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Resumen

El objetivo de este trabajo es estudiar el algoritmo de poda descrito por
Margherita Barile y Antonio Macchia en su articulo de 2020 “Minimal cellular
resolutions of the edge ideals of forests”, en el cual se describen una serie de
pasos para obtener una resolucion libre graduada minimal de los ideales de
aristas de bosques, partiendo de resoluciones libres ya conocidas, como la
de Lyubeznik o la de Taylor. También compararemos este algoritmo con el
algoritmo de poda de la resolucién de Taylor mencionado en [11] y [2].

Se usaran como referencias principales del trabajo el articulo de Barile y
Macchia antes mencionado ([3]) y el articulo de Batzies y Welkers “Discrete
Morse Theory for cellular resolutions” ([4]).
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Introduccién

Contexto histdrico

El estudio de las resoluciones libres de ideales es una rama relativamente
reciente de las matematicas, cuyo origen se podria establecer a mediados del
siglo XIX. Fue entonces cuando Arthur Cayley (1821-1895) usé el término
“sizigias” para referirse a la relacion lineal que cumplen los menores de una

matriz 2x3:
b ¢ a ¢ a b

e f d f d e

La palabra sizigia gané popularidad en 1890 cuando David Hilbert (1862-1943)
la empled en el articulo que contiene 3 de los teoremas més importantes sobre
polinomios: El Teorema de la Base de Hilbert, El Teorema de las Sizigias de
Hilbert y el Teorema de los Ceros de Hilbert (mds conocido por su nombre
en aleman: “Nullstellensatz”). Una de las cuestiones més importantes que
resuelve Hilbert es que la construccion de sucesivos médulos de sizigias es un
proceso finito cuando el médulo inicial es finitamente generado. Sin embargo,
surge la cuestién de como encontrar una sucesién de estos modulos que sea
lo més pequena posible.

a —b +c

-0

A mediados del siglo XX se desarrolla el algebra homolégica a manos de
matematicos como Eilenberg (1913-1998) y Koszul (1921-2018). Esto sent6
las bases para que, en los afos 70, David Buchsbaum (1929-2021) y David
Eisenbud (1947-) relacionaran los complejos de cadenas con las resoluciones
libres de ideales, introduciendo el criterio de exactitud de Buchsam-Eisenbud,
que se emplea para comprobar cudndo un complejo de cadenas es también una
resolucion libre. Una década antes, Diana Taylor (1941-2016) habia dado una
construccion explicita de una resolucién libre para ideales monomiales, la cual
hoy lleva su nombre. En 1988, Gennady Lyubeznik (1957-) dio un algoritmo
que mejoraba la construccion creada por Taylor, obteniendo resoluciones
libres méas cercanas a la minimal.

En 1995, Eisenbud publica el libro “Commutative Algebra with a View
Toward Algebraic Geometry” ([6]), en el cual se naturalizan las resoluciones
libres como herramientas en las areas del algebra conmutativa y la geometria.
Es entonces cuando se vuelve habitual el estudio de resoluciones libres de



ideales monomiales mediante objetos como complejos simpliciales y politopos,
surgiendo nuevas aplicaciones para teorias ya desarrolladas como la formula
de Hochster o la teoria de Stanley-Reisner.

En los anos méas recientes, se han caracterizado las formas que pueden
tener las tablas de Betti de las resoluciones libres cuando los anillos son anillos
de polinomios, y se han dado mas construcciones explicitas de resoluciones
libres minimales para ciertos tipos de ideales. En particular, se ha resuelto el
caso de ideales de aristas de bosques mediante el uso de la teoria de Morse
discreta, como veremos en este trabajo.

Estructura

En el Capitulo[ljrepasaremos los conceptos de anillo y médulo graduados e
introduciremos el concepto de resolucion libre graduada de un ideal. Veremos
también la forma principal de almacenar informacién sobre estas resoluciones,
empleando los nimeros y diagramas de Betti.

El Capitulo [2] esta dedicado a la construccion de la resolucién de Taylor
y al algoritmo de poda descrito en [2].

Para terminar, en el Capitulo [3]se trata el caso de los ideales de aristas y
se presenta el algoritmo descrito en [3].



1. Conceptos basicos

En este primer capitulo introduciremos los objetos que emplearemos a lo
largo de este trabajo. Nos centraremos especialmente en los ideales monomiales
y el concepto de resoluciones libres graduadas de estos ideales. Abordaremos
también la comparativa entre las versiones algebraicas y combinatorias de
estos objetos, usando, por ejemplo, los nimeros de Betti. Consideraremos
un cuerpo K y el anillo de polinomios en n variables sobre dicho cuerpo,
A =K]zy,...,x,]. Como trataremos con ideales en el anillo A, cabe recordar
que el Teorema de la base de Hilbert afirma que A es un anillo noetheriano,
y por lo tanto todo ideal suyo es finitamente generado.

1.1. Anillos y médulos graduados

Definicién 1.1. El grado de un monomio z* = z{*z3*...2%" € A es:

n
o] =) .
=1

Y el grado de un polinomio es el mayor de los grados de los monomios que
lo conforman.

Definicién 1.2. Un ideal monomial en A es un ideal I C A que posee un
sistema de generadores cuyos miembros son todos monomios.

Un monomio z® = 21" z5* ... 252" C A se denomina libre de cuadrados si

a; € {0,1} para todoi=1,...,n.

Naturalmente, si los generadores (monomios) de un ideal monomial son todos
libres de cuadrados, el ideal también se denomina libre de cuadrados.

Sea A; el K-espacio vectorial generado por los monomios de grado i. La
graduacién estandar de A se define como A = @ A;.

ieN
Definicién 1.3. Decimos que un polinomio f € A es homogéneo de grado k
si todos los monomios que lo forman tienen grado k. O lo que es lo mismo,
f € A, para la graduacion estandar de A.
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Nota 1.4. Con esto dado, solo tenemos que comprobar que A;A; C A, ; para
todos i, j € N para deducir que A es un anillo graduado. Pero esta condicion
equivale a decir que el producto de polinomios homogéneos es un polinomio
homogéneo cuyo grado es igual a la suma de los grados de los factores, lo
cual es cierto.

Definicién 1.5. En la graduacion estandar, los A; se denominan componentes
homogéneas i-ésimas (de A).

A los elementos de A; los llamaremos elementos homogéneos de grado 1.

Un ideal J C A es homogéneo si posee un sistema de generadores formado
exclusivamente por polinomios homogéneos.

Evidentemente, todos los ideales monomiales son ideales homogéneos.

Es facil ver que todo polinomio f € A se puede expresar como una suma
finita de sus componentes, agrupadas por grado. Es decir, f = >_ f;, dénde
fi € A;. Cada f; recibe el nombre de componente homogénea de grado @ de f.

Veamos ahora una forma de determinar si un ideal posee un sistema de
generadores homogéneos:

Proposicién 1.6.

Sea I un ideal de A = @ A;. Entonces son equivalentes las siguientes afirmaciones:
ieN

1. Si f €I, entonces f; € I, para toda componente homogénea f; de f.

2. 1 =81, siendo I, = I N A;.

ieN
3. I estd generado por sus elementos homogéneos.

4. I tiene un sistema de generadores homogéneos.

Demostracion. La cadena 1 = 2 = 3 = 4 es trivial, luego solo quedaria
probar la implicaciéon 4 = 1:

Tomamos un sistema homogéneo de generadores de I: I = (f1,..., f;). Sea
f € I. Podemos escribir f = Y a; f;, con a; elementos de A. Al ser A un anillo

1
graduado, podemos escribir, para todo i, a; = ) a;;, donde ahora a;, € A;
J



es homogéneo. Por lo tanto, f =} a;, fi. Agrupamos ahora los sumandos del
i,J

mismo grado y obtenemos f = > ¢, con:
k

o= Z ai; fi € Ay, con 0 < k < deg(f)
deg(aq; fi)=k

f queda descompuesto en sus componentes homogéneas. Por hipétesis, f; € I,
luego el producto a;; f; también pertenece al ideal, y por lo tanto ¢, que es la

suma de estos productos, es un elemento de I. Esto completa la implicacion
4=1. [l

Recordamos de la nota que un anillo A es graduado si se puede

descomponer como suma numerable de ciertos subgrupos (A = @ A4;), bajo
ieN

la condicion A;A; C A;.;, para todos 7,7 € N. Esta definicién se extiende

facilmente a los médulos:

Definicién 1.7. Sea A = @ A; un anillo graduado y M un A-mdédulo.
ieN

Entonces diremos que M es graduado si existen subgrupos {M;}ien € M

tales que:

ieN

2. A;M; C M, para todos 7,5 € N.

De forma idéntica al caso de los ideales, la Proposicién tiene una
version andaloga para los modulos, y en particular:

Proposicién 1.8.
Si M es un A-mddulo graduado, entonces posee un sistema de generadores
homogéneos. Dicho sistema es finito si M es finitamente generado.

Definicién 1.9. Recordemos que una base de un A-médulo M es un sistema
de generadores linealmente independiente. Los médulos que no tienen una
base se denominan mddulos de torsion, mientras que los que si poseen base
se denominan mddulos libres.



Definicién 1.10. Sea M = € M; un A-médulo graduado. La graduacion
ieN
desplazada de M se define como M (p) = @ M,,. Se da entre M y M(p) la
ieN
siguiente relaciéon: M (p); = M,,;. Al entero p se le denomina desfase de la
graduacién (o shift en inglés).

Definicién 1.11 (Multigraduacion). De la graduacién que hemos visto sobre
N podemos pasar a otra mas fina sobre N". Los conceptos vistos se extienden
a esta nueva graduacion con sencillez:

» Un monomio z® = z7" - - - 25 se dice que tiene multigrado o € N™.

= Un polinomio f € A es homogéneo de multigrado a si f = cx®, con
ce K.

= Kl anillo A es N"-graduado, y sus componentes graduadas son:

Ay =

0 en caso contrario.

{Kma sia € N

» Un A-médulo M es N"-graduado si M = @ M, y se cumple que
aeN?

AaMpg C My, para todos o, 3 € N™.

» La multigraduacion desplazada de M se define como M (a) = @ Ma4p.
BeN”
El elemento a se denomina desfase.

Definicién 1.12. Sean M, N dos A-moddulos graduados. Dado ¢ € N, diremos
que un homomorfismo ¢ : M — N es graduado de grado 1 si lleva elementos
homogéneos en elementos homogéneos y cumple que deg(o(f)) = i +deg(f),
para todo f € M homogéneo y con f & Ker(¢). En el caso ¢ = 0, diremos
simplemente que ¢ es graduado.

Teorema 1.13 (Ver |10, Teorema 1.19]).
Si M es un A-mddulo libre graduado finitamente generado, y M = {my, ... ,m,}
es un sistema minimal de generadores homogéneos de M, entonces:

» M es una base de M.



» Si denotamos p; = deg(m;),Yi=1,...,r, la aplicacion:
¢ A(=p1) & ®A(=p,) = M

dada por ¢(e;) = m;, con e; el i-ésimo elemento de la base candnica de
A(=p1) ® - ® A(—p,), es un isomorfismo graduado.

1.2. Complejos simpliciales

Definicién 1.14. Sea V' = {vy,...,v,} un conjunto finito. Un complejo
simplicial A sobre V' es un subconjunto de P(V') tal que:
» {v;} € Aparai=1,...,n.

» Si FFe Ay G C F, entonces G también pertenece a A.
Los elementos de A reciben el nombre de caras. Algunos tipos de caras son:

» Las caras de la forma {v;} se denominan vértices.
» Las caras de la forma {v;,v;}, con i # j, se denominan aristas.

= Las caras maximales para la inclusiéon en A se denominan facetas o
caretas.

s Las caras de cardinal n se denominan n-caras.

Ejemplo 1.15. El complejo simplicial representado por:

esta compuesto por:
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Los vértices numerados del 1 al 7.

Las aristas: (1,2), (1,3), (1,4), (1,5), (1,6), (1,7), (3,4), (3,5), (4,5) y
(6,7).

Las 3-caras: (1, 3, 4), (1, 3, 5), (1,4, 5), (3,4,5) y (1,6, 7).

La 4-cara: (1, 3, 4, 5).

De entre todas ellas, las caras (1, 3, 4, 5), (1, 6, 7) y (1, 2) son las facetas
de este complejo simplicial.

Definicién 1.16. Dado un complejo simplicial A sobre V = {vy,...,v,}:

= Sea W C V. El subcomplejo Ay se define como:
Aw :={F € A|[F CW}.

» La dimensién de una cara F' es dim(F') = |F| — 1.

» [a dimensién de A es:

dim(A) = %ég(dim(F)) = max{dim(G)|G es faceta de A.}
S

= Un complejo simplicial es puro si todas sus facetas tienen la misma
dimensién.

» Denotamos el nimero de caras de dimensién i de A por fi(A), y
llamamos f-vector de A a:

f(A) = (fO(A)’ fl(A>7 SR fdim(A)(A))'

» LLamamos (n — 1)-simplice de A al complejo simplicial A,,_1, formado
por todos los subconjuntos de V.

Si asociamos cada uno de los vértices de A a una variable (v; — x;), se
crea una relacion entre el conjunto de complejos simpliciales y el conjunto de
ideales monomiales libres de cuadrados. De esta forma, la cara {v;,,...,v;}

del complejo simplicial se corresponde con el monomio z;, - - - x;, en el ideal.

Introducimos algo de notacién: Sea V' = {vy, ..., v,}. Para cada subconjunto

V' CV:

11



s Py C A denotard el ideal generado por las variables correspondientes
a los elementos de V'. Py = z;|v; € V.

» ¥ € A es el monomio producto de las variables correspondientes a
elementos de V', es decir: V" = [] .
v, eV’

Definicién 1.17. Sea A un complejo simplicial sobre el conjunto de vértices
{v1,...,v,}. Sea A(A) = K|z1,...,z,] el anillo de polinomios en n variables,
siendo K un cuerpo.
El ideal de Stanley-Reisner de A, denotado como I(A), es el ideal de A(A)
generado por todos los monomios libres de cuadrados w;, ... z;; tales que
ninguna cara de A contiene a todos los vértices vy, ..., v;;, es decir:

[(A) ="V SV y V' ¢A)
El anillo de Stanley-Reisner de A se define como el anillo cociente:

K[A] = R(A)/I(A).

Tenemos que todo ideal de Stanley-Reisner es libre de cuadrados, pero también
podemos ver el reciproco, que todo ideal libre de cuadrados es el ideal de
Stanley-Reisner de algtin complejo simplicial: Si I es un ideal monomial libre
de cuadrados en A, entonces tomamos V = {vy,...,v,} y escribimos I en
funciéon de su sistema minimal de generadores monomiales. Cada uno de
estos monomios se corresponde con z'* para algin V; C V, luego tendremos
I = (z"1,...,2%). Ahora bien, consideremos el complejo simplicial A =
{V'|V; € V', ¥t € {1,...,d}}. Su ideal de Stanley-Reisner es:

IA) ="V CVyV ¢A =G|V CVy3te{l,. . .  d},V,CV'
— @'V vy el =1

1.3. Resolucidn libre de un ideal

Definiremos ahora la construccion principal de este trabajo: la resolucion
libre de un médulo. A partir de ella definiremos la resolucién libre minimal
graduada de un médulo o ideal homogéneo.
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Definiciéon 1.18. Sea M un A-moddulo. Llamamos resolucidon libre de M a
cualquier sucesion de médulos libres:

B L B Fo B M =0,

que sea exacta, es decir, tal que Ker(¢p;) =Im(¢;1). Diremos que una resolucién
libre es graduada si A es un anillo graduado, M es un A-mddulo graduado,
y se cumplen las siguiente condiciones:

= Los F; son modulos libres graduados.

= Cada ¢; es homogénea y de grado 0.

En el caso en el que exista 7 € N tal que F; = 0 para todoi > j y F; # 0
para todo ¢ < 7, diremos que la resolucién libre es finita de longitud j.

A la hora de escribir resoluciones libres graduadas, omitiremos con frecuencia
la seccién “M — 0”.

Definicién 1.19. Dos resoluciones libres graduadas

Pn+1 n

N N BN N AN X

son isomorfas si existen isomorfismos graduados ¢ : Fr — G tales que el
diagrama:
Pk
Frp1 —— Fi,

¢k+1l l(ﬁk

P
Grs1 —— G

es conmutativo para todo k.

Nos interesa precisar el caso en el que la resolucién libre graduada posee
la menor longitud posible, pues ese es el objetivo de los algoritmos que
presentaremaos.

Definicién 1.20. Dada una resolucion libre graduada de un A-médulo M:

Pn n
R AN S N N
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diremos que es minimal si es la resolucién de M de menor longitud y tal que
cualquier otra resolucion libre graduada de M:

L Pmin, gmm...ﬁglﬂgo

cumple que si F; = A!, entonces G; = A", con r > t.

Proposicién 1.21 ([I2, Lema 1.24)).
La resolucion libre graduada minimal de un A-mddulo M es iunica salvo
1s0morfismos.

Definicién 1.22. Dado M un A-médulo y F = {fi,..., f;} un sistema de
generadores de M, llamamos sizigia a cualquier elemento {ay,...,a;} de A’
tal que

aifi +asfo+---+afy =0.

El conjunto de todas las sizigias de F' constituye un A-mddulo, y se denomina

el 1.¢" médulo de sizigias de F, abreviado como Sizi(F') o simplemente,

Siz(F). En particular, si [ es un ideal de A y G = {g1,...,9:} es un

sistema de generadores de I, el primer mddulo de sizigias de I es Siz(G).

Cabe destacar que estas construcciones pueden depender del sistema de

generadores escogido para I. Por abuso de notacion, hablaremos habitualmente
del primer médulo de sizigias de I, y lo denotaremos por Siz(I), si es

esencialmente tinico (salvo isomorfismo graduado).

Con el médulo de sizigias construido, podemos llegar al primer paso de
una resolucién libre graduada, veamoslo por partes:

Recordemos primero que el Teorema de la Base de Hilbert nos indica que
el anillo de polinomios con coeficientes en un anillo noetheriano es también
noetheriano. La aplicacién reiterada de este resultado nos permite afirmar
que A = K|z, ..., x,] es noetheriano, luego cualquier submédulo de A?, y en
concreto, cualquier ideal de A, son finitamente generados.

Siz(F) es un A-médulo, més concretamente, es un submédulo de A’
por lo que, por el Teorema de la Base de Hilbert, es finitamente generado.
Definimos ¢ : A" — M, que lleva e; en f; parai = 1,...,t. Destaquemos que
Ker(¢) = Siz(F).

De la misma manera en la que se prueba el Teorema[I.13] se puede obtener
que si los grados de fi,..., f; son pi,...,p;, entonces ¢ : A(—py) B -
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A(=p;) — M es un homomorfismo graduado de grado 0 y por lo tanto
Siz(F') es un A-médulo graduado Ademads es finitamente generado, por ser
un submdédulo de A?.

La aplicacién ¢ se corresponde asi con la antes denominada ¢q, y tenemos
el primer paso de una resolucién libre graduada de M:

S A(—p) @ @ A(—p) 2% M 0,

donde Im(p1) = Ker(yg) = Siz(F) C A(—p1) & - & A(—py).

Este proceso se puede iterar, tomando un sistema de generadores de este
nuevo médulo para construir el llamado 2.° mddulo de sizigias, (Sizo(F)) v ast
sucesivamente. El siguiente teorema afirma que este procedimiento termina:

Teorema 1.23 (Teorema de las sizigias de Hilbert, [§]).

Sea A = K[xq,...,x,]. Todo A-mddulo graduado que sea finitamente generado
tiene una resolucion libre finita graduada de longitud igual o menor que n,
el numero de variables del anillo.

Este teorema nos dice que las resoluciones libres graduadas de un ideal
I C A son de la forma:
0— A% 2o 0 20 Ao 2% 1,

donde en cada paso se cumple Im(p;) = Ker(y;_1) = Siz;(I). La resolucién
libre graduada construida en este proceso iterativo no tiene por que ser
minimal, de hecho, el sistema original de generadores, F', puede no serlo.

Nota 1.24. Podemos relacionar las resoluciones libres graduadas de un ideal
I y del cociente A/I visto como A-mddulo. Consideramos la resolucién libre
graduada de I:

©
0— Abr 2B 0 22 Ab Zh Abo 20T 55 )
Entonces, la siguiente resolucion:
0— Al 200 22 Ab P Agbo 20 A T AT S5 0,

donde 7 denota la aplicacién de paso al cociente, es una resolucion libre
graduada de A/I. Veamoslo: la parte izquierda cumple las condiciones de la

15



definicién, por lo que solo quedaria comprobar: ;Im(yg) = Ker(m)?.

Como 7 es paso al cociente, Ker(m) = I. Por otra parte, de la resolucién libre
graduada de I vemos que, efectivamente, I = Im(py) = Ker(e). Deducimos
que teniendo una de las dos resoluciones la otra resulta trivial. Sin embargo,
la longitud de la resolucién del cociente A/l es una unidad mayor que la
longitud de su contraparte, y los médulos y aplicaciones comunes presentan
también una unidad de desplazamiento. Por lo tanto, se debe especificar la
resolucion con la que se esté trabajando en cada situacion.

1.4. Numeros de Betti

Los niimeros de Betti son el principal método para guardar la informacion
sobre una resolucién libre graduada. Se definen varios tipos de nimeros de
Betti en funcién de la graduacién empleada, que llamaremos graduados,
multigraduados, y globales. En el caso de que la resolucion a tratar sea la
resolucién libre graduada minimal de un ideal I o un A-médulo M, hablaremos
de los nimeros de Betti de dicho ideal o médulo, pues el teorema afirma
que la resolucion es tnica salvo isomorfismos.

Daremos las definiciones siguientes para un ideal I, pero son completamente
idénticas para el caso de A-mddulos graduados, excepto la primera, que sélo
se define para el caso en el que I es un ideal monomial. Consideraremos
unicamente el caso de resoluciones libres graduadas minimales, pues en los
casos no minimales las definiciones son practicamente identicas.

Definicién 1.25. Sea I C A un ideal monomial. Sean ¢ € Ny a € N".
Se define el i-ésimo numero de Betti multigraduado de multigrado a, y se
denota f3; o (1), al nimero de generadores de multigrado @ que aparecen en
el i-ésimo paso de la resolucién libre graduada minimal de [.

Definicién 1.26. Sea I C A un ideal homogéneo. Sean i, j € N. Se define el
i-ésimo numero de Betti graduado de grado j, y se denota ; ;(/), al nimero
de generadores de grado j que aparecen en el i-ésimo paso de la resolucién
libre graduada minimal de I.

En el caso en el que I sea un ideal monomial, se cumple 5;;(I) = Y Bia(I).

|oe|=j

Definicién 1.27. Sea I C A un ideal homogéneo. Sea ¢ € N. Se define el
i-ésimo nimero de Betti global, y se denota ;(I), al nimero de generadores
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que aparecen en el i-ésimo paso de la resolucion libre graduada minimal de

1.
De la definicién anterior deducimos que §;(1) = > 3;;(1).
J

Proposicién 1.28 (Consecuencia de [0, pg.46]).
Sea I un ideal homogéneo de A, y sean B; los nimeros de Betti globales
asociados a la resolucidon libre graduada minimal de A/I. Entonces se cumple:

1=0

donde p es la longitud de la resolucion.

Recordemos que hemos relacionado la resolucién libre graduada minimal
de un ideal I con la del cociente A/I. De igual manera, los nimeros de Betti
de ambas resoluciones estan relacionados:

Proposicién 1.29.
Sean I un ideal monomial, 1 > 0 y o € N". Entonces:

Bia(l) = Biy1,a(A/1).
Si I es un ideal homogéneo y j € N, entonces:
Bij(I) = Bir1,;(A/T),

y por lo tanto, los niumeros de Betti globales de ambas resoluciones cumplen:

BiI) = By (A/T).

Podemos aplicar estas relaciones entre nimeros de Betti a la Proposicion
1.28 para deducir el siguiente resultado:

Proposicién 1.30.
Si I es un ideal homogéneo de A y [; son los niumeros de Betti de una
resolucion libre graduada minimal de I, entonces:

1=0

donde p es la longitud de la resolucion.
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El siguiente tema a tratar es el almacenamiento y/o presentacién de los
nimeros de Betti graduados y globales de un A-moédulo M. Al estar tratando
con dos indices, la primera intuicién puede ser construir una tabla o matriz,
escribiendo en la posicién a@;; al nimero de Betti graduado §;;(M). Sin
embargo, como veremos a continuacién, esto se puede hacer de una forma
mas eficiente.

Si una resolucién libre graduada es minimal, entonces los A-moddulos
de dicha resolucién cumplen que las imagenes de sus bases son conjuntos
minimales de generadores de los médulos siguientes. El Lema de Nakayama
(que podemos encontrar, por ejemplo, en [5]) nos permite afirmar:

Im(p;) C (xq,...,2 @A j)Pim1d)

Y como consecuencia, obtenemos la siguiente proposicion:

Proposicién 1.31 (Prop. 1.9, [7]).

Sea I un ideal homogéneo y {B;;} los nimeros de Betti graduados de I
(asociados a su res. libre. grad. minimal). Sea i un indice cualquiera. Si
existe J € N tal que 8;; = 0 para todo j < J, entonces B;y1,;41 =0, Vj < J.

Ahora podemos reducir el tamafno de la tabla que almacena los niimeros
de Betti: las columnas denotardn el paso de la resolucion libre graduada
minimal, y almacenaremos en la posicién a;; el nimero de Betti graduado
Bii+;- Los rangos de los indices son 0 <4 < p, con p el nimero de pasos de
la resolucion y 0 < j < r, donde r es la ultima fila de la tabla con alguna
entrada no nula. Anadiendo una ultima fila que represente la suma de cada
columna, obtenemos los nimeros de Betti globales. La tabla resultante se
denomina diagrama de Betti de I:

0o - i p
0 Boo -+ Bii o DBop

J Boj - 5i,i+j o Bopti

r 50,7’ e Bz i+r 0 Bp,p—l-'r
Globales | By -+ 5 e By
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Nota 1.32. En el caso de tratar con una resolucién libre graduada general de
I (no minimal), la proposicién anterior no se cumple, luego para representar
los nimeros de Betti podria ser necesario el uso de filas correspondientes a

indices negativos.
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2. Resolucion de Taylor. La poda del complejo
simplicial

En este capitulo presentaremos un primer algoritmo de poda aplicable a
una de las resoluciones mas conocidas: la llamada resolucion de Taylor. El
calculo de ésta resolucién es bastante simple, y si bien el algoritmo de poda
no ofrece siempre una resolucién minimal, nos es 1til para sentar las bases
del algoritmo que veremos en el siguiente capitulo.

La resolucion de Taylor es una resolucion libre graduada del anillo cociente
A/I, donde I es un ideal monomial de A. Asociada a esta resolucién hay un
complejo simplicial cuya construccion es aplicable a cualquier ideal monomial,
en contraposicion con la necesidad de tener un ideal libre de cuadrados,
como ocurria en el caso de complejos simpliciales asociados a ideales de
Stanley-Reisner.

2.1. Construccion de la resolucion de Taylor

Consideramos I C A un ideal monomial, y sea {z®!,... 2*} un sistema
minimal de generadores monomiales de /. Definimos, para cada subconjunto
JCA{L,... t}:

my = mem (z%)i € J)

Asf quedan definidos un total de 2 monomios. Llamaremos c; al exponente
de m;. Consideramos el conjunto de vértices V' = {vy,...,va}, los cuales
etiquetamos con los a;. La poda, como veremos mas adelante, utiliza la
posibilidad de que dos vértices distintos posean la misma etiqueta, es decir,
que a; = ayr, con J y J' subconjuntos distintos de 1.

Tomamos F; el A-mdodulo libre con base conformada por los elementos
ey, siendo J C {1,...,t}, con |J| =s.

Ahora, tomamos todos los subconjuntos de {1,...,t} y para cada par de
ellos J, K, con J = {ji,...,Jjs} ordenado, definimos:

(—1)F2L si K = J~ {j,} para algtn r,
CIK = MK
0 en el resto de casos.
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Una vez definido este coeficiente, se define el complejo de Taylor de I,
T(I), como el complejo simplicial formado por los vértices V' y las aristas
que unen los vértices m; y mg, si cjx # 0. Por definicién de ¢k, estas
aristas unen elementos de F; con elementos de F,_1, y nos incita a construir
la aplicacién:

Ps F. s 7 F. s—1,

definida como:
Sﬁs(eJ) = E CJK ' EK-
K
Y obtenemos la siguiente sucesiéon de modulos:

0= F 5 - 5 72 A/ —o.

Esta es la llamada resolucién de Taylor, que como se puede ver en [0,
Ejercicio 17.11], es una resolucién libre graduada de A/I.

Como hemos dicho antes, la resoluciéon de Taylor no suele ser minimal.
El complejo de Taylor que hemos definido almacena la informacién de la
resolucién en sus vértices y aristas: cada uno de los 2! vértices representa un
elemento de la base de uno de los médulos Fj, siendo el elemento asociado
al vértice m; un miembro de la base de Fj;. Diremos que las aristas que
unen vértices de F, con vértices de F,_1 corresponden a la direccion s o que
corresponden a la direccion dada por el generador x™s.

Se puede apreciar que la resolucion de Taylor contiene un exceso de
informacion en las aristas, pues aquellas que unen elementos con la misma
etiqueta representan informacion redundante.

Nota 2.1. La resolucién de Taylor permite probar la Proposicién [1.28| para
el caso que estamos tratando, resoluciones libres graduadas de A/I con I un
ideal monomial. En primer lugar, tengamos en cuenta que cada médulo F;
tiene un total de (2) elementos, es decir:

()

Realizando ahora la suma alternada y aplicando la formula del binomio de
Newton, tenemos:

i(—lm = Z (f) (=) = (1 -1 =0
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Ademas, en el caso de obtenerse otra resolucién libre graduada a partir
de la resolucién de Taylor, el resultado se mantiene. Esto se debe a que
eliminar un generador innecesario de F, implica que uno de los generadores
de Fsy1 puede ser suprimido, al poder escribirse como combinacion lineal
del resto de generadores. En los nuevos ntimeros (globales) de Betti de la
resolucion resultante, encontrariamos que dos de ellos, consecutivos, se han
visto reducidos en una unidad. Esto no afecta a la suma alternada, que sigue
siendo 0.

Nota 2.2. Se suele escribir la resolucion de Taylor como:
0— AW 245 AGN) 2o o2y 4G) 24 477 - 0.

Ejemplo 2.3. Tomamos el ideal I = (xyx9x3, 112924, 124) C K21, 29, 23, 4).
En primer lugar, calculamos los elementos my, con J C {1,2,3}, y sus
correspondientes etiquetas:

|J| | J my Etiqueta
0 0 1 10000}
1 T1T9X3 {1110}
1 2 T1T9y {1101}
3 1y {1001}

1,2 T1X2X3T4 {1111}
2 1,3 | zyzoxsxy | {1111}
2,3 L1224 {1101}
3 11,23 | zyzoxsxy | {1111}

Y su complejo de Taylor es de la forma siguiente:

mi23
{1111}

SN

{1111} {1111} {1101}

A

{1110) (1101} {1001}

AN

me
{0000}
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Los ntumeros de Betti graduados de la resoluciéon de Taylor se obtienen
mediante el conteo de unos en las etiquetas:

1 2 3

0 1 - - -

1 -1 1 1

2 - 2 2 -
Globales | 1 3 3 1

Y por tanto la resolucién de Taylor del ideal A/I es:
0= A— A5 A5 A= A/l —0.
O, de forma més precisa:
0— A(—4) = A(—4)? @ A(=3) = A(-3)? @ A(—2) - A — A/l = 0.

Ejemplo 2.4. Consideremos ahora el ideal:

I = <JZ1ZL‘2, T1X3, Ty, IZ'21E5> Q K[I’l, Ce 7.1‘7]
La tabla resultante es:

|| J m.y Etiqueta
0 ] 1 {00000}
{4} Tos {01001}
{1, 2} T1T2T3 {11100}
{1,3} T1Toly {11010}
5 {1,4} T1ToTs {11001}
{2, 3} T1X9X3T4 {11110}
{27 4} T1X2T3T5 {11101}
{3, 4} T4 {01011}
{]_, 27 3} T1T9X3T4 {11110}
3 {]_, 2,4} T1X2T3T5 {11101}
{1,3,4} | zizemyws | {11011}
{2,3,4} | zyxoxsxgmws | {11111}
4 14{1,2,3,4} | zyxoxsxamws | {11111}
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Y su complejo de Taylor es de la forma:

1234
/ )

mi23 mi2q mi3q m234
{11110} {11101} {11011} {11111}

P N P NP

{11100} {11010} {f?fﬁo} {11001} {11101} {01011}

ISAAL 0 N7
N

mg
{0000}

Donde cada vértice del cubo izquierdo se supone conectado a su andlogo en
el cubo derecho.

El diagrama de Betti de este complejo es:

1 2 3 4

0 1 - - - -

1 — 4 4 3 1

2 - - 2 1 -
Globales | 1 4 6 4 1

La resolucion de Taylor es, por tanto:
0= A—A* - A° 5 AT 5 A= AJT —0.
O alternativamente:

0 — A(=5) = A(=5)DA(—4)> = A(—4)’QA(-3)" = A(-2)* = A — A/T — 0.

2.2. Poda de la resolucién de Taylor

En esta seccién presentamos un algoritmo que elimina informacién redundante
de la resolucion de Taylor empleando el complejo de Taylor asociado. La
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resolucion libre graduada resultante es, de forma general, menor que otras
resoluciones libres graduadas conocidas, como la de Lyubeznik, la cual veremos
en el siguiente capitulo. El algoritmo es el siguiente:

Sea I un ideal monomial y {x®', ..., x®} un conjunto minimal de generadores
monomiales de [.

Entrada: Conjunto de Aristas del Complejo de Taylor T'(I).

para s desde 1 hasta ¢t hacer

para toda arista E en la direccion de s hacer

si F une dos vértices con la misma etiqueta entonces
Suprimir E;
Suprimir los vértices conectados por E;
Suprimir toda arista que estuviera conectada a los vértices

suprimidos;

fin

fin

fin

Salida: Complejo de Taylor podado, sin aristas que unan vértices
con la misma etiqueta.

Ahora, consideramos los vértices m ; no podados. El A-mddulo libre generado
por los m tales que |J| = k recibe el nombre de M. Todos estos A-mddulos
constituyen una resolucién libre graduada de A/I de la forma siguiente:

0— My — My 4 — - — My— A/I — 0.
Y la forma en la que se gradia es andloga a la resolucién de Taylor.

La resoluciéon que se obtiene tiene un total de r pasos, donde r es el
maximo numero de elementos que tienen los subconjuntos J asociados a los
vértices no podados.

Nota 2.5. El orden en el que se realiza la poda es importante. Se podrian
obtener resoluciones distintas segin que variable se asocie a que direccion.

25



Ejemplo 2.6. Consideramos el ideal del ejemplo [2.3] El complejo de Taylor
que obtuvimos es el siguiente:

mi23
{1111}

N

{1111} (1111} {1101}

A

{1110} (1101} {1001}

AN

mg
{0000}

Podando en la direccién 3, es decir, las aristas paralelas a {mg, ms} (esta es
la direccién en la que se podan maés aristas en el primer paso), obtenemos:

mi23
{1111}

I

{1111} {1111} {1101}

N

{1110} (1101} {1001}

AN

m
{0000}

Ahora descartamos los vértices que estaban unidos por estas aristas:

\\\\\\\\\\\iifll}

{1110} {1001}

NP

"Lw
{0000}
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Y en ultimo lugar, descartamos las aristas sin algin vértice:

mi13
{1111}

mi m3
{1110} {1001}

{Jg(?o}

Los vértices restantes no son afectados por la poda en otras direcciones
(tienen etiquetas distintas), por lo que el algoritmo termina y este es el
complejo resultante. Con este complejo, podemos construir el nuevo diagrama
de Betti de la resolucién:

0o 1 2 3

0 1 - - -

1 -1 - -

2 -1 1 -
Globales | 1 2 1 —

Obteniéndose la resolucion:
0— A(—4) - A(-3)d A(-2) - A— A/ — 0.
Que como podemos observar con el siguiente codigo en CoCoA, coincide con

la resolucion libre graduada minimal de A/I.

# use A::=QQ[x1,x2,x3,x4]; I:=ideal (x1*x2*x3,x1*x2*x4,x1%x4);
# PrintBettiDiagram(A/I);

0 1 2

0 1 - -

1 - 1 -

- 1 1

Tot: 1 2 1

# PrintRes(A/I);
0 --> R[-4] --> R[-2](#)R[-3] --> R
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Supongamos ahora que la poda hubiese comenzado en la direccién del generador
2, x1x9x4. En ese caso habriamos obtenido el siguiente complejo podado:

mi3
{1111}

my ms3
{1110} {1001}

N

me
{0000}

Si bien el diagrama de Betti correspondiente y la resolucién extraida son
idénticos al caso anterior, para otros ideales podriamos haber obtenido una
resolucion distinta.

Ejemplo 2.7. Empleamos el algoritmo para podar la resolucién de Taylor del
ideal del ejemplo [2.4]

Tenemos I = (w19, X1x3, Loy, T2x5), v €l complejo de Taylor asociado a la
resolucién de Taylor es:

m1234
{11111}

N

mi23 mi24 mi34 ma34
{11110} {11101} {11011} {11111}

N N AN

{11100} {11010} {11110} {11001} {11101} {01011)

22N N P

my
{11000} {10100) {01010} {01001}

N

m
{00000}
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Podamos en la direccién del primer generador:

mi34
// {11011}
mig mi3 miq maq
{11100} {11010} {11001} {01011}
///ijjf”’ \\\\\\

my mg ms3 my
{11000} {10100} {01010} {01001}

N

0
{00000}

Y podar en el resto de direcciones no modifica el complejo. El diagrama de
Betti resultante es:

1 2 3

0 1 - - -

1 — 4 4 1

9 _ - _ _
Globales | 1 4 4 1

Y la resolucion obtenida es:
0— A(—4) = A(=3)" = A(=2)" = A— A/T — 0.

Comparamos con CoCoA para confirmar que esta resoluciéon también es
minimal:

# use A::=QQ[x1,x2,x3,x4,x5]; I:=ideal(x1*x2,x1%x3,x2*x4,x2*x5);
# PrintBettiDiagram(A/I);
0 1 2 3

Tot: 1 4 4 1
# PrintRes(A/I);
0 --> R[-4] --> R[-3]"4 --> R[-2]"4 -—> R

29



3. La poda de los ideales de aristas.

En este capitulo estudiaremos el algoritmo descrito por Barile y Macchia
en [3] para construir resoluciones libres graduadas minimales para ciertos
ideales monomiales, los llamados ideales de aristas de bosques. La conexion
que tienen estos ideales monomiales con los grafos nos permitira representarlos
de forma sencilla, y una poda inteligente de las sucesiones de vértices de estos
grafos nos dara los generadores de los médulos de la resolucién minimal.

3.1. Teoria de grafos

La mayor parte de las definiciones y nociones siguientes estan extraidas
del libro “Introduction to Graph Theory” de Robin J. Wilson ([13]).

Definicién 3.1. Sea V' = {vy,...,v,} un conjunto de vértices. Un grafo
sobre V' es un par ordenado G = (V, E), donde E C V x V es el conjunto de
aristas de G.

Si el conjunto de aristas se considera ordenado hablaremos de grafos dirigidos,
mientras que en el caso contrario diremos que el grafo es no dirigido.

Para el caso que nos concierne, supondremos que todo grafo mencionado
de ahora en adelante es no dirigido.
Definicién 3.2. Sea G = {V, E'} un grafo.

Sea e = (vi,vj) una arista; v; y v; se denominan puntos finales o extremos
de e.

Dos vértices v;,v; € V son adyacentes si hay una arista e tal que e = (v;, v;).

Un camino en G es una sucesion de vértices {vy, ..., v;, } tal que (v;,_,,v;;) €
FE para todo j=1,...,t.

Un ciclo es un camino {vj,...,v;} en el cual vy, = v;, y v, # vy, si j, k €

{1,...,t =1} con j # k.
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Definicién 3.3. Un grafo es:

Conexo: Si para todo par de vértices {v;,v;} existe un camino de la
forma {v;,...,v;}.

Cliclico: Si el grafo constituye un ciclo. En el caso en el que ni el grafo
ni ningin subgrafo suyo sean ciclicos, diremos que es un grafo aciclico.

Completo: Si todo par de vértices esta conectado por una unica arista.

Arbol: Si es conexo y aciclico. La union disjunta de arboles se denomina
bosque (equivalentemente, un bosque es un grafo aciclico no conexo).

Ejemplo 3.4. Tomemos el conjunto de vértices: V = {vy,...,v5}.
V4 vy
V2 U2
v
U1 Us ! Vs,
U3 U3

Figura 2: Un grafo aciclico no

Figura 1: Un grafo conexo vy
conexo (un bosque) en V

aciclico (un arbol) en V

Vs U1 Vs v

Uy V2
V4 (%)

(%
3 Vg

Figura 3: Un grafo completo (el

finico posible) en V Figura 4: Un grafo ciclico en V

Como trataremos con arboles, resaltaremos algunas de las propiedades
que tienen este tipo particular de grafos. En primer lugar, damos una definicién:
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Definicién 3.5. Sea G = (V, E) un grafo. Dado un camino {vy,...,v;} en
G, diremos que v; es un vértice redundante en el camino si existe otro indice
J distinto de 7 tal que v; = v;.

Proposicién 3.6.
Sea T un drbol. Entonces, entre dos vértices cualesquiera existe un unico
camino sin vértices redundantes.

Demostracion. Razonamos por reduccién al absurdo. Sean vy, vy dos vértices
de T cualesquiera. Como los arboles son casos particulares de grafos conexos,
pueden ocurrir tres situaciones:

1. Entre v; y v hay un tnico camino sin vértices redundantes.

2. Entre v; y v9 hay méas de un camino sin vértices redundantes. En este
caso podemos tomar dos de ellos y componerlos de forma que tengamos
un camino {vy, ..., vs,...,v; }. Entonces o bien este camino (si el tnico
vértice redundante en la composicién es v1) o bien un subcamino suyo
(en el caso en el que exista otro vértice redundante distinto de v;) son
un ciclo, lo cual es absurdo pues T es aciclico por hipotesis.

3. Entre v; y vy solo hay caminos con vértices redundantes. Sea entonces
{v1, w1, ..., wy,v2} uno de estos caminos. Tomemos {w;,...,w,} un
subcamino del original de forma que w; = wy y ningin vértice interno
esté repetido. Segin la longitud de este subcamino tenemos que:

= Si la longitud del subcamino es igual a 3, estamos recorriendo la
misma arista en direcciones opuestas de forma seguida. Podemos
entonces “comprimir” esta seccion, dejando sélo el vértice w; en el
lugar que ocupaba el subcamino en el camino original. Volvemos
a tener un camino entre v, y vq, de longitud dos unidades menor
que el original. Si sigue habiendo vértices redundantes en el nuevo
camino, volvemos al inicio de la situacion 3.

= Si la longuitud del subcamino es 4 o superior, entonces cumple
las condiciones de un ciclo, pero esto es absurdo, pues el arbol es
aciclico por definicién.
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Este proceso acaba o bien hallando un ciclo o bien encontrando un camino
sin vértices redundantes entre v; y vo. Ambos casos son absurdos, el primero
al estar trabajando en un grafo aciclico y el segundo por hipétesis del caso 3.
De cualquier manera, concluimos que entre dos vértices cualesquiera de un
arbol existe un tinico camino sin vértices redundantes. O]

A todo grafo se le puede asignar un ideal monomial sobre el anillo de
polinomios en tantas variables como vértices tenga dicho grafo. Este ideal se
conoce como ideal de aristas del grafo Gy se define de la forma siguiente:

Definicién 3.7. El ideal de aristas de un grafo G = {V = {vy,...,v,}, F},
denotado por I, es el ideal generado por los monomios dados por las aristas
de G:

Ie = ({zizj|(vi,v5) € E}) CA=Klzy,...,z,)

Este ideal es, por definicién, monomial y libre de cuadrados. Notemos
también que dado un ideal monomial libre de cuadrados I, se puede construir
un grafo G de forma que I = I5. Por ejemplo, para el caso del ideal I =
(x19, 123, Ta, Ty, Tox5), tenemos:

V4
V2
U1 Us

Us
Figura 5: El grafo asociado a [

De ahora en adelante consideramos los ideales de aristas de bosques.
Nombraremos a los vértices como las variables para simplificar la notacién.

Definicién 3.8. El Grafo Lineal de un grafo G, denotado L(G), es el grafo
construido de la siguiente manera:

1. Se etiquetan las aristas de G como ey, ..., e, y se construye un conjunto
de r vértices wy, ..., w, cada uno asociado a una arista.

2. Si las aristas asociadas a los vértices w;,w;, comparten un vértice,
entonces (w;,w;) es una arista del grafo L(G).
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Consideramos 7" un arbol sobre el conjunto de vértices {1, ..., x,}. Sean
A=Kl[zy,...,x,] e I = Ir el ideal de aristas de T.
Fijemos un vértice cualquiera, por ejemplo z;, y llamamos d a la maxima
distancia (longitud de un camino) que puede haber entre x; y cualquier otro
vértice. Para ¢ = 0,...,d, llamamos xﬁ“, e ,xii)i) a los vértices que estén a
distancia ¢ de x;. Diremos que estos vértices tienen rango .

Tomemos ahora el grafo lineal de T, L(T'). En él, sea ((i),, (i + 1),) el

vértice que corresponde a la arista (xg), x((;“)) de T'. Todos los vértices de
L(T) de la forma ((i,),—) o (—,(i),) conforman un subgrafo completo de
L(T), correspondiente con el conjunto de aristas de T' que tienen a xj(f) €omo
uno de sus extremos. A estos subgrafos completos les damos el nombre de
K-subgrafos de L(T), los representaremos como K,g”, y diremos que tienen

indice (7).

Ejemplo 3.9. Sea T el grafo de la figura , que es un arbol. Fijando z; = 2(0),
tenemos que este grafo y su grafo lineal L(T') quedan etiquetados como:

0 1
(@, 28Dy
0 1
(7 2
1 2 1 2
(@, 2) (2", 287)

Figura 6: El arbol T’
Figura 7: El grafo lineal de T'; L(T))

Proposicion 3.10.

Sea i > 0. Para cada indice (i+1), existe exactamente un indice de la forma

(i), tal que ((i),, (i+1),) es un vértice de L(T'). Diremos que 2 es el unico

predecesor de :L‘E;+1) .

Demostracion. El caso ¢ = 0 resulta trivial, pues el inico vértice de rango 0

es :1;50), por lo que los vértices de rango 1 solo pueden tener un predecesor.

. +1 - .
Si ¢ > 0, supongamos que ZL"((IH_ ) es el vértice de menor rango que tiene dos

predecesores, denotados por xﬁ’{ y $§g Sean {x&o),:vﬂ, o ,xyl), . ,$Eq} y
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0 : ; : 0 -
{32, 29 2%} los caminos que conectan 21 con los dos vértices

Jy2?
redecesores de x(iﬂ). Entonces, recorriendo un camino en el sentido natural
q )
ido inv
el otro en sentido inverso, tenemos que
0 (1 () (@)
{217, il

xl,l’---’x' ’x

(i41) () () (0)}
G T Ty

(1)
, T N N S TRRI A P 41

es un ciclo en T, pues todos los vértices son distintos a excepcién de los
extremos. Esto es absurdo, pues si T es un arbol, es aciclico. Por lo tanto,
todo vértice tiene un tnico predecesor. O

Fijamos el siguiente orden lexicografico sobre las variables de A:

N I ()
La sucesion {x§0)’ xgl)a e ,l"g)a 9552)7 e ,xﬁ), e ,$gg)} es la llamada sucesion

de generadores.

Nota 3.11. Bajo el orden lexicografico, al comparar dos monomios, lo que
hacemos es comparar sus variables mas grandes, y, si éstas son iguales, pasar
a la siguiente variable mas grande.

3.2. La resolucién de Lyubeznik.

El primer paso para construir la resolucién libre graduada minimal que
buscamos es construir una resolucién libre intermedia llamada resolucion
de Lyubeznik. Esta resolucién es a su vez un refinamiento de la resolucién de
Taylor, pero en general sigue sin ser minimal.

Sea S la sucesion de generadores de I. Las subsucesiones de S se denominan
stmbolos.

Dado un simbolo v = (uq,...,u,), r recibe el nombre de longitud de
u, y se denota |u|. Toda subsucesién de u se dice que es un subsimbolo de
u. Diremos también que uq,...,u, son elementos de u, o que pertenecen
a u. Supondremos siempre que u es un conjunto ordenado. Por ultimo,
denotaremos lem(u) = lem(uq, . .., u,).
Lyubeznik di6 en [9] la siguiente definicién para ideales monomiales generales,
y en ella se basa la resolucion que lleva su nombre.
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Definicién 3.12. Un simbolo u = (uy,...,u,) se denomina L-admisible si
uq no divide a lem(u;, , u;,, ., - - -, u;,) para ningin h < ¢ tal que ¢ < iy,.
Diremos que u es reducido si u no divide a lem(uy, ..., ay, . .., u,) para ningin
1 < ¢ <r, donde 4, denota que el monomio u, es suprimido.

Nota 3.13. En el caso que estamos tratando, al ser I un ideal generado
por monomios libres de cuadrado de grado 2, podemos reformular la L-
admisibilidad: u es L-admisible si u, no divide a ningin producto w;, u;,
para todos los pares h,k con h < k <ty q < ip.

De forma andloga, la condicién de ser reducido se puede simplificar: u es
reducido si u, no divide a ningun producto u;, u;, para todos los pares h, k
con q # i, y q # 1. Por lo tanto, ser reducido implica ser L-admisible.

Pasamos a construir la resolucion de Lyubeznik, empezando por los médulos
que la conforman. En primer lugar, tomamos Ly = A, y parar =1,...,|5|,
definimos L, como el A-mdédulo libre generado por todos los simbolos L-
admisibles de longitud r. Ahora, sea ¢, : L, — L,_1 la aplicacion:

T

5T((ui17 o 7“2})) _ Z(_1>j+1lcmlcm((ui1a . ,Ui7-)) )) (Ui1, o ’aij’ o ;Ui,«)-

((uil,...,ﬂij,...,uir

=1
Entonces tenemos el siguiente resultado:

Teorema 3.14.

ds Os— 6 o
0Ly Ly —5 - 5%Li50

es una resolucion libre de A/1I.

La resolucién anterior se conoce como resolucion de Lyubeznik. Es una de
las resoluciones que se pueden encontrar “dentro” de la resolucién de Taylor.

3.3. Construccion de la resoluciéon minimal

Ahora nuestro objetivo es determinar unos submaédulos F;. de los médulos
L, de forma que la resolucion resultante sea minimal cuando I es el ideal de
aristas de un arbol. Para ello determinaremos los generadores de cada Fj.,
que seran una categoria especial de simbolos, a los cuales daremos el nombre
de F-admisibles. Los primeros pasos para seleccionar estos simbolos son:
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(I) Escogemos una sucesion (i1),, - .., (i;),, descendiente (para el orden
antes definido) de indices de forma que ningtin par de ellos correspondan
a vértices adyacentes de T o, dicho de otra manera, que ninguna
pareja de indices conforme una arista de L(7T). De ahora en adelante,
llamaremos a estas sucesiones de indices sucesiones compatibles.

(II) Elegimos todos los monomios de aristas correspondientes a los vértices
de los K-subgrafos KIE? ),

(III) En el simbolo formado por estos monomios, eliminamos los monomios
m que cumplan la siguiente condicién: m corresponde a un vértice de

75 . , .
K,gj) y no es coprimo con un elemento v del simbolo correspondiente

)

a un vértice de Kff: , para algun h > j.

(IV) Consideramos todos los subsimbolos de los simbolos obtenidos.

Los simbolos obtenidos tras estos primeros 4 pasos se denominan casi F'-
admisibles. El conjunto de monomios de un simbolo u casi F-admisible que
(45)

son divisibles por x,’" se denomina el (i;),, -bloque de u.

Ejemplo 3.15. Vamos a obtener los simbolos casi F-admisibles para el ideal
I = (z129, 2123, Toxy, xows) C A = Klxq, 29, 23, 4, 5], del ejemplo 2.4, El
orden sobre los vértices es x1 > xo > x3 > x4 > x5. Esto corresponde con
la asignacién de indices xgo) > xgl) > xgl) > x?) > xg). Para simplificar,
escribiremos 0 > 1 > 1" > 2 > 2/ es decir, a:](gi) es reemplazado por el nimero
1 seguido de p— 1 apdstrofes. Continuaremos con esta notacion en el resto de

ejemplos. Redibujamos el grafo para visualizar esta notacién.

En primer lugar, consideramos todas las sucesiones segin el paso (I) del
algoritmo. Estas son: 0, 1, 1’,2,2,0—-2,0—-2",1—-1,1" -2y 1'—2".
Ahora consideramos, para cada sucesion, el simbolo formado por todos los
monomios de aristas de los K-subgrafos correspondientes:
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0 : 01,01 0—2:01,01,12

1:01,12,12 0—2 :01,01,12

1 01 1—1:01,01,12,12'
2112 1'—2:01,12

2 112 1 —2 01,12

Realizamos ahora las eliminaciones indicadas en el paso (III) y obtenemos:

0 : 01,01 0—2:6+01,12

1 :01,12,12 0—2 :61 01,12

1 :0r 1—1':6%01,12,12
2 112 1'—2:01,12

2 112 -2 01,12

Y consideramos todos los subsimbolos de estos, como indica el paso (IV).
Asi obtenemos los simbolos casi F-admisibles, que ordenamos por longitud:

Longitud | 1 2 3
01 | 01,01" | 01,12,12
01" | 01,12 | 01/,12,12'

, 12 | 01,12
Simbolos 12/ | 017,12
01,12/

12,12

Nota 3.16. La sucesiéon de indices asignados a los bloques de un simbolo casi
F-admisible no siempre es tnica. Consideramos por ejemplo el caso de un
simbolo u formado por un tinico monomio, xj(oi)xgiﬂ), que no corresponda a
una arista terminal de 7" (es decir, ambos vértices conectados por esta arista
son vértices de alguna otra arista): u se puede considerar parte del (),-bloque

o del (i + 1),-bloque.
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Nota 3.17. La eliminacién realizada en el paso (III) del algoritmo nos muestra
que los monomios de un simbolo casi F-admisible que pertenezcan a bloques
distintos son coprimos. Por lo tanto, deducimos que si 2 0o mas monomios
de un simbolo casi F-admisible son divisibles por xff), todos ellos deben
pertenecer al (i),-bloque del simbolo.

Establecido esto, podemos relacionar los simbolos casi F-admisibles con
los conceptos anteriores de L-admisibilidad y simbolo reducido:

Proposicién 3.18.
Todo simbolo casi F-admisible es L-admisible. De hecho, es reducido.

Demostracion. Sea u un simbolo casi F-admisible. Consideramos uno de
los monomios de aristas que lo conforman, u = x,(f)xgiﬂ). Si pertenece al
(i),~-bloque de u, entonces la Nota estipula que el resto de monomios de
u que pertenezcan a otros bloques son coprimos con p, en particular no son
divisibles por a:éiH). El tnico monomio del (4),-bloque (y, por consiguiente,
de u) divisible por :r;,(;“) es el propio u. El razonamiento es completamente
andlogo si u pertenece al (i + 1),-bloque de u, y deducimos que p no divide
a ningin producto de monomios de u que no tenga al propio p como factor.

Por lo tanto, u es reducido, como queriamos probar. O

Los 4 primeros pasos del algoritmo no son suficientes para construir una
resolucion minimal.

Definicién 3.19. Sean a, b, ¢, d cuatro vértices de T" de forma que ab y cd
son elementos de un mismo simbolo u, con ab > cd para el orden establecido.
Si el monomio ac pertenece a I, diremos que ac es el puente entre ab y cd.
Ademas, diremos que ab y cd forman un hueco en u si ac ¢ u, cd es el inico
monomio de u divisible por d y ningin monomio que sea mas pequeno que
cd es divisible por b El monomio ac se llama el puente del hueco.

Nota 3.20. En las condiciones de la definicién anterior, si v es un simbolo
reducido, la condicién ac ¢ u siempre se cumple.

Proposicién 3.21.
St ab,bc,cd € I y ab > cd, entonces a > c.
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Demostracion. Si a > b, entonces ¢ > a implicaria c¢d > ab, lo cual es
absurdo. Sin embargo, si b > a, b es el inico predecesor de a y por tanto,
ac € I implica que a > c. ]

Dada la definicién de hueco, el ultimo paso de la poda es:

(V) Descartamos todos los simbolos que contengan un hueco.

Definicién 3.22. Los simbolos resultantes tras este quinto paso se denominan
F-admusibles.

Proposicién 3.23.
Un simbolo es F'-admisible si y solo si es reducido y no tiene huecos.

Demostracion. Si un simbolo es F-admisible, entonces es un monomio casi
F-admisible que ha no descartado en el paso (V) de la poda, es decir, que
no tenfa huecos. Por la Proposicién [3.18] al ser casi F-admisible, también es
reducido.

Supongamos ahora que u es un simbolo reducido y sin huecos. Veamos
que cumple las condiciones de los pasos (I) y (III), y que por lo tanto no
serd descartado en el proceso de poda (Notemos que si no es descartado
tras el paso (III), entonces es uno de los monomios considerados en el paso
(IV) y al no tener huecos no es eliminado en el paso (V)). En primer lugar
asumamos que los elementos de u son coprimos dos a dos. Entonces u cumple
la condicién del paso (III). Sean ahora a, b, ¢, d cuatro vértices de T' de forma
que ab y cd sean dos elementos distintos de u que cumplen ab > cd. Entonces
ninguno de los vértices a o b es adyacente ni a ¢ ni a d, lo que implica que se
cumple la condicién del paso (I). De no ser asi, uno de los monomios ac, ad, be
o bd seria un monomio de arista que conforma un puente entre los monomios
ab y cd, en contra de los que suponiamos.

Supongamos que para una indeterminada a = xz(,i), u posee dos monomios
distintos divisibles por a, digamos ab y ac. Deducimos que ningtin otro
monomio de u puede ser divisible por b o ¢, ya que si no, u no seria reducido.
Probaremos ahora que, salvo por cambios en la asignacién de bloques a los
monomios de u, ningiin monomio de u que pertenezca a un bloque anterior al
(1) p—bloque es divisible por a. Razonemos por reduccién al absurdo: supongamos
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que existe un monomio de u divisible por a y que pertenezca al (i) p-bloque
de u, con (i), > (i),. Denotamos b = xz(j,l). Entonces ab € u, y ningtin
otro monomio de u es divisible por b, ya que si no u seria reducido. Luego
podemos reasignar ab al (z’)p—bloque de u, suprimiendo el (i’)p,—bloque. Si
aplicamos repetidamente esta transformacién al resto de bloques de u yendo
de izquierda a derecha, tras un ntimero finito de pasos la condicién del paso

(III) se cumple, y todos los monomios de bloques distintos resultan coprimos.

Ahora, supongamos que en la sucesién de indices de los bloques de u
hay dos indices (i), > (i), que correspondan a vértices consecutivos a y
¢ (Es decir, la sucesiéon no cumple la condicién del paso (I)). Sean ab y
cd monomios del (i'),-bloque y del (i),-bloque respectivamente. Entonces
ningun otro monomio de u es divisible por b o d, por lo que ab y cd conforman
un hueco. Sin embargo, esto contradice nuestra suposicion inicial, por lo que
la sucesién de indices cumple la condicién del paso (I), luego si un simbolo
es reducido y no tiene huecos, entonces es F-admisible. O

Los simbolos F-admisibles son los generadores de los modulos de una resolucion
libre graduada. Como veremos en el teorema|3.31f cuando el grafo es un arbol,
la resolucién es la minimal.

Ejemplo 3.24. Continuamos con el ejemplo [3.15) calculando los simbolos
F-admisibles. Recordemos que la tabla de simbolos casi F-admisibles es:

Longitud | 1 2 3
01 | 01,01" | 01,12,12
01" | 01,12 | 01/,12,12'

, 12 | 01,12
Simbolos 12/ | 017,12
01,12

12,12

Eliminaremos los simbolos que presenten huecos, que son:

Simbolo | Hueco
01/,12,12 01

01’,12 01

01’,12 01
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Y la tabla de simbolos F-admisibles es, por lo tanto:

Longitud 1 2 3
0L | 01,01 | 01,12,12
. o1’ 01,12
Simbolos 12 | 01,12
12/ | 12,12

A continuacién, escribimos los cinco pasos del algoritmo seguidos:

Entrada: Ideal de aristas de un arbol T'= {V, E'}, con los vértices
indexados y ordenados.
para toda s sucesion de indices compatible hacer

si algun par de elementos de s estd en E entonces
| Descartar s

en otro caso
[s] <~ Monomios de aristas de los K-subgrafos con indices en
;
l[s] <= length(u[s]) ; * (Numeramos fu[s] = 1, ..., () *
para i desde 1 hasta [[s] — 1 hacer
para j desde i + 1 hasta [[s| hacer
si lem(p, p) # pipt; && Indsup(p;) <Indsup(p;)
entonces
puls] <= pls] i
I[s] < U[s] — 1;
fin

fin

fin
v[s][p] < Subsimbolos de pu/[s]; *x(p=1,...,20 — 1)«
para p desde 1 hasta 2*/ — 1 hacer
si v[s|[p] tiene un hueco entonces
| Eliminar v|s][p];
fin
fin

fin

fin
Salida: Todo v[s][p] restante.

El A-médulo libre generado por los simbolos F-admisibles de longitud
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r se denota por F,, y probaremos mas adelante que cada moédulo F) es el
modulo que aparece en el r-ésimo paso de la resolucién libre minimal de
A/I. La graduacién se atribuye en funcién del minimo comun multiplo de
cada simbolo. Asi, si F, estd generado por k simbolos uq, ..., u; de forma
que lem(u;) = p;, escribimos:

Fr = @ A<_pl)7
y agrupando los simbolos con el mismo grado obtenemos:
F =P A(=g))".
J

Ejemplo 3.25. Culminamos los ejemplos y construyendo la resolucién
libre graduada minimal de A/I. Para ello construimos una tabla agrupando
los simbolos F-admisibles por longitud y peso:

Peso \ Longitud 1 2 3
1 — — —
01
01’ - -
2 12
12/
0L, 01’
- 01,12 _
3 01,12’
12,12
4 — — 01,12,12
Correspondencia con F; | A(—2)* | A(=3)* | A(—4)

Por lo que la resolucién libre graduada minimal de A/I es:
0— A(—4) = A(=3)" = A(-2)* = A= A/ — 0.

Y el diagrama de Betti es el mismo que el obtenido para la poda de Taylor

en el ejemplo 2.7

0o 1 2 3

0 1 - - -

1 — 4 4 1
Globales | 1 4 4 1
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3.4. Prueba de la minimalidad

Empezaremos relacionando un tipo concreto de espacios topoldgicos con
los complejos de Taylor vistos en el capitulo 2. Luego nos apoyaremos en el
trabajo realizado por Batzies y Welkers en [4] para mostrar que los médulos
resultantes del algoritmo que hemos descrito, junto con unas aplicaciones

que describiremos a continuacion, constituyen una resolucién libre graduada
minimal de A/1.

Definicién 3.26. Decimos que un espacio topoldgico es una d-celda abierta

(o una celda abierta de dimensién d) si es homeomorfo a la bola abierta
unidad B%:

d
B'={x=(v1,....zq) €RD a7 < 1}.

Definicién 3.27. Un espacio topoldgico X se dice que es un CW-complejo
si existe una coleccién de celdas abiertas y disjuntas X = {;|i € J}, con

X:UUi’

y de forma que:

1. X es Haussdorfl.

2. Para cada d-celda abierta o existe una aplicacién continua:
d
for B'={z=(1,...,20) €RID a? <1} - X,
i

de forma que su restriccion a la bola abierta es un homeomorfismo f?
entre By o de forma que f2(S?!) tiene interseccién no vacia con una
cantidad finita de celdas, todas ellas de dimensién a lo sumo d — 1.

3. Un subconjunto Y C X es cerrado en X si y solo si AN es cerrado
en @ para toda o € X,

fo se denomina la aplicacién caracteristica de . Cuando se tiene que las
aplicaciones caracteristicas son homomorfismos, decimos que el C'WW-complejo
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es reqular. Se puede ver que el complejo de Taylor es un C'W-complejo regular
Z"-graduado (representado como el par (X, gr), donde X es el CW-complejo
y gr la graduacién), de la forma siguiente:

Para cada indice d, las d-celdas son los simbolos de longitud d, y la multi-
graduacion se define como:

s

gr(py, ..., pha) = Z ej., cuando lem(py, ..., puq) = H T,
k=1 k=1

dénde e; es el j-ésimo elemento de la base candnica de Z". Por ejemplo, si
estamos trabajando en A = K[z, 9, x3, 24, tenemos gr(xixy, 129, Toxy) =
[1,1,0,1].

Ahora definimos el grafo dirigido G x (cuyos vértices son los elementos de
X, es decir, el conjunto de todos los simbolos), considerando el conjunto de
aristas Ax conformado por las aristas dirigidas v — u’, de forma que v’ C u
y la longitud de u' es una unidad menor que la longitud de u. Consideramos
el conjunto de simbolos que contienen un hueco o no son reducidos, es decir,
los no F'-admisibles.

Dado un simbolo u que contenga el hueco ab > c¢d con puente ac, diremos
que un puente A de u sigue a este hueco si ac > A. Vamos a clasificar los
simbolos en dos tipos:

= Un simbolo es de tipo 1 si contiene un hueco que no es seguido por
ningun puente.

= Un simbolo es de tipo 2 si es no F-admisible y no es de tipo 1.

Tengamos en cuenta que si un simbolo es de tipo 2 entonces o bien no tiene
huecos, o bien contiene un puente que sigue a todos sus huecos. En cualquier
caso, contiene un puente. Sea B el conjunto de aristas dirigidas u — v’ de
forma que u’ es de tipo 1 y u se obtiene insertando el puente més pequeno
de los huecos de u’. A esta operacion la llamaremos insercion de puente.

Lema 3.28.
Con la notacion anterior, las aristas de B se cumplen las siguientes propiedades:
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1) w es de tipo 2 (luego u nunca es el vértice inicial de una arista de B).

2) ' se obtiene quitando el puente mds pequeno de u, por lo que es el vértice
wmictal de una unica arista de B.

3) Si un simbolo es de tipo 2, se puede obtener mediante insercion de puente
en un simbolo de tipo 1 (y por tanto, todo simbolo de tipo 2 aparece como
vértice final en una arista de B).

Demostracion. Recordemos que obtenemos u insertando a v’ el puente més
pequeno de uno de sus huecos. Denotemos el hueco por zy > zw y el puente
por xz.

1) Razonemos por contradiccién. Supongamos que u no es de tipo 2, por lo
que posee un hueco ab > cd, cuyo puente es bc, de forma que ningiin otro
puente sigue a este hueco. Entonces debe darse que xz > be. Por definicién
de hueco, ningin monomio de la forma de (con d > e) puede pertenecer a
u. Si tanto ab como cd pertenecieran a u’, entonces conformarian un hueco
también presente en u’, llegando a contradiccién con el hecho de que o’
es de tipo 1. Por lo tanto xz es o bien ab o bien cd. Pero cd # xz, ya que
ab > cd implica que bc > cd. Deducimos que ¢d € v’ y entonces ab = xz.
Luego b = x 0 b = 2. Por la Proposicién tenemos las relaciones de
orden x > 2z >wyb>c>d. Sib=x y por lo tanto bc = xc, entonces
ab = xz > xc = be implica z > ¢, por lo tanto zw > cd y, por definicién
del hueco zy > zw, ninglin monomio que contenga a y puede seguir a cd.
Es decir, zy > cd es un hueco en u'. Pero esto es absurdo, ya que el puente
de este hueco es ¢, que es més pequeno que xz. Ahora bien, si b= z, y
por lo tanto bc = zc¢, se da que xz > zc. Como x > z, entonces z > c. Por
consiguiente, zw > cd es un hueco en v’ cuyo puente zc es mas pequeno
que xz, llegando a contradiccién. Por tanto, deducimos que u es de tipo
2.

2) Por hip6tesis, el monomio zz es més pequeno que todos los puentes de w'.
Nuestro objetivo es probar que es mas pequeno que todos los monomios
de v’ que son puentes en u pero no en u'. La operacion de insercién del
puente xz produce nuevos puentes, ya que algiin monomio de u’ de la
forma ax o az se podria convertir en un puente entre un monomio ab € v’
y el recién insertado xz. Probemos que, en ese caso, este nuevo puente,
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que llamaremos p, cumple p > zz. Supongamos p = az. En primer lugar,
a # w, ya que por definicién zw es el tinico monomio de u’' que contiene
a w, y ab también pertenece a u'. Pero entonces az ya es un puente en u’,
que conecta zw y ab. Supongamos ahora que p = ax. Si a # y, entonces
ax es un puente en v’ entre xy y ab. Luego asumamos que a = y (es decir,
i = xy). Si x > y, entonces y > b. De nuevo, por definicién de hueco
(aplicado a zy > zw), tenemos yb > zw, lo que implica y > z, y por lo
tanto p = zy > zz. En el caso en que y > x, como x > 2z tenemos y > z
y de nuevo u = xy > xz, finalizando la prueba de este apartado.

3) Probemos que si eliminamos el puente mas pequeno (xz, puente entre xy y
zw) en un simbolo u de tipo 2, en el simbolo resultante u’ los monomios xy
y zw forman un hueco al que no sigue ningin puente. Para ello, probemos
que se cumplen las dos condiciones siguientes:

1) u no posee ningin otro monomio de la forma wb. Razonamos por
contradiccién: si wb € u, entonces zw es el puente entre xz y wb.
Pero zz > zw, por lo que zz no es minimal, y llegamos un absurdo.

1) u no contiene ningin monomio de la forma ya que sea mas pequno
que zw. Supongamos que ya € u, y veamos que ya > zw. Siy > x,
entonces x > z implica y > z y por tanto ya > zw. Veamos que
ocurre si x > y. Al ser xy el puente entre zz y ya, tenemos xry >
xz y entonces y > z. Esto implica que ya > zw, como queriamos
probar. O

Proposicién 3.29.
El grafo G dado por el conjunto de aristas:

AS = (Ax\ B)u{v — ulu — ' € B}

no contiene ningun ciclo dirigido.
Demostracidn. Las aristas (dirigidas) de A pueden clasificarse en dos tipos:

a) Las aristas u; — us que no pertenecen a B, en las que up se obtiene
suprimiendo un monomio de wu;.

b) Las aristas u' — u donde u’ es de tipo 1, u es de tipo 2 y u’ se obtiene
aplicando insercién de puente a u’.
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Con la notacién anterior, tenemos |us| = |u1| — 1y |u| = || + 1. Evaluando
el cardinal de todos los vértices del grafo, deducimos que todo ciclo dirigido
en G¥ debe contener al menos una arista de cada tipo. De hecho, ya que
cada arista de tipo b) finaliza en un vértice de tipo 2, la arista siguiente debe
ser de tipo a), por lo que todo ciclo dirigido en G debe estar compuesto
por una secuencia alternante de aristas de tipo a) y tipo b), y por tanto, la
secuencia de vértices alterna entre vértices de tipo 1 y tipo 2.

Ademas, gr(u') = gr(u), y gr(ui) > gr(ug), y la igualdad se da si y solo si
uy se obtiene eliminando un puente de wuy. Por lo que en los ciclos dirigidos,
todos los vértices tienen el mismo grado y los vértices consecutivos difieren
en un unico puente.

Sea C un ciclo dirigido en G¥. Tomemos u' — u una arista dirigida (de tipo
b)) de C, donde u se obtiene insertando el puente xz en el hueco zy > zw
de u’. De hecho, asumamos que esta arista es tal que dicho xz sea maximo
bajo el orden parcial. Este ciclo C' también contiene una arista v — ' de
tipo a), donde u se obtiene insertando a u’ un puente distinto de zz (ya que
v # u). En particular, tenemos que xz ¢ v. Esto implica que en algin punto
del camino dirigido entre v y v se suprime el puente xz. La primera arista de
este camino, u — uq, es de tipo a), y como u; # v/, uy es de tipo 1y zz € u;.
Es decir, en u; hay dos monomios que conforman un hueco, ab > cd, cuyo
puente més pequeno bc cumple be < xz. Como tenemos bc > cd, también
tenemos cd # xz, de donde concluimos c¢d € v/, ya que cd € u; C u.
Ademas, como ya hemos visto en el primer apartado del lema [3.28] ab = xz
si y solo si 2z no es el méas pequeno de los puentes de los huecos de u’. Luego
tanto ab como cd pertenecen a u’, donde no conforman un hueco, ya que
xz > be. Como v C w (y por tanto, ab,cd € u), razonamos también que
bc ¢ u (ya que constituiria un puente de u menor que zz), lo que resulta en
be ¢ u'. Por ello, el impedimento por el cual ab > ¢d no forme un hueco en
u' debe deberse a que en v’ exista o un monomio pu = de, con d > e, 0 un
monomio i = af mas pequeno que cd.

Ya que p ¢ uy, p debe haber sido suprimido en el camino de u a u;, por lo
que & es un puente en u y cumple p > xz > be. Esto es incompatible con
1 =de, luego p = af, con cd > af. En este caso, tenemos que ¢ > a, asi que
b>aya>f,porloque u=af < bc, y tenemos una contradiccion. Por
tanto, en G¥ no hay ciclos dirigidos. O]

48



El conjunto B se denomina un agrupamiento (o emparejamiento) aciclico
en Gx. Como consecuencia de [4, Proposicién 1.2], existe un C'W-complejo
Z"-graduado que tiene las dos propiedades siguientes:

1. Sus d-celdas abiertas estan en biyeccién con las d-celdas de X que no
pertenezcan a ninguna arista de B, es decir, con los simbolos F-admisibles
de longitud d.

2. Es homotopicamente equivalente a la resolucion de Taylor.

Este complejo, llamado complejo de Morse, constituye una resolucién libre
minimal de A/I. En primer lugar veremos la minimalidad, y luego describiremos
las aplicaciones entre los médulos.

Lema 3.30.
Sean u y v simbolos F'-admisibles distintos. Entonces sus grados también son
distintos.

Demostracion. Ambos simbolos son reducidos, por lo que si uno estuviera
contenido en el otro, el grado del primero seria estrictamente menor que el
grado del segundo. Por lo tanto, suponemos que v y v son incomparables
por inclusién. Sin pérdida de generalidad, asumimos que gr(u) > gr(v), o
lo que es lo mismo, lem(v)|lem(u). Para cada monomio ab de u, con a > b,
decimos que b es un sucesor en u. Ya que cada vértice de T' tiene a lo sumo
un predecesor, todos los monomios conformados por un sucesor de u y su
predecesor en T' pertenecen a u. Lo mismo se puede decir de v. Como u
no esta contenido en v, existe un sucesor de u que no es sucesor de v. Sea
b, con predecesor a, el sucesor mas pequeno de u que no es sucesor de v.
Entonces ab € u y ab ¢ v. Si probamos que ab no divide a lem(v), tendremos
el resultado.

Supongamos que abllem(v). Como bllem(v), deducimos be € v para algin
¢ < b. Como lem(v)|lem(u), ¢ también divide a lem(u). Si be ¢ wu, entonces
cd € u para algin d < c¢. Ya que ab > cd y estos monomios no constituyen
un hueco en u, tenemos de € u para un e < d. Ya que d y e son sucesores
de v mas pequenos que b, tanto c¢d como de pertenecen a v. Pero esto, junto
con el hecho de que bc € v, implicaria que v no es reducido. Por lo tanto
deducimos que be € u. Por otra parte, allem(v), es decir, xa € v para algin
x # b. Independientemente de la relacion de orden entre los vértices x y a
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tenemos que xa > be. Estos monomios no forman un hueco en v, por lo que
tenemos uno de los casos siguientes:

1) cd € v, para algin d < c¢. En ese caso razonamos como lo hicimos para
el caso (ab € u, bc € v) aplicado a (bc € u, cd € v). Concluimos que
cd € u, pero entonces ab, bc y cd pertenecen a u, lo cual es absurdo.

1) b > x (y por lo tanto @ > z) y zy € v para algin y < z. Entonces u
contiene algin monomio divisible por z, o bien ax o bien zz con z < .
Si ar € u, deducimos por razonamientos idénticos a los anteriores que
xy € u, lo cual se contradice con el hecho de que ab € u. Supongamos
asi que xz € u. Al tener ab > xz, y estos monomios no forman un hueco
en u, tenemos que zw € wu para algin w < z. Ya que tanto z como w
son sucesores en u MAas pequenos que b, razonamos que ambos rz y zw
pertenecen a v. Al tener ax € v, esto implicaria que v no es reducido,
lo cual va en contra de la hipotesis.

En cualquier caso, llegamos a contradiccion, por lo que ab }lem(v), y por
tanto gr(u) # gr(v). O

Vamos ahora a describir las aplicaciones entre simbolos F-admisibles.
En primer lugar, introducimos algo de notacién. Para cada par (u,u’) de
simbolos F-admisibles, con d = |u| = |u/| + 1, denotamos por [u : u'] al
coeficiente de u’ en d4(u). Sila arista dirigida u — v’ pertenece a B, definimos
m({u,u'}) = —[u : '], y en caso contrario m({u,u'}) = [u : «/]. Dado un
camino dirigido P : uy — u; — --- — u; en G§ (lo que se denomina
un camino gradiente), denotamos m(P) = [['Zs m({u;, w11 }). Tengamos en
cuenta que gr(ug) > gr(u;). Podemos definir las aplicaciones 0y : Fy — Fy_q
de la resolucién. Para cada simbolo F-admisible de longitud d, definimos, de
acuerdo a [4, Lema 7.7]:

8d(u) = Z [u . u/] Z Z m(P)ggr(u)_gT(uU)u//,

u'Cu u/" F-admisible, P camino gradiente
[u'|=d—1 |u"|=d—1 de v’ a u”

S S
donde, si b= Y e;,, 2’ := [[ x;, Y concluimos el siguiente teorema:
k=1 j=1
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Teorema 3.31.
La resolucion que constituyen los mddulos y aplicaciones (Fy,0q) €s una
resolucion minimal libre graduada de A/1.

Demostracién. La minimalidad viene dada por el lema [3.30] de la forma
siguiente: de acuerdo con [4, Corolario 7.6] y [4, Proposicién 7.3], basta probar
gr(u) # gr(v) para todos los simbolos F-admisibles u y v tales que |u| =
||+ 1y o bien v C u o bien existe un camino gradiente desde v’ C u a v de
longitud |v|. O

3.5. Ejemplos.

Escribimos a continuacién un par de ejemplos. El primer ejemplo tiene
el fin de mostrar un caso mas complejo que el visto durante el capitulo. El
segundo ejemplo, para el que omitiremos los calculos, es una muestra de
que, a diferencia de el algoritmo visto en este capitulo, la poda de Taylor no
siempre resulta en una resolucion libre graduada minimal para los ideales de
aristas si no se elige bien el orden de los generadores.

Ejemplo 3.32. Tomemos el ideal I = (x1x9, 2ox3, T324, T35, Tole. TeXr, T12T8) C
K[z1, 29, 23, 24, 5, T6, T7, x5]. Su grafo asociado es:

3
2
1 2/ 3//

Las sucesiones descendientes admisibles son: 0, 1,2, 2", 0—2,0—2"y 2—2".
Tras el paso (III) obtenemos los simbolos:

0 : 01,01 2 12, 23" 29 :12,12,23,23,2'3"
1:01,12,12 0—2:6%01,12,23,23
2 :12,23,23 0—2 :6+01,12,23"
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Ordenamos ahora todos los posibles subsimbolos de estos, y suprimimos
aquellos que posean un hueco. Los visualizamos en la siguiente tabla, en la
cual denotamos con un asterisco que hay simbolos que ya han sido considerados
en una columna anterior:

l [ o 1 [ 2 [ 2 ]
r=3 01,12,12" | 12,23,23’
01,12 12,23
r=2 01,12’ 12,23’
01,01’ 12,12/ 23,23’ 12/,2/3"
r=1 (%) (*)
01 12 23 (%)
01/ 12/ 23/ 23/
[ i 0—2 [ 0—2 [ 2—2 ]
r=5 12,127, 23,237,2'3”
12,127,23,23’
12,12/,23,2'3"
r=4 12,12/,23/,2/3"
12,23,23/,2/3"
01’,12,23,23’ 12/,23,23/ 2/3"
(%)
12,12/,23
12,12/,23'
12,12/, 2/3"
—3 12,23,2/3"
12,23/, 2/3"
() 12/,23,23’
01/,12,23 127,23, 2/3"
01/,12,23’ 127,23/, 2/3"
01/,23,23’ 01’,12/,2'3" 23,237,2/3"
(*)
l21 23!
=9 (%) 12,23
01',12 () 127,23
01,23 017,12/ 23,2'3"
01/,23’ 01/,2'3" 237,23

Si agrupamos los simbolos restantes por peso, obtenemos:

» Longitud 1: 7 simbolos de peso 2.

» Longitud 2: 8 simbolos de peso 3 y 5 simbolos de peso 4.

= Longitud 3: 2 simbolos de peso 4, 7 simbolos de peso 5 y 2 simbolos de

peso 6.
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= Longitud 4: 2 simbolos de peso 6 y 3 simbolos de peso 7.

= Longitud 5: 1 simbolo de peso 8.

Por lo tanto, el diagrama de Betti de la resolucién libre graduada minimal
de A/I es:

0O 1 2 3 4 5

0 1 - - - - -

1 - 7 8 2 - -

2 - - 5 7 2 -

3 - - = 2 3 1
Globales | 1 7 13 11 5 1

Y la resolucién libre graduada minimal tiene la forma:

0— A(=8) = A(=6)2 @ A(=7)> = A(—4)* @ A(—5)" @ A(—6)* —
— A(-3)* D A(-4)° - A(-2)" = A — A/T = 0.

Ejemplo 3.33. Sea I = (xox3, x1X3, T124, ToTs, T3le, 4T, TyTg, T5Lg, T12T10) C
A =Kz, .., x10]. Su grafo correspondiente es un érbol, por lo que podemos
aplicarle la poda correspondiente para obtener la resolucion libre graduada
minimal. Ya que el proceso es excesivamente largo para mostrarlo aqui, nos
ayudamos de CoCoA para obtener el diagrama de Betti y el aspecto de la
resolucion:

# use R::=QQ[x1,x2,x3,x4,x5,x6,x7,x8,x9,x10];
# I := ideal (x2*x3,x1*x3,x1*x4,x2*x5,x3*x6,x4*x7,x4*x8,x5%x9,x1%x10) ;
# PrintBettiDiagram(R/I);

0 1 - - - - - -
1 - 9 11 3 - - -
2 - - 14 29 19 4 -
3 - - - 2 5 4 1
Tot 1 9 265 34 24 8 1
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# PrintRes(R/I);

0 -—> R[-9] --> R[-7]"4(+)R[-8]"4 --> R[-6]"19(+)R[-7]"56 -—>
--> R[-4]"3(+)R[-5]"29(+)R[-6]"2 --> R[-3]"11(+)R[-4]"14 —->
--> R[-2]"9 --> R

Sin embargo, al aplicar la poda de Taylor considerando el orden de generadores
dado al inicio del ejemplo, obtenemos el siguiente resultado (ejecutado en
Matlab, empleando el cddigo en [I1], Anexo)):

=
Il

e we

e

e we

e

I—\OOOOOI—\I—\'S|
O O O OO+ O O
O OO, OO K~
OO, = OO Kk OO
, O O O Fr OO O
O O O Fr OO OO
O OOk OO O OO
O O, O O O O O O
B O O O O O O O
POOOPOOO

0000 0 11;
Esta matriz codifica los generadores en sus filas.

==

[cubo, orden, minimo]=ResolucionTaylor(M);
AlgoritmoDePoda(M, cubo, orden, minimo)

T=
4x7 table
0 1 2 3 4 5 6
0 1 0 0 0 0 0 0
1 0 9 11 3 0 0 0
2 0 0 14 29 19 6 1
3 0 0 0 2 7 5 1
glob =
1 9 25 34 26 11 2

o4



Por lo que en este caso, la resolucion resultante de la poda de Taylor no es
minimal. Con tan solo cambiar el orden de los generadores, obtenemos, sin
embargo:

M=[101000000 O0;
100100000 0;
100000000 1;
011000000 0;
010010000 0;
001001000 0;
000100100 0;
000100010 0;
00001000 10];

[cubo, orden, minimo]=ResolucionTaylor(M);
AlgoritmoDePoda(M, cubo, orden, minimo)

T =
4x7 table

0 1 2 3 4 5 6

0 1 0 0 0 0 0 0

1 0 9 11 3 0 0 0

2 0 0 14 29 19 4 0

3 0 0 0 2 5 4 1
glob =

1 9 25 34 24 8 1

Y en este caso si se obtiene la resolucién minimal.

95



Bibiliografia

1]

[11]

[12]

J. ABBOTT, A. M. BIGATTI, AND L. ROBBIANO, CoCoA: a system
for doing Computations in Commutative Algebra.  Disponible en
http://cocoa.dima.unige.it.

J. ALVAREZ MONTANER, O. FERNANDEZ-RAMOS, AND P. GIMENEZ,

Pruned cellular free resolutions of monomial ideals, Journal of Algebra,
541 (2020), pp. 126-145.

M. BARILE AND A. MACCHIA, Minimal cellular resolutions of the edge
ideals of forests, The Electronic Journal of Combinatorics, 27 (2020),
pp. 2-47.

E. BATrziEs AND V. WELKERS, Discrete morse theory for cellular
resolutions, Journal fiir die reine und angewandte Mathematik, 543

(2002), pp. 147-168.

D. A. Cox, J. LitTLE, AND D. O’SHEA, Using Algebraic Geometry,
Springer New York, NY, 2005.

D. E1SENBUD, Commutative Algebra, Springer New York, NY, 1995.
D. E1SENBUD, The Geometry of Syzygies, Springer New York, NY, 2005.

HILBERT, Ueber die theorie der algebraischen formen, Mathematische
Annalen, 36 (1890), pp. 473-534.

G. LYUBEZNIK, A new explicit finite free resolution of ideals generated

by monomials in an r-sequence, Journal of Pure and Applied Algebra,
51 (1988), pp. 193-195.

U. MARTINEZ PENAS, Una introduccion a la teoria de las sicigias,
trabajo de fin de grado, Universidad de Valladolid, 2013.

E. PEREZ CALLEJO, Diagramas de betti de ideales de aristas, trabajo
de fin de master, Universidad de Valladolid, 2020.

D. RoGALSKI, An introduction to noncommutative projective geometry,
2014.

56



[13] R. J. WILSON, Introduction to Graph Theory, Prentice Hall /Pearson,
2010.

o7



	Introducción
	Conceptos básicos
	Anillos y módulos graduados
	Complejos simpliciales
	Resolución libre de un ideal
	Números de Betti

	Resolución de Taylor. La poda del complejo simplicial
	Construcción de la resolución de Taylor
	Poda de la resolución de Taylor

	La poda de los ideales de aristas.
	Teoría de grafos
	La resolución de Lyubeznik.
	Construcción de la resolución minimal
	Prueba de la minimalidad
	Ejemplos.

	Bibiliografía

