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Abstract
The Klein–Gordon–Boussinesq (KGB) system is proposed in the literature as a model prob-
lem to study the validity of approximations in the long wave limit provided by simpler
equations such as KdV, nonlinear Schrödinger or Whitham equations. In this paper, the KGB
system is analyzed as a mathematical model in three specific points. The first one concerns
well-posedness of the initial-value problem with the study of local existence and uniqueness
of solution and the conditions under which the local solution is global or blows up at finite
time. The second point is focused on traveling wave solutions of the KGB system. The exis-
tence of different types of solitary waves is derived from two classical approaches, while
from their numerical generation several properties of the solitary wave profiles are studied.
In addition, the validity of the KdV approximation is analyzed by computational means and
from the corresponding KdV soliton solutions.

Keywords KGB system · Solitary wave · Well-posedness

Mathematics Subject Classification 76B03 · 76B25 · 76B15

1 Introduction

In this paper, we study the initial-value problem (ivp)
⎧
⎪⎪⎨

⎪⎪⎩

utt = α2uxx + uttxx + ( f1(u, v))xx ,

vt t = vxx − v + f2(u, v), x, t ∈ R,

u(x, 0) = u0, ut (x, 0) = u1,
v(x, 0) = v0, vt (x, 0) = v1,

(1.1)
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where

f1(u, v) = auuu
2 + 2auvuv + avvv

2, f2(u, v) = buuu
2 + 2buvuv + bvvv

2, (1.2)

and the coefficients α, auu , auv , avv , buu , buv , bvv are real values, with α �= 0 and
aγβ, bγβ, β, γ = u, v, not all zero. Here, u and v are real-valued functions. The set of
Eqs. (1.1), (1.2) is called Klein–Gordon–Boussinesq (KGB) system. The KGB system is
used to discuss the validity of the approximation given by equations like KdV, nonlinear
Schrödinger (NLS) or Whitham equations for systems in periodic media (Düll et al. 2016;
Schneider 2016; Chong and Schneider 2011; Bauer et al. 2019). The term validity is referred
to the existence of a version of the approximation equation whose solutions can be compared
to those of the KGB system, in the sense that the errors between solutions can be bounded
over long time intervals. The situation illustrated by the KGB system is of particular interest
in a two-fold way. First, because of the use of the method of energy estimates as standard
procedure to control the error (Kirrmann et al. 1992), cannot be applied directly; second,
because when the alternative of transforming the system, via normal forms, and applying
the method of energy estimates to the transformed problem is used, then the analysis of the
error requires some non-resonance conditions on the disperion relations of the correspond-
ing linearized system to validating the approximation. The KGB system is taken as a model
since it posseses a Fourier mode representation with common properties with a Bloch wave
representation of the water wave problem, cf. Bauer et al. (2019). The previous approach was
applied to establish, for particular values of (1.2), the validity of the KdV approximation and
the Whitham approximation in Chong and Schneider (2011), Düll et al. (2016), respectively,
while the KdV approximation in the general case (1.2) is investigated in Schneider (2020),
Bauer et al. (2019). The last reference and Schneider (2016) study the NLS approximation.

The system (1.1) is reminiscent of two well-known equations. The improved Boussinesq
equation

utt = α2uxx + uttxx + (u2)xx , (1.3)

introduced in Bogolubsky (1977) as a modification of the Boussinesq equation, Boussinesq
(1872),

utt = α2uxx + uxxxx + (u2)xx , (1.4)

modelling the bi-directional propagation of nonlinear dispersive long waves in shallow water
under gravity effects. The modification is based on the equivalence between the linear dis-
persion relation of (1.3) and (1.4) for long waves. Generalizations of (1.3) of the form

utt = α2uxx + uttxx + ( f (u))xx ,

for some homogeneous nonlinearities f were introduced in, e. g., Makhankov (1978), to
describe the propagation of nonlinear waves in plasma; Clarkson et al. (1986) to model the
evolution of longitudinal deformation waves in elastic rods; orWazwaz (2005), to investigate
the existence of compact and noncompact physical structures.

The second equation in (1.1) belongs to the family of nonlinear Klein-Gordon equations

utt = uxx + G ′(u), (1.5)

for some smooth function G : R → R. As a nonlinear generalization of the wave equation,
(1.5) appears in the modelling of many research areas, depending on the type of the non-
linear term G ′. The applications concern quantum field theory, nonlinear optics, and some
phenomena in Biology, such as nerve pulse propagation along neuron membranes and the
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dynamics of scalar fields. We refer to, e. g. Scott (1999), Infeld and Rowlands (2000) and ref-
erences therein for more information on (1.5) and its particular cases such as the sine-Gordon
equation.

We make a brief review of some available theoretical results on (1.3) and (1.5) that are
of interest for the purpose of the present paper. Equation (1.3), with f (u) = ±|u|p−1u, is
sometimes referred as the Pochhammer-Chree equation (Liu 1996). This model was first
introduced by Pochhammer (1876), and in its complete nonlinear form by Chree (1886).
Liu in Liu (1996) showed local and global well-posedness for (1.3) Hs × Hs+1 with s ≥
1. He also showed blow up of negative energy solutions but with focusing nonlinearities.
This model is also characterized by the existence of (super-luminal) solitary waves of the
form u(x, t) = Qcs (x − cs t − x0), with x0 ∈ R and |cs | > 1, where Qc(r) = (c2s −
1)1/(p−1)Q(

√
(c2s − 1)/c2s r) and

Q(r) =
(
p + 1

2
sech2

(
p − 1

2
r

)) 1
p−1

.

The stability or instability of these solitons under the flow of (1.3) remains an important open
question.

On the other hand, for initial data in the corresponding energy space, local and global well-
posedness results for small solutions of (1.5) are well-known (see for example (Cazenave
and Haraux 1998, Theorem 6.2.2 and Proposition 6.3.3)). See also Delort (2001, 2016).
Moreover, stability and instability of standing waves of (1.5) were studied in Shatah (1983,
1985); Shatah and Strauss (1985).

The purpose of the present work is to analyze several mathematical properties of the KGB
system which concern (1.1), (1.2) as a model and that were, to the best of our knowledge,
not considered in the literature yet. The main contributions are the following:

1. Well-posedness of the ivp (1.1), (1.2) is analyzed. Existence and uniqueness of solutions,
locally in time, are established on suitable Sobolev spaces and, for some cases of the coef-
ficients in (1.2), conditions for global existence or blow-up in finite time are determined.
This outlines the contents of Sect. 2.

2. Special solutions of (1.1), (1.2) are investigated in Sect. 3. More specifically, the paper is
focused on the existence of solitary wave solutions. The classical approaches based on
Normal Form Theory, Iooss and Kirchgässner (1992); Champneys (1998); Champneys
and Spence (1993); Champneys and Toland (1993), and Positive Operator Theory, Ben-
jamin et al. (1990), Bona and Chen (2002), are here used to derive the conditions for the
existence of solitary waves of three types: Classical Solitary Waves (CSW), with mono-
tone and nonmonotone decay, and Generalized Solitary Waves (GSW). The numerical
generation of the solitary-wave profiles is accurately performed by using Petviashvili’s
method, Petviashvili (1976),whichmay include extrapolation techniques to accelerate the
convergence, Sidi (2017). The numerical procedure is described in detail in Appendix A.

3. The validity of a long wave KdV approximation for (1.1), (1.2), studied in Bauer et al.
(2019), Schneider (2020) (and in Chong and Schneider 2011 for particular values of the
coefficients in (1.2)) is considered in Sect. 4. The form of the associated KdV equation
is derived and the approximation theorem proved in Bauer et al. (2019), Chong and
Schneider (2011) is investigated numerically from the KdV soliton solution.

The following notation will be used throughout the paper. For real s, Hs = Hs(R) stands for
the L2-based Sobolev space over R, with norm || · ||Hs , and Ḣ s denotes the corresponding
homogeneous Sobolev space with norm || · ||Ḣ s . For X = X1 × X2 a Cartesian product of
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Sobolev spaces, we will consider the norm

||h||X = ||h1||X1 + ||h2||X2 , h = (h1, h2) ∈ X .

In addition, for T > 0,m ≥ 0, Cm
T (X) = Cm([0, T ), X) will denote the space of mth-order

continuously differentiable functions h : [0, T ) → X . The norm in C0
T (X) = CT (X) given

by
||h||CT (X) = sup0≤t<T ||h(t)||X ,

will also be used.

2 Well-posedness

In this section, we investigate the existence of local solutions of (1.1) and find the conditions
under which these solutions are global or blow up in finite time. The first point will be studied
through the application of the classical Contraction Mapping Theorem in suitable spaces. A
first step will require the analysis of the ivp for the linearized equations,

{
utt = α2uxx + uttxx ,

vt t = vxx − v, x, t ∈ R,
(2.1)

Note that since the dispersion in the first Eq. (1.1) is weak, one cannot expect to derive
Strichartz estimates for this equation. On the other hand, the second equation involves Klein–
Gordon dispersion, and the dispersive estimates associated with the Klein–Gordon group are
well-known (see Ginibre and Velo 1985; Nakamura and Ozawa 2001). Let t �→ U (t), V (t)
be the corresponding linear groups which, from the Fourier method applied to (2.1), have
Fourier symbols

Û (t)g(ξ) = sin

(
t |αξ |

√
1 + ξ2

) √
1 + ξ2

|αξ | ĝ(ξ), V̂ (t)g(ξ) =
sin

(
t
√
1 + ξ2

)

√
1 + ξ2

ĝ(ξ), ξ ∈ R,

(2.2)

are time differentiable and satisfy

̂∂tU (t)g(ξ) = cos

(
t |αξ |

√
1 + ξ2

)

ĝ(ξ), ̂∂t V (t)g(ξ) = cos
(
t
√
1 + ξ2

)
ĝ(ξ), ξ ∈ R,

(2.3)

(where ĝ(ξ) denotes the Fourier transform of g ∈ L2(R) at ξ ), and, for t > 0, r , s ≥ 0, the
estimates, Ginibre and Velo (1985); Nakamura and Ozawa (2001); Liu (1996)

‖U (t) f ‖Hr ≤ ‖ f ‖Hr , ‖∂tU (t) f ‖Hr ≤ ‖ f ‖Hr , (2.4)

‖V (t) f ‖Hs ≤ ‖ f ‖Hs−1 , ‖∂t V (t) f ‖Hs ≤ ‖ f ‖Hs . (2.5)

Theorem 2.1 Let s, r ≥ 0 satisfying 1/2 < r ≤ s ≤ r + 1, (u0, u1) ∈ Xr := Hr ×
(Hr ∩ Ḣr−1), (v0, v1) ∈ Xs := Hs × Hs−1 Then there exist T > 0, depending only on
the norms ||(u0, u1)||Xr , ||(v0, v1)||Xs , and a unique solution (u, v) of (1.1) with (u, ut ) ∈
C1
T (Xr ), (v.vt ) ∈ C1

T (Xs).

123



Mathematical properties of Klein–Gordon–Boussinesq systems Page 5 of 24 368

Proof Using the operators (2.2) and Duhamel’s principle, (1.1) can be written in the integral
form

u(x, t) = ∂tU (t)u0 +U (t)u1 +
∫ t

0
U (t − t ′)∂2x (I − ∂2x )

−1 f1(u, v) dt ′,

v(x, t) = ∂t V (t)v0 + V (t)v1 +
∫ t

0
V (t − t ′) f2(u, v) dt ′.

(2.6)

Let T > 0 to be specified later. From (2.3), (2.4), the standard estimate

||∂2x (I − ∂2x )
−1g||Hr � ||g||Hr ,

and (2.6), it holds that

||(u, ut )||CT (Xr ) � ||(u0, u1)||Xr + T sup0≤t≤T || f1||Hr , (2.7)

||(v, vt )||CT (Xs ) � ||(v0, v1)||Xs + T sup0≤t≤T ‖ f2‖Hs−1 . (2.8)

Following (Hakkaev et al. 2013, Theorem 1) (see also (Liu 1996, Theorem 2.1) and Ginibre
and Velo (1985)), it is enough to control the nonlinear terms f1 and f2 in order to apply the
fixed point argument for the Contraction Mapping Theorem in CT (Xr ) × CT (Xs). Under
the hypotheses on r and s, Hr and Hs are Banach algebras and therefore

‖u2‖Hr � ‖u‖2Hr , ‖v2‖Hs−1 � ‖v‖2Hs .

In addition, from the Sobolev multiplication law (Tao 2001, Corollary 3.16), we obtain

‖uv‖Hr � ‖u‖Hr ‖v‖Hs , ‖v2‖Hr � ‖v‖2Hs ,

‖u2‖Hs−1 � ‖u‖2Hr , ‖uv‖Hs−1 � ‖u‖Hr ‖v‖Hs .
(2.9)

Using (2.9) in (2.7), (2.8), a standard application of the Contraction Mapping Theorem
determines some T > 0 and the existence of a unique solution (u, v) of (2.6) with
(u, ut ) ∈ CT (Xr ), (v.vt ) ∈ CT (Xs). From (2.6) again, it is clear that actually (u, ut ) ∈
C1
T (Xr ), (v.vt ) ∈ C1

T (Xs). ��

A second observation is concerned with the conserved quantities of (1.1). A direct com-
putation proves the following result.

Theorem 2.2 Assume that

buu = −auv =: B, buv = −avv =: C, (2.10)

and that (1.1) admits a unique solution (u, ut ) ∈ C1
T (X0), (v.vt ) ∈ C1

T (X1). Let

E(t) = 1

2

∫

R

(
u2t + α2u2 + (∂−1

x ut )
2 + v2 + v2x + v2t

)
dx −

∫

R

F(u, v) dx, (2.11)

F(t) =
∫

R

(
u∂−1

x ut + uxut + vxvt
)
dx, (2.12)

where

F(u, v) = −auu
3

u3 + bvv

3
v3 + Bu2v + Cuv2.

Then the functionals (2.11) and (2.12) are conserved for t ∈ [0, T ).
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Remark 2.3 We observe that, for an initial data (u0, u1) ∈ X0, (v0, v1) ∈ X1), the ivp (1.1)
is equivalent to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut = wx ,

(I − ∂2x )wt = (α2u + f1(u, v))x ,

vt = z,

zt = vxx − v + f2(u, v)

u(x, 0) = u0, w(x, 0) = ∂−1
x u1,

v(x, 0) = v0, z(x, 0) = v1.

(2.13)

in the sense that (u, v) with (u, ut ) ∈ CT (X0), (v.vt ) ∈ CT (X1) is a solution of (1.1) if,
and only if, (u, w, v, z) ∈ CT (L2 × H1 × X1) is a solution of (2.13). (Note here that ∂−1

x is
an invertible operator from H1 to L2 ∩ Ḣ−1.) Then the energy space associated to (2.13) is
X = L2 × H1 × X1, and, therefore, the energy space associated with (1.1) is X0 × X1.
The equivalence enables to establish an alternative proof of Theorem 2.1 from (2.13), cf. Liu
(1996). On the other hand, in terms of (2.13), the invariants (2.11) and (2.12) are written as

E(t) = 1

2

∫

R

(
α2u2 + w2 + w2

x + v2 + v2x + z2
)
dx −

∫

R

F(u, v) dx,

F(t) =
∫

R

(uw + uxwx + vx z) dx,

In addition, E is the Hamiltonian function of the Hamiltonian structure of (2.13)


U = J E ′( 
U ), 
U =

⎛

⎜
⎜
⎝

u
w

v

z

⎞

⎟
⎟
⎠ , J =

⎛

⎜
⎜
⎝

0 (I − ∂2x )
−1∂x 0 0

(I − ∂2x )
−1∂x 0 0 0

0 0 0 1
0 0 −1 0

⎞

⎟
⎟
⎠ ,

where E ′ denotes the variational derivative. ♦
The next theorem gives some conditions under which the solutions is global in the energy

space. The proof requires the following auxiliary result.

Lemma 2.4 Let s > 1. Assume that y = y(t) is a continuous function satisfying

0 ≤ y(t) ≤ C1 + C2(y(t))
s,

for all t ≥ 0 and for some C1,C2 > 0 such that C1 < s−1
s (sC2)

1
1−s . Then, there are

a1, a2, A with 0 < a1 < A < a2 < ∞, such that 0 ≤ y(t) ≤ a1 if y(0) < A, and a2 ≤ y(t)

if y(0) > A for all t ≥ 0, where A = (sC2)
1

1−s .

Theorem 2.5 Consider the ivp (1.1) with auu = 0. Under the conditions of of Theorem 2.1
and assuming (2.10), there exists K0 > 0 such that if

E(0) <
1

6
K−6
0 , ‖u1‖2L2 + α2‖u0‖2L2 + ‖v0‖2L2 + ‖v1‖2L2 + ‖(v0)x‖2L2 < K−3

0 , (2.14)

then the maximal local time of existence T > 0 in Theorem 2.1 can be extended to +∞.

Proof Let y(t) = ‖∂−1
x ut‖2L2 +α2‖u‖2

L2 +‖v‖2
L2 +‖vt‖2L2 +‖vx‖2L2 . By using the Sobolev

embedding we get

y(t) ≤ 2E(0) + 2

3

(|bvv|C3
3 + |B|C∗ + |C |C2

4

)
y

3
2 (t) = 2E(0) + 2

3
K0y

3
2 (t),
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where K0 = |bvv|C3
3 +|B|C∗+|C |C2

4 andC3,C4 andC∗ are the best constants for which the
estimates ‖ f ‖L3 ≤ C3‖ f ‖H1 , ‖ f ‖L4 ≤ C4‖ f ‖H1 , and ‖ f ‖L∞ ≤ C∗‖ f ‖H1 hold. Hence,
by using Lemma 2.4, if (2.14) holds, then y(t) is bounded. ��

Remark 2.6 It is known (see for instance Nagy 1941) that the constants C3 and C4 in the
proof of Theorem 2.5 are represented by using the unique ground states

φ(x) =
( r

2

) 1
r−2

sech
2

r−2

(
r − 2

2
x

)

,

of
−φ′′ + φ = φr−1, r = 3, 4.

Indeed, there holds that

Cr
r = 2r

2 + r

(
2 + r

r − 2

) r−2
4 ‖φ‖2−r

L2 =
{
5− 3

4
√
6 r = 3

1√
2

r = 4
.

Hence, if B = 0, then in (2.14) we have

K0 = 5− 3
4
√
6|bvv| + 2− 1

4
√|C |.

♦

On the other hand, using the approach in Liu (1996) and the techniques given by Levine
(1974), the following blow-up result holds.

Theorem 2.7 We assume the conditions (2.10). Let u0, u1, v0, v1 be as in Theorem 2.1 and,
in addition, ∂−1

x u0 ∈ L2. Then the local solution (u, v) ∈ C1([0, T ); Hs × Hs+1) blows up
in finite time if one the following cases holds:

(i) E(0) < 0,
(ii) E(0) ≥ 0 and

(2E(0))
1
2 <

〈
ξ−1û0, ξ−1û1

〉 + 〈u0, u1〉 + 〈v0, v1〉
√

‖∂−1
x u0‖2L2 + ‖u0‖2L2 + ‖v0‖2L2

. (2.15)

Proof Define I (t) = ‖∂−1
x u‖2

L2 + ‖u‖2
L2 + ‖v‖2

L2 + β(t + t0)2, where β, t0 ≥ 0 will be
determined later. Then we have

1

2
I ′(t) = 〈

∂−1
x u, ∂−1

x ut
〉 + 〈u, ut 〉 + 〈v, vt 〉 + β(t + t0),

and

1

2
I ′′(t) = ∥

∥∂−1
x ut

∥
∥2
L2 + ‖vt‖2L2 + ‖ut‖2L2 − ‖vx‖2L2 − ‖v‖2L2 − α2 ‖u‖2L2

+ β + 〈v, f2(u, v)〉 − 〈u, f1(u, v)〉
= 5

2

(∥
∥∂−1

x ut
∥
∥2
L2 + ‖vt‖2L2 + ‖ut‖2L2

)
+ 1

2

(‖vx‖2L2 + ‖v‖2L2 + α2 ‖u‖2L2

)

+ β − 3E(0).
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After some direct calculations, we observe that

I ′′(t)I (t) − 5

4
(I ′(t))2 ≥ −3(2E(0) + β)I (t), (2.16)

where

I ′′
1 (t) = −1

4
I− 9

4 (t)

(

I (t)I ′′(t) − 5

4
(I ′(t))2

)

, t ≥ 0. (2.17)

If E(0) < 0, we can choose β < −2E(u0, v0), so that, from (2.16)

I ′′ I − 5

4
(I ′)2 > 0. (2.18)

We can assume that I ′(0) > 0 by choosing t0 > 0 sufficiently large. Define I1(t) =
(I (t))−1/4. Then, from (2.17), (2.18), we have I ′′

1 (t) < 0, t > 0. Therefore, I1(t) ≤
I1(0) + I ′

1(0)t , Liu (1996). Since I1(0) > 0 and I ′
1(0) < 0, then there is som t∗ with

0 < t∗ < −I1(0)/I ′
1(0) such that I1(t∗) = 0 and I (t) blows up at some finite time in the

interval (0, 4I (0)/I ′(0)).
If E(0) = 0, we take β = 0, so that

I ′′ I − 5

4
(I ′)2 ≥ 0.

Then, from (2.17), I ′′
1 (t) ≤ 0 and from (2.15)

I ′
1(0) = − I ′(0)

4I (0)5/4
< 0.

Thus, I (t) blows up at finite time with the same argument as in the previous case.
If E(0) > 0, we also take β = 0. Then, I1(0) > 0 and, from (2.15), I ′

1(0) < 0.
Furthermore from (2.17) and (2.16)

I ′′
1 (t) ≤ 3

2
E(0)I− 5

4 (t), (2.19)

for t > 0. Let t∗ = sup{t, I ′
1(τ ) < 0 for τ ∈ [0, t)}. Note that the continuity of I1 implies

t∗ > 0. For t ∈ [0, t∗), We multiply (2.19) by 2I ′
1(t) to get

d

dt
((I ′

1(t))
2) ≥ 1

2
E(0)

(
d

dt
I− 3

2 (t)

)

.

Integrating over [0, t) leads to

(I ′
1(t))

2 ≥ 1

2
E(0)I− 3

2 (t) + (I ′
1(0))

2 − 1

2
E(0)I− 3

2 (0). (2.20)

From (2.15), we have

(I ′
1(0))

2 >
1

2
E(0)I− 3

2 (0).

Hence, from (2.20), it holds that

|I ′
1(t)| ≥

√

(I ′
1(0))

2 − 1

2
E(0)I− 3

2 (0) ⇒ I ′
1(t)

≤ −
√

(I ′
1(0))

2 − 1

2
E(0)I− 3

2 (0) < 0, t ∈ [0, t∗). (2.21)

123



Mathematical properties of Klein–Gordon–Boussinesq systems Page 9 of 24 368

From the continuity of I ′
1(t) and the definition of t∗, it follows that t∗ = ∞ and (2.21) holds

for all t ≥ 0. Integrating over (0, t), t > 0, we have

I1(t) ≤ I1(0) −
√

(I ′
1(0))

2 − 1

2
E(0)I− 3

2 (0) t .

Thus, I1(t∗) = 0 for some t∗ ∈ (0, 	], where 	 = I1(0)/
√

(I ′
1(0))

2 − 1
2 E(0)I− 3

2 (0), and

‖∂−1
x u‖2L2 + ‖u‖2L2 + ‖v‖2L2 → +∞,

as t → t∗. ��

3 Solitary-wave solutions of Boussinesq Klein–Gordon system

This section is devoted to the existence of solitary wave solutions of (1.2). These are smooth
traveling-wave solutions u(x, t) = u(x − cs t), v(x, t) = v(x − cs t), with cs �= 0 and such
that the derivatives u j)(X), v j)(X) → 0 as |X | → ∞, X = x − cs t for j = 1(1)3. Then the
profiles u, v must satisfy the coupled system

(
(c2s − α2) − c2s ∂

2
x

)
u = f1(u, v),

(
1 − (1 − c2s )∂

2
x

)
v = f2(u, v). (3.1)

3.1 Existence via linearization

One of the approaches to study the existence of solutions of (3.1) is based on Normal
Form theory (Iooss and Kirchgässner 1992; Champneys 1998; Champneys and Spence
1993; Champneys and Toland 1993). We write (3.1) as a first-order differential system for
U = (U1,U2,U3,U4)

T := (u, u′, v, v′)T , as

U ′ = V (U , cs) := L(cs)U + R(U , cs), (3.2)

L(cs) =

⎛

⎜
⎜
⎝

0 1 0 0
μ 0 0 0
0 0 0 1
0 0 1

1−c2s
0

⎞

⎟
⎟
⎠ , R(U , cs) =

⎛

⎜
⎜
⎜
⎝

0
−1
c2s

f1(U )

0
−1
1−c2s

f2(U )

⎞

⎟
⎟
⎟
⎠

,

f1(U ) = auuU
2
1 + 2auvU1U3 + avvU

2
3 ,

f2(U ) = buuU
2
1 + 2buvU1U3 + bvvU

2
3 , (3.3)

where μ = 1 − α2/c2s . Note that the system (3.2), (3.3) admits U = 0 as solution and the
vector field V is reversible, in the sense that for all U , cs ,

SV (U , cs) = −V (SU , cs), (3.4)

where S = diag(1,−1, 1,−1). These properties enable to study the existence of solutions
of (3.2), (3.3), for small values of μ, by using the Normal Form theory, analyzing first the
linearization at U = 0. The characteristic equation is

λ4 − Bλ2 + A = 0, (3.5)
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Fig. 1 Linearization at the origin of (3.2) (cf. Figure1 of Champneys (1998)): Regions 1 to 4 in the (B, A)-
plane, delimited by the bifurcation curvesC0 toC3 given by (3.7), and schematic representation of the position
in the complex plane of the roots of (3.5) for each curve and region. (Dot: simple root, larger dot: double root)

where

A = c2s − α2

c2s (1 − c2s )
= μ

1 − c2s
, B = μ + 1

1 − c2s
. (3.6)

The spectrum of the linearization can be studied by using Champneys (1998). The distribu-
tion of the roots in the (B, A)-plane is sketched in Fig. 1, which reproduces the bifurcation
diagram, along with the location and the type of the four eigenvalues, shown in Fig. 1 of
Champneys (1998).

There we can distinguish four regions delimited by the bifurcation curves

C0 = {(B, A)/A = 0, B > 0},
C1 = {(B, A)/A = 0, B < 0},
C2 = {(B, A)/A > 0, B = −2

√
A},

C3 = {(B, A)/A > 0, B = 2
√
A}. (3.7)

The Center Manifold Theorem and the theory of reversible bifurcations can be applied to
study the existence of homoclinic orbits in each bifurcation. The reduced Normal Form
systems reveal the existence of two types of trajectories: homoclinic to zero and homoclinic
to periodic orbits. The associated solutions correspond to classical solitary waves (CSW’s)
andgeneralized solitarywaves (GSW’s), respectively. In addition, periodic andquasi-periodic
solutions can be identified (Iooss and Kirchgässner 1992).

Before applying the approach in Champneys (1998) near the bifurcation curves C0 to C3

to the case of (3.2), using μ as bifurcation parameter, we first make a description of regions
and curves presented in Fig. 1 and according to the values of A and B given by (3.6). Note
first that C0 is characterized by

μ = 0 (cs = ±α), |cs | < 1 (B > 0),
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while the conditions for the curve C1 are

μ = 0 (cs = ±α), |cs | > 1 (B < 0).

Observe now that

B2 − 4A = (μ − 1

1 − c2s
)2,

so B2 − 4A = 0 if and only if

1

1 − c2s
= μ = c2s − α2

c2s
. (3.8)

Let us study condition (3.8). We have two possibilities:

(P1) If μ > 0 then 1 − c2s > 0. This means that α2 < c2s < 1.
(P2) If μ < 0 then 1 − c2s < 0 and, therefore, 1 < c2s < α2.

On the other hand, (3.8) leads to the quadratic equation for c2s

c4s − α2c2s + α2 = 0,

yielding

c2s = c̃±(α) := α2 ± √
α4 − 4α2

2
,

which requires α2 ≥ 4. However, note that c̃±(α) satisfy the properties

c̃−(α) < c̃+(α) < α2, c̃−(α) < c̃+(α) < 1.

Therefore, it is not possible to have any of the two possibilities (P1) or (P2). Thus B2−4A > 0
and for the case at hand the curves C2, C3 are not present. Furthermore, if we additionally
assume A > 0 then |B| > 2

√
A. That is, B > 2

√
A or B < −2

√
A. Consequently, region 1

is empty here.
Using (3.6) we can characterize regions 2 and 4. In the first case, where A, B > 0 and

B > 2
√
A, observe that if μ < 0, then the form of A in (3.6) implies 1 − c2s < 0 and the

form of B gives B < 0, which is not possible. Therefore μ > 0 and from (3.6) we have
1 − c2s > 0; thus region 2 is characterized by

α2 < c2s < 1. (3.9)

Similarly, it is not hard to see that region 4 (for which A > 0, B < 0, B < −2
√
A) we must

have μ < 0 and then this region is described as

1 < c2s < α2.

Finally, region 3 can be divided into two subregions:

• Region 3R (right): A < 0, B > 0.
• Region 3L (left): A < 0, B < 0.

Consider first region 3R and assume μ > 0. Then, using (3.6), the conditions A < 0, B > 0
hold when

c2s > α2, c2s > 1, pα(c2s ) > 0, (3.10)
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Table 1 Description of region 3 in Fig. 1 for the case of (3.2)

Region 3R (A < 0, B > 0) Region 3L (A < 0, B < 0)

μ > 0 μ < 0 μ > 0 μ < 0

c2s > z+(α) z−(α) < c2s < min{1, α2} min{1, α2} < c2s < z+(α) c2s < z−(α)

where

pα(z) = z2 − (2 + α2)z + α2 = (z − z+(α))(z − z−(α)),

z±(α) = 1

2

(
(2 + α2) ±

√
α4 + 4

)
,

We note that

z−(α) < α2 < z+(α), z−(α) < 1 < z+(α). (3.11)

Due to (3.10), this necessarily implies that c2s > z+(α). Similarly, when μ < 0, conditions
A < 0, B > 0 hold when

c2s < α2, c2s < 1, pα(c2s ) < 0,

which, from (3.11), implies

z−(α) < c2s < 1 < z+(α), z−(α) < c2s < α2 < z+(α).

Similar arguments can be used to describe region 3L. All this is summarized in Table 1.
We now study the information provided by the Normal Form Theory (NFT) close to each

curve C j , 0 ≤ j ≤ 3. In the case of C0, the linearization matrix L(±α) has two simple
eigenvalues equal to

λ± = ± 1√
1 − α2

, (3.12)

and the zero eigenvalue with geometric multiplicity one and algebraic multiplicity two. As in
Iooss and Kirchgässner (1992); Champneys (1998), the main role in describing the dynamics
close to C0 by NFT is played by this two-dimensional center manifold. When μ, A and
B are positive, and near C0 the linear dynamics is given by the spectrum of L(μ) which
consists of four real eigenvalues (region 2 in Fig. 1). In this case, the normal form system
has a unique solution, homoclinic to zero at infinity, symmetric and unique up to spatial
translations, ( Iooss and Kirchgässner (1992), Proposition 3.1), that corresponds to a CSW
solution of (3.1). The form of the waves is illustrated in Fig. 2.

Let {w1, w2, w3, w4} be a basis of generalized eigenvectors of L(±α), withw3,w4 eigen-
vectors of λ+ and λ−, resp., w1 eigenvector associated to the zero eigenvalue and w2 such
that L(±α)w2 = w1 . Explicitly, we take

w1 = (1, 0, 0, 0)T , w2 = (0, 1, 0, 0)T ,

w3 = (0, 0, 1, λ+)T , w4 = (0, 0, 1, λ−)T .

Note that w1, w2 additionally satisfy Sw1 = w1, Sw2 = −w2, where S is given by (3.4).
If P is the matrix with columns given by the w j ’s, then we consider the new variables
V = (v1, v2, v3, v4) such that U = PV . The system (3.2) in the new variables takes the
form
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Fig. 2 Approximate classical solitary wave profile solutions of (1.1) with f1(u, v) = (u + v)2, f2(u, v) =
u2 + v2, α = 0.6, and several speeds. a u profiles; b phase portraits of (a); c v profiles; d phase portraits of
(c)

v′
1 = v2,

v′
2 = μv1 − 1

c2s

(
auuv

2
1 + 2auvv1(v3 + v4) + avv(v3 + v4)

2) ,

v′
3 = α12v3 + β1v4 − β

1 − c2s

(
buuv

2
1 + 2buvv1(v3 + v4) + bvv(v3 + v4)

2) ,

v′
4 = −β1v3 − α12v4 + β

1 − c2s

(
buuv

2
1 + 2buvv1(v3 + v4) + bvv(v3 + v4)

2) ,

where, since 1
1−c2s

= 1
1−α2 + O(μ) as μ → 0, then

α12 =
− 1

1−α2 − 1
1−c2s

− 2√
1−α2

= λ+ + O(μ),

β1 =
1

1−α2 − 1
1−c2s

− 2√
1−α2

= +O(μ),
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and β = 1
λ+−λ− . Then −α12 = λ− + O(μ) and if ||V || → 0 (|| · || denotes the Euclidean

norm in C
4) then

v′
1 = v2, (3.13)

v′
2 = μv1 − auu

c2s
v21 + O(||V ||22), (3.14)

v′
3 = λ+v3 + O(μ||V ||2 + ||V ||22), (3.15)

v′
4 = λ−v4 + O(μ||V ||2 + ||V ||22), (3.16)

whereweassumeauu > 0.Then the center-manifold reduction theorem, Iooss andAdelmeyer
(1999), ensures the existence of bounded solutions of the (3.13)–(3.16) on a locally invari-
ant, center manifold determining a dependence (v3, v4) = h(μ, v1, v2) for some smooth
h(μ, v1, v2) = O(μ||(v1, v2)|| + ||(v 1, v 2)||2) as μ, ||(v1, v2)|| → 0, see (Iooss and
Kirchgässner 1992, Theorem 3.2). Furthermore, every solution v 1 , v 2 of the reduced system
(3.13)–(3.14) with (v 3, v 4) = h ( μ, v 1, v 2 ) induces a solution of (3.13)–(3.16). The
normal form system can be written as

v′
1 = v2, v′

2 = sign(μ) v1 − 3

2
v21 + O(μ),

which admits, for μ > 0, a solution of the form v1(x) = sech2(x/2) + O(μ), v2 = v′
1.

For the persistence of this homoclinic orbit from the perturbation connecting to the original
system (3.2), (3.3), see Iooss and Kirchgässner (1992); Champneys (1998).

In the case of C1, the spectrum of L(±α) consists of zero (with algebraic multiplicity
two) and the two simple imaginary eigenvalues given by (3.12) (recall that c2s > 1). The
arguments used in Iooss and Kirchgässner (1992), Proposition 3.2, apply here and NFT
reduces (3.2), on the center manifold, for μ > 0 small enough, to a normal form system
which admits homoclinic solutions to periodic orbits, that is GSW solutions. Information
about the structure of the periodic orbits can also be obtained, cf. Lombardi (2000) and
references therein. For our particular case, the basis {w1, w2, w3, w4}, in C

4, with w1, w2 as
above, contains the eigenvectors

w3 = (0, 0, 1,
i√

α2 − 1
)T , w4 = (0, 0, 1,

−i√
α2 − 1

)T ,

associated to ± i√
α2−1

, respectively. Following Lombardi (2000) (see also Iooss and

Kirchgässner (1992)), let {w∗
1, w

∗
2, w

∗
3, w

∗
4} be the corresponding dual basis (with, in partic-

ular, w∗
2 = w2). If D2

μ,UV (U , μ) denotes the derivative, with respect to μ, of the Jacobian

matrix of V in (3.2) and DU ,UV (U , μ)2 the Hessian operator of V , then

c10 := 〈 w∗
2, D

2
μ,UV (0, 0)w1〉 = 1,

c20 := 1

2
〈w∗

2, D
2
U ,UV (0, 0)[w1, w1]〉 = − 1

c2s
auu �= 0.

Therefore, from (Lombardi 2000, Theorem 7.1.1) (see also Durán et al. (2019)), (3.2) admits,
for μ small enough and near U = 0, two orbits homoclinic to a one-parameter family of
periodic orbits of arbitrarily small amplitude (see Iooss and Kirchgässner (1992) for the
application of NFT to the reduced system in this case). The form of the waves is illustrated
in Fig. 3.
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Fig. 3 Approximate generalized solitary wave profile solutions of (1.1) with f1(u, v) = u2 + v2, f2(u, v) =
u2. a, b α = 1.12, cs = 1.4; c, d α = 1.12, cs = 1.2. (Region 3 of Fig.1)

Remark 3.1 If μ is negative (with |μ| small), by similar arguments to those of Iooss and
Kirchgässner (1992), NFT establishes the existence of a family of periodic solutions of
the reduced system (region 3, close to C0 and region 4, close to C1), unique up to spatial
translations, see Fig. 4. ♦

3.2 Existence via positive operator theory

The existence of classical solitary waves can also be justified by using the Positive Operator
theory, developed by Benjamin et al. in Benjamin et al. (1990) among others. The case of
systems of particular interest here can be analyzed from Bona and Chen (2002). The theory
makes use of the Fourier representation of (3.2)

((c2s − α2) + c2s k
2 )̂u(k) = ̂f1(u, v)(k),

(1 + k2(1 − c2s ))̂v(k) = ̂f2(u, v)(k), k ∈ R. (3.17)

Let us asume that (3.9) holds. Then, for all k ∈ R

p1(k) = (c2s − α2) + c2s k
2 > 0,

p2(k) = 1 + k2(1 − c2s ) > 0,
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Fig. 4 Approximate generalized solitary wave profile solutions of (1.1) with f1(u, v) = u2 + v2, f2(u, v) =
u2: a, b α = 1.2, cs = 0.8 (region 3); c, d α = 1.2, cs = 1.1 (region 4)

and we can invert (3.17) to have

û(k) = ̂f1(u, v)(k)

p1(k)
, v̂(k) = ̂f2(u, v)(k)

p2(k)
,

which can be written in a fixed-point form (u, v) = A(u, v) as

u = kuu ∗ u2 + 2kuv ∗ uv + kvv ∗ v2,

v = muu ∗ u2 + 2muv ∗ uv + mvv ∗ v2, (3.18)

where ∗ denotes convolution and

kγβ(x) = aγβ

sc2s

√
2πe−s|x |, mγβ(x) = bγβ

r(1 − c2s )

√
2πe−r |x |, (3.19)

for γ, β = u, v and

s = √
μ =

√

1 − α2/c2s , r = 1/
√

1 − c2s .

The application of Positive Operator Theory to (3.18) guarantees the existence of a solution
in the cone

K = {( f , g) ∈ X = C×C : f , g are nonnegative non-increasing even functions on [0,∞)},
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where C = C(R) is the class of continuous real-valued functions defined on R. The result is
a consequence of the following properties (cf. Theorem 3 of Bona and Chen 2002):

(S1) The functions (3.19) satisfy:

(i) kγβ(−x) = kγβ(x),mγβ(−x) = mγβ(x), x ∈ R, γ, β = u, v.
(ii) Assume that aγβ, bγβ ≥ 0. Then:

∗ kγβ,mγβ ≥ 0, they are monotone decreasing on (0,∞), and are convex when
x ≥ 0.
∗ Eithermuv +kuv or both kuu +muu, kvv +mvv are strictly convex when x ≥ 0
if

· auv, buv do not vanish at the same time or
· auu, buu and avv, bvv do not vanish at the same time.

(S2) It is clear that if (u, v) ∈ K is a fixed point of (3.18), then u = 0 ⇒ v = 0 and
vice-versa. Furthermore, we have:

Lemma 3.2 Let A be the fixed-point operator defined by (3.18). Then there are only finitely
many fixed points of A in the cone K which are constant functions if there are only finitely
many solutions of the algebraic system

auu X
2 + 2auvXY + avvY

2 −
(
c2s − α2

2

)

X = 0,

buu X
2 + 2buvXY + bvvY

2 − 1

2
Y = 0. (3.20)

Proof Note that if (u0, v0) is a constant fixed point of (3.18) in K, then

u0 =
∫ ∞

−∞
(
u20k11(y) + u0v0k12(y) + v20k22(y)

)
dy,

v0 =
∫ ∞

−∞
(
u20m11(y) + u0v0m12(y) + v20m22(y)

)
dy.

Using (3.19), this can be written as

u0 =
∫ ∞

−∞
u0auu + 2u0v0auv + v20avv

sc2s
e−s|y|dy = 2

s

u0auu + 2u0v0auv + v20avv

sc2s
,

v0 =
∫ ∞

−∞
u0buu + 2u0v0buv + v20bvv

r(1 − c2s )
e−r |y|dy = 2

r

u0buu + 2u0v0buv + v20bvv

r(1 − c2s )
.

Therefore, X = u0, Y = v0 is a solution of (3.20). ��
(S3) Note that

kuv + kvv �= 0 if 2auv + avv �= 0,

muv + mvv �= 0 if 2buv + bvv �= 0.

Furthermore, for γ, β = u, v let

κγβ = =
∫ 2

0
kγβ(x)dx = aγβ

sc2s

√
2π

(
1 − e−2s

s

)

,

μγβ = =
∫ 2

0
mγβ(x)dx = bγβ

r(1 − c2s )

√
2π

(
1 − e−2r

r

)

.
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Let a > 0. If aγβ, bγβ ≥ 0, then κγβ, μγβ ≥ 0 and the system of inequalities

a + κuu

∫ 1

0
u2(x)dx + 2κuv

∫ 1

0
u(x)v(x)dx + κvv

∫ 1

0
v(x)2dx ≤

(∫ 1

0
u(x)2dx

)1/2

,

a + μuu

∫ 1

0
u2(x)dx + 2μuv

∫ 1

0
u(x)v(x)dx + μvv

∫ 1

0
v(x)2dx ≤

(∫ 1

0
v(x)2dx

)1/2

,

implies that each term on the left-hand side is bounded and these bounds are only depen-
dent on the quantities κγβ, μγβ .

Theorem 3.3 Under the hypotheses on the coefficients aγβ, bγβ, γ, β = u, v, stated above to
satisfy conditions (S1)–(S3) and (3.9), the system (3.18) has a nontrivial solution (u, v) ∈ K

which lies in H∞ × H∞.

Remark 3.4 The profile (u, v) will correspond to a CSW solution. The difference with the
results in Sect. 3.1 concerns the condition (3.9). While the analysis made in section 3.1
assumes that c2s is close to α2 (thus μ > 0 is small), in this case that restriction is not
necessary. ♦

Remark 3.5 Explicit formulas of the solitary waves are in general not known. Some can
be derived, under certain hypotheses and from specific forms of the profiles. By way of
illustration, consider (1.1) in the case auv = buu = bvv = 0, that is

utt = α2uxx + uttxx + (
auuu

2 + avvv
2)

xx ,

vt t = vxx − v + 2buvuv.

The corresponding system (3.1) has the form

(c2s − α2)u − c2s u
′′ = auuu

2 + avvv
2, (3.21)

v − (1 − c2s )v
′′ = 2buvuv. (3.22)

We now look for the solutions of the form

u = A1sech
2(bξ), v = A2sech(bξ), (3.23)

for some b, A1, A2. Inserting (3.23) into (3.21), (3.22) yields

4A1b
2c2s + (α2 − c2s )A1 + avvA

2
2 = 0, (3.24)

A1auu − 6b2c2s = 0, (3.25)

(1 − c2s )b
2 − 1 = 0, (3.26)

buvA1 − (1 − c2s )b
2 = 0. (3.27)

We solve (3.24)–(3.27). Assuming c2s < 1, it holds that

b2 = 1

1 − c2s
, auu = 6(b2 − 1)buv,

A1 = 1

buv

, A2 =
√

c2s − α2 − 4b2c2s
avvbuv

, (3.28)
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where (3.28) requires a choice of the parameters in such a way that c2s−α2−4b2c2s
avvbuv

> 0. The
solitary wave solutions are then given by

u(x, t) = A1 sech
2 [
b(x − cs t)

]
, v(x, t) = A2 sech

[
b(x − cs t)

]
. (3.29)

♦

4 The KdV approximation for the KGBmodel

The last point considered in this paper is concernedwith the validity of theKdVapproximation
for the KGB model (Chong and Schneider 2011; Bauer et al. 2019). If we make the ansatz

ũ(x, t) = ε2ψKdV
u (x, t) = ε2A(ε(x − αt), ε3αt), (4.1)

ṽ(x, t) = ε2ψKdV
v (x, t) = 0, (4.2)

for ε > 0 small, A some smooth function, going to zero at infinity. Inserting (4.1), (4.2)
into 1.1, the residuals will satisfy

Resu = ε6
(
2α2∂XT A + ∂4X A + auu∂

2
X (A2)

) + O(ε8),

Resv = buuε
4A2(X , T ) + O(ε6),

where X = ε(x−αt), T = ε3αt , andwe assume auu, buu > 0. The condition Resu = O(ε8)

determines, after one integration, the KdV equation for A, cf. Schneider (2020)

2α2∂T A + ∂XXX A + auu∂X (A2) = 0. (4.3)

The proof of the corresponding KdV approximation theorem (Chong and Schneider 2011;
Bauer et al. 2019; Schneider 2020), requires both residuals at the same elevel of error. This
can be done, Chong and Schneider (2011), modifying (4.2) in the form

ṽ(x, t) = ε4ψKdV
v (x, t) = ε4B1(ε(x − αt), ε3αt) + ε6B2(ε(x − αt), ε3αt).

Now taking

B1 = buu A
2, B2 = (1 − α2)∂2X B1 + 2buvAB1,

then, after some calculations, it holds that

Resu = ε8
(−α2∂T T A − 2α2∂T ∂4X A + 2auv∂

2
X (AB1)

) + O(ε10), (4.4)

Resv = ε8
(
2α2∂T XB1 + (1 − α2)∂2X B2 + 2buvAB2 + bvvB

2
1

) + O(ε10). (4.5)

The estimates (4.4), (4.5) can be used to analyze the error functions defined by u = ũ +
ε7/2Ru, v = ṽ + ε7/2Rv . Arguments based on normal form transformations and energy
estimates prove the following approximation result (cf. Schneider 2020 for a sharper result
in the case of unstable resosnances, when α > 2).

Theorem 4.1 (Chong and Schneider 2011; Bauer et al. 2019) Let A ∈ C([0, T0], H8) be a
solution of (4.3). Then there exists ε0,C > 0 such that for all ε ∈ (0, ε0) there is a solution
(u, v) of (1.1) satisfying

sup
t∈[0,T0/ε3]

sup
x∈R

|(u, v)(x, t) − (ε2ψKdV
u (x, t), 0)| ≤ Cε7/2. (4.6)

123



368 Page 20 of 24 A. Durán et al.

0 200 400 600 800 1000

t

10-15

10-10

10-5

100

||(
u,

v)
-(

2
,0

)|
|

=10-1 =5  10-2 =10-2

Fig. 5 Time evolution of the maximum norm of the difference between the numerical solution and
(ε2ψKdV

u , 0) given by (4.7) for c = 0.8, α = 1, aγβ = bγβ = 1, γ, β = u, v and several values of ε.
Semilog scale

We can illustrate (4.6) in the case of a KdV approximation ε2ψKdV
u (x, t) given by a soliton

solution A(X , T ) = Ã(X − cT ), c > 0 of (4.3), which satisfies

α2

auu
c Ã′ − 1

2auu
Ã′′′ = Ã Ã′,

and has the form, Chen (1998)

Ã(ξ) = 3asech2
(
1

2

√
a

b
(ξ)

)

, a = α2

auu
c, b = 1

2auu
, ξ = X − cT .

This leads to

ε2ψKdV
u (x, t) = ε2

3cα2

auu
sech2

(

|α|
√
c

2
(ε(x − αt) − cε3αt)

)

. (4.7)

Taking c = 0.8, α = 1, aγβ = bγβ = 1, γ, β = u, v, and the initial conditions

u0(x) = ε2ψKdV
u (x, 0), u1(x) = ε2∂tψ

KdV
u (x, 0),

v0(x) = v1(x) = 0,

the corresponding ivp (1.1), (1.2) was numerically integrated with an efficient, high-order
numerical method, Dougalis et al. (2021), up to a final time T = 1000 and for several values
of ε. The resulting numerical solution was compared with (ε2ψKdV

u (x, t), 0). The maximum
norm (in x) for the difference was measured at several times and the comparison is shown
(in semilog scale) in Fig. 5.

The results suggest that, for the values of ε considered andup to thefinal timeof integration,
the errors are O(ε7/2) and bounded in time, as established in (4.6). For the case ε = 5×10−2,
Fig. 6 shows the time behaviour of the numerical approximation to the solution (u, v). Note
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Fig. 6 Time behaviour of the approximate solution of (1.1), (1.2) with initial data (ε2ψKdV
u , 0) given by (4.7)

for ε = 5 × 10−2, c = 0.8, α = 1, aγβ = bγβ = 1, γ, β = u, v. a u component; b v component

that the u component seems to evolve, up to the computed final time, as a solitary wave. The
preservation of this behaviour for longer times will depend, according to (4.6) and Fig. 5, on
the growth with time of the O(ε7/2) remainder terms.

A Numerical generation of solitary waves

The numerical method to generate approximate solitary wave solutions of (1.1), used in
Sect. 3, is described here. The system (3.1) is discretized on a long enough interval (−L, L)

and with periodic boundary conditions by the Fourier collocation method based on N col-
location points x j = −L + jh, j = 0, . . . , N − 1 for an even integer N ≥ 1. The vectors
U = (U0, . . . ,UN−1)

T and V = (V0, . . . , VN−1)
T denote, respectively, the approximations

to the values of u and v. The system (3.1) is implemented in the Fourier space, that is, for
the discrete Fourier components of U and V , leading to 2 × 2 systems

S(k)

(
Û (k)
V̂ (k)

)

=
(

̂f1(U , V )(k)
̂f2(U , V )(k)

)

, (A.1)

where

S(k) =
(
c2s − α2 + c2s k

2 0
0 1 + (1 − c2s )k

2

)

,

for each Fourier component component − N
2 ≤ k ≤ N

2 − 1. It can be seen that the matrix

S(k) is nonsingular for cs2 �= α2

2k2+1
. In such case, the iterative resolution of (A.1) with the

classical fixed point algorithm

(
Û n+1(k)
V̂ n+1(k)

)

=
(
c2s − α2 + c2s k

2 0
0 1 + (1 − c2s )k

2

)−1
(

̂f1(Un, V n)(k)
̂f2(Un, V n)(k)

)

, n = 0, 1, . . . ,

123



368 Page 22 of 24 A. Durán et al.

0 10 20 30 40 50 60 70 80
N

iter

-12

-10

-8

-6

-4

-2

0

2
R

E
S

(n
)

c
s
=0.7

c
s
=0.8

c
s
=0.9

(a)

0 5 10 15 20 25 30 35
N

iter

-14

-12

-10

-8

-6

-4

-2

0

2

4

R
E

S
(n

)

c
s
=0.7

c
s
=0.8

c
s
=0.9

(b)

Fig. 7 Residual error generated by a (A.2) and b (A.2) with extrapolation, for the experiment in Fig. 2

is typically divergent (Álvarez and Durán 2014). This can be overcome by inserting a stabi-
lizing factor of the form

Mn =

〈(
c2s − α2 + c2s k

2 0
0 1 + (1 − c2s )k

2

)(
Û n

V̂ n

)

,

(
Û n

V̂ n

)〉

〈(
̂f1(Un, V n)(k)
̂f2(Un, V n)(k)

)

,

(
Û n

V̂ n

)〉 , n = 0, 1, . . . ,

where < ·, · > is the Euclidean inner product in C
2N , leading to the Petviashvili method

(Petviashvili 1976; Pelinovsky and Stepanyants 2004)

(
Û n+1(k)
V̂ n+1(k)

)

= (Mn)
2
(
c2s − α2 + c2s k

2 0
0 1 + (1 − c2s )k

2

)−1
(

̂f1(Un, V n)(k)
̂f2(Un, V n)(k)

)

,

n = 0, 1, . . . (A.2)

The iterative process (A.2) is controlled by the residual error

RES(n) =
∥
∥
∥
∥
∥

(
c2s − α2 + c2s k

2 0
0 1 + (1 − c2s )k

2

)(
Û n

V̂ n

)

−
(

̂f1(Un, V n)(k)
̂f2(Un, V n)(k)

)∥
∥
∥
∥
∥
2

,

n = 0, 1, . . . , (A.3)

and it can be complemented by extrapolation techniques, which may accelerate its conver-
gence, Sidi (2017), Sidi et al. (1986), Smith et al. (1987).

The accuracy of the computed profiles is checked in Fig. 7, which shows the behaviour
of the residual error (A.3) as function of the number of iterations, for the waves computed
in Fig. 2. Figure7 corresponds to the application of the Petviashvili method (A.2), while in
Fig. 7b the iteration is accelerated with an extrapolation technique.
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