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FACULTAD DE CIENCIAS

1



Resumen

El objetivo de este trabajo es estudiar el algoritmo de poda descrito por
Margherita Barile y Antonio Macchia en su art́ıculo de 2020 “Minimal cellular
resolutions of the edge ideals of forests”, en el cual se describen una serie de
pasos para obtener una resolución libre graduada minimal de los ideales de
aristas de bosques, partiendo de resoluciones libres ya conocidas, como la
de Lyubeznik o la de Taylor. También compararemos este algoritmo con el
algoritmo de poda de la resolución de Taylor mencionado en [11] y [2].

Se usarán como referencias principales del trabajo el art́ıculo de Barile y
Macchia antes mencionado ([3]) y el art́ıculo de Batzies y Welkers “Discrete
Morse Theory for cellular resolutions”([4]).

Palabras clave

Resoluciones libres de ideales, Ideales de aristas, Ideales Monomiales,
Sizigias, Teoŕıa de Morse Discreta.
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Introducción

Contexto histórico

El estudio de las resoluciones libres de ideales es una rama relativamente
reciente de las matemáticas, cuyo origen se podŕıa establecer a mediados del
siglo XIX. Fue entonces cuando Arthur Cayley (1821-1895) usó el término
“sizigias” para referirse a la relación lineal que cumplen los menores de una
matriz 2x3:

a

∣∣∣∣b c
e f

∣∣∣∣− b

∣∣∣∣a c
d f

∣∣∣∣+ c

∣∣∣∣a b
d e

∣∣∣∣ = 0.

La palabra sizigia ganó popularidad en 1890 cuando David Hilbert (1862-1943)
la empleó en el art́ıculo que contiene 3 de los teoremas más importantes sobre
polinomios: El Teorema de la Base de Hilbert, El Teorema de las Sizigias de
Hilbert y el Teorema de los Ceros de Hilbert (más conocido por su nombre
en alemán: “Nullstellensatz”). Una de las cuestiones más importantes que
resuelve Hilbert es que la construcción de sucesivos módulos de sizigias es un
proceso finito cuando el módulo inicial es finitamente generado. Sin embargo,
surge la cuestión de como encontrar una sucesión de estos módulos que sea
lo más pequeña posible.

A mediados del siglo XX se desarrolla el álgebra homológica a manos de
matemáticos como Eilenberg (1913-1998) y Koszul (1921-2018). Esto sentó
las bases para que, en los años 70, David Buchsbaum (1929-2021) y David
Eisenbud (1947-) relacionaran los complejos de cadenas con las resoluciones
libres de ideales, introduciendo el criterio de exactitud de Buchsam-Eisenbud,
que se emplea para comprobar cuándo un complejo de cadenas es también una
resolución libre. Una década antes, Diana Taylor (1941-2016) hab́ıa dado una
construcción expĺıcita de una resolución libre para ideales monomiales, la cual
hoy lleva su nombre. En 1988, Gennady Lyubeznik (1957-) dio un algoritmo
que mejoraba la construcción creada por Taylor, obteniendo resoluciones
libres más cercanas a la minimal.

En 1995, Eisenbud publica el libro “Commutative Algebra with a View
Toward Algebraic Geometry” ([6]), en el cual se naturalizan las resoluciones
libres como herramientas en las áreas del álgebra conmutativa y la geometŕıa.
Es entonces cuando se vuelve habitual el estudio de resoluciones libres de
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ideales monomiales mediante objetos como complejos simpliciales y politopos,
surgiendo nuevas aplicaciones para teoŕıas ya desarrolladas como la fórmula
de Hochster o la teoŕıa de Stanley-Reisner.

En los años más recientes, se han caracterizado las formas que pueden
tener las tablas de Betti de las resoluciones libres cuando los anillos son anillos
de polinomios, y se han dado más construcciones expĺıcitas de resoluciones
libres minimales para ciertos tipos de ideales. En particular, se ha resuelto el
caso de ideales de aristas de bosques mediante el uso de la teoŕıa de Morse
discreta, como veremos en este trabajo.

Estructura

En el Caṕıtulo 1 repasaremos los conceptos de anillo y módulo graduados e
introduciremos el concepto de resolución libre graduada de un ideal. Veremos
también la forma principal de almacenar información sobre estas resoluciones,
empleando los números y diagramas de Betti.

El Caṕıtulo 2 está dedicado a la construcción de la resolución de Taylor
y al algoritmo de poda descrito en [2].

Para terminar, en el Caṕıtulo 3 se trata el caso de los ideales de aristas y
se presenta el algoritmo descrito en [3].
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1. Conceptos básicos

En este primer caṕıtulo introduciremos los objetos que emplearemos a lo
largo de este trabajo. Nos centraremos especialmente en los ideales monomiales
y el concepto de resoluciones libres graduadas de estos ideales. Abordaremos
también la comparativa entre las versiones algebraicas y combinatorias de
estos objetos, usando, por ejemplo, los números de Betti. Consideraremos
un cuerpo K y el anillo de polinomios en n variables sobre dicho cuerpo,
A = K[x1, . . . , xn]. Como trataremos con ideales en el anillo A, cabe recordar
que el Teorema de la base de Hilbert afirma que A es un anillo noetheriano,
y por lo tanto todo ideal suyo es finitamente generado.

1.1. Anillos y módulos graduados

Definición 1.1. El grado de un monomio xα = xα1
1 xα2

2 . . . xαn
n ∈ A es:

|α| =
n∑
i=1

αi.

Y el grado de un polinomio es el mayor de los grados de los monomios que
lo conforman.

Definición 1.2. Un ideal monomial en A es un ideal I ⊆ A que posee un
sistema de generadores cuyos miembros son todos monomios.

Un monomio xα = xα1
1 xα2

2 . . . xαn
n ⊂ A se denomina libre de cuadrados si

αi ∈ {0, 1} para todo i = 1, . . . , n.

Naturalmente, si los generadores (monomios) de un ideal monomial son todos
libres de cuadrados, el ideal también se denomina libre de cuadrados.

Sea Ai el K-espacio vectorial generado por los monomios de grado i. La
graduación estándar de A se define como A =

⊕
i∈N

Ai.

Definición 1.3. Decimos que un polinomio f ∈ A es homogéneo de grado k
si todos los monomios que lo forman tienen grado k. O lo que es lo mismo,
f ∈ Ak para la graduación estándar de A.
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Nota 1.4. Con esto dado, solo tenemos que comprobar que AiAj ⊂ Ai+j para
todos i, j ∈ N para deducir que A es un anillo graduado. Pero esta condición
equivale a decir que el producto de polinomios homogéneos es un polinomio
homogéneo cuyo grado es igual a la suma de los grados de los factores, lo
cual es cierto.

Definición 1.5. En la graduación estándar, losAi se denominan componentes
homogéneas i-ésimas (de A).
A los elementos de Ai los llamaremos elementos homogéneos de grado i.
Un ideal J ⊆ A es homogéneo si posee un sistema de generadores formado
exclusivamente por polinomios homogéneos.
Evidentemente, todos los ideales monomiales son ideales homogéneos.

Es fácil ver que todo polinomio f ∈ A se puede expresar como una suma
finita de sus componentes, agrupadas por grado. Es decir, f =

∑
fi, dónde

fi ∈ Ai. Cada fi recibe el nombre de componente homogénea de grado i de f.

Veamos ahora una forma de determinar si un ideal posee un sistema de
generadores homogéneos:

Proposición 1.6.
Sea I un ideal de A =

⊕
i∈N

Ai. Entonces son equivalentes las siguientes afirmaciones:

1. Si f ∈ I, entonces fi ∈ I, para toda componente homogénea fi de f .

2. I =
⊕
i∈N

Ii, siendo Ii = I ∩ Ai.

3. I está generado por sus elementos homogéneos.

4. I tiene un sistema de generadores homogéneos.

Demostración. La cadena 1 ⇒ 2 ⇒ 3 ⇒ 4 es trivial, luego solo quedaŕıa
probar la implicación 4⇒ 1:
Tomamos un sistema homogéneo de generadores de I: I = ⟨f1, . . . , fr⟩. Sea
f ∈ I. Podemos escribir f =

∑
i

aifi, con ai elementos de A. Al ser A un anillo

graduado, podemos escribir, para todo i, ai =
∑
j

aij , donde ahora aij ∈ Aj
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es homogéneo. Por lo tanto, f =
∑
i,j

aijfi. Agrupamos ahora los sumandos del

mismo grado y obtenemos f =
∑
k

ck, con:

ck =
∑

deg(aij fi)=k

aijfi ∈ Ak, con 0 ≤ k ≤ deg(f)

f queda descompuesto en sus componentes homogéneas. Por hipótesis, fi ∈ I,
luego el producto aijfi también pertenece al ideal, y por lo tanto ck, que es la
suma de estos productos, es un elemento de I. Esto completa la implicación
4⇒ 1.

Recordamos de la nota 1.4 que un anillo A es graduado si se puede
descomponer como suma numerable de ciertos subgrupos (A =

⊕
i∈N

Ai), bajo

la condición AiAj ⊆ Ai+j, para todos i, j ∈ N. Esta definición se extiende
fácilmente a los módulos:

Definición 1.7. Sea A =
⊕
i∈N

Ai un anillo graduado y M un A-módulo.

Entonces diremos que M es graduado si existen subgrupos {Mi}i∈N ⊆ M
tales que:

1. M =
⊕
i∈N

Mi, y

2. AiMj ⊆Mi+j, para todos i, j ∈ N.

De forma idéntica al caso de los ideales, la Proposición 1.6 tiene una
versión análoga para los módulos, y en particular:

Proposición 1.8.
Si M es un A-módulo graduado, entonces posee un sistema de generadores
homogéneos. Dicho sistema es finito si M es finitamente generado.

Definición 1.9. Recordemos que una base de un A-módulo M es un sistema
de generadores linealmente independiente. Los módulos que no tienen una
base se denominan módulos de torsión, mientras que los que śı poseen base
se denominan módulos libres.
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Definición 1.10. Sea M =
⊕
i∈N

Mi un A-módulo graduado. La graduación

desplazada de M se define como M(p) =
⊕
i∈N

Mi+p. Se da entre M y M(p) la

siguiente relación: M(p)i = Mp+i. Al entero p se le denomina desfase de la
graduación (o shift en inglés).

Definición 1.11 (Multigraduación). De la graduación que hemos visto sobre
N podemos pasar a otra más fina sobre Nn. Los conceptos vistos se extienden
a esta nueva graduación con sencillez:

Un monomio xα = xα1
1 · · ·xαn

n se dice que tiene multigrado α ∈ Nn.

Un polinomio f ∈ A es homogéneo de multigrado α si f = cxα, con
c ∈ K.

El anillo A es Nn-graduado, y sus componentes graduadas son:

Aα :=

{
Kxα si α ∈ Nn

+.

0 en caso contrario.

Un A-módulo M es Nn-graduado si M =
⊕

α∈Nn

Mα y se cumple que

AαMβ ⊆Mα+β, para todos α,β ∈ Nn.

Lamultigraduación desplazada de M se define comoM(α) =
⊕

β∈Nn

Mα+β.

El elemento α se denomina desfase.

Definición 1.12. SeanM,N dosA-módulos graduados. Dado i ∈ N, diremos
que un homomorfismo ϕ : M → N es graduado de grado i si lleva elementos
homogéneos en elementos homogéneos y cumple que deg(ϕ(f)) = i+deg(f),
para todo f ∈ M homogéneo y con f ̸∈ Ker(ϕ). En el caso i = 0, diremos
simplemente que ϕ es graduado.

Teorema 1.13 (Ver [10, Teorema 1.19]).
Si M es un A-módulo libre graduado finitamente generado, yM = {m1, . . . ,mr}
es un sistema minimal de generadores homogéneos de M , entonces:

M es una base de M .
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Si denotamos pi = deg(mi),∀i = 1, . . . , r, la aplicación:

ϕ : A(−p1)⊕ · · · ⊕ A(−pr)→M

dada por ϕ(ei) = mi, con ei el i-ésimo elemento de la base canónica de
A(−p1)⊕ · · · ⊕ A(−pr), es un isomorfismo graduado.

1.2. Complejos simpliciales

Definición 1.14. Sea V = {v1, . . . , vn} un conjunto finito. Un complejo
simplicial ∆ sobre V es un subconjunto de P(V ) tal que:

{vi} ∈ ∆ para i = 1, . . . , n.

Si F ∈ ∆ y G ⊆ F , entonces G también pertenece a ∆.

Los elementos de ∆ reciben el nombre de caras. Algunos tipos de caras son:

Las caras de la forma {vi} se denominan vértices.

Las caras de la forma {vi, vj}, con i ̸= j, se denominan aristas.

Las caras maximales para la inclusión en ∆ se denominan facetas o
caretas.

Las caras de cardinal n se denominan n-caras.

Ejemplo 1.15. El complejo simplicial representado por:

12

3 4

5

6

7

esta compuesto por:
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Los vértices numerados del 1 al 7.

Las aristas: (1,2), (1,3), (1,4), (1,5), (1,6), (1,7), (3,4), (3,5), (4,5) y
(6,7).

Las 3-caras: (1, 3, 4), (1, 3, 5), (1, 4, 5), (3, 4, 5) y (1, 6, 7).

La 4-cara: (1, 3, 4, 5).

De entre todas ellas, las caras (1, 3, 4, 5), (1, 6, 7) y (1, 2) son las facetas
de este complejo simplicial.

Definición 1.16. Dado un complejo simplicial ∆ sobre V = {v1, . . . , vn}:

Sea W ⊆ V . El subcomplejo ∆W se define como:

∆W := {F ∈ ∆|F ⊆ W}.

La dimensión de una cara F es dim(F ) = |F | − 1.

La dimensión de ∆ es:

dim(∆) = máx
F∈∆

(dim(F )) = máx{dim(G)|G es faceta de ∆.}

Un complejo simplicial es puro si todas sus facetas tienen la misma
dimensión.

Denotamos el número de caras de dimensión i de ∆ por fi(∆), y
llamamos f -vector de ∆ a:

f(∆) = (f0(∆), f1(∆), . . . , fdim(∆)(∆)).

LLamamos (n− 1)-śımplice de ∆ al complejo simplicial ∆n−1, formado
por todos los subconjuntos de V .

Si asociamos cada uno de los vértices de ∆ a una variable (vi → xi), se
crea una relación entre el conjunto de complejos simpliciales y el conjunto de
ideales monomiales libres de cuadrados. De esta forma, la cara {vi1 , . . . , vil}
del complejo simplicial se corresponde con el monomio xi1 · · ·xil en el ideal.

Introducimos algo de notación: Sea V = {v1, . . . , vn}. Para cada subconjunto
V ′ ⊆ V :
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PV ′ ⊆ A denotará el ideal generado por las variables correspondientes
a los elementos de V ′. PV ′ = xi|vi ∈ V ′.

xV
′ ∈ A es el monomio producto de las variables correspondientes a

elementos de V ′, es decir: xV
′
=

∏
vi∈V ′

xi.

Definición 1.17. Sea ∆ un complejo simplicial sobre el conjunto de vértices
{v1, . . . , vn}. Sea A(∆) = K[x1, . . . , xn] el anillo de polinomios en n variables,
siendo K un cuerpo.
El ideal de Stanley-Reisner de ∆, denotado como I(∆), es el ideal de A(∆)
generado por todos los monomios libres de cuadrados xi1 . . . xij tales que
ninguna cara de ∆ contiene a todos los vértices vi1 , . . . , vij , es decir:

I(∆) = ⟨xV ′ |V ′ ⊆ V y V ′ /∈ ∆⟩.

El anillo de Stanley-Reisner de ∆ se define como el anillo cociente:

K[∆] = R(∆)/I(∆).

Tenemos que todo ideal de Stanley-Reisner es libre de cuadrados, pero también
podemos ver el rećıproco, que todo ideal libre de cuadrados es el ideal de
Stanley-Reisner de algún complejo simplicial: Si I es un ideal monomial libre
de cuadrados en A, entonces tomamos V = {v1, . . . , vn} y escribimos I en
función de su sistema minimal de generadores monomiales. Cada uno de
estos monomios se corresponde con xVt para algún Vt ⊆ V , luego tendremos
I = ⟨xV1 , . . . , xVd⟩. Ahora bien, consideremos el complejo simplicial ∆ =
{V ′|Vt ̸⊆ V ′,∀t ∈ {1, . . . , d}}. Su ideal de Stanley-Reisner es:

I(∆) = ⟨xV ′|V ′ ⊆ V y V ′ /∈ ∆⟩ = ⟨xV ′|V ′ ⊆ V y ∃t ∈ {1, . . . , d}, Vt ⊆ V ′⟩
= ⟨xV ′|V ′ ⊆ V y xV

′ ∈ I⟩ = I.

1.3. Resolución libre de un ideal

Definiremos ahora la construcción principal de este trabajo: la resolución
libre de un módulo. A partir de ella definiremos la resolución libre minimal
graduada de un módulo o ideal homogéneo.

12



Definición 1.18. Sea M un A-módulo. Llamamos resolución libre de M a
cualquier sucesión de módulos libres:

· · · φn+1−−−→ Fn
φn−→ · · · φ2−→ F1

φ1−→ F0
φ0−→M → 0,

que sea exacta, es decir, tal que Ker(φi) =Im(φi+1). Diremos que una resolución
libre es graduada si A es un anillo graduado, M es un A-módulo graduado,
y se cumplen las siguiente condiciones:

Los Fi son módulos libres graduados.

Cada φi es homogénea y de grado 0.

En el caso en el que exista j ∈ N tal que Fi = 0 para todo i > j y Fi ̸= 0
para todo i ≤ j, diremos que la resolución libre es finita de longitud j.
A la hora de escribir resoluciones libres graduadas, omitiremos con frecuencia
la sección “M → 0”.

Definición 1.19. Dos resoluciones libres graduadas

· · · φn+1−−−→ Fn
φn−→ · · · φ2−→ F1

φ1−→ F0

· · · ψn+1−−−→ Gn
ψn−→ · · · ψ2−→ G1

ψ1−→ G0

son isomorfas si existen isomorfismos graduados ϕk : Fk → Gk tales que el
diagrama:

Fk+1 Fk

Gk+1 Gk

φk

ϕk+1 ϕk

ψk

es conmutativo para todo k.

Nos interesa precisar el caso en el que la resolución libre graduada posee
la menor longitud posible, pues ese es el objetivo de los algoritmos que
presentaremos.

Definición 1.20. Dada una resolución libre graduada de un A-módulo M :

· · · φn+1−−−→ Fn
φn−→ · · · φ2−→ F1

φ1−→ F0,
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diremos que es minimal si es la resolución de M de menor longitud y tal que
cualquier otra resolución libre graduada de M :

· · · ψm+1−−−→ Gm
ψm−−→ · · · ψ2−→ G1

ψ1−→ G0

cumple que si Fi = At, entonces Gi = Ar, con r ≥ t.

Proposición 1.21 ([12, Lema 1.24]).
La resolución libre graduada minimal de un A-módulo M es única salvo
isomorfismos.

Definición 1.22. Dado M un A-módulo y F = {f1, . . . , ft} un sistema de
generadores de M , llamamos sizigia a cualquier elemento {a1, . . . , at} de At

tal que
a1f1 + a2f2 + · · ·+ atft = 0.

El conjunto de todas las sizigias de F constituye un A-módulo, y se denomina
el 1.er módulo de sizigias de F , abreviado como Siz1(F ) o simplemente,
Siz(F ). En particular, si I es un ideal de A y G = {g1, . . . , gt} es un
sistema de generadores de I, el primer módulo de sizigias de I es Siz(G).
Cabe destacar que estas construcciones pueden depender del sistema de
generadores escogido para I. Por abuso de notación, hablaremos habitualmente
del primer módulo de sizigias de I, y lo denotaremos por Siz(I), si es
esencialmente único (salvo isomorfismo graduado).

Con el módulo de sizigias construido, podemos llegar al primer paso de
una resolución libre graduada, veámoslo por partes:

Recordemos primero que el Teorema de la Base de Hilbert nos indica que
el anillo de polinomios con coeficientes en un anillo noetheriano es también
noetheriano. La aplicación reiterada de este resultado nos permite afirmar
que A = K[x1, . . . , xn] es noetheriano, luego cualquier submódulo de At, y en
concreto, cualquier ideal de A, son finitamente generados.

Siz(F ) es un A-módulo, más concretamente, es un submódulo de At,
por lo que, por el Teorema de la Base de Hilbert, es finitamente generado.
Definimos ϕ : At →M , que lleva ei en fi para i = 1, . . . , t. Destaquemos que
Ker(ϕ) = Siz(F ).

De la misma manera en la que se prueba el Teorema 1.13, se puede obtener
que si los grados de f1, . . . , ft son p1, . . . , pt, entonces ϕ : A(−p1) ⊕ · · · ⊕

14



A(−pt) → M es un homomorfismo graduado de grado 0 y por lo tanto
Siz(F ) es un A-módulo graduado Además es finitamente generado, por ser
un submódulo de At.

La aplicación ϕ se corresponde aśı con la antes denominada φ0, y tenemos
el primer paso de una resolución libre graduada de M :

· · · φ1−→ A(−p1)⊕ · · · ⊕ A(−pt)
ϕ=φ0−−−→M → 0,

donde Im(φ1) = Ker(φ0) = Siz(F ) ⊆ A(−p1)⊕ · · · ⊕ A(−pt).

Este proceso se puede iterar, tomando un sistema de generadores de este
nuevo módulo para construir el llamado 2.o módulo de sizigias, (Siz2(F )) y aśı
sucesivamente. El siguiente teorema afirma que este procedimiento termina:

Teorema 1.23 (Teorema de las sizigias de Hilbert, [8]).
Sea A = K[x1, . . . , xn]. Todo A-módulo graduado que sea finitamente generado
tiene una resolución libre finita graduada de longitud igual o menor que n,
el número de variables del anillo.

Este teorema nos dice que las resoluciones libres graduadas de un ideal
I ⊆ A son de la forma:

0→ Abp φp−→ · · · φ1−→ Ab0 φ0−→ I → 0,

donde en cada paso se cumple Im(φj) = Ker(φj−1) = Sizj(I). La resolución
libre graduada construida en este proceso iterativo no tiene por que ser
minimal, de hecho, el sistema original de generadores, F , puede no serlo.

Nota 1.24. Podemos relacionar las resoluciones libres graduadas de un ideal
I y del cociente A/I visto como A-módulo. Consideramos la resolución libre
graduada de I:

0→ Abp φp−→ · · · φ2−→ Ab1 φ1−→ Ab0 φ0−→ I
ε−→ 0

Entonces, la siguiente resolución:

0→ Abp φp−→ · · · φ2−→ Ab1 φ1−→ Ab0 φ0−→ A
π−→ A/I

ε−→ 0,

donde π denota la aplicación de paso al cociente, es una resolución libre
graduada de A/I. Veámoslo: la parte izquierda cumple las condiciones de la
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definición, por lo que solo quedaŕıa comprobar: ¿Im(φ0) = Ker(π)?.
Como π es paso al cociente, Ker(π) = I. Por otra parte, de la resolución libre
graduada de I vemos que, efectivamente, I = Im(φ0) = Ker(ε). Deducimos
que teniendo una de las dos resoluciones la otra resulta trivial. Sin embargo,
la longitud de la resolución del cociente A/I es una unidad mayor que la
longitud de su contraparte, y los módulos y aplicaciones comunes presentan
también una unidad de desplazamiento. Por lo tanto, se debe especificar la
resolución con la que se esté trabajando en cada situación.

1.4. Números de Betti

Los números de Betti son el principal método para guardar la información
sobre una resolución libre graduada. Se definen varios tipos de números de
Betti en función de la graduación empleada, que llamaremos graduados,
multigraduados, y globales. En el caso de que la resolución a tratar sea la
resolución libre graduada minimal de un ideal I o unA-móduloM , hablaremos
de los números de Betti de dicho ideal o módulo, pues el teorema 1.23 afirma
que la resolución es única salvo isomorfismos.

Daremos las definiciones siguientes para un ideal I, pero son completamente
idénticas para el caso de A-módulos graduados, excepto la primera, que sólo
se define para el caso en el que I es un ideal monomial. Consideraremos
únicamente el caso de resoluciones libres graduadas minimales, pues en los
casos no minimales las definiciones son prácticamente identicas.

Definición 1.25. Sea I ⊆ A un ideal monomial. Sean i ∈ N y α ∈ Nn.
Se define el i-ésimo número de Betti multigraduado de multigrado α, y se
denota βi,α(I), al número de generadores de multigrado α que aparecen en
el i-ésimo paso de la resolución libre graduada minimal de I.

Definición 1.26. Sea I ⊆ A un ideal homogéneo. Sean i, j ∈ N. Se define el
i-ésimo número de Betti graduado de grado j, y se denota βi,j(I), al número
de generadores de grado j que aparecen en el i-ésimo paso de la resolución
libre graduada minimal de I.
En el caso en el que I sea un ideal monomial, se cumple βi,j(I) =

∑
|α|=j

βi,α(I).

Definición 1.27. Sea I ⊆ A un ideal homogéneo. Sea i ∈ N. Se define el
i-ésimo número de Betti global, y se denota βi(I), al número de generadores
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que aparecen en el i-ésimo paso de la resolución libre graduada minimal de
I.
De la definición anterior deducimos que βi(I) =

∑
j

βi,j(I).

Proposición 1.28 (Consecuencia de [6, pg.46]).
Sea I un ideal homogéneo de A, y sean βi los números de Betti globales
asociados a la resolución libre graduada minimal de A/I. Entonces se cumple:

p∑
i=0

(−1)iβi = 0,

donde p es la longitud de la resolución.

Recordemos que hemos relacionado la resolución libre graduada minimal
de un ideal I con la del cociente A/I. De igual manera, los números de Betti
de ambas resoluciones están relacionados:

Proposición 1.29.
Sean I un ideal monomial, i ≥ 0 y α ∈ Nn. Entonces:

βi,α(I) = βi+1,α(A/I).

Si I es un ideal homogéneo y j ∈ N, entonces:

βi,j(I) = βi+1,j(A/I),

y por lo tanto, los números de Betti globales de ambas resoluciones cumplen:

βi(I) = βi+1(A/I).

Podemos aplicar estas relaciones entre números de Betti a la Proposición
1.28 para deducir el siguiente resultado:

Proposición 1.30.
Si I es un ideal homogéneo de A y βi son los números de Betti de una
resolución libre graduada minimal de I, entonces:

p∑
i=0

(−1)iβi = 1,

donde p es la longitud de la resolución.
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El siguiente tema a tratar es el almacenamiento y/o presentación de los
números de Betti graduados y globales de un A-módulo M . Al estar tratando
con dos ı́ndices, la primera intuición puede ser construir una tabla o matriz,
escribiendo en la posición ai,j al número de Betti graduado βi,j(M). Sin
embargo, como veremos a continuación, esto se puede hacer de una forma
más eficiente.

Si una resolución libre graduada es minimal, entonces los A-módulos
de dicha resolución cumplen que las imágenes de sus bases son conjuntos
minimales de generadores de los módulos siguientes. El Lema de Nakayama
(que podemos encontrar, por ejemplo, en [5]) nos permite afirmar:

Im(φi) ⊂ (x1, . . . , xn)(
⊕
j

A(−j)βi−1,j).

Y como consecuencia, obtenemos la siguiente proposición:

Proposición 1.31 (Prop. 1.9, [7]).
Sea I un ideal homogéneo y {βi,j} los números de Betti graduados de I
(asociados a su res. libre. grad. minimal). Sea i un ı́ndice cualquiera. Si
existe J ∈ N tal que βi,j = 0 para todo j < J , entonces βi+1,j+1 = 0, ∀j < J .

Ahora podemos reducir el tamaño de la tabla que almacena los números
de Betti: las columnas denotarán el paso de la resolución libre graduada
minimal, y almacenaremos en la posición aj,i el número de Betti graduado
βi,i+j. Los rangos de los ı́ndices son 0 ≤ i ≤ p, con p el número de pasos de
la resolución y 0 ≤ j ≤ r, donde r es la última fila de la tabla con alguna
entrada no nula. Añadiendo una última fila que represente la suma de cada
columna, obtenemos los números de Betti globales. La tabla resultante se
denomina diagrama de Betti de I:

0 · · · i · · · p
0 β0,0 · · · βi,i · · · βp,p
· · · · · · · · · · · · · · · · · ·
j β0,j · · · βi,i+j · · · βp,p+j
· · · · · · · · · · · · · · · · · ·
r β0,r · · · βi,i+r · · · βp,p+r

Globales β0 · · · βi · · · βp
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Nota 1.32. En el caso de tratar con una resolución libre graduada general de
I (no minimal), la proposición anterior no se cumple, luego para representar
los números de Betti podŕıa ser necesario el uso de filas correspondientes a
ı́ndices negativos.
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2. Resolución de Taylor. La poda del complejo

simplicial

En este caṕıtulo presentaremos un primer algoritmo de poda aplicable a
una de las resoluciones más conocidas: la llamada resolución de Taylor. El
cálculo de ésta resolución es bastante simple, y si bien el algoritmo de poda
no ofrece siempre una resolución minimal, nos es útil para sentar las bases
del algoritmo que veremos en el siguiente caṕıtulo.

La resolución de Taylor es una resolución libre graduada del anillo cociente
A/I, donde I es un ideal monomial de A. Asociada a esta resolución hay un
complejo simplicial cuya construcción es aplicable a cualquier ideal monomial,
en contraposición con la necesidad de tener un ideal libre de cuadrados,
como ocurria en el caso de complejos simpliciales asociados a ideales de
Stanley-Reisner.

2.1. Construcción de la resolución de Taylor

Consideramos I ⊂ A un ideal monomial, y sea {xα1 , . . . , xαt} un sistema
minimal de generadores monomiales de I. Definimos, para cada subconjunto
J ⊆ {1, . . . , t}:

mJ = mcm (xαi |i ∈ J)

Aśı quedan definidos un total de 2t monomios. LlamaremosαJ al exponente
de mJ . Consideramos el conjunto de vértices V = {v1, . . . , v2t}, los cuales
etiquetamos con los αJ . La poda, como veremos más adelante, utiliza la
posibilidad de que dos vértices distintos posean la misma etiqueta, es decir,
que αJ = αJ ′ , con J y J ′ subconjuntos distintos de I.

Tomamos Fs el A-módulo libre con base conformada por los elementos
eJ , siendo J ⊆ {1, . . . , t}, con |J | = s.

Ahora, tomamos todos los subconjuntos de {1, . . . , t} y para cada par de
ellos J,K, con J = {j1, . . . , js} ordenado, definimos:

cJ,K =

{
(−1)k mJ

mK
si K = J ∖ {jr} para algún r,

0 en el resto de casos.
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Una vez definido este coeficiente, se define el complejo de Taylor de I,
T (I), como el complejo simplicial formado por los vértices V y las aristas
que unen los vértices mJ y mK , si cJ,K ̸= 0. Por definición de cJ,K , estas
aristas unen elementos de Fs con elementos de Fs−1, y nos incita a construir
la aplicación:

φs : Fs → Fs−1,

definida como:
φs(eJ) =

∑
K

cJ,K · eK .

Y obtenemos la siguiente sucesión de módulos:

0→ Ft
φt−→ · · · φ1−→ F0

φ0−→ A/I → 0.

Esta es la llamada resolución de Taylor, que como se puede ver en [6,
Ejercicio 17.11], es una resolución libre graduada de A/I.

Como hemos dicho antes, la resolución de Taylor no suele ser minimal.
El complejo de Taylor que hemos definido almacena la información de la
resolución en sus vértices y aristas: cada uno de los 2t vértices representa un
elemento de la base de uno de los módulos Fi, siendo el elemento asociado
al vértice mJ un miembro de la base de F|J |. Diremos que las aristas que
unen vértices de Fs con vértices de Fs−1 corresponden a la dirección s o que
corresponden a la dirección dada por el generador xαs .

Se puede apreciar que la resolución de Taylor contiene un exceso de
información en las aristas, pues aquellas que unen elementos con la misma
etiqueta representan información redundante.

Nota 2.1. La resolución de Taylor permite probar la Proposición 1.28 para
el caso que estamos tratando, resoluciones libres graduadas de A/I con I un
ideal monomial. En primer lugar, tengamos en cuenta que cada módulo Fs
tiene un total de

(
t
s

)
elementos, es decir:

βs =

(
t

s

)
.

Realizando ahora la suma alternada y aplicando la formula del binomio de
Newton, tenemos:

t∑
i=0

(−1)iβi =
t∑
i=0

(
t

i

)
1t−i(−1)i = (1− 1)t = 0.
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Además, en el caso de obtenerse otra resolución libre graduada a partir
de la resolución de Taylor, el resultado se mantiene. Esto se debe a que
eliminar un generador innecesario de Fs implica que uno de los generadores
de Fs+1 puede ser suprimido, al poder escribirse como combinación lineal
del resto de generadores. En los nuevos números (globales) de Betti de la
resolución resultante, encontraŕıamos que dos de ellos, consecutivos, se han
visto reducidos en una unidad. Esto no afecta a la suma alternada, que sigue
siendo 0.

Nota 2.2. Se suele escribir la resolución de Taylor como:

0→ A(
t
t) φt−→ A(

t
t−1) φt−1−−→ · · · φ1−→ A(

t
0) φ0−→ A/I → 0.

Ejemplo 2.3. Tomamos el ideal I = ⟨x1x2x3, x1x2x4, x1x4⟩ ⊆ K[x1, x2, x3, x4].
En primer lugar, calculamos los elementos mJ , con J ⊆ {1, 2, 3}, y sus
correspondientes etiquetas:

|J | J mJ Etiqueta
0 ∅ 1 {0000}

1
1 x1x2x3 {1110}
2 x1x2x4 {1101}
3 x1x4 {1001}

2
1, 2 x1x2x3x4 {1111}
1, 3 x1x2x3x4 {1111}
2, 3 x1x2x4 {1101}

3 1, 2, 3 x1x2x3x4 {1111}

Y su complejo de Taylor es de la forma siguiente:

m123
{1111}

m12
{1111}

<<

m13
{1111}

OO

m23
{1101}

bb

m1
{1110}

<<OO

m2
{1101}

bb <<

m3
{1001}

bb OO

m∅
{0000}

bb OO <<
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Los números de Betti graduados de la resolución de Taylor se obtienen
mediante el conteo de unos en las etiquetas:

0 1 2 3
0 1 − − −
1 − 1 1 1
2 − 2 2 −

Globales 1 3 3 1

Y por tanto la resolución de Taylor del ideal A/I es:

0→ A→ A3 → A3 → A→ A/I → 0.

O, de forma más precisa:

0→ A(−4)→ A(−4)2 ⊕ A(−3)→ A(−3)2 ⊕ A(−2)→ A→ A/I → 0.

Ejemplo 2.4. Consideremos ahora el ideal:

I = ⟨x1x2, x1x3, x2x4, x2x5⟩ ⊆ K[x1, . . . , x7]

La tabla resultante es:

|J | J mJ Etiqueta
0 ∅ 1 {00000}

1

{1} x1x2 {11000}
{2} x1x3 {10100}
{3} x2x4 {01010}
{4} x2x5 {01001}

2

{1, 2} x1x2x3 {11100}
{1, 3} x1x2x4 {11010}
{1, 4} x1x2x5 {11001}
{2, 3} x1x2x3x4 {11110}
{2, 4} x1x2x3x5 {11101}
{3, 4} x2x4x5 {01011}

3

{1, 2, 3} x1x2x3x4 {11110}
{1, 2, 4} x1x2x3x5 {11101}
{1, 3, 4} x1x2x4x5 {11011}
{2, 3, 4} x1x2x3x4x5 {11111}

4 {1, 2, 3, 4} x1x2x3x4x5 {11111}
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Y su complejo de Taylor es de la forma:

m1234
{11111}

m123
{11110}

33

m124
{11101}

;;

m134
{11011}

OO

m234
{11111}

cc

m12
{11100}

;;

m13
{11010}

OO

m23
{11110}

cc

m14
{11001}

;;OO

m24
{11101}

cc ;;

m34
{01011}

cc OO

m1
{11000}

;;OO

m2
{10100}

cc ;;

m3
{01010}

cc OO

m4
{01001}

cc OO ;;

m∅
{0000}

cc OO ;;
33

Donde cada vértice del cubo izquierdo se supone conectado a su análogo en
el cubo derecho.

El diagrama de Betti de este complejo es:

0 1 2 3 4
0 1 − − − −
1 − 4 4 3 1
2 − − 2 1 −

Globales 1 4 6 4 1

La resolución de Taylor es, por tanto:

0→ A→ A4 → A6 → A4 → A→ A/I → 0.

O alternativamente:

0→ A(−5)→ A(−5)⊕A(−4)3 → A(−4)2⊕A(−3)4 → A(−2)4 → A→ A/I → 0.

2.2. Poda de la resolución de Taylor

En esta sección presentamos un algoritmo que elimina información redundante
de la resolución de Taylor empleando el complejo de Taylor asociado. La
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resolución libre graduada resultante es, de forma general, menor que otras
resoluciones libres graduadas conocidas, como la de Lyubeznik, la cual veremos
en el siguiente caṕıtulo. El algoritmo es el siguiente:

Sea I un ideal monomial y {xα1 , . . . , xαt} un conjunto minimal de generadores
monomiales de I.

Entrada: Conjunto de Aristas del Complejo de Taylor T (I).
para s desde 1 hasta t hacer

para toda arista E en la dirección de s hacer
si E une dos vértices con la misma etiqueta entonces

Suprimir E;
Suprimir los vértices conectados por E;
Suprimir toda arista que estuviera conectada a los vértices
suprimidos;

fin

fin

fin
Salida: Complejo de Taylor podado, sin aristas que unan vértices

con la misma etiqueta.

Ahora, consideramos los vérticesmJ no podados. El A-módulo libre generado
por los mJ tales que |J | = k recibe el nombre de Mk. Todos estos A-módulos
constituyen una resolución libre graduada de A/I de la forma siguiente:

0→Mk →Mk−1 → · · · →M0 → A/I → 0.

Y la forma en la que se gradúa es análoga a la resolución de Taylor.

La resolución que se obtiene tiene un total de r pasos, donde r es el
máximo número de elementos que tienen los subconjuntos J asociados a los
vértices no podados.

Nota 2.5. El orden en el que se realiza la poda es importante. Se podŕıan
obtener resoluciones distintas según que variable se asocie a que dirección.
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Ejemplo 2.6. Consideramos el ideal del ejemplo 2.3. El complejo de Taylor
que obtuvimos es el siguiente:

m123
{1111}

m12
{1111}

<<

m13
{1111}

OO

m23
{1101}

bb

m1
{1110}

<<OO

m2
{1101}

bb <<

m3
{1001}

bb OO

m∅
{0000}

bb OO <<

Podando en la dirección 3, es decir, las aristas paralelas a {m∅,m3} (esta es
la dirección en la que se podan más aristas en el primer paso), obtenemos:

m123
{1111}

m12
{1111}

m13
{1111}

OO

m23
{1101}

bb

m1
{1110}

<<OO

m2
{1101}

bb

m3
{1001}

bb OO

m∅
{0000}

bb OO <<

Ahora descartamos los vértices que estaban unidos por estas aristas:

m13
{1111}

OO dd

m1
{1110}

<<
OO bb

m3
{1001}

bb
OO

m∅
{0000}

bb
OO

<<
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Y en ultimo lugar, descartamos las aristas sin algún vértice:

m13
{1111}

m1
{1110}

<<

m3
{1001}

bb

m∅
{0000}

bb <<

Los vértices restantes no son afectados por la poda en otras direcciones
(tienen etiquetas distintas), por lo que el algoritmo termina y este es el
complejo resultante. Con este complejo, podemos construir el nuevo diagrama
de Betti de la resolución:

0 1 2 3
0 1 − − −
1 − 1 − −
2 − 1 1 −

Globales 1 2 1 −

Obteniéndose la resolución:

0→ A(−4)→ A(−3)⊕ A(−2)→ A→ A/I → 0.

Que como podemos observar con el siguiente código en CoCoA, coincide con
la resolución libre graduada minimal de A/I.

# use A::=QQ[x1,x2,x3,x4]; I:=ideal(x1*x2*x3,x1*x2*x4,x1*x4);

# PrintBettiDiagram(A/I);

0 1 2

--------------------

0: 1 - -

1: - 1 -

2: - 1 1

--------------------

Tot: 1 2 1

# PrintRes(A/I);

0 --> R[-4] --> R[-2](+)R[-3] --> R
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Supongamos ahora que la poda hubiese comenzado en la dirección del generador
2, x1x2x4. En ese caso habŕıamos obtenido el siguiente complejo podado:

m13
{1111}

m1
{1110}

OO

m3
{1001}

m∅
{0000}

bb <<

Si bien el diagrama de Betti correspondiente y la resolución extráıda son
idénticos al caso anterior, para otros ideales podŕıamos haber obtenido una
resolución distinta.

Ejemplo 2.7. Empleamos el algoritmo para podar la resolución de Taylor del
ideal del ejemplo 2.4.
Tenemos I = ⟨x1x2, x1x3, x2x4, x2x5⟩, y el complejo de Taylor asociado a la
resolución de Taylor es:

m1234
{11111}

m123
{11110}

33

m124
{11101}

;;

m134
{11011}

OO

m234
{11111}

cc

m12
{11100}

;;

m13
{11010}

OO

m23
{11110}

cc

m14
{11001}

;;OO

m24
{11101}

cc ;;

m34
{01011}

cc OO

m1
{11000}

;;OO

m2
{10100}

cc ;;

m3
{01010}

cc OO

m4
{01001}

cc OO ;;

m∅
{00000}

cc OO ;;
33
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Podamos en la dirección del primer generador:

m134
{11011}

m12
{11100}

m13
{11010}

33

m14
{11001}

;;

m34
{01011}

cc

m1
{11000}

;;OO
33

m2
{10100}

cc

m3
{01010}

cc
33

m4
{01001}

cc ;;

m∅
{00000}

cc OO ;;
33

Y podar en el resto de direcciones no modifica el complejo. El diagrama de
Betti resultante es:

0 1 2 3
0 1 − − −
1 − 4 4 1
2 − − − −

Globales 1 4 4 1

Y la resolución obtenida es:

0→ A(−4)→ A(−3)4 → A(−2)4 → A→ A/I → 0.

Comparamos con CoCoA para confirmar que esta resolución también es
minimal:

# use A::=QQ[x1,x2,x3,x4,x5]; I:=ideal(x1*x2,x1*x3,x2*x4,x2*x5);

# PrintBettiDiagram(A/I);

0 1 2 3

-------------------------

0: 1 - - -

1: - 4 4 1

-------------------------

Tot: 1 4 4 1

# PrintRes(A/I);

0 --> R[-4] --> R[-3]^4 --> R[-2]^4 --> R
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3. La poda de los ideales de aristas.

En este caṕıtulo estudiaremos el algoritmo descrito por Barile y Macchia
en [3] para construir resoluciones libres graduadas minimales para ciertos
ideales monomiales, los llamados ideales de aristas de bosques. La conexión
que tienen estos ideales monomiales con los grafos nos permitirá representarlos
de forma sencilla, y una poda inteligente de las sucesiones de vértices de estos
grafos nos dará los generadores de los módulos de la resolución minimal.

3.1. Teoŕıa de grafos

La mayor parte de las definiciones y nociones siguientes están extráıdas
del libro “Introduction to Graph Theory” de Robin J. Wilson ([13]).

Definición 3.1. Sea V = {v1, . . . , vn} un conjunto de vértices. Un grafo
sobre V es un par ordenado G = (V,E), donde E ⊂ V × V es el conjunto de
aristas de G.
Si el conjunto de aristas se considera ordenado hablaremos de grafos dirigidos,
mientras que en el caso contrario diremos que el grafo es no dirigido.

Para el caso que nos concierne, supondremos que todo grafo mencionado
de ahora en adelante es no dirigido.

Definición 3.2. Sea G = {V,E} un grafo.

Sea e = (vi, vj) una arista; vi y vj se denominan puntos finales o extremos
de e.

Dos vértices vi, vj ∈ V son adyacentes si hay una arista e tal que e = (vi, vj).

Un camino en G es una sucesión de vértices {vi0 , . . . , vit} tal que (vij−1
, vij) ∈

E para todo j = 1, . . . , t.

Un ciclo es un camino {vi0 , . . . , vit} en el cual vi0 = vit y vij ̸= vik si j, k ∈
{1, . . . , t− 1} con j ̸= k.
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Definición 3.3. Un grafo es:

Conexo: Si para todo par de vértices {vi, vj} existe un camino de la
forma {vi, . . . , vj}.

Cı́clico: Si el grafo constituye un ciclo. En el caso en el que ni el grafo
ni ningún subgrafo suyo sean ćıclicos, diremos que es un grafo aćıclico.

Completo: Si todo par de vértices está conectado por una única arista.

Árbol : Si es conexo y aćıclico. La unión disjunta de arboles se denomina
bosque (equivalentemente, un bosque es un grafo aćıclico no conexo).

Ejemplo 3.4. Tomemos el conjunto de vértices: V = {v1, . . . , v5}.

v1

v2

v3

v4

v5

Figura 1: Un grafo conexo y
aćıclico (un árbol) en V

v1

v2

v3

v4

v5

Figura 2: Un grafo aćıclico no
conexo (un bosque) en V

v1

v2

v3

v4

v5

Figura 3: Un grafo completo (el
único posible) en V

v1

v2

v3

v4

v5

Figura 4: Un grafo ćıclico en V

Como trataremos con árboles, resaltaremos algunas de las propiedades
que tienen este tipo particular de grafos. En primer lugar, damos una definición:
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Definición 3.5. Sea G = (V,E) un grafo. Dado un camino {v1, . . . , vh} en
G, diremos que vi es un vértice redundante en el camino si existe otro ı́ndice
j distinto de i tal que vi = vj.

Proposición 3.6.
Sea T un árbol. Entonces, entre dos vértices cualesquiera existe un único
camino sin vértices redundantes.

Demostración. Razonamos por reducción al absurdo. Sean v1, v2 dos vértices
de T cualesquiera. Como los árboles son casos particulares de grafos conexos,
pueden ocurrir tres situaciones:

1. Entre v1 y v2 hay un único camino sin vértices redundantes.

2. Entre v1 y v2 hay más de un camino sin vértices redundantes. En este
caso podemos tomar dos de ellos y componerlos de forma que tengamos
un camino {v1, . . . , v2, . . . , v1}. Entonces o bien este camino (si el único
vértice redundante en la composición es v1) o bien un subcamino suyo
(en el caso en el que exista otro vértice redundante distinto de v1) son
un ciclo, lo cual es absurdo pues T es aćıclico por hipótesis.

3. Entre v1 y v2 solo hay caminos con vértices redundantes. Sea entonces
{v1, w1, . . . , wh, v2} uno de estos caminos. Tomemos {wi, . . . , wk} un
subcamino del original de forma que wi = wk y ningún vértice interno
esté repetido. Según la longitud de este subcamino tenemos que:

Si la longitud del subcamino es igual a 3, estamos recorriendo la
misma arista en direcciones opuestas de forma seguida. Podemos
entonces “comprimir” esta sección, dejando sólo el vértice wi en el
lugar que ocupaba el subcamino en el camino original. Volvemos
a tener un camino entre v1 y v2, de longitud dos unidades menor
que el original. Si sigue habiendo vértices redundantes en el nuevo
camino, volvemos al inicio de la situación 3.

Si la longuitud del subcamino es 4 o superior, entonces cumple
las condiciones de un ciclo, pero esto es absurdo, pues el árbol es
aćıclico por definición.
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Este proceso acaba o bien hallando un ciclo o bien encontrando un camino
sin vértices redundantes entre v1 y v2. Ambos casos son absurdos, el primero
al estar trabajando en un grafo aćıclico y el segundo por hipótesis del caso 3.
De cualquier manera, concluimos que entre dos vértices cualesquiera de un
árbol existe un único camino sin vértices redundantes.

A todo grafo se le puede asignar un ideal monomial sobre el anillo de
polinomios en tantas variables como vértices tenga dicho grafo. Este ideal se
conoce como ideal de aristas del grafo G y se define de la forma siguiente:

Definición 3.7. El ideal de aristas de un grafo G = {V = {v1, . . . , vn}, E},
denotado por IG, es el ideal generado por los monomios dados por las aristas
de G:

IG = ⟨{xixj|(vi, vj) ∈ E}⟩ ⊆ A = K[x1, . . . , xn].

Este ideal es, por definición, monomial y libre de cuadrados. Notemos
también que dado un ideal monomial libre de cuadrados I, se puede construir
un grafo G de forma que I = IG. Por ejemplo, para el caso del ideal I =
⟨x1x2, x1x3, x2, x4, x2x5⟩, tenemos:

v1

v2

v3

v4

v5

Figura 5: El grafo asociado a I

De ahora en adelante consideramos los ideales de aristas de bosques.
Nombraremos a los vértices como las variables para simplificar la notación.

Definición 3.8. El Grafo Lineal de un grafo G, denotado L(G), es el grafo
construido de la siguiente manera:

1. Se etiquetan las aristas de G como e1, . . . , er y se construye un conjunto
de r vértices w1, . . . , wr cada uno asociado a una arista.

2. Si las aristas asociadas a los vértices wi, wj, comparten un vértice,
entonces (wi, wj) es una arista del grafo L(G).
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Consideramos T un árbol sobre el conjunto de vértices {x1, . . . , xn}. Sean
A = K[x1, . . . , xn] e I = IT el ideal de aristas de T .
Fijemos un vértice cualquiera, por ejemplo x1, y llamamos d a la máxima
distancia (longitud de un camino) que puede haber entre x1 y cualquier otro

vértice. Para i = 0, . . . , d, llamamos x
(i)
1 , . . . , x

(i)
s(i) a los vértices que estén a

distancia i de x1. Diremos que estos vértices tienen rango i.

Tomemos ahora el grafo lineal de T , L(T ). En él, sea ((i)p, (i + 1)q) el

vértice que corresponde a la arista (x
(i)
p , x

(i+1)
q ) de T . Todos los vértices de

L(T ) de la forma ((ip),−) o (−, (i)p) conforman un subgrafo completo de

L(T ), correspondiente con el conjunto de aristas de T que tienen a x
(i)
p como

uno de sus extremos. A estos subgrafos completos les damos el nombre de
K-subgrafos de L(T ), los representaremos como K

(i)
p , y diremos que tienen

ı́ndice (i)p.

Ejemplo 3.9. Sea T el grafo de la figura 5, que es un árbol. Fijando x1 = x(0)1,
tenemos que este grafo y su grafo lineal L(T ) quedan etiquetados como:

x
(0)
1

x
(1)
1

x
(1)
2

x
(2)
1

x
(2)
2

Figura 6: El árbol T

(x
(0)
1 , x

(1)
1 )

(x
(1)
1 , x

(2)
1 ) (x

(1)
1 , x

(2)
2 )

(x
(0)
1 , x

(1)
2 )

Figura 7: El grafo lineal de T ; L(T )

Proposición 3.10.
Sea i ≥ 0. Para cada ı́ndice (i+1)q existe exactamente un ı́ndice de la forma

(i)p tal que ((i)p, (i+1)q) es un vértice de L(T ). Diremos que x
(i)
p es el único

predecesor de x
(i+1)
q .

Demostración. El caso i = 0 resulta trivial, pues el único vértice de rango 0
es x

(0)
1 , por lo que los vértices de rango 1 solo pueden tener un predecesor.

Si i > 0, supongamos que x
(i+1)
q es el vértice de menor rango que tiene dos

predecesores, denotados por x
(i)
i,1 y x

(i)
i,2. Sean {x

(0)
1 , x

(1)
1,1, . . . , x

(j)
j,1, . . . , x

(i)
i,1} y
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{x(0)
1 , x

(1)
1,2, . . . , x

(j)
j,2, . . . , x

(i)
i,2} los caminos que conectan x

(0)
1 con los dos vértices

predecesores de x
(i+1)
q . Entonces, recorriendo un camino en el sentido natural

y el otro en sentido inverso, tenemos que

{x(0)
1 , x

(1)
1,1, . . . , x

(j)
j,1, . . . , x

(i)
i,1, x

(i+1)
q , x

(i)
i,2, . . . , x

(j)
j,2, . . . , x

(1)
1,2, x

(0)
1 }

es un ciclo en T , pues todos los vértices son distintos a excepción de los
extremos. Esto es absurdo, pues si T es un árbol, es aćıclico. Por lo tanto,
todo vértice tiene un único predecesor.

Fijamos el siguiente orden lexicográfico sobre las variables de A:

x
(0)
1 > x

(1)
1 > · · ·x(1)

s1
> x

(2)
1 > · · ·x(2)

s2
> · · ·x(d)

sd
.

La sucesión {x(0)
1 , x

(1)
1 , · · · , x(1)

s1 , x
(2)
1 , · · · , x(2)

s2 , · · · , x
(d)
sd } es la llamada sucesión

de generadores.

Nota 3.11. Bajo el orden lexicográfico, al comparar dos monomios, lo que
hacemos es comparar sus variables más grandes, y, si éstas son iguales, pasar
a la siguiente variable más grande.

3.2. La resolución de Lyubeznik.

El primer paso para construir la resolución libre graduada minimal que
buscamos es construir una resolución libre intermedia llamada resolución
de Lyubeznik. Esta resolución es a su vez un refinamiento de la resolución de
Taylor, pero en general sigue sin ser minimal.

Sea S la sucesión de generadores de I. Las subsucesiones de S se denominan
śımbolos.

Dado un śımbolo u = (u1, . . . , ur), r recibe el nombre de longitud de
u, y se denota |u|. Toda subsucesión de u se dice que es un subśımbolo de
u. Diremos también que u1, . . . , ur son elementos de u, o que pertenecen
a u. Supondremos siempre que u es un conjunto ordenado. Por último,
denotaremos lcm(u) := lcm(u1, . . . , ur).
Lyubeznik dió en [9] la siguiente definición para ideales monomiales generales,
y en ella se basa la resolución que lleva su nombre.
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Definición 3.12. Un śımbolo u = (u1, . . . , ur) se denomina L-admisible si
uq no divide a lcm(uih , uih+1

, . . . , uit) para ningún h < t tal que q < ih.
Diremos que u es reducido si u no divide a lcm(u1, . . . , ûq, . . . , ur) para ningún
1 ≤ q ≤ r, donde ûq denota que el monomio uq es suprimido.

Nota 3.13. En el caso que estamos tratando, al ser I un ideal generado
por monomios libres de cuadrado de grado 2, podemos reformular la L-
admisibilidad: u es L-admisible si uq no divide a ningún producto uihuik
para todos los pares h, k con h < k ≤ t y q < ih.
De forma análoga, la condición de ser reducido se puede simplificar: u es
reducido si uq no divide a ningún producto uihuik para todos los pares h, k
con q ̸= ih y q ̸= ik. Por lo tanto, ser reducido implica ser L-admisible.

Pasamos a construir la resolución de Lyubeznik, empezando por los módulos
que la conforman. En primer lugar, tomamos L0 = A, y para r = 1, . . . , |S|,
definimos Lr como el A-módulo libre generado por todos los śımbolos L-
admisibles de longitud r. Ahora, sea δr : Lr → Lr−1 la aplicación:

δr((ui1 , . . . , uir)) =
r∑
j=1

(−1)j+1 lcm((ui1 , . . . , uir))

lcm((ui1 , . . . , ûij , . . . , uir))
(ui1 , . . . , ûij , . . . , uir).

Entonces tenemos el siguiente resultado:

Teorema 3.14.

0→ Ls
δs−→ Ls−1

δs−1−−→ · · · δ1−→ L0
δ0−→ 0

es una resolución libre de A/I.

La resolución anterior se conoce como resolución de Lyubeznik. Es una de
las resoluciones que se pueden encontrar “dentro” de la resolución de Taylor.

3.3. Construcción de la resolución minimal

Ahora nuestro objetivo es determinar unos submódulos Fr de los módulos
Lr de forma que la resolución resultante sea minimal cuando I es el ideal de
aristas de un árbol. Para ello determinaremos los generadores de cada Fr,
que serán una categoŕıa especial de śımbolos, a los cuales daremos el nombre
de F -admisibles. Los primeros pasos para seleccionar estos śımbolos son:
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(I) Escogemos una sucesión (i1)p1 , . . . , (ij)pj descendiente (para el orden
antes definido) de ı́ndices de forma que ningún par de ellos correspondan
a vértices adyacentes de T o, dicho de otra manera, que ninguna
pareja de ı́ndices conforme una arista de L(T ). De ahora en adelante,
llamaremos a estas sucesiones de ı́ndices sucesiones compatibles.

(II) Elegimos todos los monomios de aristas correspondientes a los vértices

de los K-subgrafos K
(ij)
pj .

(III) En el śımbolo formado por estos monomios, eliminamos los monomios
m que cumplan la siguiente condición: m corresponde a un vértice de

K
(ij)
pj y no es coprimo con un elemento ν del śımbolo correspondiente

a un vértice de K
(ih)
ph , para algún h > j.

(IV) Consideramos todos los subśımbolos de los śımbolos obtenidos.

Los śımbolos obtenidos tras estos primeros 4 pasos se denominan casi F -
admisibles. El conjunto de monomios de un śımbolo u casi F -admisible que

son divisibles por x
(ij)
pj se denomina el (ij)pj -bloque de u.

Ejemplo 3.15. Vamos a obtener los śımbolos casi F -admisibles para el ideal
I = ⟨x1x2, x1x3, x2x4, x2x5⟩ ⊂ A = K[x1, x2, x3, x4, x5], del ejemplo 2.4. El
orden sobre los vértices es x1 > x2 > x3 > x4 > x5. Esto corresponde con
la asignación de ı́ndices x

(0)
1 > x

(1)
1 > x

(1)
2 > x

(2)
1 > x

(2)
2 . Para simplificar,

escribiremos 0 > 1 > 1′ > 2 > 2′, es decir, x
(i)
p es reemplazado por el número

i seguido de p−1 apóstrofes. Continuaremos con esta notación en el resto de
ejemplos. Redibujamos el grafo para visualizar esta notación.

0

1

1′

2

2′

En primer lugar, consideramos todas las sucesiones según el paso (I) del
algoritmo. Estas son: 0, 1, 1′, 2, 2′, 0− 2, 0− 2′, 1− 1′, 1′ − 2 y 1′ − 2′.
Ahora consideramos, para cada sucesión, el śımbolo formado por todos los
monomios de aristas de los K-subgrafos correspondientes:
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0 : 01, 01′

1 : 01, 12, 12′

1′ : 01′

2 : 12

2′ : 12′

0− 2 : 01, 01′, 12

0− 2′ : 01, 01′, 12′

1− 1′ : 01, 01′, 12, 12′

1′ − 2 : 01′, 12

1′ − 2′ : 01′, 12′

Realizamos ahora las eliminaciones indicadas en el paso (III) y obtenemos:

0 : 01, 01′

1 : 01, 12, 12′

1′ : 01′

2 : 12

2′ : 12′

0− 2 : 01, 01′, 12

0− 2′ : 01, 01′, 12′

1− 1′ : 01, 01′, 12, 12′

1′ − 2 : 01′, 12

1′ − 2′ : 01′, 12′

Y consideramos todos los subśımbolos de estos, como indica el paso (IV).
Aśı obtenemos los śımbolos casi F -admisibles, que ordenamos por longitud:

Longitud 1 2 3

Śımbolos

01 01, 01′ 01, 12, 12′

01′ 01, 12 01′, 12, 12′

12 01, 12′

12′ 01′, 12
01′, 12′

12, 12′

Nota 3.16. La sucesión de ı́ndices asignados a los bloques de un śımbolo casi
F -admisible no siempre es única. Consideramos por ejemplo el caso de un
śımbolo u formado por un único monomio, x

(i)
p x

(i+1)
q , que no corresponda a

una arista terminal de T (es decir, ambos vértices conectados por esta arista
son vértices de alguna otra arista): u se puede considerar parte del (i)p-bloque
o del (i+ 1)q-bloque.
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Nota 3.17. La eliminación realizada en el paso (III) del algoritmo nos muestra
que los monomios de un śımbolo casi F -admisible que pertenezcan a bloques
distintos son coprimos. Por lo tanto, deducimos que si 2 o más monomios
de un śımbolo casi F -admisible son divisibles por x

(i)
p , todos ellos deben

pertenecer al (i)p-bloque del śımbolo.

Establecido esto, podemos relacionar los śımbolos casi F -admisibles con
los conceptos anteriores de L-admisibilidad y śımbolo reducido:

Proposición 3.18.
Todo śımbolo casi F -admisible es L-admisible. De hecho, es reducido.

Demostración. Sea u un śımbolo casi F -admisible. Consideramos uno de
los monomios de aristas que lo conforman, µ = x

(i)
p x

(i+1)
q . Si pertenece al

(i)p-bloque de u, entonces la Nota 3.17 estipula que el resto de monomios de
u que pertenezcan a otros bloques son coprimos con µ, en particular no son
divisibles por x

(i+1)
q . El único monomio del (i)p-bloque (y, por consiguiente,

de u) divisible por x
(i+1)
q es el propio µ. El razonamiento es completamente

análogo si µ pertenece al (i+ 1)q-bloque de u, y deducimos que µ no divide
a ningún producto de monomios de u que no tenga al propio µ como factor.
Por lo tanto, u es reducido, como queŕıamos probar.

Los 4 primeros pasos del algoritmo no son suficientes para construir una
resolución minimal.

Definición 3.19. Sean a, b, c, d cuatro vértices de T de forma que ab y cd
son elementos de un mismo śımbolo u, con ab > cd para el orden establecido.
Si el monomio ac pertenece a I, diremos que ac es el puente entre ab y cd.
Además, diremos que ab y cd forman un hueco en u si ac /∈ u, cd es el único
monomio de u divisible por d y ningún monomio que sea más pequeño que
cd es divisible por b El monomio ac se llama el puente del hueco.

Nota 3.20. En las condiciones de la definición anterior, si u es un śımbolo
reducido, la condición ac /∈ u siempre se cumple.

Proposición 3.21.
Si ab, bc, cd ∈ I y ab > cd, entonces a > c.
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Demostración. Si a > b, entonces c > a implicaŕıa cd > ab, lo cual es
absurdo. Sin embargo, si b > a, b es el único predecesor de a y por tanto,
ac ∈ I implica que a > c.

Dada la definición de hueco, el último paso de la poda es:

(V) Descartamos todos los śımbolos que contengan un hueco.

Definición 3.22. Los śımbolos resultantes tras este quinto paso se denominan
F -admisibles.

Proposición 3.23.
Un śımbolo es F -admisible si y solo si es reducido y no tiene huecos.

Demostración. Si un śımbolo es F -admisible, entonces es un monomio casi
F -admisible que ha no descartado en el paso (V) de la poda, es decir, que
no teńıa huecos. Por la Proposición 3.18, al ser casi F -admisible, también es
reducido.

Supongamos ahora que u es un śımbolo reducido y sin huecos. Veamos
que cumple las condiciones de los pasos (I) y (III), y que por lo tanto no
será descartado en el proceso de poda (Notemos que si no es descartado
tras el paso (III), entonces es uno de los monomios considerados en el paso
(IV) y al no tener huecos no es eliminado en el paso (V)). En primer lugar
asumamos que los elementos de u son coprimos dos a dos. Entonces u cumple
la condición del paso (III). Sean ahora a, b, c, d cuatro vértices de T de forma
que ab y cd sean dos elementos distintos de u que cumplen ab > cd. Entonces
ninguno de los vértices a o b es adyacente ni a c ni a d, lo que implica que se
cumple la condición del paso (I). De no ser aśı, uno de los monomios ac, ad, bc
o bd seŕıa un monomio de arista que conforma un puente entre los monomios
ab y cd, en contra de los que supońıamos.

Supongamos que para una indeterminada a = x
(i)
p , u posee dos monomios

distintos divisibles por a, digamos ab y ac. Deducimos que ningún otro
monomio de u puede ser divisible por b o c, ya que si no, u no seŕıa reducido.
Probaremos ahora que, salvo por cambios en la asignación de bloques a los
monomios de u, ningún monomio de u que pertenezca a un bloque anterior al
(i)p-bloque es divisible por a. Razonemos por reducción al absurdo: supongamos
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que existe un monomio de u divisible por a y que pertenezca al (i′)p′-bloque

de u, con (i′)p′ > (i)p. Denotamos b = x
(i′)
p′ . Entonces ab ∈ u, y ningún

otro monomio de u es divisible por b, ya que si no u seŕıa reducido. Luego
podemos reasignar ab al (i)p-bloque de u, suprimiendo el (i′)p′-bloque. Si
aplicamos repetidamente esta transformación al resto de bloques de u yendo
de izquierda a derecha, tras un número finito de pasos la condición del paso
(III) se cumple, y todos los monomios de bloques distintos resultan coprimos.

Ahora, supongamos que en la sucesión de ı́ndices de los bloques de u
hay dos ı́ndices (i′)p′ > (i)p que correspondan a vértices consecutivos a y
c (Es decir, la sucesión no cumple la condición del paso (I)). Sean ab y
cd monomios del (i′)p′-bloque y del (i)p-bloque respectivamente. Entonces
ningún otro monomio de u es divisible por b o d, por lo que ab y cd conforman
un hueco. Sin embargo, esto contradice nuestra suposición inicial, por lo que
la sucesión de ı́ndices cumple la condición del paso (I), luego si un śımbolo
es reducido y no tiene huecos, entonces es F -admisible.

Los śımbolos F -admisibles son los generadores de los módulos de una resolución
libre graduada. Como veremos en el teorema 3.31, cuando el grafo es un árbol,
la resolución es la minimal.

Ejemplo 3.24. Continuamos con el ejemplo 3.15, calculando los śımbolos
F -admisibles. Recordemos que la tabla de śımbolos casi F -admisibles es:

Longitud 1 2 3

Śımbolos

01 01, 01′ 01, 12, 12′

01′ 01, 12 01′, 12, 12′

12 01, 12′

12′ 01′, 12
01′, 12′

12, 12′

Eliminaremos los śımbolos que presenten huecos, que son:

Śımbolo Hueco
01′, 12, 12′ 01
01′, 12 01
01′, 12′ 01
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Y la tabla de śımbolos F -admisibles es, por lo tanto:

Longitud 1 2 3

Śımbolos

01 01, 01′ 01, 12, 12′

01′ 01, 12
12 01, 12′

12′ 12, 12′

A continuación, escribimos los cinco pasos del algoritmo seguidos:

Entrada: Ideal de aristas de un árbol T = {V,E}, con los vértices
indexados y ordenados.

para toda s sucesión de ı́ndices compatible hacer
si algún par de elementos de s está en E entonces

Descartar s
en otro caso

µ[s]← Monomios de aristas de los K-subgrafos con ı́ndices en
s;
l[s]← length(µ[s]) ; *(Numeramos µ[s] = µ1, . . . , µl)*
para i desde 1 hasta l[s]− 1 hacer

para j desde i+ 1 hasta l[s] hacer
si lcm(µi, µj) ̸= µiµj && Indsup(µi) <Indsup(µj)
entonces

µ[s]← µ[s]∖ µi;
l[s]← l[s]− 1;

fin

fin

fin

ν[s][p]← Subśımbolos de µ[s]; *(p = 1, . . . , 2l[s] − 1)*

para p desde 1 hasta 2l[s] − 1 hacer
si ν[s][p] tiene un hueco entonces

Eliminar ν[s][p];
fin

fin

fin

fin
Salida: Todo ν[s][p] restante.

El A-módulo libre generado por los śımbolos F -admisibles de longitud
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r se denota por Fr, y probaremos más adelante que cada módulo Fr es el
módulo que aparece en el r-ésimo paso de la resolución libre minimal de
A/I. La graduación se atribuye en función del mı́nimo común múltiplo de
cada śımbolo. Aśı, si Fr está generado por k śımbolos u1, . . . , uk de forma
que lcm(ui) = pi, escribimos:

Fr =
⊕
i

A(−pi),

y agrupando los śımbolos con el mismo grado obtenemos:

Fr =
⊕
j

A(−gj)kj .

Ejemplo 3.25. Culminamos los ejemplos 3.15 y 3.24 construyendo la resolución
libre graduada minimal de A/I. Para ello construimos una tabla agrupando
los śımbolos F -admisibles por longitud y peso:

Peso \ Longitud 1 2 3
1 − − −

2

01
01′ − −
12
12′

3

01, 01′

− 01, 12 −
01, 12′

12, 12′

4 − − 01, 12, 12′

Correspondencia con Fi A(−2)4 A(−3)4 A(−4)

Por lo que la resolución libre graduada minimal de A/I es:

0 −→ A(−4) −→ A(−3)4 −→ A(−2)4 −→ A −→ A/I → 0.

Y el diagrama de Betti es el mismo que el obtenido para la poda de Taylor
en el ejemplo 2.7:

0 1 2 3
0 1 − − −
1 − 4 4 1

Globales 1 4 4 1
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3.4. Prueba de la minimalidad

Empezaremos relacionando un tipo concreto de espacios topológicos con
los complejos de Taylor vistos en el caṕıtulo 2. Luego nos apoyaremos en el
trabajo realizado por Batzies y Welkers en [4] para mostrar que los módulos
resultantes del algoritmo que hemos descrito, junto con unas aplicaciones
que describiremos a continuación, constituyen una resolución libre graduada
minimal de A/I.

Definición 3.26. Decimos que un espacio topológico es una d-celda abierta
(o una celda abierta de dimensión d) si es homeomorfo a la bola abierta
unidad B̊d:

B̊d = {x = (x1, . . . , xd) ∈ Rd|
d∑
i

x2
i < 1}.

Definición 3.27. Un espacio topológico X se dice que es un CW -complejo
si existe una colección de celdas abiertas y disjuntas X [∗] = {σi|i ∈ J}, con

X =
⋃
i∈J

σi,

y de forma que:

1. X es Haussdorff.

2. Para cada d-celda abierta σ existe una aplicación continua:

fσ : Bd = {x = (x1, . . . , xd) ∈ Rd|
d∑
i

x2
i ≤ 1} → X,

de forma que su restricción a la bola abierta es un homeomorfismo f ◦
σ

entre B̊d y σ de forma que f ◦
σ(S

d−1) tiene intersección no vaćıa con una
cantidad finita de celdas, todas ellas de dimensión a lo sumo d− 1.

3. Un subconjunto Y ⊂ X es cerrado en X si y solo si A ∩ σ es cerrado
en σ para toda σ ∈ X [∗].

fσ se denomina la aplicación caracteŕıstica de σ. Cuando se tiene que las
aplicaciones caracteŕısticas son homomorfismos, decimos que el CW -complejo
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es regular. Se puede ver que el complejo de Taylor es un CW -complejo regular
Zn-graduado (representado como el par (X, gr), donde X es el CW -complejo
y gr la graduación), de la forma siguiente:
Para cada ı́ndice d, las d-celdas son los śımbolos de longitud d, y la multi-
graduación se define como:

gr(µ1, . . . , µd) =
s∑

k=1

ejk , cuando lcm(µ1, . . . , µd) =
s∏

k=1

xjk ,

dónde ej es el j-ésimo elemento de la base canónica de Zn. Por ejemplo, si
estamos trabajando en A = K[x1, x2, x3, x4], tenemos gr(x1x4, x1x2, x2x4) =
[1, 1, 0, 1].

Ahora definimos el grafo dirigido GX (cuyos vértices son los elementos de
X, es decir, el conjunto de todos los śımbolos), considerando el conjunto de
aristas AX conformado por las aristas dirigidas u→ u′, de forma que u′ ⊂ u
y la longitud de u′ es una unidad menor que la longitud de u. Consideramos
el conjunto de śımbolos que contienen un hueco o no son reducidos, es decir,
los no F -admisibles.

Dado un śımbolo u que contenga el hueco ab > cd con puente ac, diremos
que un puente λ de u sigue a este hueco si ac > λ. Vamos a clasificar los
śımbolos en dos tipos:

Un śımbolo es de tipo 1 si contiene un hueco que no es seguido por
ningún puente.

Un śımbolo es de tipo 2 si es no F -admisible y no es de tipo 1.

Tengamos en cuenta que si un śımbolo es de tipo 2 entonces o bien no tiene
huecos, o bien contiene un puente que sigue a todos sus huecos. En cualquier
caso, contiene un puente. Sea B el conjunto de aristas dirigidas u → u′ de
forma que u′ es de tipo 1 y u se obtiene insertando el puente más pequeño
de los huecos de u′. A esta operación la llamaremos inserción de puente.

Lema 3.28.
Con la notación anterior, las aristas de B se cumplen las siguientes propiedades:
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1) u es de tipo 2 (luego u nunca es el vértice inicial de una arista de B).

2) u′ se obtiene quitando el puente más pequeño de u, por lo que es el vértice
inicial de una única arista de B.

3) Si un śımbolo es de tipo 2, se puede obtener mediante inserción de puente
en un śımbolo de tipo 1 (y por tanto, todo śımbolo de tipo 2 aparece como
vértice final en una arista de B).

Demostración. Recordemos que obtenemos u insertando a u′ el puente más
pequeño de uno de sus huecos. Denotemos el hueco por xy > zw y el puente
por xz.

1) Razonemos por contradicción. Supongamos que u no es de tipo 2, por lo
que posee un hueco ab > cd, cuyo puente es bc, de forma que ningún otro
puente sigue a este hueco. Entonces debe darse que xz > bc. Por definición
de hueco, ningún monomio de la forma de (con d > e) puede pertenecer a
u. Si tanto ab como cd pertenecieran a u′, entonces conformaŕıan un hueco
también presente en u′, llegando a contradicción con el hecho de que u′

es de tipo 1. Por lo tanto xz es o bien ab o bien cd. Pero cd ̸= xz, ya que
ab > cd implica que bc > cd. Deducimos que cd ∈ u′ y entonces ab = xz.
Luego b = x o b = z. Por la Proposición 3.21 tenemos las relaciones de
orden x > z > w y b > c > d. Si b = x, y por lo tanto bc = xc, entonces
ab = xz > xc = bc implica z > c, por lo tanto zw > cd y, por definición
del hueco xy > zw, ningún monomio que contenga a y puede seguir a cd.
Es decir, xy > cd es un hueco en u′. Pero esto es absurdo, ya que el puente
de este hueco es xc, que es más pequeño que xz. Ahora bien, si b = z, y
por lo tanto bc = zc, se da que xz > zc. Como x > z, entonces z > c. Por
consiguiente, zw > cd es un hueco en u′ cuyo puente zc es más pequeño
que xz, llegando a contradicción. Por tanto, deducimos que u es de tipo
2.

2) Por hipótesis, el monomio xz es más pequeño que todos los puentes de u′.
Nuestro objetivo es probar que es más pequeño que todos los monomios
de u′ que son puentes en u pero no en u′. La operación de inserción del
puente xz produce nuevos puentes, ya que algún monomio de u′ de la
forma ax o az se podŕıa convertir en un puente entre un monomio ab ∈ u′

y el recién insertado xz. Probemos que, en ese caso, este nuevo puente,
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que llamaremos µ, cumple µ > xz. Supongamos µ = az. En primer lugar,
a ̸= w, ya que por definición zw es el único monomio de u′ que contiene
a w, y ab también pertenece a u′. Pero entonces az ya es un puente en u′,
que conecta zw y ab. Supongamos ahora que µ = ax. Si a ̸= y, entonces
ax es un puente en u′ entre xy y ab. Luego asumamos que a = y (es decir,
µ = xy). Si x > y, entonces y > b. De nuevo, por definición de hueco
(aplicado a xy > zw), tenemos yb > zw, lo que implica y > z, y por lo
tanto µ = xy > xz. En el caso en que y > x, como x > z tenemos y > z
y de nuevo µ = xy > xz, finalizando la prueba de este apartado.

3) Probemos que si eliminamos el puente más pequeño (xz, puente entre xy y
zw) en un śımbolo u de tipo 2, en el śımbolo resultante u′ los monomios xy
y zw forman un hueco al que no sigue ningún puente. Para ello, probemos
que se cumplen las dos condiciones siguientes:

i) u no posee ningún otro monomio de la forma wb. Razonamos por
contradicción: si wb ∈ u, entonces zw es el puente entre xz y wb.
Pero xz > zw, por lo que xz no es minimal, y llegamos un absurdo.

ii) u no contiene ningún monomio de la forma ya que sea más pequño
que zw. Supongamos que ya ∈ u, y veamos que ya > zw. Si y > x,
entonces x > z implica y > z y por tanto ya > zw. Veamos que
ocurre si x > y. Al ser xy el puente entre xz y ya, tenemos xy >
xz y entonces y > z. Esto implica que ya > zw, como queŕıamos
probar.

Proposición 3.29.
El grafo GB

X dado por el conjunto de aristas:

AB
X = (AX \B) ∪ {u′ → u|u→ u′ ∈ B}

no contiene ningún ciclo dirigido.

Demostración. Las aristas (dirigidas) de AB
X pueden clasificarse en dos tipos:

a) Las aristas u1 → u2 que no pertenecen a B, en las que u2 se obtiene
suprimiendo un monomio de u1.

b) Las aristas u′ → u donde u′ es de tipo 1, u es de tipo 2 y u′ se obtiene
aplicando inserción de puente a u′.
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Con la notación anterior, tenemos |u2| = |u1| − 1 y |u| = |u′|+ 1. Evaluando
el cardinal de todos los vértices del grafo, deducimos que todo ciclo dirigido
en GB

X debe contener al menos una arista de cada tipo. De hecho, ya que
cada arista de tipo b) finaliza en un vértice de tipo 2, la arista siguiente debe
ser de tipo a), por lo que todo ciclo dirigido en GB

X debe estar compuesto
por una secuencia alternante de aristas de tipo a) y tipo b), y por tanto, la
secuencia de vértices alterna entre vértices de tipo 1 y tipo 2.
Además, gr(u′) = gr(u), y gr(u1) ≥ gr(u2), y la igualdad se da si y solo si
u2 se obtiene eliminando un puente de u1. Por lo que en los ciclos dirigidos,
todos los vértices tienen el mismo grado y los vértices consecutivos difieren
en un único puente.
Sea C un ciclo dirigido en GB

X . Tomemos u′ → u una arista dirigida (de tipo
b)) de C, donde u se obtiene insertando el puente xz en el hueco xy > zw
de u′. De hecho, asumamos que esta arista es tal que dicho xz sea máximo
bajo el orden parcial. Este ciclo C también contiene una arista v → u′ de
tipo a), donde u se obtiene insertando a u′ un puente distinto de xz (ya que
v ̸= u). En particular, tenemos que xz /∈ v. Esto implica que en algún punto
del camino dirigido entre u y v se suprime el puente xz. La primera arista de
este camino, u→ u1, es de tipo a), y como u1 ̸= u′, u1 es de tipo 1 y xz ∈ u1.
Es decir, en u1 hay dos monomios que conforman un hueco, ab > cd, cuyo
puente más pequeño bc cumple bc < xz. Como tenemos bc > cd, también
tenemos cd ̸= xz, de donde concluimos cd ∈ u′, ya que cd ∈ u1 ⊂ u.
Además, como ya hemos visto en el primer apartado del lema 3.28, ab = xz
si y solo si xz no es el más pequeño de los puentes de los huecos de u′. Luego
tanto ab como cd pertenecen a u′, donde no conforman un hueco, ya que
xz > bc. Como u′ ⊂ u (y por tanto, ab, cd ∈ u), razonamos también que
bc /∈ u (ya que constituiŕıa un puente de u menor que xz), lo que resulta en
bc /∈ u′. Por ello, el impedimento por el cual ab > cd no forme un hueco en
u′ debe deberse a que en u′ exista o un monomio µ = de, con d > e, o un
monomio µ = af más pequeño que cd.
Ya que µ /∈ u1, µ debe haber sido suprimido en el camino de u a u1, por lo
que µ es un puente en u y cumple µ > xz > bc. Esto es incompatible con
µ = de, luego µ = af , con cd > af . En este caso, tenemos que c > a, aśı que
b > a y a > f , por lo que µ = af < bc, y tenemos una contradicción. Por
tanto, en GB

X no hay ciclos dirigidos.
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El conjunto B se denomina un agrupamiento (o emparejamiento) aćıclico
en GX . Como consecuencia de [4, Proposición 1.2], existe un CW -complejo
Zn-graduado que tiene las dos propiedades siguientes:

1. Sus d-celdas abiertas están en biyección con las d-celdas de X que no
pertenezcan a ninguna arista deB, es decir, con los śımbolos F -admisibles
de longitud d.

2. Es homotópicamente equivalente a la resolución de Taylor.

Este complejo, llamado complejo de Morse, constituye una resolución libre
minimal deA/I. En primer lugar veremos la minimalidad, y luego describiremos
las aplicaciones entre los módulos.

Lema 3.30.
Sean u y v śımbolos F -admisibles distintos. Entonces sus grados también son
distintos.

Demostración. Ambos śımbolos son reducidos, por lo que si uno estuviera
contenido en el otro, el grado del primero seŕıa estrictamente menor que el
grado del segundo. Por lo tanto, suponemos que u y v son incomparables
por inclusión. Sin pérdida de generalidad, asumimos que gr(u) ≥ gr(v), o
lo que es lo mismo, lcm(v)|lcm(u). Para cada monomio ab de u, con a > b,
decimos que b es un sucesor en u. Ya que cada vértice de T tiene a lo sumo
un predecesor, todos los monomios conformados por un sucesor de u y su
predecesor en T pertenecen a u. Lo mismo se puede decir de v. Como u
no está contenido en v, existe un sucesor de u que no es sucesor de v. Sea
b, con predecesor a, el sucesor más pequeño de u que no es sucesor de v.
Entonces ab ∈ u y ab /∈ v. Si probamos que ab no divide a lcm(v), tendremos
el resultado.
Supongamos que ab|lcm(v). Como b|lcm(v), deducimos bc ∈ v para algún
c < b. Como lcm(v)|lcm(u), c también divide a lcm(u). Si bc /∈ u, entonces
cd ∈ u para algún d < c. Ya que ab > cd y estos monomios no constituyen
un hueco en u, tenemos de ∈ u para un e < d. Ya que d y e son sucesores
de u más pequeños que b, tanto cd como de pertenecen a v. Pero esto, junto
con el hecho de que bc ∈ v, implicaŕıa que v no es reducido. Por lo tanto
deducimos que bc ∈ u. Por otra parte, a|lcm(v), es decir, xa ∈ v para algún
x ̸= b. Independientemente de la relación de orden entre los vértices x y a
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tenemos que xa > bc. Estos monomios no forman un hueco en v, por lo que
tenemos uno de los casos siguientes:

i) cd ∈ v, para algún d < c. En ese caso razonamos como lo hicimos para
el caso (ab ∈ u, bc ∈ v) aplicado a (bc ∈ u, cd ∈ v). Concluimos que
cd ∈ u, pero entonces ab, bc y cd pertenecen a u, lo cual es absurdo.

ii) b > x (y por lo tanto a > x) y xy ∈ v para algún y < x. Entonces u
contiene algún monomio divisible por x, o bien ax o bien xz con z < x.
Si ax ∈ u, deducimos por razonamientos idénticos a los anteriores que
xy ∈ u, lo cual se contradice con el hecho de que ab ∈ u. Supongamos
aśı que xz ∈ u. Al tener ab > xz, y estos monomios no forman un hueco
en u, tenemos que zw ∈ u para algún w < z. Ya que tanto z como w
son sucesores en u más pequeños que b, razonamos que ambos xz y zw
pertenecen a v. Al tener ax ∈ v, esto implicaŕıa que v no es reducido,
lo cual va en contra de la hipótesis.

En cualquier caso, llegamos a contradicción, por lo que ab ̸ | lcm(v), y por
tanto gr(u) ̸= gr(v).

Vamos ahora a describir las aplicaciones entre śımbolos F -admisibles.
En primer lugar, introducimos algo de notación. Para cada par (u, u′) de
śımbolos F -admisibles, con d = |u| = |u′| + 1, denotamos por [u : u′] al
coeficiente de u′ en δd(u). Si la arista dirigida u→ u′ pertenece a B, definimos
m({u, u′}) = −[u : u′], y en caso contrario m({u, u′}) = [u : u′]. Dado un
camino dirigido P : u0 → u1 → · · · → ut en GB

X (lo que se denomina
un camino gradiente), denotamos m(P ) =

∏t−1
i=0 m({ui, ui+1}). Tengamos en

cuenta que gr(u0) ≥ gr(ut). Podemos definir las aplicaciones ∂d : Fd → Fd−1

de la resolución. Para cada śımbolo F -admisible de longitud d, definimos, de
acuerdo a [4, Lema 7.7]:

∂d(u) =
∑
u′⊂u

|u′|=d−1

[u : u′]
∑

u′′ F -admisible,
|u′′|=d−1

∑
P camino gradiente

de u′ a u′′

m(P )xgr(u)−gr(u
′′)u′′,

donde, si b =
s∑

k=1

ejk , x
b :=

s∏
j=1

xjk Y concluimos el siguiente teorema:
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Teorema 3.31.
La resolución que constituyen los módulos y aplicaciones (Fd, ∂d) es una
resolución minimal libre graduada de A/I.

Demostración. La minimalidad viene dada por el lema 3.30, de la forma
siguiente: de acuerdo con [4, Corolario 7.6] y [4, Proposición 7.3], basta probar
gr(u) ̸= gr(v) para todos los śımbolos F -admisibles u y v tales que |u| =
|v|+ 1 y o bien v ⊂ u o bien existe un camino gradiente desde u′ ⊂ u a v de
longitud |v|.

3.5. Ejemplos.

Escribimos a continuación un par de ejemplos. El primer ejemplo tiene
el fin de mostrar un caso más complejo que el visto durante el caṕıtulo. El
segundo ejemplo, para el que omitiremos los cálculos, es una muestra de
que, a diferencia de el algoritmo visto en este caṕıtulo, la poda de Taylor no
siempre resulta en una resolución libre graduada minimal para los ideales de
aristas si no se elige bien el orden de los generadores.

Ejemplo 3.32. Tomemos el ideal I = ⟨x1x2, x2x3, x3x4, x3x5, x2x6.x6x7, x1x8⟩ ⊂
K[x1, x2, x3, x4, x5, x6, x7, x8]. Su grafo asociado es:

0

1

2

3

3′

2′ 3′′

1′

Las sucesiones descendientes admisibles son: 0, 1, 2, 2′, 0− 2, 0− 2′ y 2− 2′.
Tras el paso (III) obtenemos los śımbolos:

0 : 01, 01′

1 : 01, 12, 12′

2 : 12, 23, 23′

2′ : 12′, 2′3′′

0− 2 : 01, 01′, 12, 23, 23′

0− 2′ : 01, 01′, 12′, 2′3′′

2− 2′ : 12, 12′, 23, 23′, 2′3′′
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Ordenamos ahora todos los posibles subśımbolos de estos, y suprimimos
aquellos que posean un hueco. Los visualizamos en la siguiente tabla, en la
cual denotamos con un asterisco que hay śımbolos que ya han sido considerados
en una columna anterior:

0 1 2 2′

r=3 01, 12, 12′ 12, 23, 23′

r=2
01, 12 12, 23
01, 12′ 12, 23′

01, 01′ 12, 12′ 23, 23′ 12′, 2′3′′

r=1 (∗) (∗)
01 12 23 (∗)
01′ 12′ 23′ 2′3′′

0− 2 0− 2′ 2− 2′

r=5 12, 12′, 23, 23′, 2′3′′

r=4

12, 12′, 23, 23′

12, 12′, 23, 2′3′′

12, 12′, 23′, 2′3′′

12, 23, 23′, 2′3′′

01′, 12, 23, 23′ 12′, 23, 23′, 2′3′′

r=3

(∗)
12, 12′, 23
12, 12′, 23′

12, 12′, 2′3′′

12, 23, 2′3′′

12, 23′, 2′3′′

(∗) 12′, 23, 23′

01′, 12, 23 12′, 23, 2′3′′

01′, 12, 23′ 12′, 23′, 2′3′′

01′, 23, 23′ 01′, 12′, 2′3′′ 23, 23′, 2′3′′

r=2

(∗)
12, 2′3′′

(∗) 12′, 23
01′, 12 (∗) 12′, 23′

01′, 23 01′, 12′ 23, 2′3′′

01′, 23′ 01′, 2′3′′ 23′, 2′3′′

Si agrupamos los śımbolos restantes por peso, obtenemos:

Longitud 1: 7 śımbolos de peso 2.

Longitud 2: 8 śımbolos de peso 3 y 5 śımbolos de peso 4.

Longitud 3: 2 śımbolos de peso 4, 7 śımbolos de peso 5 y 2 śımbolos de
peso 6.
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Longitud 4: 2 śımbolos de peso 6 y 3 śımbolos de peso 7.

Longitud 5: 1 śımbolo de peso 8.

Por lo tanto, el diagrama de Betti de la resolución libre graduada minimal
de A/I es:

0 1 2 3 4 5
0 1 − − − − −
1 − 7 8 2 − −
2 − − 5 7 2 −
3 − − − 2 3 1

Globales 1 7 13 11 5 1

Y la resolución libre graduada minimal tiene la forma:

0 −→ A(−8)→ A(−6)2 ⊕ A(−7)3 → A(−4)2 ⊕ A(−5)7 ⊕ A(−6)2 →
→ A(−3)8 ⊕ A(−4)5 → A(−2)7 → A→ A/I → 0.

Ejemplo 3.33. Sea I = ⟨x2x3, x1x3, x1x4, x2x5, x3x6, x4x7, x4x8, x5x9, x1x10⟩ ⊂
A = K[x1, . . . , x10]. Su grafo correspondiente es un árbol, por lo que podemos
aplicarle la poda correspondiente para obtener la resolución libre graduada
minimal. Ya que el proceso es excesivamente largo para mostrarlo aqúı, nos
ayudamos de CoCoA para obtener el diagrama de Betti y el aspecto de la
resolución:

# use R::=QQ[x1,x2,x3,x4,x5,x6,x7,x8,x9,x10];

# I := ideal(x2*x3,x1*x3,x1*x4,x2*x5,x3*x6,x4*x7,x4*x8,x5*x9,x1*x10);

# PrintBettiDiagram(R/I);

0 1 2 3 4 5 6

----------------------------------------

0: 1 - - - - - -

1: - 9 11 3 - - -

2: - - 14 29 19 4 -

3: - - - 2 5 4 1

----------------------------------------

Tot: 1 9 25 34 24 8 1
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# PrintRes(R/I);

0 --> R[-9] --> R[-7]^4(+)R[-8]^4 --> R[-6]^19(+)R[-7]^5 -->

--> R[-4]^3(+)R[-5]^29(+)R[-6]^2 --> R[-3]^11(+)R[-4]^14 -->

--> R[-2]^9 --> R

Sin embargo, al aplicar la poda de Taylor considerando el orden de generadores
dado al inicio del ejemplo, obtenemos el siguiente resultado (ejecutado en
Matlab, empleando el código en [11, Anexo]):

M= [0 1 1 0 0 0 0 0 0 0;

1 0 1 0 0 0 0 0 0 0;

1 0 0 1 0 0 0 0 0 0;

0 1 0 0 1 0 0 0 0 0;

0 0 1 0 0 1 0 0 0 0;

0 0 0 1 0 0 1 0 0 0;

0 0 0 1 0 0 0 1 0 0;

0 0 0 0 1 0 0 0 1 0;

1 0 0 0 0 0 0 0 0 1];

% Esta matriz codifica los generadores en sus filas.

[cubo, orden, minimo]=ResolucionTaylor(M);

AlgoritmoDePoda(M, cubo, orden, minimo)

T =

4×7 table

0 1 2 3 4 5 6

_ _ __ __ __ _ _

0 1 0 0 0 0 0 0

1 0 9 11 3 0 0 0

2 0 0 14 29 19 6 1

3 0 0 0 2 7 5 1

glob =

1 9 25 34 26 11 2
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Por lo que en este caso, la resolución resultante de la poda de Taylor no es
minimal. Con tan solo cambiar el orden de los generadores, obtenemos, sin
embargo:

M= [1 0 1 0 0 0 0 0 0 0;

1 0 0 1 0 0 0 0 0 0;

1 0 0 0 0 0 0 0 0 1;

0 1 1 0 0 0 0 0 0 0;

0 1 0 0 1 0 0 0 0 0;

0 0 1 0 0 1 0 0 0 0;

0 0 0 1 0 0 1 0 0 0;

0 0 0 1 0 0 0 1 0 0;

0 0 0 0 1 0 0 0 1 0];

[cubo, orden, minimo]=ResolucionTaylor(M);

AlgoritmoDePoda(M, cubo, orden, minimo)

T =

4×7 table

0 1 2 3 4 5 6

_ _ __ __ __ _ _

0 1 0 0 0 0 0 0

1 0 9 11 3 0 0 0

2 0 0 14 29 19 4 0

3 0 0 0 2 5 4 1

glob =

1 9 25 34 24 8 1

Y en este caso si se obtiene la resolución minimal.
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