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Resumen
El objetivo de este trabajo es realizar un estudio exhaustivo sobre mé-

todos lineales multipaso particionados. En el primer capítulo se dará la de-
finición y propiedades básicas como convergencia, cero-estabilidad y consis-
tencia, demostrándose al igual que con métodos lineales multipaso estándar,
características y propiedades que relacionan todas estas definiciones. Además
se estudia la simetría de estos métodos, demostrándose también una sencilla
caracterización. En el segundo capítulo se realiza un estudio detallado sobre
el desarrollo asintótico del error global de métodos lineales multipaso par-
ticonados, tanto para fuertemente estables como débilmente estables. En el
tercer capítulo se analiza el comportamiento del error y la conservación del
hamiltoniano a partir de los resultados obtenidos del anterior capítulo. En
el último capítulo se aplican los resultados anteriores al caso de pequeñas
oscilaciones del doble péndulo, que es un problema no separable, estudiando
el error y realizando experimentos numéricos que permiten comprobar las
ventajas de utilizar ciertos métodos simétricos particionados.

Abstract
The aim of this work is to conduct a comprehensive study on partitioned

linear multistep methods. In the first chapter, the definition and basic pro-
perties such as convergence, zero-stability, and consistency will be presented,
demonstrating, as with standard linear multistep methods, the characteristics
and properties that relate all these definitions. Additionally, the symmetry
of these methods will be studied, and a simple characterization will also
be demonstrated. In the second chapter, a detailed study of the asymptotic
development of the global error of partitioned linear multistep methods is
carried out, both for strongly stable and weakly stable cases. In the third
chapter, the behavior of the error on the preservation of the Hamiltonian is
analyzed based on the results obtained in the previous chapter. In the final
chapter, the previous results are applied to the case of small oscilations of the
double pendulum, which is a non-separable problem, analyzing the error and
performing numerical experiments to verify the advantages of using certain
symmetric partitioned methods.
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Introducción

Los integradores geométricos han demostrado ser herramientas funda-
mentales en la integración numérica de ecuaciones diferenciales ordinarias
con estructuras específicas [8], [11], [13]. En particular, la simplécticidad y la
simetría son propiedades muy interesantes, especialmente cuando se quieren
conservar propiedades del sistema que queremos integrar. Por ejemplo, los
métodos simplécticos son muy buenos en la integración de sistemas hamilto-
nianos y los simétricos en la integración de sistemas reversibles.

Un tipo de integrador geométrico muy utilizado es el Runge-Kutta. Para
ciertos sistemas específicos, como aquellos de segundo orden sin dependencia
de la derivada primera o problemas separables, existen versiones explícitas
de estos métodos, como los métodos Runge-Kutta-Nyström y los métodos
Runge-Kutta particionados [13]. Sin embargo, cuando queremos crear mé-
todos Runge-Kutta simplécticos, aplicables a sistemas totalmente generales
de primer orden, esto implicar tener que usar de métodos implícitos. Esto
hace que para sistemas generales de primer orden no separables los métodos
Runge-Kutta simplécticos sean costosos de implementar.

Otros integradores geométricos también muy utilizados son los métodos
lineales multipaso, cuya gran ventaja sobre los Runge- Kutta es que cuando
son implícitos requieren una sola evaluación por iteración y cuando son explí-
citos una sola evaluación por paso. Sin embargo, los métodos lineales multi-
paso no pueden ser simplécticos [5], pero para aquellos que son simétricos esta
garantizado que su método de un solo paso asociado es conjugado-simpléctico
[6]. Esto es relevante porque los métodos lineales multipaso pueden ser simul-
táneamente explícitos y simétricos, lo que ha motivado numerosos estudios
teóricos y aplicaciones prácticas. A pesar de sus ventajas, los resultados po-
sitivos obtenidos para la integración a largo plazo se han limitado a casos

5
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concretos, como sistemas de segundo orden sin dependencia de la derivada
primera o sistemas hamiltonianos separables, donde los métodos simétricos
ofrecen beneficios en términos de propagación del error y conservación de
invariantes [2], [4]. Los métodos lineales multipaso aplicados a problemas de
primer orden conducen normalmente a un crecimiento exponencial del error.

El presente trabajo tiene como objetivo realizar un análisis exhaustivo
de la convergencia y la simetría de los métodos lineales multipaso particiona-
dos, viendo qué relación guarda con la simetría y la convergencia de los dos
métodos lineales multipaso que componen el particionado. Con estos méto-
dos, diferentes partes del sistema diferencial serán integradas con distintos
métodos lineales multipaso, sin asumir que el sistema sea separable. Se ana-
lizará el comportamiento de estos métodos en la integración de problemas
generales y se estudiará su influencia en la propagación del error y la con-
servación del hamiltoniano. Para ello, se realizarán experimentos numéricos
con el problema del doble péndulo, un sistema hamiltoniano no separable,
con el objetivo de justificar, en la medida de lo posible, el comportamiento
observado en términos del crecimiento del error en el hamiltoniano. Se espera
que este análisis permita comprender mejor el funcionamiento de los métodos
lineales multipaso particionados en otros problemas más complicados.



Capítulo 1

Conceptos básicos sobre métodos
lineales multipaso particionados

1.1. Preliminares

1.1.1. Descripción de un método lineal multipaso parti-
cionado

Consideremos el siguiente sistema autónomo de ecuaciones diferenciales
ordinarias (o problema de valores iniciales) de dimensión n ≥ 2{

ẏ(t) = F (y(t)), t ∈ [t0, T ],

y(t0) = y0 ∈ Rn.

En dicho sistema se pueden dividir el conjunto de n variables en dos
subconjuntos de tamaños d y n − d respectivamente, pudiéndose escribir
como {

ṗ(t) = f(p(t), q(t)), p(t0) = p0,

q̇(t) = g(p(t), q(t)), q(t0) = q0,
(1.1.1)

con p0 ∈ Rd, q0 ∈ Rn−d, y0 = (p0, q0) y la función

F (y(t)) = (f(p(t), q(t)), g(p(t), q(t))),

7



8 1.1. PRELIMINARES

con

p : [t0, T ] → Rd,

q : [t0, T ] → Rn−d.

Enunciamos ahora, sin demostrar, el siguiente resultado que es una adap-
tación del teorema de Picard-Lindelöf a problemas de valores iniciales parti-
cionados.

Teorema 1.1. Sean f : Ω ⊂ Rn → Rd y g : Ω ⊂ Rn → Rn−d funciones
definidas y continuas en un abierto Ω ⊂ Rn, para las cuales existen dos
constantes Lf , Lg > 0 tales que:

∥f(x)− f(x∗)∥ ≤ Lf∥x− x∗∥

∥g(x)− g(x∗)∥ ≤ Lg∥x− x∗∥
para todo x, x∗ ∈ Ω. Entonces para cada p0 ∈ Rd y q0 ∈ Rn−d existe una
única solución y(t) = (p(t), q(t)), tal que f, g ∈ C1(Ω), para el problema de
valores iniciales particionado (1.1.1), con condiciones iniciales p0 y q0. ■

A pesar de que el teorema 1.1 nos garantice la existencia de una úni-
ca solución para (1.1.1), es difícil, incluso a veces imposible, encontrar su
solución exacta. Se sabe que se requieren métodos numéricos para aproxi-
mar la solución de (1.1.1) en una discretización del intervalo [t0, T ], es decir,
una sucesión {tn}Nn=0 ⊂ [t0, T ], con tn+1 = tn + h, y n = 0, 1, . . . , N , donde
N = (T − t0)/h y h > 0 es la longitud de paso. Pero dado como tenemos
escrito el sistema de ecuaciones diferenciales ordinarias, nos interesa cómo
es de útil y ventajoso aplicar métodos numéricos distintos a cada parte del
problema de valores iniciales particionado (1.1.1).

En este trabajo intentaremos integrar cada parte del sistema diferencial
autónomo (1.1.1) con métodos lineales multipaso distintos. Es decir, consi-
deraremos el método determinado a partir de los dos siguientes sistemas en
diferencias.

kp∑
j=0

αp
jpn+j = h

kp∑
j=0

βp
j f(pn+j, qn+j),

kq∑
j=0

αq
jqn+j = h

kq∑
j=0

βq
j g(pn+j, qn+j). (1.1.2)
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A partir de este momento denotaremos como MLM a los métodos lineales
multipaso usuales. A los métodos de la forma (1.1.2) se les conoce como
métodos lineales multipaso particionados, que a partir de este momento los
denotaremos como MLMP.

Los valores de pn y qn son aproximaciones por (1.1.2) de p(tn) y q(tn),
respectivamente en tn = t0 + nh, siendo h > 0 la longitud de paso de los
MLMP y αp

j , β
p
j , α

q
j , β

q
j los coeficientes de los dos MLM que componen (1.1.2)

tales que

αp
kp
, αq

kq
̸= 0, |αp

0|+ |βp
0 | > 0, |αq

0|+ |βq
0| > 0.

Las dos primeras condiciones se dan para que se pueda calcular pn+kp y
qn+kq al dar el n+kp y n+kq paso en los dos MLM que componen el MLMP.
Las dos últimas condiciones se dan para que los MLM que componen el
MLMP sean de kp y kq pasos respectivamente.

Consideremos los polinomios característicos de los dos MLMs que com-
ponen el MLMP (1.1.2)

ρp(x) = αp
kp
xkp + · · ·+ αp

0, σp(x) = βp
kp
xkp + · · ·+ βp

0 ,

ρq(x) = αq
kq
xkq + · · ·+ αq

0, σq(x) = βq
kq
xkq + · · ·+ βq

0 , (1.1.3)

donde (ρp(x), ρq(x)) son los primeros polinomios característicos del MLMP
y (σp(x), σq(x)) los segundos polinomios característicos del MLMP.

Así podemos escribir el MLMP dado de la siguiente forma:

ρp(E)pn = hσp(E)f(pn, qn),

ρq(E)qn = hσq(E)g(pn, qn),

donde E es el operador que avanza h unidades de tiempo.

Notemos que si en (1.1.2) se tiene por ejemplo, y sin pérdida de generali-
dad que kq > kp, podemos calcular pkp a partir de p0, . . . , pkp−1, q0, . . . , qkp−1.
Si kq > kp+1, podemos calcular pkp+1 a partir de p1, . . . , pkp , q1, . . . , qkp . Y así
sucesivamente hasta obtener los valores de arranque p0, . . . , pkq−1, q0, ..., qkq−1.

Por lo tanto a partir de ahora y a lo largo de esta sección y la siguiente
se considerarán en los desarrollos de las demostraciones MLMP tales que sus
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MLM que lo componen tenga el mismo número de pasos k = máx{kp, kq}.
Mas concretamente, escribiremos (1.1.2) como

k∑
j=0

αp,∗
j pn+j = h

k∑
j=0

βp,∗
j f(pn+j, qn+j),

k∑
j=0

αq
jqn+j = h

k∑
j=0

βq
j g(pn+j, qn+j), (1.1.4)

con αp,∗
0 = · · · = αp,∗

kq−kp−1 = βp,∗
0 = βp,∗

kq−kp−1 = 0 y αp,∗
l = αp

l−kq+kp
, βp,∗

l =

βp
l−kq+kp

para l = kq − kp, . . . , kq

Los valores de arranque del nuevo MLMP son p0, ..., pkq−1, q0, ..., qkq−1,
donde pkp+1, ..., pkq−1 se obtienen de (1.1.2).

Una vez considerados los k valores de arranque obtenidos por (1.1.2),
podemos reescribir (1.1.4) con sus polinomios característicos que por la forma
en la que hemos construido este método son

ρ∗p(x) = xkq−kpρp(x), ρ∗q(x) = ρq(x),

σ∗
p(x) = xkq−kpσp(x), σ∗

q (x) = σq(x). (1.1.5)

Por comodidad y por simplicidad de notación, a lo largo de esta sección y la
siguiente denotaremos por ρp y σp a ρ∗p y σ∗

p y a αp
l y βp

l , para l = 0, . . . , k a
αp,∗
l y βp,∗

l .

Decimos que un MLMP es explícito si se puede calcular yn = (pn, qn)
de manera explícita, es decir, obtener las soluciones proporcionadas por el
método sin resolver un sistema no lineal, para cualquier f y g. En caso
contrario, diremos que el MLMP es implícito. Al igual que un MLM, el simple
hecho de resolver este tipo de sistemas hace que los MLMP implícitos sean
más costosos de implementar que los MLMP explícitos. Es obvio que un
MLMP es implícito si y solo si al menos uno de los dos MLM que lo componen
es implícito, y que un MLMP es explícito si y solo si los dos MLM que
lo componen son explícitos. Ahora daremos una caracterización de MLMP
explícitos e implícitos, cuya demostración es inmediata.

Corolario 1.2. Un MLMP es explícito si y sólo si βp
kp

= βq
kq

= 0, don-
de βq

kq
, βp

kp
son los coeficientes de los segundos polinomios característicos en

(1.1.3). Un MLMP es implícito si y solo si βp
kp

̸= 0 o βq
kq

̸= 0.
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1.1.2. Formulación como método de un solo paso

Al igual que los MLM, los MLMP pueden reescribirse también como
métodos de un solo paso en un espacio de dimensión superior, que resultará de
gran utilidad para demostraciones posteriores. Consideremos en esta sección
un MLMP de la forma (1.1.4), para el problema de valores iniciales (1.1.1).
Para reescribir un MLMP como método de un solo paso necesitamos definir

ψp(p0, ..., pk−1, q0, ..., qk−1) =
k∑

j=0

βp
j

αp
k

f(pj, qj),

ψq(p0, ..., pk−1, q0, ..., qk−1) =
k∑

j=0

βq
j

αq
k

g(pj, qj),

donde los vectores pk y qk vienen definidos implícitamente como

pk = −
k−1∑
j=0

αp
j

αp
k

pj + hψp(p0, ..., pk, q0, ..., qk),

qk = −
k−1∑
j=0

αq
j

αq
k

qj + hψq(p0, ..., pk, q0, ..., qk).

Trabajaremos con el supervector

Yi =
(
pi+k−1, pi+k−2, . . . , pi, qi+k−1, qi+k−2, . . . , qi

)T
, Yi ∈ Rnk, i ≥ 0

siendo n la dimensión de la ecuación diferencial (1.1.1). El MLMP (1.1.4)
puede escribirse como

Yi+1 = (A⊗ I)Yi + hΦ(Yi), i ≥ 0, (1.1.6)

donde

A =



−αp
k−1

αp
k

−αp
k−2

αp
k

· · · −αp
0

αp
k

0 0 . . . 0

1 · · · 0 0 0 0 · · · 0
... . . . ...

... . . . ... . . . ...
0 · · · 1 0 0 0 · · · 0

0 · · · 0 0 −αq
k−1

αq
k

−αq
k−2

αq
k

· · · −αq
0

αq
k

0 · · · 0 0 1 0 · · · 0
... . . . ...

...
... . . . ...

...
0 · · · 0 0 0 · · · 1 0


, (1.1.7)
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Φ(Y ) = (ψp(p0, ..., pk−1, q0, ..., qk−1), 0, . . . , 0, ψq(p0, ..., pk−1, q0, ..., qk−1), 0, . . . , 0)
y, por abuso de notación, A⊗I corresponde a la matriz diagonal por bloques
tal que el primer bloque es Sp ⊗ Id, donde

Sp =


−αp

k−1

αp
k

−αp
k−2

αp
k

· · · −αp
0

αp
k

1 · · · 0 0
... . . . ...

...
0 · · · 1 0

 , (1.1.8)

y el segundo bloque es Sq ⊗ In−d, donde

Sq =


−αq

k−1

αq
k

−αq
k−2

αq
k

· · · −αq
0

αq
k

1 · · · 0 0
... . . . ...

...
0 · · · 1 0

 , (1.1.9)

y las matrices Id e In−d son las matrices identidades de tamaños d y n − d
respectivamente.

1.2. Convergencia, cero-estabilidad y consisten-
cia

1.2.1. Convergencia

Ya habíamos comentado que el problema de valores iniciales (1.1.1) tiene
una única solución.

Nos planteamos comparar, en un instante de tiempo tn = t0 + nh, para
una longitud de paso h, el valor de la solución exacta y(tn) con la solución nu-
mérica yn proporcionada por el MLMP (1.1.4). Para hacer esta comparación
lo que hacemos es observar si la solución {yn} dada por (1.1.4) se aproxi-
ma a la solución exacta y(tn) cuando h → 0, o equivalentemente n → ∞,
manteniendo fijo tn = t0 + nh.

Más concretamente, se dice que un MLMP de k pasos es convergente si
siempre que los valores de arranque y0, y1, . . . , yk−1 satisfacen

ĺım
h→0

(pj − p(t+ jh)) = 0, para j = 0, . . . , k − 1,

ĺım
h→0

(qj − q(t+ jh)) = 0, para j = 0, . . . , k − 1, (1.2.1)
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se verifica que
ĺım
h→0

tn=t0+nh

yn = y(tn).

Tengamos en cuenta que la definición solamente depende del método, lue-
go es aplicable a cualquier problema de valores iniciales particionado (1.1.1).

Diremos que una matriz A cuadrada de tamaño n cumple la condición de
los autovalores si todos los autovalores de la matriz A son de módulo menor
o igual que 1 y los de módulo 1 tienen multiplicidad geométrica m = 1.
Gracias a la convergencia, podemos garantizar que la matriz A (1.1.7) cumple
la condición de los autovalores.

Teorema 1.3. Si un MLMP es convergente entonces la matriz A del MLMP,
reescrito como método de un solo paso, cumple la condición de los autovalo-
res.

Demostración. Supongamos que existe un autovalor de A, λ, tal que |λ| >
1. Por la estructura en bloques de A en (1.1.7), esto implica que o bien
λ es autovalor de Sp o bien es autovalor de Sq. Supongamos sin pérdida
de generalidad que λ es autovalor de Sp. Consideremos ahora el siguiente
problema de valores iniciales:{

ṗ(t) = 0, p(0) = 0,

q̇(t) = 0, q(0) = 0,

cuya solución es (
p(t), q(t)

)
= (0, 0).

Para los valores de arranque y0 = (0, 0), y1 = (hλ, 0), . . ., yk−1 = (hλk−1, 0)
tenemos que la solución del MLMP es

yn = (pn, qn) = (hλn, 0).

Esto se debe a que el vector (pk−1, . . . , p0, 0, . . . , 0) es un autovector de A.

Tenemos que
∥pn∥ = h|λ|n(h),

donde n(h) es tal que tn = t0+nh. Como n(h) → ∞ cuando h→ 0 y |λ| > 1,
se tiene que:

∥pn∥ → ∞ cuando h→ 0.
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Por lo tanto, el MLMP no es convergente.

Supongamos que hay un autovalor de A, λ∗, tal que |λ∗| = 1 y es de
multiplicidad geométrica m ≥ 2. Supongamos, sin pérdida de generalidad,
que λ∗ es autovalor de multiplicidad geométrica m ≥ 2 de Sp. (Notemos que
no puede haber ningún autovalor λ de A con multiplicidad geométrica 2 tal
que sea autovalor de Sp y Sq pero con multiplicidad geométrica 1. Esto se
debe a que por la estructura por bloques de A, dim(Ker(A − λI)) = 2.)
Para los valores de arranque y∗0 = (0, 0), y∗1 = (hλ∗, 0), · · · , y∗k−1 = ((k −
1)λ∗(k−1)h, 0), se tiene que la solución de (1.1.4) es yn = (nλ∗nh, 0) ya que
el vector (p∗k−1, . . . , p

∗
0, 0, . . . , 0) es autovector de A, donde y∗n = (p∗n, q

∗
n) para

n ∈ N, debido a que la multiplicidad geométrica de λ∗ como autovalor de Sp

es m ≥ 2.

Tenemos que
∥p∗n∥ = nh|λ∗|n(h) = tn.

que no tiende a 0, para tn ̸= 0, cuando h → 0. Esto contradice el hecho de
que el MLMP sea convergente.

Demos ahora una caracterización de convergencia de un MLMP, que pro-
baremos al final de esta sección.

Teorema 1.4. Un MLMP es convergente si y solo si los dos MLM que lo
componen son convergentes.

Observación 1.1. Puesto que los valores de arranque de (1.1.4) son obte-
nidos a partir de los de (1.1.2), se cumple la condición (1.2.1) de los valores
de arranque para la convergencia del MLMP (1.1.4) si y solo si se cumple
para los valores de arranque de (1.1.2) y las ecuaciones (1.1.2) se satisfacen
en la solución exacta salvo en términos que tiendan a 0 cuando h→ 0.

1.2.2. Consistencia

A veces comprobar de forma directa si un MLMP es convergente es una
tarea demasiado difícil. Nos preguntamos qué condiciones debe satisfacer un
MLMP para que sea convergente. Una de esas condiciones podría ser que sea
una representación lo suficientemente precisa del sistema diferencial (1.1.1).

Para medir la precisión del MLMP de k pasos en (1.1.1), estudiaremos el
valor del residuoRn+k, con n ∈ N, también conocido como error de truncación
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local, dado por

Rn+k =

(∑k
j=0 α

p
j p(tn+j)− h

∑k
j=0 β

p
j ṗ(tn+j)∑k

j=0 α
q
j q(tn+j)− h

∑k
j=0 β

q
j q̇(tn+j)

)
,

donde y(t) = (p(t), q(t)) es la solución de (1.1.1), con p ∈ C1([t0, T ],Rd) y
q ∈ C1([t0, T ],Rn−d).

Una primera idea para ver si el MLMP se adapta al sistema de ecuaciones
diferenciales (1.1.1) sería comprobar siRn+k → 0 cuando h→ 0. Sin embargo,
al calcular el límite vemos que

Rn+k →

(
p(tn)

∑k
j=0 α

p
j

q(tn)
∑k

j=0 α
q
j

)

y por tanto, la condición Rn+k → 0 solo pone una restricción en los coefi-
cientes αp

j y αq
j de los dos MLM que componen el MLMP. Esto hace que se

puedan tomar βp
j y βq

j arbitrarios en un MLMP con αp
j y αq

j cumpliendo la
restricción. Parece claro que esto puede no proporcionar una buena aproxi-
mación a (1.1.1). Es por ello que estudiaremos si Rn+k/h→ 0 cuando h→ 0
con nh fijo.

Diremos que un MLMP es consistente si para todo problema de valores
iniciales que satisface las hipótesis del teorema 1.4, se tiene que

ĺım
h→0

1

h
Rn+k = 0.

Al igual que en la convergencia, la consistencia solamente depende del méto-
do, luego es aplicable a cualquier problema de valores iniciales (1.1.1).

También nos interesa ver cómo de bien se adapta el MLMP a (1.1.1), es
decir, cómo de rápido converge Rn+k/h a 0 cuando h → 0. Diremos que un
MLMP tiene orden de consistencia r > 0 si Rn+k = O(hr+1).

Ahora demos una caracterización de consistencia para MLMP.

Lema 1.5. Un MLMP es consistente de orden r > 0 si y solo si los dos
MLM que lo componen son consistentes de orden r.
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Demostración. Un MLMP es consistente de orden r > 0, si y solo si para
cualquier problema de valores iniciales suficientemente regular se tiene que
el error de truncación local

L(p(t), q(t), h) =

[
ρp(E)p(t)
ρq(E)q(t)

]
− h

[
σp(E)ṗ(t)
σq(E)q̇(t)

]
(1.2.2)

es O(hr+1), donde E es el operador que avanza h unidades de tiempo y
(ρp, σp), (ρq, σq) son los polinomios característicos asociados a cada uno de
los MLM que componen el MLMP. Se tiene, por tanto, que existe C > 0
constante independiente de h tal que

∥L(p(t), q(t), h)∥Rn ≤ Chr+1,

para h suficientemente pequeño, donde ∥∥Rn es la norma euclidea en Rn. Por
definición de norma euclidia en Rn, se tiene que

máx(∥ρp(E)p(t)− hσp(E)ṗ(t)∥Rd , ∥ρq(E)q(t)− hσq(E)q̇(t)∥Rn−d) ≤ Chr+1.

Luego, los dos MLM son consistentes de orden r.

Ahora supongamos que los MLM que componen el MLMP son consis-
tentes de orden r. Existen Cp, Cq > 0 constantes independientes de h, tales
que

∥ρp(E)p(t)−hσp(E)ṗ(t)∥Rd ≤ hr+1Cp, ∥ρq(E)q(t)−hσq(E)q̇(t)∥Rn−d ≤ hr+1Cq,

para h suficientemente pequeño. De aquí se tiene que

∥L(p(t), q(t), h)∥Rn ≤ Cph
r+1 + Cqh

r+1 ≤ (Cp + Cq)h
r+1,

y por tanto el MLMP es consistente de orden r.

Observación 1.2. Usando el desarrollo de Taylor de p(t + jh), ṗ(t + jh),
q(t+ jh) y q̇(t+ jh) tenemos que

p(t+ jh) = p(t) + jhṗ(t) +
(jh)2

2!
p̈(t) + · · · ,

ṗ(t+ jh) = ṗ(t) + jhp̈(t) +
(jh)2

2!
p(??)(t) + · · · ,

q(t+ jh) = q(t) + jhq̇(t) +
(jh)2

2!
q̈(t) + · · · ,

q̇(t+ jh) = q̇(t) + jhq̈(t) +
(jh)2

2!
q(??)(t) + · · · . (1.2.3)
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Si sustituimos (1.2.3) en (1.2.2) tenemos

L(y(t);h) =

(
dp0p(t) + hdp1p

′(t) + · · ·+ hjdpjp
(j)(t) + · · ·

dq0q(t) + hdq1q
′(t) + · · ·+ hjdqjq

(j)(t) + · · ·

)
, (1.2.4)

donde dp0, d
q
0, · · · , d

p
j , d

q
j , · · · son los coeficientes que se obtienen de los desa-

rrollos de Taylor en (1.2.3).

A partir de (1.2.2) y (1.2.3) tenemos que un MLMP tiene orden de con-
sistencia r > 0, y no orden de consistencia r + 1, si y solo si

dp0 = dq0 = 0, · · · , dpr = dqr = 0, dqr+1 ̸= 0 o dpr+1 ̸= 0,
(1.2.5)

donde

dp0 =
k∑

j=0

αp
j = ρp(1),

dq0 =
k∑

j=0

αq
j = ρq(1),

dp1 =
k∑

j=0

(jαp
j − βp

j ) = ρ′p(1)− σp(1),

dq1 =
k∑

j=0

(jαq
j − βq

j ) = ρ′q(1)− σq(1),

...

dpj =
k∑

i=0

1

j!
ijαp

i −
1

(j − 1)!
βp
i , j = 2, 3, . . .

dqj =
k∑

i=0

1

j!
ikαq

i −
1

(j − 1)!
βq
i , j = 2, 3, . . .

Otra forma de expresar el error de truncación local es

L(y(t);h) =

σp(E)(∑J−1
l=r c

p
l h

l+1p(l+1)(t)
)

σq(E)
(∑J−1

l=r c
q
l h

l+1q(l+1)(t)
)+O(hJ+1), (1.2.6)
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donde cpl y cql son distintos de dpl y dql . Esta expresión nos será de gran utilidad
en el siguiente capítulo. Solo haremos la prueba para MLMP convergentes,
que son los que utilizaremos en el siguiente capítulo.

Consideremos un MLMP con polinomios característicos ρp, ρq, σp, σq, lue-
go necesariamente σp(1) ̸= 0 y σq(1) ̸= 0. Las ecuaciones de (1.2.6) las
podemos escribir de la siguiente forma

L(y(t);h) =

∑J−1
l=r c

p
l h

l+1
(∑k

j=0 β
p
j p

(l+1)(t+ jh)
)

∑J−1
l=r c

q
l h

l+1
(∑k

j=0 β
q
j q

(l+1)(t+ jh)
)+O(hJ+1).

Haciendo el desarrollo de Taylor de y(l+1)(t + nh), para l = r, . . . , J − 1 y
n = 1, . . . , k, de orden J−l−1 en torno a t, tenemos que la anterior ecuación
es equivalente a

J−1∑
l=r

cpl h
l+1

(
k∑

j=0

βp
j

(
p(l+1)(t) + jhp(l+2)(t) + · · ·+ (jh)J−l−1

(J − l − 1)!
p(J)(t)

))
,

J−1∑
l=r

cql h
l+1

(
k∑

j=0

βq
j

(
q(l+1)(t) + jhq(l+2)(t) + · · ·+ (jh)J−l−1

(J − l − 1)!
q(J)(t)

))
.

Reordenando las anteriores ecuaciones según la potencia de h e igualando los
coeficientes con los de (1.2.4), tenemos para cada l = r, . . . , J − 1.

dpl+1 = cpl σp(1) + cpl−1σ
′
p(1) +

l−r∑
i=2

cpl−iσp,i,

dql+1 = cql σq(1) + cql−1σ
′
q(1) +

l−r∑
i=2

cql−iσq,i,

(1.2.7)

donde

σp,i =
k∑

j=1

βp
j

ji

i!
,

σq,i =
k∑

j=1

βq
j

ji

i!
, i = 2, . . . , r.
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En (1.2.7) tenemos dos sistemas de J − r ecuaciones con J − r incógni-
tas cuyas matrices asociadas son matrices triangulares inferiores invertibles,
luego existe solución y es única.

A partir del lema 1.5 y teniendo en cuenta que un MLM con polinomios
característicos (ρ, σ) es consistente si y solo si

ρ(1) = 0, σ(1) = ρ′(1),

podemos dar otra caracterización de un MLMP consistente.

Teorema 1.6. Tomemos un MLMP con polinomios característicos ρp(x), σp(x)
y ρq(x), σq(x). Un MLMP es consistente si y sólo si

ρp(1) = 0, σp(1) = ρ′p(1),

σq(1) = 0, σq(1) = ρ′q(1).

Observación 1.3. Notemos que en el caso en el que kp < kq, da igual im-
poner la condición sobre (ρp, σp) y (ρq, σq) en (1.1.3) que sobre (ρ∗p, σ∗

p) y
(ρ∗q, σ∗

q) en (1.1.5). Por ello, el MLMP (1.1.2) es consistente si y solo si
(1.1.4) también lo es.

También, al igual que para MLM de k pasos, se cumple que si un MLMP
es convergente, entonces podemos garantizar su consistencia.

Teorema 1.7. Si un MLMP es convergente, entonces es consistente.

Demostración. Podemos realizar esta demostración con el MLMP (1.1.4) gra-
cias a la observación 1.3. Apliquemos este MLMP con valores de arranque
p0 = q0 = 1, . . . , pk−1 = qk−1 = 1 al siguiente problema de valores iniciales
particionado {

ṗ(t) = 0, p(0) = 1,

q̇(t) = 0, q(0) = 1,

cuya solución exacta es y(t) = (p(t), q(t)) = (1, 1). Sustituyendo f(p(t), q(t)) =
g(p(t), q(t)) = 0 en (1.1.4) tenemos

αp
kpn+k + αp

k−1pn+k−1 + · · ·+ αp
0pn = 0,

αq
kqn+k + αq

k−1qn+k−1 + · · ·+ αq
0qn = 0, (1.2.8)
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con n ≥ 0, donde αp
k, ..., α

p
0, α

q
k, ..., α

q
0 son los coeficientes de los dos polinomios

característicos ρp y ρq de los MLM que componen el MLMP.

Como dicho método es convergente se tiene que las sucesiones {phn
k+n}∞n=0

y {qhn
k+n}∞n=0 convergen a la solución y(tk) = (p(tk), q(tk)) = (1, 1), donde yhn

k+n

es la solución del MLMP (1.2.8) con longitud de paso hn = kh/(n+ k), con
h > 0.

Como (1.2.8) no depende de la longitud de paso, se tiene que

{phn
k+n}

∞
n=0 = {phk+n}∞n=0

y
{qhn

k+n}
∞
n=0 = {qhk+n}∞n=0.

Por tanto las sucesiones

{phk+n}∞n=0, {qhk+n}∞n=0

convergen a 1 cuando n → ∞. Haciendo n → ∞ en (1.2.8) se tiene que
ρp(1) = ρq(1) = 0.

Ahora probaremos que ρ′p(1) = σp(1) y ρ′q(1) = σq(1) pero notemos que
por el teorema 1.3 se tiene que 1 no puede ser raíz doble de ρp y ρq, luego
ρ′p(1) ̸= 1 y ρ′q(1) ̸= 1.

Apliquemos (1.1.4) con valores de arranque p0 = q0 = 0, . . . , pk−1 =
Cp(k − 1)h, qk−1 = Cq(k − 1)h, donde Cp = σp(1)/ρ

′
p(1) y Cq = σq(1)/ρ

′
q(1),

al siguiente problema de valores iniciales{
ṗ(t) = 1 p(0) = 0,

q̇(t) = 1 q(0) = 0,
(1.2.9)

cuya solución exacta es y(t) = (t, t) y donde h es la longitud de paso del
MLMP.

Por (1.2.9) y los valores de arranque que hemos tomado, tenemos que
(1.1.4) es

αp
kpk + αp

k−1Cp(k − 1)h+ · · ·+ αp
1Cph = hσp(1),

αq
kqk + αq

k−1Cq(k − 1)h+ · · ·+ αq
1Cqh = hσq(1),
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que podemos ponerlo como

αp
kpk = h

[
σp(1)− Cp

k−1∑
l=0

αp
l l

]
,

αkqk = h

[
σq(1)− Cq

k−1∑
l=0

αq
l l

]
.

Sumando y restando a las ecuaciones anteriores αp
kkhCp y αq

kkhCq res-
pectivamente se tiene que

αp
kpk = h

(
σp(1)− Cp

k∑
l=0

αp
l l + Cpα

p
kk
)
,

αq
kqk = h

(
σq(1)− Cq

k∑
l=0

αq
l l + Cqα

q
kk
)
.

Como
k∑

l=0

αp
l l = ρ′p(1)

y
k∑

l=0

αq
l l = ρ′q(1)

se tiene que αp
kpk = αp

khkCp y αq
kqk = αq

khkCq, luego

yk = (pk, qk) = (hkCp, hkCq).

Razonando por inducción se tiene que yn = (pn, qn) = (hnCp, hnCq), para
n ∈ N. Como el MLMP (1.1.4) es convergente, necesariamente

Cp = σp(1)/ρ
′
p(1) = 1 y Cq = σq(1)/ρ

′
q(1) = 1.
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1.2.3. Cero - estabilidad

Sabemos que si un MLMP es convergente entonces es consistente, pero
el recíproco no tiene por qué ser cierto. Puede ocurrir que el sistema en
diferencias (1.1.4) aplicado a un problema de valores iniciales (1.1.1) sufra
inestabilidad, es decir, que sea muy sensible a perturbaciones originadas en
(1.1.4) y en los valores de arranque. Esto impide que (1.1.4) pueda converger.
El MLMP perturbado sería entonces

k∑
j=0

αp
jpn+j = h

k∑
j=0

βp
j f (pn+j, qn+j) + hγpn+k,

k∑
j=0

αq
jqn+j = h

k∑
j=0

βq
j g (pn+j, qn+j) + hγqn+k,

con condiciones iniciales p∗µ = pµ + γpµ, q
∗
µ = qµ + γqµ perturbadas, para

µ = 0, . . . , k − 1.

Sean γpn, γ
q
n, n = 0, 1..., N y γp,∗n , γq,∗n , n = 0, 1..., N , dos perturbaciones

de un MLMP y sean

{yn, n = 0, . . . , N} y {y∗n, n = 0, . . . , N}

las dos soluciones de los sistemas en diferencias perturbados respectivamente.

Si para cada ϵ > 0 existe una constante real b > 0 y h0 > 0 tales que
para cada h ∈ [0, h0] se verifica que:

∥yn − y∗n∥ ≤ ϵ para 0 ≤ n ≤ N,

cuando
máx (∥γp,∗n − γpn∥, ∥γp,∗n − γpn∥) < b, 0 ≤ n ≤ N,

entonces decimos que el MLMP es cero-estable.

Comprobar la cero-estabilidad de un MLMP a partir de la definición suele
ser una tarea a veces complicada. Por lo tanto probaremos que la condición de
los autovalores sobre la matriz A (1.1.7), utilizada para reescribir un MLMP
como método de un solo paso, es equivalente a que dicho método sea cero-
estable.
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La condición de los autovalores de A junto con la consistencia de un
MLMP nos permitirá probar la convergencia de manera más asequible que
aplicando la definición literal de cero-estabilidad. Pero antes enunciaremos
un lema importante para demostrar este resultado.

Lema 1.8. Supongamos que un MLMP es 0-estable. Entonces existe una
norma vectorial tal que la matriz A del MLMP formulado como método de
un paso satisface

∥A⊗ I∥ ≤ 1

en la norma matricial subordinada.

La demostración de este lema es igual que la realizada en [8] para MLM.
Lo único que importa para esta demostración son las características de los
autovalores, que son iguales a la unión de los autovalores de las matrices de
[8] asociadas a ρp y ρq en la reconstrucción de un MLM como método de un
paso.

Ahora sí pasemos a la demostración del teorema que posteriormente nos
podrá garantizar que la cero-estabilidad y la consistencia son condiciones
necesarias y suficientes para que un MLMP sea convergente.

Teorema 1.9. Un MLMP de k pasos (1.1.4) es convergente si y solo si es
consistente y la matriz A que se utiliza para reescribir el MLMP como método
de un paso cumple la condición de los autovalores.

Demostración. Ya ha sido probado en el teorema 2.6 que si un MLMP es
convergente entonces es consistente. Tambien se probó en el teorema 1.3 que
si un MLMP es convergente entonces la matriz A cumple la condición de los
autovalores.

Veamos ahora la otra implicación. Supongamos que el MLMP (1.1.2) es
consistente y tal que la matriz de dicho método reescrito como método de
un paso cumple la condición de los autovalores. Consideremos un problema
de valores iniciales lo suficientemente regular. Es inmediato probar que la
función ϕ(Yi) satisface la condición de Lipschitz.

Consideremos los errores cometidos en los valores de arranque

p(ti) = pi + σp
i , q(ti) = qi + σq

i , i = 0, 1, . . . , k − 1.
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Sustituyamos en el MLMP los valores aproximados por la solución en (1.1.1),
teniendo en cuenta los errores de truncación local

k∑
l=0

αp
l p(tn+l) = h

k∑
l=0

βp
l f(p(tn+l), q(tn+l)) + σp

n+k,

k∑
l=0

αq
l q(tn+l) = h

k∑
l=0

βq
l g(p(tn+l), q(tn+l)) + σq

n+k. (1.2.10)

Restando a las ecuaciones (1.2.10) las ecuaciones de MLMP tenemos que

k∑
l=0

αp
l (p(tn+l)− pn+l) = h

k∑
l=0

βp
l

(
f(p(tn+l), q(tn+l))− f(pn+l, qn+l)

)
+ σp

n+k,

k∑
l=0

αq
l (q(tn+l)− qn+l) = h

k∑
l=0

βq
l

(
g(p(tn+l, q(tn+l))− g(pn+l, qn+l)

)
+ σq

n+k.

Consideremos el vector que contiene k errores de discretización global para
p y q. Más concretamente,

En =



p(tn+k−1)− pn+k−1
...

p(tn)− pn
q(tn+k−1)− qn+k−1

...
q(tn)− qn


y σn+k ∈ Rnk tal que sus d primeras coordenadas son σp

n+k/α
p
k y las coorde-

nadas que van de dk+1 a dk+n−d son σq
n+k/α

q
k. Las restantes coordenadas

son nulas.

Se tiene que

En+1 = (A⊗ I)En + h(ϕ(Y (tn))− ϕ(Yn)) + σn+k.

Denotamos por L a la constante de la condición de Lipschitz de ϕ.
Sabemos por el lema 1.8 que, para cierta norma, ∥A ⊗ I∥ ≤ 1 y además
∥(A⊗ I)n∥ ≤ ∥(A⊗ I)∥n ≤ 1. Entonces tenemos que

∥E1∥ ≤ ∥E0∥+ hL∥Y0 − Y0(t0)∥+ ∥σk∥ = ∥σk∥+ (1 + hL)∥E0∥.



CAPÍTULO 1. CONCEPTOS BÁSICOS SOBRE MÉTODOS LINEALES
MULTIPASO PARTICIONADOS 25

Para n = 2 tenemos

E2 = (A⊗ I)E1 + h
(
ϕ(Y (t1))− ϕ(Y1)

)
+ σk+1

= (A⊗ I)2E0 + h(A⊗ I)
(
ϕ(Y (t0))− ϕ(Y0)

)
+ (A⊗ I)σk

+h
(
ϕ(Y (t1)− ϕ(Y1))

)
+ σk+1, (1.2.11)

Acotando de nuevo con la norma del lema 1.8 tenemos que

∥E2∥ ≤ ∥E0∥+ hL∥E0∥+ hL∥E1∥+ ∥σk∥+ ∥σk+1∥
≤ (1 + hL)2∥E0∥+ (1 + hL)∥σk∥+ ∥σk+1∥. (1.2.12)

Razonando por inducción sobre n llegamos a que

∥En∥ ≤ (1 + hL)n∥E0∥+ (1 + hL)n−1∥σk∥+ · · ·

+(1 + hL)∥σn+k−2∥+ ∥σn+k−1∥.

Esto nos permite probar que

∥En∥ ≤ (1 + hL)n∥E0∥+ Chr+1[(1 + hL)n−1 + · · ·+ 1],

para cierta constante C y donde r es el orden de consistencia del MLMP.

Debido a la fórmula para sumas geométricas y a que (1+hL)n ≤ exp(nhL)
se tiene

∥En∥ ≤ ∥E0∥ exp(nhL) + Chr
exp(nhL)− 1

L
.

La convergencia del MLMP es ahora inmediata por esta desigualdad cuando
h→ 0. También se observa que como el método tiene orden de consistencia r
podemos garantizar que la convergencia es de orden r siempre que los errores
en los valores de arranque sean de orden r.

Demos ahora una caracterización de MLMP cero-estable cuya demostra-
ción es similar a la realizada en el teorema 1.9.

Teorema 1.10. Un MLMP es cero-estable si y solo si la matriz asociada
(1.1.7) cumple la condición de los autovalores.

Gracias a los teoremas 2.9 y 2.10 podemos garantizar el siguiente resul-
tado:
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Teorema 1.11. Un MLMP es convergente si y solo si es cero-estable y con-
sistente.

También podemos dar otra caracterización de MLMPs relacionada con
la cero-estabilidad de los dos MLM que lo componen.

Teorema 1.12. Un MLMP es cero-estable si y solo si los dos MLM que lo
componen son cero-estables.

Demostración. Recordemos que un MLM con polinomio característico ρ(x) =
αkx

k + · · ·+α0 puede escribirse como método de un solo paso de la siguiente
forma

Yk =


yk
yk−1

...
y1

 =


−αk−1

αk
· · · −α1

αk
−α0

αk

1 · · · 0 0
... . . . ...
0 · · · 1 0



yk−1

yk−2
...
y0

+ hϕ(Yk−1),

donde ϕ(Yk) es una combinación lineal de la función f del problema de valores
iniciales suficientemente regular que integra el MLM. Los MLM son cero-
estables si y solo si los autovalores de la matriz de la ecuación anterior son
de módulo ≤ 1 y los de módulo 1 son simples, que es equivalente a que el
MLM cumpla la condición de la raíz.

Consideremos el MLMP reescrito como método de un solo paso con ma-
triz A. Sabemos que A es una matriz por bloques, es decir,

A =

[
Sp 0
0 Sq

]
, (1.2.13)

donde Sp y Sq son las matrices que aparecen en (1.1.8) y (1.1.9). Por la
forma de A, los autovalores de A son los mismos que los de Sp y Sq, luego la
equivalencia del teorema es inmediata gracias al teorema 1.10.

Por el anterior teorema, el lema 2.5 y el teorema 1.11 se prueba de forma
inmediata el teorema 1.4.
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1.3. Simetría
Sea Ψh una función que define el MLMP. Al igual que los MLM, un

MLMP de k pasos es simétrico si y sólo si, siempre que

yn+k = Ψh(yn, yn+1 . . . , yn+k−1)

se tiene que

yn = Ψ−h(yn+k, yn+k−1, . . . , yn+1).

Recordemos que en la asignatura ’Integración Geométrica’ del máster de
Matemáticas se tenía que un MLM de k pasos convergente es simétrico si y
solo si los coeficientes del primer y segundo polinomio característico cumplen

αj = −αk−j, βj = βk−j.

Consideremos el MLMP (1.1.2) escrito como

(pk, qk) = ϕh(p0, . . . , pkp − 1, q0, . . . , qkq−1). (1.3.1)

Demostremos ahora una caracterización de un MLMP simétrico:

Lema 1.13. Un MLMP convergente es simétrico si y solo si los dos MLM
que lo componen son simétricos.

Demostración. Un MLMP de k pasos es simétrico siempre que

(pk, qk) = ϕh(p0, . . . , pkp−1, q0, . . . , qkq−1)

implique que

ϕ−h(pk, ..., pk−kp+1, qk, ..., qk−kq+1) = (p0, q0). (1.3.2)

Supongamos que cada uno de los MLM que componen el MLMP son simé-
tricos, entonces

αp
j = −αp

kp−j, βp
j = βp

kp−j,

αq
j = −αq

kq−j, βq
j = βq

kq−j. (1.3.3)
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donde estos coeficientes corresponden al método (1.1.2). También suponga-
mos sin pérdida de generalidad que kp ≤ k, siendo k = máx(kq, kp) = kq.
Tenemos que, si suponemos (1.3.1), que es equivalente a

kp∑
j=0

αp
jpj = h

kp∑
j=0

βp
j f(pj, qj),

kp∑
j=0

αp
jpj+1 = h

kp∑
j=0

βp
j f(pj+1, qj+1),

...
kp∑
j=0

αp
jpj+k−kp = h

kp∑
j=0

βp
j f(pj+k−kp , qj+k−kp),

kq∑
j=0

αq
jqj = h

kq∑
j=0

βq
j g(pj, qj), (1.3.4)

reordenando los sumandos de la siguiente manera

kp∑
j=0

αp
kp−jpkp−j = h

kp∑
j=0

βp
kp−jf(pkp−j, qkp−j),

kp∑
j=0

αp
kp−jpkp−j+1 = h

kp∑
j=0

βp
kp−jf(pkp−j+1, qkp−j+1),

...
kp∑
j=0

αp
kp−jpk−j = h

kp∑
j=0

βp
kp−jf(pk−j, qk−j),

kq∑
j=0

αq
k−jqk−j = h

kq∑
j=0

βq
kq−jg(pk−j, qk−j),
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y utilizando (1.3.3), tenemos que

kp∑
j=0

αp
jpkp−j = −h

kp∑
j=0

βp
j f(pkp−j, qkp−j),

kp∑
j=0

αp
jpkp−j+1 = −h

kp∑
j=0

βp
j f(pkp−j+1, qkp−j+1),

...
kp∑
j=0

αp
jpk−j = −h

kp∑
j=0

βp
j f(pk−j, qk−j),

kq∑
j=0

αq
jqk−j = −h

kq∑
j=0

βq
j g(pk−j, qk−j), (1.3.5)

Por lo tanto, tenemos la simetría del MLMP.

Supongamos ahora que el MLMP es simétrico. Por definición de simetría,
si se cumple (1.3.4), se cumple (1.3.5). Particularizando al sistema

ṗ = f(p),

q̇ = g(q),

y partiendo de p0, . . . , pkp−1, el hecho de que

kp∑
j=0

αp
jpj = h

kp∑
j=0

βp
j f(pj),

es equivalente a la primera ecuación de (1.3.4). Tomemos entonces pkp+1, . . . , pk,
de manera que se cumplen el resto de ecuaciones de (2.3.4).

Por la primera de las ecuaciones de (1.3.5), que en este caso se escribe
como

kp∑
j=0

αp
jpkp−j = −h

kp∑
j=0

βp
j f(pkp−j),

se tiene que cuando damos el paso −h desde pkp , . . . , p1, se llega a p0, por
tanto el primer MLM (ρp, σp) es simétrico.
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Razonando de manera análoga pero con menor dificultad, se justifica que
el MLM (ρq, σq) es simétrico.

Gracias al anterior lema y a que un MLM de k-pasos convergente con
polinomios característicos (ρ(x), σ(x)) es simétrico si y solo si

ρ(x) = −xkρ(1/x) y σ(x) = xkσ(1/x),

podemos dar otra caracterización de MLMP simétrico.

Lema 1.14. Un MLMP convergente es simétrico si y solo si los polinomios
característicos ρp(x), ρq(x), σp(x) y σq(x) en (1.1.3) cumplen que

ρp(x) = −xkpρp(1/x), ρq(x) = −xkqρq(1/x),
σp(x) = xkpσp(1/x), σq(x) = xkqσq(1/x).



Capítulo 2

Desarrollo asintótico del error
global

El objetivo de este capítulo será realizar un estudio de tipo cuantita-
tivo sobre el error de discretización global. En concreto nos interesará el
comportamiento del error para valores de h > 0 suficientemente pequeños,
limitándonos a estudiar expresiones del error de discretización global que
contienen potencias de h, para j < 2r, donde r > 0 es el orden del método.
Para ello, al igual que en los MLM, probaremos el desarrollo asintótico del
error para MLMP, cuya demostración está basada en la realizada en [1], pero
antes de probar dicho desarrollo, daremos una serie de conceptos importantes
y demostraremos una modificación del lema 5.6 de [9] para métodos lineales
multipaso no particionados. Para probar este lema necesitaremos probar este
otro, ya probado en [9].

Lema 2.1. Sea ρ(ξ) = αkξ
k+αk−1ξ

k−1+ · · ·+α0 un polinomio que satisface
la condición de cero-estabilidad, y sean γl (con l = 0, 1, 2, . . . ) coeficientes
tales que

1

ρ̂(ξ)
= γ0 + γ1ξ + γ2ξ

2 + . . . (2.0.1)

donde ρ̂(ξ) = αk + αk−1ξ + · · ·+ α0ξ
k. Entonces,

31
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Γ = sup{|γl| : l ∈ N} <∞ (2.0.2)

Demostración. Tenemos que ρ̂(ξ) = ξkρ(ξ−1) y por tanto las raíces de ρ̂ son
las inversas de las raíces de ρ. Como ρ cumple la condición de cero-estabilidad,
ρ no tiene raíces de módulo mayor que 1, luego ρ̂(ξ) no se anula dentro del
disco abierto B(0, 1) ⊂ C. Por tanto, 1/ρ̂(ξ) es holomorfa en |ξ| < 1.
Sabemos por resultados ilustrados en la asignatura "Variable Compleja" del
grado de Matemáticas que si tenemos un polinomio P (z) ∈ C[z] con raíces
z1, . . . , zm con multiplicidad l1, l2, . . . , lm, se tiene que existen coeficientes
b1,1, . . . , b1,l1 , b2,1, . . . , bm,1, . . . , bm,lm tales que:

1

P (z)
=

b1,1
(z − z1)

+
b1,2

(z − z1)2
+ · · ·+ b1,l1

(z − z1)l1
+ · · ·+ bm,1

(z − zm)

+
bm,2

(z − zm)2
+ · · ·+ bm,lm

(z − zm)lm
.

Las raíces de ρ(ξ) de módulo 1, z1, z2, . . . , zn son simples, porque ρ cumple
la condición de estabilidad. Por tanto existen constantes A1, . . . , An de forma
que la función

f(ξ) =
1

ρ̂(ξ)
−
(

A1

ξ − z1
+ · · ·+ An

ξ − zn

)
,

es holomorfa en B(0, 1) y por consiguiente está acotada en el mismo dis-
co. Usando las fórmulas de diferenciación de Cauchy, vistas también en la
asignatura "Variable Compleja", podemos concluir que los coeficientes del
desarrollo de Taylor de f en 0 están acotados. Como los coeficientes del de-
sarrollo de Taylor de Aµ/(ξ − zµ) también están acotados para µ = 0, . . . , n,
se cumple (2.0.2).

Observación 2.1. Vemos que a partir de este lema se obtiene la siguiente
igualdad:

αkγl + αk−1γl−1 + · · ·+ α0γl−k =

{
1, si l = 0

0, si l > 0
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donde γl son los coeficientes del anterior lema para l ≥ 0 y para l < 0, γl = 0.
Esto se debe a que si multiplicamos ambos lados de la ecuación (2.0.1) por
αk +αk−1ζ + · · ·+α0ζ

k, obtenemos por la derecha un polinomio con variable
ζ y por la izquierda 1. Basta igualar los coeficientes de ζj para obtener el
resultado, para j ∈ N.

El siguiente lema establece cómo crecen las soluciones de estas dos ecuacio-
nes en diferencias no homogéneas acopladas.

αp
kp
zm+kp + · · ·+ αp

0zm

= h

[
βpp
kp,m

zm+kp + · · ·+ βpp
0,mzm + βpq

kp,m
wm+kp + · · ·+ βpq

0,mwm

]
+ λpm,

αq
kq
wm+kq + · · ·+ αq

0wm

= h

[
βqp
kq ,m

zm+kq + · · ·+ βqp
0,mzm + βqq

kq ,m
wm+kq + · · ·+ βqq

0,mwm

]
+ λqm.

(2.0.3)

Lema 2.2. Sean ρp(ξ) = αp
kp
ξkp + · · ·+αp

0 y ρq(ξ) = αq
kq
ξkq + · · ·+αq

0 polino-
mios que satisfacen la condición de cero-estabilidad. Sean β∗

pp, β
∗
pq, β

∗
qp, β

∗
qq, βpp,

βpq, βqp, βqq, λp y λq constantes tales que para n = 0, 1, . . . , N

|βpp
kp,n

|+ · · ·+ |βpp
0,n| ≤ β∗,pp,

|βqp
kq ,n

|+ · · ·+ |βqp
0,n| ≤ β∗,qp,

|βpq
kp,n

|+ · · ·+ |βpq
0,n| ≤ β∗,pq,

|βqq
kq ,n

|+ · · ·+ |βqq
0,n| ≤ β∗,qq, (2.0.4)

|βpp
kp,n

| ≤ βpp, |βpq
kp,n| ≤ βpq,

|βqp
kq ,n

| ≤ βqp, |βqq
kq ,n

| ≤ βqq,

|λpn| ≤ λp, |λqn| ≤ λq, (2.0.5)

y sea, para βp = 2máx (βpp, βpq) y βq = 2máx (βqp, βqq) , h tal que

0 < h <
1

2
mı́n

(
|αp

kp
|

βp
,
|αq

kq
|

βq

)
. (2.0.6)
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Entonces, toda solución de (2.0.3) para la cual

|zn| ≤ zp, n = 0, 1, . . . , kp − 1 y |wn| ≤ zq, n = 0, 1, . . . , kq − 1, (2.0.7)

cumple

|zn| ≤ K∗enhL
∗
, |wn| ≤ K∗enhL

∗
, n = 0, 1, . . . , N, (2.0.8)

donde L∗ = Γ∗B∗, K∗ = Γ∗(NΛ + ZKA) y

Γ∗ = 2máx

(
Γp

1− h|αp
kp
|−1βp

,
Γq

1− h|αq
kq
|−1βq

)
,

B∗ = 2máx(β∗,pp, β∗,pq, β∗,qp, β∗,qq),

Λ = máx(λp, λq),

A = máx
(
|αp

kp
|+ · · ·+ |αp

0|, . . . , |α
q
kq
|+ · · ·+ |αq

0|
)
,

Z = máx(zp, zq),

k = máx(kp, kq). (2.0.9)

Demostración. Sean γpℓ y γq
ℓ′

los coeficientes que se obtienen del lema 3.1
para los polinomios ρp(ζ) y ρq(ζ) respectivamente. Para ℓ = 0, 1, . . . , n − kp
y ℓ′ = 0, 1, . . . , n − kq, vamos a ir multiplicando a las ecuaciones de (2.0.3)
por γpℓ y γqℓ′ respectivamente, donde m = n− kp − ℓ (resp. m = n− kq − ℓ′).
Sumando todas las ecuaciones obtenidas para cada ℓ (resp. ℓ′), tenemos a la
izquierda

Sp
n = (αp

kp
zn + · · ·+ αp

0zn−kp)γ
p
0 + (αp

kp
zn−1 + · · ·+ αp

0zn−kp−1)γ
p
1 + . . .

+(αp
kp
zkp + · · ·+ αp

0z0)γ
p
n−kp

, (2.0.10)
Sq
n = (αq

kq
wn + · · ·+ αq

0wn−kq)γ
q
0 + (αq

kq
wn−1 + · · ·+ αq

0wn−kq−1)γ
q
1 + . . .

+(αq
kq
wkq + · · ·+ αq

0w0)γ
q
n−kq

. (2.0.11)

Reordenando dichas sumas tenemos

Sp
n = αp

kp
γp0zn + (αp

kp
γp1 + αp

kp−1γ
p
0)zn−1 + · · ·+ αp

0γ
p
n−kp

z0,

Sq
n = αq

kq
γq0wn + (αq

kq
γq1 + αq

kq−1γ
q
0)wn−1 + · · ·+ αq

0γ
q
n−kq

w0.

Usando la igualdad (2.0.3), podemos simplificar estas expresiones a

Sp
n = zn + (αp

kp−1γ
p
n−kp

+ · · ·+ αp
0γ

p
n−2kp+1)zkp−1 + · · ·+ αp

0γ
p
n−kp

z0, (2.0.12)
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Sq
n = wn + (αq

kq−1γ
q
n−kq

+ · · ·+ αq
0γ

q
n−2kq+1)wkq−1 + · · ·+ αq

0γ
q
n−kq

w0. (2.0.13)

Haciendo ahora la suma del lado derecho de las ecuaciones de (2.0.3), mul-
tiplicadas por sus respectivos coeficientes γpℓ y γqℓ′ , por separado, tenemos
que:

Sp
n = h

[
βpp
kp,n−kp

γp0zn +
(
βpp
kp−1,n−kp

γp0 + βpp
kp,n−kp−1γ

p
1

)
zn−1 + . . .

+
(
βpp
0,n−kp

γp0 + · · ·+ βpp
kp,n−2kp

γpkp

)
zn−kp + · · ·+ βpp

0,0γ
p
n−kp

z0

+βpq
kp,n−kp

γp0wn +
(
βpq
kp−1,n−kp

γp0 + βpq
kp,n−kp−1γ

p
1

)
wn−1 + . . .

+
(
βpq
0,n−kp

γp0 + · · ·+ βpq
kp,n−2kp

γpkp

)
wn−kp + · · ·+ βpq

0,0γ
p
n−kp

w0

+λpn−kp,0
γp0 + λpn−kp−1,1γ

p
1 + · · ·+ λpn−kp

γpn−kp

]
, (2.0.14)

Sq
n = h

[
βqp
kq ,n−kq

γq0zn +
(
βqp
kq−1,n−kq

γq0 + βqp
kq ,n−kq−1γ

q
1

)
zn−1 + . . .

+
(
βqp
0,n−kq

γq0 + · · ·+ βqp
kq ,n−2kq

γqkq

)
zn−kq + · · ·+ βqp

0,0γ
q
n−kq

z0

+βqq
kq ,n−kq

γq0wn +
(
βqq
kq−1,n−kq

γq0 + βqq
kq ,n−kq−1γ

q
1

)
wn−1 + . . .

+
(
βqq
0,n−kq

γq0 + · · ·+ βqq
kq ,n−2kq

γqkq

)
wn−kq + · · ·+ βqq

0,0γ
q
n−kq ,n

w0

+λqn−kq
γq0 + λqn−kq−1γ

q
1 + · · ·+ λqn−kq

γqn−kq ,n

]
. (2.0.15)

Supongamos que |zn| ≥ |wn|. Igualando (2.0.14) y (3.0.10) y utilizando (2.0.9)
y las desigualdades (2.0.4) y (2.0.7) obtenemos

|zn| ≤ hβpp|(αp
kp
)−1||zn|+ hβpq|(αp

kp
)−1||zn|+ hΓpβ∗,pp

n−1∑
m=0

|zm|

+hΓqβ∗,pq
n−1∑
m=0

|wm|+NΓpλp + AΓpZkp. (2.0.16)
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Por definición de βp y βq tenemos

|zn| ≤ hβp|(αp
kp
)−1||zn|+ hΓpβ∗,pp

n−1∑
m=0

|zm| (2.0.17)

+hΓqβ∗,pq
n−1∑
m=0

|wm|+NΓpλp + AΓpZkp.

(En caso de que |zn| < |wn|, se razonaría de manera similar, igualando las
ecuaciones (2.0.1) y (2.0.15)). Entonces, despejando |zn| y utilizando (2.0.9)
y las desigualdades (2.0.4) y (2.0.7) tenemos

|zn| ≤
hL∗

2

n−1∑
m=0

(|zm|+ |wm|) +
K∗

2
. (2.0.18)

(La misma desigualdad tendríamos para |wn| si suponemos que |zn| < |wn|).
Por otro lado, AΓp ≥ 1 por (2.0.4) y Γ∗ ≥ 2Γp ya que

0 <
(
1− h|αp

kp
|−1βp

)
< 1

Esto implica que K∗ ≥ 2Z y, por tanto, tenemos por (2.0.5) para los valores
de arranque que:

|zm|+ |wm| ≤ K∗(1 + hL∗)m, m = 0, 1, . . . , k − 1.

Razonemos ahora por inducción para probar esta misma desigualdad para
todo n tal que k ≤ n ≤ N . Supongamos que la desigualdad es cierta para
m = 0, 1, . . . , n− 1. Utilizando (2.0.18) para |zn| y |wn|, tenemos que

|zn|+ |wn| ≤ hL∗K∗ (1 + hL∗)n − 1

hL∗ +K∗ (2.0.19)

= K∗(1 + hL∗)n (2.0.20)

Utilizando que 1 + hL∗ ≤ ehL
∗ , ya tenemos probado (2.0.8).

Tal y como esta definido en [1], un MLM cero-estable es fuertemente
estable cuando el primer polinomio característico ρ tiene al 1 como única
raíz de módulo unidad. En caso contrario, el MLM es débilmente estable.
Diremos que un MLMP es fuertemente estable cuando los dos MLM que lo
componen son fuertemente estables. Un MLMP es débilmente estable cuando
al menos uno de los dos MLM que lo componen es débilmente estable.
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2.1. Métodos fuertemente estables
Probemos primero el desarrollo asintótico del error global para MLMPs

fuertemente estables.

Teorema 2.3. Consideremos un MLMP fuertemente estable de orden r > 0
y de la forma (1.1.4), aplicado a (1.1.1), tal que sus valores de arranque
p0, . . . , pk−1, q0, . . . , qk−1 satisfacen

pi − p(ti) = O(hr),

qi − q(ti) = O(hr), para i = 0, . . . , k − 1. (2.1.1)

Entonces

pn = p(tn) +
2r−1∑
j=r

hjepj(tn) +O(h2r),

qn = q(tn) +
2r−1∑
j=r

hjeqj(tn) +O(h2r). (2.1.2)

donde tn = t0 + nh, pn, qn son las soluciones del método con longitud de
paso h, al dar el n−ésimo paso y epj , e

q
j , para j = r, . . . , 2r, son funciones

de clase C∞, que verifican las siguientes ecuaciones diferenciales ordinarias
respectivamente

˙(
epj(t)
eqj(t)

)
=

(
fp(p(t), q(t)) fq(p(t), q(t))
gq(p(t), q(t)) gp(p(t), q(t))

)(
epj(t)
eqj(t)

)
−
(
cpjp

(j+1)(t)
cqjq

(j+1)(t)

)
, (2.1.3)

donde las constantes cpj , c
q
j son las dadas en (1.2.6) y las funciones f y g son

las funciones del problema de valores iniciales particionado en el que estamos
aplicando nuestro MLMP. Además, la constante en los residuos de (2.1.2)
puede tomarse uniforme en intervalos compactos de la forma (t0 + ϵ, T ], con
ϵ > 0.

Demostración. (A) Sean ϵn y δn los siguientes residuos

ϵn = pn − p(tn)−
2r−1∑
j=r

hjepj(tn),

δn = qn − q(tn)−
2r−1∑
j=r

hjeqj(tn), (2.1.4)



38 2.1. MÉTODOS FUERTEMENTE ESTABLES

donde {epj} y {eqj}, j = r, . . . , 2r − 1, son funciones por determinar.

Como el MLMP considerado en el enunciado del teorema es de orden
r, y teniendo en cuenta el comentario hecho al final de la demostración del
teorema 1.9, se tiene que pn− p(tn) y qn− q(tn) son O(hr), luego por (2.1.4),
ϵn y δn también lo son. El objetivo de esta parte de la demostración es ver qué
condiciones deben de cumplir las funciones {epj} y {eqj}, j = r, . . . , 2r − 1,
para que ϵn y δn sean O(h2r) para tn = t0+nh fijo, y además la convergencia
sea uniforme en intervalos de tiempo compactos [ϵ+ t0, T ], con ϵ > 0.

Por (2.1.4) tenemos que

f(pn, qn) = f

(
p(tn) + ϵn +

2r−1∑
j=r

hjepj(tn), q(tn) + δn +
2r−1∑
j=r

hjeqj(tn)

)
,

g(pn, qn) = g

(
p(tn) + ϵn +

2r−1∑
j=r

hjepj(tn), q(tn) + δn +
2r−1∑
j=r

hjeqj(tn)

)
.

Haciendo el desarrollo de Taylor de orden 1 en las anteriores expresiones en
p(tn) y q(tn) respectivamente tenemos que

f(pn, qn) = f(p(tn), q(tn)) + fp(p(tn), q(tn))

(
ϵn +

2r−1∑
j=r

hjepj(tn)

)

+ fq(p(tn), q(tn))

(
δn +

2r−1∑
j=r

hjeqj(tn)

)
+O(h2r),

g(pn, qn) = g(p(tn), q(tn)) + gp(p(tn), q(tn))

(
ϵn +

2r−1∑
j=r

hjepj(tn)

)

+ gq(p(tn), q(tn))

(
δn +

2r−1∑
j=r

hjeqj(tn)

)
+O(h2r).

Sabiendo que pn y qn son soluciones del MLMP y teniendo en cuenta lo
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anterior, se tiene que

0 = ρp(E)pn − hσp(E)f(pn, qn)

= ρp(E)p(tn)− hσp(E)f(p(tn), q(tn))

+
2r−1∑
j=r

hj[ρp(E)e
p
j(tn)− hσp(E)fp(p(tn), q(tn))e

p
j(tn)

−hσp(E)fq(p(tn), q(tn))eqj(tn)] + ρp(E)ϵn

−hσp(E)(fp(p(tn), q(tn))ϵn + fq(p(tn), q(tn))δn +O(h∥ϵn∥2).

0 = ρq(E)qn − hσq(E)g(pn, qn)

= ρq(E)q(tn)− hσq(E)g(p(tn), q(tn))

+
2r−1∑
j=r

hj[ρq(E)e
q
j(tn)− hσq(E)gp(p(tn), q(tn))e

q
j(tn)

−hσq(E)gq(p(tn), q(tn))eqj(tn)] + ρq(E)ϵn

−hσq(E)(gp(p(tn), q(tn))ϵn + gq(p(tn), q(tn))δn +O(h∥ϵn∥2).

Como el error de truncación local, que aparece en el primer sumando del
último miembro de ambas expresiones, puede escribirse en la forma (1.2.6),
las ecuaciones anteriores se pueden escribir como

0 =
2r−1∑
j=0

hj[ρp(E)e
p
j(tn)− hσp(E)[fp(p(tn), q(tn))e

p
j(tn)

+fq(p(tn), q(tn))e
p
j(tn)− cpjp

(j+1)(tn)]

+ρp(E)ϵn − hσp(E)(fp(p(tn), q(tn))ϵn + fq(p(tn), q(tn))δn +O(h2r+1).

0 =
2r−1∑
j=0

hj[ρq(E)e
q
j(tn)− hσq(E)[gp(p(tn), q(tn))e

q
j(tn)

+gq(p(tn), q(tn))e
p
j(tn)− cqjq

(j+1)(tn)]

+ρq(E)δn − hσq(E)(gp(p(tn), q(tn))ϵn + gq(p(tn), q(tn))δn +O(h2r+1).

Puesto que el MLMP es de orden r,

ρp(E)e
p
j(tn)− hσp(E)ė

p
j(tn) = O(hr+1),

ρq(E)e
q
j(tn)− hσq(E)ė

q
j(tn) = O(hr+1).
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Por lo tanto, si se cumple (2.1.3), se tendrá que

ρp(E)ϵn − hσp(E)(fp(p(tn), q(tn))ϵn + fq(p(tn), q(tn))δn) = O(h2r+1)

ρq(E)δn − hσq(E)(gq(p(tn), q(tn))δn + gp(p(tn), q(tn))ϵn) = O(h2r+1)

y por consiguiente se podrá aplicar el lema 2.2 y garantizar que ϵn y δn son
O(h2r), siempre que

ϵν = O(h2r), ν = 0, 1, . . . , k − 1.

δν = O(h2r), ν = 0, 1, . . . , k − 1.

Por las condiciones impuestas sobre los valores de arranque en el enun-
ciado del teorema, tenemos que

pν = p(tν) +
2r−1∑
j=r

hjs(j)pν +O(h2r),

qν = q(tν) +
2r−1∑
j=r

hjs(j)qν +O(h2r), ν = 0, 1, . . . , k − 1, (2.1.5)

para ciertas constantes s(j)pν , s
(j)q
ν . Podemos escribir ϵν y δν como

ϵν =
2r−1∑
j=r

hj[s(j)pν − epj(tν)] +O(h2r),

δν =
2r−1∑
j=r

hj[s(j)qν − eqj(tν)] +O(h2r), ν = 0, 1, . . . , k − 1. (2.1.6)

Haciendo el desarrollo de Taylor de epj(tν) y eqj(tν) en t0 para j = r, . . . ,
2r − 1, puede observarse que ϵν y δν son O(h2r) si y solo si

s(j)pν =

j−r∑
l=0

νl

l!
e
p(l)
j−l(t0),

s(j)qν =

j−r∑
l=0

νl

l!
e
q(l)
j−l(t0), ν = 0, 1, . . . , k − 1, j = r, . . . , 2r − 1, (2.1.7)
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ya que de esta forma conseguiríamos que los corchetes que aparecen en (2.1.6)
se anularan.

Teniendo en cuenta (2.1.3), tendríamos en (2.1.5) un sistema de 2kr ecua-
ciones con 2r incógnitas epj(t0), e

q
j(t0) para cada j = r, . . . , 2r− 1. Esto signi-

fica que para k > 1 lo más probable es que no exista solución del sistema. Es
por ello que necesitamos introducir otros términos en el desarrollo asintótico
de orden O(h2r) para aumentar el número de variables y fijar los valores de
epj(t0) y eqj(t0) a partir de valores de arranque cualesquiera.

Supondremos a partir de ahora, para facilitar el desarrollo de la demos-
tración, que las raíces distintas de 1 de los polinomios característicos ρp y ρq
son simples. Además, las denotaremos como xi,p y xi.q para i = 2, . . . , k. Los
casos de raíces múltiples requieren cambios fáciles en la siguiente parte de la
demostración.

(B) Para justificar los términos que introduciremos en el desarrollo asin-
tótico, consideremos el siguiente problema de valores iniciales

ṗ = λ1p+ λ2q, p(t0) = p0,

q̇ = µ1p+ µ2q, q(t0) = q0.

Por comodidad nos restringiremos a considerar la primera potencia de h
que aparece en la expresión del desarrollo asintótico del error global. Debido
a que hay que introducir unos nuevos términos Pn y Qn en el desarrollo
asintótico del error, tenemos que los nuevos residuos son

ϵ̃n = pn − p(tn)− hrepr(tn)− Pn,

δ̃n = qn − q(tn)− hreqr(tn)−Qn. (2.1.8)

Por la parte (A) de la demostración tenemos que

ρp(E)(pn − p(tn)− hrepr(tn))− hσp(E)[λ1(pn − p(tn)− hrepr(tn))

+λ2(qn − q(tn)− hreqr(tn))] = O(hr+2),

ρq(E)(qn − q(tn)− hreqr(tn))− hσq(E)[µ2(qn − q(tn)− hreqr(tn))

+µ1(pn − p(tn)− hrepr(tn)) = O(hr+2),

(2.1.9)
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siempre que
˙(

epr(tn)
eqr(tn)

)
=

(
λ1 λ2
µ1 µ2

)(
epr(tn)
eqr(tn)

)
−
(
cprp

(r+1)(tn)
cqrq

(r+1)(tn)

)
.

Necesitamos imponer condiciones sobre Pn y Qn para conseguir que

ρp(E)ϵ̃n − hσp(E)(λ1ϵ̃n + λ2δ̃n) = O(hr+2),

ρq(E)ϵ̃n − hσq(E)(µ1ϵ̃n + µ2δ̃n) = O(hr+2), (2.1.10)

y así poder aplicar un razonamiento como en (A) para justificar que ϵ̃n y δ̃n
son O(hr+1) uniformemente en [t0, T ].

Escribamos

Pn = Ap
nh

r +Bp
nh

r+1 +O(hr+2),

Qn = Aq
nh

r +Bq
nh

r+1 +O(hr+2),

donde Ap
n, A

q
n, B

p
n y Bq

n sean funciones de n. Se tiene por (2.1.9) que

ρp(E)ϵ̃n − hσp(E)[λ1ϵ̃n + λ2δ̃n]

= −hrρp(E)Ap
n + hr+1

[
σp(E)[λ1A

p
n + λ2A

q
n]− ρp(E)B

p
n

]
+hr+2σp(E)[λ1B

p
n + λ2B

q
n] +O(hr+2),

ρq(E)δ̃n − hσp(E)[µ1ϵ̃n + µ2δ̃n]

= −hrρq(E)Ap
n + hr+1

[
σq(E)[µ1A

p
n + µ2A

q
n]− ρq(E)B

q
n

]
+hr+2σq(E)[µ1B

p
n + µ2B

q
n] +O(hr+2),

(2.1.11)

Necesitamos que los coeficientes asociados a las potencias hr y hr+1 de la
anterior expresión se anulen. Para las coeficientes en hr basta tomar

Ap
n =

k∑
i=2

apix
n
i,p,

Aq
n =

k∑
i=2

aqix
n
i,q,
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donde xi,p y xi,q son las raíces de ρp y ρq respectivamente y api , a
q
i coeficientes

cualesquiera que determinaremos posteriormente. Como necesitamos que los
coeficientes asociados a la potencia hr+1 de (2.1.11) también se anulen, basta
tomar

Bp
n =

k∑
i=2

bpi (n)x
n
i,p +

k∑
i=m+1

dpix
n
i,q,

Bq
n =

k∑
i=2

bqi (n)x
n
i,q +

k∑
i=m+1

dqix
n
i,p,

donde xi,q para i = m+ 1, . . . , k son las raíces de ρq(x) que no son raíces de
ρp(x) y xi,p para i = m + 1, . . . , k son las raíces de ρp(x) que no son raíces
de ρq(x), entendiendo que x1, . . . , xm son las raices comunes. Veremos cómo
deben ser las funciones bpi (n), b

q
i (n) para que tal cosa ocurra. Necesitamos que

0 =
m∑
i=2

xni,p[(λ1a
p
i + λ2a

q
i )

k∑
l=0

βp
l x

l
i,p −

k∑
l=0

αp
l x

l
i,pb

p
i (n+ l)]

+
k∑

i=m+1

xni,p

[
λ1a

p
i

k∑
l=0

βp
l x

l
i,p −

k∑
l=0

αp
l x

l
i,pb

p
i (n+ l)

]

+
k∑

i=m+1

xni,q[λ2a
q
i

k∑
l=0

βp
l x

l
i,q − dpi

k∑
l=0

αp
l x

l
i,q],

0 =
m∑
i=2

xni,q[(µ1a
p
i + µ2a

q
i )

k∑
l=0

βq
l x

l
i,q −

k∑
l=0

αq
l x

l
i,qb

q
i (n+ l)]

+
k∑

i=m+1

xni,q

[
µ2a

q
i

k∑
l=0

βq
l x

l
i,q −

k∑
l=0

αq
l x

l
i,qb

q
i (n+ l)

]

+
k∑

i=m+1

xni,p[µ1a
p
i

k∑
l=0

βq
l x

l
i,p − dqi

k∑
l=0

αq
l x

l
i,p]. (2.1.12)

De aquí podemos extraer ecuaciones en diferencias no homogéneas de
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coeficientes constantes

ρp,i,p(E)b
p
i (n) = (λ1a

p
i + λ2a

q
i )σp,i,p(1),

ρq,i,q(E)b
q
i (n) = (µ1a

p
i + µ2a

q
i )σq,i,q(1), i = 2, . . . ,m,

ρp,i,p(E)b
p
i (n) = λ1a

p
iσp,i,p(1),

ρq,i,q(E)b
q
i (n) = µ2a

q
iσq,i,q(1), i = m+ 1, . . . , k, (2.1.13)

donde

ρp,i,p(x) = ρp(xi,px) ρq,i,q(x) = ρq(xi,qx).

Tal y como se comenta en [12], existe una única solución con valores
de arranque dados y dicha solución estará generada por una solución par-
ticular y la solución general del homogéneo, que será combinación lineal de
rn1,i,p, . . . , r

n
k,i,p, r

n
1,i,q, . . . , r

n
k,i,q, donde r1,i,p, . . . , rk,i,p, r1,i,q, . . . , rk,i,q son las raí-

ces de los polinomios característicos ρp,i,p y ρq,i,q. Notemos que 1 es raíz simple
de ambos polinomios, por lo tanto ρ′p,i,p(1) ̸= 0 y ρ′q,i,q(1) ̸= 0. Veamos que
podemos encontrar soluciones de las ecuaciones en diferencias (2.1.13) que
sean polinomios de grado 1. Para ello, consideremos

bpi (n) = B̄p
i n, bqi (n) = B̄q

i n.

Notemos que (2.1.13) es equivalente a

ρ′p,i,p(1)B̄
p
i = (λ1a

p
i + λ2a

q
i )σp,i,p(1), i = 2, . . . ,m,

ρ′q,i,q(1)B̄
q
i = (µ1a

p
i + µ2a

q
i )σq,i,q(1),

ρ′p,i,p(1)B̄
p
i = λ1a

p
iσp,i,p(1),

ρ′q,i,q(1)B̄
q
i = µ2a

q
iσq,i,q(1), i = m+ 1, . . . , k, (2.1.14)

de donde despejando se obtienen B̄p
i y B̄q

i .

Para que los corchetes de los segundos sumatorios de las ecuaciones de
(2.1.12) también se anulen, necesitamos que

dpi = λ2a
q
i

σp(xi,q)

ρp(xi,q)
i = m+ 1, . . . , k,

dqi = µ1a
p
i

σq(xi,p)

ρq(xi,p)
i = m+ 1, . . . , k. (2.1.15)
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Los denominadores que aparecen en las fracciones son no nulos ya que xi,q y
xi,p son raíces no comunes de ambos polinomios.

Para aplicar el lema 2.2, necesitamos que

ϵ̃ν = O(hr+1),

δ̃ν = O(hr+1), ν = 0, 1, . . . , k − 1. (2.1.16)

Al igual que en (A), podemos escribir los valores de arranque de la siguiente
forma

pν = p(tν) + hrs(r),pν +O(hr+1),

qν = q(tν) + hrs(r),qν +O(hr+1).

Los residuos ϵ̃ν y δ̃ν pueden escribirse como

ϵ̃ν = hr(s(r),pν − epr(tν)−
k∑

i=2

xνi,pa
p
i ) +O(hr+1),

δ̃ν = hr(s(r),qν − eqr(tν)−
k∑

i=2

xνi,qa
q
i ) +O(hr+1).

Al igual que en (A), las condiciones necesarias para que ϵ̃ν y δ̃ν sean
O(hr+1) son

s(r),pν = epr(t0) +
k∑

i=2

apix
ν
i,p,

s(r),qν = eqr(t0) +
k∑

i=2

aqix
ν
i,q, ν = 0, . . . , k − 1. (2.1.17)

Considerando las incógnitas epr(t0), a
p
2, . . . , a

p
k, e

q
r(t0), a

q
2, . . . , a

q
k, tenemos

dos sistemas de k ecuaciones con k incógnitas, cuyas matrices asociadas son
de Vandermonde. Luego las ecuaciones (2.1.17) tienen solución única, con lo
que para cualesquiera valores de arranque, están determinados los valores de
epr(t0) y eqr(t0).

Como en las expresiones de Bp
n, B

q
n solo hemos considerado las raíces de

módulo menor que 1, tendremos que Bp
n → 0 y Bq

n → 0 más rápido que
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cualquier potencia de h cuando h→ 0 con nh = tn − t0 ≥ 0 fijo, esto es, Bp
n

y Bq
n son O(hJ) para cualquier J ∈ N. Como ocurre lo mismo para Ap

n, A
q
n

y n > 0, los terminos derechos de (2.1.8), es decir, Pn y Qn, serán O(hr+2)
uniformemente en intervalos compactos [t0 + ϵ, T ], con ϵ > 0. De aquí,

pn = p(tn) + hrepr(tn) +O(hr+1),

qn = q(tn) + hreqr(tn) +O(hr+1),

que corresponde al enunciado del teorema si truncamos en O(hr+1).

(C) Ahora introduzcamos nuevos términos al desarrollo asintótico del
error razonando como en (B) pero para problemas de valores iniciales gene-
rales hasta términos que sean O(h2r).

Para ello consideremos los siguientes residuos:

˜̃ϵn = pn − p(tn)−
2r−1∑
k=1

hjepj(tn)−
2r∑
j=r

hjwj(n),

˜̃δn = qn − q(tn)−
2r−1∑
j=1

hjeqj(tn)−
2r∑
j=r

hjvj(n),

donde epj , e
q
j son las funciones del enunciado del teorema que cumplen la

ecuación diferencial (2.1.3) y wj, vj funciones en n tales que:

wj(n) =
k∑

i=2

xni,pw
pp
ij (n) +

k∑
j=m+1

xni,qw
pq
ij (n),

vj(n) =
k∑

i=2

xni,qw
qq
ij (n) +

k∑
j=m+1

xni,pw
qp
ij (n),

siendo wpp
ij (n), w

pq
ij (n), w

qp
ij (n), w

qq
ij (n) polinomios en n. Veamos qué condicio-

nes deben cumplir estos polinomios para que ˜̃ϵn,
˜̃δn sean O(h2

r
) en intervalos

de tiempo compactos.
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Razonando como se hizo en (A) para los residuos ϵn, δn, se tiene que

(ρp(E)− hσp(E)fp(p(tn), q(tn)))

[ k∑
i=2

2r∑
j=r

hjxni,pw
pp
ij (n)

+
k∑

i=m+1

2r∑
j=r

hjxni,qw
pq
ij (n) + ˜̃ϵn

]

−hσp(E)fq(p(tn), q(tn))
[ k∑

i=2

2r∑
j=r

hjxni,qw
qq
ij (n)

+
k∑

i=m+1

2r∑
j=r

hjxni,pw
qp
ij (n) +

˜̃δn

]
= O(h2r+1),

(ρq(E)− hσq(E)gq(p(tn), q(tn)))

[ k∑
i=2

2r∑
j=r

hjxni,qw
qq
ij (n)

+
k∑

i=m+1

2r∑
j=r

hjxni,pw
qp
ij (n) +

˜̃δn

]

−hσq(E)gp(p(tn), q(tn))
[ k∑

i=2

2r∑
j=r

hjxni,pw
pp
ij (n)

+
k∑

i=m+1

2r∑
j=r

hjxni,qw
pq
ij (n) + ˜̃ϵn

]
= O(h2r+1),

donde los residuos están uniformemente acotados en intervalos de tiempo
compactos. Por tanto, para conseguir que

ρp(E)˜̃ϵn − hσp(E)[fp(p(tn), q(tn))˜̃ϵn + fq(p(tn), q(tn))
˜̃δn] = O(h2r+1),

ρq(E)
˜̃δn − hσq(E)[gp(p(tn), q(tn))˜̃ϵn + gq(p(tn), q(tn))

˜̃δn] = O(h2r+1),

y poder aplicar el lema 2.2, necesitamos que
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2r∑
j=r

hj
[ k∑

i=2

xni,p

[ k∑
l=0

αp
l x

l
i,pw

pp
ij (n+ l)− h

k∑
l=0

βp
l x

l
i,pfp(p(tn+l), q(tn+l))w

pp
ij (n+ l)

]

+
k∑

i=m+1

xni,q

[ k∑
l=0

αp
l x

l
i,qw

pq
ij (n+ l)− h

k∑
l=0

βp
l x

l
i,qfp(p(tn+l), q(tn+l))w

pq
ij (n+ l)

]

−
k∑

i=2

xni,q

[
h

k∑
l=0

βp
l x

l
i,qfq(p(tn+l), q(tn+l))w

qq
ij (n+ l)

]

−
k∑

i=m+1

xni,p

[
h

k∑
l=0

βp
l x

l
i,pfq(p(tn+l), q(tn+l))w

qp
ij (n+ l)

]]
= O(h2r+1).

2r∑
j=r

hj
[ k∑

i=2

xni,q

[ k∑
l=0

αq
l x

l
i,qw

qq
ij (n+ l)− h

k∑
l=0

βq
l x

l
i,qgq(p(tn+l), q(tn+l))w

qq
ij (n+ l)

]

+
k∑

i=m+1

xni,p

[ k∑
l=0

αq
l x

l
i,pw

qp
ij (n+ l)− h

k∑
l=0

βq
l x

l
i,pgq(p(tn+l), q(tn+l))w

qp
ij (n+ l)

]

−
k∑

i=2

xni,p

[
h

k∑
l=0

βq
l x

l
i,pgpp(tn+l), q(tn+l))w

pp
ij (n+ l)

]

−
k∑

i=m+1

xni,q

[
h

k∑
l=0

βq
l x

l
i,qgp(p(tn+l), q(tn+l))w

pq
ij (n+ l)

]]
= O(h2r+1).

Haciendo el desarrollo de Taylor de las funciones fp, fq, gp y gq en po-
tencias de (n + l)h alrededor de t0 y reordenando las sumas anteriores en
potencias de h, necesitamos que

2r∑
j=r

hj
[ k∑

i=2

xni,p

[ k∑
l=0

αp
l x

l
i,pw

pp
ij (n+ l)−W ppp

ij (n)−W pqq
ij (n)

]

+
k∑

i=m+1

xni,q

[ k∑
l=0

αp
l x

l
i,qw

pq
ij (n+ l)−W ppq

ij (n)−W pqp
ij (n)

]]
= O(h2r+1),
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2r∑
j=r

hj
[ k∑

i=2

xni,q

[ k∑
l=0

αq
l x

l
i,qw

qq
ij (n+ l)−W qqq

ij (n)−W qpp
ij (n)

]

+
k∑

i=m+1

xni,p

[ k∑
l=0

αq
l xi,qw

qp
ij (n+ l)−W qqp

ij (n)−W qpq
ij (n)

]]
= O(h2r+1),

(2.1.18)

donde W ppp
ij ,W pqq

ij ,W ppq
ij ,W pqp

ij ,W qqq
ij ,W qpp

ij ,W qqp
ij ,W qpq

ij son polinomios en n
que dependen de las derivadas de p(t) y q(t) en t0 y de las derivadas de
f(p(t), q(t)) y g(p(t), q(t)) en p(t0) y q(t0), y también de los valores de
wpp

ki (n), w
pq
ki (n), w

qq
ki (n), w

qp
ki (n), para k < j. Por tanto, se tienen que cumplir

las ecuaciones en diferencias de los corchetes más interiores en (2.1.18).

Nótese que W ppp
ir (n) = W pqq

ir (n) = W qqq
ir (n) = W qpp

ir (n) = W ppq
ir (n) =

W pqp
ir (n) = W qqp

ir (n) = W qpq
ir (n) = 0, luego para que wpp

ir , w
qq
ir sean soluciones

de las anteriores ecuaciones en diferencias, pueden ser constantes ya que 1
es raíz de ρp y ρq, mientras que wpq

ir y wqp
ir deben anularse. Por otra parte,

W ppp
i,r+1(n),W

pqq
i,r+1(n),W

qqq
i,r+1(n),W

qpp
i,r+1(n), son constantes que no dependen de

n y W ppq
i,r+1(n),W

pqp
i,r+1(n),W

qqp
i,r+1(n),W

qpq
i,r+1(n) son nulos, luego por lo visto en

la parte (B) de la demostración, wpp
i,r+1, w

qq
i,r+1 pueden ser polinomios de grado

1 y wpq
i,r+1, w

qp
i,r+1 pueden ser constantes para ser soluciones de las ecuaciones

en diferencias (2.1.18) que resultan de anular los corchetes interiores en las
dos ecuaciones. Razonando de manera inductiva, wpp

ij , w
qq
ij pueden tomarse

como polinomios en n de grado j − r y wpq
ij , w

qp
ij como polinomios de grado

j − r − 1.

Para poder aplicar el lema 2.2 necesitamos que

˜̃ϵν = O(h2r),
˜̃δν = O(h2r), (2.1.19)

para ν = 0, . . . , k − 1. Ya hemos visto que los residuos pueden escribirse de
esta forma

˜̃ϵν =
2r−1∑
j=r

hj
[
s(j),pν − epj(tν)−

k∑
i=2

xνi,pw
pp
ij (ν)−

k∑
i=m+1

xνi,qw
pq
ij (ν)

]
,

˜̃δν =
2r−1∑
j=r

hj
[
s(j),qν − eqj(tν)−

k∑
i=2

xνi,qw
qq
ij (ν)−

k∑
i=m+1

xνi,pw
qp
ij (ν)

]
,
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para ν = 0, . . . k − 1.

Al igual que en (A) y (B), una condición necesaria para que se cumpla
(2.1.19) es

epj(t0) +
k∑

i=2

xνi,pw
pp
ij (0) = s(j),pν −

j−r∑
l=1

νl

l!
e
p(l)
j−l(t0)−

k∑
i=2

xνi,p
(
wpp

ij (ν)− wpp
ij (0)

)
.

−
k∑

i=m+1

xνi,qw
pq
ij (ν).

eqj(t0) +
k∑

i=2

xνi,qw
qq
ij (0) = s(j),qν −

j−r∑
l=1

νl

l!
e
q(l)
j−l(t0)−

k∑
i=2

xνi,q
(
wqq

ij (ν)− wqq
ij (0)

)
.

−
k∑

i=m+1

xνi,pw
qp
ij (ν).

Considerando como incógnitas epj(t0), e
q
j(t0), w

pp
ij (0), w

qq
ij (0), para i = 2, . . . , k,

ya que el resto de coeficientes de los polinomios wpp
ij , w

qq
ij se determinan re-

solviendo las ecuaciones en diferencias correspondientes a los corchetes de
las dos ecuaciones de (2.1.18), obtenemos para cada j = r, . . . 2r − 1 dos
sistemas de k ecuaciones con k incógnitas, donde la matriz asociada es de
Vandermonde.

Por tanto, aplicando el lema 2.2, se tiene que se cumple (2.1.19). Teniendo
en cuanta las definiciones de los residuos,

pn = p(tn) +
2r−1∑
j=r

hjepj(tn) +
2r∑
j=r

hj
[ k∑

i=2

xni,pw
pp
ij (n) +

k∑
j=m+1

xni,qw
pq
ij (n)

]
+O(h2r),

qn = q(tn) +
2r−1∑
j=r

hjeqj(tn) +
2r∑
j=r

hj
[ k∑

i=2

xni,qw
qq
ij (n) +

k∑
j=m+1

xni,pw
qp
ij (n)

]
+O(h2r),

Para cada tn > t0 fijo, x
tn−t0

h
i,p wpp

ij (
tn−t0

h
), x

tn−t0
h

i,p wpq
ij (

tn−t0
h

), x
tn−t0

h
i,q wqq

ij (
tn−t0

h
)

y x
tn−t0

h
i,q wqp

ij (
tn−t0

h
) convergen hacia 0 más rápido que cualquier potencia de
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h, ya que |xi,p|, |xi,q| < 1, para i = 2, . . . , k. Además dicha convergencia es
uniforme en intervalos de tiempo compactos que no contengan a t0. Por lo
tanto se tiene que

pn = p(tn) +
2r−1∑
j=r

hjepj(tn) +O(h2r),

qn = q(tn) +
2r−1∑
j=r

hjeqj(tn) +O(h2r),

uniformemente en intervalos de tiempo compactos de la forma [t0 + ϵ, T ],
donde ϵ > 0, y donde las funciones epj , e

q
j satisfacen (2.1.3).

2.2. Métodos débilmente estables
En esta sección permitiremos que los primeros polinomios característicos

ρp, ρq tengan raíces de módulo uno distintas de la unidad.

Consideraremos además, aparte de métodos convergentes de orden r, mé-
todos irreducibles, es decir, métodos donde los pares (ρp, σp) y (ρq, σq) sean
irreducibles. Esto significa que ρp y σp no tenga raíces comunes, ni tampo-
co ρq y σq. En el caso de que algún par fuera reducible, consideraríamos el
par irreducible asociado simplificando factores comunes. (La única diferencia
estaría en que el rango de valores de arranque posibles sería menor).

En cualquier caso, consideremos entonces métodos donde el número de
pasos de cada componente del MLMP puede ser diferente (kp, kq), tal y como
se introdujo en (1.1.2).

Denotaremos en esta sección por {xi}mi=1 las raíces comunes de módulo
uno de ρp y ρq (con x1 = 1). También denotaremos por xi,p (i = m+1, . . . , k′p)
las raíces unitarias de ρp que no son raíces de ρq y por xi,q (i = m+1, . . . , k′q)
las raíces unitarias de ρq que no son raíces de ρp. Nótese que todas estas
raíces son simples debido a la supuesta cero-estabilidad de ambos métodos.

Usaremos la notación

ρα,i(x) = ρα(xix), ρα,i,β(x) = ρα(xi,βx), α, β ∈ {p, q}, (2.2.1)
σα,i(x) = σα(xix), σα,i,β(x) = σα(xi,βx), (2.2.2)
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y definimos

λp,i =
σp(xi)

xiρ′p(xi)
, λq,i =

σq(xi)

xiρ′q(xi)
. (2.2.3)

Dado que los métodos (ρα,i, σα,i/λα,i), α = p, q, son consistentes, asu-
mimos que los errores de truncación local asociados pueden escribirse como
(1.2.6)

ρp,i(E)p(tn)−
h

λp,i
σp,i(E)ṗ(tn) =

1

λp,i
σp,i(E)

(
r−1∑
j=1

c
(i)
j,ph

j+1p(j+1)(tn)

)
+O(hr+1),

ρq,i(E)q(tn)−
h

λq,i
σq,i(E)q̇(tn) =

1

λq,i
σq,i(E)

(
r−1∑
j=1

c
(i)
j,qh

j+1q(j+1)(tn)

)
+O(hr+1). (2.2.4)

Estudiemos ahora el desarrollo asintótico del error de discretización glo-
bal para MLMP débilmente estables. Se tiene el siguiente resultado:

Teorema 2.4. Consideremos un MLMP debilmente estable de orden r > 0
y de la forma (1.1.2) aplicado a (1.1.1), tal que sus valores de arranque
p0, . . . , pkp−1, q0, . . . , qkq−1 satisfacen

pi − p(ti) = O(hr), i = 0, 1, . . . , kp − 1,

qi − q(ti) = O(hr), i = 0, 1, . . . , kq − 1.

Entonces, existen funciones suaves ej,i,α, ej,i,α,β, α, β = p, q, tales que, cuando
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h→ 0,

pn − p(tn) =
2r−1∑
j=r

hj[
m∑
i=1

xni ej,i,p(tn) +

k′p∑
i=m+1

xni,pej,i,pp(tn)

+

k′q∑
i=m+1

xni,qej,i,pq(tn)] +O(h2r),

qn − q(tn) =
2r−1∑
j=r

hj[
m∑
i=1

xni ej,i,q(tn) +

k′p∑
i=m+1

xni,pej,i,qp(tn)

+

k′q∑
i=m+1

xni,qej,i,qq(tn)] +O(h2r). (2.2.5)

para n > 0, donde la constante en el residuo puede cogerse uniforme en
intervalos compactos de la forma [t0 + ϵ, T ], con ϵ > 0.

Además, las funciones ej,1,α, α = p, q, j = r, . . . , 2r − 1, satisfacen

˙(
ej,1,p(t)
ej,1,q(t)

)
=

(
fp(p(t), q(t)) fq(p(t), q(t))
gp(p(t), q(t)) gq(p(t), q(t))

)(
ej,1,p(t)
ej,1,q(t)

)
−
(
cpjp

(j+1)(t)
cqjq

(j+1)(t)

)
,

(2.2.6)
donde cpj , c

q
j son las constantes en (1.2.6) y las funciones ej,i,α, α = p, q,

i = 2, . . . ,m, j = r, . . . , 2r − 1, son soluciones de
˙(

ej,i,p(t)
ej,i,q(t)

)
=

(
λp,ifp λp,ifq
λq,igp λq,igq

)(
ej,i,p(t)
ej,i,q(t)

)
+

(
bj,i,p(t)
bj,i,q(t)

)
, (2.2.7)

siendo

bj,i,p(t) = −
j−r∑
l=1

c
(i)
l,pe

(l+1)
j−l,i,p(t),

bj,i,q(t) = −
j−r∑
l=1

c
(i)
l,qe

(l+1)
j−l,i,q(t).

Por otro lado, las funciones ej,i,αβ, con α, β ∈ {p, q}, i = m + 1, . . . , k′β,
j = r, . . . , 2r − 1, se determinan de forma recursiva a partir de ciertos sis-
temas diferenciales. Más concretamente, para j = r, r + 1, r + 2, se cumple
que
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er,i,pq(t) = er,i,qp(t) = 0, (2.2.8)

ėr,i,pp(t) = λp,i,pfp(p(t), q(t))er,i,pp(t), λp,i,p =
σp(xi,p)

xi,pρ′p(xi,p)
, (2.2.9)

ėr,i,qq(t) = λq,i,qgq(p(t), q(t))er,i,qq(t), λq,i,q =
σq(xi,q)

xi,qρ′q(xi,q)
, (2.2.10)

er+1,i,pq(t) =
σp(xi,q)

ρp(xi,q)
fq(p(t), q(t))er,i,qq(t), (2.2.11)

er+1,i,qp(t) =
σq(xi,p)

ρq(xi,p)
gp(p(t), q(t))er,i,pp(t), (2.2.12)

ėr+1,i,pp(t) = λp,i,pfp(p(t), q(t))er+1,i,pp(t) + br+1,i,pp(t), (2.2.13)
ėr+1,i,qq(t) = λq,i,qgq(p(t), q(t))er+1,i,qq(t) + br+1,i,qq(t), (2.2.14)

donde, omitiendo el argumento t por simplicidad de notación,

br+1,i,pp = λp,i,p
σq(xi,p)

ρq(xi,p)
fq(p, q)gp(p, q)er,i,pp

− 1

2

[
xi,p

ρ′′p(xi,p)

ρ′p(xi,p)
+ 1

]
λp,i,p

d

dt
[fp(p, q)er,i,pp]

+
σ′
p(xi,p)

ρ′p(xi,p)

d

dt
[fp(p, q)er,i,pp],

br+1,i,qq = λq,i,q
σp(xi,q)

ρp(xi,q)
gp(p, q)fq(p, q)er,i,qq

− 1

2

[
xi,q

ρ′′q(xi,q)

ρ′q(xi,q)
+ 1

]
λq,i,q

d

dt
[gq(p, q)er,i,qq]

+
σ′
q(xi,q)

ρ′q(xi,q)

d

dt
[gq(p, q)er,i,qq],
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y

er+2,i,pq =
xi,q

ρp(xi,q)

[
σ′
p(xi,q)−

ρ′p(xi,q)σp(xi,q)

ρp(xi,q)

]
d

dt
[fq(p, q)er,i,qq]

+
σp(xi,q)

ρp(xi,q)
fq(p, q)

[
σp(xi,q)

ρp(xi,q)
fp(p, q)er,i,qq + er+1,i,qq

]
, (2.2.15)

er+2,i,qp =
xi,p

ρq(xi,p)

[
σ′
q(xi,p)−

ρ′q(xi,p)σq(xi,p)

ρq(xi,p)

]
d

dt
[gp(p, q)er,i,pp]

+
σq(xi,p)

ρq(xi,p)
gp(p, q)

[
σq(xi,p)

ρq(xi,p)
gq(p, q)er,i,pp + er+1,i,pp

]
. (2.2.16)

ėr+2,i,pp = λp,i,pfp(p, q)er+2,i,pp + br+2,i,pp, (2.2.17)
ėr+2,i,qq = λq,i,qgq(p, q)er+2,i,qq + br+2,i,qq, (2.2.18)

con

br+2,i,pp = λp,i,pfp(p, q)er+2,i,qp +
1

6

[
3[xi,pσ

′′
p(xi,p) + σ′

p(xi,p)− xi,pρ
′′
p(xi,p)]

ρ′p(xi,p)

− x2i,p
ρ′′′p (xi,p)

ρ′p(xi,p)
− 1

]
d2

dt2
[fp(p, q)er,i,pp]

+

(
σ′
p(xi,p)

ρ′p(xi,p)
− λp,i,p

2

[
xi,p

ρ′′p(xi,p)

ρ′p(xi,p)
+ 1

])
d

dt
[fp(p, q)er+1,i,pp]

+
σ′
p(xi,p)

ρ′p(xi,p)

d

dt
[fq(p, q)er+1,i,qp]−

λp,i,p
2

[
xi,p

ρ′′p(xi,p)

ρ′p(xi,p)
+ 1

]
ḃr+1,i,pp,

br+2,i,qq = λq,i,qgp(p, q)er+2,i,pq +
1

6

[
3[xi,qσ

′′
q (xi,q) + σ′

q(xi,q)− xi,qρ
′′
q(xi,q)]

ρ′q(xi,q)

− x2i,q
ρ′′′q (xi,q)

ρ′q(xi,q)
− 1

]
d2

dt2
[gq(p, q)er,i,qq]

+

(
σ′
q(xi,q)

ρ′q(xi,q)
− λq,i,q

2

[
xi,q

ρ′′q(xi,q)

ρ′q(xi,q)
+ 1

])
d

dt
[gq(p, q)er+1,i,qq]

+
σ′
q(xi,q)

ρ′q(xi,q)

d

dt
[gp(p, q)er+1,i,pq]−

λq,i,q
2

[
xi,q

ρ′′q(xi,q)

ρ′q(xi,q)
+ 1

]
ḃr+1,i,qq.
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Las condiciones iniciales de todos los sistemas (2.2.6),(2.2.7),(2.2.9),
(2.2.10),(2.2.13),(2.2.14),(2.2.17) y (2.2.18) están determinadas por el pro-
cedimiento inicial. Además, cuando

pν − p(tν) = O(hr+1), ν = 0, 1, . . . , kp − 1,

qν − q(tν) = O(hr+1), ν = 0, 1, . . . , kq − 1, (2.2.19)

se tiene que

er,i,pp(t0) = er,i,qq(t0) = 0.

Por lo tanto, en este caso

er,i,pp(t) = er,i,qq(t) = er+1,i,pq(t) = er+1,i,qp(t) = br+1,i,pp(t) = br+1,i,qq(t) = 0.

Sin embargo, valores de arranque más precisos no conducen a la anulación
de los valores iniciales de los coeficientes asociados a potencias más altas de
h, por lo que no se pueden obtener más simplificaciones.

Demostración. (A) Veamos ahora que no podemos considerar el mismo desa-
rrollo asintótico del error global del teorema 2.3 para MLMP débilmente esta-
bles y por tanto necesitamos introducir nuevos términos xni ej,i,p(tn), xni ej,i,q(tn),
para i = 2, . . . ,m, xni,pej,i,pp(tn), x

n
i,pej,i,qp(tn), para i = m+ 1, . . . , k′p y

xni,qej,i,pq(tn), x
n
i,qej,i,qq(tn), para i = m+ 1, . . . , k′q donde ej,i,p(tn), ej,i,q(tn)

, ej,i,pp(tn), ej,i,qp(tn), ej,i,pq(tn), ej,i,qq(tn) cumplen las condiciones impuestas en
el enunciado del teorema. Apliquemos el MLMP al siguiente problema de va-
lores iniciales particionado

ṗ = λ1p+ λ2q, p(t0) = p0,

q̇ = µ1p+ µ2q, q(t0) = q0. (2.2.20)

Aplicando el mismo razonamiento que en la parte (B) de la demostración
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del teorema 2.3, se tiene que

pn = p(tn) + hrer,1,p(tn) + hr

(
kp∑
i=2

apix
n
i,p

)

+hr+1

(
m∑
i=2

bpi (n)x
n
i +

kp∑
i=m+1

bpi (n)x
n
i,p +

kq∑
i=m+1

dpix
n
i,q

)
+O(hr+1),

qn = q(tn) + hrer,1,q(tn) + hr

(
kq∑
i=2

aqix
n
i,q

)

+hr+1

(
m∑
i=2

bqi (n)x
n
i +

kq∑
i=m+1

bqi (n)x
n
i,q +

kp∑
i=m+1

dqix
n
i,p

)
+O(hr+1),

(2.2.21)

donde api , a
q
i , d

p
i y dqi son constantes y bpi (n), b

q
i (n) funciones polinómicas que

satisfacen ciertas ecuaciones en diferencias y que pueden escogerse con bpi (0) =
bqi (0) = 0. A diferencia del caso para MLMPs fuertemente estables, tenemos
que hay raíces de módulo 1 distintas de la unidad, luego no se cumple que
los terceros y cuartos sumandos de (2.2.21) converjan a 0 más rápido que
cualquier potencia h. A partir de la imposición de ciertas condiciones sobre
las funciones coeficientes, veremos cómo podemos garantizar que (2.2.21) sea
O(h2r) y además la constante en el residuo sea uniforme en intervalos de
tiempo compactos.

(B) Teniendo en cuenta lo anterior, consideremos los siguientes residuos

ϵn = pn − p(tn)−
2r−1∑
j=r

hj[
m∑
i=1

xni ej,i,p(tn) +

k′p∑
i=m+1

xni,pej,i,pp +

k′q∑
i=m+1

xni,qej,i,pq(tn)],

δn = qn − q(tn)−
2r−1∑
j=r

hj[
m∑
i=1

xni ej,i,q(tn) +

k′q∑
i=m+1

xni,qej,i,qq +

k′p∑
i=m+1

xni,pej,i,qp(tn)].

Por la convergencia y el orden de consistencia del MLMP, ϵn y δn son O(hr).
Veamos qué condiciones debemos imponer sobre ej,i,p, ej,i,q, ej,i,pp, ej,i,pq, ej,i,qq, ej,i,qp
para que ϵn y δn sean O(h2r). Al igual que en la parte (A) de la demostración
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del teorema 2.3 se tiene que

0 = ρp(E)pn − hσp(E)f(pn, qn)

= ρp(E)p(tn)− hσp(E)f(p(tn), q(tn))

+
2r−1∑
j=r

hj

[
m∑
i=1

ρp(E)x
n
i ej,i,p(tn)

+

kp∑
i=m+1

ρp(E)x
n
i,pej,i,pp(tn) +

kq∑
i=m+1

ρp(E)x
n
i,qej,i,pq(tn)

−h[
m∑
i=1

σp(E)x
n
i fp(p(tn), q(tn))ej,i,p(tn)

+

kp∑
i=m+1

σp(E)x
n
i,pfp(p(tn), q(tn))ej,i,pp(tn)

+

kq∑
i=m+1

σp(E)x
n
i,qfp(p(tn), q(tn))ej,i,pq(tn)

+
m∑
i=1

σp(E)x
n
i fq(p(tn), q(tn))ej,i,q(tn)

+

kp∑
i=m+1

σp(E)x
n
i,pfq(p(tn), q(tn))ej,i,qp(tn)

+

kq∑
i=m+1

σp(E)x
n
i,qfq(p(tn), q(tn))ej,i,qq(tn)]

]
+ρp(E)εn − hσp(E)

[
fp(p(tn), q(tn))εn + fq(p(tn), q(tn))δn

]
+O
(
h(∥εn∥2 + ∥δn∥2)

)
+O(h2r+1). (2.2.22)

y algo similar para la segunda ecuación. Entonces, utilizando (1.2.6) y la
notación en (2.2.1), (2.2.2), se tiene que la anterior ecuación es equivalente a
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0 =
2r−1∑
j=r

hj
[
ρp(E)ej,1,p(tn)− hσp(E)

(
fp(p(tn), q(tn))ej,1,p(tn)

+fq(p(tn), q(tn))ej,1,q(tn)

−cj,pp(j+1)(tn)
)]

+
m∑
i=2

xni

[
ρp,i(E)ej,i,p(tn)− hσp,i(E)

(
fp(p(tn), q(tn))ej,i,p(tn)

+fq(p(tn), q(tn))ej,i,q(tn)
)]

+

kp∑
i=m+1

xni,p

[
ρp,i,p(E)ej,i,pp(tn)− hσp,i,p(E)

(
fp(p(tn), q(tn))ej,i,pp(tn)

+fq(p(tn), q(tn))ej,i,qp(tn)
)]

+

kq∑
i=m+1

xni,q

[
ρp,i,q(E)ej,i,pq(tn)− hσp,i,q(E)

(
fp(p(tn), q(tn))ej,i,pq(tn)

+fq(p(tn), q(tn))ej,i,qq(tn)
)]

+ρp(E)εn − hσp(E)
[
fp(p(tn), q(tn))εn + fq(p(tn), q(tn))δn

]
+O(h2r+1). (2.2.23)

Queremos que

ρp(E)εn − hσp(E)

[
fp(p(tn), q(tn))εn + fq(p(tn), q(tn))δn

]
= O(h2r+1),

ρq(E)δn − hσq(E)

[
gp(p(tn), q(tn))εn + gq(p(tn), q(tn))δn

]
= O(h2r+1),

(2.2.24)

para poder deducir de aquí por el lema 2.2 que εn = O(h2r) y δn = O(h2r),
tras imponer que εν = O(h2r) para ν = 0, 1, . . . , kp − 1 y δν = O(h2r) para
ν = 0, 1, . . . , kq − 1.

Nos centraremos en imponer que la primera ecuación en (2.2.24) se sa-
tisfaga, ya que es la relacionada con (2.2.23), pero un argumento análogo es
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válido para la segunda ecuación. Para que los términos asociados a la raíz 1
en (2.2.23) sean de orden O(h2r+1), basta con imponer (2.2.6), teniendo en
cuenta que el método (ρp, σp) se supone que es de orden r. Por otro lado, para
los términos asociados a xni con i = 2, . . . ,m, considerando (2.2.4), basta con
imponer (2.2.7).

Procedemos ahora a ver cómo deben comportarse el resto de términos:

Para que el término en hrxni,q en (2.2.23) se anule, dado que ρp(xi,q) ̸=
0, ρp,i,q(1) ̸= 0 y, de manera análoga, usando que ρq,i,p(1) ̸= 0, debe
cumplirse la ecuación (2.2.8).

Observando el término en hr+1xni,p en la misma suma, se debe cumplir
que

ρ′p,i,p(1)ėr,i,pp(t)− σp,i,p(1)fp(p(t), q(t))er,i,pp(t) = 0,

lo cual es equivalente a (2.2.9).

Observando también el término en hr+1xni,q en (2.2.23), se debe cumplir
que

ρp,i,q(1)er+1,i,pq(tn) − σp,i,q(1)fq(p(tn), q(tn))er,i,qq(tn) = 0, (2.2.25)

que es equivalente a (2.2.11).

Considerando el término en hr+2xni,p en (2.2.23), usando notación abre-
viada y (2.2.8), se requiere que

1

2

[
x2i ρ

′′
p(xi,p) + xi,pρ

′
p(xi,p)

]
ër,i,pp − xi,pσ

′
p(xi,p)

d

dt

[
fp(p, q)er,i,pp

]
+xi,pρ

′
p(xi,p)ėr+1,i,pp − σp(xi,p)

[
fp(p, q)er+1,i,pp + fq(p, q)er+1,i,qp

]
= 0,

lo cual es equivalente a (2.2.13).

Considerando ahora el término en hr+2xni,q en (2.2.23), se tiene que

ρp(xi,q)er+2,i,pq+xi,qρ
′
p(xi,q)ėr+1,i,pq−σp(xi,q)

[
fp(p, q)er+1,i,pq+fq(p, q)er+1,i,qq

]

−xi,qσ′
p(xi,q)

d

dt

[
fq(p, q)er,i,qq

]
= 0,

lo cual, usando (2.2.11), es equivalente a (2.2.15).
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Por otro lado, al considerar el término en hr+3xni,p en (2.2.23), se deduce
que

1

6

[
x3i,pρ

′′′
p (xi,p) + 3ρ′′p(xi,p) + xi,pρ

′
p(xi,p)

]
...
e r,i,pp

+
1

2

[
x2i ρ

′′
p(xi,p) + xi,pρ

′
p(xi,p)

]
ër+1,i,pp

+xi,pρ
′
p(xi,p)ėr+2,i,pp −

1

2

[
x2i,pσ

′′
p(xi,p) + xi,pσ

′
p(xi,p)

]
d2

dt2

[
fp(p, q)er,i,pp

]

−σ′
p(xi,p)xi,p

d

dt

[
fp(p, q)er+1,i,pp + fq(p, q)er+1,i,qp

]
−σp(xi,p)

[
fp(p, q)er+2,i,pp + fq(p, q)er+2,i,qp

]
= 0,

lo cual, considerando (2.2.9) y (2.2.13), es equivalente a (2.2.17). Ahora,
supongamos que los valores iniciales del MLMP son tales que:

pν = p(tν) +
2r−1∑
j=r

s(j)pν hj +O(h2r), ν = 0, 1, . . . , kp − 1,

qν = q(tν) +
2r−1∑
j=r

s(j)qν hj +O(h2r), ν = 0, 1, . . . , kq − 1.

Dado que er,i,pq = er,i,qp = 0, para que ϵν y δν sean O(hr+1) en los valores
anteriores de ν, se debe cumplir que:

s(r)pν =
m∑
i=1

xνi er,i,p(t0) +

kp∑
i=m+1

xνi,per,i,pp(t0), ν = 0, 1, . . . , kp − 1,

s(r)qν =
m∑
i=1

xνi er,i,q(t0) +

kq∑
i=m+1

xνi,qer,i,qq(t0), ν = 0, 1, . . . , kq − 1.

(2.2.26)

Estos son dos sistemas de Vandermonde que determinan completamente
los valores de er,i,p(t0), er,i,q(t0) para i = 1, . . . ,m, así como er,i,pp(t0) para
i = m+ 1, . . . , kp y er,i,qq(t0) para i = m+ 1, . . . , kq.
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Por otro lado, para que ϵν y δν sean O(hr+2), se debe cumplir que

s(r+1)
ν,p =

m∑
i=1

xνi νėr,i,p(t0) +
m∑
i=1

xνi er+1,i,p(t0)

+

kp∑
i=m+1

xνi,p

[
er+1,i,pp(t0) + νėr,i,pp(t0)

]
+

kq∑
i=m+1

xνi,qer+1,i,pq(t0),

ν = 0, 1, . . . , kp − 1,

s(r+1)
ν,q =

m∑
i=1

xνi νėr,i,q(t0) +
m∑
i=1

xνi er+1,i,q(t0)

+

kq∑
i=m+1

xνi,q

[
er+1,i,qq(t0) + νėr,i,qq(t0)

]
+

kp∑
i=m+1

xνi,per+1,i,qp(t0),

ν = 0, 1, . . . , kq − 1. (2.2.27)

Observamos que estos son nuevamente dos sistemas de Vandermonde.
El primero en las incógnitas er+1,i,p(t0) para i = 1, . . . ,m, er+1,i,pp(t0) para
i = m+1, . . . ,m+kp, y el segundo en er+1,i,q(t0) para i = 1, . . . ,m, er+1,i,qq(t0)
para i = m+1, . . . ,m+kq. (Observamos que el resto de los términos pueden
calcularse a partir de valores que ya han sido determinados a través de (2.2.6),
(2.2.7) para j = r y (2.2.11) y (2.2.12) para j = r + 1.)

Procediendo inductivamente, se pueden determinar las condiciones ini-
ciales para los sistemas diferenciales asociados a los coeficientes de error co-
rrespondientes a potencias superiores de h.

Además, cuando el procedimiento de arranque es de orden r+1, es claro
que

s(r)ν,p = 0, ν = 0, 1, . . . , kp − 1, s(r)ν,q = 0, ν = 0, 1, . . . , kq − 1,

de donde los sistemas en (2.2.26) son homogéneos y entonces er,i,pp(t0) =
er,i,qq(t0) = 0. Sin embargo, el hecho de que

s(r+1)
ν,p = s(r+1)

ν,q = 0,
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no hace que (2.2.27) sea homogéneo porque en general ėr,i,p(t0) y ėr,i,q(t0) no
se anulan.

Finalmente, en el desarrollo asintótico, los términos asociados a las po-
tencias n-ésimas de xi, xi,p o xi,q de módulo menor que 1 pueden descartarse,
ya que, cuando n > 0, esas potencias n-ésimas son de orden O(h2r) para tn
fijo, donde tn = t0 + nh.

Observación 2.2. Cuando el MLMP es simétrico y cero-estable, todas las
raíces de ρp y ρq son simples y de módulo 1 por el lema 1.14. Esto implica
que, en la fórmula (2.2.5), k′p = kp y k′q = kq y, de hecho, al revisar la
demostración del teorema 2.4, puede observarse que el resultado es válido
para n ≥ 0.





Capítulo 3

Crecimiento del error con el
tiempo

3.1. Comportamiento de los coeficientes del de-
sarrollo asintótico

En este sección se analizará el comportamiento del error con respecto al
tiempo a partir de los resultados obtenidos en el Capítulo 2. Analizaremos
dicho error para MLMPs débilmente estables, ya que, por lo visto en el ante-
rior capítulo, los términos del error de discretización global de MLMPs fuer-
temente estables aparecen en el desarrollo asintótico del error de los MLMPs
débilmente estables. Distinguiremos los diferentes términos del error según
el tipo de raíz de ρp y ρq al que está asociado.

Recordemos que las perturbaciones en las condiciones iniciales del sistema
continuo (1.1.1) se propagan en el tiempo en una primera aproximación a
través del siguiente sistema

δ̇(t) =

(
fp(p(t), q(t)) fq(p(t), q(t))
gp(p(t), q(t)) gq(p(t), q(t))

)
δ(t). (3.1.1)

Al igual que para cualquier otro sistema homogéneo, denotaremos por
matriz de transición en (t, s) a la matriz que lleva δ(s) a δ(t). Diremos que
dicha matriz está acotada si lo está uniformemente para todo s, t ∈ R cum-
pliendo t0 ≤ s ≤ t.

65
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3.1. COMPORTAMIENTO DE LOS COEFICIENTES DEL

DESARROLLO ASINTÓTICO

3.1.1. Coeficientes asociados a las raíces comunes de
módulo unidad.

Notemos que el sistema diferencial (2.2.6) asociado a ej,1,p y ej,1,q, es decir,
los coeficientes asociados a la raíz común x1 = 1, está intimamente ligado
al sistema diferencial (3.1.1) que describe la propagación de perturbaciones
del problema continuo. Más concretamente, coincide la parte homogénea del
sistema diferencial.

Sin embargo, para los coeficientes asociados a las otras posibles raíces
comunes xi (i = 2, . . . ,m), de manera similar a lo que sucede con los MLMs
en [3], la parte homogénea de los sistemas diferenciales en (2.2.7) es diferente
de (3.1.1). Esto ocasiona que en muchos problemas, los coeficientes asociados
a dichas raíces conduzcan a un crecimiento exponencial del error. Véase en
[3] que los MLM simétricos para sistemas diferenciales de primer orden no
son recomendados por este motivo. Sin embargo, podemos construir MLMPs
de forma que los dos MLM que lo compongan cumplan que la única raíz en
común de sus primeros polinomios característicos sea 1, y de esta manera no
tendríamos este problema.

3.1.2. Coeficientes asociados a las raíces no comunes de
módulo unidad

El siguiente resultado justifica el comportamiento de los coeficientes del
error de MLMPs, asociados a las raíces de módulo 1 no comunes de los dos
MLM que lo componen.

Teorema 3.1. Consideremos un MLMP como el del teorema 2.4, aplicado
al problema de valores iniciales (1.1.1). Suponiendo suficiente regularidad, si
las matrices de transición asociadas a (2.2.9) y (2.2.10) están acotadas y las
componentes del jacobiano del campo vectorial definido en (1.1.1) también,
así como sus derivadas temporales, los términos del error asociados a las
raíces no comunes de ρp y ρq se comportarán como O(hr), donde la constante
en la notación de Landau está acotada para t− t0 = O(h−1).

Además, si los valores de arranque difieren de los exactos en O(hr+1),
los términos del error asociados a las raíces no comunes de ρp y ρq se com-
portarán como O(hr+1), donde la constante en la notación de Landau está
acotada para t− t0 = O(h−1). Equivalentemente, se comportarán como O(hr)
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uniformemente en el tiempo para t− t0 = O(h−2).

Demostración. La acotación de las matrices de transición asociadas a (2.2.9)
y (2.2.10) implica que er,i,pp y er,i,qq están acotadas. Además, a partir de
(2.2.11) y (2.2.12) y la acotación de er,i,pp y er,i,qq se deduce que er+1,i,pq y
er+1,i,qp estarán acotadas cuando fq(p(t), q(t)) y gp(p(t), q(t)) están acota-
das en el tiempo, y lo mismo ocurre con br+1,i,pp y br+1,i,qq si fp(p(t), q(t)),
gq(p(t), q(t)) y sus primeras derivadas temporales también están acotadas.
Esto implica, usando (2.2.13) y (2.2.14), que er+1,i,pp y er+1,i,qq crecen a lo
sumo linealmente con el tiempo.

Por otro lado, a partir de (2.2.15) y (2.2.16), si las derivadas temporales
de fq(p(t), q(t)) y gp(p(t), q(t)) también están acotadas en el tiempo, entonces
er+2,i,pq y er+2,i,qp crecen a lo sumo linealmente. El mismo crecimiento lineal
se observará para br+2,i,pp y br+2,i,qq si las segundas derivadas temporales
de fp(p(t), q(t)) y gq(p(t), q(t)) están acotadas. Esto, junto con (2.2.17) y
(2.2.18), implica que er+2,i,pp y er+2,i,qq crecen a lo sumo cuadráticamente.
Podemos razonar de forma inductiva para el resto de los términos.

Finalmente, si los valores de arranque cumplen (2.2.19), por el final del
teorema 2.4 se deduce que

er,i,pp(t) = er,i,qq(t) = br+1,i,pp(t) = br+1,i,qq(t) = er+1,i,pq(t) = er+1,i,qp(t) = 0.

Por lo tanto, er+1,i,pp y er+1,i,qq están acotadas en el tiempo y, si fq(p(t), q(t))
y gp(p(t), q(t)) también lo están, lo mismo ocurre con er+2,i,pq y er+2,i,qp. Esto
implica que, si fp(p(t), q(t)), gq(p(t), q(t)) y sus primeras derivadas tempo-
rales están acotadas, entonces br+2,i,pp y br+2,i,qq también lo están. Debido a
esto, er+2,i,pp y er+2,i,qq crecen a lo sumo linealmente y, razonando de forma
inductiva, er+3,i,pp y er+3,i,qq crecen a lo sumo cuadráticamente, etc.

Observación 3.1. Cuando el problema es separable, es decir,

f = f(q) g = g(p)

entonces no solo las matrices de transición asociadas a (2.2.9) y (2.2.10)
están acotadas, sino que, ya que fp = gq = 0, en realidad son la identidad.
Esto simplifica las fórmulas (2.2.13)-(2.2.18), pero la conclusión es la misma
que en el caso no separable.
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Observación 3.2. Como comparación, observamos que el caso separable se
estudia en detalle en [4] y nuestras conclusiones son similares a las obtenidas
en el artículo: para un procedimiento de arranque lo suficientemente preciso,
las componentes del error asociado a las raíces no comunes del primer polino-
mio característico de módulo unidad están controlados para t− t0 = O(h−2)
(ver el final de la sección 3.5 y las observaciones finales en [4]).

3.2. Comportamiento en problemas hamiltonia-
nos

Sea Ω un dominio, es decir, un subconjunto no vacío, abierto y conexo
del espacio euclideo R2d, donde d es un entero, y supongamos que para las
soluciones de (1.1.1) se cumple (p(t), q(t)) ∈ Ω. Sea J un intervalo abierto
acotado o no. Si tenemos una función H = H(p(t), q(t), t) suficientemente
suave definida en el producto Ω× J, entonces (1.1.1) será un sistema hamil-
toniano con hamiltoniano H si

dpi
dt

= −∂H
∂qi

dqi
dt

=
∂H

∂pi
. i = 1, . . . , d. (3.2.1)

El número entero d es el número de grados de libertad y Ω es el espacio de
fases. El producto Ω× J es el espacio de fases extendido.

Es bien sabido que, cuando H no depende explícitamente de t, el ha-
miltoniano se conserva a lo largo de cada solución del espacio de fases. En
esta sección estudiaremos el comportamiento de los MLMPs con respecto a
la conservación del hamiltoniano en ese caso.

3.2.1. Parte suave de la solución numérica

Consideremos la parte ’suave’ asociada a la raíz x1 = 1 del desarrollo
asintótico del error global (2.2.5) en el teorema 2.4, y definamos(

ph(t)
qh(t)

)
:=

(
p(t)
q(t)

)
+

2r−1∑
j=r

hj
(
ej,1,p(t)
ej,1,q(t)

)
, (3.2.2)

donde (p(t), q(t)) es la solución de (1.1.1).
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Lema 3.2. Supongamos que (1.1.1) es un sistema hamiltoniano autónomo,
con función hamiltoniana H. Entonces,

d

dt

[
(∇H)T

(
p(t)
q(t)

)]
+ (∇H)T

(
p(t)
q(t)

)(
fp(p(t), q(t)) fq(p(t), q(t))
gp(p(t), q(t)) gq(p(t), q(t))

)
= 0.

Demostración. Como (1.1.1) es hamiltoniano, entonces

f = −Hq = ṗ,

g = Hp = q̇.

Por la anterior ecuación y haciendo la derivada con respecto al tiempo de f
y g (funciones del problema (1.1.1)) se tiene que

d

dt
(∇H)T =

d

dt

(
Hp

Hq

)T

=
d

dt

(
q̇
−ṗ

)T

=

(
Hpp(p, q)ṗ+Hqp(p, q)q̇
Hpq(p, q)ṗ+Hqq(p, q)q̇

)T

.

Por otro lado,

(∇H)T
(
p(t)
q(t)

)(
fp(p(t), q(t)) fq(p(t), q(t))
gp(p(t), q(t)) gq(p(t), q(t))

)
=
(
q̇T , −ṗT

)(−Hpq −Hqq

Hpp Hqp

)
=
(
−q̇THpq − ṗTHpp, −q̇THqq − ṗTHqp

)
,

de donde se obtiene el resultado teniendo en cuenta que HT
qp = Hpq.

Pasemos ahora al siguiente resultado:

Teorema 3.3. Considerando las condiciones impuestas en el anterior lema
se tiene que

H

(
ph(t)
qh(t)

)
−H

(
ph(t0)
qh(t0)

)
=

2r−1∑
j=r

hj

[
cqj(p(t)

T q(j+1)(t)− p(t0)
T q(j+1)(t0))

−cpj

(
j+1∑
l=1

(−1)l+1[q(l)(t)Tp(j+1−l)(t)− q(l)(t0)
Tp(j+1−l)(t0)]

)

+(cpj(−1)j − cqj)

∫ t

t0

p(s)T q(j+2)(s)ds

]
+O(h2r). (3.2.3)
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Demostración. Aplicando el lema anterior, teniendo en cuenta la expresión
(3.2.2) y usando (2.2.6) obtenemos

d

dt
H

(
ph(t)
qh(t)

)
=

d

dt

(
H

(
p(t)
q(t)

)
+

2r−1∑
j=r

hj(∇H)T
(
ej,1,p(t)
ej,1,q(t)

)
+O(h2r)

)

=
2r−1∑
j=r

hj
(
d

dt
(∇H)T

(
p(t)
q(t)

)(
ej,1,p(t)
ej,1,q(t)

)
+ (∇H)T

(
p(t)
q(t)

)(
ėj,1,p(t)
ėj,1,q(t)

))
+O(h2r)

=
2r−1∑
j=r

hj

[
d

dt
(∇H)T

(
p(t)
q(t)

)(
ej,1,p(t)
ej,1,q(t)

)

+(∇H)T
(
p(t)
q(t)

)(
fp(p(t), q(t)) fq(p(t), q(t))
gp(p(t), q(t)) gq(p(t), q(t))

)(
ej,1,p(t)
ej,1,q(t)

)
−
(
cpjp

(j+1)(t)
cqjq

(j+1)(t)

)]
+O(h2r)

=
2r−1∑
j=r

hj[cqj ṗ(t)
T q(j+1)(t)− cpj q̇(t)

Tp(j+1)(t)] +O(h2r), (3.2.4)

donde la última igualdad se deduce de (3.2.1). Para j fijo, aplicando integra-
ción por partes se tiene que∫ t

t0

ṗT (s)q(j+1)(s)ds = (p(t)T q(j+1)(t)− p(t0)
T q(j+1)(t0))−

∫ t

t0

p(s)T q(j+2)(s)ds.

(3.2.5)

De manera análoga∫ t

t0

q̇(s)Tp(j+1)(s)ds = (q̇(t)Tp(j)(t)− q̇(t0)
Tp(j)(t0))−

∫ t

t0

q̈(s)Tp(j)(s)ds

= q̇(t)Tp(j)(t)− q̇(t0)
Tp(j)(t0)− (q̈(t)Tp(j−1)(t)− q̈(t0)

Tp(j−1)(t0))

+

∫ t

t0

...
q (s)Tp(j−1)(s)ds

=

j+1∑
l=1

(−1)l+1[q(l)(t)Tp(j+1−l)(t)− q(l)(t0)
Tp(j+1−l)(t0)]

+(−1)j+1

∫ t

t0

q(j+2)(s)Tp(s)ds. (3.2.6)
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Integrando el primer y último miembro de (3.2.4) y después aplicando
(3.2.5) y (3.2.6) obtenemos (3.2.3).

Métodos simétricos

Es bien conocido que, cuando los MLMs son simétricos, los coeficientes
correspondientes al error de truncación local en (1.2.6) con j impar se anulan
[14]. Tenemos el siguiente resultado que es un caso particular del anterior
teorema.

Corolario 3.4. Cuando se integra (3.2.1), con H autónomo, con un MLMP
simétrico se tiene que

H

(
ph(t)
qh(t)

)
−H

(
ph(t0)
qh(t0)

)
=

r−1∑
j=r/2

h2j

[
cq2j(p(t)

T q(2j+1)(t)− p(t0)
T q(2j+1)(t0))

−cp2j

(
2j+1∑
l=1

(−1)l+1[q(l)(t)Tp(2j+1−l)(t)− q(l)(t0)
Tp(2j+1−l)(t0)]

)

+(cp2j − cq2j)

∫ t

t0

p(s)T q(2j+2)(s)ds

]
+O(h2r).

3.2.2. Solución numérica completa cuando m = 1

Ahora estudiaremos la solución numérica completa. Como se mencionó en
la subsección 4.1.1, los coeficientes del error asociados a las raíces de módulo
1 comunes diferentes de x1 = 1 conducen normalmente a un crecimiento
exponencial del error con el tiempo. Por esta razón, asumiremos de ahora
en adelante que tales raíces comunes no existen, es decir, m = 1. Entonces,
tenemos el siguiente resultado:

Teorema 3.5. Cuando se integra (3.2.1) con H autónomo con un MLMP
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para el cual m = 1, se cumple que

H

(
pn
qn

)
−H

(
p0
q0

)
=

2r−1∑
j=r

hj∇H
(
p(tn)
q(tn)

)T [ k′p∑
i=2

xni,p

(
ej,i,pp(tn)
ej,i,qp(tn)

)
+

k′q∑
i=2

xni,q

(
ej,i,pq(tn)
ej,i,qq(tn)

)]
2r−1∑
j=r

hj

[
cqj(p(t)

T q(j+1)(t)− p(t0)
T q(j+1)(t0))

−cpj

(
j+1∑
l=1

(−1)l+1[q(l)(t)Tp(j+1−l)(t)− q(l)(t0)
Tp(j+1−l)(t0)]

)

+(cpj(−1)j − cqj)

∫ t

t0

p(s)T q(j+2)(s)ds

]

+
2r−1∑
j=r

hj∇H
(
p0
q0

)T (
ej,1,p(t0)
ej,1,q(t0)

)
+O(h2r). (3.2.7)

Demostración. La demostración se basa en la siguiente descomposición

H

(
pn
qn

)
−H

(
p0
q0

)
=

[
H

(
pn
qn

)
−H

(
ph(tn)
qh(tn)

)]
+

[
H

(
ph(tn)
qh(tn)

)
−H

(
ph(t0)
qh(t0)

)]
+

[
H

(
ph(t0)
qh(t0)

)
−H

(
p0
q0

)]
. (3.2.8)

Entonces, el primer término en (3.2.7) se deduce de (2.2.5) con m = 1, la
definición (3.2.2) y la propiedad de que, al evaluar ∇H, el vector (ph(t), qh(t))
difiere de (p(t), q(t)) en términos de orden O(hr). En cuanto al segundo tér-
mino, se puede aplicar directamente el teorema 3.3. Finalmente, el último
término en (3.2.7) porviene de (3.2.2) en t = t0.

Observación 3.3. Dado que xi,p y xi,q tienen módulo 1, el comportamiento
temporal de (3.2.7) está determinado por el comportamiento del error en la
solución numérica suave, teniendo en cuenta el teorema 3.3, así como el
comportamiento de los términos

∇H
(
p(tn)
q(tn)

)T (
ej,i,pp(tn)
ej,i,qp(tn)

)
, ∇H

(
p(tn)
q(tn)

)T (
ej,i,pq(tn)
ej,i,qq(tn)

)
. (3.2.9)



Capítulo 4

Péndulo doble

Los resultados anteriores se aplicarán en este capítulo para explicar la in-
tegración numérica del problema del péndulo doble con MLMPs. Escalaremos
el problema de manera que la aceleración de la gravedad pueda considerarse
igual a 1 y, en particular, tomaremos dos masas donde m1 = 1, m2 = 2
y dos cuerdas inextensibles y sin peso de longitud 1. (Para el caso general,
véase [10], aunque las conclusiones con respecto al crecimiento del error con
el tiempo serán las mismas siempre que las oscilaciones sean lo suficiente-
mente pequeñas y el cociente de las frecuencias normales asociadas no sea
racional). En nuestro caso particular, las energías cinética y potencial están
dadas respectivamente por

T =
1

2

[
3q̇21 + 2q̇22 + 4q̇1q̇2 cos(q2 − q1)

]
, V = −(3 cos(q1) + 2 cos(q2)),

donde (q1, q2) denotan los ángulos que ambas cuerdas forman con la línea
vertical. Como el lagrangiano es L = T −V , es bien sabido que los momentos
asociados son

p1 = Lq̇1 = 3q̇1 + 2q̇2 cos(q2 − q1),

p2 = Lq̇2 = 2q̇2 + 2q̇1 cos(q2 − q1). (4.0.1)

De esta manera, se tiene la relación matricial(
p1
p2

)
=M(q1, q2)

(
q̇1
q̇2

)
,
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donde la matriz M(q1, q2) está dada por:

M(q1, q2) =

(
3 2 cos(q2 − q1)

2 cos(q2 − q1) 2

)
,

y la energía cinética puede escribirse como

T =
1

2
(q̇1 q̇2)M(q1, q2)

(
q̇1
q̇2

)
=

1

2
(p1 p2)M(q1, q2)

−1

(
p1
p2

)
.

Entonces, las ecuaciones diferenciales correspondientes se escriben como
un sistema hamiltoniano no separable con hamiltoniano:

H = T + V. (4.0.2)

Nos interesaremos en pequeñas oscilaciones del péndulo doble, que, de
acuerdo con [10], se pueden aproximar a traves de la solución del sistema ha-
miltoniano donde se desprecian todos los términos menores que los asociados
a segundas potencias de q1, q2, q̇1, q̇2.

De esta manera, surge un sistema lineal que puede resolverse exactamen-
te, dando lugar a

q1(t) = A cos(ω1t− δ1) +B cos(ω2t− δ2),

q2(t) = Ac+ cos(ω1t− δ1) +Bc− cos(ω2t− δ2), (4.0.3)

donde

ω1 = 3

(
1 +

√
2

3

)
, ω2 = 3

(
1−

√
2

3

)
,

c+ = −
√
6

2
, c− =

√
6

2
,

y las constantes A,B, δ1, δ2 se determinan por las condiciones iniciales. De
estas expresiones se obtiene

q̇1(t) = −Aω1 sin(ω1t− δ1)−Bω2 sin(ω2t− δ2),

q̇2(t) = −Ac+ω1 sin(ω1t− δ1)−Bc−ω2 sin(ω2t− δ2). (4.0.4)
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A partir de (4.0.1) y (4.0.4), tenemos

p1(t) = 3

[
− Aω1 sin(ω1t− δ1)−Bω2 sin(ω2t− δ2)

]
+ 2

[
− Ac+ω1 sin(ω1t− δ1)−Bc−ω2 sin(ω2t− δ2)

]
cos(α(t)),

p2(t) = 2

[
− Ac+ω1 sin(ω1t− δ1)−Bc−ω2 sin(ω2t− δ2)

]
+ 2

[
− Aω1 sin(ω1t− δ1)−Bω2 sin(ω2t− δ2)

]
cos(α(t)), (4.0.5)

donde

α(t) = A(c+ − 1) cos(ω1t− δ1) +B(c− − 1) cos(ω2t− δ2). (4.0.6)

Considerando entonces (4.0.3) como una aproximación suficientemente
buena de la solución exacta, justificaremos ahora cómo debería crecer el error
en el hamiltoniano asociado a la parte suave de la solución numérica al inte-
grar con distintos tipos de métodos lineales multipasos.

4.1. Error en el hamiltoniano asociado a la par-
te suave de la solución numérica

4.1.1. MLMPs simétricos

En primer lugar, cuando el método es un MLMP formado por dos MLMs
simétricos, el corolario 3.4 establece cómo se comporta el error en la parte
suave de la solución numérica. Teniendo en cuenta la acotación de las deriva-
das temporales de q1, q2, p1, p2 , solo nos queda analizar el siguiente término
de (3.2.3)

∫ t

t0

p(s)T q(2k+2)(s)ds, k =
r

2
, . . . , r − 1.

Observamos que las derivadas pares de q1 y q2 son una combinación lineal
de cos(ω1t− δ1) y cos(ω2t− δ2). Entonces, a partir de (4.0.5), lo que debemos
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estudiar es el comportamiento de∫ t

t0

cos(ωis− δi) sin(ωjs− δj)ds,∫ t

t0

cos(ωis− δi) sin(ωjs− δj) cos(α(s))ds, i, j ∈ {1, 2}, (4.1.1)

donde, de acuerdo con (4.0.6), α(s) oscila entre −|A(c+ − 1)| − |B(c− − 1)|
y |A(c+ − 1)| + |B(c− − 1)|, pero de una manera no periódica debido a que
ω1/ω2 no es racional. Usando identidades trigonométricas, la primera integral
en (4.1.1) se puede escribir como

1

2

∫ t

t0

[
sin((ωi + ωj)s− δi − δj)− sin((ωi − ωj)s+ δj − δi)

]
ds,

la cual tiene una primitiva acotada con t. El segundo integrando en (4.1.1)
es una modulación del primero con una frecuencia que nada tiene que ver
con la del primer integrando. Aparece dibujado en la figura 4.1.1, donde se
observa que está claramente centrado en 0, lo que hace que la integral en la
figura 4.1.2 esté acotada.

4.1.2. MLMPs no simétricos

En el caso no simétrico y de acuerdo con el teorema 3.3, el crecimiento
con el tiempo de los coeficientes asociados a las potencias pares de h se
comportará de la misma manera que en los métodos simétricos. Sin embargo,
cuando los métodos no son simétricos, dado que cqj y cpj no necesariamente se
anulan para j impar, y una vez que sabemos que todas las derivadas de q y p
también están acotadas, solo debemos analizar el crecimiento con el tiempo
de ∫ t

t0

q(2k+1)(t)Tp(t)dt, k = r/2, . . . , 2r − 1.

A partir de (4.0.3), se puede observar que las derivadas impares de q1 y
q2 consisten en combinaciones lineales de sin(ωit−δi) y sin(ωjt−δj). A partir
de (4.0.5), la integral anterior contendrá expresiones de la forma:

∫ t

t0

sin2(ωit− δi)dt, i = 1, 2,
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Figura 4.1.1: Representación en Matlab del integrando de la segunda integral
de (4.1.1) tomando t0 = 0 y T = 10000
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Figura 4.1.2: Representación en Matlab de la segunda integral de (4.1.1)
tomando t0 = 0 y T = 10000. Para calcular la integral se ha usado la función
int de Matlab



CAPÍTULO 4. PÉNDULO DOBLE 79

las cuales obviamente crecen linealmente con el tiempo, ya que sin2(ωit− δi)
es una función positiva y periódica con período π/ωi. Por lo tanto, la integral
es linealmente aditiva en cada periodo.

4.2. Error en el hamiltoniano asociado a las raí-
ces no comunes de módulo unidad

A partir de la observación 3.3 y considerando que ∇H(p, q) = (q̇T ,−ṗT ),
el cual está acotado en nuestro problema, lo que se debe estudiar es el cre-
cimiento con el tiempo de ej,i,pp, ej,i,pq, ej,i,qq, ej,i,qp. Para aplicar el teorema
3.1, y justificar que el error asociado a estos coeficientes está controlado, se
requiere que las derivadas de f y g en (p(t), q(t)) y sus derivadas tempora-
les estén acotadas con el tiempo y que las matrices de transición asociadas a
(2.2.9) y (2.2.10) también estén acotadas. Teniendo en cuenta que, en nuestro
problema

H(p1, p2, q1, q2) =
1

2(6− 4 cos2(q2 − q1))
(2p21 − 4 cos(q2 − q1)p1p2 + 3p22)

−3 cos(q1)− 2 cos(q2),

(4.2.1)

con f = −∇qH y g = ∇pH, es claro que los componentes del jacobiano de
(f, g)T en (p1(t), p2(t), q1(t), q2(t)) y sus derivadas temporales están acotadas.
Ahora, analizamos qué ocurre con las matrices de transición de (2.2.9) y
(2.2.10). Tras algunos cálculos, se obtiene

fp(p(t), q(t)) =

(
−a(t) −b(t)
a(t) b(t)

)
, gq(p(t), q(t)) =

(
a(t) −a(t)
b(t) −b(t)

)
,

donde

a(t) =
2 sin(2α(t))

[1 + 2 sin2(α(t))]2
p1(t)−

sin(α(t))[5− 2 sin2(α(t))]

[1 + 2 sin2(α(t))]2
p2(t)

=
sin(2α(t))

1 + 2 sin2(α(t))
q̇1(t)−

2 sin(α(t))

1 + 2 sin2(α(t))
q̇2(t),

b(t) =
3 sin(2α(t))

[1 + 2 sin2(α(t))]2
p2(t)−

sin(α(t))[5− 2 sin2(α(t))]

[1 + 2 sin2(α(t))]2
p1(t)

= − 3 sin(α(t))

1 + 2 sin2(α(t))
q̇1(t) +

sin(2α(t))

1 + 2 sin2(α(t))
q̇2(t). (4.2.2)
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Una justificación teórica de que las matrices de transición asociadas a
(2.2.9) y (2.2.10) están acotadas para cualquier λp,i,p y λq,i,q está dada en
[2]. En la siguiente sección lo comprobaremos numéricamente en un caso
concreto.

4.3. Experimentos numéricos
En esta sección se ilustrarán los resultados de la anterior, relacionados

con la aproximación numérica de pequeñas oscilaciones del péndulo doble con
MLMPs. Para ello, se utilizarán varios MLM para estudiar el comportamiento
del error a lo largo del tiempo en el hamiltoniano (4.0.2):

1. El MLMP simétrico de segundo orden (denominado MLMP2, cf. [4])

ρp(x) = (x− 1)(x+ 1), σp(x) = 2x,

ρq(x) = (x− 1)(x2 + 1), σq(x) = x2 + x. (4.3.1)

2. El MLM simétrico no particionado

ρp(x) = ρq(x) = (x− 1)(x+ 1), σp(x) = σq(x) = 2x. (4.3.2)

3. El método de Adams no simétrico y no particionado de tercer orden [7]

ρp(x) = ρq(x) = x2(x− 1),

σp(x) = σq(x) =
23

12
x2 − 16

12
x+

5

12
. (4.3.3)

4. Un MLMP no simétrico donde uno de los métodos es el MLM simétrico
en (4.3.2) y el otro es el método de Adams de segundo orden

ρp(x) = (x− 1)(x+ 1), σp(x) = 2x,

ρq(x) = x(x− 1), σq(x) =
3

2
x− 1

2
. (4.3.4)

Para todos los experimentos numéricos, se han considerado las siguientes
condiciones iniciales

p1(0) = 0, p2(0) = 0, q1(0) =
π

12
, q2(0) =

π

6
.
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Figura 4.3.1: Acotación de la matriz de transición de (2.2.9)

Además, se han tomado como valores de arranque los valores exactos
obtenidos con la subrutina ode45 en Matlab, con una tolerancia de error de
10−13.

En primer lugar, observamos que en (4.3.1), ρp y ρq no tienen raíces comu-
nes excepto x1 = 1. Las raíces no comunes en (4.3.1) son x1,p = −1, x1,q = i
y x2,q = −i, luego

λp,1,p = −1 λq,1,q = −1

2
λq,2,q = −1

2
.

En las figuras 4.3.1 y 4.3.2 se observan las acotaciones de la matríz de transi-
ción de (2.2.9) y (2.2.10) para el MLMP simétrico (4.3.1). En la figura 4.3.3,
se representa el error en el hamiltoniano (4.2.1) a lo largo del tiempo. Se pue-
de observar, tal y como se deduce de la subsección 4.1.1 y de los comentarios
hechos en la sección 4.2, que el error en el hamiltoniano permanece acotado
durante tiempos muy largos. Sin embargo, cuando se considera el MLM no
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Figura 4.3.2: Acotación de la matriz de transición de (2.2.10)
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particionado simétrico (4.3.2), aparece un crecimiento exponencial del error
en el hamiltoniano con el tiempo, como se observa en la figura 4.3.4.

Por otro lado, si se toma un MLM no particionado y no simétrico, como
el método de Adams, los coeficientes del error en el hamiltoniano asociados
a la raíz x1 = 1 en las potencias pares de h también estarán acotados en
el tiempo. Sin embargo, aquellos asociados a las potencias impares de h
crecerán linealmente con el tiempo. Debido a esto, como el primer polinomio
característico del método de Adams solo tiene a x1 = 1 como raíz de módulo
unidad, si el orden es impar, se espera un crecimiento lineal del error con el
tiempo, como se observa en la figura 4.3.5 para (4.3.3).

Finalmente, para (4.3.4), se observa que los primeros polinomios carac-
terísticos no tienen raíces comunes de módulo 1, excepto por x1 = 1, y se
sabe por los comentarios hechos en la sección 4.2 que el coeficiente del error
asociado a la raíz x2,p = −1 de ρp está acotado en el tiempo. Sin embargo,
por la subsección 4.1.2, se tiene para el error en el hamiltoniano asociado a
la raíz x1 = 1, el coeficiente que multiplica a h2 estará acotado, pero el que
multiplica a h3 crecerá linealmente. Por lo tanto, cuando h es suficientemente
pequeño, el error parece estar acotado al principio, pero a medida que t crece,
el error asociado a h3 domina y por tanto se produce un crecimiento lineal
del error, tal y como se aprecia en la figura 4.3.6.

Concluimos que el error en el hamiltoniano con el MLMP simétrico se
comporta bastante mejor con respecto a los errores de los otros tres métodos.
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Figura 4.3.3: Error en el hamiltoniano frente al tiempo medido en múltiplos
enteros de 2π al integrar el problema del doble péndulo con el método simé-
trico MLMP2 (4.3.1).
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Figura 4.3.4: Error en el hamiltoniano frente al tiempo medido en múltiplos
enteros de 2π al integrar el problema del doble péndulo con el método simé-
trico MLM no particionado (4.3.2).
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Figura 4.3.5: Error en el hamiltoniano frente al tiempo medido en múltiplos
enteros de 2π al integrar el problema del doble péndulo con el método de
Adams de tercer orden (4.3.3).
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Figura 4.3.6: Error en el hamiltoniano frente al tiempo medido en múltiplos
enteros de 2π al integrar el problema del doble péndulo con el método MLMP
(4.3.4).





Conclusiones

Las principales aportaciones del trabajo se pueden resumir en los siguien-
tes puntos:

Desarrollo asintótico del error global en términos del tama-
ño de paso: Se obtiene un desarrollo asintótico que describe cómo se
comportan los coeficientes de dicho al usar un MLMP para resolver
sistemas de ecuaciones diferenciales ordinarias de dimensión n . Esto
puede permitir entender cómo el error crece con el tiempo y cómo se
comporta respecto a la conservación de ciertas propiedades del siste-
ma, siempre que se disponga de alguna información sobre la solución
exacta.

Recomendaciones sobre las raíces de los polinomios caracte-
rísticos: Se desaconseja el uso de métodos cuyo primer polinomio ca-
racterístico tenga raíces comunes distintas de x1 = 1, especialmente si
estas raíces tienen módulo 1 (es decir, si están en el círculo unitario del
plano complejo). Esto se debe a que estos métodos tienden a producir
un crecimiento exponencial del error con el tiempo.

Ventajas de los MLMPs simétricos sin raíces comunes salvo la
unidad: Los métodos que cumplen esta condición son particularmente
eficientes porque su error global se simplifica de manera significativa.
En estos casos, los coeficientes asociados a las potencias pares de la
longitud de paso en el desarrollo asintótico del error local se anulan,
lo que facilita el análisis del error global y el de los invariantes del sis-
tema. Además, aunque estos métodos pueden generar componentes no
suaves en la solución numérica, el estudio demuestra que bajo ciertas
condiciones, estas componentes pueden mantenerse bajo control, inclu-
so en problemas no separables. Otra ventaja clave es que estos métodos
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pueden ser explícitos, lo que los hace computacionalmente más atracti-
vos en comparación con otros integradores geométricos diseñados para
problemas separables con cierta estructura.

Aplicación al péndulo doble: Se realiza un análisis detallado en el
caso de pequeñas oscilaciones del péndulo doble, lo que permite compro-
bar las ventajas de los MLMPs simétricos. En particular, se observa que
estos métodos controlan mejor el crecimiento del error en la energía (el
hamiltoniano) en comparación con otros métodos explícitos multipaso,
sean estos simétricos y no particionados, no simétricos y particionados,
o no simétricos y no particionados.
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