de unos y ceros donde
el 1 indica que ese pixel forma parte del objeto buscado y el 0 implica que el pixel no for-
ma parte del objeto. Asi, podemos suponer el conjunto de pixeles como el conjunto total
V', v la parte de pixeles que se identifican con unos en la méscara como un subconjunto
S. De esta forma, surgen una serie de conceptos para tratar y perfeccionar las méascaras
predichas.

Envolvente convexa

Previo a conocer qué es una envolvente convexa, se introduce el término de conjunto
convexo[56]. Se dice que el subconjunto S es convexo si para cualquier par de puntos de
S, el segmento que los une esta contenido en S; es decir, para cada =,y € S,

A+ (1=NyeS VYAe|o,1].

Conociendo esta definicién se puede introducir el concepto de envolvente convexa [56]. La
envolvente convexa de un conjunto S en un espacio V' es el conjunto convexo mas pequeno
que contiene a S. Formalmente, la envolvente convexa de S, denotada como conv(S), es
el conjunto de todas las combinaciones convexas de puntos en S; es decir,

conv(S) = {Z)\le | z; € S, N\ > O’Z)‘i =1,ne N}

i=1 i=1
En la Figura 3.20 se ejemplifica cémo se obtiene la componente convexa de una méascara.
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Figura 3.20: Diagrama de ejemplo del calculo de la envolvente convexa.

Diametro de un conjunto

Llamaremos didmetro de un conjunto S a la mayor distancia entre dos puntos de ese
mismo conjunto. Formalmente, si d es una distancia (véase [56]) se define el didmetro de
S [56] como

diametro(S) = sup{d(z,y) | z,y € S}.

Considerando la méascara obtenida en una predicciéon como el conjunto de los pixeles cuyo
valor asociado en la méscara es 1, el calculo de la distancia de ese conjunto permitira
extraer caracteristicas sobre el objeto detectado.

Componente conexa

Para introducir formalmente lo que es una componente conexa [56] se necesitan conocer
muchos conocimientos previos fuera del alcance de este proyecto. Por ello, en este apartado
se busca dar una idea de lo que este concepto significa y cémo se ha usado para tratar de
mejorar los resultados obtenidos por los modelos de segmentacién entrenados.

Para entenderlo de manera sencilla, se dice que las componentes conexas son las partes
de un conjunto que estan completamente unidas. Se establece ahora una analogia para
aclarar este concepto siguiendo la representacion de la Figura 3.21.

. .
Figura 3.21: Diagrama separacion en componentes conexas de un conjunto.

Si se tiene un archipiélago de islas, que seria nuestro conjunto, cada isla representa una
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region conectada independiente, lo que es comparable con cada una de las componentes
conexas de un conjunto. Cada isla seria una componente conexa porque dentro de ella
todo esta conectado, pero no hay conexién entre diferentes islas.

3.4. Estado del arte

El diagnostico del glaucoma es una necesidad creciente en el ambito de la oftalmologia,
dado que tiene un prondstico mas favorable si se diagnostica en etapas tempranas, como
ya se ha explicado en la Seccién 1.1. Sin embargo, en la actualidad siguen sin utilizarse
herramientas automatizadas que asistan en la deteccion de esta patologia, lo que repre-
senta una oportunidad para el desarrollo de modelos basados en aprendizaje profundo,
capaces de identificar patrones a partir de retinografias que ayuden con el diagnéstico del
glaucoma.

Como se ha planteado en la Seccién 1.2, el objetivo principal es tratar las imagenes
tomadas sobre el fondo del ojo para detectar el glaucoma mediante técnicas de aprendizaje
profundo. En lo siguiente, se veran soluciones similares para este tipo de problemas en el
campo de la medicina, para centrarse a continuacién en las aplicaciones existentes para
el diagnostico de otras enfermedades oculares, asi como del glaucoma.

Avances en el area médica

Ademas de la oftalmologia, las redes neuronales han sido aplicadas exitosamente para
la construccion de diversas herramientas en el area médica. Como se recoge en la revisién
de [6], en el ano 2017 ya se habian realizado mas de 300 contribuciones en el andlisis de
imagenes médicas mediante Deep Learning. Ademéds, en este mismo articulo se repasan
soluciones diversas que atanen a las zonas pulmonares, cardiaca, abdominal o cerebral.
Asi, el uso de técnicas de aprendizaje profundo representa una herramienta real de apoyo
para los especialistas de la salud.

Concretando con algunos casos de éxito en el uso de estas técnicas, se encuentra la
deteccion del cancer de piel, que también se trata en [6]. Para este tipo de problematicas
se han desarrollado soluciones como las que se presentan en [52] y [53]. Para este segundo
articulo, se ha alcanzado un accuracy del 84.4 % y una sensibilidad del 92.8 % para algunos
de los modelos contemplados. Estas métricas indican la posibilidad de crear modelos de
aprendizaje profundo con un buen rendimiento en el campo médico.

Otro caso de estudio interesante se trata en [51], donde se hace uso de redes neuro-
nales para detectar la presencia de tumores cerebrales y poder realizar una clasificacion
de los mismos. En este caso se ha logrado un accuracy de 96.7 % y 88.25% en los datos
de validacion y test, respectivamente. Estos avances subrayan el potencial del aprendiza-
je profundo para diagnosticar patologias, lo que convierte a la oftalmologia en un area
potencial de desarrollo de herramientas similares.
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Avances previos en el area oftalmologica

Como se ha introducido previamente con ejemplos de otras areas médicas, el uso de
técnicas basadas en aprendizaje profundo ha mostrado un rendimiento sobresaliente en la
interpretacion de imégenes médicas. En particular, las redes neuronales convolucionales
han demostrado su capacidad para identificar caracteristicas en las imagenes médicas y
realizar predicciones con precision. Estas tecnologias ofrecen una promesa significativa
para mejorar los métodos no invasivos y complementarios de diagnoéstico en oftalmologia.

Los sistemas de aprendizaje profundo han logrado resultados destacados en la detec-
cion de patologias oculares, como se evidencia en algunos trabajos como los recogidos
en [8], donde se revisitan y resumen nuevos sistemas de Deep Learning en aplicaciones
oftalmolégicas. Por otra parte, existen diversos ejemplos de aplicacién, como ocurre en [7],
donde se prueba que una CNN entrenada para la deteccion de retinopatia diabética puede
obtener resultados comparables a los de especialistas. Estos trabajos han establecido una
base solida para el uso de CNN en imédgenes oftalmoldgicas. Sin embargo, la deteccion de
glaucomas oculares sigue siendo un area de investigacion en desarrollo.

Avances previos en la deteccion del glaucoma

Recientemente, el periddico Huffington Post [57] publicaba un articulo que hacia refe-
rencia a otro articulo de prensa publicado por la Universidad de Tohoku [58], en Japén.
En este, se hace eco de una investigacién [59] para la deteccién del glaucoma, en la que se
obtuvo un método con un 93.52 % de sensibilidad y un 95 % de especificidad. El proceso
que se sigue para la deteccion del glaucoma segin esta solucion se representa en la Figura
3.22, que comparte ciertas analogias con la solucion que se propondra mas adelante.
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Figura 3.22: Diagrama de flujo para la deteccién del glaucoma segun la Universidad de Tohoku [59].
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To ophthalmologist

Por otra parte, en plataformas como Kaggle, se encuentran diversos trabajos y conjun-
tos de datos en los que se emplea Deep Learning para clasificacién de imagenes, separando
conjuntos de retinografias segin representan un ojo sano o con glaucoma. En particular,
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[9] es uno de estos datasets. Una segunda via de estudio en estos proyectos es la segmenta-
cién de imagenes para delimitar dos areas fundamentales para la deteccion del glaucoma,
como son la copa y el disco opticos. En este segundo marco se tienen los conjuntos de
datos [11] y [13] Sin embargo, analizando estos trabajos resaltan algunos problemas. Para
el primer enfoque, el de clasificacion de iméagenes, surgen las siguientes dificultades:

= Falta de interpretabilidad. Para la clasificacién con Deep Learning, no se indica
qué regiones de la imagen contribuyen al diagnodstico al trabajar como una “caja
negra’.

» Dependencia de los datos. Requiere una gran cantidad de imagenes bien etiqueta-
das, lo cual puede ser un desafio en medicina, dado que, en ocasiones, es complicada
incluso la obtencién de datasets publicos como los de la Seccion 4.2 por motivos de
proteccién de datos.

= Poca sensibilidad a estructuras especificas. Puede ignorar detalles importan-
tes, como el tamano de la copa éptica, que son cruciales para la deteccion del
glaucoma.

Por su parte, el enfoque basado en segmentacion de las retinografias representa prin-
cipalmente un problema al no tener continuidad en el proceso de diagndstico; es decir,
los modelos segmentan las imagenes y esto no se utiliza con ningin propdsito. De este
modo, surge una oportunidad de elaborar una herramienta que combine ambos enfoques,
tomando la mejor parte de cada uno, mejorando las soluciones existentes. Ademas, para
el dataset contenido en [9], que como se verd a lo largo del Capitulo 4 serd sobre el que se
desarrollen los modelos de clasificacién, se han encontrado otras soluciones, de entre las
cuales los mejores resultados se muestran en la Tabla 3.4.

Modelo | Accuracy | Precision | Recall glzn(i;gfs
(78] 0.9416 0.9315 | 0.9532 Test
[79] 0.9391 0.8756 | 0.8791 | Validacién
[79] 0.9313 0.8518 | 0.9028 Test
[80] 0.9376 0.9079 | 0.9740 Test
[80] 0.9493 0.9458 | 0.9532 Test
[81] 0.8889 0.8662 0.92 Test

Tabla 3.4: Modelos estado del arte del dataset contenido en [9].
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Capitulo 4

Desarrollo de la propuesta y
resultados

En este capitulo se explican todas las técnicas que se han probado para la construccion
de la propuesta final a lo largo de todas las iteraciones que comprende el proyecto. Como
se indico en la Seccion 2.1.2, el proceso de desarrollo se efectia siguiendo CRISP-DM,
luego para la explicacion de este capitulo se seguiran las mismas fases que alli se trataron.

4.1. Entendimiento del negocio

Esta fase se corresponde con el estudio del estado del arte tratado en la Seccion 3.4.

4.2. Comprension de los datos

Esta seccién se corresponde con la etapa Data Understanding de la metodologia
CRISP-DM. Se trata de llevar a cabo un analisis sobre los datos que se van a utilizar
en el posterior entrenamiento de modelos. Este estudio consiste en identificar los conjun-
tos de datos que se van a emplear, el tipo de datos de cada conjunto y comprobar la
distribucién de los mismos.

4.2.1. Dataset Rotterdam

El dataset EyePACS-AIROGS-light-V2 [9] serd el principal conjunto de datos sobre el
que se desarrollaran algoritmos de clasificacién. A este dataset se hara referencia por el

nombre de Rotterdam, dado que es un subconjunto balanceado de imagenes estandariza-
das de retinografias del conjunto de datos Rotterdam EyePACS AIROGS.

Descripcién de los datos

El dataset rotterdam contiene mas de 9500 imagenes retinogréaficas entre pacientes que
presentan glaucoma y otros en los que no se ha detectado esta patologia. Algunas de las
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Tabla 4.1: Ejemplos de retinografias del dataset rotterdam [9]

iméagenes que incluye el dataset rotterdam se presentan a modo de ejemplo en la Tabla
4.1.

El conjunto de datos de Rotterdam esta dividido en los grupos de test, train y valida-
tion. Cada uno de estos subconjuntos se divide a su vez entre retinografias de pacientes
con glaucoma y otros sin él. En la Tabla 4.2 se indica el niimero de imagenes que contiene
cada carpeta para cada clase.

Carpeta Clase Numero de imagenes
Glaucoma 385
test
Normal 385
, Glaucoma 4000
train
Normal 4000
o Glaucoma 385
validation
Normal 385

Tabla 4.2: Resumen de las imagenes disponibles de cada clase en el dataset Rotterdam.

Distribucién de los datos

Los datos siguen la distribucion que se muestra en la Figura 4.1; es decir, cada una de
las dos clases esta representada por un total de 4770 imagenes. Ademas, como el nimero
de retinografias que se tienen de cada clase es igual, los datos no presentan ningin tipo
de problema respecto al balanceo de los mismos.

4.2.2. Dataset RIM-ONE

El dataset RIM-ONE [13] se utilizard como un conjunto de datos auxiliar a lo largo de
este proyecto, puesto que se tienen datasets mas interesantes para las tareas de clasificacion
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Distribucién de Clases en el Dataset
4770 4770

5000

4000 A

3000 A

2000 +

Cantidad de muestras

1000 +

Glaucoma Normal
Clases

Figura 4.1: NUumero de datos de cada clase en el dataset Rotterdam.

y segmentacién. Este conjunto de datos sera usado para preentrenar modelos sobre los
que realizar un segundo entrenamiento a partir del dataset rotterdam.

.

.
Tabla 4.3: Ejemplos de retinografias del dataset RIM-ONE [13]

Descripcién de los datos

Este dataset contiene solo la region del nervio 6ptico extraido de retinografias como se
muestra en los ejemplos de la Tabla 4.3. En consecuencia, como se busca clasificar retino-
grafias completas, estas imdgenes no pueden usarse directamente. Se vera en la propuesta
de solucién, que este dataset servira para preentrenar ciertos modelos que empleen tan
solo la region ONH.

Como se indica en la documentacién de este dataset [12], originalmente fue concebi-
do como un conjunto de imagenes de referencia para la segmentacién del disco éptico a
partir de imagenes tomadas en distintos hospitales de Espana. De hecho, aunque no se
vaya a nombrar pues no se ha utilizado, existe un segundo repositorio con las segmenta-
ciones correspondientes a las retinografias [13]. No obstante, su uso ha degenerado hacia
el entrenamiento y evaluacion de modelos de Deep Learning como es el caso.
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Carpeta Subcarpeta Clase Numero de imagenes
Glaucoma 56
test_set
partitioned_ Normal 118
by-hospital . Glaucoma 116
training_set
Normal 195
Glaucoma 52
test_set
partitioned_ Normal 94
randomly . Glaucoma 120
training_set
Normal 219

Tabla 4.4: Resumen de la disposicion original de los datos de RIM-ONE.

A colacién de lo anterior, en un origen existian tres versiones distintas, pero se com-
binaron en una nueva versién publica, denominada RIM-ONE DL (RIM-ONE for Deep
Learning). Esta nueva versién es la que se utiliza a lo largo de este proyecto. La ver-
sion utilizada de este conjunto de datos incluye 313 retinografias de pacientes sanos y
172 retinografias de pacientes con glaucoma. Ademads, todas ellas se acompanan de las
correspondientes segmentaciones del disco y la copa épticos. Las retinografias vienen or-
ganizadas siguiendo el esquema de la Tabla 4.4.

Por su parte, existe otro directorio con las segmentaciones. Estas vienen almacenadas
siguiendo la organizacién de la Tabla 4.5. En el recuento de archivos del directorio que
representa a cada clase, se tienen 4 archivos para cada imagen. Estos archivos se corres-
ponden con dos imagenes con la segmentacion de la copa y el disco, y dos archivos de
texto con los puntos del contorno del disco y la copa.

Clase Numero de archivos
Glaucoma 688
Normal 1252

Tabla 4.5: Resumen de la disposicion original de los datos de RIM-ONE.

Distribucién de los datos

Los datos siguen la distribucion que se muestra en la Figura 4.2; es decir, la clase
que representa a las imagenes de la regién ONH con glaucoma alberga un total de 172
ejemplos. Por su parte, se tienen 313 imédgenes de la regién ONH de pacientes sanos. A
pesar de que el nimero de retinografias que se tienen de cada clase es bastante disparejo,
pues tan solo en torno a un tercio son retinografias de ojos glaucomatosos, los datos
estan suficientemente balanceados. Ademas, el balanceo no es tan importante en este caso,
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Distribucién de Clases en el Dataset
313

Cantidad de muestras

Glaucoma Normal
Clases

Figura 4.2: Numero de datos de cada clase en el dataset RIM-ONE.

siempre que no supere unos limites, pues los datos tan solo sirven como un preentramiento,
y el conjunto donde el balanceo es mas importante es para el dataset rotterdam que es
con el que se hace el entrenamiento principal.

4.2.3. Dataset DRISHTI-GS

El dataset DRISHTI-GS [11] es un conjunto de datos que alberga retinografias com-
pletas junto con otros archivos que identifican partes destacadas del nervio 6ptico. Este
dataset serd el conjunto de datos sobre el que se desarrollaran algoritmos de segmentacion.

Tabla 4.6: Ejemplos de retinografias del dataset DRISHTI-GS [11]

Descripcién de los datos

Como ya se ha mencionado, DRISHTI-GS es un conjunto de datos que alberga reti-
nografias completas como las de la Tabla 4.6. Ademas, para cada una de estas imagenes
se tiene una serie de archivos adicionales con pixeles destacados y otras imagenes. Por
una parte, los archivos que identifican ciertos pixeles son tres. Estos senalan el contorno
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del disco, de la copa y dénde se encuentra el centro del nervio 6ptico. Por otra parte, las
iméagenes son de caracter binario, e indican dénde se encuentra la copa o el disco, segiin
corresponda. En las tablas 4.7 y 4.8 se muestran ejemplos de cada tipo de iméagenes,
respectivamente.

Tabla 4.7: Ejemplos de segmentaciones de la copa en el dataset DRISHTI-GS [11]

Tabla 4.8: Ejemplos de segmentaciones del disco en el dataset DRISHTI-GS [11]

De esta forma, podemos construir modelos de segmentacién a partir de las imagenes
binarias o de los archivos que indican el contorno correspondiente. Para el desarrollo de
este trabajo se ha optado por la opciéon de las imagenes binarias por la facilidad que
ofrecen en el entrenamiento de los modelos que se presentaran mas adelante.

Este conjunto de datos contiene un total de 101 imagenes de retinografias completas
con sus respectivos archivos asociados. A continuacién, se analiza la distribucién de los
datos, aunque no sera de especial relevancia, pues, independientemente de si la retinografia
corresponde a una persona que tenga o no glaucoma, la segmentacién debe producir el
mismo resultado identificando las estructuras correspondientes del nervio 6ptico, que son
las mismas en ambos casos; aunque, si bien es cierto que, en funcién de si se presenta o
no la patologia, las estructuras pueden variar ligeramente su tamano, como se explicd en
la Seccion 3.1.3 para la copa Optica.

Queda por mencionar la colocacién que sigue el conjunto de datos de DRISHTI-GS.
Este esta dividido en dos grupos: train y test. Cada uno de estos subconjuntos se divide
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Carpeta Clase Numero de imagenes
Glaucoma 38
test
Normal 13
) Glaucoma 32
train
Normal 18

Tabla 4.9: Resumen de las imagenes disponibles de cada clase en el dataset DRISHTI-GS.

a su vez entre retinografias de pacientes con glaucoma y otros sin él. En la Tabla 4.9 se
indica el nimero de iméagenes que alberga cada carpeta para cada clase.

Distribucion de los datos

En el dataset DRISHTI-GS, los datos siguen la distribucién que se muestra en la
Figura 4.3; es decir, la clase del glaucoma esta representada por un total de 70 imagenes,
mientras que para la clase normal se tienen 31 imagenes.

Distribucién de Clases en el Dataset
70

70 A

60 1

Cantidad de muestras

20+

10 A

Glaucoma Normal
Clases

Figura 4.3: Numero de datos de cada clase en el dataset DRISHTI-GS.

Aunque la diferencia entre imagenes pueda denotar que los datos estan desbalancea-
dos, esto no sucede. Como se ha indicado previamente, este dataset estd orientado a
segmentacion. A la deteccién y localizacion de las estructuras correspondientes del ner-
vio éptico, que son las mismas en ambos casos y tan solo pueden variar ligeramente su
tamano. Luego, la divisién en las clases de glaucoma y normal no es relevante, pues no se
tiene en cuenta para el desarrollo del modelo que se construya a partir de estos datos.
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4.3. Iteracién 1. Clasificacion de la retinografia com-
pleta

La aproximacién mas basica a la solucién del problema planteado de detectar el glauco-
ma pasa por la construccion de un algoritmo de clasificacion a partir de su entrenamiento
con las imédgenes de las retinografias. Para ello, se parte del dataset orientado a este
propésito de entre los que se tiene; es decir, el de Rotterdam. Con él, se entrena el modelo
y se evalian los resultados. Este proceso se detalla en cada uno de los apartados siguientes.

4.3.1. Preparacion de los datos

Puesto que el problema que se pretende solucionar en esta primera iteracion es el de
clasificacion, se parte del conjunto de datos de Rotterdam descrito en la Seccién 4.2.1.
Esto se debe a que este dataset es el que alberga una mayor cantidad de datos dispuestos
para clasificacion. Los datos de esta fuente han sido reordenados de la siguiente manera:

» Conjunto de entrenamiento [train|. Este segmento de datos ha de ser el que mayor
cantidad de los mismos albergue. Tipicamente se reserva en torno a un 70 % del
total de datos disponibles. En particular, para el entrenamiento de los modelos de
esta propuesta se ha separado un 64 % de cada una de las clases.

» Conjunto de validacion [val]. Este conjunto de datos se empleard durante la fase de
entrenamiento. Durante este proceso, al finalizar cada época, se valida el resultado
obtenido mediante este subconjunto de datos, lo que permite ajustar los pardmetros
de la red en funcién de los resultados obtenidos para mejorar el modelo en construc-
cién. Con este fin, se ha reservado un 16 % de las retinografias con glaucoma y un
16 % de las retinografias de pacientes sanos.

Es una practica de uso habitual tomar un porcentaje de los datos de entrenamiento
para la validacion; y asi es como se ha hecho en este caso. Para el proceso de
entrenamiento en total se toma un 80 %, y de este se divide un 20 % para validacién,
lo que resulta en un 16 % del total, y el resto, un 64 % del total, para lo que es
propiamente el entrenamiento.

» Conjunto de test [test]. Este conjunto de datos se empleard para probar el modelo
construido. Se utilizara para obtener las métricas que miden la capacidad del modelo.
En concreto, estd compuesto por un 20 % de las retinografias con glaucoma y un
20 % de las retinografias de pacientes sanos.

Esta reordenacion que se ha tomado sobre los datos tiene su motivo. En vez de reservar
un 8 % para validacién durante el entrenamiento y otro 8 % para prueba del modelo como
se menciona en 4.2.1, se coge un 16 % y un 20 % respectivamente. Esta nueva disposicién
de los datos presenta dos ventajas diferenciadoras:
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s La evaluacién final del rendimiento del modelo es mds robusta. Al contar con un
mayor nimero de datos de prueba, se mejora la estimacion del rendimiento real del
modelo.

» El ajuste de los parametros internos del modelo mejora. Con més datos para validar,
las métricas de validacion son mas representativas.

Bien es cierto que no todo son ventajas, pues el aumento en estos subconjuntos de
datos se produce a costa de reducir el nimero de datos de entrenamiento. Esto puede
afectar a la capacidad del modelo para extraer patrones, especialmente si los datos son
limitados. Sin embargo, como tenemos un total de 9540 imégenes, estas son suficientes y
se puede permitir esta disminucién de imagenes en el conjunto de entrenamiento.

Ademas de procesar las retinografias originales, que estan a color, también se realiza
un entrenamiento para la prediccién del glaucoma a partir de las mismas imagenes pero en
escala de grises durante esta iteracion. La disposicién de los datos es la misma en ambos
casos, vy solo cambia el nimero de canales que tiene la imagen. A esta modificacion del
dataset original se le ha denominado Rotterdam_grises.

4.3.2. Entrenamiento

En la etapa de entrenamiento se procede a construir los modelos que se pretenden
que clasificaquen retinografias entre las de pacientes sanos y los que presenten glaucoma.
Como se ha indicado previamente, en esta primera iteracion se consideran dos modelos:
uno orientado a clasificacion con retinografias a color, y otro andlogo con retinografias en
escala de grises.

Durante esta fase se ajustan los pardmetros internos de los modelos de Deep Learning
a partir de los datos disponibles siguiendo la teoria explicada en la Seccion 3.2.3. Para ello,
se indican una serie de hiperpardametros que determinan algunos procesos que se llevan
a cabo. En concreto, se indica el nimero de épocas que se debe entrenar el modelo; la
paciencia, para evitar el sobreajuste; o el tamano de entrada de las imagenes. Ademas, se
indica el modelo base sobre el que se entrena para no tener que construir la red desde cero.
En la Tabla 4.10, se detallan los hiperpardmetros empleados durante el entrenamiento de
cada uno de los dos modelos. Para seleccionarlos, se han tenido en cuenta aspectos como
el coste computacional del proceso.

Como se observa en la Tabla 4.10, se ha empleado para realizar el entrenamiento el
sistema YOLO. Este se ha importado desde la biblioteca ultralytics. Durante las iteraciones
se vera que se usa tanto FastAl como YOLO, teniendo maés presencia este tltimo. Esto se
debe a la rapidez del algoritmo, pues se basa en el paradigma ” You Only Look Once” [60].

4.3.3. Evaluacion

Una vez entrenados los modelos, han sido evaluados utilizando el subconjunto de los
datos que se reservé para prueba: el conjunto de test. Para cuantificar la capacidad de
clasificacién de cada modelo adecuadamente, se ha empleado la métrica accuracy definida

Carlos Jiménez Vaquero 85



Capitulo 4. Desarrollo de la propuesta y resultados

Modelo Descripcion Hiperparametros
Algoritmo YOLO
Modelo base YOLO 11
rotterdam rotterdam ]?ataset Rotterdam
a color Epocas 100
Paciencia 15
Tamano imagen 256
Algoritmo YOLO
Modelo base YOLO 11
rotterdam | Modelo escala Dataset Rotterdam_grises
grises de grises Epocas 100
Paciencia 15
Tamano imagen 256

Tabla 4.10: Parametros empleados en el entrenamiento de los modelos de la iteracién 1

en la Seccion 3.2.4. En la Tabla 4.11 se resumen los resultados obtenidos tanto para el
conjunto de datos val como para el de test.

Modelo Epocas Accuracy validacién | Accuracy test
rotterdam 52 0.938 0.933
rotterdam grises 41 0.921 0.912

Tabla 4.11: Resultados obtenidos en la iteracién 1 tras el entrenamiento

A partir de los resultados obtenidos en la Tabla 4.11 se puede comparar de manera
cuantitativa el rendimiento de los modelos considerados, identificando el que mejor com-
portamiento presenta en términos de la métrica accuracy. Atendiendo a los mismos, se
observan mejores resultados para el modelo que recibe como datos de entrada iméagenes
a color en vez del modelo para escala de grises, tanto en el conjunto de validaciéon como
en el de test. Lo mas representativo siempre sera el de test, pues los datos de validacion
han sido empleados para ajustar los parametros durante la etapa de entrenamiento y no
representan fielmente el rendimiento que pueda tener el modelo en la realidad.

De esta forma, el resultado més destacado en términos de accuracy durante esta ite-
racion, orientada a clasificacién, ha sido de un 93.3 %. Esto implica que menos 7 de cada
100 imégenes son clasificadas de manera erronea, lo que significa un gran avance para esta
primera iteracién del proyecto. Ademas, razonando el motivo por el que se puede haber
obtenido un mejor resultado para imagenes a color que para imégenes en escala de grises,
puede deberse a la propia construccion de las imagenes en cada caso. Frente a los tres
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canales RGB que componen la imagen a color, para la imagen en escala de grises tan solo
se tiene uno, lo que supone una disminucién en la cantidad de informaciéon que aporta
cada retinografia en términos computacionales.

4.4. Iteracién 2. Segmentacion con Deep Learning y
clasificaciéon con Machine Learning

Una vez tratado el problema de clasificar las retinografias entre las de pacientes sanos
y las de aquellos que presentan indicios de glaucoma, surge la necesidad de abordar el
otro objetivo principal recogido en la Seccion 1.2. Este se trata de la identificacion de las
estructuras propias de las retinografias empleando técnicas de segmentacion.

A lo largo de esta seccién, se explicara el dataset del que se parte, el entrenamiento
del modelo, y el correspondiente anélisis de los resultados que se han llevado a cabo para
la consecucion de este objetivo. A continuacién, se detalla cada una de las partes de este
proceso.

4.4.1. Preparacion de los datos

Puesto que el problema que se pretende solucionar en esta segunda iteracién es el de
segmentacion a partir de una retinografia, se parte del conjunto de datos DRISHTI-GS
descrito en la Seccion 4.2.3. Esto se debe a que este dataset es el tinico del que se dispone
que alberga la informacion necesaria para segmentar las estructuras del disco y la copa
opticos a partir de retinografias completas.

Por otra parte, puesto que la segmentacion se ha entrenado mediante YOLO, o los
modelos que facilita FastAl, la disposicién del conjunto de datos que se ha empleado para
entrenar los modelos varia en funcién de los mismos:

s FastAl Para los modelos que se entrenaran usando las arquitecturas que facilita
Fast Al se dispone de una carpeta con las imagenes y otra con las segmentaciones que
se pretenden obtener. Puesto que se van a probar distintos formatos de imagenes,
como RGB, escala de grises o aplicando filtros de Gabor, tan solo sera necesario
cambiar la carpeta de donde se toman las imagenes. Puesto que para los filtros de
Gabor, las pruebas iniciales determinaron un bajo rendimiento, en lo que sigue solo
se tendra en cuenta las imagenes a color y en escala de grises, sin ningun filtro.

Asi, se tienen las carpetas: cup_segmentations, con las segmentaciones de la copa;
disc_segmentations, que almacena las segmentaciones del disco; fundus, que alberga
las retinografias a color; y fundus_filtered, con las imagenes de la retinografia en
escala de grises.

Para los modelos entrenados a partir de FastAI no es necesario dividir los directorios
para determinar los conjuntos de entrenamiento y validacién. Esto se hace con el
dataloader que es una estructura la cual se construye previo al entrenamiento y
que determina los datos que se usardn. En este se dividen los datos en un 80 %
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para entrenamiento y un 20 % para validacién. Ademds, también especifica que las
imagenes de entrada a la red neuronal seran de tamano 224 x 224 pixeles.

YOLO. Estos modelos requieren los datos de entrada organizados como se describié
en la iteraciéon 1. De esta manera, para el uso de YOLO se han considerado dos
datasets diferenciados: uno para la segmentacion del disco 6ptico y otro para la de
la copa optica, denominados dataset_yolo_disc y dataset_yolo_cup respectivamente.
En ambos casos, con las imagenes a color. En cada uno de estos datasets se ha
dispuesto una carpeta [train] para el entrenamiento, y otro directorio [val] para el
proceso de validacién.

Ademas, tanto para el modelo del disco como para el de la copa se han separado
los datos en 80 imégenes para train y 21 para val. Esto representa un 80 % y un
20 % del total de datos disponibles, respectivamente. En cada uno de los directorios,
la carpeta de imédgenes se acompana con otra denominada labels que contiene un
archivo de texto referido a cada imagen e incluye la informacion necesaria para
poder determinar la segmentacién esperada.

Queda destacar un elemento fundamental que se debe tener previo al entrenamiento
de los modelos. Se trata de un archivo de extension yaml que describe cémo debe
tomar YOLO los datos. Estos se denominan cup_config.yaml y disc_config.yaml para
la copa y el disco, respectivamente. Su contenido es el siguiente:

cup_config.yaml

path: /content/drive/My Drive/Colab Notebooks/dataset_modified/dataset
_yolo_cup

train: train/images

val: test/images

nc: 1

names: ['copa’|

disc_config.yaml

path: /content/drive/My Drive/Colab Notebooks/dataset_modified /dataset
_yolo_disc

train: train/images

val: test/images

nc: 1

names: ['disco’]

Como se puede comprobar, en estos archivos se indica la ruta donde se encuentra el
dataset en cuestion, junto con las rutas relativas de las imdgenes dentro del directorio
del dataset. Ademas, nc informa del nimero de clases de objetos que se pretenden
segmentar; mientras que names muestra el nombre que recibira la clase.
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En esta iteracion, ademés de entrenar los modelos de segmentacion con los datos
preparados como se ha descrito, también se han entrenado modelos de clasificacién, los
cuales estan construidos mediante algoritmos de Machine Learning. Para estos, se parte
de la hipdtesis mencionada en la Seccién 3.1.3 de que la copa aumenta su tamano en
presencia de glaucoma.

Partiendo de esta idea y mediante los modelos construidos para segmentacion, se pasan
a construir una serie de archivos CSV (Comma-separated values) que recogen un conjunto
de medidas y/o proporciones oportunas tanto del disco como de la copa. A continuacion,
se describe cada uno de los archivos CSV que se utilizaran en el entrenamiento:

s datos_DRISHTI.csv. Este fichero se ha construido a partir de las mascaras que
se tienen para las retinografias del dataset DRISHTI-GS. De esta forma, se puede
comprobar si puede ser 1til para la clasificacién la hipdtesis de la que se parte. En
caso de poder ser 1til, se hace lo mismo para las segmentaciones. Asi, se prueba si
es usable en condiciones ideales para luego comprobarlo con las segmentaciones, que
inevitablemente introduciran errores en las medidas.

En este archivo, se presentan 4 columnas de datos. Las tres primeras, diam_disco,
diam_copa y prop_diam, representan el didmetro del disco y de la copa, asi como la
proporcion entre los mismos, respectivamente. Formalmente,

. diam_disco

prop_diam = —— .

diam_copa

Cabe recordar que la definicién de diametro se incluyé en la Seccién 3.3. Por ultimo,
la cuarta columna indica de manera binaria si la retinografia corresponde a un globo

ocular con glaucoma, representado por 0, o sin él, representado por 1.

» datos_fastai.csv. Este fichero coincide en lo referido a los datos que se almacenan
con el archivo datos_DRISHTI.csv. La diferencia radica en que para su construcciéon
no se utilizan las mascaras propias del dataset, sino que se emplean las predicciones
hechas por el modelo FastAI que mejor rendimiento tenga.

s datos_.YOLO.csv. Este fichero es analogo al archivo datos_fastai.csv. El tnico
cambio es que las medidas se toman a partir del modelo construido con YOLO en
vez de con el de FastAl

» datos_completo.csv. Este archivo extiende la informacién que se tiene en los fi-
cheros datos_fastai.csv y datos-YOLO.csv. En concreto, las primeras columnas se
refieren a medidas tomadas de la prediccién YOLO; las siguientes, a la predicciéon
FastAl; y la ultima es la clasificacién esperada. Respecto a las columnas que recogen
atributos de las segmentaciones, tenemos los siguientes datos:

e min radio_disco_yolo: denota la distancia minima entre el centroide del disco
detectado con el modelo YOLO y el contorno del mismo.
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¢ max radio_disco_yolo: es la distancia maxima entre el centroide del disco
detectado y el contorno del mismo con el modelo YOLO.

¢ min _radio_copa_yolo: minimo de las distancias entre el centroide de la copa
detectada con el modelo YOLO y el contorno de la misma.

¢ max radio_copa_yolo: es la distancia méxima entre el centroide de la copa
segmentada y el contorno de la misma con el modelo YOLO.

e prop_radios_max_yolo: cociente entre max_radio_disco_yolo y max_radio_copa_yolo.
e prop_radios_min_yolo: division de min_radio_disco_yolo entre min_radio_copa_yolo.

e prop_radios_disco_yolo: proporcién entre los radios minimo y maximo de la
segmentacion del disco con el modelo YOLO; es decir, entre min_radio_disco_yolo
y maz_radio_disco_yolo, respectivamente.

e prop_radios_copa_yolo: proporciéon para la copa detectada con el modelo
YOLO entre el minimo (min_radio_copa_yolo)y méximo (maz_radio_copa_yolo)
de sus radios.

e min_radio_disco: denota la distancia minima entre el centroide del disco de-
tectado con el modelo construido con FastAl y el contorno del mismo.

e max_radio_disco: es la distancia maxima entre el centroide del disco detec-
tado y el contorno del mismo con el modelo construido con FastAl.

¢ min_radio_copa: minimo de las distancias entre el centroide de la copa detec-
tada con el modelo construido con FastAl y el contorno de la misma.

e max radio_copa: es la distancia maxima entre el centroide de la copa seg-
mentada y el contorno de la misma con el modelo construido con FastAl.

e prop_radios_max: cociente entre mazx_radio_disco y max_radio_copa.
e prop_radios_min: division de min_radio_disco entre min_radio_copa.

e prop_radios_disco: proporcion entre los radios minimo y maximo de la seg-
mentacién del disco con el modelo construido con FastAl es decir, entre min_radio_disco
vy maz_radio_disco, respectivamente.

e prop_radios_copa: proporcion para la copa detectada con el modelo construi-
do con FastAl entre el minimo (min_radio_copa)y maximo (maz_radio_copa) de
sus radios.

4.4.2. Entrenamiento

Dentro de esta fase de la segunda iteracion, se pueden distinguir distintas clases de
entrenamiento en funcién del objetivo o la biblioteca de modelos usada; es decir, si se trata
de un problema de segmentacién o clasificacién, y si se emplea YOLO o FastAl. Luego,
a continuacion se da una explicacién para cada uno de los casos de manera analoga para
todos ellos.
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Fast Al para el disco 6ptico

Usando la biblioteca FastAl para segmentar el disco 6ptico, se han contemplado una
serie de arquitecturas que esta misma biblioteca recoge. En particular, se ha probado a
construir modelos a partir de Transfer Learning [61] con las arquitectura Resnet, Alexnet,
Densenet y VGG, donde para las que ofrecen la oportunidad se han utilizado variantes
con mas o menos parametros, como sucede con Resnet3/ y Resnet152 o con VGG-16'y
VGG-19.

Ademas de seleccionar la arquitectura con la que se construiran los modelos, también
se ha de escoger el nimero de épocas que se van a entrenar los mismos. En este caso, se han
ido probando diferentes ajustes y se ha tomado la opcién que mejores resultados aportaba.
Este trabajo se ha realizado de manera manual examinando el ajuste a lo largo de las
épocas para que el modelo no sobreentrene y haya un sobreajuste, pero también para que
ajuste lo suficiente y no quede sin entrenar. Otra forma podria haber sido introducir un
hiperparametro de patience o paciencia.

Finalmente, para terminar de definir los hiperparametros del modelo, se debe escoger
el conjunto de métricas en las que se basara FastAl para realizar los correspondientes
ajustes en los parametros para adaptar la red neuronal a la solucién. Para esta fase de
entrenamiento se ha empleado la métrica accuracy_camuvid definida en la Seccion 3.2.4 para
todos los modelos. En la fase de evaluacion se estudiard una mayor cantidad métricas para
examinar en detalle los modelos escogidos.

De esta forma, en la Tabla 4.12 se recoge la arquitectura, el nimero de épocas y la
métrica utilizada para ajustar el modelo tanto para la imagen en escala de grises como a
color en la base RGB.

Resultado disco Resultado
Arquitectura escala de grises disco a color
modelos Ntmero Métrica Nimero Métrica
etapas etapas
Resnet34 13 accuracy_camuvid 13 accuracy_camuvid
Resnet152 20 accuracy-camuvid 20 accuracy-camuvid
Alexnet 25 accuracy-camuvid 25 accuracy-camuvid
Densenet 12 accuracy_camuid 12 accuracy_camuid
VGG-16 12 accuracy-camuvid 12 accuracy-_camuvid
VGG-19 17 accuracy-_camuvid 17 accuracy-_camuvid

Tabla 4.12: Parametros modelos FastAl de segmentacién del disco en la iteracién 2.

Fast Al para la copa

De manera analoga a como se ha tratado el entrenamiento de los modelos para la
segmentacion del disco éptico, se construyen los modelos para la segmentacién de la
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copa. Asi, se debe definir la arquitectura sobre la que se entrenara el modelo. Se han
considerado las mismas que en el caso del disco. Ademas, también se define el niimero
de épocas que se entrenara el modelo y la métrica para hacerlo. De igual modo que para
el entrenamiento de los modelos de segmentacion del disco, se ha ajustado el niimero de
épocas para obtener los mejores resultados. Ademas, la métrica considerada también es
la misma: accuracy_camuvid. En la Tabla 4.13 se detallan los hiperparametros a partir de
los cuales se construyen los distintos modelos.

Resultado copa Resultado
Arquitectura escala de grises copa a color
modelos Nimero Métrica Numero Métrica
etapas etapas
Resnet34 12 accuracy_camuvid 12 accuracy_camuvid
Resnet152 18 accuracy-_camuvid 18 accuracy_camuvid
Alexnet 25 accuracy_camuvid 25 accuracy_camuvid
Densenet 12 accuracy_camuid 12 accuracy_camuid
VGG-16 11 accuracy-camuvid 11 accuracy_camuid
VGG-19 16 accuracy-camuvid 16 accuracy-_camuvid

Tabla 4.13: Parametros modelos FastAl de segmentacion de la copa en la iteracion 2.

YOLO para el disco

En la etapa de entrenamiento para el modelo YOLO se empleard YOLO11. Para la
construcciéon del modelo que segmenta el disco se parte del dataset DRISHTI-GS con las
retinografias a color. Ademas, se debe especificar durante esta fase una serie de carac-
teristicas que acoten el funcionamiento del entrenamiento.

Modelo Hiperparametros
Algoritmo YOLO
Modelo base YOLO 11
. Dataset méascaras | disc_segmentations
yolo_disc ,
Epocas 100
Paciencia -
Tamano imagen 256

Tabla 4.14: Parametros modelo YOLO de segmentacion del disco en la iteracion 2.

Para ello, se indican una serie de hiperparametros que determinan algunos procesos
que se llevan a cabo. En concreto, se indica el nimero de épocas que se debe entrenar el
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modelo; la paciencia, para evitar el sobreajuste; o el tamano de entrada de las imagenes.
Ademas, se indica el modelo base sobre el que se entrena para no tener que construir la
red desde cero.

A colacion de lo anterior, en la Tabla 4.14 se detallan los hiperparametros empleados
durante el entrenamiento del modelo que segmenta el disco 6ptico a partir de retinografias
a color. Para seleccionar dichos hiperparametros se han tenido en cuenta aspectos como
el coste computacional del proceso.

YOLO para la copa

De manera analoga a como se ha tratado el entrenamiento del modelo construido a
partir de YOLO para la segmentacion del disco optico, se construye el modelo para la
segmentacion de la copa. Asi, se debe definir la arquitectura sobre la que se entrenara el
modelo, el numero de épocas que se entrenard el mismo, la direcciéon donde se encuentran
las mascaras a partir de las que se entrenard y el tamano de la imagen de entrada a la
red neuronal.

Modelo Hiperparametros
Algoritmo YOLO
Modelo base YOLO 11
Dataset mascaras | cup_segmentations
yolo_cup o
Epocas 100
Paciencia -
Tamano imagen 256

Tabla 4.15: Parametros modelo YOLO de segmentacion de la copa en la iteracién 2

En la Tabla 4.15 se detallan los hiperparametros a partir de los cuales se construye el
modelo capaz de identificar la regién de la copa optica.

Entrenamiento de los algoritmos de Machine Learning para clasificacién

Para el entrenamiento de los modelos de clasificaciéon mediante técnicas de Machine
Learning se usaran los algoritmos propuestos en la Seccion 3.2.1. Ademas, para los que se
pueda establecer una serie de hiperparametros, se elegiran los éptimos; es decir, los que
mejores resultados arroje su correspondiente entrenamiento. Esto es, para los modelos de
KNN, elegir el nimero 6ptimo de vecinos a partir de los que se hace la prediccién, o para
el clustering, el conjunto de atributos que se manejan asi como la cantidad de clisters en
los que se divide el conjunto de datos.

Ademas, para todos los algoritmos que se contemplan, se mediran sus resultados en
base al accuracy que presenten. De hecho, esta métrica sera la que se use por los algoritmos
de entrenamiento para ajustar las soluciones de los modelos. Pero no solo eso, sino que
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también se considerard para cada clase, glaucoma y normal, la precision obtenida, junto
con el recall, y a partir de las cuales, el F1-score. Para entender su significado, todas estas
métricas aparecen definidas en la Seccion 3.2.4.

4.4.3. Postprocesado

Tras el entrenamiento de los modelos de esta segunda iteracion, se distinguen dos
tipos de modelos. Por una parte, los construidos siguiendo técnicas propias del Machine
Learning, y por otra, los modelos de segmentacion sobre imégenes entrenados con redes
neuronales profundas que se enmarcan dentro del campo Deep Learning.

Respecto a los segundos, las segmentaciones de las imagenes pueden contener ciertas
imperfecciones solucionables de manera automatica con las debidas técnicas de trata-
miento de imagen. En esta seccién se van a revisar las problematicas que se han apreciado
respecto a las mismas asi como la solucién abordada. Es aqui donde se aplicara todo el
conocimiento matematico de teoria de conjuntos relatado en la Seccién 3.3 de los antece-
dentes. En una primera instancia se revisaran las soluciones construidas usando modelos
YOLO, para continuar con las proporcionadas a través de la biblioteca FastAl.

Problemas segmentaciéon YOLO

Con YOLO se han construido dos modelos para segmentacion: uno para el disco y
otro para la copa éptica, que reciben el nombre de yolo_disc y yolo_cup, respectivamente.
Para probar su funcionamiento, ademas de comprobar su rendimiento con el conjunto
de datos DRISHTI-GS que se ha usado para entrenar los modelos, también se hacen las
respectivas pruebas con el dataset rotterdam. Aunque no se tengan las segmentaciones de
las clases identificadas en una retinografia para este ultimo conjunto de datos, se puede
comprobar visualmente si el modelo funciona adecuadamente.

disco 0.41

disco 0.97 disco 0.97

Figura 4.4: Ejemplo de error yolo_disc Figura 4.5: Solucion de errores yolo_disc
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En primer lugar, se estudia el modelo construido para el disco, denominado yolo_disc.
De entre todas las retinografias que alberga el dataset rotterdam, solo se ha apreciado un
error. Este consiste en la identificacion de mas de un disco. Este error se muestra en la
Figura 4.4.

Como se puede comprobar en la Figura 4.4, YOLO aporta junto con la segmentacion,
un recuadro de localizacion, asi como la probabilidad de que la region senalada se haya
identificado correctamente. El error se soluciona sin més que tomando la regién con ma-
yor probabilidad. Se ha comprobado que siempre que ocurre este error, la mascara que
identifica el disco real presenta una certeza mucho mayor como ocurre en el ejemplo de la
Figura 4.4.

Cabe destacar ademés el buen funcionamiento del modelo, pues al probarlo en otro
dataset completamente distinto al del entrenamiento sigue identificando correctamente el
disco 6ptico. No obstante, en la posterior Seccién 4.4.4 se evaluara de manera numérica
el rendimiento de este modelo.

Una vez analizados y solucionados los errores que pueden cometerse al tratar de seg-
mentar el disco Optico, se pasa a estudiar si para la copa 6ptica también se produce alguna
desviacion respecto del resultado esperado. Analogamente a como se hizo para el modelo
del disco, ademés de comprobar su rendimiento con el dataset DRISHTI-GS que se ha
usado para entrenar, también se haran pruebas con el conjunto de datos rotterdam. Asi
es como se ha observado no un error, pero si una posible mejora a la solucién facilitada
por el modelo. Dicha mejora se ejemplifica en las figuras 4.6, 4.7 y 4.8.

Figura 4.6: Resultado inicial Figura 4.7: Segmentacién Figura 4.8: Prediccion final

En la primera de las figuras, la 4.6 se muestra la prediccién hecha con el modelo
construido para la copa. Para poder ver mejor el resultado, en la Figura 4.7 se destaca la
segmentacion hecha por dicho modelo. Aqui, como se puede comprobar, aparecen ciertas
vesiculas. Para eliminarlas, se aplica un kernel para obtener el resultado de la Figura 4.8.

Finalmente, cabe destacar que, puesto que el disco 6ptico y la copa dptica se supone
que deben ser conjuntos convexos, para mejorar el resultado se ha decidido calcular la en-
volvente convexa de las mascaras que identifican estas estructuras. Asi, para la aplicacién
final se mostraran tanto la solucién inicial con las mejoras descritas, como el resultado
que se obtiene al calcular la envolvente convexa.
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Problemas segmentacion FastAl

Andalogamente a los modelos construidos con YOLO, se han escogido dos modelos
para segmentaciéon con FastAl: uno para el disco y otro para la copa Optica, que reciben
el nombre de fastai_disc y fastai_cup, respectivamente, ambos construidos con el modelo
Resnet152. Para probar su funcionamiento, ademas de comprobar su rendimiento con el
conjunto de datos DRISHTI-GS, usado para entrenar los modelos, también se hacen las
respectivas pruebas con el dataset rotterdam. Aunque no se tenga las segmentaciones de las
clases identificadas en una retinografia para este ultimo conjunto de datos, se comprobara
visualmente si el modelo funciona adecuadamente.

Igual que para los modelos YOLO, en primer lugar, se estudia el modelo construido
para el disco, fastai_disc. De entre todas las retinografias que alberga el dataset rotterdam,
se han detectado dos tipos de desviaciones respecto a la segmentacion esperada. Estas
fallas en las segmentaciones, asi como las soluciones planteadas, son las siguientes:

= Mas de una componente conexa. En ocasiones, el modelo devuelve una segmen-
tacion formada por varias regiones disjuntas como se muestra en la Figura 4.9. En
la mayoria de casos en los que esto sucede, suele deberse a la existencia de regiones
con intensidad similar a la del disco optico; es decir, a la presencia de brillos en la
retinografia. Como consecuencia, el modelo interpreta erréneamente cada uno de los
brillos como un disco.

Figura 4.9: Ejemplo de segmentacién con mas de una componente conexa.

Solucién. La respuesta esperada para el modelo es una tnica identificacién de
disco, pues para cada retinografia se sabe que solo puede existir uno. Luego, la
solucion pasa por seleccionar unicamente la componente conexa que identifica al
disco. Sin embargo, esto es una tarea muy complicada. El motivo es que habria que

96 Carlos Jiménez Vaquero



4.4. Tteracién 2. Segmentacién con Deep Learning y clasificacién con Machine Learning

establecer condiciones para determinar cual de todas las componentes conexas es la
que identifica el disco 6ptico.

Otra solucién pasa por aplicar filtros a partir de la transformada de Fourier [62].
Con esta técnica, se busca reducir los brillos que causan problemas en el proceso
de segmentacion. Asi, reduciendo el efecto de estos brillos, se pretende obtener una
unica componente conexa que coincida con el disco optico.

Sin embargo, aunque se hayan contemplado estas opciones e incluso implementado
la primera de ellas, no es necesario hacer uso de las mismas para solventar esta
cuestiéon. En su lugar, la soluciéon que se ha tomado para el otro obstaculo que se
presenta a continuacion, también sirve para controlar el este problema.

» Se identifica un area mayor como disco. Otro problema que surge al segmentar
la region del disco dptico es detectar un area mayor a la que le corresponde, como
ocurre en el ejemplo de la Figura 4.10. El motivo de esta desviacién respecto del
resultado esperado es un menor contraste entre la zona del disco 6ptico respecto a
la region inmediatamente exterior a él.

Figura 4.10: Desviacion en la Figura 4.11: Deteccion del fon- Figura 4.12: Solucién aplicada
segmentacion del disco do de la retinografia al disco en FastAl

Solucién. Una primera solucién pasa por la aplicacion de un kernel. Igual que
para eliminar las vesiculas, como se hizo con las predicciones de YOLO, se trata de
aplicar un kernel que reduzca la region que no corresponde con el disco éptico. Esto
funciona cuando las regiones mal detectadas son pequenas. Sin embargo, para un
caso como el de la Figura 4.10, donde las regiones mal detectadas son grandes, esto
no representa una solucion real.

Otra solucion planteada es tratar de elaborar otro modelo para prediccion de las
segmentaciones a partir de un conjunto de datos diferente y combinar el resulta-
do. Con este propoésito, se ha entrenado un modelo para detectar el fondo de la
retinografia; es decir, el area complementaria al disco en la imagen.

Para llevar a cabo esto, el conjunto de datos de entrenamiento consiste en las reti-
nografias del dataset DRISHTI-GS a color, frente a las imagenes en escala de grises
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de este mismo conjunto de datos con las que se ha entrenado el modelo yolo_disc.
Asi, se alteran los datos de entrada, obteniendo resultados distintos para combinar-
los posteriormente. El modelo que identifica el fondo, el area complementaria a la
region del disco, recibe el nombre de fastai_disc_background.

Asi, aplicando este modelo construido como solucién al problema por el que se iden-
tifica un area mayor como disco Optico para la retinografia de la Figura 4.10, se
consigue un resultado como el de la Figura 4.11. Para conseguir la solucién espe-
rada a partir de los modelos que detectan el disco y su fondo, se calcula la region
complementaria al fondo y se obtiene la solucion final a partir de la interseccién
entre esta tltima zona y el area del disco calculada por el primer modelo. De esta
forma, se alcanza la solucion representada en la Figura 4.12.

De igual forma que se hizo para el disco y la copa con los modelos a base de YOLO,
para mejorar la solucion y reducir ciertas vesiculas que pudieran aparecer, se aplica
un kernel. Ademas, puesto que el disco éptico y la copa éptica deben ser conjuntos
convexos, también se ha decidido calcular la envolvente convexa de las méascaras que
identifican estas estructuras.

A partir del proceso descrito anteriormente, se alcanza un resultado mucho mas
fiel a la realidad. En las imagenes 4.13, 4.14, 4.15 y 4.16 se muestra cada etapa
principal en ese orden. Como se identifica en la Figura 4.16, el resultado final tras
el postprocesado se adeciia en mayor medida a la regién original del disco éptico.
A todo este proceso se le ha denotado con el nombre de fastai_process, el cual se
mencionara para valorar los resultados obtenidos.
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Figura 4.13: Prediccion inicial del disco Figura 4.14: Prediccion del fondo

Respecto a la copa, apenas se ha mencionado su postprocesado puesto que es muy
simple y ya ha sido relatado con anterioridad. Simplemente se hace la intersecciéon
de la segmentacién predicha con la region del disco, dado que la copa se encuentra
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Figura 4.15: Resultado de la combinacién de Figura 4.16: Prediccién final tras aplicar un ker-
las dos segmentaciones realizadas nel y calcular la envolvente convexa

dentro del disco. Tras esto, se aplica un kernel para reducir las vesiculas que pueda
presentar la mascara y se calcula la envolvente convexa para obtener el resultado
final que identifica la copa. Realmente es un proceso muy similar al que se ha
explicado para la segmentacion de la copa en los modelos YOLO.

4.4.4. Evaluacion
Métricas para los modelos elegidos para el disco

El mejor modelo producido para la segmentacion del disco utilizando la biblioteca
FastAl es el entrenado con Resnet152 para imégenes en escala de grises. A este modelo
se le ha denominado fastai_disc. Por su parte, se tiene un modelo a partir de YOLO que
se denomina yolo_disc. Junto con estos dos, también se ha considerado relevante calcular
las métricas para el proceso descrito en la Secciéon 4.4.3 para la segmentacion del disco
6ptico a partir de FastAl, al que se le ha nombrado como fastai_process.

La Tabla 4.16 presenta las métricas clave para evaluar la calidad de las segmentaciones
producidas por el modelo de YOLO, junto con el mejor modelo de los de FastAl; ademas
del proceso completo denominado fastai_process. En la Tabla 4.16 se evalian los modelos
escogidos, sin calcular ninguna mejora como lo de la envolvente convexa. Como se puede
apreciar, el mejor modelo es fastai_disc, pues supera al resto en todas las métricas, a ex-
cepcion de accuracy_camvid, donde es un 0.5 % inferior al modelo yolo_disc, lo que resulta
despreciable en comparacion con la superioridad que muestra en el resto de métricas frente
a este ultimo modelo.

Ademas, se observa que el proceso completo, al que se hace referencia como fas-
tai_process y que se describié en la Seccion 4.4.3 anterior, obtiene métricas un tanto
inferiores para las imagenes del dataset DRISHTI-DS. Sin embargo, esto supone una solu-
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Modelo ?a?cefaii(;lan(tligi Co%iicci:nte Pixel accuracy | Accuracy_camvid
fastai_disc 0.9471 0.9726 0.9983 0.9726
fastai_process 0.9243 0.9603 0.9976 0.9313
yolo_disc 0.8822 0.9371 0.9959 0.9778

Tabla 4.16: Métricas de los modelos que segmentan el disco

cién para contemplar una mayor variedad de imégenes, pues también resuelve el problema
para las segmentaciones del dataset rotterdam. De esta forma, se sacrifica ligeramente el
rendimiento para el conjunto de las 101 imagenes sobre las que se calculan las métricas
(las del dataset DRISHTI-DS), en favor de una mayor generalizacién para resolver el
problema propuesto.

A continuacion se relata el resultado obtenido para cada métrica:

» Coeficiente de Jaccard (IoU). Los valores para esta métrica indican que el mo-
delo fastai_disc presenta la mayor superposicion entre prediccién y etiqueta real,
lo que indica una segmentacién muy precisa. Por su parte, yolo_disc tiene el peor
desempeno en esta métrica, aunque sigue siendo aceptable.

s Coeficiente Dice. Para esta métrica, nuevamente fastai_disc lidera con la mejor
segmentacion general; mientras que yolo_disc es la que peor coeficiente Dice muestra,
aunque mantiene un desempeno razonable.

s Pixzel Accuracy. Todos los modelos tienen una precision de pixeles extremada-
mente alta, indicando que la mayoria de los pixeles se clasifican correctamente. Sin
embargo, esta métrica puede ser enganosa si hay clases dominantes, como es el caso.
Asi, esta métrica no resulta representativa para la seleccion de un modelo u otro,
puesto que en cada retinografia la mayor parte de la misma representa el fondo.
Esto incrementa el valor del pizel Accuracy en todos los casos, consiguiendo que
esta métrica no resulte representativa.

» Accuracy_camvid. A pesar de que el modelo yolo_disc tiene peor IoU y Dice, logra
el mejor accuracy_camuvid. Esto sugiere que su clasificacion global por clase es buena.
Aunque la segmentacién precisa, distinguiendo adecuadamente la frontera entre el
disco 6ptico y el fondo, sea inferior.

Otros entrenamientos para la segmentacion del disco

También se ha entrenado un modelo con ayuda de FastAl sobre el conjunto de datos
DRISHTI-DS sobre el que se ha aplicado un filtro de Gabor como los descritos en la
Seccién 3.2.5. Para ello, se utilizo la arquitectura U-net con Resnet3/. Desde un inicio se
ha descartado la via que proporciona la aplicacién de filtros de este tipo, pues se obtienen
métricas peores que para los modelos escogidos que se acaban de comentar.
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En concreto, para el modelo a base de Resnet34 con filtros de Gabor, se ha obtenido
para la métrica accuracy_camuid, la que se utiliza para el entrenamiento del modelo, un
valor de 0.92. De esta forma, usar el filtro de Gabor empeora en un 5 % las segmentaciones
de los modelos sin filtro; es decir, de yolo_disc y fastai_disc, que presentan un 0.9778 y
0.9726 para accuracy-camuid, respectivamente.

Métricas para los modelos elegidos para la copa

El mejor modelo producido para la segmentacion de la copa éptica utilizando la bi-
blioteca FastAl es el entrenado con Resnet152 para imagenes en escala de grises. A este
modelo se le ha denominado fastai_cup. Por su parte, se tiene un modelo a partir de YOLO
que se denomina yolo_cup.

La Tabla 4.17 presenta las métricas clave para evaluar la calidad de las segmentaciones
producidas por el modelo de YOLO, junto con el mejor modelo de los de FastAl

Coeficiente de | Coeficiente . :
Modelo Jaccard (IoU) Dice Pixel accuracy | Accuracy_camvid
fastai_cup 0.8913 0.9413 0.9982 0.9231
yolo_cup 0.8034 0.8887 0.9964 0.9573

Tabla 4.17: Métricas de los modelos que segmentan la copa

Como se puede apreciar en la Tabla 4.17, fastai_cup supera en 3 de 4 métricas al
modelo yolo_cup. Entre esas tres métricas, se incluyen las més sensibles a la segmentacion
precisa, como son loU y Dice. Esto indica que realiza una mejor segmentacién a nivel
de detalle y contornos, siendo especialmente 1til si se requiere precision en los bordes de
la copa. La otra métrica en la que es mejor es pizel_accuracy, que ya se explicé para la
segmentacion del disco 6ptico, que no resulta relevante para este problema.

Por su parte, yolo_cup aunque tiene métricas de segmentaciéon mas bajas, logra un me-
jor accuracy_camuvid, de en torno a un 2.5 % superior. Esto indica que indica correctamente
la copa y el fondo, aunque no delinea con tanta precision.

Observacion sobre las métricas para segmentacion

De la evaluacion de las métricas realizada se desprenden dos ideas:

1. La métrica que se ha utilizado para ajustar los modelos ha sido en todos los casos
accuracy_camuvid. Ademas, resulta interesante que los modelos entrenados con YOLO
solo superan al resto en esta misma métrica. De aqui, se desprende la idea de que la
arquitectura YOLO optimiza mejor para la métrica indicada en el entrenamiento.

2. Para el resto de métricas que no son accuracy_camuvid, FastAl presenta mejores
resultados. En concreto, muestra un rendimiento superior respecto a los coeficientes
IoU y Dice. Esto implica que FastAl identifica de una forma mas fina los bordes;
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mientras que YOLO localiza muy bien la region, pero no afina tanto en los bordes
del objeto buscado.

Todo esto se puede comprobar sin mas que observar ejemplos como los de las figuras
4.4 y 4.7, para ver como YOLO identifica perfectamente la regiéon pero con mas
vértices, vy la Figura 4.10 para los modelos de FastAl, en la que se aprecia como,
quiza no detecta la region tan bien, pero la segmentacién no tiene tantas aristas.

Métricas de los modelos de Machine Learning

De igual manera que se establecen métricas para los modelos de Deep Learning en-
trenados con imagenes como datos de entrada, se tiene una serie de métricas para los
algoritmos de Machine Learning empleados para la clasificacion a partir de los datos ex-
traidos de las segmentaciones. Esto permite comparar los modelos de manera objetiva
para escoger el que mejor rendimiento tenga y obtener conclusiones valiosas sobre los
datos a los que se aplican.

A colacion de lo anterior, se van a medir los modelos construidos segiin su accuracy; es
decir, los casos que aciertan. Ademas, en caso de que se esté interesado en un modelo en
especifico, se pueden analizar otras métricas como el recall, la precision o el F1-score para
cada una de las clases. Para comenzar, se presenta la métrica accuracy para cada uno
de los conjuntos de datos tratados con cada uno de los algoritmos de Machine Learning
considerados. Esto se presenta en la Tabla 4.18.

Algoritmo Accuracy | Accuracy | Accuracy | Accuracy
Machine Learning original | completo | YOLO FastAl
KNN 87.10% | 76.39% | 77.70% | 67.35%
KNN con K-Fold 87.09% | 7210% | 77.70% | 63.26%
Naive Bayes 87.10% | 72.53% | 78.38% | 46.26%

Bernoulli-Naive Bayes | 67.74% | 51.07% | 50.68% | 50.34%
Arboles de decisién 74.19% 66.09 % 67.57 % 61.90 %

Random Forest 90.32% | 75.54% | 66.22% | 62.59%
Regresion logistica 83.87% | 73.82% | 79.05% | 57.14%
SVM lineal 87.10 % 74.68 % 78.38 % 53.74 %
SVM radial 80.65 % 73.82% 75.68 % 60.54 %
MLP 87.10 % 75.54 % 78.38 % 57.82%
Clustering 84.28% | 70.24% | 69.09% | 52.18%

Tabla 4.18: Parametros empleados en el entrenamiento de los modelos de la iteracién 2

Antes de comenzar con el andlisis de los resultados, caben destacar una serie de con-
sideraciones sobre los mismos:
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= Para K-NN se calculan los parametros 6ptimos previamente, tanto para el algoritmo
K-NN propiamente, como para el mismo con la introduccién de K-Fold.

» Para el clustering se toman los dos atributos que mayor informacién aportan y se
utilizan dos clisters. La decisién del nimero de clusters que se usa se determina
a partir del método del codo [63]. En todas las situaciones, las opciones han sido
escoger entre 2, 3y 4 clusters. La decision final se ha tomado para que haya el mismo
nuamero de clusters que de clases en las que clasificar los datos.

= En todos los algoritmos que hacen uso de arboles de decision, el resultado de train
es 100 % de accuracy siempre. El motivo es que se va dividiendo el espacio hasta que
todos los datos estéan clasificados en su grupo correctamente. En la Tabla 4.18 solo
se muestran los datos de test, por esto no aparece el valor de 100 % en el accuracy.

Con esto se pretende remarcar que los resultados obtenidos para cada uno de los
algoritmos recogidos en la Tabla 4.18 son 6ptimos; es decir, estos resultados son los que se
han alcanzado utilizando los parametros que maximizan el rendimiento. Si bien es cierto
que también se pueden contemplar otras opciones para tratar de mejorarlo, como escalar
los datos. Para el caso contemplado, se hicieron pruebas y no mejoraron los resultados;
luego no habia motivo para escoger utilizar alguna de estas técnicas.

Ahora si se esta en disposicion de comenzar con el andlisis de los resultados. Como
es de esperar, los mejores resultados obtenidos para todos los algoritmos contemplados
son los que se corresponden al conjunto de datos que extrae las medidas a partir de las
maéascaras originales. El resto de datasets parte de caracteristicas fruto de la segmentacion.
En consecuencia, se introduce un error que afecta al rendimiento de los algoritmos. Otro
detalle a destacar es que, como ocurre con el algoritmo de Bernoulli-Naive Bayes, los
clasificadores construidos no superan el 50 %. Esto implica que este algoritmo no supera
el rendimiento que tendria un clasificador aleatorio.

Ademas, como las métricas de clasificacién son inferiores para esta iteracién que para
la primera, no se analizaran en mayor profundidad los modelos, pues el interés reside en
obtener el modelo que mejor resultados aporte. Luego, no corresponde realizar un anélisis
exhaustivo en esta ocasion.

Para finalizar con esta segunda iteracién, cabe mencionar que los resultados obtenidos
para la clasificacion entre sistema ocular sano y con glaucoma son mejores si se emplean
técnicas de Deep Learning y no de Machine Learning. El motivo de esta afirmacién es
que se han obtenido mejores resultados para la primera iteracion, en la que se usé Deep
Learning, que en la segunda iteraciéon con Machine Learning. Por consiguiente, se aban-
dona la via de clasificar el estado del ojo en lo referido al glaucoma mediante técnicas de
Machine Learning. En cada iteracién que se haga a continuacion, todos los modelos se
desarrollaran con técnicas de Deep Learning. Ademads, como estas tltimas contemplan una
mayor cantidad de datos, es de esperar que arrojen mejores resultados que los modelos
de Machine Learning a los que se proporciona una cantidad baja de atributos.
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4.5. Iteraciéon 3. Clasificacion Deep Learning sin pre-
entrenar a partir de segmentacion

En las dos primeras iteraciones, descritas en las secciones 4.3 y 4.4, se han resuelto
los dos objetivos principales de este proyecto: el de clasificacion y el de segmentacién del
disco y la copa Opticos. Sin embargo, en base a los antecedentes médicos recopilados en la
Seccion 3.1 surge una cuestion. Si la enfermedad afecta al nervio éptico deteriorando la
vision, la informacién que permita decidir si el paciente sufre de glaucoma debe localizarse
en esa region.

De esta forma, parece natural emplear la segmentacion realizada para extraer la parte
del nervio 6ptico de la retinografia completa y atacar el problema de clasificacién desde
el mismo conjunto de datos, pero solo teniendo en cuenta la parte segmentada. Asi, se
puede tratar de probar que la regién del nervio 6ptico es la que posee una mayor cantidad
de informacién sobre la patologia del glaucoma.

En esta seccién se explicara el proceso para la construccion de un dataset con imagenes
que solo contengan la region del nervio 6ptico, y las diferentes variantes que se pueden
tomar en la forma de los datos. Tras esto, se especificaran los hiperparametros utilizados
para la construccién de los modelos, para terminar con un andlisis de los resultados
obtenidos en esta iteracion.

4.5.1. Preparacion de los datos

Con el objetivo descrito para esta iteracion de obtener una clasificaciéon entre ojos
sanos y con glaucoma a partir de la region del nervio optico en las retinografias, se debe
preparar un conjunto de datos adecuado. Para ello, a partir del dataset denominado como
rotterdam en la Seccién 4.3, se extrae la region de interés.

A la vista de los resultados descritos en la Seccién 4.4 durante la segunda iteracion,
ambos modelos son ttiles para localizar la regién del disco éptico. Sin embargo, el modelo
desarrollado a partir de YOLO presenta una clara ventaja, pues no solo segmenta la region
buscada, sino que también la localiza dentro de una caja. De esta forma, se ha procesado
el dataset rotterdam para quedarse con las cajas en torno al nervio 6ptico, y construir el
nuevo conjunto de datos siguiendo el siguiente proceso:

1. Se abre una de las carpetas del dataset rotterdam.

2. Se procesan sus archivos recortando la parte predicha por el modelo de segmentacion
yolo_disc. En caso de que se localicen dos zonas, se toma la que mayor porcentaje
de confianza aporta, pues solo puede existir una tinica zona para el nervio optico.

3. Se almacenan los recortes obtenidos a partir de la carpeta correspondiente del dataset
Rotterdam en una carpeta igual dentro del nuevo dataset rotterdam_RIM-ONE.

4. Se repite el proceso con cada uno de los subdirectorios que contienen retinografias
del dataset rotterdam.
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Queda anadir un pequeno detalle. Para asegurar que la imagen recortada de la reti-
nograffa abarca la regién del nervio éptico al completo, se amplia un 5% los margenes
del cuadro obtenido a partir del modelo yolo_disc utilizado. Asi, partiendo del proceso
descrito, se construye el dataset denominado como rotterdam_RIM-ONE.

Por otra parte, se pueden considerar una serie de variaciones de este dataset para
estudiar un abanico mas amplio de posibilidades. En esta iteracion, se ha tomado el
mismo conjunto de datos considerando una sola capa de escala de grises. De igual manera
que se ha procesado el dataset rotterdam_RIM-ONFE construido para extraer cada capa, se
opera para obtener el nuevo conjunto de datos con las mismas regiones del nervio 6ptico
en escala de grises. Este iltimo dataset se ha denominado rotterdam_RIM-ONE_grises.

4.5.2. Entrenamiento

En la etapa de entrenamiento se procede a construir los modelos que se pretenden
que clasifiquen retinografias entre las de pacientes sanos y los que presenten glaucoma
analizando tnicamente la region del nervio éptico. Como se ha indicado previamente, en
esta tercera iteracién se consideran dos modelos: uno orientado a clasificacién con la parte
del nervio 6ptico de las retinografias a color, y otro analogo con retinografias en escala de
grises.

Durante esta fase se ajustan los pardmetros internos de los modelos de Deep Learning
a partir de los datos disponibles siguiendo la teoria explicada en la Seccion 3.2.3. Para
ello, se indican una serie de hiperpardametros que determinan algunos procesos que se
llevan a cabo en el proceso de entrenamiento. En concreto, se indica el niimero de épocas
que se debe entrenar el modelo; la paciencia, para evitar el sobreajuste; o el tamano de
entrada de las imagenes. Ademas, se indica el modelo base sobre el que se entrena para
no tener que construir la red desde cero. En la Tabla 4.19, se detallan los hiperparametros
empleados durante el entrenamiento de cada uno de los dos modelos. Para seleccionarlos,
se han tenido en cuenta aspectos como el coste computacional del proceso.

Como se observa en la Tabla 4.19, se ha empleado para realizar el entrenamiento el
sistema YOLO de igual forma que se hizo en la primera iteracién, importandolo desde la
biblioteca ultralytics. Como también se destacé en la primera iteracion, la clasificacion de
iméagenes siempre se hace a lo largo de este proyecto a partir de modelos YOLO; puesto
que, dado el gran nimero de imégenes a procesar, se utiliza un algoritmo que opera con
rapidez.

4.5.3. Evaluaciéon

Una vez entrenados los modelos, han sido evaluados utilizando el subconjunto de los
datos que se reservo con este proposito. Estos datos residen en el directorio de test de cada
dataset, que es el mismo en ambos casos con la distincién entre color y escala de grises
en funcion del conjunto de datos. Para cuantificar la capacidad de clasificacién de cada
modelo adecuadamente, se ha empleado la métrica accuracy definida en la Seccién 3.2.4.
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Modelo Descripcion Hiperparametros
Algoritmo YOLO
Modelo base YOLO 11
rotterdam Nervio 6ptico Dataset rotterdam_RIM-ONE
RIM-ONE de rotterdam .
- a color Epocas 100
Paciencia 15
Tamano imagen 256
Algoritmo YOLO
o Nervio éptico Modelo base YOLO 11
;{()IB/F_I;);H]; deerozzi;cll:m ]?ataset rotterdam_RIM-ONE_grises
orises dlé o Epocas 100
& Paciencia 15
Tamano imagen 256

Tabla 4.19: Parametros empleados en el entrenamiento de los modelos de la iteracién 3

En la Tabla 4.20 se resumen los resultados obtenidos tanto para el conjunto de datos val

como para el de test.

Modelo Epocas Accuracy validacion | Accuracy test
rotterdam_RIM-ONE 68 0.948 0.947
rotterdam_RIM-ONE _grises 34 0.928 0.921

Tabla 4.20: Resultados obtenidos en la iteracidon 3 tras el entrenamiento

A partir de los resultados obtenidos en la Tabla 4.20 se puede comparar de manera
cuantitativa el rendimiento de los modelos considerados, identificando el que mejor com-
portamiento presenta en términos de la métrica accuracy. Atendiendo a los mismos, se
observan mejores resultados para el modelo que recibe como datos de entrada la region
del nervio 6ptico a color en vez del modelo en escala de grises, tanto en el conjunto de
validacién como en el de test. Una vez més, se remarca que el conjunto de test es el
de mayor relevancia, pues los datos de validacion han sido empleados para ajustar los
parametros durante la etapa de entrenamiento y no representan, con la misma fidelidad
que lo hace el conjunto de datos de test, el rendimiento que pueda tener el modelo en la
realidad.

De esta forma, para la métrica accuracy, el modelo rotterdam_RIM-ONE que utiliza
la region del nervio 6ptico a color alcanza un mejor rendimiento que el modelo rotter-
dam_RIM-ONE_grises con la regién del nervio éptico en escala de grises. En concreto,
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para el primero de ellos se clasifica un 94.7 % de las imdgenes de manera correcta; mien-
tras que para el segundo, se clasifica un 92.1 % de las retinografias correctamente.

Aterrizando estos porcentajes, para el modelo rotterdam_RIM-ONE se clasifican 53 de
cada 1000 retinografias de manera incorrecta. Por su parte, para el modelo rotterdam_RIM-
ONE_grises, se clasifican erréneamente 79 de cada 1000 retinografias. En consecuencia, el
modelo en escala de grises clasifica en torno a 25 retinografias mas de manera errénea que
el modelo a color. Esto también sucedié para la iteracion 1, donde se obtenian mejores
resultados para unas imagenes a color que para las mismas en escala de grises. Ademas,
igual que se razond en ese momento, esto puede deberse a la propia construccién de las
imagenes en cada caso. Frente a los tres canales RGB que componen la imagen a color,
para la imagen en escala de grises tan solo se tiene uno, lo que supone una disminucion
en la cantidad de informacion que aporta cada retinografia en términos computacionales.

Queda una comparacién de gran relevancia por hacer. La motivacion de esta tercera
iteracion es poder comparar si los resultados mejoran al contemplar inicamente la region
del nervio éptico. En otras palabras, el objetivo de esta iteracion es comprobar la hipotesis
de que la regién del nervio 6ptico es la que aporta mayor informacién en una retinografia
para la deteccion del glaucoma. Por este motivo, en la Tabla 4.21 se recogen los resultados
para la métrica accuracy para el conjunto de test obtenidos con cada uno de los modelos
construidos para clasificaciéon mediante Deep Learning durante las iteraciones primera y
tercera.

Iteracion Modelo Accuracy test
- rotterdam 0.933
Iteraciéon 1
rotterdam_grises 0.912
. rotterdam_RIM-ONE 0.947
Iteracion 3
rotterdam_RIM-ONE _grises 0.921

Tabla 4.21: Resumen de la métrica accuracy para los modelos de las iteraciones 1y 3

Para poder realizar una comparacién objetiva, se divide la Tabla 4.21 en dos partes.
Una primera donde se recogen los modelos a color, y una segunda para los modelos en
escala de grises. Esto se considera asi, dado que no es comparable para aprobar o rechazar
la hipétesis de que el analisis del nervio éptico aporta mayor cantidad de informacion,
tomar un modelo con datos a color con uno en escala de grises. El motivo es que si se
detecta una pérdida o aumento de informacién, puede deberse a otras causas como la
diferencia de capas de la imagen. En consecuencia, se construyen las tablas 4.22 y 4.23
para comparar los resultados de manera adecuada.

En la Tabla 4.22 se presentan los valores de la métrica accuracy para los modelos
a color durante las iteraciones 1 y 3. Como se puede comprobar, para el modelo que
contempla el area circundante al nervio 6ptico, se obtiene un valor superior al del modelo
que emplea la retinografia completa para la deteccion del glaucoma. Concretamente, la
métrica accuracy es un 1.4 % superior cuando el modelo se enfoca de manera exclusiva en
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Iteracion Modelo Accuracy test
Tteracién 1 rotterdam 0.933
Iteracion 3 | rotterdam_RIM-ONE 0.947

Tabla 4.22: Comparacién accuracy para los modelos a color de las iteraciones 1y 3

la regién del nervio éptico. En términos de clasificaciones correctas, esta mejora implica
que de cada 1000 imagenes hay 14 més que se clasifican correctamente para el modelo
rotterdam_RIM-ONE, el de la iteracién 3.

[teracion Modelo Accuracy test
Iteracién 1 rotterdam_grises 0.912
Iteracién 3 | rotterdam _RIM-ONE _grises 0.921

Tabla 4.23: Comparacién accuracy de los modelos en escala de grises de las iteraciones 1y 3

Por su parte, en la Tabla 4.23 se presentan los valores de la métrica accuracy para
los modelos en escala de grises durante las iteraciones 1 y 3. Como se puede comprobar,
para el modelo que contempla el area circundante al nervio optico, se obtiene un valor
superior al del modelo que emplea la retinografia completa para la deteccién del glaucoma.
Concretamente, la métrica accuracy es un 0.9 % superior cuando el modelo se enfoca de
manera exclusiva en la region del nervio éptico. En términos de clasificaciones correctas,
esta mejora implica que de cada 1000 imédgenes hay 9 mas que se clasifican correctamente
para el modelo rotterdam_RIM-ONE_grises, el de la iteracién 3.

Tanto con los modelos a color como con los modelos en escala de grises, se obtiene
un mejor resultado si se toma solo la regiéon del nervio 6ptico en lugar de la retinografia
completa. De esta forma, se puede concluir que la hipdtesis que se pretendia demostrar
en esta iteracion es correcta. En consecuencia, para determinar la presencia de glaucoma
serd suficiente - de hecho mejor - tomar el area del nervio 6ptico en las retinografias.

4.6. Iteracion 4. Clasificacion Deep Learning preen-
trenando a partir de segmentacién

En las iteraciones realizadas hasta el momento, se han resuelto los dos objetivos prin-
cipales de este proyecto y se ha probado la hipdtesis de que la regién del nervio 6ptico
es la que mayor informacién aporta para la deteccién del glaucoma. En esta iteracion se
plantea una nueva cuestién. Se pretende comprobar si se mejora el resultado cuando se
preentrena el modelo con otro conjunto de datos para realizar un ajuste previo de los
parametros de la red neuronal sobre la que se fundamenta.

En esta secciéon se explicard el proceso que se ha llevado a cabo para manipular el ter-
cero de los datasets contemplados, el de RIM-ONE. Ademas, los modelos se entrenaran
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teniendo en cuenta que se obtienen mejores resultados recortando una parte de las reti-
nografias. A colacién de lo anterior, se contemplara una mayor variedad de los modelos
para poder determinar cudl es la mejor solucion al problema abordado.

4.6.1. Preparacién de los datos

En primer lugar, se ha de llevar a cabo las manipulaciones oportunas en el dataset
RIM-ONE para usarlo durante el preentrenamiento de los modelos. Analogamente a lo
que se describi6 en la Seccion 4.3 para la iteracion 1 con el dataset rotterdam, se dividen
los datos en los mismos subconjuntos y con la misma fraccion de imagenes en cada uno
de ellos. A continuacién se describe esta situacion:

» Conjunto de entrenamiento [train]. Para este conjunto se han reservado un 64 % de
cada una de las clases de imagenes que se tienen.

» Conjunto de validacién [val]. De igual forma que con el dataset rotterdam, se ha
tomado un 16 % del total de imagenes con el nervio éptico propio del glaucoma y
un 16 % de las que muestran la regién ONH de un ojo sano.

» Conjunto de test [test]. En total se tendrd un 20 % de cada clase de imdgenes para
probar el modelo construido.

Ademas, para la primera iteracién también se consider6 el mismo conjunto de datos
pero con las imagenes en escala de grises. En esta iteracion se ha ido més alld. Como se han
validado las hipdtesis que se querian probar previamente, se crea una mayor variedad en la
forma de los datos para generar mas modelos y tener un abanico amplio para elegir el que
mejor rendimiento aporte. En consecuencia, se ha considerado la misma distribucién para
los datos de RIM-ONE con distintas variaciones: un conjunto de datos en escala de grises
y otro para cada uno de los canales de la base RGB. Asi, para esta iteracion se tienen los
siguientes datasets de preentrenamiento: RIM-ONE, RIM-ONE_grises, RIM-ONE_rojo,
RIM-ONE _verde y RIM-ONE_azul.

Por otra parte, los datasets de los que se parte para la segunda fase del entrenamiento
son los mismos que los descritos en la Seccién 4.5 para la iteracion 3. Ademads, se consi-
deran una serie de variaciones de estos datasets para estudiar un abanico mas amplio de
posibilidades, que son los mismos que para el conjunto de datos RIM-ONE. Aqui también
se toman datasets en funcion de las capas RGB y escala de grises.

Las imagenes recortadas a partir de las retinografias completas siguen teniendo tres
capas de color en la base RGB. Se ha considerado construir un dataset con cada una
de las capas de manera independiente. Esto permite estudiar qué capas reportan una
mayor cantidad de informacion. Asi, se han construido los siguientes datasets a partir
del dataset rotterdam_RIM-ONE: rotterdam_RIM-ONE_rojo para la capa roja; rotter-
dam_RIM-ONE_verde para la capa verde; y rotterdam_RIM-ONE_azul para la capa azul.
Estos conjuntos de datos se anaden a los que se tenian previamente, que eran rotterdam
y rotterdam_grises.
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4.6.2. Entrenamiento

Como ya se ha mencionado, en esta iteracién el entrenamiento tendra dos fases bien
diferenciadas. Por una parte, se preentrenaran los modelos con cada uno de los datasets
construidos a partir del conjunto de datos de RIM-ONE. Una vez terminado este proceso,
se llevara a cabo un segundo entrenamiento con el conjunto de datos de rotterdam co-
rrespondiente; es decir, el que presente el mismo estilo que con el que se ha preentrenado
para RIM-ONE.

En las tablas 4.24 y 4.25 se muestran los hiperparametros que se han usado para
entrenar en la primera y segunda etapa, respectivamente. Como se observa en las tablas
mencionadas, los modelos de RIM-ONE se entrenan a partir de los modelos base de
YOLO, y los de rotterdam se construyen sobre los propios de RIM-ONE. Ademas, el
tamano de imagen de la entrada es igual en ambos casos, pues si no, el preentrenamiento
no tendria la misma utilidad.
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Modelo | Descripcion Hiperparametros
Algoritmo YOLO
Modelo base YOLO 11
i, Dataset RIM-ONE
RIM-ONE | HMONE S
a color Epocas 100
Paciencia 15
Tamano imagen 256
Algoritmo YOLO
Modelo base YOLO 11
RIM-ONE | TMM-ONE Dataset | RIM-ONE._grises
. en escala .
grises de grises Epocas 100
Paciencia 15
Tamano imagen 256
Algoritmo YOLO
Modelo base YOLO 11
RIM.ONE | RIM-ONE Dataset RIM-ONE rojo
. capa roja ;
rojo de RGB Epocas 100
Paciencia 15
Tamano imagen 256
Algoritmo YOLO
Modelo base YOLO 11
RIM-ONE | UM-ONE Dataset | RIM-ONE_verde
capa verde .
verde de RGB Epocas 100
Paciencia 15
Tamano imagen 256
Algoritmo YOLO
Modelo base YOLO 11
RIM-ONE | UM-ONE Dataset RIM-ONE_azul
capa azul .
azul de RGB Epocas 100
Paciencia 15
Tamano imagen 256
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Tabla 4.24: Parametros empleados en el preentrenamiento de los modelos de la iteracion 4
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Modelo Descripcion Hiperparametros
Algoritmo YOLO
Modelo base RIM-ONE
rotterdam | Nervio 6ptico D rotterdam _RIM-ONE
RIM-ONE | de rotterdam ataset _preentrenado
preentrenado a color Epocas 100
Paciencia 15
Tamano imagen 256
Algoritmo YOLO
rotterdam | Nervio éptico Modelo base RIM-ONE grises
RIM-ONE | de rotterdam Dataset rotterdam RIM-ONE
oTises en escala _grises_preentrenado
preentrenado de grises Epocas 120
Paciencia 20
Tamano imagen 256
Algoritmo YOLO
Modelo base RIM-ONE_rojo
rotterdam | Nervio éptico .
Dataset tterdam_RIM-ONE_
RIM-ONE | de rotterdam /a i rovercam roJo
10jo capa roja Epocas 120
Paciencia 20
Tamano imagen 256
Algoritmo YOLO
Modelo base RIM-ONE _verde
rotterdam | Nervio éptico Dataset rotterdam_RIM-ONE _verde
RIM-ONE | de rotterdam ,
verde capa verde Epocas 100
Paciencia 15
Tamano imagen 256
Algoritmo YOLO
Modelo base RIM-ONE_azul
rotterdam | Nervio éptico Dataset rotterdam_RIM-ONE _azul
RIM-ONE | de rotterdam ,
azul capa azul Epocas 100
Paciencia 15
Tamano imagen 256

Tabla 4.25: Parametros empleados en el entrenamiento de los modelos de la iteracién 4
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4.6.3. Evaluaciéon

En las tablas 4.26 y 4.27 se muestran los resultados de cada una de las etapas de los
entrenamientos.

Modelo Epocas Accuracy validacién | Accuracy test
RIM-ONE 39 0.922 0.888
RIM-ONE grises 29 0.922 1
RIM-ONE_rojo 46 0.857 0.816
RIM-ONE_verde 42 0.909 0.867
RIM-ONE_azul 32 0.935 0.897

Tabla 4.26: Resultados obtenidos en la iteracién 4 tras el entrenamiento

Para los datasets construidos a partir de RIM-ONE, vemos que no se obtienen valores
tan altos como para los de rotterdam en anteriores iteraciones respecto a la clasificaciéon
de los datos de prueba, con la excepcion del caso de escala de grises. La principal causa
que puede tener esto es la baja cantidad de datos con los que se entrena. No obstante,
esto no supone un problema, pues el propdsito aqui es establecer unos parametros que se
aproximen a los de la solucién buscada.

Por otra parte, se tienen los resultados para la segunda etapa del entrenamiento en
la Tabla 4.27. En esta fase, como era de esperar por la cantidad de datos con la que se
entrena, se mejoran significativamente los datos respecto a los de los modelos de la primera
etapa de entrenamiento. Ademas, la parte interesante de esta iteracién es comparar los
modelos resultado de la misma con los de la iteracién 3.

Modelo Epocas Accuracy validacion | Accuracy test
rotterdam RIM-ONE 59 0.94 0.943
color preentrenado
rotterdam RIM-ONE | o 0.949 0.937
grises preentrenado
rotterdam
RIM-ONE rojo 101 0.92 0.912
rotterdam
RIM.ONE verde 57 0.934 0.939
rotterdam
RIMLONE azul 32 0.898 0.897

Tabla 4.27: Resultados obtenidos en la iteracion 4 tras el entrenamiento

Ya se ha visto que los modelos de la tercera iteracién mejoran los de las iteraciones
anteriores al fijar la atencién en la regién del nervio 6ptico y utilizar Deep Learning. Por
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tanto, queda comparar si los modelos preentrenados aportan mejores resultados que en el
caso de que no se haga este proceso al inicio. En la Tabla 4.28 se comparan los resultados
en los conjuntos de prueba para los modelos a color con la métrica accuracy.

Modelo Accuracy test
rotterdam RIM-ONE 0.047
color

rotterdam RIM-ONE

color preentrenado 0.943

Tabla 4.28: Resultados obtenidos en la iteracién 4 tras el entrenamiento

En la Tabla 4.28, se puede apreciar que el preentrenamiento no tiene siempre un
resultado positivo. En este caso, preentrenar el modelo implica una reduccién de un 0.4 %
de accuracy. Que en términos absolutos, de las 1908 iméagenes que se tienen para test,
implica errar en el diagndstico de 8 casos mas. Queda ver qué ocurre con los modelos
que trabajan con imagenes en escala de grises. Los resultados relativos a los mismos se
presentan en la Tabla 4.28 en base a la métrica accuracy.

Modelo Accuracy test
rotterdam RIM-
ONE _grises 0.921

rotterdam RIM-ONE

. 0.937
grises preentrenado

Tabla 4.29: Resultados obtenidos en la iteracién 4 tras el entrenamiento

En la Tabla 4.29, se observa que en este caso el preentrenamiento ha tenido un resultado
favorable. En este caso, preentrenar el modelo aumenta significativamente el accuracy del
modelo, incrementando el mismo hasta en un 1.6 %. Analizando igual que con los modelos
a color en términos absolutos, de las 1908 imagenes que se tienen para test, implica fallar
en el diagnéstico de 30 casos mas.

Como conclusién para esta cuarta iteracion, se han construido modelos con un ren-
dimiento muy alto y se han mejorado algunos de los que ya se tenian. Este es el caso
del modelo en escala de grises, o del modelo del canal de color verde, que ha resultado
incluso en un incremento del rendimiento del de escala de grises, aunque la diferencia se
hace menor con el debido preentrenamiento. Sin embargo, aunque es habitual que con
un preentrenamiento de la red neuronal se obtengan mejores resultados puesto que los
parametros internos son mas cercanos a los éptimos, esto no siempre ocurre como se ha
podido comprobar con los datasets a color.
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4.7. Iteracion 5. Construccion de ensembles

Como se ha explicado en la Seccion 3 de antecedentes, la construccion de ensembles
es una técnica que combina multiples modelos individuales para crear un modelo mas
robusto y preciso. La ventaja que presenta la adicién de esta estrategia es que aprovecha los
puntos fuertes de cada modelo individual y compensa las debilidades tomando decisiones
en comun. La estructura de los ensembles que se contemplan en esta propuesta queda
representada por el diagrama de la Figura 4.17.

Modelo 1 Modelo 2 Modelo 3 Modelo 4 Modelo 5
Salida 1 Salida 2 Salida 3 Salida 4 Salida 5
Y A Y Y Y
Ensemble
Salida
Final
A\ 4

Figura 4.17: Diagrama ilustrativo entradas y salidas del ensemble construido.

4.7.1. Ensemble por votacién

En una primera aproximacion a la soluciéon mediante la construccion de ensembles,
se ha analizado la elaboraciéon de un ensemble por medio de votaciéon mayoritaria. Este
ensemble es de los més sencillos que se pueden construir. Consiste en que cada modelo
que lo compone predice una clase, y la clase mas votada es la que se elige como prediccion
final.

De esta forma, se han escogido tres modelos para comprobar el funcionamiento de este
tipo de ensembles. En particular, los modelos con los que se han hecho la prueba son rot-
terdam_RIM-ONE_preentrenado, rotterdam_RIM-ONE _verde y rotterdam_RIM-ONE_azul.
A partir de los mismos, se han obtenido los resultados recogidos en la Tabla 4.30, donde
se han utilizado los datos de test del dataset rotterdam.

A partir de los resultados mostrados en la Tabla 4.30 se pueden calcular las métricas
que cuantifican el rendimiento del modelo para el propdsito que se persigue. Estas se
muestran en la Tabla 4.31.

Para una segunda version del ensemble por votacion, se podrian elegir como modelos
base los 5 modelos que mejor resultados de clasificacién han aportado para el conjunto de
datos de test, que representan a los modelos del 1 al 5 en el diagrama de la Figura 4.17,
y se elige como prediccién final la que méas modelos base voten.
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Ntumero | Numero total | Porcentaje | Porcentaje
de fallos | de imagenes fallos aciertos
Glaucoma 41 948 4.32% 95.68 %
Normal 80 955 8.37% 91.63%

Tabla 4.30: Resultados obtenidos para la prueba del ensemble por votacién construido

Accuracy fpr Precision | Recall F1
Glaucoma | 0.9364 | 0.0429 | 0.9189 | 0.9567 | 0.9374
Normal 0.9389 | 0.0810 | 0.9227 | 0.9588 | 0.9404

Tabla 4.31: Métricas ensemble de prueba por votacion

Esta es una primera propuesta para la construccion de ensembles por votacion que
ayuden a resolver el problema. Versiones mas sofisticadas pueden incluir sistemas como,
por ejemplo, votacién ponderada. El andlisis de esta variante queda fuera del alcance
del proyecto, pero puede ser interesante, pues algin modelo puede aportar una mayor
fiabilidad, favoreciendo asi mas a los modelos con mayor tasa de aciertos.

Dada la facilidad de la elaboracion de los ensembles con votacion, estos son muy utiles
para ejemplificar cémo funciona la combinacién de modelos para construir un ensemble
que pueda mejorar los resultados. Esta posibilidad es muy bésica y existen otras formas
de construccion de ensembles mejores como la que se vera posteriormente. Esto se debe a
que la votacion, ya sea ponderada o no, puede aportar robustez dado que se consideran
predicciones de distintos modelos; sin embargo, por la propia naturaleza del método, los
resultados seran una media o media ponderada, segtin corresponda, de los obtenidos para
cada modelo. A continuacién se explica cémo se ha abordado esta situacién para este
proyecto: mediante técnicas de Machine Learning.

4.7.2. Ensemble mediante algoritmos de Machine Learning

Frente al enfoque mediante votacion, cabe la posibilidad del uso de técnicas mas avan-
zadas. En particular, es posible el desarrollo de algoritmos de Machine Learning para la
construccién de un ensemble. Esta es la otra posibilidad que se ha contemplado en la
elaboracion del ensemble que combina los datos de clasificaciéon para producir uno solo.

Preparacién de los datos

Para construir el conjunto de datos con los que se construira el ensemble, se par-
te de los 5 modelos que mejores resultados de clasificaciéon han aportado para el con-
junto de datos de test durante las 4 iteraciones descritas anteriormente, de igual for-
ma que se hace para el ensemble por votacion de la Seccién 4.7.1. Estos modelos re-
presentan a los nombrados del 1 al 5 en el diagrama de la Figura 4.17, y son rot-
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terdam, rotterdam_RIM-ONE, rotterdam_RIM-ONE_grises_preentrenado, rotterdam_RIM-
ONE_rojo y rotterdam_RIM-ONE_verde. Nétese que rotterdam_RIM-ONE_preentrenado
aporta un mejor rendimiento en la clasificacién de imagenes que algunos de los escogidos,
pero se ha descartado puesto que se considera el mismo modelo sin preentrenar, y se
pretende tomar opciones distintas para mejorar la generalizacion del modelo.

La construccién del conjunto completo de datos consta de dos partes andlogas la una
a la otra. En primer lugar, se crea un archivo tipo csv donde se almacena para cada
retinografia del conjunto de datos de validacién del dataset rotterdam, la clasificacion
obtenida por cada uno de los modelos y su clasificacién real, ambos en forma binaria; es
decir, con 0 para representar el glaucoma y 1 para el normal. Para cada modelo, el dato de
entrada sera la retinografia completa o la regién del nervio 6ptico con la modificaciéon en
cuanto a las capas de la imagen que corresponda. En un segundo paso, se opera de igual
forma para procesar las clasificaciones de las imagenes de la parte del dataset rotterdam
orientada a test. Asi, se crea un nuevo archivo CSV con las mismas caracteristicas que el
creado con la parte del dataset rotterdam de validacion.

En resumen, los datos de entrada para esta etapa, en la que se busca construir un
ensemble utilizando técnicas de Machine Learning, constan de dos archivos csv con las
clasificaciones de las retinografias obtenidas con los mejores modelos construidos durante
las 4 primeras iteraciones, junto con la clasificacién real de las mismas imagenes. Estos
archivos csv tienen la forma que se muestra en la Tabla 4.32.

completa_color | onh_color | onh_gris | onh_verde | onh_rojo | clasif real
0 0 0 0 0 0
0 1 0 0 0 0
0 0 1 1 1 1
1 1 0 1 1

Tabla 4.32: Formato csv empleado para construir el ensemble

Por ultimo, se analiza el nimero de datos referidos a retinografias con glaucoma y
normales que se tienen para cada uno de los dos csv, tanto el de validacion como el de
test. En la Figura 4.18 se recogen los datos que se tienen para el csv construido con el
subconjunto val; y, por su parte, en la Figura 4.19 los del subconjunto test.

En la Figura 4.18 se observa que los datos estan perfectamente balanceados y se tienen
mas de 750 ejemplos de cada una de las clases, lo que serd suficiente para poder entrenar el
modelo. Por su parte, en la Figura 4.19 se observa que los datos también estan balanceados
y se tienen del orden de 950 ejemplos de cada una de las clases. Estos datos seran usados
para tratar de aproximar el rendimiento que presente el modelo. A colacién de lo anterior,
dado el gran nimero de datos de prueba que se tienen, los resultados obtenidos seran
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suficientemente representativos. pues los datos estan balanceados y se tienen un total de
mas de 1900 ejemplos para test.

Distribucion de Clases en el Dataset
800 - 757 763

700 1

600 1

500 1

300 1

Cantidad de muestras
]
[=]
i

200 1

100 A

Glaucoma Normal
Clases

Figura 4.18: NUmero de datos que se tiene para cada clase en el csv de validacion.

Distribucion de Clases en el Dataset
1000 - 948 955

800

600

Cantidad de muestras

200 A

Glaucoma Normal
Clases

Figura 4.19: Nimero de datos que se tiene para cada clase en el csv de test.
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Entrenamiento

Como se acaba de introducir el describir los datos utilizados, se utilizara el CSV
construido a partir de los datos de validacion para entrenar el modelo de Machine Learning
desarrollado; mientras que, para el CSV elaborado con los datos orientados a test, se
mantendra su propoésito.

El motivo de introducir los datos de validacion para entrenar, y no los dispuestos en el
subconjunto de train para este objetivo, se debe a que los datos ya han sido utilizados para
entrenar los modelos previos. El uso de los mismos datos para entrenar tanto el ensemble
como los modelos sobre los que se sustenta, tiene el inconveniente del sobreajuste y la
falta de generalizaciéon. Si los modelos y el ensemble se entrenan con los mismos datos, el
ensemble puede aprender a replicar el comportamiento de los modelos sobre ese conjunto,
incluyendo sus errores, sin realmente aprender a generalizar.

En la construccion del ensemble no se ha contemplado un tnico algoritmo de Machine
Learning, sino un conjunto de ellos para poder escoger el que mejor resultados arroje. En
particular, se ha utilizado SVM lineal, radial, polinomial y sigmoidea; ademas de MLP.
Para la construccion de los modelos a partir de estos algoritmos, se dividen los datos de
validacién entre los atributos y el resultado esperado. Todos estos datos se usaran para
entrenar. Por otra parte, para los datos que se usaran para probar el modelo construido,
se opera de igual forma estableciendo la misma division de los datos de test.

Evaluaciéon de los resultados

En primer lugar, se van a comparar los modelos obtenidos a partir de la métrica ac-
curacy. Esta mostrara el porcentaje de clasificaciones correctas tanto para las detecciones
de glaucoma como para las de pacientes sanos. La recopilacion de esta métrica para cada
uno de los modelos entrenados se muestra en la Tabla 4.33. Como ocurre con todos los
modelos construidos mediante algoritmos propios del Machine Learning, los datos con los
que se entrena tendran un accuracy superior al de los datos de test.

Modelo Accuracy train | Accuracy test
SVM lineal 95.46 % 94.85 %
SVM radial 95.59 % 94.01 %

SVM polinomial 95.13% 94.96 %
SVM sigmoideo 92.11 % 91.28 %
MLP 95.72 % 94.75 %

Tabla 4.33: Resultados accuracy de los ensembles entrenados mediante Machine Learning

En la Tabla 4.33 se observa que todos los modelos superan el 90 % de accuracy. Esto
es de esperar, pues todos los modelos previos en los que se sustenta el ensemble superan
el 90 %. En caso contrario, el ensemble estaria empeorando el rendimiento de las predic-
ciones. Por otra parte, para comparar fielmente los resultados, debe fijarse la vista en los
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resultados para el conjunto de prueba. Ademads, cabe mencionar que, como el accuracy en
entrenamiento y test con muy similares en todos los casos, los ensembles aqui construi-
dos no presentan sobreajuste. Por tanto, estos ensembles generalizan bien y mantienen el
rendimiento para nuevos datos de prueba.

En la columna accuracy test, se observa que para el modelo SVM sigmoidal no se
alcanza ni siquiera un 92 % de acierto, siendo el peor de los ensembles construidos. Si-
guiendo esta tonica, otro ensemble que no corresponde usar es el SVM radial, pues es el
otro que peor rendimiento tiene en cuanto a nivel de aciertos totales. Continuando con el
analisis, se comprueba que el SVM polinomial se adapta mejor a los datos que el SVM
lineal, como es de esperar. Dado que una recta es un caso particular de polinomio, el
algoritmo SVM lineal tiene menor alcance que el SVM polinomial. Ademads, estos dos son
los que mejor accuracy tienen, con un 94.85% y un 94.96 %, respectivamente; es decir,
son los que clasifican mas casos correctamente. Otra opcién a contemplar como ensemble
es el perceptrén multicapa (MLP), pues les sigue muy de cerca con un 94.75 % de casos
totales acertados.

Por otra parte, se van a ir analizando por separado cada una de las métricas, explicadas
en la Seccion 3.2.4, que se tienen de todos los ensembles construidos. Finalmente, se dara
una conclusién de cual es el ensemble a utilizar.

= SVM lineal. Vamos a analizar las métricas obtenidas con este ensemble recogidas
en la Tabla 4.34. Estas métricas se obtienen a partir de los datos de la matriz de
confusion de la Figura 4.20.

900
800

700

Glaucoma

600

- 500

- 400

- 300

Normal

- 200

- 100

i
Glaucoma Normal

Figura 4.20: Matriz de confusién del ensemble construido con el algoritmo SVM lineal
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Precision | Recall | F1
Glaucoma 0.95 0.95 | 0.95
Normal 0.95 0.95 | 0.95

Tabla 4.34: Métricas utilizadas para el ensemble construido con el algoritmo SVM lineal

Comenzando con el andlisis de las métricas, se observa que para ambas clases el
modelo alcanza un 95% de precisiéon. Luego, hay solo un 5% de falsos positivos
para cada clase. Ademds, como el recall de ambas clases es de un 0.95, para cada
clase hay un 5 % de falsos negativos. Por ultimo, cabe destacar que estas métricas son
fiables puesto que como se vio en la imagen 4.18, las clases estan bien balanceadas
y existen en torno a 950 datos de prueba de cada clase.

Queda por interpretar estas métricas en el ambito médico del problema que se esta
tratando. Por una parte, el recall del glaucoma indica que no se omiten diagnosticos
positivos; es decir, hay un 5% de probabilidad de que el modelo no detecte un
paciente realmente enfermo. Por otra parte, la precision significa que el 95 % de los
diagnosticados con glaucoma realmente lo presentan.

= SVM radial. Las métricas para este ensemble, obtenidas a partir de los datos de
la matriz de confusién de la Figura 4.20, se muestran en la Tabla 4.35.
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Figura 4.21: Matriz de confusion del ensemble construido con el algoritmo SVM radial.
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Precision | Recall | F1
Glaucoma 0.94 0.94 | 0.94
Normal 0.94 094 | 0.94

Tabla 4.35: Métricas utilizadas para el ensemble construido con el algoritmo SVM radial

En primer lugar, se tiene que para ambas clases el modelo alcanza un 94 % de
precisién. Luego, hay un 6 % de falsos positivos para cada clase. Ademds, el recall
de ambas clases es de 0.94, y para cada clase hay un 6 % de falsos negativos. Por
ultimo, cabe destacar que estas métricas son fiables puesto que como se vio en la
imagen 4.18, las clases estan balanceadas y existe un total de 1900 datos de prueba
de cada clase.

Queda por interpretar estas métricas referidas al problema de deteccién del glaucoma
que se esta abordando. Por una parte, el recall del glaucoma indica que existe un
6 % de probabilidad de que el modelo no detecte un paciente realmente enfermo.
Por otra parte, la precisién implica que el 94 % de los diagnosticados con glaucoma
realmente padecen la enfermedad.

SVM polinomial. El ensemble construido con este algoritmo presenta las métricas
recogidas en la Tabla 4.36. Estas se calculan a partir de los datos de la matriz de
confusién de la Figura 4.22.
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Figura 4.22: Matriz de confusién del ensemble construido con el algoritmo SVM polinomial.
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Precision | Recall | F1
Glaucoma 0.93 0.97 | 0.95
Normal 0.97 0.93 | 0.95

Tabla 4.36: Métricas utilizadas para el ensemble construido con el algoritmo SVM polinomial

En primer lugar, se tiene que para el glaucoma el modelo alcanza un 93 % de pre-
cision; mientras que, para los casos donde no se presenta glaucoma, se tiene una
precisiéon del 97 %. Luego, hay un 7% de falsos positivos para la clase “Glaucoma”,
y un 3% para la “Normal”. Ademads, el recall de la clase “Glaucoma” es de 0.93, y
para la clase “Normal” alcanza un 97 %. Asi, hay un 7% de falsos negativos para
la prediccién del ojo glaucomatoso, y un 3% para la del ojo sano. Por tltimo, cabe
destacar que estas métricas son fiables puesto que, como se vio en la imagen 4.18,
cada clase tiene aproximadamente el mismo nimero de ejemplos, y este es alto.

Queda por interpretar estas métricas referidas al problema de deteccién del glauco-
ma que se esta abordando. A partir de las métricas comentadas, el ensemble esté
orientado a evitar falsos negativos de glaucoma. Ademas, el recall del glaucoma
indica que existe un 3% de probabilidad de que el modelo no detecte un paciente
realmente enfermo. Por otra parte, la precision implica que el 93 % de los diagnos-
ticados con glaucoma realmente padecen la enfermedad.

= SVM sigmoideo. Aqui se van a analizar las métricas recogidas en la Tabla 4.37
para el ensemble construido a partir del algoritmo SVM con kernel sigmoideo. Para
ello, se calculan en base a los datos de la matriz de confusién de la Figura 4.23

Precision | Recall | F1
Glaucoma 0.97 0.85 | 0.91
Normal 0.87 0.98 | 0.92

Tabla 4.37: Métricas utilizadas para el ensemble SVM sigmoideo

Aqui se presenta el caso contrario al descrito para el ensemble con SVM polinomial.
Para el glaucoma, el modelo alcanza un 97 % de precisién; mientras que, para los
casos sin glaucoma, se tiene una precisién del 87 %. Luego, hay un 3 % de falsos po-
sitivos para la clase “Glaucoma’, y un 13 % para la “Normal”. Ademds, siguiendo
la métrica recall, hay un 15 % de falsos negativos para la prediccién del ojo glauco-
matoso, y un 2% para la del ojo sano. Queda mencionar que, como se observa en
la imagen 4.18, los datos estan balanceados y se tienen suficientes ejemplos de cada
clase, luego las métricas obtenidas son fiables.

Queda por interpretar estas métricas referidas al problema de deteccién del glauco-
ma que se estd abordando. A partir de las métricas comentadas, el ensemble esta
orientado a evitar falsos negativos de glaucoma. Ademsds, el recall del glaucoma
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Figura 4.23: Matriz de confusion del ensemble con algoritmo SVM sigmoideo.

indica que existe un 3% de probabilidad de que el modelo no detecte un paciente
realmente enfermo. Por otra parte, la precisién implica que el 93 % de los diagnos-
ticados con glaucoma realmente padecen la enfermedad.

MLP. Para este ensemble se tienen los datos de la matriz de confusion de la Figura
4.24, a partir de los cuales se aportan las métricas recogidas en la Tabla 4.38.

Precision | Recall | F1
Glaucoma 0.94 0.95 | 0.95
Normal 0.95 094 | 0.95

Tabla 4.38: Métricas utilizadas para el ensemble MLP

Por una parte, se tiene que para el glaucoma el modelo alcanza un 94 % de precision;
mientras que, para los casos donde no se presenta glaucoma, se tiene una precision del
95 %. Esto representa que hay un 6 % de falsos positivos para la clase “Glaucoma”, y
un 5 % para la “Normal”. Ademads, el recall de la clase “Glaucoma’” es de 0.95, y para
la clase “Normal”, de 0.94. Asi, hay un 5% de falsos negativos para la prediccién de
casos con glaucoma, y un 6 % para los casos del ojo sano. Queda por mencionar que
estas métricas son fiables dada la cantidad de ejemplos que se tienen y el balanceo
en los datos como se ilustra en la imagen 4.18.

Queda por interpretar estas métricas referidas al problema de deteccién del glauco-
ma que se estd abordando. A partir de las métricas comentadas, el ensemble esta
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Figura 4.24: Matriz de confusién del ensemble construido con el algoritmo MLP.

orientado a evitar falsos negativos de glaucoma. Ademsds, el recall del glaucoma
indica que existe un 3% de probabilidad de que el modelo no detecte un paciente
realmente enfermo. Por otra parte, la precisién implica que el 93 % de los diagnos-
ticados con glaucoma realmente padecen la enfermedad.

Balance y eleccién entre los ensembles construidos

El objetivo de esta seccion es elegir el mejor de los ensembles construidos. Para ello, se
realizara un balance entre las métricas de cada uno de ellos, es estudiard su significado y
se terminard el analisis decidiendo cual de todos los ensembles es el mejor para el entorno
médico.

Puesto que el propdsito es determinar el mejor de los ensembles, una métrica impor-
tante sera el accuracy, que queda recogido en la Tabla 4.33. Esto se debe a que se busca
un modelo capaz de clasificar la mayor parte de casos de manera correcta, independiente-
mente de su tipo. Teniendo esto en cuenta, los ensembles que menor porcentaje de casos
clasifican correctamente son el SVM sigmoideo y el SVM radial, con un 91.28% y un
94.01 %, respectivamente. Una vez descartados los dos modelos que peor rendimiento tie-
nen respecto a la métrica accuracy, quedan los ensembles construidos con los algoritmos
SVM lineal, SVM polinémico y MLP, con un 94.85 %, 94.96 % y 94.75 %, respectivamen-
te. En este caso, se siguen teniendo en cuenta estos tres ultimos ensembles, puesto que la
diferencia en el valor accuracy de ellos no es suficiente como para escoger uno en concreto
y es preferible estudiarlos siguiendo otras métricas.

Continuando con el estudio, podemos observar que para la métrica F1 de los ensembles
construidos con los algoritmos SVM lineal, SVM polinémico y MLP, se tiene para todos
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los mismos valores de 0.95 tanto para la clase "normalgomo ”glaucoma”. Este valor mide
la eficacia global del modelo a partir de las métricas precision y recall. Luego, los tres
modelos son muy buenos, dado que detectan correctamente los casos positivos y evitan
falsos positivos. No obstante, da la igualdad de valores, no se puede determinar cudl es
mejor en el proceso de diagnostico siguiendo la métrica F1.

Finalmente, queda estudiar la relacién entre las precisiones y recalls de los distintos
modelos para elegir el que mejores resultados aporte, aunque en cualquiera de los tres
casos contemplados vayan a ser buenos dadas las métricas que ya se han tratado. En
primer lugar, se puede apreciar que para todas las métricas del ensemble SVM lineal se
tienen valores de 0.95 como se muestra en la Tabla 4.34, y para el ensemble MLP, de 0.94
y 0.95 como se recoge en la Tabla 4.38. Asi, como MLP empeora alguno de los valores
en precision y recall a los del SVM lineal, y el accuracy también es inferior, se descarta.
Luego, quedan por elegir un ensemble entre el SVM lineal y el SVM polinomial.

Para el SVM polinomial, se recuerda que el accuracy era ligeramente superior al del
SVM lineal. La diferencia principal entre los ensembles radica en que el SVM lineal es un
modelo equilibrado, dado que clasifica ambas clases por igual, sin sesgo hacia ninguna,
al contrario que el SVM polinomial. En concreto, para el ensemble construido con SVM
polinomial, de todos los pacientes que realmente tienen glaucoma, se detecta el 97 %, dado
que este es el recall para el glaucoma. Luego, se tienen pocos falsos negativos; es decir,
pocos enfermos se quedan sin ser diagnosticados. Ademas, la precision en la clasificacion
de pacientes sanos es de un 97 %. Esto indica que para esta clase hay un 3% de falsos
positivos; lo que radica en pocos sanos mal diagnosticados como enfermos.

Dependiendo del contexto, puede ser que uno de los ensembles sea méas favorable
que otro. En algunos casos, es interesante que las métricas estén més equilibradas. Sin
embargo, para el caso médico lo primordial es un alto recall para la clase de la enfermedad
y una alta precision en la clase de pacientes sanos. El motivo es que, como se ha explicado,
se pretende que queden el menor nimero de enfermos sin detectar, asi como el menor
numero posible de pacientes sanos mal diagnosticados como enfermos. Esto se debe a que
dejar sin diagnosticar a un enfermo puede tener graves consecuencias, como la aparicion
de la ceguera; mientras que diagnosticar como enfermo a un paciente sano también tiene
sus implicaciones, como una serie de costos en el tratamiento, ademas de tener que estar
expuesto al mismo de manera innecesaria. Bajo estas condiciones, el mejor ensemble es el
construido mediante el algoritmo SVM polinomial.

Comparando con los resultados que han obtenido los trabajos mencionados en el es-
tado del arte en la Seccion 3.4, el tnico que se aproxima a los resultados obtenidos aqui
es el segundo de los modelos de [80]. Para este modelo se han obtenido unos resultados
casi idénticos que para el ensemble lineal construido en este trabajo, siendo superado por
este ultimo en casi un 1% de accuracy. Luego, si el método mencionado en el estado
del arte proporciona un rendimiento ligeramente inferior al SVM lineal, con los mismos
razonamientos que se han dado anteriormente, se tiene que el ensemble a partir de SVM
polinomial que aqui se ha elaborado, aporta mejores resultados. Luego, la solucién cons-
truida en este trabajo supera todas las existentes para la deteccion del glaucoma a partir
del dataset rotterdam.
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Otra propuesta para mejorar los resultados

Como se ha explicado, las métricas mas importantes, las que se pretenden maximizar
sus resultados, son el recall para el glaucoma y la precision para el normal, pues no se
quiere dejar ningun caso de glaucoma sin diagnosticar. No obstante, también se debe
seguir prestando atencién al resto de métricas.

Para llevar esto a cabo, se introduce aqui el uso de la métrica F- explicada en la
Seccién 3.2.4. Asi, se han comparado los modelos entrenados a través del valor F2 para
el glaucoma, F0.5 para el normal y F1 para ambos casos. A esto se anade la métrica
accuracy ya estudiada. Toda esta informacién se recopila en la Tabla 4.39.

Modelo accuracy | F2 Glaucoma | F1 Glaucoma | FO.5 Normal | F1 Normal

rotterdam 0.933 0.935 0.933 0.935 0.933
rotterdam
grises
rotterdam
RIM-ONE
rotterdam
RIM-ONE 0.943 0.938 0.943 0.940 0.944
preentrenado
rotterdam

RIM-ONE 0.921 0.943 0.924 0.939 0.919
grises
rotterdam
RIM-ONE
grises
preentrenado
rotterdam
RIM-ONE 0.912 0.914 0.912 0.914 0.912
rojo
rotterdam
RIM-ONE 0.939 0.947 0.940 0.946 0.938
verde
rotterdam
RIM-ONE 0.897 0.898 0.897 0.898 0.897

azul

0.912 0.927 0.914 0.924 0.910

0.947 0.950 0.947 0.950 0.947

0.937 0.938 0.937 0.938 0.938

Tabla 4.39: Comparacién de las métricas mas relevantes de los modelos de clasificacion
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Los resultados han sido ordenados en funcién del F2 para el glaucoma, y en caso de
empate, teniendo en cuenta el resto de métricas. Asi, los mejores siete modelos siguen la
clasificacién:

1. rotterdam_RIM-ONE
2. rotterdam_RIM-ONE_verde
3. rotterdam_RIM-ONE_grises

4. rotterdam_RIM-ONE_preentrenado. Este se descarta por tener el mismo modelo pero
sin preentrenar en una mejor posicion.

5. rotterdam_RIM-ONE_grises_preentrenado. Este se descarta por tener el mismo mo-
delo pero sin preentrenar en una mejor posicion.

6. rotterdam

7. rotterdam_grises

La primera observacién que surge es que, cuando se tienen en cuenta todas estas
métricas, se observa que los modelos sin preentrenar ofrecen mejores resultados. Sin em-
bargo, esto puede deberse a que el preentrenamiento se hace con imégenes de otro dataset;
mientras que el entrenamiento final y el test se hacen con el mismo dataset. Aunque las
iméagenes de entrenamiento y test sean diferentes, pueden tener similitudes por pertene-
cer a un mismo dataset, por lo que habria que contar con més datos para comprobar si
realmente preentrenando con otro conjunto de datos el modelo generaliza mejor.

Otra observacion es que, ahora que se consideran mas métricas, se observa como todos
los mejores modelos de los que se muestran en la lista son los que se fijan en la parte del
nervio optico. Esto corrobora una vez mas que esta regién es la que mayor informacion
aporta para la deteccién del glaucoma.

Por otra parte, los resultados coinciden en su mayor parte con la clasificacion hecha
para el accuracy. Esto sugiere que, en este caso, el criterio de seleccion basado en el
accuracy es suficiente y consistente con otras métricas mas sensibles al balance entre
precision y recall. No obstante, se han entrenado los mismos ensembles con estos modelos
para tratar de mejorar los resultados.

El entrenamiento de los ensembles a partir de los modelos que mejor recall han mos-
trado por separado no ha mostrado resultados relevantes. En ninguno de ellos el recall
para el glaucoma supera el 94 %. Ademds, tampoco se identifica ninguna mejora en el
accuracy del ensemble final, pues tampoco supera el 94 % para esta métrica.
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Capitulo 5

Integracion de los modelos.
Construccion de una aplicacion.

Una vez desarrollados los modelos para el diagnostico del glaucoma, asi como los de
segmentacion de las estructuras de la regién del nervio 6ptico, el siguiente paso es su
integracion en una aplicacién funcional. Esta etapa corresponde con la fase de despliegue
de la metodologia CRISP-DM. Esto permite trasladar la funcionalidad desarrollada para
la deteccion del glaucoma a un entorno mas accesible para que pueda ser usada por
oftalmologos, sin necesidad de tener conocimiento en programacion.

Este capitulo presenta la construccion de dicha aplicacién. Para ello, se realizan los
procesos de analisis, diseno, implementacién y pruebas en los que se basa el desarrollo de
la misma. Se presentan los principales workflows de desarrollo de la aplicacién de forma
resumida, ya que el grueso del trabajo se lo ha llevado la construccién, entrenamiento y
evaluacion de los modelos, y esta aplicacion es un prototipo para integrar todo el desarrollo
previo. A continuacién se va a ir detallando una por una cada fase implicada.

5.1. Analisis - Especificaciéon de requisitos

La fase de analisis en el desarrollo de software establece qué debe hacer el sistema.
Esta etapa precede a la de diseno, en la que se define como se va a hacer. Por tanto,
el objetivo principal del analisis es comprender, documentar y especificar los requisitos
funcionales y no funcionales del sistema que se va a desarrollar, asi como los requisitos de
usuario.

5.1.1. Requisitos de usuario

Los requisitos de usuario describen lo que el usuario espera que el sistema haga. Por
otro lado, un caso de uso es una descripcion detallada de como un usuario o actor inter-
actua con el sistema para lograr un objetivo especifico. Para ello, la descripcion de los
requisitos de usuario contempla un diagrama de casos de uso, los especifica y produce de
una manera ordenada los requisitos buscados.

129



Capitulo 5. Integracion de los modelos. Construccion de una aplicacion.

Diagrama de casos de uso

En la Figura 5.1 se presenta el diagrama de casos de uso que resume de manera visual
lo que el usuario espera del sistema.

Y

Médico \

Sistema Diagnéstico Glaucoma

Hacer Diagndstico

;
'
'
'
'
'
'
<<extend>>

Cambiar Vista

<<extend>>
Calcular estructuras

retinografia

<<extend>>

Seleccionar tipo visualizacion

Terminar Diagndstico

<<include>>

Figura 5.1: Diagrama de casos de uso de la aplicacion construida.

130

Carlos Jiménez Vaquero



5.1. Analisis - Especificacién de requisitos

Especificacion de los casos de uso

A lo largo de las tablas 5.1, 5.2, 5.3, 5.4 y 5.5 se especifican cada uno de los casos de
uso recogidos en el diagrama de la Figura 5.1.

Cu._01 Hacer Diagnostico
Precondicién | -
.., El sistema permite subir una retinografia y realiza
Descripciéon . e .
el diagnostico en base a la misma
Secuencia normal:
1. El usuario sube una retinografia.
2. Se realiza el diagnoéstico.
3. Se muestra el diagnéstico y la retinografia por
Secuencia pantalla.
4. Si el usuario decide cambiar la vista <<Punto de
extension>> Cambiar Vista.
5. Si el usuario decide segmentar <<Punto de
extension>> Calcular estructuras retinografia.
Postcondicién | -
Excepciones | -
Rendimiento | 15-20 segundos
Importancia | Alta
Frecuencia Una vez por diagndstico
Tabla 5.1: Caso de Uso 1
CuU_02 Cambiar vista
Precondicién | Haber subido la imagen de una retinografia
. .l El sistema cambia la visualizacion de la retinografia
Descripcion . L .
completa a la region del nervio éptico y viceversa.
Secuencia normal:
1. Usuario hace click en el boton <<Cambiar vista>>.
2. Se toma la regién buscada.
Secuencia 3. Se cambia la vista.
Alternativa 1:
1. Usuario hace click en el boton.
2. No se detecta la region
3. No se cambia la vista.
Postcondicién | La region de la retinografia que se muestra es distinta
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Excepciones

- Excepcion 1:
El sistema no detecta el disco éptico
- Flujo alternativo para la excepcion 2:
Secuencia Alternativa 1

- Excepcion 2:
Se introduce una imagen que no sea una
retinografia

- Flujo alternativo para la excepcion 2:
Secuencia Alternativa 1

Rendimiento

Inmediato

Importancia

Normal

Frecuencia

Las veces que el usuario lo utilice

Tabla 5.2: Caso de Uso 2

Cu_.03

Calcular estructuras retinografia

Precondicion

Haber subido la imagen de una retinografia

Célculo de las segmentaciones del disco 6ptico y la
copa.

Secuencia normal:

1. El usuario solicita las segmentaciones

2. El médulo correspondiente calcula las segmentaciones
3. Se muestra la opcion de escoger la segmentacién que
se quiere contrastar.

4. Si el usuario decide seleccionar una segmentacion
<<Punto de extensiéon>> Seleccionar tipo
visualizacién.

Descripciéon

Secuencia

Postcondiciéon | La opcion para elegir la segmentacion es visible

Excepciones | -

30 segundos si solo aparece modelo YOLO
1 minuto y 30 segundos si también se muestra la
solucién con FastAl

Alta

Una vez por diagnostico

Rendimiento

Importancia

Frecuencia

Tabla 5.3: Caso de Uso 3
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CuU_04 Seleccionar tipo visualizacién
Precondicion | Haber calculado las estructuras de la retinografia
. .l El usuario puede ver las segmentaciones calculadas
Descripcion .
para el disco y la copa
Secuencia normal:
1. El usuario selecciona el tipo de segmentacién que
Secuencia quiere comprobar
2. El sistema muestra la segmentaciéon escogida por
pantalla.
Postcondicion | La segmentacion seleccionada es visible
Excepciones | -
Rendimiento | Inmediato
Importancia | Alta
Frecuencia Las veces que el usuario lo requiera
Tabla 5.4: Caso de Uso 4
CU_05 Terminar Diagnéstico
Precondicién | Haber subido la imagen de una retinografia
..l Finalizacion del diagnéstico para poder realizar uno
Descripcién
nuevo
Secuencia Normal:
1. El usuario selecciona la opcién de terminar
diagndstico.
Secuencia 2. El sistema elimina los archivos generados para el
diagnéstico.
3. El sistema vuelve al punto de inicio para realizar
otro diagnéstico
Postcondicion | Se eliminan los archivos generados
Excepciones | -
Rendimiento | 10 segundos
Importancia | Baja
Frecuencia Una vez por diagnéstico
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Requisitos de usuario

Una vez descritos los casos de uso que se han recogido para la implementacion de la
aplicacién, se pasa a enumerar cada uno de las requisitos de usuario encontrados:

RU_01. El usuario podré subir una retinografia a la aplicacion.
RU_02. El usuario consultara el diagnodstico para la retinografia adjuntada.

RU_03. El usuario podra ver entre ver la retinografia completa o solo la parte del
nervio 6ptico.

RU_04. El usuario podra ver la segmentacién de las estructuras basicas de una
retinografia.

RU_05. El usuario puede visualizar las segmentaciones ordenadas.

RU_06. El usuario cerrara el diagnostico para poder realizar otro.

5.1.2. Requisitos funcionales y no funcionales

Los requisitos funcionales y no funcionales son dos tipos fundamentales de requisitos
en el desarrollo de software que ayudan a definir qué debe hacer el sistema y como debe
hacerlo, respectivamente.

Requisitos funcionales

134

RF _01. El sistema almacenara la imagen subida por el usuario.
RF_02. El sistema hara un diagndstico de si la retinografia tiene glaucoma o no.

RF _03. El sistema recortara y almacenara la parte del nervio 6ptico de la retino-
grafia.

RF _04. El sistema permitira las distintas vistas de la retinografia; es decir, la reti-
nografia completa y la parte del nervio éptico.

RF _05. El sistema segmentara las estructuras de la retinografia.
RF _06. El sistema permitird consultar las segmentaciones construidas.

RF _07. El sistema permitird terminar el diagnéstico borrando todas las imagenes
generadas.
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Requisitos no funcionales

Requisitos de eficiencia:

RNF _01. El sistema debe tardar un méximo de 2 minutos en realizar el diagndstico.

RNF _02. El sistema deberd emplear un tiempo maximo de 6 minutos en calcular
todas las segmentaciones.

RNF _03. Las operaciones que consisten en un cambio en la visualizaciéon de los
datos deben tener un tiempo de ejecucion maximo de 1 segundo.

RNF _04. Las imagenes generadas por el sistema deben ser visibles en menos de 3
segundos.

Requisitos de fiabilidad:

RNF_05. La localizacién del nervio 6ptico debe realizarse correctamente el 98 % de
las veces.

RNF _06. La tasa de fallo de las segmentaciones ejecutadas debe ser menor al 5 %.

Requisitos de usabilidad:

RNF _07. El sistema sera accesible desde ordenador y dispositivos moviles, siendo
el primero de ellos donde se usara principalmente la aplicacion.

RNF_08. La interfaz de usuario debe ser clara, intuitiva y “amigable” para un uso
sencillo.

RNF _09. La aplicacién tendra un diseno responsive que se adectie al tamano del
viewport.

RNF _10. La curva de aprendizaje para familiarizarse con el sistema de deteccion
del glaucoma debe ser inferior a 10 minutos.

RNF_11. El sistema contara con manuales de usuario para facilitar el uso por parte
de los mismos.

Otros requisitos no funcionales:

RNF _12. La aplicacion desarrollada debera ser compatible con todo tipo de dispo-
sitivos; es decir, sera multiplataforma.

RNF_13. El tratamiento de los datos se hard respetando lo establecido en la Ley
Orgénica de Proteccién de Datos (Ley Organica 3/2018, de 5 de diciembre, de
Proteccién de Datos Personales y garantia de los derechos digitales).

RNF _14. Se empleard dash para el desarrollo de la aplicacion.

RNF_15. El sistema no debe estar fuertemente acoplado para permitir la reutiliza-
cion y portabilidad de parte del codigo.
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5.2. Diseno

Como se ha mencionado con anterioridad, la fase de diseno en el desarrollo de software
es la etapa en la que se planifica como se va a construir el sistema definido en la fase de
analisis. Por tanto, representa un vinculo entre los requisitos - el qué debe hacer el sistema
- v la codificacion - el como se va a implementar.

Para la fase de diseno de la aplicacion que se esta describiendo, se ha considerado opor-
tuno explicar la arquitectura logica de la aplicacion, asi como los diagramas de secuencia
que explican los proceso méas complejos que llevara a cabo y una primera aproximacion
de su interfaz.

5.2.1. Arquitectura légica

La arquitectura logica del sistema representa de una manera organizada los componen-
tes funcionales del sistema y la relacién entre ellos, sin tener en cuenta su implementacién
fisica en materia de servidores y otros componentes hardware. En la Figura 5.2 queda
descrita la arquitectura logica para la aplicacion construida, la cual sigue el patréon arqui-
tectonico “Capas”.

Capa de cliente Capa de presentacion Capa de negocio Capa de datos

Servidor E

[ Segmentacion

Y

Cliente del{' R

> Dash
explorados web as

| Servidor E

Diagnostico
(Clasificacion)

Servidor Directorio

Y

Y

Figura 5.2: Diagrama descriptivo de la arquitectura légica de la aplicacion.

A continuacién se detallan cada uno de los componentes que constituyen la arquitec-
tura logica segin la capa a la que pertenecen:

= Capa de cliente. Representa la capa de acceso del usuario a la aplicacién. Esta se
dispone para poder ser usada como aplicacion web.

= Capa de presentacion. Se trata de la parte de la aplicacion encargada de interactuar
directamente con el usuario, mostrando la interfaz y gestionando las entradas. Con
este proposito se ha hecho uso de la biblioteca Dash.
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= Capa de negocio. Parte de la arquitectura que implementa la légica y las reglas de
negocio de una aplicacion. Para este caso, la logica fundamental la componen dos
modulos: Segmentation Server y Diagnosis (Clasification) Server, que se encargan
de segmentar y clasificar las imagenes (realizar el diagndstico), respectivamente.

= Capa de datos. Se refiere a la organizacién y gestion de los datos. En concreto, define
como se estructuran los datos, cémo se relacionan entre si y como se accede a los
mismos.

5.2.2. Diagramas de secuencia

En las figuras 5.3 y 5.4 se modela la interaccion entre los componentes del sistema
para realizar los procesos de diagnostico y de segmentacion, respectivamente.
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Figura 5.3: Diagrama de secuencia para el proceso de diagnostico.
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Figura 5.4: Diagrama de secuencia para el proceso de segmentacion.
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5.2.3. Diseno de interfaz

En las figuras 5.5, 5.6 y 5.7 se representan unos bocetos con el disefio propuesto para
la aplicacién construida.

[ Nombre Aplicacion Mensaje subida de imagen ]

140

-

Botén subida de

retinografia

Retinografia

~

Aqui ira la retinografi

ia

N2

Pie de pagina - Copyright

Figura 5.5: Interfaz de usuario propuesta inicio aplicacién pre-diagnostico.

[ Nombre Aplicacion

Diagnoéstico Glaucoma ]

-

~

Retinografia

[ Botén hacer zoom

~

)

[ Botdn para ejecutar segmentaciones ]

Retinografia subida

[ Botdn terminar diagnéstico

)

N

N

[

Pie de pagina - Copyright

Figura 5.6: Interfaz de usuario propuesta tras diagnostico antes de segmentar.
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[ Nombre Aplicacion

Diagnostico Glaucoma ]

-

~

Botén hacer zoom

[ Botdn para elegir segmentacion

Botdn terminar diagndstico

)
)
)

N

/

-

Retinografia

~

-~

Retinografia subida

~

\>

-/

|

Pie de pagina - Copyright

|

Figura 5.7: Interfaz de usuario propuesta tras segmentacién.

5.3. Implementacién

5.3.1. Tecnologias y herramientas utilizadas

Para el desarrollo de la aplicacién se han empleado las siguientes tecnologias:

= Dash. Esta biblioteca ha sido empleada para construir la aplicacién, tanto la parte
de frontend como la de las llamadas a los médulos que se encargan de la prediccion

de diagndsticos y estructuras.

= Ultralytics YOLO. Implementacion optimizada del modelo de deteccion de obje-
tos YOLO, desarrollada por la empresa Ultralytics. Ofrece modelos rapidos y preci-
sos sobre los que es facil entrenar y desplegar otros modelos tanto para clasificaciéon

como para segmentacion. Esta escrito en Python y usa PyTorch como backend.

s FastAl FastAl es una biblioteca de alto nivel construida sobre PyTorch, disenada
para facilitar el entrenamiento rapido y eficaz de modelos de Deep Learning usando

menos codigo.

Por otra parte, se ha hecho uso de una serie de herramientas tanto en la parte de

programacion como para llevar a cabo el disenio y anélisis de la aplicacion:
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» Google Colab. Entorno basado en Jupyter Notebook que permite ejecutar cédigo
Python desde el navegador con acceso a recursos GPU. Sobre esta herramienta se
construye todo el cdédigo de la aplicacién desarrollada.

= Google Drive. Herramienta utilizada para almacenar todos los archivos generados
por su facilidad para acceder desde distintos dispositivos que permite conectarse con
Google Colab.

= Draw.io. Herramienta que se ha empleado en la elaboracién de todos los diagramas:
diagrama de casos de uso, diagramas de secuencia y representacion de las interfaces
de usuario previstas.

5.3.2. Interfaz de usuario implementada

Con el uso de las tecnologias y herramientas descritas en la Seccién 5.3.1 se implementa
finalmente la aplicacién que se ha venido describiendo a lo largo del Capitulo 5. Ademas,
en las figuras 5.8, 5.9, 5.10, 5.11, 5.12, 5.13, 5.14 y 5.15 se incluye la interfaz de usuario
que se ha desarrollado a partir de la propuesta en la Seccién 5.2.3.

¢ Andlisis Retinografico Avanzado Sube una retinografia para realizar el diagnéstico

Retinografia completa

t

Arrastra y suelta o

Selecciona un archivo

© 2025 Analisis Retinografico Avanzado - TFG Informatica

Figura 5.8: Interfaz de usuario del programa pre-diagndstico.
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¢ Analisis Retinografico Avanzado Diagnéstico: Normal

Retinografia completa

@ Cambiar vista

B Calcular regiones

X Terminar diagndstico

© 2025 Andlisis Retinografico Avanzado - TFG Informatica

Figura 5.9: Interfaz de usuario del programa cuando no se diagnostica glaucoma.

¢ Anélisis Retinografico Avanzado Diagnéstico: Normal

Region nervio optico
@ Cambiar vista

B Calcular regiones

¥ Terminar diagndstico

© 2025 Andlisis Retinografico Avanzado - TFG Informética

Figura 5.10: Interfaz de usuario del programa haciendo zoom en el nervio 6ptico.
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d Analisis Retinografico Avanzado Diagndstico: Glaucoma

Retinografia completa

@ Cambiar vista

E Calcular regiones

X Terminar diagnostico

® 2025 Andlisis Retinografico Avanzado - TFG Informatica

Figura 5.11: Interfaz de usuario del programa cuando se diagnostica el glaucoma.

¢ Analisis Retinografico Avanzado Diagnéstico: Normal

Retinografia completa
@ Cambiar vista

Segmentacion

Sin segmentar

X Terminar diagnostico

© 2025 Analisis Retinografico Avanzado - TFG Informética

Figura 5.12: Interfaz de usuario del programa tras segmentacién.
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¢ Anélisis Retinogréafico Avanzado Diagnéstico: Normal

Retinografia completa

@ Cambiar vista

Segmentacion

YOLO X v

X Terminar diagnéstico

©

Figura 5.13: Interfaz de usuario del programa con la segmentacién de YOLO.

d Analisis Retinografico Avanzado Diagndstico: Normal

Retinografia completa
@ Cambiar vista

Segmentacion

YOLO convexo x v

X Terminar diagndstico

©

Figura 5.14: Interfaz de usuario del programa con la segmentacion de YOLO convexo.
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@ Analisis Retinografico Avanzado Diagnéstico: Glaucoma

Retinografia completa

© Cambiar vista

Segmentacion

FASTAI

X Terminar diagndstico

Figura 5.15: Interfaz de usuario del programa con la segmentacién de FastAl.

5.3.3. Pruebas

Una vez implementada la aplicacién, queda realizar las pruebas oportunas para com-
probar su buen funcionamiento. Con este proposito, se ha decidido hacer pruebas de caja
negra, en concreto pruebas de sistema, ya que se efectiian sobre el sistema completo. Se
describen a continuacion.

Caja negra - Test E2E (End to end)

En las tablas 5.6, 5.7, 5.8, 5.9 y 5.10 se proponen una serie de casos de prueba de caja
negra para confirmar que cada caso de uso propuesto se ha implementado de acuerdo a
los objetivos esperados:

PR-E2E_1 Procesar diagndstico

Propésito C.omp/m].aar si al subir una retinografia se aporta un
diagnostico

Datos de entrada Imagen de una retinografia

Resultado esperado | Diagnédstico y muestra de la imagen

Resultado obtenido | Diagnédstico y muestra de la imagen

Tabla 5.6: Prueba de caja negra 1
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PR-E2E_2

Cambio entre la region ONH y la retino-
grafia completa

Propésito

Comprobar que el cambio entre la regiéon ONH y
la retinografia completa se realiza correctamente

Datos de entrada

Resultado esperado

Se cambia la imagen de la retinografia completa
a la region ONH y viceversa

Resultado obtenido

Se cambia la imagen de la retinografia completa
a la region ONH y viceversa

Tabla 5.7: Prueba de caja negra 2

PR-E2E_3

Procesar diagnoéstico

Proposito

Comprobar que el botén de calculo de segmen-
tacion cambia a una lista de seleccién

Datos de entrada

Resultado esperado

El botéon de célculo de segmentacion cambia a
una lista de seleccion

Resultado obtenido

El botén de célculo de segmentacién cambia a

una lista de seleccion

Tabla 5.8: Prueba de caja negra 3

PR-E2E 4

Seleccionar tipo de visualizacion

Propésito

Comprobar si se muestra la segmentacion elegida

Datos de entrada

Opcién de los tipos de segmentacion

Resultado esperado

Se muestra muestra la retinografia y la regién
ONH con la segmentacion esperada

Resultado obtenido

Se muestra muestra la retinografia y la regién
ONH con la segmentacion esperada

Carlos Jiménez Vaquero
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PR-E2E 5 Terminar diagnéstico

Comprobar que al terminar el diagnéstico se eliminan los
datos generados y se vuelve a la pagina de inicio

Propésito

Datos de entrada -

Se eliminan los archivos de las retinografias y se regresa a
la pagina inicial
Se eliminan los archivos de las retinografias y se regresa a
la pagina inicial

Resultado esperado

Resultado obtenido

Tabla 5.10: Prueba de caja negra 5
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Capitulo 6

Conclusiones y trabajo futuro

Como uno de los ultimos puntos a tratar, se presentan las conclusiones que se han
alcanzado a lo largo de este proyecto. En esta seccion se aportard una reflexién critica
y global sobre el desarrollo del Trabajo de Fin de Grado. Para ello, se analiza el grado
de cumplimiento de los objetivos propuestos inicialmente, asi como la idoneidad de la
metodologia empleada en cada una de las fases del proyecto. Del mismo modo, se expone
una valoraciéon personal sobre la experiencia adquirida a lo largo del proceso, destacando
tanto los aspectos positivos como los desafios encontrados. Para finalizar, se incluye una
perspectiva propia sobre la proyeccién de este proyecto, asi como las vias futuras para
mejorarlo.

6.1. Conclusiones

En esta parte del capitulo se analiza de manera objetiva el avance que ha tenido el
proyecto en base a sus objetivos. Ademas, se aportara una valoracién personal del mismo.

6.1.1. Perspectiva del proyecto

A continuacién se va a justificar el cumplimiento de los objetivos propuestos en un
primer momento, los cuales han sido satisfechos por completo:

= Se ha construido una aplicacion que permite el diagnéstico del glaucoma a partir
de retinografias mediante técnicas de Deep Learning, lo que se corresponde con el
cumplimiento del objetivo OBJ-01.

= Se han entrenado modelos capaces de identificar el disco y la copa 6pticos. Esto
conlleva la consecucién del objetivo OBJ-02 al construir con ellos un médulo que
emplea métodos de segmentacion sobre las retinografias.

= Se ha estudiado el rendimiento de los modelos construidos para la clasificacion y
segmentacion de retinografias respecto a las métricas mas adecuadas para cada uno
de ellos. Asi, se cumple el objetivo OBJ-03.
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Fruto de la realizacién de los objetivos anteriores, en este Trabajo Fin de Grado se ha
conseguido elaborar una aplicacién capaz de detectar el glaucoma con un rendimiento
incluso superior a algunos trabajos cientificos publicados recientemente. En concreto,
del dataset rotterdam utilizado, los resultados obtenidos superan a todos los que se han
consultado. Por otra parte, también mejora a otras soluciones mencionadas a lo largo
de esta memoria como la de la Universidad de Tohoku [59]. Ademsds, este desarrollo ha
permitido identificar las estructuras propias de una retinografia. Con todo lo anterior, se
han podido comprobar hipétesis como, por ejemplo, si la regién del nervio éptico es la
que mayor informacién reporta para la deteccion del glaucoma, o si la dimensién de la
copa éptica aumenta en casos con esta misma patologia.

Para llevar esto a cabo, siguiendo unas restricciones temporales y produciendo una
solucion de calidad, es necesario el empleo de una metodologia que permita estructurar
el trabajo para maximizar el rendimiento. En particular, las metodologias escogidas han
sido SCORE y CRISP-DM. Ha sido un acierto contar con metodologias agiles para la
planificacién temporal del proyecto, como ha sido SCORE, asi como para estructurar el
desarrollo de la solucién, para lo que se ha utilizado CRISP-DM. Seguir estas metodologias
ha permitido mantener un ritmo constante en la realizacién del proyecto, asi como recibir
una buena retroalimentacion por parte de los tutores del TFG, permitiendo mejorar las
soluciones construidas.

6.1.2. Perspectiva y valoracion personal

La realizacion de este Trabajo de Fin de Grado ha sido una experiencia muy enrique-
cedora. El desarrollo del mismo me ha permitido profundizar en temas de mi interés en el
campo del aprendizaje automatico. En particular, he podido aprender técnicas de Deep
Learning nuevas para mi, como las de segmentacién, y profundizar en otras ya conocidas,
como las de clasificacién.

Por otra parte, el tema elegido para la realizacion del proyecto ha sido un completo
acierto, pues me ha permitido aplicar mis conocimientos para resolver un problema real
como es la deteccion del glaucoma, lo que ha despertado mi interés en la utilizacion
de técnicas de aprendizaje profundo en el campo de la medicina. Ademas, resulta muy
satisfactorio poder desarrollar una herramienta con un impacto social positivo como la que
se ha construido para la consecucion de los objetivos propuestos en el inicio del proyecto.

A colacién de lo anterior, en un principio las expectativas se basaban en la consecucion
de los objetivos establecidos para resolver el problema de manera adecuada. Sin embargo,
estas han ido cambiando durante el desarrollo. La obtencién de unos resultados de alto
valor que apuntaban a superar las soluciones existentes para la deteccion automatica
del glaucoma ha ido elevando las expectativas del producto final asi como la motivacion.
Finalmente, estas expectativas se han cumplido, consiguiendo una herramienta que supera
otras soluciones planteadas a este problema.

Como se ha explicado con anterioridad, todas las soluciones construidas para la de-
teccion del glaucoma mediante el dataset rotterdam presentan peores resultados que los
obtenidos en el presente trabajo. No solo esto, sino que otros trabajos como del que se hace
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eco el Huffington Post [57] de la Universidad de Tohoku [59], también obtienen métricas
inferiores a las de este proyecto.

Ademads, como se ha mencionado anteriormente, se han adquirido y consolidado co-
nocimientos técnicos. No solo esto, sino que los conocimientos adquiridos van mas alla,
pues he empleado metodologias con las que no habia tenido la oportunidad de trabajar,
aunque ya hubiese tratado con la metodologia SCRUM de la que proceden. En general,
puesto que este trabajo abarca areas de conocimiento tan diversas como la ciencia de
datos, la topologia, el procesamiento de imagenes o la anatomia ocular, ha sido muy in-
teresante poder aprender una gran cantidad de conceptos nuevos y tan diversos. Ademaés
de aprender conceptos tedricos y de uso de metodologias, he podido usar herramientas
nuevas como la libreria dash para poder mostrar los resultados de una manera mas visual,
asi como la biblioteca wultralytics para entrenar modelos usando YOLO.

Queda destacar que durante la realizacion del presente TFG también se han presenta-
do dificultades o problemas a solventar. Entre ellos, ha sido la mejora de las predicciones
de las segmentaciones que se han mostrado en la Secciéon 4.4.3. En particular, los corres-
pondientes a la segmentacién del disco 6ptico con los modelos de FastAl son los que han
supuesto un mayor reto. Otro problema que ha surgido, y quiza uno de los mas relevantes
pues ha obligado a retrasar el inicio del proyecto, ha sido la obtenciéon del dataset de
entrenamiento, pues en un principio se iba a disponer de un conjunto de datos al que
finalmente se denegé su acceso. Por otra parte, cabe destacar la incertidumbre de realizar
una planificacién durante un curso académico en el que se tiene que atender a otras obliga-
ciones como examenes o practicas, lo que dificulta las cosas. Para solventar este problema
ha sido de vital importancia contar con metodologias agiles que permiten adaptarse mejor
a la situacion.

Espero que este proyecto pueda tener un impacto positivo con su implementacion en
centros clinicos para facilitar la deteccién del glaucoma y conseguir una herramienta de
apoyo fundamental para los especialistas de la salud. Resulta algo conmovedor el valor
que puede tener el buen uso de la Inteligencia Artificial para facilitar y mejorar la vida
de las personas, y en particular, de su salud.

6.2. Trabajo futuro

En el contexto de este Trabajo Fin de Grado, resulta especialmente relevante senalar
que, al igual que sucede con otros proyectos de software, requiere de una mejora y revision
continuas. Esto se debe a que los sistemas basados en aprendizaje automatico dependen
en gran medida de los datos disponibles. También de otros factores como la evolucion
de las arquitecturas, pues sin ir mas lejos, en este proyecto se ha utilizado YOLO 11
y recientemente se ha actualizado a una version YOLO 12. Esto implica la necesidad
constante de actualizar y validar los modelos construidos.

Por otra parte, este proyecto puede utilizarse como punto de partida para desarrollos
mas complejos. En consecuencia, este trabajo no debe considerarse un producto final
cerrado, sino una base sobre la que seguir construyendo para alcanzar soluciones mas
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precisas, robustas y aplicables en el ambito clinico. A continuacién, se presentan algunas
vias de investigacion futuras y otras acciones oportunas, asi como mejoras que se pueden
implementar a partir de la investigacién aqui realizada:

152

Disponer de un dataset real de las retinografias del centro médico donde se va a usar
la solucién. En un inicio, esta era la fuente de donde se iban a tomar los datos, pero el
Comité de Etica de Investigacion Clinica del Area de Salud de Valladolid no concedié
la solicitud. De esta forma, hubo que prescindir de esta via por motivos temporales,
ya que solicitarlo a la Consejeria de Sanidad retrasaria mucho los tiempos previstos.

Seria de gran utilidad tener acceso a estos datos para poder adaptar la solucién a las
imagenes tomadas con los dispositivos del Hospital Clinico. En general, aumentar y
diversificar el dataset incorporando retinografias de distintas poblaciones, disposi-
tivos y calidades de imagen tendrd implicaciones positivas sobre el rendimiento del
modelo.

Integrar la aplicacién construida en el entorno médico-hospitalario; es decir, realizar
un despliegue en clinicas o centros de atencion primaria como herramienta de apoyo
para el diagnostico del glaucoma.

Llevar a cabo una validacién clinica. Para comprobar la eficacia del modelo construi-
do, seria de gran utilidad estudiar su rendimiento con pacientes reales y adaptarlo
para mejorar su capacidad de prediccion. Ademas, también seria de interés comparar
su rendimiento frente al de oftalmologos.

Prediccion de la evoluciéon del glaucoma. Esta seria una nueva via de investigacion.
El objetivo de esta mejora seria avanzar desde la deteccién temprana del glauco-
ma hacia la prediccién de su evolucion en el tiempo. De este modo, se trataria
de desarrollar un modelo capaz de estimar la velocidad o el patrén de progresiéon
del glaucoma, permitiendo mejorar la toma de decisiones clinicas, como ajustar la
frecuencia de las revisiones o personalizar los tratamientos.

Clasificacion de tipos de glaucoma. Existe mas de un tipo de glaucoma, como el de
angulo abierto o el de dngulo cerrado [4]. En esta investigacién se ha primado el
hecho de distinguir pacientes sanos de los que presentan glaucoma. En una segunda
version se podria tratar de diferenciar qué tipo de glaucoma se presenta. Una opcién
de adaptarlo a los modelos construidos seria entrenar un modelo que distinga las
clases de glaucoma. Con el modelo actual, si se predice la presencia de la patologia,
se pasaria la imagen a este segundo modelo para clasificar de qué tipo de glaucoma
se trata.

Desarrollar un plan para introducir a los oftalmélogos en el uso de la herramienta.

Implementar técnicas de Active Learning o aprendizaje activo [61]. Con estos méto-
dos, el modelo enviaria los casos mas inciertos a un experto para su revision. Una
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6.2. Trabajo futuro

vez fueran validados, esos casos se usarian para seguir entrenando al modelo. De esta
forma, se promueve un aprendizaje continuo con la consiguiente mejora del modelo.

Otra opcion que se podria implementar consistiria en un método de entrenamiento
continuo en el que el sistema se pueda actualizar continuamente a medida que se
confirma si las predicciones son correctas o no, para tratar de mejorar los resultados.
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Apéndice A
Manual de instalacion

La aplicacién se presenta en un cuaderno Jupyter Notebook de extension .ipynb deno-
minado app.ipynb. Para poder poner en marcha la misma, basta con ejecutar de manera
secuencial los cuadros de cédigo del cuaderno mencionado. En concreto, el proceso que se
sigue durante esta ejecucion secuencial es:

1. Instalar las librerias necesarias: ultralytics, dash y dash-iconify. Para ello se utilizan
los comandos:
pip install ultralytics
pip install dash dash-iconify
Ademas, se importan las bibliotecas imprescindibles con:
from google.colab import drive
from fastai.vision.all import *
from ultralytics import YOLO
import cv2
import numpy as np
import os
from scipy.spatial import ConvexHull
import joblib
y se definen las rutas a las que se accedera para importar los modelos utilizados en

la aplicacién. Todo esto corresponde con el punto 1 del archivo app.ipynb.

2. Ejecutar el codigo imprescindible para importar los modelos. YOLO no requiere
ningtin cédigo adicional. Por su parte para FastAl se deben definir las métricas y
otros datos que usaron los modelos. Esto corresponde con los puntos 2 y 3.1 del
archivo app.ipynb.

3. Se define la funcionalidad que utilizara la aplicacién para realizar los diagnésticos y
las segmentaciones. Lo que corresponde con el punto 3.2 del fichero app.ipynb.
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4. Se inicia la aplicacion y se estd en disposicion de usarla. Para ello, se ejecuta el
cédigo del punto 3.3 del archivo app.ipynb o del punto 3.4 del mismo fichero en
funcién de si se quiere utilizar o no FastAl en las segmentaciones. La primera de las
opciones es mucho mas rapida.

Nota. En el archivo app. ipynb se muestran dos opciones de ejecuciéon de la aplicacion.
Son iguales, pero en una se ha quitado la opcién de segmentar con los modelos de FastAl
para mejorar el rendimiento. Estos modelos tienen una gran cantidad de parametros
y pueden resultar lentos. En la Seccion 5.3.2 se muestra un ejemplo de los resultados
producidos con esta opcién. Tras el apartado de ejecucién de la aplicacion sin FastAl se
puede ejecutar la aplicacién con FastAl en la seccién siguiente del archivo app.ipynb.
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Apéndice B
Contenido adjunto

En esta seccion se recopilan los archivos y recursos adicionales que complementan el
desarrollo del proyecto. Estos elementos incluyen las implementaciones de coédigo, graficas
obtenidas y otros materiales relevantes que han sido generados o utilizados durante la
elaboracion del trabajo, como es el caso de los datasets construidos para el entrenamiento
de los modelos.

Comencemos por explicar los archivos que corresponden con el cédigo implementado.
El proyecto consta de dos cuadernos de Jupyter Notebooks, los cudles se describen a
continuacion:

= app.ipynb. Este cuaderno de Jupyter contiene el cédigo necesario para inicializar
la aplicacién. De esta forma, como se explico en el apéndice A, ejecutando este
archivo de manera secuencial se puede probar la aplicaciéon desarrollada. Ademés,
se puede observar el funcionamiento de los modelos construidos para la propuesta
de la solucién, ya que aqui se integran todos los seleccionados por tener un buen
rendimiento.

Por otra parte, en este cuaderno se incluyen dos versiones de la aplicacién. En la
primera, no se incluyen los modelos de segmentacion con FastAl. Esta es mucho
méas rapida que la segunda, la cual también contiene los modelos de segmentaciéon

de FastAl.

» development.ipynb. En este cuaderno se incluye el proceso seguido para la cons-
truccién de la solucién. Para organizarlo de una mejor manera, este archivo se divide
en distintos puntos, en los que se explica:

e Solucién mediante clasificacion de retinografias con Deep Learning.
En este apartado se incluye el entrenamiento de todos los modelos destinados a
clasificacién mediante Deep Learning. Ademas, también se recogen las métricas
para cada uno de ellos.

e Solucion mediante segmentacion de retinografias con Deep Learning
y clasificacion con Machine Learning. En este apartado se incluye todo
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lo referido al problema de segmentacién. Costa de dos partes principales. En
la primera, los modelos destinados a segmentacién construidos tanto mediante
YOLO como mediante FastAl. Por otra parte, también se incluye un apartado
en el que se aborda el problema de clasificacién mediante Machine Learning.
Cabe mencionar que para todos los modelos de esta seccién del cuaderno tam-
bién se recogen las métricas para cada uno de ellos.

e Propuesta de implementaciéon. En este apartado se construyen los ensem-
bles descritos en la presente memoria a lo largo de la Seccién 4.7. Ademas,
también se recoge el proceso para desarrollar la aplicacion final que se tiene en
el archivo app.ipynb explicada en el Capitulo 5.

Dada la cantidad de memoria necesaria para almacenar todo el contenido generado a
lo largo del TFG, en la carpeta habilitada para subir el contenido adjunto se suben los
dos cuadernos de Jupyter Notebooks mencionados y los datasets originales. Estos siguen
la siguiente estructura:

GRP-GestionINF5G - TFG/
— datasets/
drishti-gs/
rim-one/
rotterdam/

— development . ipynb

+— app.ipynb

Por otra parte, para acceder al contenido completo, se tiene una cuenta de Google
Drive a la que se podra acceder en caso de querer ejecutar la aplicacion desarrollada; es
decir, el archivo app.ipynb. En este mismo lugar, también se disponen todos los datasets
con las modificaciones hechas para todos los tipos de entrenamiento tratados.

Para acceder a la cuenta de Google Drive se debe utilizar el siguiente correo y contra-
sena:

= Correo: tfg.informatica.carlos@gmail.com

= Contrasena: TFG_informatica_jvc_24-25
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A continuacién se describe la estructura de directorios que se tiene en Google Drive:

Colab Notebooks/
— datasets/

segmentacion/

clasificacion/

— csv/

ensembles/
clasificacion/

— modelos/

segmentacion/

clasificacion/

— development . ipynb

+— app.ipynb

Aqui, se tienen los datasets utilizados para entrenar todos los modelos, los archivos
csv construidos para entrenar los ensembles y la clasificacion mediante Machine Learning
a partir de segmentacion, los modelos seleccionados a lo largo del proyecto y los dos
cuadernos de Jupyter que se acaban de explicar.
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