TRABAJO DE FIN DE GRADO

GRADO EN NUTRICIÓN HUMANA Y DIETÉTICA

CURSO 2024-2025

Universidad de Valladolid

Toxicidad de la acrilamida e impacto en la salud humana

Autora: Ana María Álvarez Pérez

Tutora: Iciar Usategui Martín

ÍNDICE DE CAPÍTULOS

1. RESUMEN	5
2. INTRODUCCIÓN	6
Definición	6
Factores que influyen en la formación de acrilamida en los alimentos	8
Regulación del contenido de acrilamida en los alimentos	10
Estrategias de mitigación de la acrilamida	11
3. HIPÓTESIS Y OBJETIVO	12
4. MATERIAL Y MÉTODO	13
Estrategia de búsqueda	13
Criterios de inclusión y exclusión	13
5. RESULTADOS	14
6. DISCUSIÓN	26
7. CONCLUSIÓN	29
8. BIBLIOGRAFÍA	31

ÍNDICE DE FIGURAS

Figura 1. Formación de la acrilamida en los alimentos	7
Figura 2. Contenido de acrilamida en las patatas fritas en función del tiemp	o de
fritura	8
Figura 3. Estrategias generales para la reducción de acrilamida er	ı los
alimentos	12
ÍNDICE DE TABLAS	
Tabla 1. Criterios de inclusión y exclusión	13
Tabla 2. Artículos extraídos de PubMed	14
Tabla 3. Artículos extraídos de Scopus	18
Tabla 4. Artículos extraídos de Web of Science	21

1. RESUMEN

La acrilamida es un compuesto químico que se forma en alimentos ricos en almidón cuando son cocinados a altas temperaturas y en condiciones de baja humedad. La encontramos en alimentos como las patatas fritas, el café, el pan y los cereales. Su clasificación actual como potencialmente cancerígeno ha llevado a organismos como la AESAN y la FAO a promover normativas y estrategias para mitigar su presencia en los alimentos.

El objetivo de esta revisión fue sintetizar la información disponible hasta la actualidad sobre la toxicidad de la acrilamida dietética a largo plazo en humanos.

Se realizó una revisión sistemática en la que se incluyeron 28 artículos procedentes de *PubMed*, *Scopus*, *Web of Science* y *Google Scholar*. Los resultados obtenidos mostraron la compleja relación entre la presencia de acrilamida en la dieta y los efectos a largo plazo sobre la salud.

Como conclusión se obtuvo que la falta de protocolos estandarizados dificulta una respuesta sólida y concisa. La posible vinculación entre el consumo de acrilamida dietética y el cáncer de endometrio, ovario y mama aún no está confirmada, ya que los resultados obtenidos son dispares. Por otro lado, no se ha observado relación entre la acrilamida dietética y el desarrollo de los siguientes tipos de cáncer: renal, páncreas, esófago, gástrico, colorrectal, leucemia, próstata, vejiga, oral, laringe, melanoma y pulmón.

Finalmente, la carga de enfermedad atribuida a la acrilamida procedente de los alimentos es baja, pero su implicación en enfermedades cardiovasculares resalta la importancia de promover una alimentación saludable y la aplicación de buenas prácticas en el preparado y procesado de los alimentos.

Palabras clave: acrilamida, alimento, toxicidad, efectos a largo plazo, humano.

2. INTRODUCCIÓN

El control del fuego, hace aproximadamente 400.000 años, fue un factor clave en el desarrollo biológico de los humanos. El calor de las llamas permitió el descubrimiento de las técnicas de cocción, las cuales no solo producen cambios en la estructura química del producto sino también, en su estructura molecular y en las propiedades organolépticas (1).

El procesamiento térmico de los alimentos ha sido y es fundamental para garantizar la seguridad microbiológica, calidad nutricional y propiedades sensoriales. Sin embargo, estas técnicas también pueden generar compuestos químicos indeseables como la acrilamida (2).

Definición

La acrilamida es un compuesto químico que se encuentra de forma natural en productos vegetales ricos en almidón cuando han sido sometidos a procesos de cocinado con temperaturas superiores a 120°C y en condiciones de baja humedad (actividad de agua ≤0,85), como, por ejemplo, la fritura, el tostado, el asado o los procesos industriales ⁽³⁾.

La formación de este compuesto se relaciona con la interacción entre azúcares reductores y aminoácidos, especialmente la asparagina, presente de forma natural en numerosos alimentos. Este proceso, conocido como reacción de Maillard, es el responsable de color y aroma que hacen que estos productos resulten organolépticamente apetecibles ⁽³⁾.

En la reacción de Maillard se producen tanto sustancias beneficiosas con efecto antioxidante y antibacteriana, por ejemplo, los intermediarios de reductona, los compuestos heterocíclicos y las melanoidinas, como productos perjudiciales que aumentan la citotoxicidad y se asocian con enfermedades crónicas; entre estos últimos destacarían la acrilamida y las aminas heterocíclicas ⁽⁴⁾.

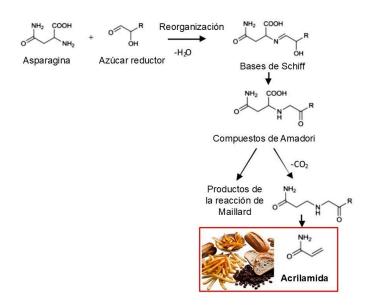
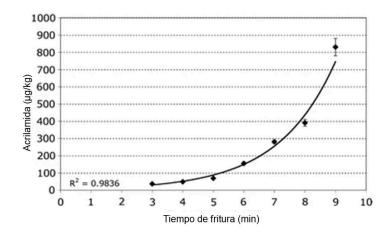


Figura 1. Formación de la acrilamida en los alimentos (3).

La acrilamida está presente en gran variedad de alimentos de consumo diario. Los alimentos ricos en almidón que se procesan a elevadas temperaturas son los más sensibles a la formación de este tóxico. Según la Agencia Española de Seguridad Alimentaria y Nutrición (AESAN) las patatas fritas son la principal fuente de exposición a este compuesto, seguidas del café tostado, el pan tierno, los cereales y las galletas y otros productos derivados de las patatas ⁽²⁾. Por su parte, el Comité Mixto de Expertos en Aditivos Alimentarios, también coincide en los alimentos nombrados por la AESAN como fuentes mayoritarias de acrilamida en la dieta y lo ordena de mayor a menor contribución de la siguiente manera: patatas fritas (6%-46%), café (13%-39%) y el pan (10-30%) ⁽³⁾.

Además de estar en los alimentos, la acrilamida se ha utilizado como componente fundamental en diversos procesos industriales, incluyendo la producción de plásticos, adhesivos, papel y el tratamiento de aguas potables y residuales. También, se ha encontrado en productos de consumo como envases de alimentos y ciertos adhesivos (3).

Debido a sus múltiples aplicaciones industriales no alimentarias, la acrilamida también puede representar un riesgo de exposición laboral por absorción epidérmica o por inhalación (2).


Factores que influyen en la formación de acrilamida en los alimentos

Los procesos que conducen a la formación de acrilamida en los alimentos están influenciados tanto por las características del producto (presencia de azúcares reductores y aminoácidos) como por las condiciones de procesamiento (temperatura y tiempo) (5).

Temperatura y tiempo

La acrilamida comienza a formarse en los alimentos a partir de los 120 °C y alcanza una cantidad máxima alrededor de los 170-180°C. En técnicas de cocinado como la fritura, estas temperaturas se alcanzan rápidamente, lo que, unido a la variable del tiempo, determinan la formación del tóxico en los alimentos ⁽⁵⁾.

La mayor parte de la acrilamida se forma cuando la temperatura de la fritura es más alta (175 °C). Sin embargo, todavía quedarían en el alimento precursores para la formación del compuesto cuando se continúa friendo a temperaturas más bajas (150 °C) ⁽⁵⁾. Algunos estudios han demostrado que variaciones en el tiempo de 2 minutos llevan a un incremento significativo en el contenido de acrilamida en las patatas fritas ⁽⁶⁾.

Figura 2. Contenido de acrilamida en las patatas fritas en función del tiempo de fritura ⁽⁶⁾.

Además de la fritura, otras técnicas culinarias como el horneado, asado, tostado o salteado son susceptibles para la formación de acrilamida ya que en estos procesos también se alcanzan elevadas temperaturas que favorecen su formación.

En conclusión, una mayor temperatura de cocinado junto con un mayor tiempo se asocia a un mayor contenido de acrilamida ⁽³⁾.

Contenido de agua

La cantidad de agua presente en los alimentos juega un importante papel en la formación de acrilamida.

En general, los alimentos con baja cantidad de agua tienden a generar más cantidad de acrilamida. Se ha observado que la formación de este compuesto se ve favorecida cuando la actividad de agua del alimento se encuentra entre 0,4 y 0,8. Sin embargo, cuando la actividad de agua es inferior a 0,4 el contenido del tóxico disminuye (3,5).

La actividad de agua se encuentra relacionada con la humedad de los alimentos. En términos prácticos, se traduce en que los alimentos con una humedad inferior al 5% tienen más posibilidades de formación de acrilamida a través de la reacción de Maillard ^(3, 5).

Además, es importante destacar que la mayor parte del compuesto se forma durante la última etapa de la fritura, cuando los alimentos se secan ⁽⁷⁾. Así, al unir el efecto de la temperatura con el contenido de agua de un alimento concluimos que la acrilamida se concentra en mayor medida en la corteza de los alimentos ⁽⁴⁾.

Fermentación y pH

La fermentación juega un papel crucial en la reducción de la formación de la acrilamida. Este proceso disminuye la presencia de asparagina, aminoácido que puede reaccionar con los azúcares reductores para formar acrilamida. Además, la fermentación aumenta la acidez de la masa, lo que a su vez reduce la formación de acrilamida al inhibir la reacción de Maillard ⁽⁸⁾.

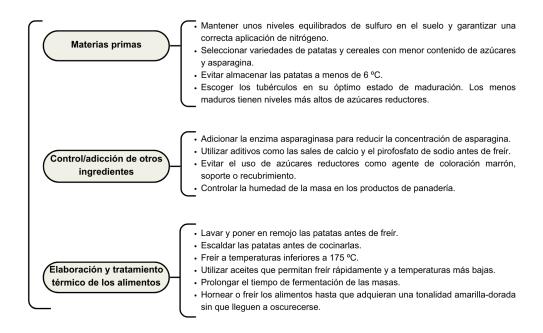
Regulación del contenido de acrilamida en los alimentos

En 1994, la Agencia Internacional para la Investigación del Cáncer (IARC) asoció la acrilamida al grupo 2A, es decir, la clasificó como sustancia potencialmente cancerígena.

Posteriormente, en 2002, el descubrimiento de la Administración Nacional de Alimentos de Suecia (SNFA) supuso un punto de inflexión respecto a esta sustancia. La SNFA comunicó que la acrilamida no aparece en los alimentos en estado crudo, sino que se forma durante el procesado de los mismos a altas temperaturas. Así, este hecho generó el desarrollo de investigaciones con la finalidad de evaluar su toxicidad, reducir su exposición y explorar los efectos en la salud derivados de su exposición (3).

La preocupación de los efectos de la acrilamida sobre la salud humana ha llevado a establecer regulaciones para limitar la presencia de acrilamida en los alimentos.

En 2015, la AESAN elaboró recomendaciones para reducir la presencia acrilamida durante el cocinado. Posteriormente, en 2018, estas medidas fueron revisadas y actualizadas tras la publicación en noviembre de 2017 del Reglamento (UE) 2017/2158 de la Comisión, en el que se establecen las medidas de mitigación y niveles de referencia para reducir la presencia de acrilamida en los alimentos ⁽⁹⁾.


El Reglamento (UE) 2017/2158 busca reducir la presencia de acrilamida en los alimentos y de esta manera, proteger la salud de los consumidores. Así, los puntos clave del documento son el establecimiento de medidas para minimizar la formación de este compuesto en los productos y de niveles de referencia para distintos grupos de alimentos como las patatas fritas, los cereales para el desayuno o los alimentos infantiles, entre otros. También, obliga a los responsables de empresas alimentarias a establecer un programa de muestreo y análisis de los niveles de acrilamida en sus productos y a aplicar medidas de mitigación para lograr niveles por debajo de los valores de referencia establecidos ⁽⁹⁾.

En 2019, la Comisión publicó la Recomendación 2019/1888 relativa al control de la presencia de acrilamida en determinados alimentos. Este documento tiene como objetivo mejorar el conocimiento sobre la presencia de acrilamida en alimentos específicos a través del monitoreo y la recopilación de datos para una mejor evaluación de los riesgos e implementación de medidas para proteger la salud de los consumidores (10).

Estrategias de mitigación de la acrilamida

Las estrategias de mitigación, en este caso referidas a la acrilamida, son un conjunto de acciones y medidas que se llevan a cabo para reducir o minimizar los niveles de esta sustancia química en los alimentos, disminuyendo la exposición de los consumidores. En este contexto, *FoodDrinkEurope* (organismo representativo de la industria europea de alimentos y bebidas) elaboró el recurso *"Acrylamide Toolbox 2019"* en el que se proporciona información sobre cómo reducir los niveles de este tóxico en los alimentos cumpliendo la normativa europea (11).

Por su parte, otros organismos como la Organización de las Naciones Unidas para la Agricultura y la Alimentación (FAO) a través del *Códex Alimentarius* también ha impulsado el desarrollo de diversas estrategias de mitigación que se aplican en las diferentes etapas de producción, coincidiendo muchas de ellas con las dadas por *FoodDrinkEurope* ya que ambos se basan en el Reglamento (UE) 2017/2158.

Figura 3. Estrategias generales para la reducción de acrilamida en los alimentos (9, 11, 12).

3. HIPÓTESIS Y OBJETIVO

La presencia de acrilamida en una amplia variedad de alimentos de consumo habitual genera una creciente preocupación sobre su impacto en la salud humana a largo plazo. Aunque se han realizado numerosos estudios en animales con la finalidad de establecer su toxicidad, la evidencia en humanos actualmente es limitada y dispersa.

La acrilamida ha sido vinculada con efectos neurotóxicos, carcinogénicos y metabólicos, entre otros. Por ello, aunar la evidencia científica actualizada disponible en seres humanos en una revisión facilitará la toma de decisiones respecto a la seguridad alimentaria y el desarrollo de estrategias para minimizar la exposición a este compuesto. Además, resultará práctico en la toma de decisiones sobre cómo cocinar de manera más saludable para evitar enfermedades crónicas.

Esta revisión tiene como objetivo sintetizar la evidencia científica disponible sobre los efectos a largo plazo en la salud humana derivados de la toxicidad de la acrilamida.

4. MATERIAL Y MÉTODO

Estrategia de búsqueda

Para el desarrollo de esta revisión bibliográfica, se ha recurrido a las siguientes bases de datos: PubMed, Google Scholar, Scopus y Web of Science. Se han incluido tanto artículos en castellano como en inglés. La fecha de publicación se restringió a los últimos diez años, es decir, de 2015 a 2025, finalizando la búsqueda a fecha de 16 de abril de 2025.

En referencia a las estrategias de búsqueda, se empleó el término "acrylamide" combinado con "adverse effects", "toxicity", "cancer" y "health risk" a través de los operadores booleanos "AND" y "OR".

Debido al diseño del estudio no se requirió la aprobación de ningún comité ético ni el consentimiento informado del paciente.

Criterios de inclusión y exclusión

Tabla 1. Criterios de inclusión y exclusión.

Criterio	Inclusión	Exclusión
Diseño del estudio	Ensayos clínicos, estudios observacionales (cohortes, casos y controles y transversales), estudios epidemiológicos, revisiones sistemáticas y metanálisis.	científica y estudios de baja calidad
Población de estudio	Estudios realizados en humanos de cualquier edad, género o condición de salud.	vitro, en animales y otros
Fecha de	De 2015 a 2025.	Anteriores a 2015.

publicación		
Relevancia temática	Estudios que analizan la toxicidad de la acrilamida presente en los alimentos, sus mecanismos de acción, metabolismo e impacto en la salud.	Estudios en los que la acrilamida no es el compuesto principal analizado, en los que se relaciona con la exposición transplacentaria o ambiental o no estudian la toxicidad para la salud.
Resultados	Riesgos de la acrilamida para la salud a largo plazo.	Otros resultados no relacionados con la acrilamida o en los que la acrilamida sea secundaria.

5. RESULTADOS

Tabla 2. Artículos extraídos de PubMed.

Título	Autor	Fecha	Diseño del estudio	Resumen	Resultados
Acrilamida	Pelucchi	2015	Metanálisis	Se revisaron 32	Una elevada
dietética y	et al.			publicaciones	ingesta de
riesgo de				que evaluaban la	acrilamida se
cáncer: un				relación entre la	vinculó con un
metanálisis				acrilamida	ligero riesgo de
actualizado (13).				dietética y el	desarrollar cáncer
				riesgo catorce	de riñón. También
				tipos frecuentes	se asoció con
				de cáncer.	mayor riesgo de

		1	1		
					cáncer de
					endometrio y
					ovario en
					personas no
					fumadoras.
Ingesta distática	lo V	2015	Matanáliaia	Co ovaluá	
Ingesta dietética	Je Y.	2015	Metanálisis	Se evaluó	El aumento en el
de acrilamida y				cuantitativamente	riesgo de cáncer
riesgo de cáncer				a través de 4	
de endometrio				estudios de	relaciona con el
en estudios de				cohortes	consumo de dosis
cohortes				prospectivos la	
prospectivos (14).				asociación entre	acrilamida en
				la ingesta	mujeres no
				dietética de	fumadoras.
				acrilamida y el	
				riesgo de cáncer	
				de endometrio.	
Ingesta dietética	Graff et	2018	Estudio de	Se investigó la	No se observó
de acrilamida y	al.		cohortes	asociación entre	
riesgo de			prospectivo	el consumo de	el consumo de
carcinoma de			F F	acrilamida	acrilamida en la
células renales				dietética y el	
en dos grandes				desarrollo de	_
cohortes				carcinoma de	carcinoma de
prospectivas (15).				células renales a	células renales.
				través del	
				seguimiento de	
				dos cohortes de	
				personas sanas	
				durante más de	
				dos décadas.	

NI.	Page 4	0000	NA - (/ !! · !	0	N. I. I
No existe	Jiang et	2020	Metanálisis	Se examinaron 4	
asociación entre	al.			estudios de	asociación
la acrilamida				cohortes y 4	
dietética y el				estudios de	significativa entre
carcinoma de				casos y controles	la ingesta
células renales:				para examinar la	dietética de
un metanálisis				asociación entre	acrilamida y el
actualizado (16).				acrilamida	riesgo de
				dietética y riesgo	carcinoma de las
				de carcinoma de	células renales.
				células renales.	
Ingesta dietética	Adani et	2020	Revisión	Se realizó una	La ingesta de
de acrilamida y	al.		sistemática	revisión y	acrilamida se
riesgo de cáncer			у	metanálisis que	asocia con un
de mama,			metanálisis	incluyeron 16	pequeño aumento
endometrio y				estudios de	de riesgo de
ovario: una				cohortes y 2	cáncer de
revisión				estudios de	endometrio y
sistemática y un				casos y controles	ovario en mujeres
metanálisis de				para investigar la	no fumadoras. En
dosis-respuesta				asociación entre	mujeres
(17)				la ingesta	premenopáusicas
				dietética de	hubo un riesgo
				acrilamida y el	aumentado de
				riesgo de cáncer	cáncer de mama
				de mama,	cuando las
				endometrio y	ingestas eran
				ovarios, para	_
				establecer una	μg/día).
				relación	,
				cuantitativa entre	
				ambos.	

Ingesta dietética	Benisi- Kohansal	2021	Revisión	Se realizó una	No se observó
de acrilamida y	et al.		sistemática	revisión	una asociación
riesgo de cáncer			у	sistemática y un	significativa entre
en mujeres: una			metanálisis	metanálisis de 14	la ingesta
revisión				estudios de	dietética de
sistemática y				cohortes	acrilamida y el
metanálisis de				prospectivos que	riesgo de cáncer
estudios de				asociaban la	de mama,
cohorte				exposición a la	endometrio y
prospectivos (18).				acrilamida en la	ovario.
				dieta y riesgo de	
				cáncer de mama,	
				endometrio y	
				ovario.	
Exposición a la	Mérida et	2024	Revisión	Se examinaron	La mayor
acrilamida y	al.		sistemática	28 estudios para	exposición a
riesgo				establecer	acrilamida se
cardiovascular:				examinó la	asocia con mayor
una revisión				asociación entre	riesgo de
sistemática (19).				la exposición a la	mortalidad
				acrilamida y la	cardiovascular. La
				mortalidad por	glicidamida, su
				enfermedad	metabolito más
				cardiovascular	reactivo se asocia
				(ECV), el riesgo	con factores de
				de ECV y los	riesgo
				factores de riesgo	cardiovascular
				cardiovascular.	como Diabetes
					Mellitus tipo II,
					dislipemia e
					hipertensión
					arterial.

Tabla 3. Artículos extraídos de Scopus.

Título	Autor	Fecha	Diseño del	Resumen	Resultados
			estudio		
Carga de enfermedad por exposición alimentaria a la acrilamida en Dinamarca (20).	Jakobsen et al.	2016	Estudio epidemiológi co	Se estimó la carga de cáncer debida a la exposición alimentaria de acrilamida y se determinó la contribución de diversos alimentos a esta carga de enfermedad.	dieta danesa se estimó que causa una carga de enfermedad entre 0,003 y 1,8 años de vida ajustados por discapacidad
Acrilamida dietética y el riesgo de cáncer de páncreas en el Consorcio Internacional de Casos y Controles de Cáncer de Páncreas (21).	Pelucchi et al.	2017	Estudio de casos y controles	Se examinó la relación de la ingesta de acrilamida en la dieta con el desarrollo de cáncer de páncreas.	la ingesta de acrilamida y un

	<u> </u>				
Ingesta	Liu et al.	2019	Estudio de	Se investigó la	No se asoció la
dietética de			cohortes	asociación entre	ingesta dietética
acrilamida y			prospectivo	la ingesta de	de acrilamida con
riesgo de				acrilamida en la	un mayor riesgo
cáncer de				dieta y el riesgo	de cáncer de
esófago,				de cáncer de	esófago, gástrico
gástrico y				esófago, gástrico	o colorrectal.
colorrectal:				y colorrectal en	
estudio				una cohorte de	
prospectivo del				87.628	
Centro de				japoneses.	
Salud Pública					
de Japón ⁽²²⁾ .					
Ingests	Live et el	2020	Catudia da	Co investigá le	No so specific
Ingesta	Liu et al.	2020	Estudio de	Se investigó la	No se encontró
dietética de			cohortes	asociación entre	
acrilamida y			prospectivo	la ingesta de	positiva entre la
riesgo de				acrilamida en la	ingesta dietética
cáncer de				dieta y el riesgo	,
pulmón:				de desarrollar	
estudio				cáncer de	de pulmón.
prospectivo del				pulmón en una	
Centro de				cohorte de	
Salud Pública				85.303	
de Japón ⁽²³⁾ .				japoneses.	
Ingesta	Zha et al.	2021	Estudio de	Se estudió si la	La ingesta diaria
dietética de			cohortes	ingesta dietética	de acrilamida en
acrilamida y			prospectivo	de acrilamida	la dieta no se
riesgo de				está asociada	relaciona con la
neoplasias				con el desarrollo	leucemia mieloide
hematológicas:				de neoplasia	aguda, la
estudio				hematológicas,	mielomielitis
prospectivo				mieloma múltiple	miálgica o la
					-

basado en el Centro de Salud Pública de Japón (24).				y leucemia en una cohorte de 85.303 japoneses.	leucemia.
Ingesta dietética de acrilamida y riesgos de cáncer de células renales, próstata y vejiga: un estudio prospectivo basado en un centro de salud pública de Japón (25).	Ikeda et al.	2021	Estudio de cohortes prospectivo	Se investigó la asociación entre la ingesta dietética de acrilamida y el riesgo de cáncer de células renales, de próstata y de vejiga en una cohorte de 88.818 japoneses.	la ingesta de acrilamida y el riesgo de cáncer de células
Riesgo de cáncer y carga de enfermedad por exposición a acrilamida alimentaria en China, 2016 (26).	Li et al.	2022	Estudio epidemiológi co	Se evaluó la exposición alimentaria diaria a la acrilamida en adultos chinos, se caracterizó el riesgo y se calculó la carga atribuible de cáncer.	carga de 1,713

Exposición	Bellicha	2022	Estudio de	Se intentó	Se observó una
alimentaria a la	et al.		cohortes	establecer la	asociación
acrilamida y			prospectivo	posible	positiva entre la
riesgo de				asociación entre	exposición a la
cáncer de				la acrilamida	acrilamida
mama:				dietética y el	dietética y el
resultados de				riesgo de cáncer	riesgo de cáncer
la cohorte				de mama.	de mama,
NutriNet-Santé					especialmente en
(27)					mujeres
					premenopáusicas.

Tabla 4. Artículos extraídos de Web of Science.

Título	Autor	Fecha	Diseño del estudio	Resumen	Resultados
			estudio		
Ingesta dietética	Obón-	2015	Estudio de	Se siguió durante	No se encontró
de acrilamida y	Santaca		cohortes	11 años a una	asociación entre
riesgo de cáncer	na et al.		prospectivo	cohorte europea	el riesgo de
de ovario epitelial				para intentar	cáncer epitelial
en la cohorte de				establecer una	de ovario y la
Investigación				asociación entre	ingesta de
Prospectiva				la ingesta de	acrilamida.
Europea sobre				acrilamida y el	
Cáncer y				riesgo de cáncer	
Nutrición (EPIC)				de ovario	
(28)				epitelial.	
Ingesta de	Kotemori	2018	Estudio de	Se investigó la	No se observó
acrilamida en la	et al.		cohortes	asociación entre	una asociación
dieta y riesgo de			prospectivo	la ingesta de	estadísticamente
cáncer de mama:				acrilamida en la	significativa entre
estudio				dieta y el riesgo	la ingesta

prospectivo del Centro de Salud Pública de Japón				de cáncer de mama en 48.910 mujeres japonesas.	dietética de acrilamida y el cáncer de mama.
Ingesta dietética de acrilamida y riesgo de cáncer de endometrio o de ovario en mujeres japonesas (30).	Kotemori et al.	2018	Estudio de cohortes prospectivo	Se investigó la asociación entre la ingesta de acrilamida en la dieta y la incidencia de cáncer de endometrio y de ovario en mujeres japonesas.	No se encontró asociación entre la ingesta dietética de acrilamida y el riesgo de estos dos tipos de cáncer.
La acrilamida dietética no está asociada con el riesgo de cáncer de células renales en la cohorte de nutrición CPS-II	McCullou gh et al.	2019	Estudio de cohortes prospectivo	Se siguió la cohorte de nutrición del Estudio de prevención del cáncer II para relacionar la ingesta de acrilamida en la dieta y el riesgo de carcinoma de células renales.	No se encontró asociación entre una mayor ingesta de acrilamida y el desarrollo de cáncer de células renales.
Ingesta dietética de acrilamida y riesgo de cáncer de hígado:	Zha et al.	2020	Estudio de cohortes prospectivo	Se investigó si el aumento de la ingesta dietética de acrilamida	No se asoció la ingesta de acrilamida dietética con el

				1	
estudio				estaba	riesgo de cáncer
prospectivo del				relacionado con	de hígado en la
Centro de Salud				el riesgo de	población
Pública de Japón				desarrollar	japonesa.
(32)				cáncer de hígado	
				en 85.305	
				japoneses.	
Ingesta dietética	Kito et al.	2020	Estudio de	Se estudió la	No se asoció la
de acrilamida y			cohortes	posible	ingesta dietética
riesgo de cáncer			prospectivo	asociación entre	de acrilamida
de páncreas:				la ingesta	con el riesgo de
estudio				dietética de	cáncer de
prospectivo del				acrilamida y el	páncreas en la
Centro de Salud				riesgo de cáncer	población
Pública de Japón				de páncreas.	japonesa.
(33)					
Asociación entre	Li et al.	2021	Estudio	Se evaluó la	La HbAA se
los niveles de			transversal	asociación entre	asoció con un
aducto de				HbAA, HbGA y	mayor riesgo de
hemoglobina de				HbGA/HbAA y	síntomas
acrilamida y los				los síntomas	depresivos. Sin
síntomas				donrocivos on	ambarga la
depresivos en	,			depresivos en	embargo la
adultos				3.595 adultos	relación
					· ·
estadounidenses:				3.595 adultos	relación
estadounidenses: NHANES				3.595 adultos	relación HbGA/HbAA se
				3.595 adultos	relación HbGA/HbAA se relacionó
NHANES				3.595 adultos	relación HbGA/HbAA se relacionó inversamente
NHANES				3.595 adultos	relación HbGA/HbAA se relacionó inversamente con el riesgo de
NHANES				3.595 adultos	relación HbGA/HbAA se relacionó inversamente con el riesgo de síntomas

	1				
acrilamida	et al.		sistemática	resultados de 31	asociación entre
dietética y riesgo			у	artículos con el	la alta exposición
de cáncer en			metanálisis	objetivo de	a acrilamida en
sitios específicos:				analizar la	la dieta y mayor
una revisión de				asociación entre	riesgo de cáncer
dosis-respuesta				la exposición a	oral, esófago,
de estudios				acrilamida en la	gástrico,
epidemiológicos				dieta y el riesgo	próstata,
(35)				de cáncer.	colorrectal, riñón,
					vejiga, páncreas,
					pulmón, linfoma,
					mieloma, tiroide,
					cerebro, laringe y
					melanoma.
Asociación entre	Gu et al.	2022	Estudio	So investigé si un	La evpesición a
biomarcadores	Gu et al.	2022			La exposición a
			transversal	mayor nivel de	la acrilamida se
de acrilamida y				biomarcadores	asoció
mortalidad por				de acrilamida	positivamente
cáncer en la				séricos se	con la mortalidad
población adulta				relacionaban con	por cáncer en la
estadounidense:				_	población adulta
evidencia de				mortalidad por	estadounidense.
NHANES				cáncer en 3.717	
2003-2014 (36).				estadounidenses.	
Niveles de	Narii et	2023	Estudio de	Se investigó la	No se encontró
aductos de	al.		casos y	relación entre los	asociación entre
hemoglobina de			controles	aductos de	HbAA y HbGA y
acrilamida y			anidado en	hemoglobina de	el cáncer de
glicidamida y			una	acrilamida	mama. Sin
riesgo de cáncer			cohorte	(HbAA) y los	embargo, la
de mama en				aductos de	relación de
mujeres				hemoglobina de	HbGA/HbAA

	<u> </u>				
japonesas: un				glicidamida	mostró una
estudio de casos				(HbGA) con el	asociación
y controles				desarrollo de	positiva con el
anidado en el				cáncer de mama.	cáncer de mama
Centro de Salud					debido a las
Pública de Japón					diferencias
(37)					individuales en la
					susceptibilidad a
					la acrilamida.
Exposición a la	Başaran	2023	Revisión	Se realizó una	No está
acrilamida en la	et al.		sistemática	revisión de 63	claramente
dieta y riesgo de				estudios	definida la
cáncer: un				epidemiológicos	relación positiva
enfoque				en los que se	entre exposición
sistemático para				examinaba las	a acrilamida y
estudios				asociaciones	tipos de cáncer.
epidemiológicos				entre la	Se precisa de un
en humanos (38).				exposición	método
				alimentaria a la	estandarizado
				acrilamida y el	para comparar
				riesgo de cáncer.	los resultados.
Asociación entre	Marques	2024	Estudio de	Se siguió a una	Una mayor
la ingesta	et al.		cohortes	cohorte de	ingesta dietética
dietética de			prospectivo	72.585 mujeres	de acrilamida se
acrilamida y un				francesas	asocia con un
mayor riesgo de				durante más de	mayor riesgo de
mortalidad en				20 años para	mortalidad por
mujeres:				investigar si una	enfermedades
evidencia de la				mayor ingesta de	cardiovasculares,
cohorte				acrilamida	cáncer en
prospectiva E3N				dietética se	general y cáncer
(39)				asociaba con	de pulmón,

				mayor mortalidad.	especialmente entre las fumadoras.
La carga de enfermedad debida a la exposición alimentaria a la acrilamida en Italia: un enfoque basado en la evaluación de riesgos (40).	Mihalach e et al.	2024	Estudio epidemioló gico	Se evaluó el riesgo de cáncer y la carga de enfermedad debida a la exposición alimentaria a la acrilamida.	AVAD/100.000

La búsqueda realizada en Google Scholar arrojó algunos resultados relevantes para el objetivo de la investigación y que cumplían con los criterios de inclusión y exclusión establecidos. Sin embargo, estos artículos ya habían sido identificados en las bases de datos previamente consultadas, por lo que no se generó una tabla de resultados específica para dicha búsqueda.

6. DISCUSIÓN

Se realizó una búsqueda bibliográfica exhaustiva que incluyó 28 artículos, indagando los posibles efectos a largo plazo que puede tener el consumo de acrilamida a través de los alimentos para la salud humana. Los resultados obtenidos muestran una relación compleja y, en ocasiones, contradictoria entre

la ingesta dietética de acrilamida y el riesgo de desarrollar ciertos tipos de cáncer u otras patologías.

En los cánceres estrogénicos positivos como el de mama, el de endometrio y el de ovario se observa una tendencia hacia un ligero aumento del riesgo de cáncer de endometrio y ovario en mujeres no fumadoras que consumían elevadas dosis de acrilamida (13, 14). Sin embargo, varios estudios no mostraron una asociación significativa entre la ingesta de acrilamida y el riesgo de cáncer de mama, endometrio y ovario (28, 29, 30).

Por otro lado, solo el estudio realizado por Adani et al. (17) en mujeres premenopáusicas sugiere un mayor riesgo de cáncer de mama cuando la ingesta de acrilamida es elevada. En contraste, otros estudios como el realizado por Benisi-Kohansal et al. (18) que evaluaron esta posible relación el resultado no fue significativo.

Esta diferencia de resultados se puede deber a las características de la población estudiada en cada caso, a la metodología utilizada en la evaluación de ingesta de acrilamida y a los factores de confusión como el tabaquismo o el estado menopáusico.

Con respecto al cáncer de riñón, en general, y con el carcinoma de células renales en particular, en la mayoría de los estudios no hubo una asociación entre la ingesta dietética de acrilamida y el desarrollo del mismo ^(15, 16, 25, 31). Sin embargo, Pelucchi et al. ⁽¹³⁾ reflejaron una ligera asociación en su metanálisis. Este resultado podría deberse a algún factor de confusión que no fue considerado en la realización del estudio.

La ausencia de una asociación positiva entre la ingesta de acrilamida y el riesgo de cáncer fue señalada en los siguientes tipos: páncreas, esófago, gástrico, colorrectal, leucemia, próstata, vejiga, oral, laringe, melanoma y pulmón (21, 22, 23, 24, 25, 32, 33, 35). En referencia a este último, se sugiere que las personas fumadoras con altas ingestas de acrilamida tienen mayor riesgo, pero en estos resultados el tabaco podría estar actuando como un factor de confusión. De hecho, Marques et al. (39) asociaron la ingesta de acrilamida con un mayor riesgo de cáncer de pulmón en mujeres fumadoras.

En los estudios realizados sobre la estimación de carga de enfermedad atribuible a la exposición a la acrilamida, sugieren que existe un impacto relativamente bajo en la salud pública; (20, 26, 40) sin embargo, se subraya la importancia a nivel poblacional de la promoción de estrategias de mitigación de la acrilamida en los alimentos.

Por su parte, la asociación entre acrilamida y riesgo cardiovascular parece estar bastante clara ya que los resultados indican que una mayor exposición a acrilamida contribuye a un mayor riesgo de mortalidad cardiovascular (39). Además, se propone que la glicidamida podría estar relacionada con otros factores de riesgo para la enfermedad cardiovascular como son la Diabetes Mellitus tipo 2, la dislipemia y la hipertensión arterial (19). Esta relación mencionada merece especial atención debido a que, en la actualidad, las enfermedades cardiovasculares son una de las principales causas de mortalidad a nivel mundial.

Los resultados obtenidos presentan ciertas limitaciones. En primer lugar, los estudios analizados provienen de diversas fuentes lo que repercute en la calidad y el rigor metodológico. Además, no todos los trabajos incluidos corresponden a ensayos clínicos aleatorizados, revisiones sistemáticas o metanálisis, considerados metodológicamente más sólidos, sino que también se incorporaron estudios observacionales. En estos últimos, los resultados pueden estar influenciados por factores de confusión, debido a la ausencia de intervención.

Otra de las limitaciones es que las poblaciones estudiadas comprenden diferentes áreas geográficas con patrones alimentarios muy distintos, lo que impide la comparación directa de los niveles de acrilamida dietética entre ellas. El patrón de consumo occidental incluye un mayor número alimentos fritos y procesados que el patrón oriental, cuya cocina se caracteriza por el uso del vapor como una de las principales técnicas de cocción y de alimentos frescos. Por lo tanto, cabe esperar concentraciones de acrilamida más elevadas en la población estadounidense que en la japonesa, lo que podría influir en la relación entre la acrilamida y el riesgo de cáncer.

Por otro lado, la falta de un método estandarizado para evaluar la relación entre la ingesta dietética de acrilamida y el desarrollo de enfermedades limita, en ciertos casos, establecer una conclusión sólida.

Finalmente, se deben tener en cuenta posibles factores de confusión, tales como: el patrón dietético (comentado anteriormente); el hábito tabáquico o la exposición a acrilamida en el ámbito laboral; el nivel de actividad física; y la edad, ya que el consumo de alimentos ultraprocesados varía, al igual que la predisposición genética a enfermedades como el cáncer.

Tras el análisis de los resultados se resalta la necesidad de establecer un método estandarizado para comparar los hallazgos de los diferentes estudios. Esto podría incluir la adopción de protocolos comunes para evaluar la exposición a la acrilamida, la definición de poblaciones de estudio más homogéneas y la aplicación de métodos estadísticos con la finalidad de controlar los factores de confusión.

Por todo lo anteriormente expuesto, es recomendable que las líneas futuras de investigación profundicen en la interacción de la acrilamida con otros componentes de la dieta que pueden modular su efecto. Además, sería interesante investigar modelos conjuntos de riesgo de cáncer y enfermedad cardiovascular, considerando la carga de enfermedad atribuible a la acrilamida.

7. CONCLUSIÓN

Primera. La evidencia disponible actualmente sobre la toxicidad de la acrilamida en la salud humana es limitada, debido a la falta de protocolos estandarizados y a la dificultad para la estimación de la cantidad presente de este tóxico en los alimentos.

Segunda. No se puede establecer una relación causal definitiva entre el consumo dietético de acrilamida y el riesgo de cáncer de endometrio. Por su parte, la relación entre la acrilamida dietética y el cáncer de mama es controvertida no habiendo un resultado concluyente.

Tercera. No existe una relación probada entre la acrilamida dietética y el carcinoma de células renales.

Cuarta. Se ha demostrado la falta de asociación entre la acrilamida dietética y los siguientes tipos de cáncer: páncreas, esófago, gástrico, colorrectal, leucemia, próstata, vejiga, oral, laringe, melanoma y pulmón. El cáncer de pulmón está relacionado con la presencia de acrilamida, pero no la presente en la dieta sino la procedente de otras fuentes, como el humo del tabaco.

Quinta. Parece segura la implicación de la acrilamida dietética en el padecimiento de enfermedades cardiovasculares.

Sexta. Aunque la carga de enfermedad vinculada a la acrilamida dietética es baja es importante la promoción de políticas de salud orientadas a fomentar una alimentación saludable y a la aplicación de buenas prácticas en el cocinado y procesado de los alimentos.

8. BIBLIOGRAFÍA

- Van Der Berg E. De la hoguera fortuita al control de la llama: Todo lo que ganamos con el fuego. Historia National Geographic [revista en Internet].
 2024 [citado 1 de marzo de 2025]. Disponible en: https://historia.nationalgeographic.com.es/a/bullipedia-descubrimiento-fuego-21443
- Agencia Española de Seguridad Alimentaria y Nutrición (AESAN).
 Acrilamida [sede web]. Madrid: AESAN; 2020 [citado 19 de febrero de 2025].
 Disponible en: https://www.aesan.gob.es/AECOSAN/web/seguridad_alimentaria/subdet alle/acrilamida.htm
- 3. Rifai L, Saleh FA. A review on Acrylamide in Food: Occurrence, Toxicity, and Mitigation Strategies. Int J Toxicol. 2020;39(2):93-102.
- Ke C, Li L. Influence mechanism of polysaccharides induced Maillard reaction on plant proteins structure and functional properties: A review. Carbohydr Polym. 2023;302:120430.
- Sanny M, Luning PA, Marcelis WJ, Jinap S, Van Boekel MAJS. Impact of control behaviour on unacceptable variation in acrylamide in French fries. Trends Food Sci Technol. 2010;21(5):256-67.
- Romani S, Bacchiocca M, Rocculi P, Dalla Rosa M. Effect of frying time on acrylamide content and quality aspects of French fries. Eur Food Res Technol. 2008;226(3):555-60.
- Amrein TM, Limacher A, Conde-Petit B, Amado R, Escher F. Influence of thermal processing conditions on acrylamide generation and browning in a potato model system. J Agric Food Chem. 2006;54(16):5910-6.
- 8. Claus A, Carle R, Schieber A. Acrylamide in cereal products: A review. J Cereal Sci. 2008;47(2):118-33.

- Comisión Europea. Reglamento (UE) 2017/2158 de la Comisión, de 20 de noviembre de 2017 por el que se establecen medidas de mitigación y niveles de referencia para reducir la presencia de acrilamida en los alimentos. Diario Oficial de la Unión Europea. 2017; L 304:24-44.
- 10. Comisión Europea. Recomendación (UE) 2019/1888 de la Comisión, de 7 de noviembre de 2019 relativa al control de la presencia de acrilamida en determinados alimentos. Diario Oficial de la Unión Europea. 2019; L 290: 31-33.
- 11. FoodDrinkEurope. Acrylamide Toolbox [Internet]. Bruselas: FoodDrinkEurope; 2019 [citado 23 de febrero de 2025]. Disponible en: https://www.fooddrinkeurope.eu/resource/acrylamide-toolbox/
- 12.FAO/WHO Codex Alimentarius. Códigos de prácticas [Internet]. Roma: FAO; [citado 4 de marzo de 2025]. Disponible en: https://www.fao.org/fao-who-codexalimentarius/codex-texts/codes-of-practice/es/
- 13. Pelucchi C, Bosetti C, Galeone C, La Vecchia C. Dietary acrylamide and cancer risk: an updated meta-analysis. Int J Cancer. 2015;136(12):2912-22.
- 14. Je Y. Dietary acrylamide intake and risk of endometrial cancer in prospective cohort studies. Arch Gynecol Obstet. 2015;291(6):1395-401.
- 15. Graff RE, Cho E, Preston MA, Sanchez A, Mucci LA, Wilson KM. Dietary Acrylamide Intake and Risk of Renal Cell Carcinoma in Two Large Prospective Cohorts. Cancer Epidemiol Biomarkers Prev. 2018;27(8):979-82.
- 16. Jiang F, Teng M, Zhu YX, Li YJ. No association between dietary acrylamide and renal cell carcinoma: an updated meta-analysis. J Sci Food Agric. 2020;100(7):3071-7.
- 17. Adani G, Filippini T, Wise LA, Halldorsson TI, Blaha L, Vinceti M. Dietary Intake of Acrylamide and Risk of Breast, Endometrial, and Ovarian Cancers: A Systematic Review and Dose-Response Meta-analysis. Cancer Epidemiol Biomarkers Prev. 2020;29(6):1095-106.

- 18. Benisi-Kohansal S, Salari-Moghaddam A, Seyed Rohani Z, Esmaillzadeh A. Dietary acrylamide intake and risk of women's cancers: a systematic review and meta-analysis of prospective cohort studies. Br J Nutr. 2021;126(9):1355-63.
- 19. Mérida DM, Rey-García J, Moreno-Franco B, Guallar-Castillón P. Acrylamide Exposure and Cardiovascular Risk: A Systematic Review. Nutrients. 2024;16(24):4279.
- 20. Jakobsen LS, Granby K, Knudsen VK, Nauta M, Pires SM, Poulsen M. Burden of disease of dietary exposure to acrylamide in Denmark. Food Chem Toxicol. 2016;90:151-9.
- 21. Pelucchi C, Rosato V, Bracci PM, Li D, Neale RE, Lucenteforte E, et al. Dietary acrylamide and the risk of pancreatic cancer in the International Pancreatic Cancer Case—Control Consortium (PanC4). Ann Oncol. 2017;28(2):408-14.
- 22. Liu R, Sobue T, Kitamura T, Kitamura Y, Ishihara J, Kotemori A, et al. Dietary Acrylamide Intake and Risk of Esophageal, Gastric, and Colorectal Cancer: The Japan Public Health Center–Based Prospective Study. Cancer Epidemiol Biomarkers Prev. 2019;28(9):1461-8.
- 23. Liu R, Zha L, Sobue T, Kitamura T, Ishihara J, Kotemori A, et al. Dietary Acrylamide Intake and Risk of Lung Cancer: The Japan Public Health Center Based Prospective Study. Nutrients. 2020;12(8):2417.
- 24. Zha L, Liu R, Sobue T, Kitamura T, Ishihara J, Kotemori A, et al. Dietary Acrylamide Intake and the Risk of Hematological Malignancies: The Japan Public Health Center-Based Prospective Study. Nutrients. 2021;13(2):590.
- 25. Ikeda S, Sobue T, Kitamura T, Ishihara J, Kotemori A, Zha L, et al. Dietary Acrylamide Intake and the Risks of Renal Cell, Prostate, and Bladder Cancers: A Japan Public Health Center-Based Prospective Study. Nutrients. 2021;13(3):780.

- 26.Li Y, Liu J, Wang Y, Wei S. Cancer risk and disease burden of dietary acrylamide exposure in China, 2016. Ecotoxicol Environ Saf. 2022;238:113551.
- 27. Bellicha A, Wendeu-Foyet G, Coumoul X, Koual M, Pierre F, Guéraud F, et al. Dietary exposure to acrylamide and breast cancer risk: results from the NutriNet-Santé cohort. Am J Clin Nutr. 2022;116(4):911-9.
- 28. Obón-Santacana M, Peeters PHM, Freisling H, Dossus L, Clavel-Chapelon F, Baglietto L, et al. Dietary Intake of Acrylamide and Epithelial Ovarian Cancer Risk in the European Prospective Investigation into Cancer and Nutrition (EPIC) Cohort. Cancer Epidemiol Biomarkers Prev. 2015;24(1):291-7.
- 29. Kotemori A, Ishihara J, Zha L, Liu R, Sawada N, Iwasaki M, et al. Dietary acrylamide intake and risk of breast cancer: The Japan Public Health Center-based Prospective Study. Cancer Sci. 2018;109(3):843-53.
- 30. Kotemori A, Ishihara J, Zha L, Liu R, Sawada N, Iwasaki M, et al. Dietary acrylamide intake and the risk of endometrial or ovarian cancers in Japanese women. Cancer Sci. 2018;109(10):3316-25.
- 31.McCullough ML, Hodge RA, Um CY, Gapstur SM. Dietary Acrylamide Is Not Associated with Renal Cell Cancer Risk in the CPS-II Nutrition Cohort. Cancer Epidemiol Biomarkers Prev. 2019;28(3):616-9.
- 32. Zha L, Sobue T, Kitamura T, Kitamura Y, Ishihara J, Kotemori A, et al. Dietary Acrylamide Intake and the Risk of Liver Cancer: The Japan Public Health Center-Based Prospective Study. Nutrients. 2020;12(9):2503.
- 33. Kito K, Ishihara J, Kotemori A, Zha L, Liu R, Sawada N, et al. Dietary Acrylamide Intake and the Risk of Pancreatic Cancer: The Japan Public Health Center-Based Prospective Study. Nutrients. 2020;12(11):3584.
- 34.Li Z, Sun J, Zhang D. Association between Acrylamide Hemoglobin Adduct Levels and Depressive Symptoms in US Adults: NHANES 2013-2016. J Agric Food Chem. 2021;69(46):13762-71.

- 35. Filippini T, Halldorsson TI, Capitão C, Martins R, Giannakou K, Hogervorst J, et al. Dietary Acrylamide Exposure and Risk of Site-Specific Cancer: A Systematic Review and Dose-Response Meta-Analysis of Epidemiological Studies. Front Nutr. 2022;9:875607.
- 36. Gu W, Zhang J, Ren C, Gao Y, Zhang T, Long Y, et al. The association between biomarkers of acrylamide and cancer mortality in U.S. adult population: Evidence from NHANES 2003-2014. Front Oncol. 2022;12:970021.
- 37. Narii N, Kito K, Sobue T, Zha L, Kitamura T, Matsui Y, et al. Acrylamide and Glycidamide Hemoglobin Adduct Levels and Breast Cancer Risk in Japanese Women: A Nested Case-Control Study in the JPHC. Cancer Epidemiol Biomarkers Prev. 2023;32(3):415-21.
- 38. Başaran B, Çuvalcı B, Kaban G. Dietary Acrylamide Exposure and Cancer Risk: A Systematic Approach to Human Epidemiological Studies. Nutrients. 2023;12(2):346.
- 39. Marques C, Frenoy P, Elbaz A, Laouali N, Shah S, Severi G, et al. Association between dietary intake of acrylamide and increased risk of mortality in women: Evidence from the E3N prospective cohort. Sci Total Environ. 2024;906:167514.
- 40. Mihalache OA, Dall'Asta C. The burden of disease due to dietary exposure to acrylamide in Italy: A risk assessment-based approach. Food Chem Toxicol. 2024;188:114699.