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Abstract

The problem of distributed matrix multiplication with straggler tolerance over finite fields
is considered, focusing on field sizes for which previous solutions were not applicable (for
instance, the field of two elements). We employ Reed-Muller-type codes for explicitly con-
structing the desired algorithms and study their parameters by translating the problem into
a combinatorial problem involving sums of discrete convex sets. We generalize polynomial
codes and matdot codes, discussing the impossibility of the latter being applicable for very
small field sizes, while providing optimal solutions for some regimes of parameters in both
cases.

Keywords Distributed matrix multiplication - Footprint bound - Reed—Muller codes -
Hyperbolic codes - Minkowski sum

1 Introduction
1.1 Statement of the problem

Heavy computations require significant time to execute. One option for improving execution
times is to develop better computers with more advanced CPUs. Unfortunately, this solution
becomes increasingly challenging each year, as we seem to be approaching a fundamental
limit in clock speed. Traditionally, the alternative has been to improve not the infrastructure
but the algorithms themselves, for instance, by incorporating parallelization. A parallelizable
algorithm divides a task into smaller sub-tasks that can be computed simultaneously. When
implementing these algorithms, a typical approach is to distribute the smaller tasks across
multiple computers (worker nodes) that operate independently. Once these computations are
completed, a master node collects the results and reconstructs the original computation.
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Fig. 1 General scheme of DMM with straggler tolerance, where each A; and B; denotes a matrix of lower
size than A and B

Roughly speaking, the greater the number of worker nodes, the greater the speedup.
Equivalently, having more worker nodes translates into smaller tasks for each one to compute.
However, when implementing these algorithms, real-world problems start to arise. If the
number of worker nodes is very high, the expected difference between their execution times
becomes significant, say because of the network traffic or due to other reasons. This will
induce a bottleneck which limits the performance times of the algorithm since the master
node must wait for all the worker nodes to complete their tasks in order to obtain the original
computation. This effect is often known as the “straggler effect” in the literature. The objetive
then is to design algorithms for which the master node can recover the original computation
from a subset of worker nodes, considering straggler nodes as non-responsive. Summarizing,
we need to recover missing information from the received data, a perfect fit for coding theory
methods.

In this manuscript we focus on a computation problem that arises in a large variety of
problems: multiplying two matrices. More precisely, we consider the scenario where matrices
are defined over a finite field. Among the operations which can be reduced to matrix multi-
plication over finite fields, we briefly mention attacking code-based cryptography [1-3] (or
more generally, application to decoding error-correcting codes [2]) and solving polynomial
equations over finite fields viaresultants [4, Chapter 3]. The first of these applications is partic-
ularly notable when g = 2, since McEliece cryptosystem using binary Goppa codes remains
one the most promising cryptosystems of this family and, as pointed out in [3], matrix-like
operations as Gaussian elimination are the complexity bottleneck of some attacks. For this
reason, we believe that, in particular, this kind of distributed algorithms can lead to better
attacks in a wide range of cryptosystems taking into account finite fields.

1.2 State of the art and our solution

The most celebrated solution for distributed matrix multiplication with straggler tolerance
(DMM, henceforth) was introduced in [5], where the authors proposed encoding both matrices
as evaluations of polynomials before multiplying them, or equivalently, encoding them using
Reed-Solomon codes. This approach was later generalized in [6], which also employed Reed-
Solomon codes but encoded the computations differently. This solution reduces the number
of responsive nodes required to recover the original computation, at the cost of higher per-
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worker computation and communication costs compared to [5]. So depending on the network
specific properties, one of the them will preferred in different scenarios.

Both methods have as downside requiring the number of worker nodes N be smaller
than the size of the field over which the matrices are defined. When considering matrices
over a finite field of size ¢, the constraint N < g is translated into using at most ¢ worker
nodes, which is very restrictive especially for small sizes of g like 2 or 3. Enlarging the field
from I, to F,s for some ¢’ > N is not a good solution, as this will result in computational
overhead. Even worse, if some worker nodes receive a task that can be computed in [, they
will complete their tasks before those computing in [/, therefore aggravating the straggler
effect. To address this issue, some alternatives deriving from algebraic geometry codes were
proposed [7-11], which keep fixed the size of the field while allowing N > ¢. For the
readers not familiarized with algebraic geometry codes, they work by fixing an algebraic
curve over a finite field and evaluating functions on the rational points of the curve in a
similar way standard polynomials are evaluated on the elements of the field. For some values
of ¢, remarkably 2 and other non-perfect squares, there exist few options of algebraic curves
with many rational points where to evaluate. Consequently, algebraic geometry codes are not
an effective solution for these field sizes.

In this work, we propose using a different family of evaluation codes for DMM: codes
from multivariate polynomials. More concretely, we propose similar ideas to Reed-Muller
codes and hyperbolic codes in order to obtain algorithms for DMM allowing N > ¢. Notably,
this new approach allows DMM with straggler tolerance over 2, the field of 2 elements,
something that remained impossible with the previous methods of the state of the art.

In a nutshell, the algorithm proposed for multiplying two given matrices A and B is:

1. The master node shares with each worker node two small matrices arising as the evaluation
of some specific multivariate polynomials which depend on A and B.

2. The worker nodes compute the product of their corresponding matrices (which are smaller
than A and B).

3. When enough of the computations finish, the master nodes gathers them and recovers the
original matrix multiplication from the smaller products.

2 Preliminaries: the footprint bound

We denote by [F,; the finite field of size g and define the [, -algebra

Fq[xl5-x27 '~'7-x£]

R = ,
(xf—xl,...,xg—xg)

where (A) denotes the ideal generated by a set .A. Observe that R is naturally isomorphic
to the ring of functions from qu to [F, (see Remark 2). Let V C R be an (IF;-linear) vector

subspace. For a set P C F¢, consider the evaluation map ev : V — IFE which sends f € V
to (f (P)) pep. its evaluations in IP. Observe that ev is well defined and a linear map.

Notation T We write vectors in bold.

For f € R\ {0}, we define its restricted footprint as A, . (f) = {a € N‘iq ox? ¢

(LT(f))}, where Ny, = {0,1,...,¢g — 1}, < is a monomial ordering (defined in Nb,
x*=x{"-- -x?‘, fora e N& 4> and LT(f) denotes the leading monomial of f with respect

to <. The following lemma can be found in [12, Sect. IV].
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Lemmal ([12]) Let f € R\{0}and 5(f) := |Aqy,<()I|. If Z(f) denotes the set of zeros of
fin ]Fé, then |Z(f)| < 8(f). In particular, if we define §(V) := max{3(f) : f € V\{0}},
then |Z(f)| < 8(V), forall f € V \ {0}.

As a consequence, denoting k := §(V), if f € V and f(P;) = 0 for k 4 1 distinct points
P1, Py, ..., Pry1 € P, then f = 0. Equivalently, let B := { f1, f2, ..., fi} be a basis of V
and G be the matrix associated to ev in such a basis, that is,

fiP) fi(P2) ... fi(Pry1)
f2(P1) fa(P2) ... f2(Pry1)

. . . . (l)
fie(PD) fie(P2) ... fie(Pry1)

Then G has a right inverse, i.e., ev is injective.

Remark 1 In general, the bound on the number of common zeros of V given in Lemma 1 is not
an equality. Nevertheless, if V is generated by a set of monomials closed under divisibility,
then the equality holds (see [13, Th. 2.8]). Since this is the case for the majority of vector
spaces V that we consider in this manuscript, the bound of Lemma 1 serves as a good proxy
for the number of points needed for interpolation.

3 Multivariate polynomial codes

We present a method for DMM using multivariate polynomials which generalizes polynomial
codes [5] and that allows using more than g worker nodes. In fact, the method allows an
arbitrary large number of worker nodes for a fixed field size. We give explicit constructions
as well as bounds on the recovery threshold (see Sects. 3.2 and 3.3). Let us discuss the
framework.

Denote by I, ** the F;-vector space of matrices with r rows and s columns with entries
inFg.Let A € F*" and B € IF‘;X’ be two matrices. In order to multiply them, we split them
as block matrices in the following way:

Ay
A
A=| . |. B:==(BiBy...By)

Ap
A1By A1By ... AiB,
ArBy AyBy ... AbB,

2)
AnB1 ApBy ... Ay By

ey ox L
where A; € Ty ** and B; € IF;X" . We want to find py € R *S and DB € RS*# such that

m n
. i - b;
PA .:ZAixa, DB .—ZBjx 7,
i=1 j=1

and such that, for every a,a’ € Dy :={aj,...,a,}andb,b’ € D :={by,...,b,},

(a+b), =@ +b), = (a,b)=(@",b), 3)
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where, given a € Ny, we define (a), as

ifa < g,

a
(a)q = .
(@ modgq)+1 ifg <a<2gq,

and we extend it coordinatewise to a € N/.

Remark 2 Observe that R is, by definition, the ring of polynomials quotient the following
equivalence relation: f ~ g if and only if they define the same function when evaluated
in Iﬁ‘é Moreover, the operation (-), is the reduction of the exponent of a monomial to its
cannonical representation, i.e., X3P = x2th — @by c R foralla, b e Niq.

Next, set h := papp € R x5

Remark 3 By enforcing (3) we ensure that A; B; is the coefficient of x *bj in h, so we can
retrieve AB from h.

Observe that if h; ; € R is the (i, j)th coordinate of &, then h; ; € V := (xath . a ¢
Dy, b e DB)Fq, where (')Fq denotes Fy-linear span. So from Sect.2, we can interpolate
h from knowing any k + 1 evaluations (the image of & by ev defined with |P| = k + 1),
where k = §(V), by inverting the matrix G from (1) on the right. This interpolation step has
negligible computational complexity compared to that of the matrix multiplication by each
worker when the matrix sizes r, s and ¢ are large, as in [7, Sect. 5] (see Appendix A).

This results in the following algorithm: the master node shares the evaluations p4(P;) €

r t
}F(}TI “ and pp(P;) € ]F;X;, with the i-th worker. Then, the workers compute the matrix
multiplications h(P;) = pa(P;)pp(P;) in parallel. When any k + 1 of them end their
computations, the master node recovers /& by performing componentwise interpolations, and
so recovering A B because of Remark 3. In the literature, the number k + 1 is called the
recovery threshold, i.e., the minimum number of responsive nodes needed to recover the
product AB.

The remaining part is how to select sets D4, Dp C N‘iq of sizes |Dag| = mand |Dg| =n
satisfying (3) in such way that k is as small as possible. Noticing that V is generated by
monomials, we conclude that

4
k=8(V) =max {|A(*)|: x* € V} = ¢ — min n(q—(ai)q): P*ev:i. @
i=1

We summarize the problem of obtaining the coefficients of ps and pp satisfying (3) and
minimizing (4) in Problem 1.

Notation 2 We define Dy +, Dp as the Minkowski sum reduced with (-)4, that is
Da+yDp:={@a+b), eN_ : acDabeDg)

Problem 1 Find D4, Dp € N% such that

1. |Da| =m and |Dg| =n,

2. |Dp +4 Dl =|Dal - |Dp| or, equivalently, satisfying (3), and

3. FB(Dp+4 Dp) := min{]_[le(q—(ai +b;)y) : a€ Dy, b e Dp}isaslarge as possible.
If D4 and Dp achieve items 1 and 2, we say they are a solution. If item 3 is also achieved,
we say they are an optimal solution.
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More explicitly, finding a solution for Problem 1 will yield an algorithm for DMM with
straggler tolerance for matrices which are subdivided in m and n submatrices as in (2), with
recovery threshold q[ —FB(D4 +4 Dp) + 1, as noted in (4). So minimizing the recovery
threshold is equivalent to maximizing FB(D4 +, Dp). We study such solutions specifying
both FB(D 4 +4 D) and the recovery threshold for clarity, but the reader should keep in mind
that one uniquely determines the other. Even though in Sect.2 we defined the footprint such
that 8(f) = ¢ — FB(LT(f)), often we will refer to FB(D4 + Dp) simply as the footprint
during the rest of the manuscript.

Remark 4 Notice that the maximum number of worker nodes is ql, the maximum number of
different evaluations we can perform over IFf]. In the case £ = 1 (polynomials defined over
one variable), this algorithm is known as polynomial codes [5] in the literature, and Problem
1 is solved by choosing D4 :={0,1,...,m — 1} and Dp := {0, m, ..., (n — 1)m}, always
under the assumption that mn < ¢. Polynomial codes attain the best information theoretical
recovery threshold but the number of worker nodes is limited by the size of the field the
matrices are defined over. In particular, small fields such as ', or F3 are not allowed by
polynomial codes [5]. Neither constructions arising from algebraic geometry codes [7, 9-11]
are applicable for these field sizes because of the lack of algebraic function fields over them.

Remark 5 One of the first things we notice when looking for optimal solutions to Problem
1 is that if D, (analogously Dpg) is not “laying on the axes”, then the solution D4 and
Dp is not optimal. More formally, if d; := min{a; : a € Dy} > 0, we can consider
D’A = Dy —(0,...,d;,...,0) together with Dp, obtaining a strictly better solution in
terms of the footprint bound.

3.1 A bound on the recovery threshold

We start by introducing a bound on FB(D4 +, Dpg) for a solution to Problem 1 and, con-
sequently, a bound on the recovery threshold the algorithm produces. The next definition is
[14, Def. 4].

Definition 1 ([14]) Let g, F,! € N, we define the hyperbolic set Hyp, (F, ¢) or simply
Hyp(F) as

I
Hyp,(F.¢):={aeN. : [](g—a) = F} .
i=1
The hyperbolic set Hyp(F) is, by definition, the biggest subset of Nl<q such that
FB(Hyp(F)) > F. Proposition 1 uses this concept to give a bound on FB(D4 +, Dp).

Proposition 1 Consider § := max{F € N: |Hyp(F)| > mn}. If D4 and Dp is a solution,
then FB(Dj +4 Dp) < &.

Proof Due to the definition of FB(D 4 +, Dp) we have that ]_[f=1 (g —ci) = FB(Ds+4 Dp)
forevery ¢ € Dy +4 Dp. Then, Dy +, Dp € Hyp(FB(D4 +, Dp)). Comparing their sizes
we get that mn < | Hyp(FB(D4 +, Dp))|, and the result follows from the definition of &.

Despite the fact that the bound of Proposition 1 is not a closed formula, we will see in
Corollary 1 that we can easily compute it. Because of this, in the Appendix we will be able
to compare the footprints of our constructions with this bound.
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Fig. 2 Hyperbolic sets Hyp;(53,2) € Hyp;;(24,2) < Hyp;;(8,2) represented in yellow, red and blue,
respectively

Fig.3 .
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Now we introduce different solutions to Problem 1. We construct the solutions and study
the parameters in general, but we group them according to on which regime of the parameters
g and/ they yield better results. Observe that there is a tradeoff between these two parameters:
more variables lead to worse solutions but they are needed when working over fields of small
size. This is, either ¢ or [ have to be sufficiently large.

3.2 Few variables and moderately small field size

We start studying constructions to solve Problem 1 that behave well for small / and moderate
g. As a naive generalization of the chosen degrees in polynomial codes [5], we introduce
Construction 1.

Notation3 Lets,k € N, we write k * s := (kys1, kasa, ..., kisp). If § € N/, then we write
kxS :={kxse N: se S}. This operation, sometimes denoted by #, is often referred to
as the Schur product or the star product [15].

Construction1 (Box) Letm, n € Nﬂq such thatm;n; < g foreveryi = 1,2, ...,[. Define
Dy:={ac N1<q Toap < m;},
Dp = {m*keNiq : ki < ni}.
Because of m;n; < g, we havethata+b € Nl<q foreverya € Dy and b € Dp, resulting in
Dp+4 Dp = D4+ Dp being the classical Minkowski sum. By Euclidean division by m;, we
deduce that |D4 + Dg| = |D4||Dg|. More explicitly, ifa, a’ € Dy andmx*k, m*k’ € Dp,
then a; +m;k; = a] +m;k] implies that ¢; = a and k; = k] since a;, a, < m;, by definition.

So D4 and Dpg are a solution to Problem 1. Moreover, |Dj| = ]_[f:1 m;, |Dg| = I—[f:1 n;
and

¢ 4
FB(Da + Dp) = [ [ (g —mi + 1= mi(ni — 1) = [ [(q — mini + 1),
i=1 i=1
so the recovery threshold is q' — ]_[le(q —min; + 1) + 1.
The idea behind Construction 1 is to pick D4 and D, as two hypercubes (boxes) and
obtain Dp by expanding D', with the coordinatewise multiplication (star product), ensuring
that |[D4 + Dp| = |D4||Dp|. This construction can be generalized selecting D 4 and D not

necessarily as boxes, and obtaining Dp with the corresponding expansion as Proposition 2
shows.

Proposition2 Let Dy, D}y C Nl<q and m; =1+ max, gecp, la; — a}|. Consider Dp :=
m x D}g, where m = (my,ma, ..., m;). If maX pyep,xpy (@i + b;) < q for everyi =
1,2,...,1, then |Da +4 Dp| = |Dal|Dpl, thus Da and Dp are a solution to Problem 1.

Proof Let (a,b), (a’,b’) € Dy x Dp such thata+b =a’ +b’, then |a; — a]| = |b; — b}|
foreveryi =1,2,...,1.If (a,b) # (a’,b’), thena # a’ and b # b’ and

lai — aj| < m; < |b; — b},
for some i. This contradiction yields (a, b) = (a’,b’), so |[Dy4 +¢ Dp| = |DallDp].

The approach of Proposition 2 is expanding D’y by the limits of the smallest box containing
D 4. We can obtain a “better” solution by simply selecting D 4 as the whole box delimited by
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m. In fact, we can improve this construction as Construction 2 shows, choosing D, as large
as it can be.

Construction 2 (Better box) Letm € Nl< q and F € N. Consider the sets

Dy = {aeNLq: a; < m;j},
l
Dp = m*beNLq: l_[(q—m,-+l—mib,-)2F .

i=1

Proposition 2 ensures D4 and Dp to be a solution to Problem 1. Moreover, by the definition
of Dp, we have FB(D4 + Dp) > F, so the recovery threshold is k + 1 < ql —F+1.

Construction 2 is at least as good as (in the majority of cases is strictly better than)
Construction 1, since one can always set F in Construction 2 to be FB(D4 + Dp) with
D4 and Dp as in Construction 1, obtaining a better box solution with at least the same
footprint and at least the same sizes as sets D4 and Dpg. The only non explicit parameter of
Construction 2 is the size of Dpg. Proposition 3 gives a useful recurrence for computing it.

Definition2 Letm € Nl<q and F € N. Define ¢; := g —m; + 1 and

1
Dg(F,1) := {(mlbl, maba, ...,miby) € N o [ [qi —mibi) = F} :

i=1

In particular, Dg = Dp(F, ) in Construction 2.

Proposition3 Lerm € N__ and F € N. Then,

max{0, [2=F | + 1) ifl=1,
|Dp(F,D)| = -l
po DB s L= DI ifl > 1.

Proof If [ = 1, then

|Dp(F,1)| =|{mby e Ney : q1 —mb; > F}|

q—F
= m1b1 €N<q2 Zbl
mi
—F
:max{O, qu J—i—l}.
mi
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If I > 1, we partition Dg(F, [) and the sum of the sizes gives us the formula:
q1—1
14 )

|IDp(F,1)| = U {(mlbl,n-,mlflblfhmlb) 6Nl<q
b=0

-1 F
: l_[(qz‘ —mib;) > (7—‘
i qr —mb
—1
L5

=

b=0
1

-1
F
-1 . . b
{(mlbl,---,ml—]bl—l) € N<q : H(q: —m;ib;) > ’Vql—mlb—‘”
L=

i=1
> oo ([l =)
= pl\|———|.[—
P q1 —mb

where the partition is taken by grouping the elements of Dp(F, [) which have the same /-th
coordinate.

]

)

In Proposition 3, the definition of Dpg(F, [) recovers that of Hypq (F, 1), in the sense that
Dp(F,l) = Hyp(F,I) by makingm = (1, 1, ..., 1). Moreover, observe that the proof can
be adapted to compute the set Dp (F, ) itself, not only its size, by using a backtracking-like
algorithm, for example.

As a corollary of Proposition 3 we derive the result from [16] that computes the size
of hyperbolic sets. The motivation of this result is to compute the bound on the recovery
threshold of Proposition 1. We state it in Corollary 1.

Corollary 1 ([16]) Let F > 1. Then

max{0,q — F + 1} ife=1
| Hyp, (F. )] = { q " :
o [Hyp, ([51. =1 ife>1.
Proof By settingi =g —bandm = (1, 1,..., 1), the results follows as a particular case of

Proposition 3.

When restricting to [ = 2, only two variables, observe that we obtain simpler formulas
for computing the size of both the set D in Construction 2 and the set Hyp, (F).

Corollary2 Letl =2andm € N2 . Then

©-l
L iy ]

IDp(F.2)| = ) max 0,
b=0

Regarding hyperbolic sets, for F > 1 we have

< F
|Hyp, (F,2)| = Zmax {O,q - ’7;—‘ + 1}_

k=1

Proof Tmmediate from / = 2 in Proposition 3 and Corollary 1, respectively.
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Tables 2 and 3 in the Appendix contain the parameters for several examples of Construc-
tions 1 and 2 when defined over two variables together with the bound given by Proposition
L.

3.3 Many variables and small field size

Now we give a solution to Problem 1 that works well when multiplying matrices over a very
small field, that is very small g. We state this solution in Construction 3.

Construction 3 (Separation of variables) Let £ =m’ +n',0 < Fa <m’and0 < Fp <n’.
Define

Dp:={(a1.a.....ay.0.....00 e N : aeHyp,(Fa.m)},
Dp :={(0.....0,bu1. bua. ... be) € NL, : b € Hyp, (Fp.n')}.
We have that |[D4 + Dg| = |D4||Dp| and, from Definition 1, we obtain the bound

’
m'

n
FB(D4 + Dp)=min{ [ [(g—a) : a€ Dy ymin { [[(¢—bw+4i): b e Dgt > FaFp.

i=1 i=1

yielding a recovery threshold of k+1 < ql — F4Fp+1.Notice that |[D | = | Hyp, (Fa,m")|
and |Dp| = | Hypq (Fp,n")|. This is the reason for selecting D4 and Dp from hyperbolic
sets, because, by Definition 1, this maximizes their sizes when using this method of separation
of variables.

Remark 6 Construction 3 may seem naive, butin general it is the best option when considering
very small values of ¢, like 2, 3 or 5. For these ¢, Construction 2 (and also Construction 1)
has very restricted parameters. For example, for ¢ = 2, the box N_ o has only two elements
in each coordinate, so in Construction 2, m is a vector consisting of Os and Is. If m; = 0
for some i, then Dy is empty. So m has to be (1, 1, ..., 1), but then D4 consists of only
one element, (0, 0, ..., 0). We conclude that, for ¢ = 2, we are restricted in Construction 2
to m = 1, that is, performing DMM only by splitting matrix B and not A, in other words,
“introducing redundancy only in one of the matrices”. This strategy of encoding only one of
the operands was one of the first ideas of the coded computation schemes [17], and presents
the disadvantage of performing bad in terms of the communication cost. Observe as well that
forg =2 and ! = 2, we have |N2<2| = 4 and so mn < 4, making evident the necessity of
using a large number of variables when the field size is small.

Similar to Construction 2, in Construction 3 the sizes of D4 and Dp are not explicit.
Fortunately, this is not a problem when giving examples since we can efficiently compute
them by using the recurrence of Corollary 1.

To conclude this section, we focus on the case of matrices defined over [F». In this extremal
scenario, Constructions 1 and 2 are not applicable by Remark 6. In general forg = 2,mn < 2/,
or equivalently / > log, (mn), is required. As far as the authors know, there are currently no
general methods for performing DMM with straggler tolerance over [F2, apart from the one
presented in this subsection.

Proposition4 Let F',l € N. Then
[—[log, F1

l
|Hyp,(F. DI = ) <l>

i=0
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Proof Let a € Nl<q, we denote by wt(a) the Hamming weight of a, i.e., the number of
nonzero coordinates of a. When ¢ = 2, we observe that given a € N[<2 = {0, 1}, we have

that I—[f=l (2 — a;) = 2/=V@ Hence

|Hyp,(F, D] = [{a € {0, 1} : 2@ > F}]
1~ [log, F

[
:|{ae{0,1}1:wt(a)fl—flog2F1}|: Z <z>

i=0

Remark 7 Observe that, when ¢ = 2, the evaluation code defined by a hyperbolic set is a
Reed-Muller code. So separation of variables (Construction 3) in [, proposes encoding the
matrices A and B using two Reed-Muller codes.

Proposition 4 gives us a way for fast computing the sizes of hyperbolic sets for g = 2, and
so the sizes of D4 and Dp in Construction 3. In addition, it shows us which are the greatest
designed footprints such that |[D4| and |Dp| are maximized: we have to pick F; = 2% and
F, = 2P for some «, B € N. This motivates the following corollary.

Corollary 3 Let D4 and Dp as in Construction 3 for ¢ = 2. If FA = 2% and Fp = 28 then

m' —a m' n'—p n
D = d D = .
Dl Z(,-)an 1D Z(i)

i=0 i=0
Proof Straightforward from Proposition 4.

Tables 4 and 5 in the Appendix contain the parameters for several examples of Construction
3 when ¢ = 2 together with the bound given by Proposition 1. Tables 6 and 7 contain the
parameters for ¢ > 2. Observe that, when ¢ = 2, Construction 3 is optimal for a large
number of non-trivial values of m.

4 Multivariate matdot codes

Now we follow the trail of matdot codes [6], a different method for performing DMM.
Matdot codes achieve lower recovery thresholds than polynomial codes [5] at the expense of
having a higher communication and computational cost. With the same ideas, in this section
we propose polynomials in several variables for DMM as the algorithm presented in Sect. 3
does, but splitting the matrices in a different way. This yields a different algorithm with lower
recovery threshold but higher per-woker computation cost (see Appendix A).

As a warmup, consider the following toy example in one variable. Let

A= (A1 A) and B= (g;) )

be two matrices over [F,. Similarly to Sect.3, A and B are divided in blocks Ay, A2 and
B, By. respectively. The reader should take into account that this division is not the same as
in Sect. 3. Then, consider the polynomials p4 := A; + Asx and pp := By + Bjx and their
product, h := papp = A1B2 4+ (A1B1 + A2By)x + A>B1x2. The key point is that /4 has
AB as the coefficient of the term of degree x, so a similar algorithm can be designed as in
Sect. 3 to recover AB from the evaluations of /. This idea of choosing the coefficients of p4
and pp to “collide in x” is the basis of matdot codes as defined in [6] for general matrix sizes
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and one variable. Let us generalize this construction to more variables, which will allow us
to use more worker nodes.
Let A€ F,* and B € IF;X’, consider the subdivision in blocks of matrices given by

B
B

A= (A1 Ay ... A,), B=
(1 2 m) 6)

B
= AB=A|Bi+ABy+---+ AyuBu,
where A; € F," " and B; € Fj "', As in Sect.3, we define ps € R and py € R ™'

such that
m m
paA = ZAixai, pB = ZBixb",
i=1 i=1

but, this time satisfying that, there exist exactly m distinct pairs (a, b) € D4 x Dp, where
Dy :={ay,...,ay}and Dg := {by, ..., by}, such thatd = (a +b), forafixedd € Nl<q.
Here, (+)4 denotes the natural sum of exponents of monomials in R, as in Sect. 3. The property
is not arbitrary, since it implies AB to be the coefficient of the monomial x4 in & := p4 p3.
Using this fact we can design the following algorithm.

First, the master node shares p4(P;) € IF;X " and pp(P;) € B} " with the i-th worker
node. Then, the worker nodes compute the matrix multiplications h(P;) = pa(P;)pp(P;)
and give back the result. When enough worker nodes have responded, the master node uses
the evaluations A (P;) to recover i and, consequently, to obtain AB.

The amount of responsive worker nodes necessary to recover s depends on the choice
of the sets D4 and Dgp, as (4) in Sect.3 summarizes. The objective then is to minimize
k+1:= ql — MiN(a byeDyx Dy {]_[le(q — (a; + bi)y)} + 1, the number of evaluations that
ensures we can interpolate . We express this in Problem 2 in terms of the sum defined in
Notation 2.

Problem 2 Find D4, Dp € N%_ such that

L. [Dal = |Dp| =m.
2. There exists d € N[<q, such that there are exactly m pairs (a;, b;) € Dy x Dp for
i =1,2,...,msuchthatd = a; + b; and satisfying that a; # a; and b; #b; if i # j.

3. FB(Dp+4 Dp) = min{]_[le(q—(ai +bi)y) : a€ Dy, b € Dp}isaslarge as possible.
If D4 and Dp achieve items 1 and 2, we say they are a solution. If item 3 is also achieved, we

say they are an optimal solution. Sometimes, we will refer to D4, Dp and d as the solution
itself, even though d is dependent on the sets D4 and Dp.

Remark 8 In Problem 2, if d is zero in some coordinate i, that implies that both the elements
of Dy and Dp are zero in i. So we can project over [/] \ {i} and obtain a lower recovery
threshold algorithm since it uses fewer variables but maintains the footprint.

We proceed studying different solutions to Problem 2 and their recovery thresholds.
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4.1 The box and the caseq = 2

The simplest construction we can come up with is, as in Sect. 3, choosing a “box” for Dy4
and Dp. This is Construction 4, which gives a simple way of defining D4 and Dp while
generalizing the optimal solution for classical matdot codes.

Construction4 (Box) Letm € N‘iq such that 2(m; — 1) < g foreveryi = 1,2,...,1.
Define
Dy :=Dp = {ae Nl<q ap < m,'}.

Because of the election of each m;, we have thata+b € NI< q foreverya € Dy andb € Dp,
resulting in Dy +, Dp = Da + Dp being the classical Minkowski sum. The rest of the
definition ensures D4 and Dp to be a solution to Problem 2, withd = (m; — 1, mp —
1,...,m; — 1). The footprint results to be

1
FB(D4 + Dp) = [ [(g — 2mi +2).
i=1

In Construction 4 we have the restriction 2(m; — 1) < g which makes it non applicable
for lower values of g. The analog in Sect.3 was Construction 1, which suffered from the
same limitation, in particular for ¢ = 2. We were capable of tackling this issue in Sect.3 by
separating variables (see Construction 3), but in the case of multivariate matdot codes, using
g = 2 is intractable as Proposition 5 shows.

Notation 4 Let S C N, we denote supp(S) :={i €[l]: Is€ S s #O0}.

Proposition 5 Let Dy, Dp and d be a solution for Problem 2 with q = 2. Then FB(Dy4 +,
Dp) = 2/7IswpDa+e Do)l [y particular; if supp(Da +4 D) = [I] (see Remark 8 for its
importance), then FB(D4 +4 Dp) = 1.

Proof Since d; = (a; + b;), forsomea € Dy andb € Dp,thend; = 1ifa; =1lorb; =1,
otherwise d; = 0. So FB(D4 +, Dp) = ]_[521(2 — d;) = 21~ 1supp(Da+q D)l

As stated in Proposition 5, there are no methods for DMM with straggler tolerance for
matrices over [, using multivariate matdot codes (apart from trivial ones). So Construction
3 in Sect. 3.2 still remains the best option for performing DMM over F».

Let us study a different way of picking D4 and Dp.

4.2 Optimal solution when D4 = Dg

In Construction 4, we picked D4 and Dp as the same set. This is not a requirement to fullfill
but both in matdot codes [6] and in AG matdot codes [7], optimality is achieved when doing
so. This motivates exploring the idea of restricting to D4 = Dp, where the optimality can
be satisfactorily studied.

Definition 3 We say D C R! is convex if, for every a,a’ € D and A € [0, 1] € R, then
ra+ (1 —2)a € D.

The following result is already known but we do not know any explicit proof in the
literature.
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Lemma2 Consider Hyp,(F,1)* := {a € R’ : ]_[ﬁzl(q —a;) > F}. Then, Hyp, (F, )" is
convex.

Proof Leta,a’ € Hyp, (F, D* and A € [0, 1] € R. Then

l [
[T@—2rai =0 =0a) = [rg —a) + (1 = 2)(g —a))

i=1 i=1
Using logarithms, which are known to satisfy that
log(Ax 4+ (1 = A)y) = Alog(x) + (1 — 1) log(y),

for x, y > 0, we obtain:

; I
log (1_[()»(61 —a;)+ (1 -0 — 61{))) = ZIOg(MCI —a;)+ (1 =) (g —a)
i=1 i=l
I
> Z(A log(g — a;) + (1 — 1) log(g — a)))

i=1

/ 1
=\ Zlog(q —ai)+ ({1 —=21) Zlog(q —a;)

i=l1 i=1

1 1
= Alog l_[(q —a;)+ (1 —=2X)log l—[(q —a;)

i=1 i=1
> Alog(F) + (1 — A) log(F)
= log(F).

Finally, because the logarithm is an increasing function, we conclude that

l
[T@—2ai = —2a) = F.
i=1
Now, we state Proposition 6 which also can be found in [14, Prop. 4]. Since the proof is
short, we give it for completion.

Proposition 6 [[14, Prop.4]] Let D € N' . Then FB(D + D) > F ifand only if FB(2a) >

g-
<2

F for everya € D.

Proof First,if FB(D + D) > F, then FB(a+ a) > F holds as a particular case. Conversely,
suppose that, for every a € D, FB(2a) > F holds, which is equivalent to saying that
2a € Hyp, (F,1)*.Leta,a’ € D and consider a+a’. Since 2a, 2a’ € Hyp, (F, [)*, we apply
Lemma 2 to conclude thata +a’ = %(Za) + %(Za/) € Hyp, (F,1)*, that is FB(a + a)>F.

Proposition 6 allows us to simplify the computation of FB(D4 + Dp) when D4 = Dp.
We exploit this fact and propose Construction 5.

Construction 5 (Half hyperbolic) Let F € Nandd € Nl< ¢ - Define
il

Dy:=Dg={aecN ,: FB2a)> F, FBQ(d—a)) > F}.

q
<2
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Since a € Nl<‘i’ D4 +4 Dp is the usual Minkowski sum. We conclude froma € Dy <=
2

d —a € Dp that D4 and Dp are a solution to Problem 2. Moreover, by Proposition 6 we
obtain that FB(D4 + Dg) > F.

Remark 9 Observe that Construction 5 generalizes Construction 4 by setting m = d and
F=0.

Proposition7 Let Dy = Dp and d be a solution to Problem 2 such that Ds +4 Dp =
D4 + Dp. Then there exist a solution D;\ = D% and d given by Construction 5 such that
D4l < |D'y| and FB(D + Dp) < FB(D/, + D}). Consequently, if we choose D C D/,
of size |D| = |D4l, then D and d — D is a solution of size |D 4| with FB(Dg + Dp) <
FB(D + (d — D)), thus with smaller or equal recovery threshold.

Proof Let F := FB(D4 + Dp). For every a € Dy it holds that FB(2a) > F. Consider
D', and D’y given by Construction 5 with parameters F and d. Because of Proposition 6,
FB(D/, + D) > F and the statement of the proposition holds.

Proposition 7 shows that Construction 5 yields the best solutions among the ones of the
form D4 = Dp. So solutions satisfying D4 = Dp can be seen as two subsets of the ones of
Construction 5. This easily motivates Construction 5.

Similarly to Proposition 3, the next proposition shows how to compute the size of D4 and
Dp recursively in Construction 5. In fact, the same recurrence show us how to compute the
sets itselves explicitly. We give only the proof for the sizes for the sake of brevity.

Proposition8 Let F, G € Nandd € N_ . Consider

q
2

! 1
MRGD:PGM : [ @ - 2a) = F. HW_M+M054-

i=1 i=1

In particular, D(F, F,1) = D = Dg in Construction 5. Then
max {0, |55 ] — (75207 + 1) il =1
ID(F,G,D| = L%J F o .
Dam ‘D(’Vm—‘,"m—‘,l—l>‘ ifl > 1
Proof 1f | = 1, then

|ID(F, G, 1|

|pew :mﬂsz,q—MHJmZG”:

<4
:\g;EJEMZ[E;ii%ﬂHZ
2 2
qg-—F G —q+2d
= — 1t.
mo o[ 157 |- £ |}

[aeNl<

[SIS)
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If I > 1, we partition D(F, G, ) depending on the last coordinate of each element and the
recursive formula follows easily:

7]

I
|

|ID(F, G, D] =

1
i(al,az,---,al—l,a)€N<%- 1_[(61—2611)>[ —Za—‘

Il
S

a

\
|
—_

—

G
—2d;i +2a;) > | ——————
@ 2a) ’74—2d1+2a—‘}’

Il
-

'_
e
N |
[E—

1
i(al,az,---,al—l,a)€N<%- 1_[(61—201)>[ —Za—‘

G
(¢ —2d; +2a;) = [q—ZdHLZa—‘H

qu fza] (4—224—261—"1_1)‘.

T
= o

—

1

Il
-
Q
M

a=1

Appendix A Complexity

The complexity analysis is exactly the same as in [7, Sect. 5] where a more detailed treatment
of the complexity is given. Alternatively, the reader may check [5] for the original complexity
of polynomial codes or [6, Subsect. III B] for that of matdot codes. As in the rest of the
manuscript, recall that k 4+ 1 denotes the recovery threshold.

In multivariate polynomial codes (respectively, multivariate matdot codes), each worker
node has to multiply two matrices of sizes = x s and s x L (resp. r x = and = x t). Using
the naive matrix multiplication algorithm, thls has complexity (9( ) (resp (9(’;1[ ).

For the decoding process, in multivariate polynomial codes we have to interpolate each
entry of h € R % . That is, interpolating a polynomial of degree at most k, which has
complexity O(k?) entrywise. In total, O(r%kz). ‘When considering multivariate matdot codes,
we only have to interpolate one coordinate of 4, having this complexity O(rtk). For both
multivariate polynomial and matdot codes, we have to add the complexity of inverting the
matrix which gives the solutions to the linear system of equations for interpolating. This
results in complexities O(rfl—;k2 +&3) and O(rtk + k%), respectively.

We summarize the complexities in Table 1.

Table 1 Complexity of multivariate polynomial and matdot codes

Worker computation Decoding computation
Multivariate polynomial codes O(%ﬁ) (9("%1/{2 + k3)
Multivariate matdot codes O(%) O(rtk + k3)
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Appendix B Tables
B.1 Multivariate polynomial codes

We present some tables concerning the constructions of Sect.3. Tables 2 and 3 contain
parameters for both Constructions 1 and 2. Tables 4 and 5, for Construction 3.
Given g = 19,1 = 2, Table 2 shows Construction 1 with n; = L3ZTZ,-J and Construction 2

with | Dg| = 71. The bound of Proposition 1 for each construction are & and &, respectively.
The number of worker nodes is N = 361 and the recovery threshold, k + 1.
Given g = 25,1 = 2, Table 3 shows Construction 1 with n; = L%J and Construction 2

with |Dg| = n. The bound of Proposition 1 for each construction are & and § respectively.
The number of worker nodes is N = 625 and the recovery threshold, k + 1.

Given ¢ = 2,1 = 10, Table 4 shows Construction 3 with m" = 5, n’ = 5 and F4 =
Fp = F. The bound of Proposition 1 is &. The number of worker nodes is N = 1024 and
the recovery threshold, k + 1.

Given ¢ = 2,1 = 20, Table 5 shows Construction 3 with m" = 10, n’ = 10 and Fy =
Fp = F. The bound of Proposition 1 is &. The number of worker nodes is N = 1048576
and the recovery threshold, k + 1.

Table 2 Example to =
Constructions ? and 2 mioonoomeon n FB(D4 +Dp) § 3 k+1

1 12 1 144 204 o4 102 64 298
2 6 36 48 64 102 70 298
3 4 9 16 20 64 102 77 298
4 3 16 9 11 64 102 80 298
5 2 25 4 4 100 143 143 262
6 2 36 4 4 64 102 102 298

Table 3 Example to

Constructions 1 and 2 mioomeomon 4 FB(DA+Dp) & § k+1
1 16 1 256 364 100 168 100 526
2 8 64 84 100 168 115 526
3 5 9 25 31 121 192 152 505
4 4 16 16 20 100 168 126 526
5 3 25 9 11 121 192 154 505
6 2 36 4 4 196 270 270 430
;’able4 Example to Construction F m FB(D 4 + Dp) £ k41
2 31 4 8 1021
26 16 16 1009
8 16 64 64 961
16 [§ 256 256 769
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;abIeS Example to Construction F m FB(D 4 + Dp) £ k41
2 1023 4 16 1048573
1013 16 64 1048561
8 968 64 128 1048513
16 848 256 512 1048321
32 638 1024 2048 1047553
64 386 4096 4096 1044481
128 176 16384 16384 1032193
256 56 65536 65536 983041
512 11 262144 262144 786433
;’able6 Example to Construction F m FB(D4 + Dp) £ k+1
63 4 35 4093
61 16 92 4081
57 64 236 4033
16 49 256 600 3841
32 33 1024 1540 3073
;ab|e7 Example to Construction 1. " FB(D4 + Dp) £ k1
2 127 4 60 16381
125 16 156 16369
8 121 64 396 16321
16 113 256 980 16129
32 97 1024 2440 15361
64 65 4096 6215 12289

Given ¢ = 64,1 = 2, Table 6 shows Construction 3 with m’" = 1, n" = 1 and Fy4 =
Fp = F. The bound of Proposition 1 is £. The number of worker nodes is N = 4096 and
the recovery threshold, k + 1.

Given ¢ = 128,1 = 2, Table 7 shows Construction 3 with m" = 1, n’ = 1 and Fs =
Fp = F. The bound of Proposition 1 is &. The number of worker nodes is N = 16384 and
the recovery threshold, k£ + 1.

B.2 Multivariate matdot codes

Given g = 8,/ = 3, Table 8 shows Construction 5 with d computed to maximize m given
the footprint F'. The number of worker nodes is N = 512 and the recovery threshold, k + 1.

Given g = 32,1 = 3, Table 9 shows Construction 5 with d computed to maximize m
given the footprint F'. The number of worker nodes is N = 32768 and the recovery threshold,
k+1.
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Table 8 Example to Construction

5 F m k+1
64 512
9 62 504
17 56 496
25 50 488
33 38 480
41 38 472
49 26 464
57 26 456
;able 9 Example to Construction m [
1 4096 32768
513 3044 32256
1025 2106 31744
1537 1440 31232
2049 976 30720
2561 622 30208
3073 374 29696
3585 176 29184
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