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Resumen

El objetivo de este trabajo es realizar un estudio exhaustivo sobre mé-
todos lineales multipaso particionados. En el primer capitulo se dara la de-
finicién y propiedades basicas como convergencia, cero-estabilidad y consis-
tencia, demostrandose al igual que con métodos lineales multipaso estandar,
caracteristicas y propiedades que relacionan todas estas definiciones. Ademés
se estudia la simetria de estos métodos, demostrandose también una sencilla
caracterizacion. En el segundo capitulo se realiza un estudio detallado sobre
el desarrollo asintotico del error global de métodos lineales multipaso par-
ticonados, tanto para fuertemente estables como débilmente estables. En el
tercer capitulo se analiza el comportamiento del error y la conservacion del
hamiltoniano a partir de los resultados obtenidos del anterior capitulo. En
el ultimo capitulo se aplican los resultados anteriores al caso de pequenas
oscilaciones del doble péndulo, que es un problema no separable, estudiando
el error y realizando experimentos numéricos que permiten comprobar las
ventajas de utilizar ciertos métodos simétricos particionados.

Abstract

The aim of this work is to conduct a comprehensive study on partitioned
linear multistep methods. In the first chapter, the definition and basic pro-
perties such as convergence, zero-stability, and consistency will be presented,
demonstrating, as with standard linear multistep methods, the characteristics
and properties that relate all these definitions. Additionally, the symmetry
of these methods will be studied, and a simple characterization will also
be demonstrated. In the second chapter, a detailed study of the asymptotic
development of the global error of partitioned linear multistep methods is
carried out, both for strongly stable and weakly stable cases. In the third
chapter, the behavior of the error on the preservation of the Hamiltonian is
analyzed based on the results obtained in the previous chapter. In the final
chapter, the previous results are applied to the case of small oscilations of the
double pendulum, which is a non-separable problem, analyzing the error and
performing numerical experiments to verify the advantages of using certain
symmetric partitioned methods.
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Introduccion

Los integradores geométricos han demostrado ser herramientas funda-
mentales en la integraciéon numérica de ecuaciones diferenciales ordinarias
con estructuras especificas [8], [11], [13]. En particular, la simplécticidad y la
simetria son propiedades muy interesantes, especialmente cuando se quieren
conservar propiedades del sistema que queremos integrar. Por ejemplo, los
métodos simplécticos son muy buenos en la integracion de sistemas hamilto-
nianos y los simétricos en la integracion de sistemas reversibles.

Un tipo de integrador geométrico muy utilizado es el Runge-Kutta. Para
ciertos sistemas especificos, como aquellos de segundo orden sin dependencia
de la derivada primera o problemas separables, existen versiones explicitas
de estos métodos, como los métodos Runge-Kutta-Nystrom y los métodos
Runge-Kutta particionados [13|. Sin embargo, cuando queremos crear mé-
todos Runge-Kutta simplécticos, aplicables a sistemas totalmente generales
de primer orden, esto implicar tener que usar de métodos implicitos. Esto
hace que para sistemas generales de primer orden no separables los métodos
Runge-Kutta simplécticos sean costosos de implementar.

Otros integradores geométricos también muy utilizados son los métodos
lineales multipaso, cuya gran ventaja sobre los Runge- Kutta es que cuando
son implicitos requieren una sola evaluacion por iteracion y cuando son expli-
citos una sola evaluacién por paso. Sin embargo, los métodos lineales multi-
paso no pueden ser simplécticos [5], pero para aquellos que son simétricos esta
garantizado que su método de un solo paso asociado es conjugado-simpléctico
[6]. Esto es relevante porque los métodos lineales multipaso pueden ser simul-
taneamente explicitos y simétricos, lo que ha motivado numerosos estudios
tedricos y aplicaciones practicas. A pesar de sus ventajas, los resultados po-
sitivos obtenidos para la integracion a largo plazo se han limitado a casos
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concretos, como sistemas de segundo orden sin dependencia de la derivada
primera o sistemas hamiltonianos separables, donde los métodos simétricos
ofrecen beneficios en términos de propagacion del error y conservacion de
invariantes [2|, [4]. Los métodos lineales multipaso aplicados a problemas de
primer orden conducen normalmente a un crecimiento exponencial del error.

El presente trabajo tiene como objetivo realizar un analisis exhaustivo
de la convergencia y la simetria de los métodos lineales multipaso particiona-
dos, viendo qué relacién guarda con la simetria y la convergencia de los dos
métodos lineales multipaso que componen el particionado. Con estos méto-
dos, diferentes partes del sistema diferencial seran integradas con distintos
métodos lineales multipaso, sin asumir que el sistema sea separable. Se ana-
lizara el comportamiento de estos métodos en la integracion de problemas
generales y se estudiara su influencia en la propagacion del error y la con-
servacion del hamiltoniano. Para ello, se realizardn experimentos numéricos
con el problema del doble péndulo, un sistema hamiltoniano no separable,
con el objetivo de justificar, en la medida de lo posible, el comportamiento
observado en términos del crecimiento del error en el hamiltoniano. Se espera
que este analisis permita comprender mejor el funcionamiento de los métodos
lineales multipaso particionados en otros problemas méas complicados.



Capitulo 1

Conceptos basicos sobre métodos
lineales multipaso particionados

1.1. Preliminares

1.1.1. Descripcién de un método lineal multipaso parti-
cionado

Consideremos el siguiente sistema autéonomo de ecuaciones diferenciales
ordinarias (o problema de valores iniciales) de dimensién n > 2

{y@) = F(y(t), te€[t,T),

y(to) = 1Yo € R™.

En dicho sistema se pueden dividir el conjunto de n variables en dos
subconjuntos de tamanos d y n — d respectivamente, pudiéndose escribir
como

~—
—~
~
~—
~—

(1.1.1)

p(t) = f(p(t),q p(to) = po,
q(t) = g(p(t),q(t)),  alto) = qo,

con pg € RY, go € R"%, 4o = (po, qo) ¥ la funcion
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con

[to, T] — R?,
q: [to,T] — R

Enunciamos ahora, sin demostrar, el siguiente resultado que es una adap-
tacion del teorema de Picard-Lindeldf a problemas de valores iniciales parti-
cionados.

Teorema 1.1. Sean f : Q C R* - R? y g : Q C R"® — R" % funciones
definidas y continuas en un abierto 1 C R™, para las cuales existen dos
constantes Ly, Ly > 0 tales que:

1f(z) = F)] < Lylla — ]|

lg(z) — g(2")[| < Lyl — 2]
para todo x,x* € Q. Entonces para cada py € R? y qo € R4 existe una
inica solucion y(t) = (p(t),q(t)), tal que f,g € CY(Q), para el problema de
valores iniciales particionado (1.1.1), con condiciones iniciales py y qo. M

A pesar de que el teorema 1.1 nos garantice la existencia de una tni-
ca solucion para (1.1.1), es dificil, incluso a veces imposible, encontrar su
solucion exacta. Se sabe que se requieren métodos numéricos para aproxi-
mar la solucion de (1.1.1) en una discretizacion del intervalo [to, T, es decir,
una sucesion {t,}N_ C [to,T], con t,41 = t, +h, yn=0,1,..., N, donde
N = (T —ty)/h y h > 0 es la longitud de paso. Pero dado como tenemos
escrito el sistema de ecuaciones diferenciales ordinarias, nos interesa c6mo
es de 1util y ventajoso aplicar métodos numéricos distintos a cada parte del
problema de valores iniciales particionado (1.1.1).

En este trabajo intentaremos integrar cada parte del sistema diferencial
autonomo (1.1.1) con métodos lineales multipaso distintos. Es decir, consi-
deraremos el método determinado a partir de los dos siguientes sistemas en
diferencias.

Ep kp
Zaﬁpn—kj - hzﬁff(pn-‘r]aqn—i-j)?
J=0 j=0

kq kq
> algn; = b BY9(Posss o) (1.1.2)

j=0 7=0
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A partir de este momento denotaremos como MLM a los métodos lineales
multipaso usuales. A los métodos de la forma (1.1.2) se les conoce como
métodos lineales multipaso particionados, que a partir de este momento los
denotaremos como MLMP.

Los valores de p, y ¢, son aproximaciones por (1.1.2) de p(t,) v q(t,),
respectivamente en t, = ty + nh, siendo h > 0 la longitud de paso de los
MLMP y ozf, ﬁf, ag, 6;1 los coeficientes de los dos MLM que componen (1.1.2)
tales que

of ol #0, |afl +18>0, |adl+ 189 > 0.

Las dos primeras condiciones se dan para que se pueda calcular p, x, y
Gn+k, al dar el n+k, y n+k, paso en los dos MLM que componen el MLMP.
Las dos tltimas condiciones se dan para que los MLM que componen el
MLMP sean de k, y k, pasos respectivamente.

Consideremos los polinomios caracteristicos de los dos MLMs que com-
ponen el MLMP (1.1.2)

g, op(e) = B a4
Bl og(e) = Bt e+ B (113)

donde (p,(z), py(x)) son los primeros polinomios caracteristicos del MLMP
y (0p(x), 04(x)) los segundos polinomios caracteristicos del MLMP.

Asi podemos escribir el MLMP dado de la siguiente forma:

Pp(E)pn = hop(E) f(pn; an),

Pg(E)Gn = hoo(E)g(pn, qn),

donde E es el operador que avanza h unidades de tiempo.

Notemos que si en (1.1.2) se tiene por ejemplo, y sin pérdida de generali-

dad que k, > k,, podemos calcular py, a partir de po, ..., Dy, 1,90, - - - Gk,—1-
Si k, > k,+1, podemos calcular py, 41 a partir de py, ..., pr,, q1, .- -, qx,. Y asi
sucesivamente hasta obtener los valores de arranque po, . . ., pr,—1, qo, -, Gy —1-

Por lo tanto a partir de ahora y a lo largo de esta seccion y la siguiente
se consideraran en los desarrollos de las demostraciones MLMP tales que sus
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MLM que lo componen tenga el mismo nimero de pasos k = max{k,, k,}.
Mas concretamente, escribiremos (1.1.2) como

k k
2 sy =h DB Dnts G
=0 =0

k k
Z@?C]nﬂ = th?}]g(pnﬂ,qnﬂ), (1.1.4)
=0 =0
p7* J— J— p7* —_ 7* —_ p7* —_ 7* —_— p 7* JR—
con g ==y g =000 =B, =0yt =, B =

Bl kyrk, PaTal =ky —kp, ... Ky

Los valores de arranque del nuevo MLMP son py, ..., pr,~1, 0, -, Gky—1,
donde pg,41, ..., Pk,—1 Se obtienen de (1.1.2).

Una vez considerados los k valores de arranque obtenidos por (1.1.2),
podemos reescribir (1.1.4) con sus polinomios caracteristicos que por la forma
en la que hemos construido este método son

p(a) = "M py (), py(r) = py(2),

o (z) = g kg (7)), o, () = o4(z). (1.1.5)
Por comodidad y por simplicidad de notacién, a lo largo de esta seccion y la
siguiente denotaremos por p, y 0y a p,y 0,y a oy B, paral=0,...,ka

aty g

Decimos que un MLMP es explicito si se puede calcular y, = (pn, qn)
de manera explicita, es decir, obtener las soluciones proporcionadas por el
método sin resolver un sistema no lineal, para cualquier f y ¢. En caso
contrario, diremos que el MLMP es implicito. Al igual que un MLM, el simple
hecho de resolver este tipo de sistemas hace que los MLMP implicitos sean
mas costosos de implementar que los MLMP explicitos. Es obvio que un
MLMP es implicito si y solo si al menos uno de los dos MLM que lo componen
es implicito, y que un MLMP es explicito si y solo si los dos MLM que
lo componen son explicitos. Ahora daremos una caracterizacion de MLMP
explicitos e implicitos, cuya demostracion es inmediata.

Corolario 1.2. Un MLMP es explicito si y sdlo si 6£p = ﬁgq = 0, don-
de ﬁ,zq, ﬁgp son los coeficientes de los sequndos polinomios caracteristicos en

(1.1.3). Un MLMP es implicito si y solo si B, #0 o B #0.
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1.1.2. Formulacién como método de un solo paso

Al igual que los MLM, los MLMP pueden reescribirse también como
métodos de un solo paso en un espacio de dimensién superior, que resultara de
gran utilidad para demostraciones posteriores. Consideremos en esta seccion
un MLMP de la forma (1.1.4), para el problema de valores iniciales (1.1.1).
Para reescribir un MLMP como método de un solo paso necesitamos definir

p
¢p(p07"‘7pk—17q07"')Qk—l) - Z g;;f p]an
k’

k q
Vg(Pos s Ph—15G0s -y Q1) = Z a—%g(pp%'),
5=0
donde los vectores pi v ¢ vienen definidos implicitamente como

k—1 o?

Pk = = Z pp] + hhp(Dos s Pis Qo -5 Q)

7=0

q

&k = — Z qu + hog(Pos s Prs G0, -y Qi)

Trabajaremos con el supervector

T .
Yi = (Dithe1:Pith-2- -+ Dir Qi1 Gick—2, - -, Gi) Y ER™ >0

siendo n la dimension de la ecuacion diferencial (1.1.1). E1 MLMP (1.1.4)
puede escribirse como

Yij1 = (AR D)Y; + h®(Y;), >0, (1.1.6)
donde
_O‘k;1 _O‘k;2 _CV_§ 0 0 0
ak ak, Oék
1 = 0 0 0 0 0
A= 0 e 0y
0 e O 0 _ kgl _ kg? . _05_8
X U g
0 0 0 1 0 0
0 0 0 0 1 0
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(I)(Y) = (wp(p()a ces Pk—15405 -+ qk71)7 07 e 707 wq<p0> ceos Pk—1540;5 -5 Qkfl)a 07 I 70)
y, por abuso de notacion, A® I corresponde a la matriz diagonal por bloques
tal que el primer bloque es S, ® I;, donde

_0‘2—1 ai—Q )
Oéi OCZ Oép
s,=| v o v (1.1.8)
0 1 0
y el segundo bloque es S, ® I,,_4, donde
_ %k % _af
OZZ O[Z Oéq
S=| Yoo 00 (1.1.9)
0 e 1 0

y las matrices I e I,_4 son las matrices identidades de tamanos d y n — d
respectivamente.

1.2. Convergencia, cero-estabilidad y consisten-
cia

1.2.1. Convergencia

Ya habiamos comentado que el problema de valores iniciales (1.1.1) tiene
una unica solucion.

Nos planteamos comparar, en un instante de tiempo t,, = ty + nh, para
una longitud de paso h, el valor de la solucion exacta y(¢,) con la solucién nu-
meérica y,, proporcionada por el MLMP (1.1.4). Para hacer esta comparacion
lo que hacemos es observar si la solucion {y,} dada por (1.1.4) se aproxi-
ma a la solucion exacta y(t,) cuando h — 0, o equivalentemente n — oo,
manteniendo fijo t,, = tg + nh.

Mas concretamente, se dice que un MLMP de k pasos es convergente si
siempre que los valores de arranque g, y1, . . ., yp_1 satisfacen

}Lirré(pj—p(t+jh)) = 0, paraj=0,...,k—1,

—

lllir%(qj —q(t+jh)) = 0, paraj=0,....k—1, (1.2.1)
_>
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se verifica que

1i = .
Iy, = y(tn)
tn=to+nh
Tengamos en cuenta que la definiciéon solamente depende del método, lue-
go es aplicable a cualquier problema de valores iniciales particionado (1.1.1).

Diremos que una matriz A cuadrada de tamafnio n cumple la condicion de
los autovalores si todos los autovalores de la matriz A son de médulo menor
o igual que 1 y los de moédulo 1 tienen multiplicidad geométrica m = 1.
Gracias a la convergencia, podemos garantizar que la matriz A (1.1.7) cumple
la condicién de los autovalores.

Teorema 1.3. Si un MLMP es convergente entonces la matriz A del MLMP,
reescrito como método de un solo paso, cumple la condicion de los autovalo-
res.

Demostracion. Supongamos que existe un autovalor de A, A, tal que |A| >
1. Por la estructura en bloques de A en (1.1.7), esto implica que o bien
A es autovalor de S, o bien es autovalor de S;. Supongamos sin pérdida
de generalidad que A es autovalor de S,. Consideremos ahora el siguiente
problema de valores iniciales:

cuya solucion es

(p(t),q(t)) = (0,0).
Para los valores de arranque yo = (0,0), 51 = (h)\,0), ..., yp_1 = (hAF71,0)
tenemos que la solucion del MLMP es

Yn = (men) = (h/\n70)
Esto se debe a que el vector (pg_1,...,p0,0,...,0) es un autovector de A.

Tenemos que
[pall = RIA™,

donde n(h) es tal que t,, = to+nh. Como n(h) — oo cuando h — 0y |A| > 1,
se tiene que:
|pn|l = 00 cuando h — 0.
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Por lo tanto, el MLMP no es convergente.

Supongamos que hay un autovalor de A, \*, tal que |\*| = 1 y es de
multiplicidad geométrica m > 2. Supongamos, sin pérdida de generalidad,
que A\* es autovalor de multiplicidad geométrica m > 2 de S,. (Notemos que
no puede haber ningtn autovalor A de A con multiplicidad geométrica 2 tal
que sea autovalor de S, y S, pero con multiplicidad geométrica 1. Esto se
debe a que por la estructura por bloques de A, dim(Ker(A — \I)) = 2.)
Para los valores de arranque y5 = (0,0),y7 = (hA*,0),---,y;_; = ((k —
DA*F=Dh 0), se tiene que la solucién de (1.1.4) es y, = (nA*™h,0) ya que
el vector (p;_4,...,p5,0,...,0) es autovector de A, donde v = (pf, ¢}) para
n € N, debido a que la multiplicidad geométrica de A* como autovalor de S,
es m > 2.

Tenemos que
193] = nh[ A "™ = ¢,

que no tiende a 0, para t,, # 0, cuando h — 0. Esto contradice el hecho de
que el MLMP sea convergente. O]

Demos ahora una caracterizacion de convergencia de un MLMP, que pro-
baremos al final de esta seccion.

Teorema 1.4. Un MLMP es convergente si y solo si los dos MLM que lo
componen son convergentes.

Observacion 1.1. Puesto que los valores de arranque de (1.1.4) son obte-
nidos a partir de los de (1.1.2), se cumple la condicion (1.2.1) de los valores
de arranque para la convergencia del MLMP (1.1.4) si y solo si se cumple
para los valores de arranque de (1.1.2) y las ecuaciones (1.1.2) se satisfacen
en la solucion exacta salvo en términos que tiendan a 0 cuando h — 0.

1.2.2. Consistencia

A veces comprobar de forma directa si un MLMP es convergente es una
tarea demasiado dificil. Nos preguntamos qué condiciones debe satisfacer un
MLMP para que sea convergente. Una de esas condiciones podria ser que sea
una representacion lo suficientemente precisa del sistema diferencial (1.1.1).

Para medir la precision del MLMP de k pasos en (1.1.1), estudiaremos el
valor del residuo R,,;«, con n € N, también conocido como error de truncaciéon
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local, dado por

B (S0 @ Pltss) = R Bitss)
" Z?:o O‘? q(tnts) —h ijo ng(tnﬂ) ’

donde y(t) = (p(t), q(t)) es la solucion de (1.1.1), con p € C([ty, T],RY) y
qc Cl([to,T],Rnfd).

Una primera idea para ver si el MLMP se adapta al sistema de ecuaciones
diferenciales (1.1.1) seria comprobar si R,,+x — 0 cuando A — 0. Sin embargo,
al calcular el limite vemos que

p(ts) Zl?zo O‘?
fn = <q<tn> >, a?)

y por tanto, la condiciéon R, r — 0 solo pone una restricciéon en los coefi-
cientes aﬁ-’ y a? de los dos MLM que componen el MLMP. Esto hace que se
puedan tomar 3 y 3] arbitrarios en un MLMP con of y af cumpliendo la
restriccion. Parece claro que esto puede no proporcionar una buena aproxi-
macion a (1.1.1). Es por ello que estudiaremos si R,,.x/h — 0 cuando h — 0
con nh fijo.

Diremos que un MLMP es consistente si para todo problema de valores
iniciales que satisface las hipotesis del teorema 1.4, se tiene que

1
pm 3 B = 0.

Al igual que en la convergencia, la consistencia solamente depende del méto-
do, luego es aplicable a cualquier problema de valores iniciales (1.1.1).

También nos interesa ver como de bien se adapta el MLMP a (1.1.1), es
decir, como de rapido converge R, r/h a 0 cuando h — 0. Diremos que un
MLMP tiene orden de consistencia r > 0 si R, = O(h"1).

Ahora demos una caracterizacion de consistencia para MLMP.

Lema 1.5. Un MLMP es consistente de orden r > 0 si y solo st los dos
MLM que lo componen son consistentes de orden r.
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Demostracion. Un MLMP es consistente de orden r» > 0, si y solo si para
cualquier problema de valores iniciales suficientemente regular se tiene que
el error de truncaciéon local

Lo 1) = | R n | 122)

es O(h™1), donde E es el operador que avanza h unidades de tiempo y
(Pp, 0p), (pg,04) son los polinomios caracteristicos asociados a cada uno de
los MLM que componen el MLMP. Se tiene, por tanto, que existe C' > 0
constante independiente de h tal que

IL(p(t), q(t), h)|[gn < CR™,

para h suficientemente pequeno, donde ||||g» es la norma euclidea en R™. Por
definicién de norma euclidia en R", se tiene que

max (|| p(E)p(t) — hop(E)p(t) lwa, [ g(E)a(t) — hog(E)q(t)|lzn-a) < Ch™H.

Luego, los dos MLM son consistentes de orden r.

Ahora supongamos que los MLM que componen el MLMP son consis-
tentes de orden r. Existen C,, C;, > 0 constantes independientes de h, tales
que

lop(E)p(t)—hop(E)p(t)[ra < h"Cp, (lpg(E)q(t)—hog(E)q(t) rn-a < W™ Cy,
para h suficientemente pequeno. De aqui se tiene que

IL(p(8), q(t), h)llpn < Cph™ " + Coh™ < (G + Co)h™H,
y por tanto el MLMP es consistente de orden r. O]

Observacion 1.2. Usando el desarrollo de Taylor de p(t + jh),p(t + jh),
q(t + jh) y 4(t + jh) tenemos que

pe+ 1) = pl0)+ihi(t) + Tl +

plt+jh) = p(t)+jhﬁ(t)+% )+

e+ = a0+ i)+ 9 g0 1

G(t+jh) = q'(t)+jhéj(t)+Mq(??)(t)+---. (1.2.3)
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Si sustituimos (1.2.3) en (1.2.2) tenemos

dop(t) + hdip'(t) + - - + W dipD(t) 4 - --
Liu(t): ) — % 1 Sl 1.2.4
(y(t); h) (dgq(t) +hdlq(t) + -+ WdlgW(t) +--- ) ( )

donde dg, dg, - -- ,df,dj,--- son los coeficientes que se obtienen de los desa-
rrollos de Taylor en (1.2.3).

A partir de (1.2.2) y (1.2.3) tenemos que un MLMP tiene orden de con-
sistencia v > 0, y no orden de consistencia v + 1, si y solo si

B =dl =0, d=d =0,d,, #0o0d, #0,

(1.2.5)
donde
k
dy = Y af =py(1),
§=0
k
dy = Y af=p,1),
§=0
k
&= (jok = BY) = p,(1) = 0, (1),
§=0
k
di = ) (jal = ) = p(1) — oy(1),
7=0
k
1 1
& = —ilal — — P J=2,3,
;]' (j—1)!
k
1 1
" Lok q q _
d; = izoj!Z o TR Jj=2,3,

Otra forma de expresar el error de truncacion local es

ou(E) (S5 htipto (o)
Lytyh) = | " P + O, (1.2.6)
og(E) (>oiZ. clh'™ gt )<t)
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donde ¢} y ¢} son distintos de dj y dj. Esta expresion nos serd de gran utilidad
en el siguiente capitulo. Solo haremos la prueba para MLMP convergentes,
que son los que utilizaremos en el siquiente capitulo.

Consideremos un MLMP con polinomios caracteristicos p,, pq, 0p, 04, lue
go necesariamente o,(1) # 0 y o,(1) # 0. Las ecuaciones de (1.2.6) las
podemos escribir de la siguiente forma

lJ;l Cphl—i-l Z?:o ﬁfp(lﬂ)(t_{_jh)

+ O(R7th).
ZZI 1cth+1 Z?ZO ng(l+1)(t+jh) ( )

L(y(t);h) =

Haciendo el desarrollo de Taylor de y™Y(t +nh), para l =r,...,J — 1y
n=1,...,k, de orden J—1l—1 en torno at, tenemos que la anterior ecuacion
es equivalente a

1) J—l-1

Zcphl-i-l <Z ﬁp ( l+1 +jhp(l+2 )+ -+ %pw(ﬂ)) )
1\ J—l—1

Zcth-H (Zﬁq ( l+1) +th (14+2) ( YA %&D(t})) .

Reordenando las anteriores ecuaciones segin la potencia de h e igualando los
coeficientes con los de (1.2.4), tenemos para cada l =r,..., J — 1.

l—r
l+1 = qoy(1) + c?—ﬂj;;(l) + Z - iOp,is

iy, = cjog(1) + C?_N;(l) + Z 04
i=2
(1.2.7)

donde
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En (1.2.7) tenemos dos sistemas de J —r ecuaciones con J — r incdgni-
tas cuyas matrices asociadas son matrices triangulares inferiores invertibles,
luego existe solucion y es unica.

A partir del lema 1.5 y teniendo en cuenta que un MLM con polinomios
caracteristicos (p, o) es consistente si y solo si

p(1) =0, o(1)=/(1),

podemos dar otra caracterizacion de un MLMP consistente.

Teorema 1.6. Tomemos un MLMP con polinomios caracteristicos p,(x), o,(x)
Y pg(x),04(x). Un MLMP es consistente si y solo si

Observacion 1.3. Notemos que en el caso en el que k, < ky, da igual im-
poner la condicion sobre (py,0,) y (pg,04) en (1.1.8) que sobre (p5,0%) y
(py,00) en (1.1.5). Por ello, el MLMP (1.1.2) es consistente si y solo st
(1.1.4) también lo es.

También, al igual que para MLM de k pasos, se cumple que si un MLMP
es convergente, entonces podemos garantizar su consistencia.

Teorema 1.7. Si un MLMP es convergente, entonces es consistente.

Demostracion. Podemos realizar esta demostracion con el MLMP (1.1.4) gra-
cias a la observacion 1.3. Apliquemos este MLMP con valores de arranque
Po=¢qo = 1,....,ppk-1 = qx_1 = 1 al siguiente problema de valores iniciales
particionado

p(t)=0, p(0)=1,
q(t) =0, ¢q(0)=1,

cuya solucion exacta es y(t) (p(t),q(t)) = (1,1). Sustituyendo f(p(t),q(t)) =
g(p(t),q(t)) = 0 en (1.1.4) tenemos

Q/an—kk + azflpn—i-k—l + -+ agpn = 07
Ol sk + QL Gnik—1 + -+ afgn =0, (1.2.8)
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conn > 0,donde of, ..., af, af, ..., o son los coeficientes de los dos polinomios
caracteristicos p, y p, de los MLM que componen el MLMP.

Como dicho método es convergente se tiene que las sucesiones {pZin}fLozo

y {qgin}j’l‘;o convergen a la solucion y(tx) = (p(tx), ¢(tx)) = (1,1), donde y,';j”rn

es la solucion del MLMP (1.2.8) con longitud de paso h,, = kh/(n + k), con
h > 0.

Como (1.2.8) no depende de la longitud de paso, se tiene que

{PZZLrn Zozo = {pz+n};o=0

{quﬁn}?:o = {q;’é+n};’°:o-

Por tanto las sucesiones

{pZJrn }20:07 {qz-‘rn }ZO:O

convergen a 1 cuando n — oo. Haciendo n — oo en (1.2.8) se tiene que
pp(1) = pg(1) = 0.

Ahora probaremos que pl,(1) = 0,(1) y p,(1) = 04(1) pero notemos que
por el teorema 1.3 se tiene que 1 no puede ser raiz doble de p, y pg, luego
pp(1) # Ly pi(1) # 1.

Apliquemos (1.1.4) con valores de arranque py = qo = 0,...,pp_1 =
Op(k —1Dh, gp—1 = Cq(k — 1)k, donde C), = Up(l)/P;(D y Cy = Uq(”/ﬂi;ﬂ);

al siguiente problema de valores iniciales

(T 1 0)=0

=1 po) =0 o)
¢t) =1 ¢(0)=0,

cuya solucion exacta es y(t) = (¢,t) y donde h es la longitud de paso del

MLMP.

Por (1.2.9) y los valores de arranque que hemos tomado, tenemos que
(1.1.4) es

ohpy + b Cplk —1)h+ - + aCyh = hoy(1),
afge +af_Co(k — Dh+ -+ aiCoh = hoy(1),
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que podemos ponerlo como
akpy=h [ap(l) -G,

arqe = h [aq(l) - C, a?l} .

Sumando y restando a las ecuaciones anteriores aykhC), y afkhC, res-
pectivamente se tiene que

k
apy = h(a,(1) - C, Z ol + Cypolk),

=0

k
ajgr = h(o,(1) = Cq Z afl + Cyailk).
1=0

Como

k
> afl=p(1)
=0

k
> ol = (1)
1=0
se tiene que ofp, = o hkCy y alqr = afhkCy, luego
Y = (P, ) = (hkC,, hkCY).

Razonando por induccion se tiene que y, = (pn, ¢n) = (hnC,, hnC,), para
n € N. Como el MLMP (1.1.4) es convergente, necesariamente

Co=0,(1)/p,(1) =1 vy Cq=04(1)/p,(1) = 1.
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1.2.3. Cero - estabilidad

Sabemos que si un MLMP es convergente entonces es consistente, pero
el reciproco no tiene por qué ser cierto. Puede ocurrir que el sistema en
diferencias (1.1.4) aplicado a un problema de valores iniciales (1.1.1) sufra
inestabilidad, es decir, que sea muy sensible a perturbaciones originadas en
(1.1.4) y en los valores de arranque. Esto impide que (1.1.4) pueda converger.
El MLMP perturbado serfa entonces

k k
> Ppnii =hY B Putg Gnrs) + 00
j=0 3=0

k k
Z Oé?%ﬂ' =h Z ﬁ}lg (Prtjs Gnts) + h7§+k7
j=0 j=0
con condiciones iniciales py = p, + 5, ¢, = g, + 7} perturbadas, para
w=0,....k—1.

Sean y2, y4 n =0,1..., N y y2* ~2* 'n =0,1...,N, dos perturbaciones
de un MLMP y sean

{Yn,n=0,...,N} v {y;,n=0,...,N}
las dos soluciones de los sistemas en diferencias perturbados respectivamente.

Si para cada ¢ > 0 existe una constante real b > 0 y hy > 0 tales que
para cada h € [0, ho| se verifica que:

[y — w5l <€ para 0<n <N,

cuando
max (|75 =2, V" —nll) <b, 0<n <N,

entonces decimos que el MLMP es cero-estable.

Comprobar la cero-estabilidad de un MLMP a partir de la definicion suele
ser una tarea a veces complicada. Por lo tanto probaremos que la condicion de
los autovalores sobre la matriz A (1.1.7), utilizada para reescribir un MLMP
como método de un solo paso, es equivalente a que dicho método sea cero-
estable.
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La condicion de los autovalores de A junto con la consistencia de un
MLMP nos permitira probar la convergencia de manera méas asequible que
aplicando la definiciéon literal de cero-estabilidad. Pero antes enunciaremos
un lema importante para demostrar este resultado.

Lema 1.8. Supongamos que un MLMP es 0-estable. Entonces existe una
norma vectorial tal que la matriz A del MLMP formulado como método de
un paso satisface

|A® 1] <1
en la norma matricial subordinada.

La demostracion de este lema es igual que la realizada en 8] para MLM.
Lo tinico que importa para esta demostraciéon son las caracteristicas de los
autovalores, que son iguales a la uniéon de los autovalores de las matrices de
8] asociadas a p, y p, en la reconstruccion de un MLM como método de un
paso.

Ahora si pasemos a la demostracion del teorema que posteriormente nos
podra garantizar que la cero-estabilidad y la consistencia son condiciones
necesarias y suficientes para que un MLMP sea convergente.

Teorema 1.9. Un MLMP de k pasos (1.1.4) es convergente si y solo si es
consistente y la matriz A que se utiliza para reescribir el MLMP como método
de un paso cumple la condicion de los autovalores.

Demostracion. Ya ha sido probado en el teorema 2.6 que si un MLMP es
convergente entonces es consistente. Tambien se prob6 en el teorema 1.3 que
si un MLMP es convergente entonces la matriz A cumple la condicién de los
autovalores.

Veamos ahora la otra implicacion. Supongamos que el MLMP (1.1.2) es
consistente y tal que la matriz de dicho método reescrito como método de
un paso cumple la condiciéon de los autovalores. Consideremos un problema
de valores iniciales lo suficientemente regular. Es inmediato probar que la
funcion ¢(Y;) satisface la condicion de Lipschitz.

Consideremos los errores cometidos en los valores de arranque

pt) =pi+ol, qti)=q+ol, i=0,1,....k—1.
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Sustituyamos en el MLMP los valores aproximados por la soluciéon en (1.1.1),
teniendo en cuenta los errores de truncaciéon local

ZOQP n+l —h25l (tnta) (n+l>)+‘7§+k>

Zalq n+z—h261 (tns1)s qltarn)) + 0% (1.2.10)

Restando a las ecuaciones (1.2.10) las ecuaciones de MLMP tenemos que

Z o] (p(tnsi) = Pngt) = h Z 51 (tns1), a(tns1)) — f(Pryis Qn+l)) + 00

k
> al(qltnit) = uir) = h Z B (9(0(tnti a(tnst)) = 9(Pntis Gurt)) + oy,
=0

Consideremos el vector que contiene k errores de discretizacion global para
py q. Mas concretamente,

p(tn+k—1) - pn-i—k—l-

p(tn) — Dn
E, =
Q(tn+k71) — Qn+k—1

i Q(tn)._% |

Y 0nsr € R™ tal que sus d primeras coordenadas son o7 /oy las coorde-
nadas que van de dk+1 a dk+n—dson o, /of. Las restantes coordenadas
son nulas.

Se tiene que
Enii= (AR DNE, +hMo(Y(tn) — ¢(Yn)) + onsr
Denotamos por L a la constante de la condicién de Lipschitz de ¢.

Sabemos por el lema 1.8 que, para cierta norma, ||A ® I]] < 1 y ademas
(A )" < [(A® I)||™ < 1. Entonces tenemos que

1BV < [[Eoll + AL{Yo = Yo(to) |l + llowll = llowll + (1 + AL)[ Eol-
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Para n = 2 tenemos

By = (A®DE +h(o(Y(t)) — ¢(Y1)) + 0hpa
= (AR IEy+h(Aa 1) (6(Y () — 6(Y0)) + (A® D)oy,
+h(o(Y (1) — 6(V1))) + 0k, (1.2.11)

Acotando de nuevo con la norma del lema 1.8 tenemos que

1 £l [Eoll + AL Eoll + AL Exll + [lok]l + o]

<
< (L4 ALY Boll + (1 + RL)|low]l + llowsa - (1.2.12)

Razonando por inducciéon sobre n llegamos a que
1Enll < (14 AL)™ | Eoll + (1 + AL)" H|owl| + -
+(1 4 AL)||on skl + llonr-ll-
Esto nos permite probar que
|E,|| < (14 hL)"|Eol| + CR™ ' [(1 4+ hL)" ' + -+ 4+ 1],

para cierta constante C' y donde 7 es el orden de consistencia del MLMP.

Debido a la formula para sumas geométricas y a que (1+hL)" < exp(nhlL)
se tiene
exp(nhL) — 1

7 )

La convergencia del MLMP es ahora inmediata por esta desigualdad cuando
h — 0. También se observa que como el método tiene orden de consistencia r
podemos garantizar que la convergencia es de orden r siempre que los errores
en los valores de arranque sean de orden 7. ]

[Enll < [|Eol| exp(nhL) + Ch"

Demos ahora una caracterizacion de MLMP cero-estable cuya demostra-
cion es similar a la realizada en el teorema 1.9.

Teorema 1.10. Un MLMP es cero-estable si y solo si la matriz asociada
(1.1.7) cumple la condicion de los autovalores.

Gracias a los teoremas 2.9 y 2.10 podemos garantizar el siguiente resul-
tado:



26 1.2. CONVERGENCIA, CERO-ESTABILIDAD Y CONSISTENCIA

Teorema 1.11. Un MLMP es convergente si y solo si es cero-estable y con-
sistente.

También podemos dar otra caracterizacion de MLMPs relacionada con
la cero-estabilidad de los dos MLM que lo componen.

Teorema 1.12. Un MLMP es cero-estable si y solo si los dos MLM que lo
componen son cero-estables.

Demostracion. Recordemos que un MLM con polinomio caracteristico p(z) =
apz? + - - - + ag puede escribirse como método de un solo paso de la siguiente
forma

Yk —“Z;—;l T —3—; —3—2 Yr—1
Yk—1 1 e 0 0 Yk—2
Yk - : - : .. : : + h¢(Yk_1)’
Y1 0 e 1 0 Yo

donde ¢(Y}) es una combinacion lineal de la funcion f del problema de valores
iniciales suficientemente regular que integra el MLM. Los MLM son cero-
estables si y solo si los autovalores de la matriz de la ecuacion anterior son
de moédulo < 1 y los de modulo 1 son simples, que es equivalente a que el
MLM cumpla la condicién de la raiz.

Consideremos el MLMP reescrito como método de un solo paso con ma-
triz A. Sabemos que A es una matriz por bloques, es decir,

_ Sp 0
Y. 1219

donde S, y S, son las matrices que aparecen en (1.1.8) y (1.1.9). Por la
forma de A, los autovalores de A son los mismos que los de S, y S, luego la
equivalencia del teorema es inmediata gracias al teorema 1.10. O]

Por el anterior teorema, el lema 2.5 y el teorema 1.11 se prueba de forma
inmediata el teorema 1.4.
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1.3. Simetria

Sea V), una funcion que define el MLMP. Al igual que los MLM, un
MLMP de k pasos es simétrico si y solo si, siempre que

Yn+k = \Ijh(yn7 Yn+1 - - 7yn+k—1>

se tiene que

Yn = ‘I’—h(ynJrk’ Yn+k—1y--- 7yn+1)-

Recordemos que en la asignatura ’Integracion Geométrica’ del méster de
Matematicas se tenia que un MLM de k pasos convergente es simétrico si y
solo si los coeficientes del primer y segundo polinomio caracteristico cumplen

o = —o—j, B = Pr—j
Consideremos el MLMP (1.1.2) escrito como

(pka Qk) = ¢h<p07 co oy Pkp — ]-7 qo, - - - anq—1>- (131)

Demostremos ahora una caracterizaciéon de un MLMP simétrico:

Lema 1.13. Un MLMP convergente es simétrico si y solo si los dos MLM
que lo componen son simétricos.

Demostracion. Un MLMP de k pasos es simétrico siempre que
(pkvqk) = ¢h<p07~-7Pk:p—17QO>---anq—1)
implique que

D (Phs s Phbopt 1 Qs s Qh—kg+1) = (D05 Qo)- (1.3.2)

Supongamos que cada uno de los MLM que componen el MLMP son simé-
tricos, entonces

Of? = _azpfja /65) = ﬁ]zspfja
of = —al_,, B = Bl_. (1.3.3)
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donde estos coeficientes corresponden al método (1.1.2). También suponga-
mos sin pérdida de generalidad que k, < k, siendo k = maéx(k,, k,) = k.
Tenemos que, si suponemos (1.3.1), que es equivalente a

reordenando los sumandos de

kp

p .
E Qg —iPhy—j
J=0

kp
ol ;
lep—jPhp—j+1
Jj=0

kyp
= by Bf(pia),
=0

kp
= 1Y B (i, ),
j=0

kp
= h Z 5§f(29j+k—kp, Qjth—kp )

j=0

= hZB}’g(pj,qj), (1.3.4)

la siguiente manera

kp

= h Z ng,jf(pkp—ja Qkp—j)7
=0
kp

= h Z 5£p_jf(pk,,—j+17 Qhp—j+1)s

J=0

Ep
= h Z ﬁip_jf(pk—jv Qk—j)7
=0

kq
= h Z ng_jg(pkfﬁ Qkfj)’

J=0
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y utilizando (1.3.3), tenemos que

kp Ep

Z O‘i')pkpfj = —h Z Bff(pkp*jv qk‘p*j)ﬂ
=0 =0
kp

kyp
> afpr, i = —=h Y B (Dry—jrts Qi)
=0 =0

kp kp
oy = —hY B (g arj),
j=0 5=0
kq
Salg; = —hd> Blapii ay), (1.3.5)
_ 2

Por lo tanto, tenemos la simetria del MLMP.

Supongamos ahora que el MLMP es simétrico. Por definicion de simetria,
si se cumple (1.3.4), se cumple (1.3.5). Particularizando al sistema

p = [f),
q¢ = 9(q),
y partiendo de po, ..., px,—1, el hecho de que

ky kp
> alp; = by B f(p),
=0 =0

es equivalente a la primera ecuacion de (1.3.4). Tomemos entonces py, 41, - - - , Dk,
de manera que se cumplen el resto de ecuaciones de (2.3.4).

Por la primera de las ecuaciones de (1.3.5), que en este caso se escribe
como

kp kp
> afpr,y = —h>_ B f(pr,-i):
5=0 §=0
se tiene que cuando damos el paso —h desde py,,...,p1, se llega a po, por

tanto el primer MLM (p,, 0,) es simétrico.



30 1.3. SIMETRIA

Razonando de manera analoga pero con menor dificultad, se justifica que
el MLM (p,, 0,) es simétrico. O

Gracias al anterior lema y a que un MLM de k-pasos convergente con
polinomios caracteristicos (p(z),o(x)) es simétrico si y solo si

p(x) = —2*p(1/z) y olz) =2"o(1/z),
podemos dar otra caracterizacion de MLMP simétrico.

Lema 1.14. Un MLMP convergente es simétrico si y solo si los polinomios
caracteristicos py(z), py(x), 0p(x) y o4(x) en (1.1.3) cumplen que

pp(x) = —Ik”l)p(l/ﬂf)a pq(a:):—a:kqpq(l/x),
opla) = oy(1f),  oy(x) =ty (1))



Capitulo 2

Desarrollo asintotico del error
global

El objetivo de este capitulo serd realizar un estudio de tipo cuantita-
tivo sobre el error de discretizacion global. En concreto nos interesara el
comportamiento del error para valores de h > 0 suficientemente pequenos,
limitandonos a estudiar expresiones del error de discretizacion global que
contienen potencias de h, para j < 2r, donde r > 0 es el orden del método.
Para ello, al igual que en los MLM, probaremos el desarrollo asintético del
error para MLMP, cuya demostracion esta basada en la realizada en [1], pero
antes de probar dicho desarrollo, daremos una serie de conceptos importantes
y demostraremos una modificacién del lema 5.6 de 9] para métodos lineales
multipaso no particionados. Para probar este lema necesitaremos probar este
otro, ya probado en [9)].

Lema 2.1. Sea p(&) = a&® + a1+ -+ g un polinomio que satisface
la condicion de cero-estabilidad, y sean 7y, (con l = 0,1,2,...) coeficientes
tales que

1
p(&)

=0 + &+ 7€+ (2.0.1)

donde H(€) = oy + 1€ + - + agf®. Entonces,

31
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I'=sup{|y|: 1l €N} <0 (2.0.2)

Demostracion. Tenemos que p(€) = EFp(€71) y por tanto las raices de p son
las inversas de las raices de p. Como p cumple la condicién de cero-estabilidad,
p no tiene raices de modulo mayor que 1, luego p(§) no se anula dentro del
disco abierto B(0,1) C C. Por tanto, 1/p(£) es holomorfa en |£] < 1.

Sabemos por resultados ilustrados en la asignatura "Variable Compleja” del
grado de Matemaéticas que si tenemos un polinomio P(z) € C[z] con raices

Z1,...,2Zn con multiplicidad [q,ls,...,[,,, se tiene que existen coeficientes
b1,17 e bLll, b2,17 ceey bm,h c. ;bm,lm tales que:
1 b b b b,
— 1’1 + 1’2 +.+1—’l1l++—’1
Pz) (2—z1) (2—=)? (z—2)h (z = 2m)
bm 2 bml
= 44 —’m'
(z — 2m)? (z — zpp)lm
Las raices de p(§) de modulo 1, zy, 2, . . ., 2, son simples, porque p cumple
la condicion de estabilidad. Por tanto existen constantes Ay, ..., A, de forma
que la funcién
1 Ay A,
10 =5 (g2 + i),
p(g) 5 — 21 5 — Zn

es holomorfa en B(0,1) y por consiguiente estd acotada en el mismo dis-
co. Usando las formulas de diferenciacion de Cauchy, vistas también en la
asignatura "Variable Compleja”, podemos concluir que los coeficientes del
desarrollo de Taylor de f en 0 estan acotados. Como los coeficientes del de-
sarrollo de Taylor de A, /({ — z,) también estan acotados para 1 =0,...,n,
se cumple (2.0.2). O

Observacion 2.1. Vemos que a partir de este lema se obtiene la siguiente
rqualdad:

1, s21=0

aEV + Qg—1Vi-1 + o+ QeYi—k =
ENI E—171-1 01—k {07 sil>0
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donde ~y; son los coeficientes del anterior lema paral > 0 y paral < 0, v = 0.
Esto se debe a que si multiplicamos ambos lados de la ecuacion (2.0.1) por
ap + o1+ -+ o, obtenemos por la derecha un polinomio con variable
¢ y por la izquierda 1. Basta iqualar los coeficientes de ¢ para obtener el
resultado, para 7 € N.

El siguiente lema establece como crecen las soluciones de estas dos ecuacio-
nes en diferencias no homogéneas acopladas.

P P
Qg Zmetky + -+ apzm
_ pp Pq p
=h {5,€p7mzm+kp A+ Bomam + By Wik, 0 Bo Wi | + AL
ol w + -+ adw
kq m+kq oWm

] (2.0.3)
=h [ﬁgf,mzm+kq + -+ 6 mem + ﬁkq W+ k, +- 4+ 58,qmwm + Agn

Lema 2.2. Sean p,(§) = aﬁpf’“? +tah ype(§) = azqfkq +- o polmo—
mios que satisfacen la condicion de cero-estabilidad. Sean B3, B,., By, Byqs Bops
Bpgs Baps Bags A\p Y Aq constantes tales que para n=0,1,..., N

G2 |+ GE < o,
’qu, ’ +ooet |ﬁ0,n‘ S B ,qp,
Bl + -+ B0l < 877,

|Bi o + o+ [Bo| < 87, (2.0.4)
|5kp, S ﬁpp7 |/6kp7 qua
‘ﬂkq,n S ﬂqp’ ’qu,n| < qua

IAP] < NP, IAZ| < A9 (2.0.5)

y sea, para BP = 2méx (PP, fP?) y 1 = 2max (B, 597) , h tal que

0<h< 1m ('2’2" |O;Zq|) (2.0.6)
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Entonces, toda solucion de (2.0.3) para la cual
lzn| < 2P, n=0,1,...0k,—1 vy |w,| <2 n=0,1,....k,—1, (2.0.7)
cumple

‘Zn‘ S K*enhL*

o Jw| < KFe™™ n=0,1,..., N, (2.0.8)
donde L* =T*B*, K* =T*(NA+ ZKA) y

I 2 m4 o o
— T\ T =g [T TRl AT )

B* = 92 méx(ﬁ*’pp, B*qu’ 5*7‘1177 B*y‘M),

A = méx(\P,\7),

A = miax (laf |+ +lofl.. lof, |+ +laf])

Z = max(z?,29),

k= méx(k,,k,). (2.0.9)
Demostracion. Sean 7y, y 7;1, los coeficientes que se obtienen del lema 3.1
para los polinomios p,(¢) v p,(¢) respectivamente. Para ¢ = 0,1,...,n — k,
y ¢ =0,1,...,n — k,, vamos a ir multiplicando a las ecuaciones de (2.0.3)

por 7} v 74 respectivamente, donde m =n —k, — £ (vesp. m =n —k, — ).
Sumando todas las ecuaciones obtenidas para cada ¢ (resp. ¢'), tenemos a la
izquierda

Spo= (g, 20+ 2,V + (0h, 21+ + G Zp—g, 1)1+ -
+(af, 2w, + o+ agz) vy, s (2.0.10)

Spo= (af wp+ -+ aqWn_p,)Vg + (O W1+ + QGWA—k,—1)V + - ..
+(af, Wi, + -+ agwo) vy, - (2.0.11)

Reordenando dichas sumas tenemos

p _ PP p P P P o PP
Spo= 0%+ (g W+ o _170)Zn-1 + -+ gV, 20,

Sno= o Yown + (a1 +af, _17%6)Wa—1 + -+ + QG Vg, Wo-
Usando la igualdad (2.0.3), podemos simplificar estas expresiones a

Spo= 2zt (), Vg, T ATy 41) 21 0 AGY g, %0, (2.0.12)
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Spo = wa A+ (A Vnog, T+ O nok, 1) Who—1 + o AGY, wo. (2.0.13)

Haciendo ahora la suma del lado derecho de las ecuaciones de (2.0.3), mul-
tiplicadas por sus respectivos coeficientes v, y v, por separado, tenemos
que:

Sho= {@f n—kp %Zn (ﬂk —1,n—kp 70 +ﬁkp,n k —171) Zp—1+ ...
(B 8+ B i D) Znky o B 70
+ﬁkp n— kprOQUn (5 kp—1,n— kp'.}/o + ,ka n— kp—171> Wp—1 4+ ...
(B e+ B ) Wy e+ B w0
A k00 + AW )‘Z—kﬂz—kp] ; (2.0.14)
SZ = |:6kq n— kq'YOZn <6[Z§,17n,kq'yg + 513:@71@(1717(11) Zp—1+ ...
50nk70 +5kn 2k'7k Zn—kq+"'+6g%73k2’0
q q» q
+6kq n— kq’y()wn (ﬁkq—l n— k:quo + 5]%’” kq—lvl) Wp—1 4+ ...
<60n kq Yo+ + 5k n—2kq ol ) Wp—kg T+ 58%72—1@(1,7#”0
SN R D RPN ¢ KR ERE D G P } (2.0.15)

Supongamos que |z,| > |w,|. Igualando (2.0.14) y (3.0.10) y utilizando (2.0.9)
y las desigualdades (2.0.4) y (2.0.7) obtenemos

|z < BBI(a})) Mzl + R () Izl + RTPEP Y [z

n—1
_l_hrqﬁ*,pqz Wy | + NTPXP + AT ZE,. (2.0.16)

m=0
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Por definicion de P y £ tenemos

n—1
2ol < BBPI(})) M lzn] + RTPBP Y |2l (2.0.17)
m=0
n—1
HRTIB™ P " Jwy,| + NTPN? + AP Zk,.
m=0

(En caso de que |z,| < |w,]|, se razonaria de manera similar, igualando las
ecuaciones (2.0.1) y (2.0.15)). Entonces, despejando |z,| y utilizando (2.0.9)
y las desigualdades (2.0.4) y (2.0.7) tenemos

n—1 %

>zl + ) + 5 2.0.18)

m=0

hL*

|zn| <

(La misma desigualdad tendriamos para |w,| si suponemos que |z,| < |w,]).
Por otro lado, AI';) > 1 por (2.0.4) y ' > 2TI', ya que

0< (1= hlaf|"'87) <1

Esto implica que K* > 27 y, por tanto, tenemos por (2.0.5) para los valores
de arranque que:

|2m| + |w| < K*(1+ALY)™, m=0,1,....k— 1.

Razonemos ahora por induccién para probar esta misma desigualdad para
todo n tal que £ < n < N. Supongamos que la desigualdad es cierta para

m=0,1,...,n — 1. Utilizando (2.0.18) para |z,| y |w,|, tenemos que
1+hAL")" -1
ol + ] < Lo i O th e (2.0.19)
= K*(1+ hL*)" (2.0.20)
Utilizando que 1 + hL* < e’ ya tenemos probado (2.0.8). ]

Tal y como esta definido en [1], un MLM cero-estable es fuertemente
estable cuando el primer polinomio caracteristico p tiene al 1 como tnica
raiz de moédulo unidad. En caso contrario, el MLM es débilmente estable.
Diremos que un MLMP es fuertemente estable cuando los dos MLM que lo
componen son fuertemente estables. Un MLMP es débilmente estable cuando
al menos uno de los dos MLM que lo componen es débilmente estable.



CAPITULO 2. DESARROLLO ASINTOTICO DEL ERROR GLOBAL 37

2.1. Meétodos fuertemente estables

Probemos primero el desarrollo asintotico del error global para MLMPs
fuertemente estables.

Teorema 2.3. Consideremos un MLMP fuertemente estable de orden r > 0
y de la forma (1.1.4), aplicado a (1.1.1), tal que sus valores de arranque

bos---yPk-1,490,- - -5 9k—-1 SatiSfCLC@'ﬂ

pi —p(ti) = O(h"),

¢ —q(t;) =0O("), para i=0,...,k—1. (2.1.1)
Entonces
2r—1
) + Z el (t,) + O(h™),
2r—1
)+ Z hel(t,) + O(h™). (2.1.2)
donde t, = to + nh, p,,q, son las solucwnes del método con longitud de
paso h, al dar el n—ésimo paso y e], j, para j = r,...,2r, son funciones

de clase C'*°, que verifican las siguientes ecuaciones dzferencmles ordinarias
respectivamente

(6?(16)) _ (fp(p(t),fJ(t)) fq(P(t)7Q(t))) (6?(75)) N <C§p(7+1)(t)) (2.13)
el(t) 9a(p(t),q(t))  gp(p(t),q(t))) \€l(t) Aquti(t) )

donde las constantes c?, c?- son las dadas en (1.2.6) y las funciones f y g son
las funciones del problema de valores iniciales particionado en el que estamos
aplicando nuestro MLMP. Ademds, la constante en los residuos de (2.1.2)

puede tomarse uniforme en intervalos compactos de la forma (to + €, T), con
e > 0.

Demostracion. (A) Sean €, y 0, los siguientes residuos
2r—1
en=pn—Dlta) — Y _ Wel(t,),
j=r

2r—1

On = qn — q(t,) — Z Wel(t,), (2.1.4)



38 2.1. METODOS FUERTEMENTE ESTABLES

donde {€f} y {ef}, j=r,...,2r —1, son funciones por determinar.

Como el MLMP considerado en el enunciado del teorema es de orden
r, y teniendo en cuenta el comentario hecho al final de la demostracion del
teorema 1.9, se tiene que p, — p(t,) ¥ ¢, — q(t,) son O(h"), luego por (2.1.4),
€, v 0, también lo son. El objetivo de esta parte de la demostracion es ver qué
condiciones deben de cumplir las funciones {ef} y {ef}, j=r,...,2r -1,
para que €, y 0, secan O(h?") para t, = to+nh fijo, y ademas la convergencia

sea uniforme en intervalos de tiempo compactos [e + to, T, con € > 0.

Por (2.1.4) tenemos que

2r—1 2r—1
f(pn7Qn):f< +€n+Zh]p _|_5 +Zh]q >

27"1 27.1
9(]%;%)—9( +€n—|—2hjp _|_§ +Zh]q )

Haciendo el desarrollo de Taylor de orden 1 en las anteriores expresiones en
p(tn) v q(t,) respectivamente tenemos que

fonan) = f(p(tn),a(tn)) + fp(p(tn), q(tn)) <€n + Z hj@?(tn))
+  fu(p(tn),q (5 +Tz:hﬂ a )+O(h2”)
9(Pns Gn) = gp(tn), q(tn)) + gp(p(tn), a(tn)) <€n + Z_: hj€§(tn))

+ g,(p(tn),q (5 +TZh” >+(9(h2’“)

Sabiendo que p, y ¢, son soluciones del MLMP y teniendo en cuenta lo
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anterior, se tiene que

0 = pp(E)pn — hop(E)f(Pn,qn)
= pp(E)p(t) hap(E)f(p(tn)aQ(tn))

Z W [pyp(E — hoy(E) fo(p(ta), altn))el(ty)

—hop(E) f4(p (tn)v(I(tn))e;]‘(tn)} + pp(E)en
—hop(E)(fo(p(tn), a(tn))en + fo(p(tn), 4(tn))0n + O(hllnll?).

0 = pg(E)gn — hoo(E)g(Pn: ¢n)
= pg(E)q(tn) — hoy(E)g(p(tn). q(tn))

2r—1

+ Z W [py(E — hoy(E)g,(p(ta), a(ta))el(ts)

1y (E)gy(pltn). 4(ta) 4(t0)] + py(E)en
1y (E)(gp(p(tn)s altn))en + 9a(p(ta)s a(tn))5 + O(heal]).

Como el error de truncacion local, que aparece en el primer sumando del
tltimo miembro de ambas expresiones, puede escribirse en la forma (1.2.6),
las ecuaciones anteriores se pueden escribir como

2r—1

0 = Zh] pp(E — hop(E )[fp(p(tn)aQ(tn))eg(tn)

+fq(p(tn), Q(tn))e'?(tn) - C?P(jﬂ)(tn)]
+0p(E)en = hop(E)(fp(p(ta), a(ta))en + folp(tn), a(tn))on + O(h* ).

2r—1

0 = Z hj pq haq(E)[gp(p(tn)aQ<tn))63(tn)

+9q(p(ta), a(ta))€f (tn) — cfg T+ (1))
+0g(E)dn — hoy(E)(g,(p(tn), a(tn))€n + 9q(p(tn), q(tn))0n + O(R*).

Puesto que el MLMP es de orden 7,

pp(E)ef(tn) — hop(E)é5(tn)
pa(E)€j(tn) — hog(E)é](tn)

O<hr+1)7
O(hr+1).
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Por lo tanto, si se cumple (2.1.3), se tendréa que

O(h2r+1)
O(h2r+1)

pp(E)en — hgp(E)(fp(p(tn)a q(tn))en + fq(p(tn)a q(tn))0n)
Pq(E)6n — hoy(E)(94(p(tn), q(tn))0n + gp(p(tn), a(tn))en)

y por consiguiente se podra aplicar el lema 2.2 y garantizar que €, y ¢, son
O(h*"), siempre que

e, =0(h"), v=0,1,....k—1.

5, =0, v=01,... k-1

Por las condiciones impuestas sobre los valores de arranque en el enun-
ciado del teorema, tenemos que

pr = plt,)+ Y WsPP+O(h),
Jj=r
2r—1
@ = qlt,)+ > WP+ 0¥, v=01,.. k-1, (215)
j=r
para ciertas constantes sl(,) s Podemos escribir €, y 0, como

2r—1

6, = Zhj[sﬁj)p—ef(tl,)]—I—O(h2’")7

2r—1

5, = Zhj[s(j)q—ej(t,,)]+O(h2r), v=0,1,...,k—1. (2.1.6)

Haciendo el desarrollo de Taylor de €/(t,) y €i(t,) en to para j =7, ...,

P(t
J
2r — 1, puede observarse que €, y 6, son O(h

27") si y solo si
. I Vl 0]
=) Feffz (to),
=0
j—r

) 0] _ :
s = E t v=0,1,...,k—1, =r...,2r—1, (2.1.7
lol l(O) J ( )
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ya que de esta forma conseguiriamos que los corchetes que aparecen en (2.1.6)
se anularan.

Teniendo en cuenta (2.1.3), tendriamos en (2.1.5) un sistema de 2kr ecua-
ciones con 2r incognitas €} (to), €](to) para cada j =r,...,2r — 1. Esto signi-
fica que para k > 1 lo méas probable es que no exista solucion del sistema. Es
por ello que necesitamos introducir otros términos en el desarrollo asintotico
de orden O(h?") para aumentar el ntimero de variables y fijar los valores de
e(to) y €j(to) a partir de valores de arranque cualesquiera.

Supondremos a partir de ahora, para facilitar el desarrollo de la demos-
tracion, que las raices distintas de 1 de los polinomios caracteristicos p, y p,
son simples. Ademas, las denotaremos como z;, y x;, para ¢ = 2,...,k. Los
casos de raices miltiples requieren cambios faciles en la siguiente parte de la
demostracion.

(B) Para justificar los términos que introduciremos en el desarrollo asin-
totico, consideremos el siguiente problema de valores iniciales

)\117 + )\2(]7 p(tO) = Do,
¢ = mp+peq, q(to) = qo.

Por comodidad nos restringiremos a considerar la primera potencia de h
que aparece en la expresion del desarrollo asintotico del error global. Debido
a que hay que introducir unos nuevos términos P, y (), en el desarrollo
asintotico del error, tenemos que los nuevos residuos son

gn = Dn _p(tn> - hr@f@n) - Pny
Sn =dQ4n — Q(tn) - hreg(tn) - Qn (218)

Por la parte (A) de la demostracion tenemos que

po(E)(pn = p(tn) = B €l(tn)) — hop(E)[M(pn — p(tn) — h"el(tn))
+X2(gn — q(tn) — W7el(ta))] = O(R"*?),

Po(E)(qn — q(tn) — h'el(tn)) — hoy(E)[p2(gn — q(tn) — R el (tn))
T (pn - p(tn) - hr@f(tn)) = O(hH_Q)’
(2.1.9)
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siempre que

(b)) _ (M A (elta) _ (epI(E)
eltn))  \pa iz ef(tn) ng(r+1)(tn) '
Necesitamos imponer condiciones sobre P, y (),, para conseguir que

pp(E)én — hop(E)(Mé, + )‘2571) = O(hr+2>u
po(EYen — hoy(B) i + pady) = O, (21.10)

y asi poder aplicar un razonamiento como en (A) para justificar que €, y 5n
son O(h™1) uniformemente en [ty, 7).

Escribamos
P, = APh" 4+ BPA"TE 4 O(hT2),
Q. = AR+ BT 4 O(R™F?),
donde AP A% BP y Bi sean funciones de n. Se tiene por (2.1.9) que

po(E)n — ho(E)Mén + Aab]
= B BVAL 4 1 o ()N + daikl] - ()5

+h" 20, (E) A\ BE + X\ BY] + O(h™?),

pq(E)gn — hoy(E) |, + ,UQSn]
= )AL+ 1% o)A+ aAf] - ()5
+h" 20y (B) i B + pa Bi] + O(R'),
(2.1.11)

Necesitamos que los coeficientes asociados a las potencias A" y A" de la
anterior expresion se anulen. Para las coeficientes en h" basta tomar

k
P _ E P .n
An - a; xi,;m
=2
k

q _ q.,.n
Al = E i Ty s

=2
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donde x;, y x;, son las raices de p, y p, respectivamente y a}, a; coeficientes
cualesquiera que determinaremos posteriormente. Como necesitamos que los
coeficientes asociados a la potencia h™ ! de (2.1.11) también se anulen, basta
tomar

k
> W(n)ap, + Z i,

P _—
BF =
1=2 i=m+1
k
q _—
Bn_ zzq+ E : dz zp’
1=2 i=m+1
donde x;, parai =m+1,...,k son las raices de p,(x) que no son raices de
pp(z) v x;p para i = m+1,...,k son las raices de p,(x) que no son raices
de p,(x), entendiendo que 1, ..., x,, son las raices comunes. Veremos cémo

deben ser las funciones b (n), bl (n) para que tal cosa ocurra. Necesitamos que

=2 =0 =0
k k k
£ el Sl - Y ol D)
i=m+1 1=0 1=0
k k k
b3 Y - 8 Yl
i=mt1 1=0 1=0
m k k
0 = Z ‘TZq[(Mlaf + IMQCL;]) Z 5qu?£,q - Z Oé?l’i-’qbg(n + l)]
i=2 1=0 1=0
k
+ Z T, {uga Z Bla, Z afzt bl(n+ l)}
i=m+1 =0
+ Z Sl Zﬁ 7p—qual ). (2.1.12)
i=m-+1

De aqui podemos extraer ecuaciones en diferencias no homogéneas de
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coeficientes constantes

Ppip(E)O; (n) = (Miaf + Aaaf)opip(1),
Paia(E)0](n) = (pral + poai)ogiq(1), i=2,...,m,

Prip(E); (n) = Majoy; (1),
Paiq(E)bl(n) = poaloyq(1), i=m+1,... k, (2.1.13)

donde
pp,i,p(m) = pp(xi,p@ Pa,ig(T) = pq(l‘i,qm)‘

Tal y como se comenta en [12], existe una tnica solucion con valores
de arranque dados y dicha solucion estard generada por una soluciéon par-
ticular y la solucion general del homogéneo, que seréd combinacion lineal de
T ips o Thips Thigr s kg AONd€ Ty oo Thipy T1igy -+« 5 Thiig SON las Tai-
ces de los polinomios caracteristicos pp,; , ¥ pq,iq- Notemos que 1 es raiz simple
de ambos polinomios, por lo tanto pr,; (1) # 0y p; (1) # 0. Veamos que
podemos encontrar soluciones de las ecuaciones en diferencias (2.1.13) que

sean polinomios de grado 1. Para ello, consideremos
W(n) = Bn, bl(n)= Bin.

Notemos que (2.1.13) es equivalente a

Phip(L)BY = (Maf + Xaaf)opip(1l), i1=2,...,m,
Poia(1) Bl = (p1af + poai)og,iq(1),

p;,im(l)Bf = M@0y, (1),
Pyig VBl = pnalogo(1), i=m+1,...k, (2.1.14)

de donde despejando se obtienen BY y BY.

Para que los corchetes de los segundos sumatorios de las ecuaciones de
(2.1.12) también se anulen, necesitamos que

df:)\Qa?LW i=m+1,...,k,
Pp(Tiq)

P (Zip)

o
7 _ q
di = pna;

i=m+1,... .k (2.1.15)
Pq(Tip)
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Los denominadores que aparecen en las fracciones son no nulos ya que z;, y
x;p son raices no comunes de ambos polinomios.

Para aplicar el lema 2.2, necesitamos que

&, = O,
o, = OMR™*Y, v=0,1,... k-1 (2.1.16)

Al igual que en (A), podemos escribir los valores de arranque de la siguiente
forma

pl/ - p(tl/) _|_ h"’sl(j‘)vp + O(hr+1>,
g = q(ts) + W8P0+ O(WH).

Los residuos €, y 9, pueden escribirse como

k

& = W(sP—el(t,) =Y al,ab) + O,
=2

~ k

0, = W (s{—ellt,) =Y a¥,al) + O(R).

v
1=2

Al igual que en (A), las condiciones necesarias para que €, y 5, sean
O(h"™1) son

k
sl(f)’p = eP(ty) + Zafx’{’p,
i=2
k
s = ellto)+ Y alal, v=0,... k-1 (2.1.17)
i=2
Considerando las incognitas ef (o), ab, ..., ah,el(ty),as, ..., ai, tenemos

dos sistemas de k ecuaciones con k incognitas, cuyas matrices asociadas son
de Vandermonde. Luego las ecuaciones (2.1.17) tienen solucién tnica, con lo
que para cualesquiera valores de arranque, estan determinados los valores de

el(to) y el(to).

Como en las expresiones de B?, B? solo hemos considerado las raices de
modulo menor que 1, tendremos que B? — 0y B — 0 méas rapido que
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cualquier potencia de h cuando h — 0 con nh = t, — ty > 0 fijo, esto es, B?
y B2 son O(h’) para cualquier J € N. Como ocurre lo mismo para AP, A4
y n > 0, los terminos derechos de (2.1.8), es decir, P, y @, seran O(h"+?)
uniformemente en intervalos compactos [ty + €, T], con € > 0. De aqui,

Pn = p(tn) + h"eb(t,) + O(h™ ),
Gn = q(t,) + h"el(t,) + O(h™),

que corresponde al enunciado del teorema si truncamos en O(h™+1).

(C) Ahora introduzcamos nuevos términos al desarrollo asintotico del
error razonando como en (B) pero para problemas de valores iniciales gene-
rales hasta términos que sean O(h*").

Para ello consideremos los siguientes residuos:

2r—1

gvn = Pn — p(tn> Z hj p Z hjw]
k=1
2r—1

- Z hied(t,) — Z hiv,(n)

:C)')Il
Il

donde e? ,e? son las funciones del enunciado del teorema que cumplen la
ecuacion diferencial (2.1.3) y w;, v; funciones en n tales que:

w](”) = szp z] Z xlq zy

j=m+1

vj(”) = Z'rzq 2] Z xlp z]

j=m+1

pq ap
tj tj

nes deben cumplir estos polinomios para que €,, o, sean O(h?") en intervalos
de tiempo compactos.

aq

i (n) polinomios en n. Veamos qué condicio-

siendo wy; (n), wif(n), wi} (n), w;
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Razonando como se hizo en (A) para los residuos €, 0, se tiene que

(pp(E) — hop(E) f,(n( [Zzhj w?(

zp z]
=2 j=r
+ Z Zh] i Wi ( —i—en]
i=m+1 j=r
_hUP<E)fq {Zzh’] Ligq Zj
=2 j=r
k 2r ~
+ Z Zhjsclpww (n)—i—én] = O(R*h),
i=m+1 j=r
k  2r
(pq<E) - ho—q(E)g(J(p(tn)? Q(tn))) |:Z Z h’]xz qwl] (n)
1=2 j=r
k 2r ~
+ ) Zhjx;jpw;?;’(n)+5n]
i=m+1 j=r
—th(E)gp(p< [Zzhj Lip z]
=2 j=r
+ Z Zhﬂ Wk ( +en} = O(h*+h),
i=m-+1 j=r

donde los residuos estan uniformemente acotados en intervalos de tiempo
compactos. Por tanto, para conseguir que

Pp(E)
Pq(E)

— hop(E)[fp(p(tn), q(tn))én
— hoo(E)[gp(p(tn): q(tn))én

mzz ”“11

Onzz ”\“

+ £y (p(t), a(tn))5,] = O(h2 1),
+ 94

y poder aplicar el lema 2.2, necesitamos que
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2r k
th{zxfp{z%xww”’nﬂ hZBl Tipf nH),Q(th))MZPWH)}

1=

Z zq{zal L qwqu n+l hzﬁl zq "+l)’q(t”+l))w%{](n+l>}

Zk:x?lI{hZﬂl zq n+l),CI(tn+z))w§f(n+l)]
- i .CL’ [hzﬁl zp n+l)7Q(tn+l>>w3]p(n+l>:|:| :O(h2r+1).
1=m+1
k

Zhﬂ [Zw?q[z%xlqwfj] (n+1)— hZﬁl 5 499 (P(tns1), (tn+l))wf]q(n+l)]

+ Z zp|:zal$zpw3]p n+l hzﬁl ngq n+l>7q<tn+l))wiqf(n+l):|

i=m-+1
k
_Z«T?p|:h251 @pgpp tntt) (tn—l—l))wZP(n—l—Z)]
k
— Z [L’ |ih2ﬁl zqu n+l),q<tn+l))wf]q(n_|_l):|:| :O(h2r+l).
i=m+1

Haciendo el desarrollo de Taylor de las funciones f,, fq, 9y ¥ g4 €n po-
tencias de (n + [)h alrededor de t; y reordenando las sumas anteriores en
potencias de h, necesitamos que

2r k
Z B {Z$? {ZOQ T; pwfjp n+1)— M/;};pp(n) . quq(n)}

1=

Z zq{zoﬁxz JWid(n+1) = Wi (n) — W/iz;qp(n)H = O(R¥*Y),
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2r k k
2 [Z [Z afa g (0 +1) = Wit (n) - W;;ppm)}
j=r 1=2 =0

k k
+ 2 [Z o wigif (n+1) = Wi (n) - VV;”(n)H =0,
(2.1.18)

donde W, W WP WEP WER WEPP WP WiEPT son polinomios en n

que dependen de las derlvadas de p( ) y q(t) en to y de las derivadas de
fp@).q(t)) v g(p(t),q(t)) en p(to) v q(to), y también de los valores de
wit(n), wii(n), wil(n),w(n), para k < j. Por tanto, se tienen que cumplir
las ecuaciones en diferencias de los corchetes méas interiores en (2.1.18).

’ pPP (Y _ TI/P 149 P\ — PP —
Notese que WP (n) = Wl (n) = Wi (n) = W (n) = W/ (n) =
Pap () _ T1799P apq W :
Wh¥®(n) = Wi (n) = W2 (n) = 0, luego para que wi” wi? sean soluciones
de las anteriores ecuaciones en diferencias, pueden ser constantes ya que 1
es rafiz de p, y p,, mientras que w! y wi’ deben anularse. Por otra parte,
PP Paq 99 app
W (), W (n), WL (n), Wi (n), son constantes que no dependen de
ny WP (n), WIS (n), WEE  (n ) Wiqfil(n) son nulos, luego por lo visto en
la parte (B) de la demostracion, wl 1> wZ 41 pueden ser polinomios de grado
1y wit,,w’,, pueden ser constantes para ser soluciones de las ecuaciones
en diferencias (2.1.18) que resultan de anular los corchetes interiores en las
dos ecuaciones. Razonando de manera inductiva, w;;, wj] pueden tomarse
como polinomios en n de grado 7 —r y wij ,wij como polinomios de grado
jg—r—1

Para poder aplicar el lema 2.2 necesitamos que

gu = O(h%“))

5, = O, (2.1.19)
para v = 0,...,k — 1. Ya hemos visto que los residuos pueden escribirse de
esta forma

2r—1
& o= oW {s(j“’ Zx vt Z ay }
j=r t=m+1

~ 2r—1
51/ = Zhj{s(uj Zx,q ZJ Z xvp U ]

j=r i=m+1
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parav =0,...k— 1.

Al igual que en (A) y (B), una condicion necesaria para que se cumpla
(2.1.19) es

k

k
e’ (to) + Zx’fpww = sUhp Z T j z le’fp (wff(u) - wff(())) .
‘ i=2

k
- Z fﬁqwﬁq@)

1=m-+1
k j—r yl k
v ; l v
e5(to) + Dy wif(0) = s =3 1 refy(to) = Y ¥, (wh (v) — wi(0)).
i=2 =1 i=2
- Z z7pwis (
i=m+1
Considerando como incognitas € (to), € (o), w (O) wil(0), parai = 2,... k,

yva que el resto de coeficientes de los pohnomlos w” ,wf;] se determinan re-
solviendo las ecuaciones en diferencias correspondientes a los corchetes de
las dos ecuaciones de (2.1.18), obtenemos para cada j = r,...2r — 1 dos
sistemas de k ecuaciones con k incognitas, donde la matriz asociada es de
Vandermonde.

Por tanto, aplicando el lema 2.2, se tiene que se cumple (2.1.19). Teniendo
en cuanta las definiciones de los residuos,

2r—1
:p(tn)—FZhje? —l—ZhJ[lep w; Z xlq U }
j=r j=m+1
+O(1™),
2r—1 . 2r ‘ k
=gt + S0+ 0[S + 3 st
J=r Jj=r =2 j=m+1
+O(1™),

trn—t tn—t tn—t

; R PP (tn—to R P4 (tn—lo R 99 (tn—to
Para cada t, > to fijo, z; " wi/ (757%), ¥, ) wii (=572), z; ) wii (*572)
tn—t

y ;. wif (*5) convergen hacia 0 mas rapido que cualquier potencia de
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h, ya que |z;,|, |ri4| < 1, para i = 2,..., k. Ademéas dicha convergencia es
uniforme en intervalos de tiempo compactos que no contengan a ty. Por lo
tanto se tiene que

2r—1

P =p(ta) + Y We(ty) + O(h™),
j=r

2r—1

G = q(tn) + > _ Wel(t,) + O™,
j=r

uniformemente en intervalos de tiempo compactos de la forma [ty + €, T],

donde € > 0, y donde las funciones €, e satisfacen (2.1.3). O

2.2. Métodos débilmente estables

En esta seccion permitiremos que los primeros polinomios caracteristicos
Pps Pq tengan raices de moédulo uno distintas de la unidad.

Consideraremos ademas, aparte de métodos convergentes de orden r, mé-
todos irreducibles, es decir, métodos donde los pares (p,,0,) v (pg, 04) sean
irreducibles. Esto significa que p, y 0, no tenga raices comunes, ni tampo-
co p, ¥ 04. En el caso de que algin par fuera reducible, considerariamos el
par irreducible asociado simplificando factores comunes. (La unica diferencia
estaria en que el rango de valores de arranque posibles seria menor).

En cualquier caso, consideremos entonces métodos donde el nimero de
pasos de cada componente del MLMP puede ser diferente (k,, k), tal y como
se introdujo en (1.1.2).

Denotaremos en esta seccion por {x;}, las raices comunes de modulo

uno de py, y py (con 71 = 1). También denotaremos por z;, (i = m+1,... k)
) S ) . ’

las raices unitarias de p, que no son raices de p, y por z;, (i =m+1,..., kq)

las raices unitarias de p, que no son raices de p,. Notese que todas estas
raices son simples debido a la supuesta cero-estabilidad de ambos métodos.

Usaremos la notacién

Pai(T) = palZit),  pais(®) = palzipr), «o,B € {p,q}, (2.2.1)

Ua,i(x> = O'a(.%il'), O'oz,i,ﬁ(x> = O'Oz(xi,ﬁx)?
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y definimos

Api = L i = ' (2.2.3)

Dado que los métodos (pa,0a,ifAai), @ = p,q, son consistentes, asu-
mimos que los errores de truncacion local asociados pueden escribirse como
(1.2.6)

h . 1 o
Pl E)p(tn) = 3—0pi(E)p(ta) = 3—0pi(E) (} jcg-,;hf“pU“)(tn))
2 D,

j=1
+ O(hr+1)7
h 1 r—1 ‘
pq.i(E)q(t,) — raqﬂ-(E)q'(tn) = raq,i(E) (Z nghjﬂq(ﬂ“)(tn))
q,? q, j=1
+ O(h™). (2.2.4)

Estudiemos ahora el desarrollo asintoético del error de discretizacion glo-
bal para MLMP débilmente estables. Se tiene el siguiente resultado:

Teorema 2.4. Consideremos un MLMP debilmente estable de orden r > 0
y de la forma (1.1.2) aplicado a (1.1.1), tal que sus valores de arranque

Pos .-y Pk,—1,4905 - - -5 Qkg—1 satisfacen

pi—plt;) = OR), i=0,1,....k,—1,
a—qt;) = O, i=01,... k —1

Entonces, existen funciones suaves €;;.a, €ji.a.8, &, 3 = D, q, tales que, cuando



CAPITULO 2. DESARROLLO ASINTOTICO DEL ERROR GLOBAL 53

h — 0,
2r—1
pn—p(tn) = Zh]2$ €,ip(t Z i p€5.ipp(In
=r =1 i=m-+1
+ Z T} 4€jipa(tn )]+ O(h™r),
i=m+1
2r—1
@ —q(tn) = Zh]Zx €,iq(t Z i €5i.qp (tn
=r =1 i=m-+1

+ Z 2 €5iaa(tn)] + O(RT"). (2.2.5)

i=m+1

para n > 0, donde la constante en el residuo puede cogerse uniforme en
intervalos compactos de la forma [ty + €,T], con € > 0.

Ademds, las funciones €j14, @« =p,q, j =71,...,2r — 1, satisfacen

einp®)) _ (foo®).a)  folp().a®) (e  (pII@)
(%Lq(ﬂ) B (gp(P(t)>Q(t)) gq(P(t),Q(t))> (ej,l,q(t)) <C§q(j+1)(f()>’ |
2.2.6

donde ¢, cl son las constantes en (1.2.6) y las funciones €;;n, o = Dp,q,

5+ €j
1=2,....,m,j=r,...,2r — 1, son soluciones de
ej,i,;a(t)> _ ()\p,ifp Ap,ifq) (e]%p(t)) <bj,z‘,p(t))
= + , 2.2.7
(em}q(t) Agiidp  Aq,ilq €jig(t) bjiq(l) ( )
siendo
j—r
i) (141
brip(t) == el (1),
=1

l+1)
qu E :Clq ] lzq

Por otro lado, las funciones €;; a5, con o, € {p,q}, i=m+1,... ,k’g,
j=mr,...,2r —1, se determinan de forma recursiva a partir de ciertos sis-
temas diferenciales. Mds concretamente, para j = r,r + 1,r + 2, se cumple
que
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ripg(t) = €rigp(t) =0, (2.2.8)
5 — )\ e o op(Tip)
Eripp(t) = ApipSfp(P(E), a(t))eripp(t), Apip v () (2.2.9)
ér,z‘,qq( )= qzng(p( ), q(t ))er,i,qq<t>7 Agjig = %, (2.2.10)
, _ op(Tig) o
6T+1,l7pq(t) - p;;(xz q) fq( (t) Q(t» r,z,qq(t)a (2211)
Eri1igp(t) = ;Zg ;gp( (1), q(t))eripp(t), (2.2.12)
rivipp(t) = Apipfp(P(t), a(t))ert1,ipp(t) + bri1ipp(t), (2.2.13)
€r+1iqq(t) = Aqiq9a(P(t), 4(£))€rs1,0q(t) + britige(t), (2.2.14)

donde, omitiendo el argumento t por simplicidad de notacion,

g (l’z )
br g =\ i g L i
+1,i,pp D,8,D pq(l'i,p) fq(p> q)gp(p7 Q)e ,,DP
1 pp( ivp)
-5 1 N 1 A 3 T,
2[ pp;(%p) + D, pdt[fp(p q)€ri,pp)
0,(Tip) d
f b, q er,i, )
pp( )dt[ p( ) PP]
Op\ Ty,
br11ig0 = Aaia pémqggp(p’ 0)f4(p: @)€riqq
l7q
1 Pq(Tiq) d
7 1A 9,9 7, ) Ty
) Q(J?z‘,q) + 94 [94(P; @)er.iq4]
g (562 q) d

(xz q) dt [gq (p7 Q)GT,i,q(IL
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Li $(2.q)0p (2,
cretim = 2o, — P )
* ZEZ:Z; fap:q) {ZEZZ; Jo(,@)erigq + eT+17i7qq:| ,
_{ (es) p’q<xi,p>aq<x,-,p>1 d
pe(@ip) [ 1 Pq(Tip) dt
n 0q(Zip) (9, 9) [Jq(a:i’p)

g 9q(P, Q) eripp + €ri1, }
/)q<xi,p) pq(xi,p) ! pp e

Eri2,ipp = ApipSp(Ds Q)eri2,ipp + bri2ipps

d
:| a [fq (p7 Q)er,i,qq]

€ri2iqgp = [gp (p7 q)eﬂi,pp]

€r+24,q9 = )‘qﬂﬁng(pa Q)6r+2,i,qq + br42,iqq;
con

1

(2.2.15)

(2.2.16)

(2.2.17)
(2.2.18)

3[%,120;/)/ (ip) + ‘7;/) (Tip) — xi,ppg(xi,p)]

br+2,ip = MpiSp(Py Q) eri2,i0p + 6 o ()
PP

2 PZ’(% p) d?
pp(xlyp) dtQ

" < E ; Apz’i’p [“f‘nggz; + 1}) %[fp(p, @)er+Lim)

P

(xlp)i ) _ Ap,i,p|: ) pg(xl,P)
( )d [fQ(pv ) T+1,Z7QP] 2 Z’pp;,(xi,p)

1

[fp (pv )enz‘,pp]

+ 1:| 6r+1,i,pp7

3[xi,q0{1/(xi,q) + U:;(xi,q) - xi,qu(xi,q)]

br2,i.qg = /\q7i7qu(pa Q)€r+2,i7pq + 6

Pf;(xi,q)
2 P;”(xz q) d?
/)q<xl,q)

(o {x@qg%’g;m) L i

q

(xl q) d )\qiq |: qu(xi#I)
— 7 (D Q)eriripg] — —57 | T,
pq( zq) dt[ P( ) +1 p(I] 9 qpﬁ](xi,q>

-1 dtQ [gq(p7 Q) rz qq]

+ 1:| errl,i,qq .
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Las condiciones iniciales de todos los sistemas (2.2.6),(2.2.7),(2.2.9),
(2.2.10),(2.2.13),(2.2.14),(2.2.17) y (2.2.18) estin determinadas por el pro-

cedimiento inicial. Ademds, cuando

p, —p(t,) = O™, v=0,1,...,k,— 1,
g —qt,)=0Hn"), v=0,1,...k —1, (2.2.19)

se tiene que

eripp(to) = €rigq(to) = 0.

Por lo tanto, en este caso

Cripp(t) = €rigq(t) = €ritipg(t) = €ry1igp(t) = bry1ipp(t) = bri1igqe(t) = 0.

Sin embargo, valores de arranque mds precisos no conducen a la anulacion
de los valores iniciales de los coeficientes asociados a potencias mds altas de
h, por lo que no se pueden obtener mds simplificaciones.

Demostracion. (A) Veamos ahora que no podemos considerar el mismo desa-
rrollo asintotico del error global del teorema 2.3 para MLMP débilmente esta-
bles y por tanto necesitamos introducir nuevos términos z'e; ; ,(tn), T €} q(tn),
para i = 2,...,m, T} ,€jim(tn), i pejiqp(tn), Patai=m+1,... k,y

T} Cipa(tn), T7 y€jigq(tn), Para i =m+1,... Kk, donde e;;,(tn), €jiq(tn)
c€iipp(tn)s €jiap(tn), €.ipg(tn), €5 qq(tn) cumplen las condiciones impuestas en
el enunciado del teorema. Apliquemos el MLMP al siguiente problema de va-
lores iniciales particionado

Aip + A2q,  plto) = po,
¢ = mp+p2q,  q(te) = qo- (2.2.20)

Aplicando el mismo razonamiento que en la parte (B) de la demostracion
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del teorema 2.3, se tiene que

kp
P = p(tn) +her1p(tn) + 1" (Z aziox?,p)

=2
m kp
+hr+1 (be(n)x?—k Z bf( xzp+ Z dz zq) +O(hr+1)7
=2 i=m-+1 i=m-+1

qn = Q( )_I_hrerlq +hr (Zaz ZQ>
m q kp
+hH (Z bi(n)al + Z b (n)xy, + Z dlx Z”p> + O(h™th),
=2

i=m+1 i=m-+1

(2.2.21)

donde a?,al, d y d! son constantes y b?(n),b(n) funciones polindmicas que
satisfacen ciertas ecuaciones en diferencias y que pueden escogerse con bt (0) =
b(0) = 0. A diferencia del caso para MLMPs fuertemente estables, tenemos
que hay raices de modulo 1 distintas de la unidad, luego no se cumple que
los terceros y cuartos sumandos de (2.2.21) converjan a 0 mas réapido que
cualquier potencia h. A partir de la imposicién de ciertas condiciones sobre
las funciones coeficientes, veremos como podemos garantizar que (2.2.21) sea
O(h?") y ademas la constante en el residuo sea uniforme en intervalos de
tiempo compactos.

(B) Teniendo en cuenta lo anterior, consideremos los siguientes residuos

2r—1 kp kg
€ = Z hJ ZQ? 6371,p )"— Z xi’pej,i,pp + xiyqej,i,pq(tn)],
1=m+1 i=m+1
2r—1
— J
6“ - Zh ZZE ejz’q Z ZEqu]qu—i— § : xzpej%qp ]
=r i=1 i=m+1 i=m+1

Por la convergencia y el orden de consistencia del MLMP, ¢, y §,, son O(h").
Veamos qué condiciones debemos imponer sobre €;; », €;.i 45 €j.i.pp» €j.i.pgs €j.irqqs Ejrinap
para que €, y 0, sean O(h*"). Al igual que en la parte (A) de la demostracion
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del teorema 2.3 se tiene que

0 = pp(E)pn — hop(E)f(Pn, qn)
= pp(E)p(t ) - hap(E)f(p(tn), Q(tn))

2r—1

+Zhj pr Jxie;in(tn)

kq
+ Z Pp(E) 2 €5imp(tn) + Z Pp(E)3 4€5pq(tn)
i=m-+1 i=m+1

Zap 27 [o(p(tn), a(tn))esip(tn)

T Z ap(E)xiy fa(p(tn), alt ))ej,i,qq(tn)]]

+p}O(E)En - h0p<E) [fp(p(tn)7 q(tn))en + fq(p<tn)a Q(tn))én}
O (hlnll® + 18,11%)) + O+, (2.2.22)

y algo similar para la segunda ecuacion. Entonces, utilizando (1.2.6) y la
notacion en (2.2.1), (2.2.2), se tiene que la anterior ecuacion es equivalente a
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2r—1

0 = }:hﬂm; )ej1p(tn) — m%@ﬁ(ﬂ@@wﬂﬂ%D%Ad%)

+fa(p(tn), q(tn))ej1,q(tn)
— ;) ))}

+Z Honi(B)esip(tn) = hopa(B) (£o(pltn), alta))esip(tn)
+Fop(t), altn)esia(tn) )|

+ ‘ Z pr [pp,i,p<E)€j,i,pp<tn) — hopip(E) (fp(p<tn)7 q(tn))ejipp(tn)
(), a(tn))esapltn) )|
30 a2, s EIesiaalta) — hal(B)(Fyplta), alt) ()

o), at)esia(t)) |

-WA@%—h%@ﬂﬁ@@md%Wm+h@@&ﬁ%Wﬂ
+O(R* ). (2.2.23)

Queremos que

pp(E)en — hop(E) {fp(p(tn), q(tn))en + fo(p(tn), q(tn))gn} — O(R?+Y),

Pq(E)on — hoy(E) {gp(p(tn)a q(tn))en + 94(p(tn), q(tn))én] = O(h* ),
(2.2.24)

para poder deducir de aqui por el lema 2.2 que €, = O(h?") y 6, = O(h*"),
tras imponer que ¢, = O(h?") para v = 0,1,...,k, — 1 y §, = O(h*") para
v=0,1,... k —1.

Nos centraremos en imponer que la primera ecuacion en (2.2.24) se sa-
tisfaga, ya que es la relacionada con (2.2.23), pero un argumento analogo es
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valido para la segunda ecuacion. Para que los términos asociados a la raiz 1
en (2.2.23) sean de orden O(h?"™'), basta con imponer (2.2.6), teniendo en
cuenta que el método (p,, 0,) se supone que es de orden r. Por otro lado, para
los términos asociados a x}' con i = 2,...,m, considerando (2.2.4), basta con
imponer (2.2.7).

Procedemos ahora a ver como deben comportarse el resto de términos:

= Para que el término en A"z}, en (2.2.23) se anule, dado que py(v;,) #
0, ppiq(l) # 0y, de manera analoga, usando que p,;,(1) # 0, debe
cumplirse la ecuacion (2.2.8).

= Observando el término en hr“x?p en la misma suma, se debe cumplir
que

p;,i,p(l)ér,i,pp(t) — 0pip(1) fp(p(t), (1)) eripp(t) =0,
lo cual es equivalente a (2.2.9).

= Observando también el término en ™'z} en (2.2.23), se debe cumplir
que

Pria()ert1ipatn) = Tpig(1)fa(p(tn); 4(tn))erige(tn) = 0, (2:2.25)
que es equivalente a (2.2.11).

= Considerando el término en h™ 2z} en (2.2.23), usando notacion abre-
viada y (2.2.8), se requiere que

1 . d
2 IL“?PZ(%p) + $i,pp;(xi,p>} Cripp — xi,pa;)(xi,p)% {fp(pa Q)€T7i,pp}

+QUZ‘,zop;;(xi,p)é?"-i-l,i,pp — 0p(Tip) |:fp(p7 q)eri1ipp + fo(p) Q)er-‘rl,i,qp] =0,

lo cual es equivalente a (2.2.13).

» Considerando ahora el término en h”gxzq en (2.2.23), se tiene que

pp(xz}q)€r+2,i,pq+$i,quy(wi,q)éﬂrl,i,pq_Up(zi,q) [fp (p, Q)er+1,ipgt oD, Q)€r+1,i,qq}

d
_xi,qo—;)(xi,q)% |:fq<pa Q)er,i,qq:| =0,

lo cual, usando (2.2.11), es equivalente a (2.2.15).
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= Por otro lado, al considerar el término en h”%gfp en (2.2.23), se deduce
que

1
1 2 -
+3 9 z; pp (xz p) + x; ppp (:Ez p) Cr+1,i,pp
d2

. 1
"‘x@pp;z(xiyp)eﬂr?,i,pp B |:x3po-p (Tip) + @ 29p (i p)} 12 {fp(p» Q)eni,pp}

d
_U]/g(xi,p)xi,p% [fp(]% Q)er+1,i,pp + fq(Z% Q)€T+1,i,qp:|

—0, (ZL’Z p) |:fp(p> )€r+2,z‘,pp + fq(pa q)er+2,i,qp:| =0,

lo cual, considerando (2.2.9) y (2.2.13), es equivalente a (2.2.17). Ahora,
supongamos que los valores iniciales del MLMP son tales que:

2r—1

po=p(t,)+ > sPP +O(h*), v=0,1,... k —1,
j=r
2r—1

G =aqt,)+ Y sPW +OnT), v=0,1,... k1.
j=r

Dado que €, = €,.:.4p = 0, para que €, y 6, sean O(h™!) en los valores
anteriores de v, se debe cumplir que:

sy = Z:c erip(to) + Z Tiperipp(to), v=01... .k —1,

i=m-+1

r)qg __ _

81(/) — E xerzqt() E I’qurzqqto V—O,l,...,kq—l.
i=m-+1

(2.2.26)

Estos son dos sistemas de Vandermonde que determinan completamente
los valores de e, ,(to), €riq4(to) para i = 1,...,m, asi como e,;,,(to) para
i=m+1,...,k, ¥ erig(to) patai =m—+1,... k.



62 2.2. METODOS DEBILMENTE ESTABLES

Por otro lado, para que €, y §, sean O(h™?), se debe cumplir que

r+1 2 2
( x; Verz,p tO + I’ €rt1,ip tO

+ Z |:er+1,z,pp<t0) + Verlpp tO 1 Z iL‘Z qerJrl 1,pq tO)

i=m-+1 i=m+1

v=01,.. .k —1,

'r+1
( E xy Verzq tO + E xy i Cr+lig tO

+ Z ZE |:6T+lzqq(t0) + Verzqq tO :| Z xzper—i—lqu tO)
i=m-+1 i=m-+1
v=0,1,... kg —1. (2.2.27)

Observamos que estos son nuevamente dos sistemas de Vandermonde.

El primero en las incognitas e, 41,,(t0) para i = 1,...,m, e,41,,(to) para
i=m+1,...,m+k, yelsegundoen e, y;,(to) parai =1,...,m, €r41.44(to)
parai=m-+1,...,m+k, (Observamos que el resto de los términos pueden

calcularse a partir de valores que ya han sido determinados a través de (2.2.6),
(2.2.7) para j =ry (2.2.11) y (2.2.12) para j =r + 1.)

Procediendo inductivamente, se pueden determinar las condiciones ini-
ciales para los sistemas diferenciales asociados a los coeficientes de error co-
rrespondientes a potencias superiores de h.

Ademés, cuando el procedimiento de arranque es de orden r + 1, es claro
que

3(7:])3:0, v=01,... k-1 sD=0 v=01,... k-1,

V?q

de donde los sistemas en (2.2.26) son homogéneos y entonces e, ; ,(to) =
€riqq(to) = 0. Sin embargo, el hecho de que

(r+1) _ (r+1) _
Sv,p o Su,q 07
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no hace que (2.2.27) sea homogéneo porque en general é,; ,(to) y €,.4(to) no
se anulan.

Finalmente, en el desarrollo asintético, los términos asociados a las po-
tencias n-ésimas de x;, ;, 0 x; , de médulo menor que 1 pueden descartarse,
ya que, cuando n > 0, esas potencias n-ésimas son de orden O(h*") para t,
fijo, donde t,, =ty + nh. ]

Observacion 2.2. Cuando el MLMP es simétrico y cero-estable, todas las
raices de p, Y pg son simples y de modulo 1 por el lema 1.14. Esto implica
que, en la formula (2.2.5), k, = k, y k, = k, y, de hecho, al revisar la
demostracion del teorema 2.4, puede observarse que el resultado es vdlido
para n > 0.






Capitulo 3

Crecimiento del error con el
tiempo

3.1. Comportamiento de los coeficientes del de-
sarrollo asintético

En este seccion se analizard el comportamiento del error con respecto al
tiempo a partir de los resultados obtenidos en el Capitulo 2. Analizaremos
dicho error para MLMPs débilmente estables, ya que, por lo visto en el ante-
rior capitulo, los términos del error de discretizacion global de MLMPs fuer-
temente estables aparecen en el desarrollo asintotico del error de los MLMPs
débilmente estables. Distinguiremos los diferentes términos del error segin
el tipo de raiz de p, y p, al que esta asociado.

Recordemos que las perturbaciones en las condiciones iniciales del sistema
continuo (1.1.1) se propagan en el tiempo en una primera aproximacion a
través del siguiente sistema

sy (Jo(e(®):a(t)  fo(p(t),a(t))
= (gp(p(t),q(t)) gq(p(t),q(t))> o(t). (3.1.1)

Al igual que para cualquier otro sistema homogéneo, denotaremos por
matriz de transicion en (¢, s) a la matriz que lleva §(s) a d(¢). Diremos que
dicha matriz esté acotada si lo esta uniformemente para todo s,t € R cum-
pliendo ty < s < t.

65
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3.1.1. Coeficientes asociados a las raices comunes de
modulo unidad.

Notemos que el sistema diferencial (2.2.6) asociado a e; 1, y €514, €s decir,
los coeficientes asociados a la raiz comun x; = 1, esta intimamente ligado
al sistema diferencial (3.1.1) que describe la propagacion de perturbaciones
del problema continuo. Mas concretamente, coincide la parte homogénea del
sistema diferencial.

Sin embargo, para los coeficientes asociados a las otras posibles raices
comunes z; (i = 2,...,m), de manera similar a lo que sucede con los MLMs
en [3], la parte homogénea de los sistemas diferenciales en (2.2.7) es diferente
de (3.1.1). Esto ocasiona que en muchos problemas, los coeficientes asociados
a dichas raices conduzcan a un crecimiento exponencial del error. Véase en
[3] que los MLM simétricos para sistemas diferenciales de primer orden no
son recomendados por este motivo. Sin embargo, podemos construir MLMPs
de forma que los dos MLM que lo compongan cumplan que la tnica raiz en
comun de sus primeros polinomios caracteristicos sea 1, y de esta manera no
tendriamos este problema.

3.1.2. Coeficientes asociados a las raices no comunes de
modulo unidad

El siguiente resultado justifica el comportamiento de los coeficientes del
error de MLMPs, asociados a las raices de moédulo 1 no comunes de los dos
MLM que lo componen.

Teorema 3.1. Consideremos un MLMP como el del teorema 2.4, aplicado
al problema de valores iniciales (1.1.1). Suponiendo suficiente reqularidad, si
las matrices de transicion asociadas a (2.2.9) y (2.2.10) estan acotadas y las
componentes del jacobiano del campo vectorial definido en (1.1.1) también,
asi como sus derivadas temporales, los términos del error asociados a las
raices no comunes de p, y p, se comportardn como O(h"), donde la constante
en la notacion de Landau estd acotada para t —ty = O(h™').

Ademds, si los valores de arranque difieren de los exactos en O(h'1),
los términos del error asociados a las raices no comunes de p, y p, se com-
portardn como O(h™), donde la constante en la notacion de Landau estd
acotada para t —ty = O(h™'). Equivalentemente, se comportardn como O(h")
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uniformemente en el tiempo para t — to = O(h™2).

Demostracion. La acotacion de las matrices de transicion asociadas a (2.2.9)
y (2.2.10) implica que €,;,p V €riqq €stan acotadas. Ademads, a partir de
(2.2.11) y (2.2.12) y la acotacion de €,;,, V €riq4q s¢ deduce que €,41pq vV
er+1,iqp €staran acotadas cuando f,(p(t),q(t)) v g,(p(t),q(t)) estan acota-
das en el tiempo, y lo mismo ocurre con byi1pp ¥ brt1,iqq St fo(0(2),q(2)),
94(p(t),q(t)) vy sus primeras derivadas temporales también estan acotadas.
Esto implica, usando (2.2.13) y (2.2.14), que €,41ipp ¥ €rt1,iqq Crecen a lo
sumo linealmente con el tiempo.

Por otro lado, a partir de (2.2.15) y (2.2.16), si las derivadas temporales
de f,(p(t),q(t)) vy g,(p(t), q(t)) también estan acotadas en el tiempo, entonces
€ri2,ipq Y €ri2,iqp Crecen a lo sumo linealmente. El mismo crecimiento lineal
se observard para byi2i,p V bri2qe Si las segundas derivadas temporales
de f,(p(t),q(t)) v g4(p(t),q(t)) estan acotadas. Esto, junto con (2.2.17) y
(2.2.18), implica que €,42ip ¥ €r42i4q Crecen a lo sumo cuadraticamente.
Podemos razonar de forma inductiva para el resto de los términos.

Finalmente, si los valores de arranque cumplen (2.2.19), por el final del
teorema 2.4 se deduce que

enimp(t) = er,iﬁqq(t) = br+1,i,pp(t) = br+1,i,qq<t) = er+17iﬁpq(t> = 6T+Li7qp(t) =0.

Por lo tanto, €,41,ipp ¥V €r41..4¢ €stan acotadas en el tiempo y, si f,(p(t), q(t))
v gp(p(t), ¢(t)) también lo estan, lo mismo ocurre con €,49; g V €r12,iqp- EStO
implica que, si f,(p(t),q(t)), 94(p(t),q(t)) y sus primeras derivadas tempo-
rales estan acotadas, entonces by42,pp ¥ bri2,i 4 también lo estan. Debido a
esto, €42 pp V €r42,iqq Crecen a lo sumo linealmente y, razonando de forma
inductiva, €,43ipp ¥ €rt+3.4q Crecen a lo sumo cuadraticamente, etc. O

Observacion 3.1. Cuando el problema es separable, es decir,

f=fla g=9b)

entonces no solo las matrices de transicion asociadas a (2.2.9) y (2.2.10)
estan acotadas, sino que, ya que f, = g, = 0, en realidad son la identidad.
Esto simplifica las formulas (2.2.13)-(2.2.18), pero la conclusion es la misma
que en el caso no separable.
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Observacion 3.2. Como comparacion, observamos que el caso separable se
estudia en detalle en [4] y nuestras conclusiones son similares a las obtenidas
en el articulo: para un procedimiento de arranque lo suficientemente preciso,
las componentes del error asociado a las raices no comunes del primer polino-
mio caracteristico de mddulo unidad estdn controlados para t —ty = O(h™?%)
(ver el final de la seccion 3.5 y las observaciones finales en [4]).

3.2. Comportamiento en problemas hamiltonia-
nos

Sea € un dominio, es decir, un subconjunto no vacio, abierto y conexo
del espacio euclideo R??, donde d es un entero, y supongamos que para las
soluciones de (1.1.1) se cumple (p(t),¢(t)) € §2. Sea J un intervalo abierto
acotado o no. Si tenemos una funcion H = H(p(t), q(t),t) suficientemente
suave definida en el producto €2 x J, entonces (1.1.1) sera un sistema hamil-
toniano con hamiltoniano H si

= — = Ci=1,....d. 2.1
dt Og; dt  Op; ! Y (3:2.1)

El namero entero d es el niimero de grados de libertad y €2 es el espacio de
fases. El producto 2 x J es el espacio de fases extendido.

Es bien sabido que, cuando H no depende explicitamente de %, el ha-
miltoniano se conserva a lo largo de cada soluciéon del espacio de fases. En
esta seccion estudiaremos el comportamiento de los MLMPs con respecto a
la conservaciéon del hamiltoniano en ese caso.

3.2.1. Parte suave de la solucién numérica

Consideremos la parte ’suave’ asociada a la raiz x; = 1 del desarrollo
asintotico del error global (2.2.5) en el teorema 2.4, y definamos

() = () + v (2n). 322

j=r

donde (p(t), ¢(t)) es la solucion de (1.1.1).
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Lema 3.2. Supongamos que (1.1.1) es un sistema hamiltoniano auténomo,
con funcion hamiltoniana H. Entonces,

d |:<VH>T <p(t))] vE)" (p(t)> <fp(p(t)>g(t)) fq(p(t)jggg;) _o.

dt q(t) q(t) ) \gp(p();a(t))  g4(p(t),
Demostracion. Como (1.1.1) es hamiltoniano, entonces

f = _Hq = p7

g=H,=q.

Por la anterior ecuacion y haciendo la derivada con respecto al tiempo de f
y g (funciones del problema (1.1.1)) se tiene que

%Gmug:%<ﬁjT:%<Q>T:(EM@@@+HMRQQT_

H, —p Hpo(p, )P + Hyq(p, )4
Por otro lado,
7 (PN (fo(p(t),q(t)) fo(p(t),q(t))
(VH) (q(t)> (gp(p(t%q(t)) gq(p(t),q@)))
= = (g )

= (_qTHpq - pTprv _qTqu - pTqu) )

de donde se obtiene el resultado teniendo en cuenta que H 3;3 = H,,.

Pasemos ahora al siguiente resultado:

Teorema 3.3. Considerando las condiciones impuestas en el anterior lema
se tiene que

i (i)~ (i) =

2r—1

Z h? [c?(p(t)Tq(jH)(t) — p(to)"qV " (t0))

~ ( > DO )TN () — ¢ (ko) PV (to)]>

=1

+@vnﬂw$/pw%mﬂ@w

to

+ O(R*). (3.2.3)
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Demostracion. Aplicando el lema anterior, teniendo en cuenta la expresion
(3.2.2) y usando (2.2.6) obtenemos

( ) ( @) Py () o0
(Zii’; )+ (56) ()

+O(h*)

= z_: W) gD (1) — () pU I ()] + O(h™), (3.2.4)

donde la ultima igualdad se deduce de (3.2.1). Para j fijo, aplicando integra-
cién por partes se tiene que

/t t P (5)g" ) (s)ds = (p(t) qU T (t) — pl(te) gV (to)) — /1t tp(S)Tq(”Z)(S)dS-

(3.2.5)

De manera anéloga
/t q(s)"pV ) (s)ds = (4(6)"pV(t) — 4(to) P (to)) —/t i(s)"p\ (s)ds
PP (t) = 4(to) " (t) — ((t) pY 1 (1) — i(to) "YU (t0))

q(s)"pV " (s)ds

5_5
S

= (

_|_

e\

0
1

_ ( 1)l+1[q(l)(t)Tp(j#lfl)(t) o q(l)(tO)Tp(jJrlfl) (to)]

+H(=1)7H /tt ¢+ (s) p(s)ds. (3.2.6)

<.
+

—~
I
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Integrando el primer y tltimo miembro de (3.2.4) y después aplicando
(3.2.5) y (3.2.6) obtenemos (3.2.3). O

Meétodos simétricos

Es bien conocido que, cuando los MLMs son simétricos, los coeficientes
correspondientes al error de truncacion local en (1.2.6) con j impar se anulan
[14]. Tenemos el siguiente resultado que es un caso particular del anterior
teorema.

Corolario 3.4. Cuando se integra (3.2.1), con H auténomo, con un MLMP
stmétrico se tiene que

(i) =1 (i) -

r—1

> h¥ [ng(p(t)Tq(2j+1)(t) — p(to)"¢¥ V) (to))

j=r/2

2j+1
—ch; ( ST (=) gD () TpE () — q(”(to)Tp(2j+1‘”(to)]>

=1

t
ey =) [ o) g s)ds | + O,

to

3.2.2. Solucién numérica completa cuando m =1

Ahora estudiaremos la soluciéon numérica completa. Como se menciono en
la subseccion 4.1.1, los coeficientes del error asociados a las raices de médulo
1 comunes diferentes de x; = 1 conducen normalmente a un crecimiento
exponencial del error con el tiempo. Por esta razéon, asumiremos de ahora
en adelante que tales raices comunes no existen, es decir, m = 1. Entonces,
tenemos el siguiente resultado:

Teorema 3.5. Cuando se integra (3.2.1) con H auténomo con un MLMP
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para el cual m =1, se cumple que

i ()= () -

PN [ (€imt)) o S (€ringlta)
thH n :I:? J,8,pp\tn ) + x? < Jyi,pg\n )1
; (‘l(tn)) {; " (ej,z;qp(tn) ; “\€jiaq(tn)

2r—1

Z h? [c?(p(t)Tq(jH)(t) — p(to)"qV ) (t0))

~ ( > =D @) I () — ¢ (ko) PV (to)]>

=1

+((=1) — C}?)/ p(S)Tq(j”)(S)dS]

to

+ 22_1 WiV H (zg)T (Ww(t(’)) +O(h*). (3.2.7)

€j1,4(to)

Demostracion. La demostracion se basa en la siguiente descomposicion
n Po n ph(tn)> } { (ph(tn)) (ph(to)) }
H —H =|H - H + |H —H
(%) (q()) [ (qn) (qh(tn) qn(tn) qn(to)
ph(to)) (po) }
+|H - H . 3.2.8
{ (qh(to) % (3.28)
Entonces, el primer término en (3.2.7) se deduce de (2.2.5) con m =1, la
definicion (3.2.2) y la propiedad de que, al evaluar VH, el vector (pp(t), gn(t))
difiere de (p(t), ¢(t)) en términos de orden O(h"). En cuanto al segundo tér-

mino, se puede aplicar directamente el teorema 3.3. Finalmente, el dltimo
término en (3.2.7) porviene de (3.2.2) en t = t. O

Observacion 3.3. Dado que x;, y x;, tienen modulo 1, el comportamiento
temporal de (3.2.7) estd determinado por el comportamiento del error en la
solucion numérica suave, teniendo en cuenta el teorema 3.3, asi como el
comportamiento de los términos

) Cinted) s G (i) oo



Capitulo 4

Péndulo doble

Los resultados anteriores se aplicaran en este capitulo para explicar la in-
tegracion numérica del problema del péndulo doble con MLMPs. Escalaremos
el problema de manera que la aceleracion de la gravedad pueda considerarse
igual a 1 y, en particular, tomaremos dos masas donde m; = 1, my = 2
y dos cuerdas inextensibles y sin peso de longitud 1. (Para el caso general,
véase [10], aunque las conclusiones con respecto al crecimiento del error con
el tiempo seran las mismas siempre que las oscilaciones sean lo suficiente-
mente pequenas y el cociente de las frecuencias normales asociadas no sea
racional). En nuestro caso particular, las energias cinética y potencial estan
dadas respectivamente por

1].. ) ..
T = 3 3qf + 2q§ +4d¢1ga cos(qa — q1)|, V= —(3cos(q1) + 2 cos(q2)),

donde (q1,¢2) denotan los dngulos que ambas cuerdas forman con la linea
vertical. Como el lagrangiano es L =T"— V', es bien sabido que los momentos
asociados son

p1 = Lg =3¢ + 242 cos(q2 — q1),
p2 = L4 =242 + 241 cos(qz — q1). (4.0.1)

De esta manera, se tiene la relaciéon matricial

(i;) = M(q1,q2) (g;) ,
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donde la matriz M (qi, ¢2) esta dada por:

3 2 cos(qy — 91))

y la energia cinética puede escribirse como

T = 1(@h G2) M (a1, q2) <q1)

2 q2

= %(pl p2)M (a1, g2) ™" (pl) :

D2

Entonces, las ecuaciones diferenciales correspondientes se escriben como
un sistema hamiltoniano no separable con hamiltoniano:

H=T+YV. (4.0.2)

Nos interesaremos en pequenas oscilaciones del péndulo doble, que, de
acuerdo con [10], se pueden aproximar a traves de la solucion del sistema ha-
miltoniano donde se desprecian todos los términos menores que los asociados
a segundas potencias de ¢1, gs2, ¢1, Go.

De esta manera, surge un sistema lineal que puede resolverse exactamen-
te, dando lugar a

q1(t) = Acos(wit — 01) + B cos(wat — d3),
@(t) = Acy cos(wit — 1) + Be- cos(wat — d2), (4.0.3)

V2 V2
w1:3<1+?>, w2:3<1—?>,

V6 V6
77

donde

C+:——7 C_ =

2
y las constantes A, B, dq, 0> se determinan por las condiciones iniciales. De
estas expresiones se obtiene

G1(t) = —Aw;sin(wit — d1) — Bwysin(wat — ds),
G2(t) = —Acywisin(wit — ;) — Be_wssin(wat — d3).  (4.0.4)
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A partir de (4.0.1) y (4.0.4), tenemos
pi(t) =3 [ — Aw; sin(wt — 61) — Bws sin(wat — 52)}
+2 { — Acywy sin(wit — §1) — Be_ws sin(wat — (52)} cos(a(t)),
pa(t) =2 [ — Acywy sin(wit — §1) — Be_ws sin(wat — 52)}

+2 { — Aw; sin(wyt — 01) — Bws sin(wsyt — 52)} cos(a(t)), (4.0.5)

a(t) = A(cy — 1) cos(wit — 61) + B(c— — 1) cos(wat — d2). (4.0.6)

Considerando entonces (4.0.3) como una aproximacion suficientemente
buena de la solucion exacta, justificaremos ahora como deberia crecer el error
en el hamiltoniano asociado a la parte suave de la soluciéon numérica al inte-
grar con distintos tipos de métodos lineales multipasos.

4.1. Error en el hamiltoniano asociado a la par-
te suave de la solucién numérica

4.1.1. MLMPs simétricos

En primer lugar, cuando el método es un MLMP formado por dos MLMs
simétricos, el corolario 3.4 establece como se comporta el error en la parte
suave de la solucion numérica. Teniendo en cuenta la acotacion de las deriva-
das temporales de q1, q2, p1, P2 , solo nos queda analizar el siguiente término
de (3.2.3)

Observamos que las derivadas pares de ¢; y ¢ son una combinacion lineal
de cos(wt — 1) y cos(wqt — 7). Entonces, a partir de (4.0.5), lo que debemos
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estudiar es el comportamiento de

t
/ cos(w;s — 0;) sin(w;s — d;)ds,

to

t
/ cos(w;s — 0;) sin(w;s — 9;) cos(a(s))ds, 4,5 € {1,2}, (4.1.1)
to

donde, de acuerdo con (4.0.6), a(s) oscila entre —|A(cy — 1)| — |B(c- — 1)|
y |A(cy — 1)| + |B(c— — 1), pero de una manera no periddica debido a que
wi /ws no es racional. Usando identidades trigonométricas, la primera integral
en (4.1.1) se puede escribir como

t
l/ {Sin((wi + wj)s - 52 — (5]) - Sin((wi — (,L)j)S + 5]' - 52) dS7
to

2
la cual tiene una primitiva acotada con ¢. El segundo integrando en (4.1.1)
es una modulacién del primero con una frecuencia que nada tiene que ver
con la del primer integrando. Aparece dibujado en la figura 4.1.1, donde se
observa que esta claramente centrado en 0, lo que hace que la integral en la
figura 4.1.2 esté acotada.

4.1.2. MLMPs no simétricos

En el caso no simétrico y de acuerdo con el teorema 3.3, el crecimiento
con el tiempo de los coeficientes asociados a las potencias pares de h se
comportara de la misma manera que en los métodos simétricos. Sin embargo,
cuando los métodos no son simétricos, dado que c? y cf no necesariamente se
anulan para j impar, y una vez que sabemos que todas las derivadas de ¢ y p
también estan acotadas, solo debemos analizar el crecimiento con el tiempo

de .
/ ¢V Tp)dt, k=r/2,...,2r—1.

to

A partir de (4.0.3), se puede observar que las derivadas impares de ¢; y
¢» consisten en combinaciones lineales de sin(w;t —§;) y sin(w;t —J;). A partir
de (4.0.5), la integral anterior contendré expresiones de la forma:

t
/ sin?(w;t — &;)dt, i=1,2,

to
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Acotacién del integrando de (4.1.1)

0.8 .

0.6

0.4

0.2

-0.2

-0.4

-0.6

_0‘8 1 1 1 1
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Tiempo

Figura 4.1.1: Representacion en Matlab del integrando de la segunda integral
de (4.1.1) tomando ty = 0 y 7' = 10000
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Acotacion de la integral (4.1.1)

-005

-01 F

-015

-0.2

-0.25

-0.3

-0.35

04+

_0‘45 1 1 1 1 1 1
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Tiempo

Figura 4.1.2: Representacion en Matlab de la segunda integral de (4.1.1)
tomando ¢y = 0 y T" = 10000. Para calcular la integral se ha usado la funciéon
int de Matlab



CAPITULO 4. PENDULO DOBLE 79

las cuales obviamente crecen linealmente con el tiempo, ya que sin(w;t — ;)
es una funcion positiva y periodica con periodo 7 /w;. Por lo tanto, la integral
es linealmente aditiva en cada periodo.

4.2. FError en el hamiltoniano asociado a las rai-
ces no comunes de moédulo unidad

A partir de la observacion 3.3 y considerando que VH (p, q) = (¢*, —p?),
el cual estd acotado en nuestro problema, lo que se debe estudiar es el cre-
cimiento con el tiempo de €;; pp, €jipgs €jiqqr Ciiqp- Para aplicar el teorema
3.1, y justificar que el error asociado a estos coeficientes esta controlado, se
requiere que las derivadas de f y g en (p(t),q(t)) y sus derivadas tempora-
les estén acotadas con el tiempo y que las matrices de transicion asociadas a
(2.2.9) y (2.2.10) también estén acotadas. Teniendo en cuenta que, en nuestro
problema

1

2p; — 4 — 3p2
2(6 — 4 cos?(q2 — ql))( P1 cos(qz2 — q1)p1p2 + 3p3)

H(p1>p2,Q1,C]2)

—3cos(q1) — 2 cos(qq),
(4.2.1)

con f =—-V,Hyg= V,H, es claro que los componentes del jacobiano de
(f, )% en (pi(t), p2(t), q1(t), g2(t)) v sus derivadas temporales estan acotadas.
Ahora, analizamos qué ocurre con las matrices de transicion de (2.2.9) y
(2.2.10). Tras algunos calculos, se obtiene

noena) = (6 ) a0 = (5 T,
donde

alt) = [1jzi§i(j2oég<)t)))]2pl<t>_Sin(ﬁ(?fs;l?z(:(f)gﬁ(ﬂ)]pZ(”
-7 jlgilzf(( >)(t)) n(t) =4 f?ﬁg?w)%(”v

0 e SR,
- TR T aa e (42D
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Una justificacion teérica de que las matrices de transicion asociadas a
(2.2.9) y (2.2.10) estan acotadas para cualquier \,;, v A, estd dada en
[2]. En la siguiente seccion lo comprobaremos numeéricamente en un caso
concreto.

4.3. Experimentos numéricos

En esta seccion se ilustraréan los resultados de la anterior, relacionados
con la aproximaciéon numérica de pequenas oscilaciones del péndulo doble con
MLMPs. Para ello, se utilizaran varios MLM para estudiar el comportamiento
del error a lo largo del tiempo en el hamiltoniano (4.0.2):

1. El MLMP simétrico de segundo orden (denominado MLMP2, cf. [4])

pp(r) = (r=1)(r+1), op(r) =2z,
p(z) = (z—1)(2*+1), o,(x)=212"+2. (4.3.1)

2. El MLM simétrico no particionado
opl@) = pal@) = (2~ D +1), 0pa) =) =22, (432)
3. El método de Adams no simétrico y no particionado de tercer orden |7

pp(7) = po(x) = 2*(z — 1),
23 16 5
op(x) = 04(z) = ExQ - 35° + s (4.3.3)
4. Un MLMP no simétrico donde uno de los métodos es el MLM simétrico
en (4.3.2) y el otro es el método de Adams de segundo orden

pp(x) = (x = 1)(z +1),  op(x) = 2z,

p(x) =a(x—1), o4,(z)= gx - % (4.34)

Para todos los experimentos numéricos, se han considerado las siguientes
condiciones iniciales

pr(0) =0, ps(0)=0, @(0)=-—, @ 0)=

T
12’ 6
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Matriz de transicion asociada a (2.2.9)

1.1

1.09

1.08

1.07

1.06

1.06

1.04 ¢

1.03

1.02

Norma euclidea de la matriz de transicion

1.01

1 Il 1 1
0 1000 2000 3000 4000 5000 6000 7000

Tiempo

Figura 4.3.1: Acotacion de la matriz de transicion de (2.2.9)

Ademés, se han tomado como valores de arranque los valores exactos
obtenidos con la subrutina ode45 en Matlab, con una tolerancia de error de
10713,

En primer lugar, observamos que en (4.3.1), p, y p, no tienen raices comu-
nes excepto x; = 1. Las raices no comunes en (4.3.1) son Tip=—lx14=1
y Z24 = —1, luego

Apip=—1 Agiq= _% Ag2q = ;
En las figuras 4.3.1 y 4.3.2 se observan las acotaciones de la matriz de transi-
cion de (2.2.9) y (2.2.10) para el MLMP simétrico (4.3.1). En la figura 4.3.3,
se representa el error en el hamiltoniano (4.2.1) a lo largo del tiempo. Se pue-
de observar, tal y como se deduce de la subsecciéon 4.1.1 y de los comentarios
hechos en la seccion 4.2, que el error en el hamiltoniano permanece acotado
durante tiempos muy largos. Sin embargo, cuando se considera el MLM no
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Norma euclidea de la matriz de transicion

Matriz de transicion asociada a (2.2.10)
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1.014

1.012

1.01
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1.006

1.004

1.002

0 1000 2000 3000 4000 5000 6000 7000
Tiempo

Figura 4.3.2: Acotacion de la matriz de transicion de (2.2.10)
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particionado simétrico (4.3.2), aparece un crecimiento exponencial del error
en el hamiltoniano con el tiempo, como se observa en la figura 4.3.4.

Por otro lado, si se toma un MLM no particionado y no simétrico, como
el método de Adams, los coeficientes del error en el hamiltoniano asociados
a la raiz x1 = 1 en las potencias pares de h también estardn acotados en
el tiempo. Sin embargo, aquellos asociados a las potencias impares de h
creceran linealmente con el tiempo. Debido a esto, como el primer polinomio
caracteristico del método de Adams solo tiene a z; = 1 como raiz de modulo
unidad, si el orden es impar, se espera un crecimiento lineal del error con el
tiempo, como se observa en la figura 4.3.5 para (4.3.3).

Finalmente, para (4.3.4), se observa que los primeros polinomios carac-
teristicos no tienen raices comunes de modulo 1, excepto por z; = 1, y se
sabe por los comentarios hechos en la seccion 4.2 que el coeficiente del error
asociado a la raiz x5, = —1 de p, esta acotado en el tiempo. Sin embargo,
por la subseccion 4.1.2; se tiene para el error en el hamiltoniano asociado a
la raiz x; = 1, el coeficiente que multiplica a h? estara acotado, pero el que
multiplica a k3 crecera linealmente. Por lo tanto, cuando A es suficientemente
pequeno, el error parece estar acotado al principio, pero a medida que ¢ crece,
el error asociado a h® domina y por tanto se produce un crecimiento lineal
del error, tal y como se aprecia en la figura 4.3.6.

Concluimos que el error en el hamiltoniano con el MLMP simétrico se
comporta bastante mejor con respecto a los errores de los otros tres métodos.
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5 Crecimiento del error con el MLMP2
10° T T T

ot AN AR

[ ]
=
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5 . e i M y
2 100 s TOAM A '
g [l ‘
g M
T
& 108} 1
S
w
.10—‘10 L i
h=2/102
h=2x/10°
h==27/10"
_10-‘12 1 1 1
10’ 10? 10° 10*

Tiempo

Figura 4.3.3: Error en el hamiltoniano frente al tiempo medido en multiplos
enteros de 27 al integrar el problema del doble péndulo con el método simé-
trico MLMP2 (4.3.1).
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Crecimiento del error con el MLM simétrico
no particionado

10" .
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S\ "'

Error en el hamiltoniano
=)
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h=2x/10%
10-‘10 I I I
10! 10% 10° 10*
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Figura 4.3.4: Error en el hamiltoniano frente al tiempo medido en multiplos
enteros de 27 al integrar el problema del doble péndulo con el método simé-
trico MLM no particionado (4.3.2).
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Crecimiento del error con el método de Adams de orden 3|
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Figura 4.3.5: Error en el hamiltoniano frente al tiempo medido en multiplos
enteros de 27 al integrar el problema del doble péndulo con el método de
Adams de tercer orden (4.3.3).
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Crecimiento del error con el MLMP no simétrico
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Figura 4.3.6: Error en el hamiltoniano frente al tiempo medido en multiplos
enteros de 27 al integrar el problema del doble péndulo con el método MLMP
(4.34).






Conclusiones

Las principales aportaciones del trabajo se pueden resumir en los siguien-
tes puntos:

= Desarrollo asintético del error global en términos del tama-
no de paso: Se obtiene un desarrollo asintotico que describe como se
comportan los coeficientes de dicho al usar un MLMP para resolver
sistemas de ecuaciones diferenciales ordinarias de dimension n . Esto
puede permitir entender como el error crece con el tiempo y céomo se
comporta respecto a la conservacion de ciertas propiedades del siste-
ma, siempre que se disponga de alguna informacion sobre la solucion
exacta.

= Recomendaciones sobre las raices de los polinomios caracte-
risticos: Se desaconseja el uso de métodos cuyo primer polinomio ca-
racteristico tenga raices comunes distintas de x; = 1, especialmente si
estas raices tienen modulo 1 (es decir, si estan en el circulo unitario del
plano complejo). Esto se debe a que estos métodos tienden a producir
un crecimiento exponencial del error con el tiempo.

= Ventajas de los MLMPs simétricos sin raices comunes salvo la
unidad: Los métodos que cumplen esta condiciéon son particularmente
eficientes porque su error global se simplifica de manera significativa.
En estos casos, los coeficientes asociados a las potencias pares de la
longitud de paso en el desarrollo asintético del error local se anulan,
lo que facilita el anéalisis del error global y el de los invariantes del sis-
tema. Ademas, aunque estos métodos pueden generar componentes no
suaves en la soluciéon numérica, el estudio demuestra que bajo ciertas
condiciones, estas componentes pueden mantenerse bajo control, inclu-
so en problemas no separables. Otra ventaja clave es que estos métodos

89
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pueden ser explicitos, lo que los hace computacionalmente mas atracti-
vos en comparacion con otros integradores geométricos disenados para
problemas separables con cierta estructura.

Aplicacién al péndulo doble: Se realiza un anélisis detallado en el
caso de pequenas oscilaciones del péndulo doble, lo que permite compro-
bar las ventajas de los MLMPs simétricos. En particular, se observa que
estos métodos controlan mejor el crecimiento del error en la energia (el
hamiltoniano) en comparacion con otros métodos explicitos multipaso,
sean estos simétricos y no particionados, no simétricos y particionados,
0 no simétricos y no particionados.
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