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Resumen

La Terapia de Observacion de la Accion (AOT) ha despertado en los ultimos afios un gran
interés en el ambito de la neurociencia y la neurorrehabilitacion. Esta técnica se
fundamenta en la activacion del sistema de neuronas espejo, que se activa tanto al ejecutar
un movimiento como al observarlo. Gracias a esta propiedad, la AOT permite estimular
redes motoras sin necesidad de realizar un movimiento fisico, lo que la convierte en una
estrategia especialmente relevante en pacientes con limitaciones motoras. La literatura
cientifica ha mostrado que la AOT favorece procesos de aprendizaje motor y plasticidad
cerebral, plantedindose como una estrategia complementaria a la fisioterapia
convencional. Sin embargo, todavia existe una necesidad de comprender con mayor
precision como esta terapia modula la conectividad funcional del cerebro, especialmente
desde una perspectiva dindmica y con medidas que vayan mas alla de los analisis estaticos
tradicionales.

El presente Trabajo de Fin de Grado tiene como hipotesis que la AOT induce
reorganizaciones dindmicas en las redes cerebrales, que pueden observarse a través de
cambios en su estructura modular a lo largo del tiempo. Por ello, el objetivo principal es
caracterizar estas reorganizaciones mediante registros de electroencefalografia (EEG) de
46 sujetos sanos durante la observacion de videos de diferentes acciones, analizados con
métricas de conectividad y algoritmos de deteccion de comunidades. E1 EEG constituye
una herramienta idonea debido a su alta resolucion temporal, que permite capturar
variaciones rapidas en la actividad cerebral, y a su facilidad de aplicacion no invasiva.

La conectividad funcional se estim6 mediante el indice weighted Phase Lag Index
(WPLI), una métrica basada en el desfase de fase que reduce la influencia del volumen
conductor y resulta adecuada para el analisis de sefiales EEG. A continuacion, se aplico
un enfoque de ventanas deslizantes para construir matrices dinamicas de conectividad a
lo largo del tiempo. Estas matrices se analizaron utilizando el algoritmo GenLouvain en
un marco multicapa, lo que permitié detectar comunidades funcionales y estudiar su
evolucion. Se calcularon métricas como el numero y la dimension de las comunidades, la
matriz de consenso y el indice Normalized Mutual Information (NMI) para evaluar la
estabilidad y reorganizacion modular. Asimismo, se explord la influencia de parametros
como el acoplamiento temporal (w) en la deteccion de comunidades.

Los resultados obtenidos demuestran que la AOT induce reconfiguraciones modulares
alrededor del inicio de los estimulos, con diferencias claras entre bandas de frecuencia.
En la banda alfa, se observaron reorganizaciones iniciales seguidas de una tendencia a
recuperar la estabilidad, lo que sugiere un mecanismo de ajuste funcional tras el estimulo.
En la banda beta, en cambio, las redes mostraron una fragmentacion mas acusada y una
dindmica mas variable, lo que apunta a un mayor involucramiento de procesos motores y
de control cognitivo. Ademas, se comprobd que la eleccion del pardmetro w modula de
forma significativa la estabilidad de las comunidades, confirmando la necesidad de una
seleccion cuidadosa para interpretar la dindmica funcional.

En conjunto, este trabajo aporta evidencia de que la AOT genera reorganizaciones
dindmicas en la conectividad cerebral que pueden captarse mediante EEG. Mas alla de
los analisis estaticos, el uso de métricas de modularidad multicapa ofrece una
aproximacion robusta para estudiar la evolucion temporal de las redes cerebrales. Estos



hallazgos refuerzan la idea de que la AOT no solo activa las areas motoras, sino que
también reorganiza de manera dindmica la arquitectura funcional del cerebro, abriendo
nuevas vias para su aplicacion clinica en el ambito de la neurorrehabilitacion.

Palabras clave: Electroencefalografia (EEG), Terapia de Observacion de la Accidon
(AOT), Conectividad funcional dindmica (dFC), modularidad, detecciéon de
comunidades, wPLI.



Abstract

Action Observation Therapy (AOT) has gained increasing attention in recent years within
the fields of neuroscience and neurorehabilitation. This technique is based on the
activation of the mirror neuron system (MNS), which responds both during the execution
of a movement and when observing it. Thanks to this property, AOT enables the
stimulation of motor networks without the need to physically perform the movement,
making it particularly relevant for patients with motor limitations. Scientific literature has
shown that AOT promotes motor learning and brain plasticity and has been proposed as
a complementary strategy to conventional physiotherapy. However, there is still a need
to better understand how this therapy modulates brain functional connectivity, especially
from a dynamic perspective and through measures that go beyond traditional static
analyses.

The present Bachelor Thesis hypothesizes that AOT induces dynamic reorganizations in
brain networks, which can be observed through changes in their modular structure over
time. The main objective is therefore to characterize these reorganizations using EEG
recordings from 46 healthy subjects during the observation of action videos, analyzed
through connectivity metrics and community detection algorithms. EEG provides an ideal
tool for this purpose due to its high temporal resolution, which captures rapid fluctuations
in brain activity, and its non-invasive nature.

Functional connectivity was estimated using the weighted Phase Lag Index (wPLI), a
phase-based metric that minimizes the influence of volume conduction and is well-suited
for EEG analysis. A sliding window approach was then applied to build dynamic
connectivity matrices over time. These matrices were processed with the GenLouvain
algorithm in a multilayer framework, allowing the detection of functional communities
and the study of their evolution. Metrics such as the number and size of communities,
consensus matrices, and the Normalized Mutual Information (NMI) index were
calculated to evaluate modular stability and reorganization. Additionally, the influence of
parameters such as temporal coupling (w) on community detection was explored.

The results show that AOT induces modular reconfigurations around the onset of stimuli,
with clear differences between frequency bands. In the alpha band, initial reorganizations
were followed by a trend towards stability, suggesting a functional adjustment mechanism
after the stimulus. In contrast, beta-band networks exhibited stronger fragmentation and
more variable dynamics, pointing to greater involvement of motor and cognitive control
processes. Furthermore, the choice of the ® parameter significantly modulated
community stability, highlighting the need for careful selection when interpreting
dynamic connectivity.

Overall, this work provides evidence that AOT generates dynamic reorganizations in
brain connectivity that can be captured through EEG. Beyond static analyses, the use of
multilayer modularity metrics offers a robust approach to studying the temporal evolution
of brain networks. These findings reinforce the idea that AOT not only activates motor
areas but also dynamically reorganizes the brain’s functional architecture, opening new
avenues for clinical applications in neurorehabilitation.



Keywords: Electroencephalography (EEG), Action Observation Therapy (AOT),
Dynamic Functional Connectivity (dFC), modularity, community detection, wPLI.
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Capitulo 1. Introduccion y marco teorico

1.1. Introduccion

El cerebro humano, caracterizado por su extrema complejidad, funciona gracias a
dinamicas de actividad espontanea correlacionada entre distintas regiones cerebrales.
Durante mucho tiempo, se considerd que la conectividad funcional era un fendmeno
estacionario, asumiendo que las interacciones entre regiones cerebrales eran estdticas
(Allen et al., 2018). Sin embargo, investigaciones mas recientes han demostrado que estas
interacciones son, en realidad, dinamicas: fluctian de forma continua, reflejando los
cambios en los estados funcionales del cerebro y ocurriendo a diferentes escalas
temporales (Allen et al., 2018).

Una potente herramienta para estudiar esta conectividad funcional dindmica es la
electroencefalografia (EEG), ya que permite observar la evolucion temporal de dichas
interacciones con alta resolucion temporal. Esto brinda una oportunidad tnica para
comprender como cambian estas conexiones a lo largo del tiempo y coémo pueden verse
afectadas en diferentes contextos, incluyendo diversas enfermedades (O’Neill et al.,
2018).

Paralelamente, diversos estudios han demostrado que la observacion de acciones puede
facilitar tanto el aprendizaje como el rendimiento motor. En el ambito clinico, esta
estrategia ha dado lugar a la Terapia de Observacion de Acciones (Action Observation
Therapy, AOT), una técnica basada en la activacion del sistema de neuronas espejo
(Mirror Neuron System, MNS) (Ge et al., 2023). Este sistema incluye un conjunto de
regiones frontoparietales que se activan tanto al ejecutar una accidén como al observar a
otro realizarla, lo que permite al cerebro simular internamente los movimientos
observados y, con ello, facilitar su aprendizaje (Ge et al., 2023).

El estudio de los efectos de la AOT mediante métricas de conectividad funcional basadas
en EEG constituye una via prometedora para comprender la reorganizacion de las redes
cerebrales durante la observacion de acciones. Sin embargo, este enfoque plantea
importantes desafios técnicos: las sefiales EEG reflejan una actividad neuronal altamente
variable, no lineal y distribuida en distintas bandas de frecuencia, lo que dificulta su
interpretacion directa. Ademads, la notable variabilidad entre sujetos afiade un nivel
adicional de dificultad a la hora de identificar patrones consistentes.

Para analizar esta dindmica cerebral se emplean técnicas capaces de identificar grupos de
regiones cerebrales que comparten patrones de interaccion a lo largo del tiempo. En el
contexto de la AOT, este enfoque permite explorar como se organiza y reconfigura la
conectividad funcional durante la observacion de acciones, haciendo posible la
identificacion de patrones neuronales comunes pese a la variabilidad interindividual.
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1.2. Terapia de Observacion de la Accion

En pacientes con enfermedades neurologicas como el ictus, la enfermedad de Parkinson
o la esclerosis multiple, uno de los principales objetivos terapéuticos es la recuperacion
de la funcién motora. Tradicionalmente, las terapias de rehabilitacion se han centrado en
el entrenamiento fisico temprano, con el fin de normalizar la actividad funcional y
favorecer una recuperacion integral. No obstante, numerosos estudios han demostrado
que la préctica fisica directa no es la Uinica via eficaz para inducir mejoras motoras (Ge et
al.,2023; Meng et al., 2023; Chen et al., 2025). La observacion de acciones, por ejemplo,
se ha mostrado efectiva para activar el sistema motor y estimular la plasticidad cerebral,
incluso en ausencia de movimiento real (Gatti e al., 2013; Kim and Cho, 2016).

Este efecto se explica a través del funcionamiento del MNS, una red cerebral que se activa
tanto durante la ejecucion de una accién como al observar a otra persona realizarla. Esta
capacidad de simular internamente los movimientos observados permite al cerebro
construir representaciones motoras que facilitan el aprendizaje y la recuperacion
funcional. Aunque este mecanismo fue descubierto inicialmente en la corteza premotora,
investigaciones posteriores han identificado su participacion en otras areas como la
insula, la corteza cingulada y la corteza parietal posterior (Temporiti ef al., 2023). En un
principio se pensaba que el sistema se activaba solo frente a acciones simples y dirigidas
a un objetivo, como empujar, agarrar o arrastrar, pero estudios mas recientes han
demostrado que también responde a acciones complejas, como escalar, manipular objetos
o utilizar herramientas (Rizzolatti et al., 2021).

La AOT se basa en el funcionamiento de este sistema. Consiste en estimular el sistema
sensoriomotor mediante la visualizacion de videos que muestran acciones especificas (Ge
et al., 2023). Su objetivo es activar indirectamente las redes motoras del paciente y
facilitar el reaprendizaje de habilidades funcionales, especialmente en casos en los que el
movimiento fisico estd limitado. Por ejemplo, en pacientes con espasticidad, rigidez
muscular o pérdida de control motor (Kim and Cho, 2016).

Se ha comprobado que los beneficios de la AOT pueden potenciarse al combinarla con la
imagineria motora (motor imagery, MI). Es decir, la representacion mental de la accion
observada. Diversos estudios han evidenciado que la combinacion de AOT + MI produce
una mayor activacion en areas motoras cerebrales que cualquiera de las dos estrategias
por separado, ya que existe un solapamiento funcional en la activacion cerebral durante
la observacion y la imaginacion de acciones motoras (Gatti ef al., 2013; Kim, Frank and
Schack, 2017; Emerson et al., 2018). Ademads, la observaciéon motora se ha planteado
como una herramienta especialmente util para contrarrestar el fendémeno del “no uso
aprendido”, una forma de plasticidad desadaptativa en la que el paciente evita utilizar el
lado afectado del cuerpo tras una lesion neurolédgica (Kim and Cho, 2016).
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1.3. Electroencefalografia

Para el estudio del control motor, se han desarrollado diversas técnicas, entre las cuales
la electroencefalografia (EEG) destaca por su portabilidad, su alta resolucion temporal y
su capacidad para registrar la actividad cerebral en distintas bandas de frecuencia durante
la ejecucion de movimientos.

La EEG es una técnica no invasiva que mide la actividad cerebral eléctrica mediante
electrodos colocados sobre el cuero cabelludo. Gracias a su seguridad y facilidad de
aplicacion, puede utilizarse en personas de cualquier edad y es ampliamente empleada
tanto en investigacion como en el dmbito clinico, especialmente en el diagnostico de
trastornos neurologicos como tumores, epilepsias o hemorragias(Teplan and Teplan,
2002).

La senal que recoge el EEG refleja la suma de los potenciales postsinapticos generados
por grandes grupos de neuronas, en particular las neuronas piramidales de la corteza
cerebral. Estas neuronas forman dipolos eléctricos entre el cuerpo celular y las dendritas
apicales, cuyas corrientes sindpticas sincronizadas pueden detectarse desde la superficie
del cuero cabelludo (Teplan and Teplan, 2002).

Dado que el presente trabajo se centra en el estudio de la reorganizacion de las redes
cerebrales a partir de datos de EEG, este apartado se dedica a describir los fundamentos
de esta técnica, incluyendo las principales bandas de frecuencia en las que se clasifica la
actividad cerebral, asi como sus principales limitaciones. Entender como se estructuran
los ritmos neuronales permite interpretar mejor los patrones de conectividad funcional,
mientras que identificar las fuentes de ruido y artefactos resulta esencial para garantizar
la fiabilidad del analisis.

1.3.1. Ritmos de frecuencia
En términos funcionales, la actividad cerebral registrada por el EEG se clasifica en cinco
bandas o ritmos de frecuencia (véase la Figura 1.1), cada una asociada a diferentes

procesos cognitivos y estados mentales (Chaddad et al., 2023):

e Banda delta (I — 4 Hz): las ondas son oscilaciones de gran amplitud, estan
relacionadas con la actividad cerebral de ondas lentas y el suefio profundo.

e Banda theta (4 — 8 Hz): las ondas se observan comunmente durante periodos de
relajacion y meditacion.

e Bandaalfa (8 — 13 Hz): las ondas son mas evidentes durante estados de relajacion,
con los ojos cerrados y sin atencion dirigida.

e Banda beta (13 — 30 Hz): las ondas se asocian con el procesamiento cognitivo
activo y pueden detectarse durante tareas que requieren una atencion significativa.
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Figura 1.1 Representacion de cuatro ritmos cerebrales tipicos en condiciones normales,
ordenados de mayor a menor frecuencia: beta, alfa, theta y delta. Imagen adaptada de (Sanei Saeid
and Chambers J.A, 2007)

e Banda gamma (30 — 100 Hz): las ondas estan vinculadas al procesamiento
cognitivo avanzado y a la integracién de informacion sensorial.

1.3.2. Limitaciones del EEG: ruido, artefactos

Aunque el EEG ofrece una alta resolucion temporal y constituye una herramienta
accesible y no invasiva, presenta limitaciones importantes que deben considerarse. Una
de ellas es su baja resolucion espacial: las sefiales registradas en el cuero cabelludo
reflejan principalmente la actividad postsinaptica de las células piramidales corticales,
organizadas en las capas externas de la corteza. Esto implica que la informacién obtenida
procede casi exclusivamente de regiones corticales superficiales, mientras que la
actividad de estructuras profundas no puede registrarse con precision mediante esta
técnica (Chiarion et al., 2023). Para suplir estas carencias se emplean habitualmente
métodos complementarios, como la fMRI, que proporciona una excelente resolucion
espacial, pero cuya resolucion temporal es muy baja (del orden de segundos), lo que le
impide captar fendmenos en escalas temporales rapidas (He et al., 2019).
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Ademés, la adquisicion de sefiales EEG se ve afectada por la presencia de ruido no
deseado, lo que dificulta su andlisis. Esto se debe a la naturaleza inherente del EEG, que
capta no solo la actividad neuronal de interés, sino también otras sefales externas (o de
otras partes del cuerpo) no relacionadas. Esto da lugar a la aparicion de lo que se conoce
como artefactos.

Estos artefactos pueden originarse tanto por el instrumental de mediciéon como por
factores ambientales o fisiologicos. En el primer caso, encontramos problemas como
electrodos defectuosos, alta impedancia, o ruido de red eléctrica, que pueden minimizarse
mediante sistemas de registro mas precisos y un protocolo de adquisicion riguroso. Sin
embargo, los artefactos fisioldgicos, como los movimientos oculares, los parpadeos, la
actividad muscular o cardiaca, resultan mucho mas dificiles de eliminar, ya que estan
intrinsecamente ligados al propio sujeto (Jiang, Bian and Tian, 2019).

La presencia de estos artefactos puede distorsionar significativamente la sefial EEG,
interfiriendo con las verdaderas conexiones neuronales y generando interpretaciones
erroneas (Jiang, Bian and Tian, 2019).

1.4. Conectividad cerebral

El cerebro es un sistema altamente complejo, caracterizado por multiples niveles de
interconexion e interaccion que abarcan desde la escala microscopica, como las células y
sinapsis, hasta la macroscopica, donde distintas regiones y sistemas cerebrales interactian
entre si. El estudio de las redes cerebrales permite representar las areas del cerebro como
nodos interconectados, mientras que las interacciones entre ellas se modelan como
conexiones dentro de una red dindmica. Este enfoque permite describir y analizar como
se comunican las distintas partes del cerebro en reposo o durante la realizacion de tareas
especificas (Zamani Esfahlani ez al., 2021).

La conectividad cerebral se centra precisamente en describir estos patrones de
interaccion, tanto dentro de cada region cerebral como entre diferentes regiones (Chiarion
et al., 2023). A lo largo de este apartado, se presenta una vision general sobre los
principales tipos de conectividad cerebral, los distintos enfoques para su analisis, los
indices mas utilizados para caracterizar estas complejas redes de interaccion, asi como
los principales desafios metodoldgicos asociados a su estudio.

1.4.1. Tipos: estructural, funcional y efectiva

La conectividad cerebral se puede dividir fundamentalmente en tres tipos: estructural,
funcional y efectiva. La conectividad estructural (SC) hace referencia a las conexiones
anatomicas entre neuronas o regiones cerebrales, representando la arquitectura fisica del
sistema nervioso. La conectividad funcional (FC), en cambio, se basa en la relacion
temporal de la actividad neuronal entre distintas dreas, sin implicar necesariamente una
conexion fisica directa. Finalmente, la conectividad efectiva (EC) permite identificar
influencias causales, proporcionando informacién sobre qué regiones ejercen control
sobre otras y en qué direccion fluye la actividad cerebral (Rubinov and Sporns, 2010; Ge
etal., 2023).
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La conectividad funcional no implica una direcciébn concreta ni una organizacion
anatdmica determinada en el cerebro. Se entiende mas bien como la probabilidad de que
las respuestas neuronales registradas en distintas areas estén relacionadas entre si. Por
tanto, no permite inferir la naturaleza de dicha relacion, sino unicamente constatar si
existe 0 no una dependencia estadistica. Este tipo de conectividad se evalia mediante
métricas simétricas, como la correlacion, la coherencia o la informacion mutua, que
permiten cuantificar la sincronizacion de regiones cerebrales, pero sin establecer si una
influye sobre la otra (Chiarion ef al., 2023).

Por su parte, la conectividad efectiva busca determinar si la actividad de una region
cerebral precede y predice la de otra, lo que sugiere una relacion de causa-efecto. Entre
las métricas mas utilizadas para este analisis se encuentran la causalidad de Granger, la
coherencia dirigida, la coherencia parcial dirigida y la entropia de transferencia. Todas
ellas permiten captar la direccion del flujo de informacion entre distintas areas cerebrales
(Rubinov and Sporns, 2010; Chiarion et al., 2023)

1.4.2. Dominios de analisis

La eleccion de la métrica de conectividad mas adecuada depende tanto del tipo de
fenomeno fisiologico que se desea estudiar como de las caracteristicas especificas de las
sefales registradas. Para ello, se han desarrollado multiples enfoques metodologicos que
permiten analizar la conectividad funcional desde distintas perspectivas o dominios
(véase la Figura 1.2) (Chiarion et al., 2023).

Algunos métodos se basan en modelos lineales, como los modelos autorregresivos, que
permiten representar las interacciones cerebrales mediante ecuaciones matematicas bien
definidas. Otros enfoques, en cambio, son no lineales o no requieren un modelo previo
(model-free), lo que los hace especialmente utiles para captar relaciones complejas y no
evidentes entre las sefiales neuronales (Pereda, Quiroga and Bhattacharya, 2005).

Estos métodos también se pueden clasificar en funcion del dominio de analisis en el que
operan. En el dominio temporal, se estudia la evolucion de las senales a lo largo del
tiempo. En el dominio frecuencial, se analizan las componentes oscilatorias de la sefial,
que abarcan desde las bandas de baja frecuencia (delta y theta) hasta las de frecuencia
media y alta (alfa, beta y gamma), y su grado de sincronizacion entre distintas regiones
cerebrales. Por otro lado, el dominio de la teoria de la informacion permite medir cuanta
informacion comparten diferentes areas del cerebro, proporcionando una perspectiva
complementaria sobre las interacciones funcionales (Chiarion et al., 2023).

Ademés, el andlisis de conectividad puede abordarse desde una perspectiva estatica o
dinamica. En un enfoque estatico, se asume que las relaciones entre regiones se mantienen
constantes durante todo el periodo de observacion. En cambio, el enfoque dindmico
permite capturar como varian estas conexiones a lo largo del tiempo, lo cual resulta
especialmente 1til en tareas cognitivas o situaciones clinicas donde la actividad cerebral
no es estacionaria, como en la observacion de acciones (Chiarion et al., 2023).
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Por este motivo, en el presente trabajo se ha adoptado un enfoque dindmico para estudiar
la conectividad funcional mediante EEG, como se describe en el apartado 1.5.

Finalmente, los analisis pueden realizarse de forma bivariada, evaluando las relaciones
entre pares de sefales, o de forma multivariada, considerando multiples regiones de forma
simultanea. Esta ultima opcion permite obtener una representacion mas global y realista
de las complejas redes de interaccion cerebral (Cohen and Mike X, 2014).
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Figura 1.2 Clasificacion de las principales métricas utilizadas para el analisis de conectividad
cerebral, agrupadas segun su dominio de aplicacion (temporal, frecuencial o de informacion) y su
naturaleza (dirigida o no dirigida). Imagen adaptada de (Chiarion et al., 2023).
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1.4.3. Métricas de conectividad

Los indices de conectividad pueden agruparse en cinco categorias diferentes: Medidas
Clasicas, Indices de Sincronizacion Generalizada (Generalized Synchronization Indexes,
GS), Indices basados en Causalidad de Granger, Medidas basadas en Teoria de la
Informacion e Indices de Sincronizacion de Fase (Phase Synchronization Indexes, PS).
Cada una de estas categorias investiga diferentes aspectos de la conectividad cerebral y
se caracteriza por presentar ventajas y limitaciones especificas (Niso et al., 2013).

Las medidas clasicas incluyen técnicas lineales como el coeficiente de correlacion de
Pearson (COR), la funcion de correlacion cruzada (XCOR), la coherencia (COH) y la
correlacion de la envolvente de amplitud (Amplitude Envelope Correlation, AEC). Esta
ultima estima la correlacion entre las envolventes de amplitud de dos series temporales.
Para su célculo, se aplica la transformada de Hilbert para extraer dichas envolventes y,
posteriormente, se computa la correlacion de Pearson sobre ellas. Es importante sefialar
que la AEC debe aplicarse sobre sefiales previamente ortogonalizadas, con el fin de
minimizar los efectos espurios de la conduccion de volumen (Brookes et al., 2014;
O’Neill et al., 2018). Estos métodos se emplean ampliamente debido a su simplicidad y
eficiencia computacional; sin embargo, su principal limitacion es que solo pueden
detectar dependencias lineales entre variables (Niso et al., 2013).

Los GS se basan en el concepto de sincronizacion generalizada, que se da cuando los
estados de un subsistema dinamico (Y) estan influenciados por los estados de otro
subsistema (X), lo cual se expresa como Y = F(X).

Los indices basados en la causalidad de Granger estan relacionados con la teoria de
Wiener y evaltan la causalidad entre dos sefiales medidas simultdneamente, x(t) e y(t),
analizando si la inclusion de valores pasados de una sefial mejora la prediccion de la otra.

Las medidas basadas en la teoria de la informacion se fundamentan principalmente en
una métrica que cuantifica la informacion de una variable aleatoria discreta X: su entropia
de Shannon.

Por tltimo, los PS se basan en el concepto de sincronizacion de fase, que hace referencia
a una situacion en la que las fases de dos osciladores acoplados se sincronizan, aunque
sus amplitudes puedan permanecer no correlacionadas. Cuentan con algunas métricas
como el Phase Locking Value (PLV), el Phase Lag Index (PLI) y el Phase Slope Index
(PSI) (Niso et al., 2013).

El PLV se basa unicamente en la diferencia de fase relativa entre sefiales y evaltia como
se distribuye esta diferencia alrededor del circulo unitario. Cuando existe una fuerte
sincronizacion de fase entre dos sefales (por ejemplo, X e Y), la fase relativa se concentra
en una pequefia region del circulo, y el PLV se aproxima a 1. En cambio, si no hay

sincronizacion, la fase relativa se dispersa por todo el circulo, dando lugar a valores bajos
de PLV.
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El PLI mide la consistencia del desfase de fase entre dos sefiales, descartando aquellas
diferencias centradas en cero, lo que lo hace menos sensible a artefactos causados por el
volume conduction. A partir de este indice surge el weighted Phase Lag Index (WPLI),
una variante ponderada que mejora la deteccion de cambios en la sincronizacion de fase
al reducir la influencia del ruido no correlacionado y aumentar el poder estadistico. A
diferencia de otros indices de fase, el wPLI incorpora informacion tanto de fase como de
amplitud, lo que proporciona una estimacién mas robusta de la conectividad funcional
(Niso et al., 2013).

En el presente trabajo se ha seleccionado el wPLI como métrica principal para calcular la
conectividad funcional a partir de sefiales EEG, debido a sus multiples ventajas: permite
identificar interacciones con desfase temporal (aportando una nocién de direccionalidad),
se adapta al analisis en el dominio frecuencial y es especialmente resistente a los efectos
del volume conduction, lo que lo convierte en una herramienta fiable para estudios sobre
conectividad cerebral.

1.4.4. Limitaciones en el analisis de conectividad

Como ya se ha mencionado anteriormente, una de las limitaciones mas relevantes es el
volume conduction. Este fendémeno ocurre cuando la actividad eléctrica generada en una
region del cerebro es registrada simultdneamente por varios electrodos, lo que produce
una autocorrelacion espacial a nivel del sensor. Como consecuencia, puede parecer que
existe una conexion funcional entre dos electrodos, cuando en realidad ambos estan
captando la misma fuente de senal cerebral.

Este efecto puede dar lugar a conectividad espuria, es decir, relaciones aparentes entre
regiones cerebrales que en realidad no estdn interactuando. El volume conduction es un
fendomeno inevitable, ya que forma parte del proceso fisico de propagacion de la sefial
eléctrica desde el interior del cerebro hasta la superficie del cuero cabelludo (He ef al.,
2019).

Para mitigar este problema se han propuesto diferentes estrategias. Una primera
aproximacion consiste en utilizar métricas de conectividad menos sensibles al volume
conduction. Por ejemplo, indices basados en el desfase de fase como el PSI o el wPLI
permiten detectar interacciones con cierto retraso temporal, ignorando las correlaciones
instantaneas que suelen ser producto de este efecto (Niso et al., 2013). Otra alternativa,
empleada en otros estudios, es el uso de técnicas de andlisis de fuentes (source imaging),
que permiten estimar la actividad neuronal en el espacio fuente a partir de las sefiales
registradas en el cuero cabelludo (espacio sensor), reduciendo asi la probabilidad de
detectar conectividad espuria debida a la propagacion de volumen (Jiang, Bian and Tian,
2019; Chiarion et al., 2023). En el presente trabajo se optd Unicamente por la primera
estrategia, sin aplicar procedimientos de source imaging.

1.5. Conectividad funcional dinamica

El cerebro debe integrar, coordinar y responder de forma dinamica a estimulos internos y
externos a través de multiples escalas temporales. Por ello, las interacciones cerebrales
no son estaticas, sino que las relaciones funcionales entre diferentes regiones cerebrales
cambian a lo largo del tiempo (Hutchison ef al., 2013).
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Para estimar la conectividad funcional dindmica (dynamic functional connectivity, dFC),
es necesario aplicar métodos que permitan observar como varian las conexiones entre
regiones cerebrales en el tiempo. Todos estos métodos requieren un niimero suficiente de
puntos temporales para obtener resultados fiables.

En las siguientes secciones se describen los métodos empleados para estimar la dFC y la
construccion de matrices de conectividad que permiten representar de manera
estructurada dichas interacciones.

1.5.1. Métodos de estimacion: sliding window

Una de las formas mds sencillas y ampliamente utilizadas para estimar la dFC es el
enfoque de ventanas deslizantes (s/iding window). Este método consiste en dividir la serie
temporal de la senal EEG en ventanas de duracion fija (Ge et al., 2023). A continuacion,
la ventana se desplaza a lo largo del tiempo por un numero determinado de puntos,
también conocido como paso (step size), lo cual define el grado de solapamiento entre
ventanas consecutivas (Hutchison et al., 2013). En cada ventana, se calcula una métrica
de conectividad funcional, como la correlacion, la coherencia o algin indice de
sincronizacion de fase. De esta manera, se obtiene una secuencia de matrices que reflejan
como evolucionan las interacciones funcionales entre regiones cerebrales a lo largo del
tiempo (Ge et al., 2023).

Una de las principales ventajas de este enfoque es su compatibilidad con una amplia
variedad de métricas de conectividad estatica, lo que lo convierte en una herramienta
flexible y accesible (O’Neill ef al., 2018). Sin embargo, presenta algunas limitaciones
como la seleccion de la longitud de la ventana: si es demasiado corta, puede introducir
ruido o inestabilidad en la estimacion; si es demasiado larga, puede suavizar en exceso
las transiciones rapidas entre estados cerebrales. Ademads, diferentes métricas requieren
duraciones minimas distintas para generar resultados fiables. Por ejemplo, se ha
observado que las métricas basadas en fase requieren mds datos que las basadas en
amplitud para alcanzar consistencia (O’Neill et al., 2018).

En este trabajo se ha aplicado este enfoque de ventanas deslizantes para estimar la
conectividad funcional dindmica a partir de los registros EEG obtenidos durante la AOT.
Este método permite observar como varian las interacciones entre regiones cerebrales a
lo largo de las distintas fases del video de la AOT, facilitando el analisis de posibles
reconfiguraciones funcionales inducidas por el estimulo. Su uso resulta especialmente
adecuado en este contexto, ya que ofrece una resolucion temporal suficiente para captar
cambios relevantes durante la tarea, al tiempo que se mantiene una implementacion
metodoldgica robusta y compatible con métricas como el PLI.

Cabe destacar que también existen métodos alternativos, conocidos como métodos
instantaneos, que no requieren segmentar la sefial en ventanas temporales. Técnicas como
la transformada de Hilbert o la transformada wavelet continua permiten estimar la fase y
potencia instantaneas en cada momento del tiempo, lo que puede resultar util en tareas
muy rapidas o con transiciones abruptas. No obstante, estos métodos son mas sensibles
al ruido y exigen sefiales con oscilaciones bien definidas para ofrecer resultados fiables
(Geetal., 2023).
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1.5.2. Matrices de conectividad

Una red es una representaciéon matematica de un sistema complejo del mundo real, y se
define como un conjunto de nodos (o vértices) y enlaces (o aristas) que conectan pares de
nodos. En las redes cerebrales los nodos corresponden a electrodos, y las aristas a alguna
medida de conectividad entre pares de estos (Rubinov and Sporns, 2010).

Todas las redes pueden representarse mediante matrices de conectividad (también
denominadas matrices de adyacencia). Las filas y columnas de estas matrices representan
los nodos, mientras que cada entrada (X, Y) representa el valor de conectividad entre los
electrodos X e Y. Asi, dado un conjunto de N electrodos, se obtiene una matriz cuadrada
de tamafio N x N, en la que se codifica la conectividad entre todos los pares posibles.

La conectividad puede calcularse en distintos dominios, como el temporal o el
frecuencial, lo que implica que cada matriz 2D representa la conectividad en un punto
especifico del espacio tiempo-frecuencia (Rubinov and Sporns, 2010).

Segun el tipo de medida utilizada, la matriz de conectividad puede presentar diferentes
propiedades estructurales (véase la Figura 1.3). Si el valor en la posicion (X, Y) es
idéntico al de (Y, X), se trata de una matriz simétrica, como suele ocurrir en la
conectividad funcional. En este caso, los tridngulos superior e inferior respecto a la
diagonal principal contienen informacion redundante. Por el contrario, una matriz
asimétrica refleja relaciones direccionales o diferentes medidas en cada sentido, como por
ejemplo si el tridngulo inferior representa la conectividad de X a Y, mientras que el
superior la de Y a X (Rubinov and Sporns, 2010).

Figura 1.3 Representacion de una matriz de adyacencia simétrica (panel A) y una matriz de
adyacencia asimétrica (panel B). Imagen adaptada de (Rubinov and Sporns, 2010).
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La naturaleza ruidosa de las medidas de conectividad funcional, junto con la presencia de
multiples conexiones espurias o débiles, puede dificultar notablemente la interpretacion
de los resultados. Esta dificultad se incrementa especialmente cuando se trabaja con un
elevado nimero de electrodos. Por ello, los métodos de umbralizacion (thresholding)
resultan ttiles para obtener una visualizacion y comprension mas clara y simplificada de
la red cerebral, permitiendo centrarse unicamente en las conexiones mas relevantes
(Cohen and Mike X, 2014).

Existen distintas estrategias para aplicar umbrales. Una de las mas comunes es la
umbralizacién absoluta, que consiste en establecer en cero todas las medidas de
conectividad que estén por debajo de un determinado valor de corte. Este valor puede
definirse de forma arbitraria (por ejemplo, un determinado percentil o un nimero de
desviaciones estandar por encima del valor medio de conectividad) (Cohen and Mike X,
2014).

Otras estrategias comunes de umbralizacion consisten en especificar el niumero de
conexiones que se desean conservar, y fijar a cero el resto. El valor del umbral puede
mantenerse constante para toda la poblacion o adaptarse a cada paciente en particular
(Rubinov and Sporns, 2010; Cohen and Mike X, 2014).

En este caso, se utiliza una umbralizacion basada en un numero especifico de conexiones
conservadas. De esta manera, una vez calculados los valores de conectividad mediante el
indice wPLI y construidas las matrices de conectividad en cada una de las ventanas
deslizantes, se aplica un umbral sobre ellas. Asi, las matrices umbralizadas se podran
representar de forma mas interpretable mediante grafos o comunidades.

Aunque existen multiples formas de analizar estas matrices, en este trabajo nos
centraremos en la deteccion de comunidades, como se detallara en el siguiente apartado.

1.6. Teoria de grafos

Estudiar como se organiza el cerebro durante una tarea o estado mental concreto es
esencial, ya que tanto los cambios como los patrones estables en la red neuronal pueden
tener implicaciones fisioldgicas relevantes (Puxeddu, Petti and Astolfi, 2021). Para
abordar esta cuestion, una herramienta muy utilizada es la teoria de grafos, una rama de
las matematicas que se encarga de analizar redes formadas por un conjunto de nodos y
aristas que representan los elementos de un sistema y sus interrelaciones (Bassett and
Sporns, 2017). En este enfoque, las matrices de conectividad de tamafio N x N se
transforman en grafos, donde N indica el nimero de nodos. A partir de estos grafos, es
posible aplicar técnicas de andlisis que permiten describir su estructura topoldgica
(Rubinov and Sporns, 2010).

Este tipo de andlisis permite extraer métricas que reflejan aspectos tanto locales como
globales de la red. Entre las més relevantes se encuentran aquellas relacionadas con tres
grandes bloques: segregacion funcional, integracion funcional y centralidad (Rubinov and
Sporns, 2010).
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La integracion funcional se refiere a la capacidad del cerebro para combinar informacion
procedente de areas dispersas entre si. Para cuantificarla, se analiza como de facil es la
comunicacion entre nodos distantes. Este andlisis se basa en el concepto de camino,
entendido como la secuencia de enlaces que conecta dos nodos. En particular, la longitud
del camino mas corto representa el nimero minimo de enlaces necesarios para conectar
un par de nodos. Una de las métricas mads comunes es la eficiencia global (global
efficiency, GE), que se calcula como el inverso del promedio de las distancias mas cortas
entre todos los pares de nodos (Rubinov and Sporns, 2010; Cohen and Mike X, 2014).

Las medidas de centralidad permiten identificar los nodos centrales o "hubs" dentro de
las redes cerebrales. Por ejemplo, el grado (degree, D) contabiliza el niimero de
conexiones de un nodo, mientras que su version ponderada, llamada fuerza (strength),
suma los pesos de esas conexiones. La centralidad de intermediacion (betweenness
centrality, BC), por otro lado, muestra cuantos caminos mas cortos de la red pasan por un
nodo determinado (Rubinov and Sporns, 2010).

La segregacion funcional del cerebro hace referencia a su capacidad para llevar a cabo
procesos especializados dentro de grupos de regiones altamente interconectadas,
conocidas como clusteres o mdédulos. Una de las métricas més potentes en este sentido es
la modularidad (Q), que evaliia en qué medida una red puede dividirse en subconjuntos o
comunidades claramente diferenciadas, con muchas conexiones internas y pocas
conexiones externas (Rubinov and Sporns, 2010).

Para estimar esta métrica en redes cerebrales reales, especialmente aquellas derivadas de
datos EEG, es necesario aplicar algoritmos especificos que permitan identificar dichas
comunidades de forma automatica. A continuacion, se describe el enfoque de deteccion
de comunidades, que constituye la base metodologica empleada en este trabajo.

1.6.1. Algoritmo de deteccion de comunidades

El andlisis de la estructura modular resulta especialmente til en el contexto del EEG, ya
que esta técnica ofrece una excelente resolucion temporal. Aplicar enfoques de deteccion
de comunidades sobre redes derivadas del EEG permite observar como se agrupan
dinamicamente las regiones cerebrales durante una tarea, siendo ttil en campos como la
epilepsia, la percepcion visual o los procesos cognitivos (Puxeddu, Petti and Astolfi,
2021).

Los algoritmos de deteccion de comunidades permiten descomponer una red en grupos
densos de nodos llamados “moddulos” o mas cominmente “comunidades” (Bassett et al.,
2013). De forma general, una comunidad es un conjunto de nodos que estdn “mas
densamente” conectados entre si que con nodos de otras comunidades. En las particiones
mas comunes, cada nodo pertenece a una Unica comunidad, lo que se conoce como
particion rigida (Bazzi et al., 2017).

Para identificar dichas comunidades dentro de la red, se suele recurrir a la optimizacion
de una funciéon de calidad, siendo la modularidad (Q) la métrica mas empleada. Esta
medida evalta hasta qué punto una particion presenta mas conexiones dentro de las
comunidades de lo que cabria esperar por azar, comparandola con un modelo nulo
aleatorio (Bassett et al., 2013). Cuanto mayor sea la modularidad, mayor serd la cohesion
interna de las comunidades encontradas frente a su conexién con el resto de la red.
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Debido a que la busqueda de la particion dptima es un problema computacionalmente
complejo, se utilizan algoritmos heuristicos como el de Louvain, ampliamente utilizado
por su eficiencia para encontrar maximos locales de la funcion de modularidad (Bassett
etal.,2013).

Los dos enfoques més habituales a la hora de detectar comunidades son el analisis en una
sola capa (single-layer community detection) y el enfoque multicapa (multi-layer
community detection). En el analisis monocapa, el algoritmo de Louvain clasico se aplica
de manera independiente a cada matriz de conectividad correspondiente a una ventana
temporal. Esto implica que las comunidades detectadas en una ventana pueden diferir
completamente de las de la siguiente, dificultando el seguimiento de la evolucion
temporal de la organizacion funcional del cerebro (Puxeddu, Petti and Astolfi, 2021).

En cambio, el enfoque multicapa, basado en el algoritmo GenLouvain, generaliza la
maximizacion cldsica de la modularidad incorporando un término adicional que tiene en
cuenta el acoplamiento de los nodos entre capas temporales consecutivas. De esta manera,
se puede capturar de forma maés precisa la evolucion temporal de las comunidades,
observando cémo se mantienen, se reorganizan o desaparecen a lo largo de la tarea
(Puxeddu, Petti and Astolfi, 2021).

El algoritmo de Louvain, tanto en su version clasica como multicapa, se desarrolla en dos
fases iterativas. Partiendo de una particion inicial, se consideran los nodos uno por uno
(en alglin orden) y se asigna cada nodo a la comunidad que produzca el mayor aumento
de modularidad. Si ningiin cambio mejora la puntuacion, el nodo conserva su asignacion
actual. Esta primera fase se repite hasta alcanzar un maximo local (Bazzi et al., 2020).

En la segunda fase, se construye una nueva matriz de modularidad agregando los
conjuntos de nodos obtenidos tras la convergencia de la primera fase. Luego, se vuelve a
aplicar la primera fase sobre esta nueva matriz, repitiendo ambas fases hasta que se
converge a un maximo local (Bazzi et al., 2020).

Esta funcién de modularidad esté4 influida por dos parametros clave: gamma (y) y omega
(w). Gamma es el pardmetro de resolucion estructural y ajusta la granularidad con la que
se detectan comunidades. Cuando gamma es bajo, se tiende a identificar comunidades
mas grandes; en cambio, valores altos favorecen comunidades mas pequenas y especificas
(Zamani Esfahlani ef al., 2021).

Por su parte, el pardmetro omega determina la fuerza del acoplamiento entre capas
temporales. Un omega bajo implica que las comunidades se detectan casi de forma
independiente en cada capa, generando una mayor fragmentacién. En cambio, un omega
alto promueve la estabilidad de las comunidades a lo largo del tiempo, favoreciendo que
los nodos mantengan su asignacién comunitaria en ventanas sucesivas (Rizkallah et al.,
2018)

En este trabajo se ha aplicado el algoritmo de detecciéon de comunidades multicapa
GenLouvain, con el objetivo de estudiar como se reconfiguran las redes cerebrales en
funcion del tiempo durante la AOT.

30



1.7. Descripcion del documento

Este apartado se centra en la estructura de este Trabajo de Fin de Grado (TFG), el cual
esta dividido en varios capitulos. A continuacion, se enumeran dichos capitulos junto con
una breve explicacion de lo que contiene cada uno de ellos.

e Capitulo 1. Introduccion y marco tedrico. Este capitulo se estructura en cinco
secciones. En primer lugar, se introduce la AOT, abordando sus bases
neurofisiologicas y su relevancia en el ambito de la rehabilitacion. A
continuacion, se profundiza en los principios fundamentales de la EEG, junto con
sus ritmos de frecuencia caracteristicos y las principales limitaciones asociadas a
la adquisicion de sefiales. La tercera seccion estd dedicada a la conectividad
cerebral, incluyendo sus distintos tipos, dominios de analisis y métricas empleadas
para su evaluacion. En la cuarta seccion se describen los fundamentos de la teoria
de grafos y su aplicacion al analisis de redes cerebrales, con especial énfasis en
los algoritmos de deteccion de comunidades. Finalmente, se presentan las
hipotesis y objetivos del estudio, que guian el analisis desarrollado en los capitulos
siguientes.

o Capitulo 2. Revision del estado del arte: Terapia de Observacion de la Accion
y Conectividad Funcional Dinamica. En este capitulo se realiza una revision de
los principales estudios existentes que relacionan la AOT con la conectividad
cerebral, prestando especial atencion a aquellos que utilizan EEG y métricas como
el wPLI, asi como técnicas de conectividad dindmica. También se incluyen
estudios con fMRI que permiten una comprension complementaria del fenomeno.
Por ultimo, se destacan las limitaciones asociadas a la literatura existente.

e Capitulo 3. Hipoétesis y objetivos. Se formula la hipdtesis central del trabajo y se
detallan los objetivos generales y especificos que guian la investigacion.

e Capitulo 4. Materiales y métodos. En este capitulo se describe el conjunto de
datos utilizado, el disefio experimental, las etapas de preprocesamiento del EEG
y la metodologia de analisis de conectividad dinamica aplicada, incluyendo el
calculo del indice wPLI, el enfoque sliding window y el algoritmo GenLouvain.

o Capitulo 5. Resultados. Se presentan los hallazgos derivados del anélisis,
combinando resultados cuantitativos y representaciones visuales. Se muestran las
variaciones en el nimero y dimension de comunidades, las particiones grupales
derivadas de la matriz de consenso y los valores del indice NMI como medida de
estabilidad. Ademas, se incluyen comparaciones entre bandas de frecuencia (alfa
y beta), condiciones experimentales y fases del estimulo, resaltando ejemplos de
reorganizaciéon modular y patrones de transicion o fragmentacion en las redes.
Finalmente, se analiza la influencia de los pardmetros y y w en la deteccion de
comunidades y en la interpretacion de la dinamica funcional.

o Capitulo 6. Discusion. En este capitulo se interpretan los resultados obtenidos a
la luz de la literatura revisada, destacando las implicaciones de los hallazgos para
la comprension de la reorganizacion cerebral inducida por la AOT. Se analizan
las diferencias observadas entre bandas de frecuencia, se discute la relevancia del
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uso de métricas de modularidad multicapa y se valoran las limitaciones
metodologicas del estudio.

Capitulo 7. Conclusiones. En esta seccion se sintetizan los principales resultados
del trabajo, subrayando la evidencia de que la AOT genera reorganizaciones
dindmicas en la conectividad cerebral captables mediante EEG y andlisis
multicapa. Asimismo, se plantean posibles aplicaciones clinicas en el ambito de
la neurorrehabilitacion y se proponen lineas de investigacion futuras que podrian
profundizar en la validacion de estos hallazgos y en su transferencia a contextos
clinicos.
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Capitulo 2. Revision del estado del arte:
Terapia de Observacion de la Accion vy
Conectividad Funcional dinamica

La AOT y el estudio de la dFC han mostrado un notable potencial para comprender la
reorganizacion de las redes cerebrales. En este capitulo se revisan los principales
hallazgos en este campo y las limitaciones que motivan el presente trabajo.

2.1. Estudios previos en AOT y conectividad cerebral

En los ltimos afios, la AOT se ha consolidado como una terapia prometedora en el campo
de la neurorrehabilitacion. A través de la observacion de acciones, se promueve el
aprendizaje motor y se inducen cambios positivos en la plasticidad neuromotora, incluso
sin necesidad de ejecutar fisicamente los movimientos. Por este motivo, la AOT se ha
planteado como una alternativa o complemento eficaz a la terapia fisica convencional
(Kim and Cho, 2016).

Diversos estudios han demostrado que la AOT puede inducir cambios significativos en la
conectividad funcional cerebral, favoreciendo procesos de reorganizacion y plasticidad
(Buccino et al., 2001; Rizzolatti et al., 2021). Sin embargo, el enfoque metodoldgico ha
variado considerablemente entre estudios, especialmente en cuanto a la técnica de registro
utilizada. Las dos herramientas mas utilizadas han sido la EEG y la resonancia magnética
funcional (fMRI).

En el caso del EEG, varios estudios se han centrado en el analisis de la desincronizacion
y resincronizacion relacionada con eventos (ERD/ERS) para caracterizar la actividad
cortical durante AOT (Muthukumaraswamy and Singh, 2008; Gonzalez-Rosa et al.,
2015). En particular, Kim y colegas (2016) observaron una clara desincronizacion del
ritmo mu en las regiones centrales (C3 y C4), caracterizando una activacion de la corteza
motora. Asimismo, la banda alfa demostré reducciones significativas en las regiones
frontal, central, parietal y occipital. Por el contrario, la actividad de la banda beta aument6
significativamente en las regiones central y occipital, con una mayor coherencia en las
areas frontocentrales. Estos resultados respaldan la hipotesis de una reactivacion de las
areas motoras inducida por la observacion (Kim and Cho, 2016).

Por su parte, Adham et al. (2024) estudiaron las respuestas corticales durante tareas de
observacion (O), imaginacion (Ol) y ejecucion motora (OM) de miembros inferiores.
Observaron una desincronizacion de la banda alfa en las regiones centroparietales durante
la ejecucion motora, asi como una modulacion progresiva del ritmo beta dependiendo del
tipo de tarea. Ademas, el analisis del rebote beta pone de manifiesto la necesidad de afiadir
intencion motora a la observacion de la accion para activar los mecanismos de validacion
motora. (Adham et al., 2024).

Desde un enfoque de conectividad funcional, Zhang y colegas (2018) utilizaron EEG y el
indice wPLI para explorar la interaccion entre la Action Observation Network (AON) y
la Mentalizing Network (MZN) durante la AOT. Encontraron que las acciones familiares
activaban predominantemente la AON, mientras que las ambiguas o sin intencion clara
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movilizaban la MZN. A nivel de red, se observd una reconfiguracion dindmica con
cambios en la GE y en la centralidad de ciertos nodos, destacando una transicion funcional
relevante durante la observacion de acciones (Zhang et al., 2018).

En el &mbito de los estudios basados en fMRI, la evidencia también respalda la capacidad
de la AOT para modificar los patrones de conectividad funcional cerebral. Un ejemplo
destacado es el estudio de Meng et al. (2023), quienes compararon la eficacia de una
intervencion de AOT basada en movimientos de Tai Chi (TC-AQOT) con la de una terapia
fisica convencional, aplicada en pacientes con enfermedad de Parkinson en fases
tempranas. Ambos enfoques terapéuticos resultaron efectivos, mostrando mejoras
significativas en la funcion motora, el equilibrio y la calidad de vida. Sin embargo,
unicamente el grupo que recibi6 TC-AOT mostré un incremento en la conectividad
funcional entre multiples regiones cerebrales, lo cual sugiere que esta modalidad de AOT
podria inducir una reorganizacion mas eficiente de los circuitos motores y cognitivos que
la terapia tradicional (Meng et al., 2023).

Por ultimo, Cordani y colegas (2021) analizaron la dFC en sujetos sanos durante y
después de la observacion de videos de acciones. Observaron una disminucion progresiva
de la dFC tras la tarea, lo que sugiere un proceso de adaptacion y reorganizacion funcional
posiblemente vinculado a mecanismos de consolidacion o automatizacion motora
(Cordani et al., 2021).

En conjunto, la literatura apoya la idea de que la AOT no solo activa el sistema motor
durante la observacion pasiva de acciones, sino que también promueve una
reorganizacion dindmica de las redes cerebrales. Estos efectos se han medido tanto en
escalas temporales rapidas (EEG) como espaciales (fMRI), y parecen modulados por
factores como la perspectiva del observador, la familiaridad de la accion y la complejidad
de la tarea. Sin embargo, los resultados disponibles son todavia heterogéneos y en muchos
casos dependen de la metodologia empleada, lo que dificulta extraer conclusiones
consistentes.

2.2. Limitaciones de la literatura existente

A pesar de los avances descritos, los estudios previos presentan limitaciones importantes.
En primer lugar, aunque la fMRI ha permitido identificar con gran detalle las regiones
cerebrales implicadas en la AOT, su baja resolucion temporal limita la posibilidad de
captar interacciones rapidas y dindmicas, que resultan fundamentales para comprender
codmo se coordinan las redes cerebrales durante la observacion de acciones. Por su parte,
el EEG ofrece la ventaja de registrar la actividad neuronal en escalas de milisegundos,
pero la mayoria de las investigaciones se han centrado en analizar ritmos relacionados
con eventos (ERD/ERS), sin profundizar en métricas de conectividad capaces de describir
con mayor precision las interacciones entre areas cerebrales.

Asimismo, los estudios que han abordado la conectividad funcional dinamica durante la
AOT son todavia escasos y, en general, no han empleado indicadores de modularidad que
permitan caracterizar como se reorganizan las comunidades funcionales a lo largo de la
tarea. A ello se suma una notable heterogeneidad metodologica, tanto en los paradigmas
experimentales como en las poblaciones analizadas y en las métricas utilizadas, lo que
dificulta la comparacion de resultados y la obtencion de conclusiones generalizables.
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En este contexto, se hace necesario un estudio que integre el registro EEG con medidas
de conectividad funcional y analisis de modularidad, con el fin de caracterizar de manera
mas precisa los cambios dinamicos que la AOT puede inducir en la organizacion cerebral.
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Capitulo 3. Hipotesis y Objetivos

En este capitulo se presenta la hipotesis central y los objetivos que orientan el presente
TFG.

3.1. Hipotesis

El presente TFG plantea la hipotesis de que la aplicacion de la AOT induce una
reorganizacion dindamica de las redes cerebrales, que puede observarse mediante
cambios en la estructura modular a lo largo del tiempo. En particular, se espera que
durante la observacion de acciones se produzcan patrones de modularidad especificos que
reflejen el papel del sistema de neuronas espejo en el aprendizaje motor y la simulacion
de movimientos. A partir del andlisis de sefiales EEG y mediante la aplicacion del
algoritmo de deteccion de comunidades multicapa, se prevé identificar patrones de
conectividad que reflejen la formacion, estabilidad o disolucion de comunidades
funcionales durante la tarea. Esta reconfiguracion dindmica aportaria evidencia sobre
como se organiza el cerebro ante estimulos visomotores, y contribuiria a una mejor
comprension del papel de la modularidad en el aprendizaje motor y la simulacion de
acciones observadas.

3.2. Objetivos del trabajo

El objetivo principal de este TFG es identificar los patrones de la reorganizacion
dinamica de la conectividad funcional del cerebro durante la AOT en sujetos sanos,
a partir de registros EEG. Para ello, se estudia la evolucion temporal de la arquitectura
modular de las redes cerebrales, aplicando técnicas de deteccion de comunidades
multicapa sobre las matrices de conectividad.

Especificamente, los objetivos son:

[.  Obtener los patrones de conectividad funcional a partir de las senales EEG
mediante el indice de fase wPLI, que permite estimar la conectividad funcional
minimizando el efecto del volumen conductor.

II.  Desarrollar y aplicar un enfoque de conectividad funcional dinamica mediante
ventanas deslizantes para capturar como varia la interaccidon entre regiones
cerebrales a lo largo del tiempo durante la observacion de acciones.

III.  Identificar la organizacion modular de dichas redes utilizando el algoritmo
GenLouvain para detectar comunidades cerebrales y estudiar su estabilidad y
evolucion temporal.

IV. Evaluar el impacto de diferentes pardmetros (como gamma y omega) en la

deteccion de comunidades y evaluar como se reorganizan funcionalmente las
redes cerebrales durante la AOT.
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Capitulo 4. Materiales y métodos

En esta seccion se presentan los materiales y métodos empleados en este TFG para
alcanzar los objetivos propuestos. Se describe el conjunto de datos utilizado, el disefio
experimental y las distintas herramientas empleadas. Todos los analisis se llevaron a cabo
en el entorno de MATLAB.

4.1. Base de datos y paradigma experimental

El conjunto de datos empleado en este estudio procede de un trabajo previo realizado en
el mismo laboratorio (Coelli et al., 2023), en el que se registraron sefales de EEG durante
tareas de observacion de la accion (AO) y MI. En el presente trabajo, inicamente se han
analizado los ensayos correspondientes a la condicion de AO, sin incluir los datos de MI.

Las senales se registraron en 46 participantes sanos y todos ellos diestros. El conjunto lo
conforman 22 mujeres y 24 hombres, con edades comprendidas entre los 20 y los 30 afios.
La adquisicion de las sefales se realizd con un casco de 61 canales y el sistema de registro
poligrafico SD LTM 64 Express (Micromed, Mogliano Veneto, Italia). Las senales se
muestrearon a una frecuencia de 1024 Hz y las impedancias se mantuvieron por debajo
de 20 KOhm mediante el uso de un hidrogel conductor (Coelli et al., 2023).

El protocolo de AO y MI fue aprobado por el Comité Etico Interno del Istituto Clinico
Humanitas (Rozzano, Italia). Todos los sujetos firmaron un consentimiento informado
antes de los registros.

En la tarea de AO, los sujetos observaban un video de 6.5 segundos en el que se mostraba
un movimiento de la extremidad superior desde una perspectiva en primera persona. La
accion era realizada por un actor del mismo sexo que el participante, y solo era visible el
miembro superior en movimiento. La duracion total de cada estimulo alcanzaba los 11.5
segundos, ya que el video iba precedido por un periodo de reposo de 3 segundos (fijacion
en una cruz) y un periodo de preparacion de 2 segundos (presentacion de un circulo rojo).
La secuencia completa se repitio en 20 ensayos (Coelli et al., 2023).

La tarea de MI sigui6 exactamente la misma estructura temporal. Sin embargo, en este
caso se presentaba inicamente el primer fotograma del video durante los 6.5 segundos, €
inmediatamente después se pedia a los participantes que imaginaran estar ejecutando el
movimiento ellos mismos. También en esta condicidon se realizaron 20 ensayos. Cabe
sefalar que esta tarea no incluia retroalimentacion en tiempo real, por lo que no se trataba
de un paradigma de interfaz cerebro-computador (BCI), sino de un ejercicio de
imaginacion motora sin feedback externo.

En total, cada participante completod tres bloques de estimulacion (W1, W2 y W3),
separados por periodos de descanso durante los cuales podian moverse libremente. Cada
bloque presentaba un tipo distinto de movimiento transitivo y se diferenciaba por el grado
de interaccion con un objeto (véase Figura 3.1). W1 consistia en recoger cinco monedas
pequetiias, W2 presentaba el uso de un martillo para clavar un clavo y W3 mostraba la
interaccion con unas pinzas para mover un objeto pequefio a un vaso de plastico. El orden
de presentacion de los videos se determind de forma aleatoria para cada participante
(Coelli et al., 2023).
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Figura 4.1 Secuencia de estimulacion para las tareas de AO y MI. Imagen adaptada de (Coelli et
al., 2023).

4.2. Preprocesado y analisis de datos

Los datos empleados en este trabajo fueron proporcionados ya preprocesados por el
grupo de investigacion responsable de la recogida. El preprocesamiento de las sefiales de
EEG se realizo utilizando el toolbox EEGLAB junto con otros scripts personalizados
adaptados a los objetivos del estudio. En primer lugar, se aplico un filtro Finite Impulse
Response (FIR) paso banda, de fase cero, con un rango de frecuencia entre 1 y 45 Hz, con
el fin de eliminar artefactos de baja frecuencia y ruido eléctrico de alta frecuencia.
Posteriormente, las sefiales se remuestrearon a 256 Hz aplicando un filtro antialiasing, y
se realizd una inspeccion visual para identificar y eliminar los canales con mala calidad
de sefial (Coelli et al., 2023).

Las senales se segmentaron en ensayos comprendidos entre -5 y +6.5 segundos con
respecto al inicio de la presentacion del estimulo principal (video). Después, se aplico un
analisis de componentes independientes (ICA) mediante el algoritmo Extended Infomax
sobre los ensayos concatenados, con el objetivo de identificar y eliminar fuentes de
artefactos no cerebrales, como parpadeos o actividad muscular. Los ensayos con
artefactos residuales se revisaron manualmente y se descartaron (Coelli ef al., 2023).

Para cada participante y tipo de video se seleccionaron 18 ensayos (trials) limpios,
correspondientes al intervalo comprendido entre el inicio del estimulo y el final de la fase
de observacion. De esta manera, el conjunto de datos utilizado se estructurd en matrices
de 55 electrodos x 2944 muestras x 18 ensayos diferentes. Aunque la adquisicion original
se realizo con un casco de 61 electrodos (Coelli et al., 2023), tras el preprocesado se
restringio el andlisis a 55 canales, descartando aquellos que presentaban peor calidad de
sefial o cuya localizacion periférica resultaba menos relevante para el estudio de la
dindmica sensoriomotora.
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Cabe senalar que, debido a la calidad variable de los registros, el nimero de sujetos
incluidos en cada anélisis no fue el mismo para todas las condiciones. En W1 se
excluyeron los sujetos 16 y 38, mientras que en W2, los sujetos 13, 14, 15, 16, 26 y 38.
Finalmente, en W3 se dispuso de datos completos para todos los participantes.

Asimismo, el analisis se restringio a las bandas alfa (8—13 Hz) y beta (13-30 Hz), por ser
las mas estrechamente vinculadas a la actividad sensorimotora y a los procesos de
observacion de la accion. Tal como se expone en la revision de la literatura (seccion 2),
estas bandas muestran patrones consistentes de ERD/ERS en estudios previos de AOT
(Kim and Cho, 2016), lo que facilita la comparabilidad con trabajos anteriores y, al mismo
tiempo, reduce la complejidad analitica frente al uso de un rango mas amplio de
frecuencias.

4.3. Estimacion de la conectividad funcional

En esta seccion se detallan el indice y los pardmetros empleados para realizar el analisis
de conectividad, que constituye el objetivo principal de este trabajo.

4.3.1. indice wPLI

Para cuantificar la conectividad funcional entre regiones cerebrales, se emple6 el wPLI
(Detti et al., 2019). Este indice mide la consistencia del desfase de fase entre pares de
sefales EEG a lo largo del tiempo, proporcionando una estimaciéon robusta de la
interaccion neuronal y reduciendo la influencia de artefactos como el volume conduction
(Stam, Nolte and Daffertshofer, 2007).

El PLI es una métrica que descarta las diferencias de fase proximas a cero, ya que estas
suelen deberse a fuentes comunes o referencias activas. Para descartar estas diferencias,
el PLI se basa en calcular un indice de asimetria que mide la probabilidad de que la
diferencia de fase A¢ entre dos sefales se encuentre dentro del intervalo (—m, ) (Detti
etal., 2019).

En este contexto, PLI = 0 indica ausencia de acoplamiento o un acoplamiento con
diferencia de fase centrada en 0 (mod =), mientras que PLI = 1 refleja un acoplamiento
de fase perfecto con un valor de A¢ distinto de 0 (mod m). Cuanto mas fuerte sea este
acoplamiento de fase distinto de cero, mayor sera el valor del PLI (Detti et al., 2019).

El wPLI constituye una extension del PLI. La mejora clave de este indice es que pondera
cada diferencia de fase por la magnitud de la componente imaginaria del espectro
cruzado. Esto atenua el impacto de ruidos no correlacionados y aumenta la capacidad para
detectar variaciones reales en la sincronizacion de fase (Vinck ef al., 2011).

El wPLI se define mediante la siguiente ecuacion:

lon o _
Wpuh’m:|sz=1sm(¢h(p) (D)) 0

%Zﬁﬂhin(d)h(m — (@)
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donde h y k se definen como el par de canales o electrodos cuya conectividad se estd
midiendo, y At corresponde a una ventana temporal con N muestras o instantes de
tiempo. Las fases ¢, (p) ¥ ¢, (p) son las de las senales en el instante p para los canales
hy k, respectivamente (Detti et al., 2019).

El indice wPLI también toma valores entre 0 y 1. Las diferencias de fase cercanas a cero
apenas contribuyen al valor final, lo que disminuye la probabilidad de detectar
conectividad espuria causada por volume conduction y mejora la capacidad para
identificar sincronizacion genuina (Detti ef al., 2019).

Con el objetivo de implementar este indice en el presente estudio, las fases de las sefiales
EEG se obtuvieron siguiendo el enfoque propuesto por Cohen, basado en la convolucién
de wavelets de Morlet con la sefal previamente filtrada (Cohen and Mike X, 2014). Para
cada canal, se calculé la Transformada Rapida de Fourier (FFT) de la senal, vy,
posteriormente, para cada frecuencia, se multiplicd punto a punto por la FFT de la wavelet
correspondiente. La transformada inversa (IFFT) proporcion6 una sefial compleja de la
cual se extrajo la fase instantdnea en cada punto temporal.

El andlisis se realizd en un conjunto de 25 frecuencias equiespaciadas entre 2 y 40 Hz,
con especial atencion a las bandas alfa (8—13 Hz) y beta (14-30 Hz). A partir de las fases
instantaneas, se calcul6 el indice wPLI empleando ventanas de 1 segundo (256 muestras)
con un solapamiento del 50% (128 muestras). Dado que cada ensayo tenia una duracion
aproximada de 11.5 segundos (desde -5 hasta +6.5 s respecto al inicio del estimulo), este
procedimiento generd un total de 22 ventanas consecutivas.

Finalmente, el calculo del wPLI entre todos los pares de electrodos en cada ventana
temporal permitid construir matrices de conectividad funcional para cada video
experimental (W1, W2 y W3), cada banda de frecuencia (alfa y beta) y cada sujeto. Las
matrices resultantes tuvieron dimensiones 55 x 55 x 22, correspondientes a los 55
electrodos y las 22 ventanas temporales analizadas.
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Figura 4.2 Ejemplo de matrices de conectividad funcional obtenidas mediante el indice wPLI en
la condicion W1 (accion de recoger monedas) y en la banda alfa (8—13 Hz).

Finalmente, las matrices de conectividad fueron umbralizadas. Dado que los valores de
umbral suelen determinarse de manera arbitraria, lo mas adecuado es caracterizar las
redes a lo largo de un rango amplio de densidades con el fin de obtener una descripcién
mas robusta y fiable de su organizacion topoldgica (Rubinov and Sporns, 2010). Por esta
razon, manteniendo el parametro w = 1, se evaluaron diferentes valores de densidad
(10%, 20% y 30%). En este contexto, se fijo un limite inferior del 10%, ya que densidades
mas bajas tienden a generar una fragmentacion excesiva de la red, y un limite superior
del 30%, dado que valores mayores incrementan la probabilidad de incluir conexiones
espurias y de enmascarar la estructura modular (Fornito, Zalesky and Bullmore, 2010).
Los resultados mostraron que, a medida que se incrementa el umbral, se observa una
tendencia decreciente en el nimero de comunidades detectadas, lo cual concuerda con la
mayor restriccion impuesta a la red al conservar inicamente las interacciones mas fuertes.
De esta manera, se consider6 el 30% como un compromiso adecuado entre la reduccion
de la fragmentacion, la minimizacion de las conexiones espurias, y la alta variabilidad
intersujeto (Calcagno et al., 2024), garantizando una caracterizacion mas estable de la
dindmica modular.
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4.4. Deteccion de comunidades multicapa

En esta seccion se presenta el procedimiento de deteccion de comunidades multicapa
aplicado a las matrices de conectividad obtenidas, con el fin de analizar su organizacion
modular y su evolucion temporal en funcidon de las condiciones experimentales.

4.4.1. Matriz de modularidad

Una vez obtenidas las matrices de conectividad para cada sujeto, tipo de video y banda
de frecuencia (alfa y beta), y a lo largo de 22 ventanas temporales, se reorganizd su
estructura en un arreglo de celdas donde cada elemento correspondia a la matriz de
conectividad de una ventana especifica. Este formato es necesario, ya que la funcién de
calculo de modularidad empleada requiere una celda como entrada.

La matriz B representa los valores de modularidad que posteriormente se utilizan en el
algoritmo de deteccion de comunidades. Se trata de una matriz dispersa de dimensiones
[N x T] x [N x T], donde N es el numero de nodos y T el nimero de capas o ventanas de
la red. Esta matriz indica en qué medida cada conexion contribuye a la calidad de la
particién en comunidades. Un valor positivo significa que los nodos estan mas conectados
de lo que estarian si no existieran comunidades, mientras que un valor negativo indica lo
contrario (Mucha et al., 2010).

La matriz de modularidad multicapa B se calcul6 de la siguiente manera:
B = (Aiji —viPij1) i + 6ijwjir 2)

donde A;j; es la matriz de conectividad entre los nodos i y j en la capa [ (calculada
mediante el indice wPLI), P;;; es el valor esperado de conectividad segun el modelo nulo,
81 y 6;j son deltas de Kronecker que activan respectivamente las conexiones intracapa e
intercapa, wj;- es el parametro de acoplamiento entre capas, mientras que y; es el
parametro de resolucion estructural (Mucha et al., 2010).

El parametro y controla las conexiones intralayer (dentro de una misma capa)
comparando la conectividad real entre dos nodos con la conectividad esperada segiin un
modelo nulo. Actia como un peso sobre dicho modelo: si la diferencia es positiva, los
nodos tienden a permanecer en la misma comunidad, mientras que, si es negativa, tienden
a separarse. Determina el tamafio de los modulos dentro de cada capa. Valores altos
producen comunidades mas pequefias y numerosas; valores bajos generan comunidades
mas grandes y en menor numero (Farahani et al., 2024).

Por su parte, w regula las conexiones interlayer (entre diferentes capas), determinando la
fuerza con la que un mismo nodo se conecta a lo largo de las distintas ventanas
temporales. Si es alto, favorece que el nodo permanezca en la misma comunidad a lo largo
del tiempo, lo que reduce el nimero de comunidades y aumenta su tamafio. En cambio,
un valor bajo facilita que el nodo cambie de comunidad entre ventanas, generando mas
comunidades y de menor tamafio (Mucha et al., 2010).
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En este trabajo se mantuvo gamma fija en 1, ya que su influencia requiere un estudio mas
profundo. Por otro lado, se modificaron los valores de omega con w € [0.1,0.5,0.7,1]
porque el objetivo principal era analizar la dindmica del cambio de comunidades a lo
largo del tiempo, comparando la organizacion modular antes y después de la observacion
del video.

4.4.2. Algoritmo GenLouvain

Una vez definida B, se utiliz6 como entrada para el algoritmo de deteccion de
comunidades GenLouvain, que busca grupos de nodos (comunidades) fuertemente
conectados entre si. El algoritmo comienza asignando cada nodo a su propia comunidad
y, de forma iterativa y en orden aleatorio, evalia si mover un nodo a otra comunidad
mejora la modularidad Q. Si es asi, realiza el cambio. Cuando no es posible mejorar mas,
agrupa los nodos que han quedado en la misma comunidad y los trata como un Unico
“mega-nodo”, repitiendo el proceso hasta que la modularidad no aumenta (Zamani
Esfahlani et al., 2021).

La funcién de modularidad se define mediante la siguiente ecuacion:

! 3
Q= ﬂziﬂr{(‘qiﬂ - VlPij1)5lr + 6ijwjlr} 6(gil:gjr) )

donde g;; indica la asignacion de comunidad del nodo i en la capa [, y g;, la asignacion
del nodo j en la capa r. Ademds, & (gil, g jr) = 1 si los dos nodos estan asignados a la
misma comunidad y 0 en caso contrario (Mucha et al., 2010).

La modularidad de la red multicapa se estim6 100 veces en cada caso, ya que el valor de
Q puede presentar variaciones entre ejecuciones debido al caracter heuristico del
algoritmo (Bassett et al., 2013; Rizkallah ef al., 2018). A partir de estas repeticiones se
construy6 una matriz de consenso, cuyos elementos representan la proporcion de veces
en la que cada par de nodos fue asignado a la misma comunidad.

De manera similar, para cada ventana temporal se generé un modelo nulo aleatorio
mediante la estrategia de randomizacion de redes (Network randomization) implementada
en el Brain Connectivity toolbox (BTC). Este enfoque genera redes aleatorias que
preservan la distribucion de grados de la red original, mientras redistribuyen las
conexiones entre nodos (Rubinov and Sporns, 2010). Este procedimiento también se
repitié 100 veces, obteniendo en cada repeticion una particion modular y, a partir de todas
ellas, una matriz de consenso correspondiente al modelo nulo (Bassett et al., 2013;
Rizkallah et al., 2018).

El proceso de umbralizacion final consistid en conservar Unicamente aquellas
asociaciones de la matriz de consenso real que aparecian con mayor frecuencia que en el
modelo nulo. Finalmente, sobre la matriz de consenso umbralizada se aplico el algoritmo
de GenLouvain para obtener la particion modular definitiva (Rizkallah et al., 2018).
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De esta manera, obtuvimos finalmente una matriz de particiones S, en la cual cada nodo
recibia una etiqueta de comunidad. El tamano de esta matriz fue de 55 x 22,
correspondiente al nimero de nodos y de ventanas temporales, respectivamente. Este
procedimiento se repitio de forma independiente para cada banda de frecuencia, cada
sujeto, cada condicion de video y para los distintos valores de w € [0.1,0.5,0.7,1].

4.5. Métricas para el analisis dinamico de
comunidades

Con el fin de evaluar el comportamiento dindmico de la red cerebral durante la AOT, se
calcularon varias métricas derivadas de la deteccion de comunidades. Estas medidas
permiten caracterizar como evoluciona la organizacion modular a lo largo de las ventanas
temporales y analizar si dicha organizacion varia en funcién de las condiciones
experimentales (videos), de la banda de frecuencia considerada y de los diferentes valores
del pardmetro de acoplamiento temporal. De este modo, no solo se estudia la
configuracion modular en un instante concreto, sino también su reconfiguracion en el
tiempo.

4.5.1. Numero de comunidades

A partir de la matriz de particiones S generada por el algoritmo de deteccion multicapa,
se contabilizo el nimero de comunidades distintas presentes en cada ventana temporal.
Esta métrica se interpreta como un indicador del grado de segregacion funcional de la red
en cada instante. En la literatura se han empleado enfoques similares para extraer métricas
dindmicas a partir de la evolucion temporal de las comunidades (Designed Research; D,
Performed Research; D and Pnas, 2011; Rizkallah et al., 2018; Puxeddu, Petti and Astolfi,
2021)

El célculo se realizé en las 22 ventanas temporales definidas, para cada banda (ay ) y
condicion experimental, considerando Uinicamente los sujetos con datos disponibles para
cada video (N = 46 menos los descartados). El procedimiento se repitid para distintos
valores del pardmetro de acoplamiento temporal w, con el objetivo de analizar como
influye en la particion modular obtenida.

Para ello, se analizaron los distintos valores de w y, para cada uno, se procesaron todos
los sujetos validos. En cada ventana temporal se identificaron las comunidades presentes
y se contabilizo cudntas distintas aparecian. Los resultados se almacenaron en una matriz
de dimensiones sujetos x ventanas y posteriormente en una estructura tipo celda que
guarda, para cada w, la distribucion completa del nimero de comunidades en todos los
sujetos y ventanas.

Finalmente, se calcul6 la media del nimero de comunidades por ventana, promediando

entre todos los sujetos, para obtener la evolucion temporal media de la segregacion
modular bajo cada condicion, banda y valor de omega.
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4.5.2. Dimension de comunidades

La dimensién de comunidad se define como el numero de nodos que componen cada
modulo en una ventana temporal determinada. Su analisis permite estudiar como varia el
tamafio de las comunidades a lo largo del tiempo y entre condiciones experimentales. Esta
métrica se ha utilizado en estudios previos para caracterizar la estructura modular de redes
cerebrales y su evolucion dinamica (Bassett et al., 2011; Puxeddu, Petti and Astolfi,
2021).

Se trata de una medida complementaria al nimero de comunidades, ya que en lugar de
contabilizar cuantas comunidades existen en una particion, describe su tamafio medio. De
esta manera, ambas aportan informacion relacionada: cuando la red se fragmenta muchas
comunidades, cada modulo tiende a ser mas pequeio, mientras que una red menos
fragmentada concentra los nodos en comunidades mas grandes.

En redes cerebrales, los tamafios de comunidad no son homogéneos y pueden presentar
una amplia variabilidad, coexistiendo muchas comunidades pequefias con unas pocas de
gran tamafo (Lancichinetti, Fortunato and Radicchi, 2008).

Su calculo se realiz6 de manera analoga al del niimero de comunidades: para cada
combinacion de w, sujeto y ventana, se identificaron las comunidades presentes y se
contaron cuantos nodos integraban cada una de ellas. Los resultados se almacenaron en
una estructura que organiza los tamafios de comunidad por w, sujeto y ventana, lo que
permite posteriormente obtener la dimension media por ventana promediando entre todos
los sujetos validos, y asi describir la evolucion temporal del tamafio de los mddulos bajo
cada condicidn, banda y valor de omega.

4.5.3. Matriz de consenso

Con el objetivo de obtener una representacion grupal que integrase la informacion de
todos los sujetos en cada condicidén experimental, banda de frecuencia y valor de w, se
construy6 una matriz de consenso en cada una de las 22 ventanas temporales. Este
enfoque se ha utilizado en anélisis de redes cerebrales para derivar estructuras modulares
representativas a nivel de grupo (Jeub, Sporns and Fortunato, 2018) y permite facilitar la
comparacion entre condiciones a partir de una particion comun.

En la practica, para cada valor de w y ventana temporal se recopilaron las particiones de
comunidades de todos los sujetos en una matriz de dimensiones 55 x N _sujetos, donde
las filas corresponden a los nodos y cada columna indica la etiqueta de comunidad de un
sujeto en esa ventana. A partir de estas matrices se calculd una matriz de consenso de 55
x 55, en la que cada elemento representa la proporcion de veces que dos nodos fueron
asignados a la misma comunidad en esa ventana.

Posteriormente, sobre cada matriz de consenso se calculod la modularidad y se aplico el
algoritmo GenLouvain, obteniendo una particion grupal Unica de los nodos para esa
ventana. Repitiendo este procedimiento en las 22 ventanas, las particiones obtenidas se
organizaron en una matriz final de dimensiones 55 x 22, donde las filas representan los
nodos y las columnas las ventanas temporales.
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De esta manera, cada nodo queda etiquetado en comunidades a lo largo de todas las
ventanas, proporcionando una representacion dindmica y grupal de la organizacion
modular de la red. Este proceso, repetido para cada valor de w, permite analizar y
comparar la evolucion temporal de la modularidad entre videos y bandas de frecuencia.

4.5.4. NMI

Para evaluar la estabilidad temporal de la organizacién modular a nivel grupal se utilizé
el indice Normalized Mutual Information (NMI). Este indice permite estimar cudnta
informacion de una particion puede explicarse a partir de otra. Es decir, en qué medida
conocer una particion aporta informacion sobre la otra inicamente a partir de la estructura
de la red (Danon, Diaz-Guilera and Arenas, 2006).

Sean X e Y las variables aleatorias que describen las asignaciones de comunidad de dos
particiones distintas, la informacion mutua /(X,Y) mide la dependencia estadistica entre
ambas, es decir, cuanta informacion del etiquetado X se puede conocer a partir de Y, y
viceversa. Sin embargo, dado que /(X;Y) no tiene un limite superior definido, se utiliza
una version normalizada que permite acotar los valores entre 0 y 1, facilitando la
interpretacion y la comparacion entre casos (Strehl and Ghosh, 2002).

En este trabajo se emplea la normalizacion basada en la media geométrica de las entropias
de las dos particiones, propuesta en (Strehl and Ghosh, 2002), por su analogia con un
producto escalar normalizado. La expresion final es:

I(X,Y) (4)

JHX) -HQY)

NMI(X,Y) =

donde H(X) y H(Y) representan las entropias de las particiones X e Y. De esta forma, el
NMI toma el valor 1 cuando ambas particiones son idénticas, y 0 cuando son
completamente independientes. (Danon, Diaz-Guilera and Arenas, 2006).

En nuestro caso, las particiones comparadas corresponden a las obtenidas tras aplicar el
algoritmo GenLouvain sobre las matrices de consenso en ventanas temporales
consecutivas. Dichas particiones se organizaron en una matriz grupal de 55 x 22, donde
cada columna representa la asignacion de comunidades de los 55 nodos en una ventana.
A partir de esta representacion, se calculd el NMI entre las particiones de las ventanas 1—
2, 2-3, y asi sucesivamente hasta la pareja 21-22, obteniendo un total de 21 valores por
cada combinacion de condicion experimental, banda de frecuencia y valor de w.

Este procedimiento se repitid para distintos valores del parametro omega y para todos los
videos, lo que permitié evaluar cémo influye en la estabilidad de la particion modular.
Un valor medio de NMI cercano a 1 indica que la red mantiene una organizacion modular
estable entre ventanas consecutivas, mientras que valores mas bajos reflejan una
reconfiguracion modular mas frecuente a lo largo del tiempo.
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4.6. Analisis estadistico

Para evaluar la significancia de las diferencias observadas en la métrica de nimero de
comunidades se aplico el test de Friedman. Dado que los datos no mostraron ser normales
y homocedasticos, este procedimiento no paramétrico es adecuado para disefos de
medidas repetidas (Zippo et al., 2018). Este test se considera la alternativa al ANOVA de
un factor cuando los datos no cumplen los supuestos de normalidad y se utiliza para
comparar k condiciones medidas sobre los mismos sujetos (disefio intrasujeto). La
hipdtesis nula (H,) establece que las distribuciones son iguales a lo largo de las medidas
repetidas, mientras que la hipdtesis alternativa (H;) plantea que existen diferencias entre
condiciones (Kim, 2014).

El procedimiento consiste en transformar los valores en rangos dentro de cada sujeto y
calcular las sumas de rangos por condicion. A continuacion, se evalua si estas difieren
significativamente entre si mediante un estadistico con distribucion aproximada chi-
cuadrado. La formula empleada es:

k
X2=LE R?—3N:(k+1)
"UON-k(k+1)Lujo, ! (5)

donde k es el namero de condiciones, N es el nimero de sujetos y R; es la suma de los
rangos en la condicion j.

En este trabajo, el test de Friedman se aplico de manera independiente en cada una de las
22 ventanas temporales. Para ello, se consideraron todos los sujetos validos y los cuatro
valores del parametro de acoplamiento w (0.1, 0.5, 0.7 y 1). De esta forma, en cada
ventana se disponia de cuatro vectores de datos correspondientes al numero de
comunidades obtenido por cada sujeto en cada valor de w. Sobre estos vectores se aplico
el test, obteniendo un p-valor por ventana. Se estableci6 un nivel de significacion de a =
0.05, de modo que, cuando el valor resultaba significativo (p < 0.05), se rechazaba la
hipotesis nula y se concluia que la distribucion diferia entre los distintos valores de w. En
total se obtuvieron 22 p-valores, uno por cada ventana temporal, lo que permitio evaluar
si la dindmica modular mostraba diferencias significativas entre valores de w en el
tiempo.

Cabe sefialar que el test se aplicd Gnicamente a la métrica de nimero de comunidades.

Dado que la dimensién de comunidades constituye una medida complementaria y
directamente relacionada, su analisis estadistico habria arrojado resultados equivalentes.
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Capitulo 5. Resultados

Una vez descrita la metodologia empleada, en este capitulo se presentan los resultados
obtenidos. En primer lugar, se muestran los resultados con los parametros por defecto, es
decir, fijando y = 1 y w = 1. A continuacién, se presentan los resultados obtenidos al
modificar los valores del parametro w € [0.1,0.5,0.7,1], con el fin de analizar su
influencia en la dindmica modular. Las métricas consideradas (nimero de comunidades,
dimension de comunidades, matriz de consenso y NMI) se muestran tanto para los valores
por defecto como para los valores modificados de omega, permitiendo asi una
comparacion directa entre condiciones experimentales, bandas de frecuencia y
configuraciones del modelo.

5.1. Reconfiguracion modular inducida por la AOT

En primer lugar, se analiz6 la dindmica modular con los parametros por defecto (y =1y
w = 1). En este caso, se representan las particiones de los 55 nodos en comunidades a lo
largo de las 22 ventanas temporales, donde cada color corresponde a una comunidad
distinta. En las figuras, cada recuadro corresponde a un sujeto. El eje X representa las
ventanas temporales y el eje Y los nodos. Asi, las lineas horizontales muestran la
pertenencia de cada nodo a una comunidad a lo largo del tiempo: cuando el color
permanece estable, el nodo sigue en la misma comunidad, mientras que los cambios de
color indican transiciones comunitarias. Ademas, cuando dos nodos presentan el mismo
color en una ventana determinada, significa que en ese instante pertenecen a la misma
comunidad.

Se observa que, en todos los casos, los nodos no permanecen estaticos, sino que presentan
una clara reconfiguracion a lo largo del tiempo. Este efecto es especialmente evidente en
torno a los momentos marcados por las dos lineas rojas discontinuas: la primera indica el
inicio del proceso de preparacion (sefialado experimentalmente por un circulo rojo) y la
segunda corresponde al inicio del video. Estos puntos temporales actian como hitos que
desencadenan reorganizaciones significativas en la estructura modular de la red cerebral.

En la Figura 5.1 (condicion W1, banda alfa) se aprecia que la dindmica modular cambia
notablemente tras el inicio del video, momento en el que las comunidades muestran una
mayor fragmentacion. Ademas, se observa una marcada variabilidad entre sujetos:
algunos presentan transiciones frecuentes en la asignacion de comunidades, mientras que
otros mantienen patrones mas estables. Por ejemplo, en los sujetos 6 y 23 muchas filas
cambian repetidamente de color a lo largo de las ventanas, reflejando una alta
reconfiguracion modular. En contraste, en los sujetos 8 y 16 la mayoria de las filas
mantienen un color homogéneo y continuo, lo que indica una mayor estabilidad
comunitaria en el tiempo.

Enla Figura 5.2 (condicion W1, banda beta) se aprecia una mayor fragmentacion modular
en comparacion con la banda alfa, reflejada en un incremento de los cambios de color a
lo largo de las ventanas. Esto indica que la dinamica en beta es mds inestable y presenta
transiciones mas frecuentes entre comunidades. A diferencia de lo observado en alfa,
apenas se encuentran sujetos con franjas homogéneas y continuas, lo que revela una
menor estabilidad comunitaria. En practicamente todos los sujetos se aprecia una clara
reorganizacion, siendo especialmente evidente en el sujeto 31.
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En la Figura 5.3 (condicion W2, banda alfa) se aprecia que, aunque se mantiene el mismo
patron general observado en la banda alfa de W1, la dindmica cambia en funcion del
video. Sujetos como el 6 o el 23, que en W1 presentaban una fuerte fragmentacion,
muestran en W2 un comportamiento mas estable, mientras que otros, que en la primera
condicion mantenian comunidades mas homogéneas, en W2 evidencian una mayor
variabilidad.

En la Figura 5.4 (condicion W2, banda beta) se observa una dindmica mas fragmentada
que en la banda alfa de la misma condicidn, con la mayoria de los sujetos mostrando
transiciones frecuentes entre comunidades a lo largo de las ventanas. A diferencia de W1
beta, donde casi todos los sujetos presentaban una reorganizacion constante, en W2 beta
se aprecian algunos casos con mayor estabilidad relativa. Por ejemplo, el sujeto 42
mantiene franjas mas homogéneas, mientras que en otros como el 12 o el 20 predomina
la reconfiguracion modular continua.

En este apartado se muestran unicamente los resultados de las condiciones W1y W2, ya
que representan los casos mds contrastados y permiten ilustrar de forma clara las
diferencias en la dindmica modular. La condicion W3 presenta un comportamiento
intermedio entre ambas, con patrones de reorganizacion que no alcanzan la marcada
fragmentacion de W1 ni la variabilidad de W2, por lo que se ha considerado menos
representativa a efectos de exposicion.
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5.2. Influencia del parametro w en la organizacion
modular

Tras el andlisis inicial con y = 1 y w = 1, se exploré como la modificacion de w,
pardmetro que regula el grado de acoplamiento temporal entre ventanas, afecta a la
organizacion modular. A modo ilustrativo, en las Figuras 5.5 — 5.8 se muestran los
resultados del sujeto 1 en la condicion W1 - banda alfa para distintos valores de w €
[0.1,0.5,0.7,1].

Cuando w = 0.1 (Figura 5.5), se observa una fuerte variabilidad: los nodos cambian
frecuentemente de comunidad, lo que refleja una red con alta flexibilidad temporal. A
medida que se incrementa el valor de w, el acoplamiento entre ventanas se hace mas
fuerte y las particiones resultantes tienden a ser mas consistentes. Por ejemplo, con w =
0.5 (Figura 5.6) ya se aprecia una reduccion de los cambios bruscos entre ventanas, y con
w = 0.7 (Figura 5.7) esta tendencia se acentia, con comunidades mas regulares a lo largo
del tiempo. Finalmente, con w = 1 (Figura 5.8) los nodos permanecen en gran medida
dentro de las mismas comunidades durante todo el periodo, lo que implica una particion
mucho mas homogénea y con menos fragmentacion que en valores bajos de w.

Este ejemplo individual muestra como el pardmetro w actia como un factor de
acoplamiento temporal, forzando en mayor medida a los nodos a mantener su asignacion
comunitaria entre ventanas consecutivas. Con valores bajos de w se capturan mejor las
fluctuaciones dinamicas de la red, mientras que con valores altos las particiones tienden
a ser mas uniformes a lo largo del tiempo.

No obstante, estas observaciones son solo cualitativas. En los siguientes apartados se
cuantificaran de manera sistematica mediante diferentes métricas (nimero de
comunidades, dimension de comunidades, NMI y matrices de consenso), lo que permitira
evaluar con mayor precision como la eleccion de ® modula la dindmica de las
comunidades entre condiciones y sujetos.
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Window

Figura 5.5 Ejemplo ilustrativo de las particiones en comunidades del sujeto 1 en la condicion
Wl-alfa (w =0.1).

sbj 1

Window

Figura 5.6 Ejemplo ilustrativo de las particiones en comunidades del sujeto 1 en la condicion
Wil-alfa (w =0.5).
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Figura 5.7 Ejemplo ilustrativo de las particiones en comunidades del sujeto 1 en la condicion
Wil-alfa (w =0.7).
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Window

Figura 5.8 Ejemplo ilustrativo de las particiones en comunidades del sujeto 1 en la condicion
Wl-alfa (w =1).
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5.3. Evaluacion mediante métricas dinamicas

Para caracterizar la dindmica modular se calcularon distintas métricas complementarias:
el nimero de comunidades, la dimension de las comunidades y la combinacion de
matriz de consenso con NMI. Estas medidas permiten evaluar la fragmentacion, el
tamafio y la estabilidad de la organizacién modular a lo largo del tiempo.

5.3.1. Numero de comunidades

Con el objetivo de analizar como varia la fragmentacion de la red en funcion del
acoplamiento temporal, se calcul6 el nimero de comunidades en cada ventana para cada
sujeto, condicion experimental, banda de frecuencia y valor de w. Posteriormente, se
promedi6 este nimero de comunidades entre todos los sujetos en cada ventana,
obteniendo asi una medida grupal que permite comparar de manera mas directa la
dindmica modular entre diferentes valores de w.

En este apartado se han mostrado ejemplos representativos (W1 y W2) para ilustrar con
mas detalle las dinamicas observadas. No obstante, los mismos patrones generales se
reproducen en el resto de las condiciones.

En la Figura 5.9 (condicion W1, banda alfa) se observa como el nimero de comunidades
varia en funcién del parametro w. Para w = 0.1, el promedio se mantiene en torno a 3-4
comunidades, con ligeras oscilaciones entre ventanas. Con w = 0.5 y w = 0.7 el valor
medio se estabiliza alrededor de 3, mientras que con w = 1 se alcanzan los valores mas
altos, cercanos a 4-5 comunidades. Este resultado indica que el mayor acoplamiento
temporal no reduce el nimero de comunidades, como cabria esperar segiin lo descrito en
la literatura donde valores altos de w suelen favorecer particiones més estables y menos
fragmentadas, sino que incrementa la fragmentacion modular de la red en esta condicion.
Esta discrepancia se abordara en el capitulo de Discusion, donde se analizaran posibles
explicaciones.

El andlisis estadistico mediante el test de Friedman confirm¢ la existencia de diferencias
significativas entre los cuatro valores de w. En todas las ventanas temporales de la
condicion W1, banda alfa, se obtuvieron p-valores inferiores a 0.05 (Tabla 1), lo que
indica que el niumero de comunidades varia de manera consistente en funcion del
parametro omega.
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Figura 5.9 Ejemplo del nimero promedio de comunidades en la condicion W1, banda alfa, para
distintos valores de w.

Ventana p-valor Significativa (p < 0.05)
1 0.000465 Si
2 1.095e-05 Si
3 9.837e-09 Si
4 8.374e-07 Si
5 4.192e-06 Si
6 8.78e-06 Si
7 3.657e-07 Si
8 5.515e-06 Si
9 3.927e-08 Si
10 5.047e-06 Si
11 0.001881 Si
12 1.716e-07 Si
13 2.287e-12 Si
14 2.859¢-06 Si
15 0.00369 Si
16 4.974e-07 Si
17 1.196e-09 Si
18 2.504¢-09 Si
19 0.0006261 Si

20 0.0004677 Si
21 2.206e-05 Si
22 0.0004623 Si

Tabla 1 Resultados del test de Friedman aplicados al nimero de comunidades en la condicion
W1, banda alfa. Se muestran los p-valores obtenidos en cada una de las 22 ventanas temporales.
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En la Figura 5.10 (condicion W1, banda beta) se aprecia un contraste mas marcado entre
los distintos valores de w que en la banda alfa. Para w = 0.1 y w = 0.5 el nimero de
comunidades se mantiene estable en torno a 3, mientras que con w = 0.7 asciende
ligeramente hasta valores cercanos a 4. En cambio, con w = | se alcanza un nimero
claramente superior, entre 7 y 9 comunidades, que ademas se mantiene relativamente
constante a lo largo del tiempo. Este resultado refuerza la influencia directa de w sobre la
fragmentacion modular de la red, mostrando en la banda beta un efecto atn mas
pronunciado que en la alfa.

El analisis estadistico mediante el test de Friedman confirmo esta observacion: en las 22
ventanas se obtuvieron p-valores altamente significativos (Tabla 2), en muchos casos del
orden de 1072 incluso més pequefios que en la condicion W1 alfa. Este resultado
concuerda con lo observado en la Figura 5.10, donde la linea morada correspondiente a
w = 1 aparece claramente mas separada del resto de curvas, reflejando que las diferencias
entre los valores de w son todavia mas pronunciadas.

Per-window comparison across different w» values

e B

Average number of communities (across subjects)
s3]

[a] 5 10 15 20 25
Window

Figura 5.10 Ejemplo del nimero promedio de comunidades en la condicion W1, banda beta, para
distintos valores de w.
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Ventana p-valor Significativa (p < 0.05)
1 1.818e-19 Si
2 2.457e-19 Si
3 5.827e-20 Si
4 1.543e-20 Si
5 4.829e-20 Si
6 9.777e-20 Si
7 1.584e-19 Si
8 1.373e-19 Si
9 8.376e-20 Si
10 7.329e-20 Si
11 7.138e-20 Si
12 4.661e-21 Si
13 3.734e-21 Si
14 3.367e-20 Si
15 2.946e-21 Si
16 1.476e-20 Si
17 8.179e-20 Si
18 1.764e-19 Si
19 2.889e-21 Si

20 9.786e-21 Si
21 5.329¢-18 Si
22 2.140e-16 Si

Tabla 2 Resultados del test de Friedman aplicados al nimero de comunidades en la condicién
W1, banda beta. Se muestran los p-valores obtenidos en cada una de las 22 ventanas temporales.

En la Figura 5.11 (condiciéon W2, banda alfa) se observa que el nimero de comunidades
depende del valor de w, aunque con diferencias mas sutiles que en W1. Para w = 0.1 la
curva muestra mayores fluctuaciones, con picos aislados como en la ventana 22 donde se
superan las 5 comunidades. En cambio, para w =0.5,0.7 y 1 las curvas se mantienen mas
estables en torno a 3-4 comunidades, especialmente a partir de la ventana 10, coincidiendo
con el inicio del video. Esto refleja una dindmica mas coherente y menos ruidosa que en
la banda beta, donde la fragmentacion resultaba mas acusada.

El analisis estadistico mediante el test de Friedman refleja este comportamiento: aunque
en varias ventanas se encontraron diferencias significativas entre los valores de w (p <
0.05 en las ventanas 3-5, 8-10, 12 y 17-20), en muchas otras no se alcanzo la
significacion (Tabla 3). En conjunto, aproximadamente la mitad de las ventanas
resultaron significativas, lo que concuerda con la menor separacion visual de las lineas
en la Figura 5.11 y confirma que en esta condicion la influencia de w sobre el nimero de
comunidades es mas limitada y dependiente del intervalo temporal analizado.
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Figura 5.11 Ejemplo del nimero promedio de comunidades en la condicion W2, banda alfa, para
distintos valores de w.

Ventana p-valor Significativa (p < 0.05)
1 0.467 No
2 0.06536 No
3 0.04785 Si
4 0.02157 Si
5 0.004124 Si
6 0.1679 No
7 0.308 No
8 0.04337 Si
9 0.0188 Si
10 0.01575 Si
11 0.4582 No
12 0.0004714 Si
13 0.3729 No
14 0.1356 No
15 0.6291 No
16 0.2921 No
17 0.006407 Si
18 0.001966 Si
19 0.01188 Si

20 0.02183 Si
21 0.3326 No
22 0.003768 Si

Tabla 3 Resultados del test de Friedman aplicados al numero de comunidades en la condicion
W2, banda alfa. Se muestran los p-valores obtenidos en cada una de las 22 ventanas temporales.
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El patron general se mantiene a lo largo de todas las condiciones experimentales (W1—
W3, en bandas alfa y beta), aunque con diferencias en la magnitud del efecto. En
particular, en W1 se observa el incremento mas acusado en el nimero de comunidades al
aumentar w, mientras que en W2 el efecto es mas moderado y en W3 aparece como una
situacion intermedia, con un aumento presente pero menos marcado.

De forma global, se aprecia que, antes del inicio del video, el nimero de comunidades
suele ser menor, mientras que tras el comienzo de la tarea de observacion se produce un
aumento progresivo, reflejando la reorganizacion dindmica de la red cerebral inducida
por el estimulo. Este efecto se amplifica especialmente para w = 1, alcanzando en la
banda beta valores maximos cercanos a 10 comunidades, mientras que en la banda alfa
se mantiene alrededor de 5.

5.3.2. Dimension de comunidades

Ademas del nimero de comunidades, se analiz6 la dimension media de las mismas a lo
largo de las ventanas temporales para los diferentes valores del pardmetro w. Segin la
literatura, cabria esperar que un mayor acoplamiento entre capas (w mas altos) se asociara
con un menor tamafio medio de las comunidades, ya que la red tiende a fragmentarse en
grupos mas pequefios y estables. Sin embargo, los resultados muestran un patron mas
complejo y no siempre consistente con esta hipotesis.

En la condiciéon W1, banda alfa (Figura 5.12), se observa que para w = 1 el tamafio medio
de las comunidades es claramente inferior al de otros valores, situdndose entre 13 y 15
nodos. Para w = 0.1 este valor asciende ligeramente hasta 15—16 nodos, mientras que para
w = 0.5-0.7 se mantiene mas estable en torno a 16—18 nodos.

En la condicion W1, banda beta (Figura 5.13), la diferencia es ain més marcada. Con

w = 1 el tamafo medio desciende de forma pronunciada, alcanzando valores de apenas
7-9 nodos, mientras que para el resto de los valores (0.1-0.7) las comunidades se
mantienen considerablemente mas grandes, en torno a 15—17 nodos.
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Mean size of communities for all subjects and each omega value
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Figura 5.12 Ejemplo de la dimension promedio de comunidades en la condicién W1, banda alfa,
para distintos valores de w.

66



Mean size of communities for all subjects and each omega value
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Figura 5.13 Ejemplo de la dimension promedio de comunidades en la condicion W1, banda beta,
para distintos valores de w.

En la condicion W2, banda alfa (Figura 5.14) se observa un patrén distinto al esperado
segun la literatura. A diferencia de W1, aqui el tamano medio de las comunidades no
disminuye de forma marcada con w = 1; por el contrario, los valores son comparables a
los obtenidos con w intermedios (0.5-0.7) e incluso en algunos momentos superiores. En
cambio, para w = 0.1 los tamafos son notablemente mas bajos. Ademas, se aprecia una
mayor fluctuacion a lo largo de las ventanas, con variaciones constantes y la aparicion de
picos puntuales donde el nimero de nodos por comunidad aumenta de manera abrupta.
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para distintos valores de w.

En la condiciéon W2, banda beta (Figura 5.15), el comportamiento se asemeja mas al
observado en W1. Para w =1 el tamafio medio de las comunidades se reduce claramente
respecto a los demas valores, situandose en torno a 7-9 nodos, mientras que para w bajos
(0.1-0.7) se mantiene alrededor de 15—17 nodos. Este resultado si coincide con lo descrito
en la literatura, donde un mayor acoplamiento entre capas tiende a fragmentar la red en

comunidades mas pequenas y estables.

En el caso de W3-alfa y W3-beta, el patron general se conserva, con comunidades mas
reducidas para w = 1 y mayores dimensiones para w bajos. No obstante, en W3-beta las

diferencias entre condiciones se atentan en comparacion con W1y W2.

68



Mean size of communities for all subjects and each omega value

18 g
L] = -
i) 3 —— =01
: B = —— ;=05
16 + - w=07
o . | = =1
E . datat
= . data?
S 14
E
E
E 12 +
=]
@
M
n
é 10 |

25

Window

Figura 5.15 Ejemplo de la dimension promedio de comunidades en la condicion W2, banda beta,
para distintos valores de w.

En resumen, los resultados muestran que la dimension de las comunidades varia de
manera significativa en funcidon del parametro de acoplamiento temporal ®, con un
descenso mas marcado en la banda beta que en alfa. Ademas, se aprecian diferencias entre
condiciones experimentales: mientras que en W1 el efecto de w es mas claro y
consistente, en W2 se observan mayores fluctuaciones y patrones menos definidos. Estos
hallazgos ponen de manifiesto la influencia conjunta del valor de , la banda de
frecuencia y el tipo de estimulo sobre la dindmica comunitaria de la red cerebral.
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5.3.3. Matriz de consenso y NMI

La combinacion de la matriz de consenso y la métrica NMI aportan una vision
complementaria al analisis de comunidades. Mientras que la matriz de consenso permite
obtener una particion grupal representativa a partir de las soluciones individuales, el NMI
cuantifica la estabilidad de dichas particiones entre ventanas temporales consecutivas
(Lancichinetti and Fortunato, 2012). De este modo, es posible evaluar tanto la
organizacion modular promedio del grupo como su evolucidon dindmica a lo largo del
tiempo. Dado el volumen de resultados (diferentes condiciones, bandas y valores de o),
en este apartado se incluyen unicamente ejemplos ilustrativos seleccionados por su
relevancia, ya que no es posible mostrar todos los casos. En particular, la condicion W2
no se presenta en detalle al haber resultado la mas variable y menos representativa, lo que
dificultaria la extraccion de conclusiones generales.

En la condicion W1, banda alfa con w = 1 (Figura 5.16), la matriz de consenso revela
comunidades bien definidas y relativamente homogéneas. El NMI (Figura 5.18) muestra
un patrén muy estable antes de los estimulos, con valores cercanos a 1, pero tras el inicio
del video aparecen oscilaciones y caidas puntuales, lo que refleja una reorganizacion
dindmica de la red inducida por la tarea de observacion.

En la condicion Wl-alfa con w = 0.5 (Figura 5.17) la matriz de consenso muestra
comunidades mas homogéneas que con w = 1, con una estructura que se mantiene
relativamente estable a lo largo de las ventanas. El indice NMI (Figura 5.19), confirma
esta tendencia: antes de los estimulos los valores son cercanos a 1, y aunque tras el inicio
del video aparecen caidas puntuales, la recuperacion es rapida y se mantiene un nivel alto
de estabilidad. Esto indica que con un acoplamiento intermedio la red conserva parte de
su flexibilidad sin perder consistencia en la asignacion comunitaria.
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En cambio, en la condicion W1, banda beta con w = 1 (Figura 5.20), el patron es distinto:
aunque la matriz de consenso indica una mayor fragmentacion inicial, el NMI (Figura
5.22) resulta menos variable que en alfa. Si bien presenta inestabilidad en los primeros
instantes, tras el estimulo alcanza un nivel de consistencia elevado, estabilizandose cerca
de 1 a partir de la ventana 15. Esto sugiere que, en banda beta, el mayor acoplamiento
temporal favorece una particion mas estable en fases tardias de la tarea.

Por su parte, con w = 0.5 (Figura 5.21) la matriz de consenso refleja una organizacion
mas fragmentada desde el inicio, con comunidades menos compactas y mas cambios en
la asignacion. EI NMI (Figura 5.23), es més variable en comparacion con alfa, mostrando
caidas repetidas que evidencian transiciones frecuentes entre particiones. No obstante,
hacia las tlltimas ventanas la estabilidad tiende a recuperarse, alcanzando valores cercanos
al.

En conjunto, los resultados muestran que en alfa la estabilidad inicial se rompe con
reorganizaciones puntuales inducidas por el estimulo, mientras que en beta predomina la
variabilidad desde el principio y el estimulo genera una disrupcion més clara seguida de
una estabilizacion posterior.
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En la condicion W3, banda alfa con w = 0.1 (Figura 5.24), la matriz de consenso muestra
una organizacion poco homogénea, con comunidades que se reorganizan con relativa
frecuencia entre ventanas. El indice NMI (Figura 5.26) refleja esta dinamica: aunque
antes del estimulo los valores se mantienen altos y cercanos a 1, tras el inicio del video
aparecen caidas pronunciadas y oscilaciones recurrentes, lo que evidencia una
reorganizacion mas variable y menos estable.

En la condiciéon W3, banda beta (Figura 5.25), este efecto se intensifica. La matriz de
consenso revela una fragmentacion mas acusada y cambios mds frecuentes en la
asignacion comunitaria. E1 NMI (Figura 5.27) confirma esta inestabilidad, mostrando
caidas mas profundas y sostenidas a lo largo de las ventanas, en especial después del
inicio del video. Aunque hacia el final se aprecia cierta recuperacion de la estabilidad, el
comportamiento general es mas fluctuante que en alfa, indicando que en esta banda la red
responde con mayor variabilidad a la tarea de observacion.
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Figura 5.26 Evolucion del indice NMI para la condicion W3 en banda alfa con w = 0.1.
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Capitulo 6. Discusion

El estudio de la dindmica funcional del cerebro ha cobrado un interés creciente en los
ultimos afios, especialmente en el ambito de la neurorrehabilitacion, donde técnicas como
la AOT se han consolidado como herramientas prometedoras para la recuperaciéon motora
en pacientes con dafo neurologico (Kim and Cho, 2016; Cordani et al., 2021). La base
de estas intervenciones reside en la activacion del MNS y en la reorganizacion dindmica
de redes cerebrales durante la observacion de acciones, lo cual puede evaluarse a través
de indices derivados de la conectividad funcional obtenida con EEG (Bassett and Sporns,
2017; Rizkallah et al., 2018).

En este contexto, el presente TFG ha planteado como objetivo caracterizar la
reorganizacion modular del cerebro durante la observacion de distintas acciones,
comparando las bandas alfa y beta y evaluando la influencia del parametro de
acoplamiento temporal en la deteccion de comunidades multicapa. Se emplearon
diferentes métricas con el fin de cuantificar tanto la fragmentacion como la estabilidad
temporal de la organizacion modular.

En la primera seccion de esta discusion se analizara el efecto de la AOT sobre la dindmica
modular, considerando tanto las diferencias entre bandas como entre las tres condiciones
experimentales. En la segunda seccion se abordara el papel del parametro w y sus
implicaciones metodoldgicas. Posteriormente, se integraran los hallazgos derivados de
las métricas empleadas, discutiendo su coherencia y discrepancias con estudios previos
de dinamica funcional. Finalmente, se discutiran las limitaciones del estudio, destacando
aquellos aspectos que condicionan la interpretacion y generalizacion de los resultados.

6.1. Implicaciones de la reconfiguracion modular
observada

Los resultados obtenidos muestran que la AOT induce una reorganizacion modular
dinamica del cerebro, caracterizada por cambios significativos en torno a los hitos
experimentales, especialmente en la fase de preparacion y en el inicio del video. Esta
reorganizacion refleja que la red cerebral no mantiene una configuracion estatica, sino
que ajusta de manera continua su estructura comunitaria en funcion de las demandas de
la tarea (Ge et al., 2023).

Con los parametros por defecto (y = 1, w = 1) se evidencid un patron diferenciado entre
las bandas alfa y beta. En la banda alfa se observo un comportamiento heterogéneo entre
sujetos: algunos mostraron comunidades relativamente estables, mientras que otros
presentaron transiciones frecuentes. En la banda beta, en cambio, predomind una
reorganizacion mas fragmentada y con menor estabilidad comunitaria, lo que sugiere una
mayor sensibilidad de esta frecuencia a la tarea. Esta variabilidad interindividual respalda
la idea de que los patrones de modularidad cerebral evolucionan en el tiempo en funcion
de las condiciones del sujeto, la naturaleza de la tarea y el intervalo de frecuencia
considerado (Puxeddu, Petti and Astolfi, 2021).
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Estos hallazgos se alinean con lo descrito por Kim y Cho (2016), quienes observaron que,
durante la AOT, la banda alfa muestra una supresion significativa de potencia y una
reduccion de la coherencia en redes frontocentrales y parieto-occipitales, fenomeno
interpretado como desincronizacion alfa (ERD) vinculada a la activacion cortical y a
procesos de atencion. Por el contrario, la banda beta presentd incrementos tanto en
potencia como en coherencia, especialmente en regiones motoras y sensoriales, lo que
refleja una mayor sensibilidad a la tarea y a la reorganizacion funcional (Kim and Cho,
2016).

Asimismo, las condiciones experimentales modulaban de forma especifica estos patrones.
En W1 se evidenci6 una clara diferenciacion entre sujetos con mayor estabilidad y otros
con fuerte reconfiguracion, lo que apunta a un efecto heterogéneo de la tarea. En W2,
algunos sujetos que en W1 mostraban fragmentacion pasaron a exhibir mayor estabilidad,
mientras que en otros ocurri6 lo contrario, lo cual indica que el tipo de accidon observada
influye de forma directa en la organizacion modular. Finalmente, W3 se situ6 en un punto
intermedio: la mayoria de los sujetos presentd reorganizaciones dinamicas, pero sin
alcanzar la inestabilidad marcada de la banda beta ni la homogeneidad observada en
algunos casos de alfa.

Estas diferencias pueden entenderse en funcion de la naturaleza de los movimientos
observados. La tarea de W1 (recoger monedas) implicaba una motricidad fina, repetitiva
y répida, que demanda un control visomotor detallado y una mayor atencion sostenida, lo
que podria explicar la fragmentacion modular observada en varios sujetos. En cambio,
W2 (uso de un martillo) representaba un gesto mas global, ritmico y automatico, asociado
probablemente a una menor carga atencional y a patrones de organizacion mas estables
en algunos participantes. Por su parte, W3 (uso de pinzas) requeria precision manual y
planificacion, situdndose en un punto intermedio al combinar elementos de control fino y
secuencias motoras mas amplias.

En conjunto, estos resultados respaldan la hipotesis de que la AOT genera
reconfiguraciones rapidas y especificas de la red cerebral, moduladas tanto por la
frecuencia analizada como por el tipo de accion observada. La alta variabilidad
interindividual observada refuerza la idea de que los efectos de la AOT no son uniformes,
sino que dependen del perfil dinamico de cada sujeto. Lejos de ser una limitacion, esta
variabilidad constituye un aspecto central para entender como la observacion de acciones
puede adaptarse a distintos contextos y perfiles clinicos, abriendo la puerta a personalizar
protocolos de rehabilitacion basados en AOT.

6.2. Interpretacion de las métricas comunitarias

En la literatura se han empleado multiples aproximaciones para caracterizar comunidades
en redes cerebrales. Por ejemplo, Puxedu et al. (2020) revisan trabajos donde el nimero
de comunidades se fija de antemano, se varia su tamafio o densidad, o se evalua el
rendimiento de los algoritmos en funcion de métricas como la dimension o la densidad
media (Puxeddu et al., 2020). Por su parte, Rizkallah y colegas (2018) aplicaron
algoritmos de modularidad multislice a una tarea de reconocimiento visual y mostraron
que, ademas de contabilizar el nimero de comunidades, es posible describir la dindmica

modular con indicadores como la integracion entre modulos o la ocurrencia (Rizkallah et
al., 2018).
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En este contexto, el trabajo de Puxeddu y colegas (2021) mostré que el rendimiento de
algoritmos como genLouvain y FacetNet depende fuertemente de los valores de sus
parametros, w y y. Al probar distintos rangos y condiciones, los autores concluyeron que
no existe un valor universal 6ptimo, sino que la eleccion de estos parametros debe
ajustarse a las caracteristicas especificas de cada red, como su estabilidad, nivel de ruido
o numero de capas (Puxeddu, Petti and Astolfi, 2021).

En nuestro caso, un analisis cualitativo inicial (sujeto 1, condicion W1-alfa) mostré un
comportamiento coherente con la teoria: valores bajos de omega generaron una red muy
flexible con cambios frecuentes, mientras que valores altos favorecieron particiones mas
consistentes y estables en el tiempo (Mucha et al., 2010; Puxeddu, Petti and Astolfi,
2021). Sin embargo, cuando se pas6 al analisis cuantitativo mediante métricas, los
resultados fueron més complejos y en ocasiones contrarios a lo descrito en la literatura.

En relacion con el nimero de comunidades, en la mayoria de las condiciones, los valores
promediados se situaron entre 3 y 5, un rango coherente con lo reportado en la literatura
(Bassett et al., 2011; Designed Research; D, Performed Research; D and Pnas, 2011; M.G
Puxeddu et al., 2017). Sin embargo, este patron se rompe al aplicar w = 1, tanto en la
banda beta como en algunas condiciones de alfa, donde el nimero de comunidades
aumenta de forma notable y se desvia de lo esperado. Teoricamente, se esperaria un
comportamiento opuesto: valores mas bajos de w deberian favorecer mas comunidades y
valores altos menos. No obstante, en nuestros resultados ocurre lo contrario. Tal como
destacan (Puxeddu, Petti and Astolfi, 2021), estas discrepancias pueden depender de las
propiedades especificas del dataset y del preprocesamiento aplicado.

Una posible explicacion metodologica es el proceso de umbralizacion aplicado a las
matrices de conectividad. Al umbralizar con un enfoque de densidad fija (30%), se
eliminan conexiones débiles y se altera de forma sustancial la distribucion de grados. En
la préctica, esto implica que el algoritmo recibe otro input de matriz, lo cual puede
cambiar de manera significativa el nuimero de comunidades detectadas. De hecho, al
comparar los analisis sin (Figura 6.1) y con thresholding (Figura 6.2) se observa que los
valores previos a la umbralizacion tienden a ser mas consistentes con lo descrito en la
literatura, mientras que tras el thresholding emergen mas fragmentaciones.
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Figura 6.1 Evolucion del niimero de comunidades en funcion de la ventana temporal para
distintos valores de w (0.1, 0.5, 0.7 y 1) en la banda analizada, sin aplicar thresholding.
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Figura 6.2 Evolucion del niimero de comunidades en funcion de la ventana temporal para
distintos valores de w (0.1, 0.5, 0.7 y 1) en la misma banda, tras aplicar thresholding.
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En cuanto a la dimension media de las comunidades, los resultados fueron mas
consistentes con lo esperado, aunque no de forma uniforme. En varias condiciones,
especialmente en beta, un mayor acoplamiento si se tradujo en comunidades mas
pequefias y estables, en linea con la literatura (Danon, Diaz-Guilera and Arenas, 2006;
Lancichinetti, Fortunato and Radicchi, 2008; Designed Research; D, Performed
Research; D and Pnas, 2011). Sin embargo, en condiciones como W2-alfa este patréon no
se mantuvo, ya que w altos no redujeron el tamafio medio de manera clara e incluso
aparecieron picos de crecimiento inesperados. Esto apunta a que la relacion entre w y el
tamafio de las comunidades depende no solo del parametro en si, sino también de la banda
de frecuencia y del tipo de estimulo.

El uso de matrices de consenso se justifica por la elevada heterogeneidad intersujeto
observada en los datos. Cada participante presenta patrones de conectividad propios, lo
que dificulta la comparacion directa y complica la integracion de la informacion en un
unico analisis (Puxeddu, Petti and Astolfi, 2021). El consenso ofrece una solucion robusta
al calcular la coocurrencia de nodos en las mismas comunidades a lo largo de sujetos y
ventanas, generando asi una particiéon modular representativa del grupo (Jeub, Sporns and
Fortunato, 2018). De este modo, es posible obtener una Unica particion por ventana que
sintetiza la dindmica global de la muestra y facilita la comparacion entre bandas de
frecuencia y condiciones experimentales sin perder la informacion conjunta.

La combinacion del consenso con el indice NMI permite ademads evaluar la estabilidad
de las comunidades de manera cuantitativa. Mientras que el consenso refleja visualmente
la robustez de la particion, el NMI mide la similitud entre particiones de distintas
repeticiones y ventanas, proporcionando un indicador numérico de estabilidad
(Lancichinetti and Fortunato, 2012). En la banda alfa, se observo un patron relativamente
estable antes del inicio del estimulo, con descensos puntuales del NMI en las primeras
ventanas tras la aparicion del video, seguidos de una recuperacion rapida. En la banda
beta, en cambio, predomind la variabilidad desde el inicio, y el estimulo intensifico la
fragmentacion, prolongando las caidas de NMI antes de que apareciera una estabilizacion
en fases mas tardias. Estos resultados concuerdan con la mayor sensibilidad de la beta a
reorganizaciones rapidas y a procesos motores.

Cabe destacar que, aunque en general valores altos de w favorecen una mayor estabilidad,
con el NMI mas cercano a 1, no siempre representan la condiciéon 6ptima. En algunos
casos, valores intermedios de w ofrecieron perfiles de NMI mas consistentes a lo largo
de las ventanas temporales.

6.3. Limitaciones

El presente trabajo presenta varias limitaciones metodologicas y experimentales que
deben tenerse en cuenta a la hora de interpretar los resultados. En primer lugar, la sefial
EEG, aunque aporta una excelente resolucion temporal, tiene limitaciones espaciales y
estd sujeta a artefactos fisiologicos y de registro que pueden afectar a la estimacion de la
conectividad. A pesar de aplicar preprocesado exhaustivo y métricas robustas como el
wPLI no es posible eliminar completamente estos efectos.
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En segundo lugar, el tamafio muestral, aunque razonable en el contexto de estudios con
EEG, no es muy elevado, lo que reduce la potencia estadistica y limita la generalizacion
de los resultados.

También debe senalarse es la elevada variabilidad intersujeto, que constituye un desafio
para la obtencion de patrones consistentes. Aunque se emplearon matrices de consenso
para integrar los resultados a nivel grupal, este procedimiento puede enmascarar
diferencias individuales relevantes.

A ello se suma que buena parte de las conclusiones se apoyan en una interpretacion visual
de las métricas y figuras, lo que reduce la solidez cuantitativa del analisis. Aunque se
aplicé un analisis estadistico mediante el test no paramétrico de Friedman, este se limito
al nimero de comunidades, sin extenderse a otras métricas, de modo que sus resultados
deben interpretarse con cautela.

Asimismo, no se realiz6 un analisis de fuentes (source imaging), lo que habria permitido
mitigar de forma mas directa los efectos de la conduccion de volumen y obtener una mejor
localizacion cortical de las interacciones. La ausencia de este paso limita la interpretacion
espacial de los hallazgos y deja abierta la posibilidad de que algunas conexiones
observadas estén influidas por efectos espurios derivados del registro en superficie.

Otra limitacion es la dependencia de los resultados respecto a pardmetros como el valor
de w, cuya eleccion no cuenta con un criterio universal y puede inducir resultados
divergentes segin la condicion y la banda de frecuencia. Por ultimo, el enfoque de
thresholding aplicado a las matrices de conectividad, necesario para reducir el impacto
de conexiones espurias, también modifica la topologia de la red y puede influir en el
numero y tamafio de comunidades detectadas.
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Capitulo 7. Conclusiones

Este trabajo constituye un estudio piloto sobre la reorganizacion modular del cerebro
durante la AOT a partir de registros EEG y andlisis de comunidades multicapa. Los
resultados muestran que la AOT induce reconfiguraciones dinamicas de la red cerebral,
especialmente en torno al inicio de los estimulos, con un comportamiento diferenciado
entre bandas: la alfa tiende a recuperar la estabilidad tras una reorganizacion inicial,
mientras que la beta mantiene una mayor variabilidad a lo largo del tiempo. El parametro
de acoplamiento temporal (w) se confirma como un modulador clave de la estabilidad
comunitaria: valores altos promueven particiones mas estables, aunque en algunos casos
intermedios se observd mayor coherencia temporal, en linea con lo descrito en la
literatura. Pese a la complejidad de los resultados y a la heterogeneidad interindividual,
el uso combinado de matrices de consenso y del indice NMI permitié obtener una
caracterizaciéon robusta de la dindmica modular. En conjunto, este trabajo aporta
evidencia preliminar de que la AOT genera reorganizaciones funcionales medibles
mediante EEG, abriendo el camino hacia estudios mas amplios que validen estos
hallazgos y exploren su aplicabilidad en entornos clinicos de neurorrehabilitacion.

7.1. Lineas futuras

De cara a investigaciones futuras, seria recomendable ampliar el nimero de sujetos y
explorar condiciones experimentales mas diversas para aumentar la generalizacion de los
hallazgos. Asimismo, la combinacion de EEG con otras modalidades como fMRI o MEG
podria enriquecer el andlisis multimodal, compensando las limitaciones espaciales del
EEG. Otra linea prometedora consiste en explorar métricas adicionales de dindmica
modular, como la flexibilidad o la persistencia de los nodos, que aportarian una vision
mas completa de los patrones de reorganizacion. Igualmente, convendria analizar la
interaccion entre bandas de frecuencia desde un enfoque de redes multiplex, lo que
permitiria caracterizar como se coordinan las oscilaciones alfa, beta y gamma durante la
AQT. Por ultimo, en el ambito clinico, futuras investigaciones podrian evaluar estos
mismos analisis en pacientes con patologias neurologicas, con el fin de determinar si la
dindmica modular puede servir como biomarcador del efecto de la AOT y guiar
protocolos personalizados de rehabilitacion.
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