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Resumen 
 

La Terapia de Observación de la Acción (AOT) ha despertado en los últimos años un gran 

interés en el ámbito de la neurociencia y la neurorrehabilitación. Esta técnica se 

fundamenta en la activación del sistema de neuronas espejo, que se activa tanto al ejecutar 

un movimiento como al observarlo. Gracias a esta propiedad, la AOT permite estimular 

redes motoras sin necesidad de realizar un movimiento físico, lo que la convierte en una 

estrategia especialmente relevante en pacientes con limitaciones motoras. La literatura 

científica ha mostrado que la AOT favorece procesos de aprendizaje motor y plasticidad 

cerebral, planteándose como una estrategia complementaria a la fisioterapia 

convencional. Sin embargo, todavía existe una necesidad de comprender con mayor 

precisión cómo esta terapia modula la conectividad funcional del cerebro, especialmente 

desde una perspectiva dinámica y con medidas que vayan más allá de los análisis estáticos 

tradicionales. 

 

El presente Trabajo de Fin de Grado tiene como hipótesis que la AOT induce 

reorganizaciones dinámicas en las redes cerebrales, que pueden observarse a través de 

cambios en su estructura modular a lo largo del tiempo. Por ello, el objetivo principal es 

caracterizar estas reorganizaciones mediante registros de electroencefalografía (EEG) de 

46 sujetos sanos durante la observación de vídeos de diferentes acciones, analizados con 

métricas de conectividad y algoritmos de detección de comunidades. El EEG constituye 

una herramienta idónea debido a su alta resolución temporal, que permite capturar 

variaciones rápidas en la actividad cerebral, y a su facilidad de aplicación no invasiva. 

 

La conectividad funcional se estimó mediante el índice weighted Phase Lag Index 

(wPLI), una métrica basada en el desfase de fase que reduce la influencia del volumen 

conductor y resulta adecuada para el análisis de señales EEG. A continuación, se aplicó 

un enfoque de ventanas deslizantes para construir matrices dinámicas de conectividad a 

lo largo del tiempo. Estas matrices se analizaron utilizando el algoritmo GenLouvain en 

un marco multicapa, lo que permitió detectar comunidades funcionales y estudiar su 

evolución. Se calcularon métricas como el número y la dimensión de las comunidades, la 

matriz de consenso y el índice Normalized Mutual Information (NMI) para evaluar la 

estabilidad y reorganización modular. Asimismo, se exploró la influencia de parámetros 

como el acoplamiento temporal (𝜔) en la detección de comunidades. 

 

Los resultados obtenidos demuestran que la AOT induce reconfiguraciones modulares 

alrededor del inicio de los estímulos, con diferencias claras entre bandas de frecuencia. 

En la banda alfa, se observaron reorganizaciones iniciales seguidas de una tendencia a 

recuperar la estabilidad, lo que sugiere un mecanismo de ajuste funcional tras el estímulo. 

En la banda beta, en cambio, las redes mostraron una fragmentación más acusada y una 

dinámica más variable, lo que apunta a un mayor involucramiento de procesos motores y 

de control cognitivo. Además, se comprobó que la elección del parámetro 𝜔 modula de 

forma significativa la estabilidad de las comunidades, confirmando la necesidad de una 

selección cuidadosa para interpretar la dinámica funcional. 

 

En conjunto, este trabajo aporta evidencia de que la AOT genera reorganizaciones 

dinámicas en la conectividad cerebral que pueden captarse mediante EEG. Más allá de 

los análisis estáticos, el uso de métricas de modularidad multicapa ofrece una 

aproximación robusta para estudiar la evolución temporal de las redes cerebrales. Estos 
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hallazgos refuerzan la idea de que la AOT no solo activa las áreas motoras, sino que 

también reorganiza de manera dinámica la arquitectura funcional del cerebro, abriendo 

nuevas vías para su aplicación clínica en el ámbito de la neurorrehabilitación. 

 

Palabras clave: Electroencefalografía (EEG), Terapia de Observación de la Acción 

(AOT), Conectividad funcional dinámica (dFC), modularidad, detección de 

comunidades, wPLI. 
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Abstract 

 
Action Observation Therapy (AOT) has gained increasing attention in recent years within 

the fields of neuroscience and neurorehabilitation. This technique is based on the 

activation of the mirror neuron system (MNS), which responds both during the execution 

of a movement and when observing it. Thanks to this property, AOT enables the 

stimulation of motor networks without the need to physically perform the movement, 

making it particularly relevant for patients with motor limitations. Scientific literature has 

shown that AOT promotes motor learning and brain plasticity and has been proposed as 

a complementary strategy to conventional physiotherapy. However, there is still a need 

to better understand how this therapy modulates brain functional connectivity, especially 

from a dynamic perspective and through measures that go beyond traditional static 

analyses. 

 

The present Bachelor Thesis hypothesizes that AOT induces dynamic reorganizations in 

brain networks, which can be observed through changes in their modular structure over 

time. The main objective is therefore to characterize these reorganizations using EEG 

recordings from 46 healthy subjects during the observation of action videos, analyzed 

through connectivity metrics and community detection algorithms. EEG provides an ideal 

tool for this purpose due to its high temporal resolution, which captures rapid fluctuations 

in brain activity, and its non-invasive nature. 

 

Functional connectivity was estimated using the weighted Phase Lag Index (wPLI), a 

phase-based metric that minimizes the influence of volume conduction and is well-suited 

for EEG analysis. A sliding window approach was then applied to build dynamic 

connectivity matrices over time. These matrices were processed with the GenLouvain 

algorithm in a multilayer framework, allowing the detection of functional communities 

and the study of their evolution. Metrics such as the number and size of communities, 

consensus matrices, and the Normalized Mutual Information (NMI) index were 

calculated to evaluate modular stability and reorganization. Additionally, the influence of 

parameters such as temporal coupling (𝜔) on community detection was explored. 

 

The results show that AOT induces modular reconfigurations around the onset of stimuli, 

with clear differences between frequency bands. In the alpha band, initial reorganizations 

were followed by a trend towards stability, suggesting a functional adjustment mechanism 

after the stimulus. In contrast, beta-band networks exhibited stronger fragmentation and 

more variable dynamics, pointing to greater involvement of motor and cognitive control 

processes. Furthermore, the choice of the ω parameter significantly modulated 

community stability, highlighting the need for careful selection when interpreting 

dynamic connectivity. 

 

Overall, this work provides evidence that AOT generates dynamic reorganizations in 

brain connectivity that can be captured through EEG. Beyond static analyses, the use of 

multilayer modularity metrics offers a robust approach to studying the temporal evolution 

of brain networks. These findings reinforce the idea that AOT not only activates motor 

areas but also dynamically reorganizes the brain’s functional architecture, opening new 

avenues for clinical applications in neurorehabilitation. 
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Capítulo 1. Introducción y marco teórico 
 

1.1. Introducción 

El cerebro humano, caracterizado por su extrema complejidad, funciona gracias a 

dinámicas de actividad espontánea correlacionada entre distintas regiones cerebrales. 

Durante mucho tiempo, se consideró que la conectividad funcional era un fenómeno 

estacionario, asumiendo que las interacciones entre regiones cerebrales eran estáticas 

(Allen et al., 2018). Sin embargo, investigaciones más recientes han demostrado que estas 

interacciones son, en realidad, dinámicas: fluctúan de forma continua, reflejando los 

cambios en los estados funcionales del cerebro y ocurriendo a diferentes escalas 

temporales (Allen et al., 2018). 

Una potente herramienta para estudiar esta conectividad funcional dinámica es la 

electroencefalografía (EEG), ya que permite observar la evolución temporal de dichas 

interacciones con alta resolución temporal. Esto brinda una oportunidad única para 

comprender cómo cambian estas conexiones a lo largo del tiempo y cómo pueden verse 

afectadas en diferentes contextos, incluyendo diversas enfermedades (O’Neill et al., 

2018). 

Paralelamente, diversos estudios han demostrado que la observación de acciones puede 

facilitar tanto el aprendizaje como el rendimiento motor. En el ámbito clínico, esta 

estrategia ha dado lugar a la Terapia de Observación de Acciones (Action Observation 

Therapy, AOT), una técnica basada en la activación del sistema de neuronas espejo 

(Mirror Neuron System, MNS) (Ge et al., 2023). Este sistema incluye un conjunto de 

regiones frontoparietales que se activan tanto al ejecutar una acción como al observar a 

otro realizarla, lo que permite al cerebro simular internamente los movimientos 

observados y, con ello, facilitar su aprendizaje (Ge et al., 2023). 

El estudio de los efectos de la AOT mediante métricas de conectividad funcional basadas 

en EEG constituye una vía prometedora para comprender la reorganización de las redes 

cerebrales durante la observación de acciones. Sin embargo, este enfoque plantea 

importantes desafíos técnicos: las señales EEG reflejan una actividad neuronal altamente 

variable, no lineal y distribuida en distintas bandas de frecuencia, lo que dificulta su 

interpretación directa. Además, la notable variabilidad entre sujetos añade un nivel 

adicional de dificultad a la hora de identificar patrones consistentes. 

Para analizar esta dinámica cerebral se emplean técnicas capaces de identificar grupos de 

regiones cerebrales que comparten patrones de interacción a lo largo del tiempo. En el 

contexto de la AOT, este enfoque permite explorar cómo se organiza y reconfigura la 

conectividad funcional durante la observación de acciones, haciendo posible la 

identificación de patrones neuronales comunes pese a la variabilidad interindividual. 
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1.2. Terapia de Observación de la Acción 

En pacientes con enfermedades neurológicas como el ictus, la enfermedad de Parkinson 

o la esclerosis múltiple, uno de los principales objetivos terapéuticos es la recuperación 

de la función motora. Tradicionalmente, las terapias de rehabilitación se han centrado en 

el entrenamiento físico temprano, con el fin de normalizar la actividad funcional y 

favorecer una recuperación integral. No obstante, numerosos estudios han demostrado 

que la práctica física directa no es la única vía eficaz para inducir mejoras motoras (Ge et 

al., 2023; Meng et al., 2023; Chen et al., 2025). La observación de acciones, por ejemplo, 

se ha mostrado efectiva para activar el sistema motor y estimular la plasticidad cerebral, 

incluso en ausencia de movimiento real (Gatti et al., 2013; Kim and Cho, 2016). 

Este efecto se explica a través del funcionamiento del MNS, una red cerebral que se activa 

tanto durante la ejecución de una acción como al observar a otra persona realizarla. Esta 

capacidad de simular internamente los movimientos observados permite al cerebro 

construir representaciones motoras que facilitan el aprendizaje y la recuperación 

funcional. Aunque este mecanismo fue descubierto inicialmente en la corteza premotora, 

investigaciones posteriores han identificado su participación en otras áreas como la 

ínsula, la corteza cingulada y la corteza parietal posterior (Temporiti et al., 2023). En un 

principio se pensaba que el sistema se activaba solo frente a acciones simples y dirigidas 

a un objetivo, como empujar, agarrar o arrastrar, pero estudios más recientes han 

demostrado que también responde a acciones complejas, como escalar, manipular objetos 

o utilizar herramientas (Rizzolatti et al., 2021). 

La AOT se basa en el funcionamiento de este sistema. Consiste en estimular el sistema 

sensoriomotor mediante la visualización de vídeos que muestran acciones específicas (Ge 

et al., 2023). Su objetivo es activar indirectamente las redes motoras del paciente y 

facilitar el reaprendizaje de habilidades funcionales, especialmente en casos en los que el 

movimiento físico está limitado. Por ejemplo, en pacientes con espasticidad, rigidez 

muscular o pérdida de control motor (Kim and Cho, 2016).  

Se ha comprobado que los beneficios de la AOT pueden potenciarse al combinarla con la 

imaginería motora (motor imagery, MI). Es decir, la representación mental de la acción 

observada. Diversos estudios han evidenciado que la combinación de AOT + MI produce 

una mayor activación en áreas motoras cerebrales que cualquiera de las dos estrategias 

por separado, ya que existe un solapamiento funcional en la activación cerebral durante 

la observación y la imaginación de acciones motoras (Gatti et al., 2013; Kim, Frank and 

Schack, 2017; Emerson et al., 2018). Además, la observación motora se ha planteado 

como una herramienta especialmente útil para contrarrestar el fenómeno del “no uso 

aprendido”, una forma de plasticidad desadaptativa en la que el paciente evita utilizar el 

lado afectado del cuerpo tras una lesión neurológica (Kim and Cho, 2016). 
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1.3.  Electroencefalografía 
 

Para el estudio del control motor, se han desarrollado diversas técnicas, entre las cuales 

la electroencefalografía (EEG) destaca por su portabilidad, su alta resolución temporal y 

su capacidad para registrar la actividad cerebral en distintas bandas de frecuencia durante 

la ejecución de movimientos. 

 

La EEG es una técnica no invasiva que mide la actividad cerebral eléctrica mediante 

electrodos colocados sobre el cuero cabelludo. Gracias a su seguridad y facilidad de 

aplicación, puede utilizarse en personas de cualquier edad y es ampliamente empleada 

tanto en investigación como en el ámbito clínico, especialmente en el diagnóstico de 

trastornos neurológicos como tumores, epilepsias o hemorragias(Teplan and Teplan, 

2002). 

 

La señal que recoge el EEG refleja la suma de los potenciales postsinápticos generados 

por grandes grupos de neuronas, en particular las neuronas piramidales de la corteza 

cerebral. Estas neuronas forman dipolos eléctricos entre el cuerpo celular y las dendritas 

apicales, cuyas corrientes sinápticas sincronizadas pueden detectarse desde la superficie 

del cuero cabelludo (Teplan and Teplan, 2002). 

 

Dado que el presente trabajo se centra en el estudio de la reorganización de las redes 

cerebrales a partir de datos de EEG, este apartado se dedica a describir los fundamentos 

de esta técnica, incluyendo las principales bandas de frecuencia en las que se clasifica la 

actividad cerebral, así como sus principales limitaciones. Entender cómo se estructuran 

los ritmos neuronales permite interpretar mejor los patrones de conectividad funcional, 

mientras que identificar las fuentes de ruido y artefactos resulta esencial para garantizar 

la fiabilidad del análisis. 

 

1.3.1. Ritmos de frecuencia 
 

En términos funcionales, la actividad cerebral registrada por el EEG se clasifica en cinco 

bandas o ritmos de frecuencia (véase la Figura 1.1), cada una asociada a diferentes 

procesos cognitivos y estados mentales (Chaddad et al., 2023): 

 

• Banda delta (1 – 4 Hz): las ondas son oscilaciones de gran amplitud, están 

relacionadas con la actividad cerebral de ondas lentas y el sueño profundo. 

 

• Banda theta (4 – 8 Hz): las ondas se observan comúnmente durante periodos de 

relajación y meditación.  

 

• Banda alfa (8 – 13 Hz): las ondas son más evidentes durante estados de relajación, 

con los ojos cerrados y sin atención dirigida.  

 

• Banda beta (13 – 30 Hz): las ondas se asocian con el procesamiento cognitivo 

activo y pueden detectarse durante tareas que requieren una atención significativa. 

 

 

 

 



 20 

 

 
 

Figura 1.1 Representación de cuatro ritmos cerebrales típicos en condiciones normales, 

ordenados de mayor a menor frecuencia: beta, alfa, theta y delta. Imagen adaptada de (Sanei Saeid 

and Chambers J.A, 2007) 

 

 

• Banda gamma (30 – 100 Hz): las ondas están vinculadas al procesamiento 

cognitivo avanzado y a la integración de información sensorial. 

 

 

1.3.2. Limitaciones del EEG: ruido, artefactos 
 

Aunque el EEG ofrece una alta resolución temporal y constituye una herramienta 

accesible y no invasiva, presenta limitaciones importantes que deben considerarse. Una 

de ellas es su baja resolución espacial: las señales registradas en el cuero cabelludo 

reflejan principalmente la actividad postsináptica de las células piramidales corticales, 

organizadas en las capas externas de la corteza. Esto implica que la información obtenida 

procede casi exclusivamente de regiones corticales superficiales, mientras que la 

actividad de estructuras profundas no puede registrarse con precisión mediante esta 

técnica (Chiarion et al., 2023). Para suplir estas carencias se emplean habitualmente 

métodos complementarios, como la fMRI, que proporciona una excelente resolución 

espacial, pero cuya resolución temporal es muy baja (del orden de segundos), lo que le 

impide captar fenómenos en escalas temporales rápidas (He et al., 2019). 
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Además, la adquisición de señales EEG se ve afectada por la presencia de ruido no 

deseado, lo que dificulta su análisis. Esto se debe a la naturaleza inherente del EEG, que 

capta no solo la actividad neuronal de interés, sino también otras señales externas (o de 

otras partes del cuerpo) no relacionadas. Esto da lugar a la aparición de lo que se conoce 

como artefactos.  

 

Estos artefactos pueden originarse tanto por el instrumental de medición como por 

factores ambientales o fisiológicos. En el primer caso, encontramos problemas como 

electrodos defectuosos, alta impedancia, o ruido de red eléctrica, que pueden minimizarse 

mediante sistemas de registro más precisos y un protocolo de adquisición riguroso. Sin 

embargo, los artefactos fisiológicos, como los movimientos oculares, los parpadeos, la 

actividad muscular o cardíaca, resultan mucho más difíciles de eliminar, ya que están 

intrínsecamente ligados al propio sujeto (Jiang, Bian and Tian, 2019). 

 

La presencia de estos artefactos puede distorsionar significativamente la señal EEG, 

interfiriendo con las verdaderas conexiones neuronales y generando interpretaciones 

erróneas (Jiang, Bian and Tian, 2019). 

1.4.  Conectividad cerebral 
 

El cerebro es un sistema altamente complejo, caracterizado por múltiples niveles de 

interconexión e interacción que abarcan desde la escala microscópica, como las células y 

sinapsis, hasta la macroscópica, donde distintas regiones y sistemas cerebrales interactúan 

entre sí. El estudio de las redes cerebrales permite representar las áreas del cerebro como 

nodos interconectados, mientras que las interacciones entre ellas se modelan como 

conexiones dentro de una red dinámica. Este enfoque permite describir y analizar cómo 

se comunican las distintas partes del cerebro en reposo o durante la realización de tareas 

específicas (Zamani Esfahlani et al., 2021). 

 

La conectividad cerebral se centra precisamente en describir estos patrones de 

interacción, tanto dentro de cada región cerebral como entre diferentes regiones (Chiarion 

et al., 2023). A lo largo de este apartado, se presenta una visión general sobre los 

principales tipos de conectividad cerebral, los distintos enfoques para su análisis, los 

índices más utilizados para caracterizar estas complejas redes de interacción, así como 

los principales desafíos metodológicos asociados a su estudio.  

 

1.4.1. Tipos: estructural, funcional y efectiva 
 

La conectividad cerebral se puede dividir fundamentalmente en tres tipos: estructural, 

funcional y efectiva. La conectividad estructural (SC) hace referencia a las conexiones 

anatómicas entre neuronas o regiones cerebrales, representando la arquitectura física del 

sistema nervioso. La conectividad funcional (FC), en cambio, se basa en la relación 

temporal de la actividad neuronal entre distintas áreas, sin implicar necesariamente una 

conexión física directa. Finalmente, la conectividad efectiva (EC) permite identificar 

influencias causales, proporcionando información sobre qué regiones ejercen control 

sobre otras y en qué dirección fluye la actividad cerebral (Rubinov and Sporns, 2010; Ge 

et al., 2023).  
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La conectividad funcional no implica una dirección concreta ni una organización 

anatómica determinada en el cerebro. Se entiende más bien como la probabilidad de que 

las respuestas neuronales registradas en distintas áreas estén relacionadas entre sí. Por 

tanto, no permite inferir la naturaleza de dicha relación, sino únicamente constatar si 

existe o no una dependencia estadística. Este tipo de conectividad se evalúa mediante 

métricas simétricas, como la correlación, la coherencia o la información mutua, que 

permiten cuantificar la sincronización de regiones cerebrales, pero sin establecer si una 

influye sobre la otra (Chiarion et al., 2023). 

Por su parte, la conectividad efectiva busca determinar si la actividad de una región 

cerebral precede y predice la de otra, lo que sugiere una relación de causa-efecto. Entre 

las métricas más utilizadas para este análisis se encuentran la causalidad de Granger, la 

coherencia dirigida, la coherencia parcial dirigida y la entropía de transferencia. Todas 

ellas permiten captar la dirección del flujo de información entre distintas áreas cerebrales 

(Rubinov and Sporns, 2010; Chiarion et al., 2023) 

1.4.2. Dominios de análisis 
 

La elección de la métrica de conectividad más adecuada depende tanto del tipo de 

fenómeno fisiológico que se desea estudiar como de las características específicas de las 

señales registradas. Para ello, se han desarrollado múltiples enfoques metodológicos que 

permiten analizar la conectividad funcional desde distintas perspectivas o dominios 

(véase la Figura 1.2) (Chiarion et al., 2023). 

Algunos métodos se basan en modelos lineales, como los modelos autorregresivos, que 

permiten representar las interacciones cerebrales mediante ecuaciones matemáticas bien 

definidas. Otros enfoques, en cambio, son no lineales o no requieren un modelo previo 

(model-free), lo que los hace especialmente útiles para captar relaciones complejas y no 

evidentes entre las señales neuronales (Pereda, Quiroga and Bhattacharya, 2005). 

Estos métodos también se pueden clasificar en función del dominio de análisis en el que 

operan. En el dominio temporal, se estudia la evolución de las señales a lo largo del 

tiempo. En el dominio frecuencial, se analizan las componentes oscilatorias de la señal, 

que abarcan desde las bandas de baja frecuencia (delta y theta) hasta las de frecuencia 

media y alta (alfa, beta y gamma), y su grado de sincronización entre distintas regiones 

cerebrales. Por otro lado, el dominio de la teoría de la información permite medir cuánta 

información comparten diferentes áreas del cerebro, proporcionando una perspectiva 

complementaria sobre las interacciones funcionales (Chiarion et al., 2023). 

Además, el análisis de conectividad puede abordarse desde una perspectiva estática o 

dinámica. En un enfoque estático, se asume que las relaciones entre regiones se mantienen 

constantes durante todo el periodo de observación. En cambio, el enfoque dinámico 

permite capturar cómo varían estas conexiones a lo largo del tiempo, lo cual resulta 

especialmente útil en tareas cognitivas o situaciones clínicas donde la actividad cerebral 

no es estacionaria, como en la observación de acciones (Chiarion et al., 2023).  
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Por este motivo, en el presente trabajo se ha adoptado un enfoque dinámico para estudiar 

la conectividad funcional mediante EEG, como se describe en el apartado 1.5. 

Finalmente, los análisis pueden realizarse de forma bivariada, evaluando las relaciones 

entre pares de señales, o de forma multivariada, considerando múltiples regiones de forma 

simultánea. Esta última opción permite obtener una representación más global y realista 

de las complejas redes de interacción cerebral (Cohen and Mike X, 2014). 

 

 

 

Figura 1.2 Clasificación de las principales métricas utilizadas para el análisis de conectividad 

cerebral, agrupadas según su dominio de aplicación (temporal, frecuencial o de información) y su 

naturaleza (dirigida o no dirigida). Imagen adaptada de (Chiarion et al., 2023). 
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1.4.3. Métricas de conectividad 
 

Los índices de conectividad pueden agruparse en cinco categorías diferentes: Medidas 

Clásicas, Índices de Sincronización Generalizada (Generalized Synchronization Indexes, 

GS), Índices basados en Causalidad de Granger, Medidas basadas en Teoría de la 

Información e Índices de Sincronización de Fase (Phase Synchronization Indexes, PS). 

Cada una de estas categorías investiga diferentes aspectos de la conectividad cerebral y 

se caracteriza por presentar ventajas y limitaciones específicas (Niso et al., 2013). 

 

Las medidas clásicas incluyen técnicas lineales como el coeficiente de correlación de 

Pearson (COR), la función de correlación cruzada (XCOR), la coherencia (COH) y la 

correlación de la envolvente de amplitud (Amplitude Envelope Correlation, AEC). Esta 

última estima la correlación entre las envolventes de amplitud de dos series temporales. 

Para su cálculo, se aplica la transformada de Hilbert para extraer dichas envolventes y, 

posteriormente, se computa la correlación de Pearson sobre ellas. Es importante señalar 

que la AEC debe aplicarse sobre señales previamente ortogonalizadas, con el fin de 

minimizar los efectos espurios de la conducción de volumen (Brookes et al., 2014; 

O’Neill et al., 2018). Estos métodos se emplean ampliamente debido a su simplicidad y 

eficiencia computacional; sin embargo, su principal limitación es que solo pueden 

detectar dependencias lineales entre variables (Niso et al., 2013).  

 

Los GS se basan en el concepto de sincronización generalizada, que se da cuando los 

estados de un subsistema dinámico () están influenciados por los estados de otro 

subsistema (), lo cual se expresa como  = F(). 

 

Los índices basados en la causalidad de Granger están relacionados con la teoría de 

Wiener y evalúan la causalidad entre dos señales medidas simultáneamente, x(t) e y(t), 

analizando si la inclusión de valores pasados de una señal mejora la predicción de la otra. 

 

Las medidas basadas en la teoría de la información se fundamentan principalmente en 

una métrica que cuantifica la información de una variable aleatoria discreta : su entropía 

de Shannon. 

 

Por último, los PS se basan en el concepto de sincronización de fase, que hace referencia 

a una situación en la que las fases de dos osciladores acoplados se sincronizan, aunque 

sus amplitudes puedan permanecer no correlacionadas. Cuentan con algunas métricas 

como el Phase Locking Value (PLV), el Phase Lag Index (PLI) y el Phase Slope Index 

(PSI) (Niso et al., 2013). 

 

El PLV se basa únicamente en la diferencia de fase relativa entre señales y evalúa cómo 

se distribuye esta diferencia alrededor del círculo unitario. Cuando existe una fuerte 

sincronización de fase entre dos señales (por ejemplo,  e ), la fase relativa se concentra 

en una pequeña región del círculo, y el PLV se aproxima a 1. En cambio, si no hay 

sincronización, la fase relativa se dispersa por todo el círculo, dando lugar a valores bajos 

de PLV. 
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El PLI mide la consistencia del desfase de fase entre dos señales, descartando aquellas 

diferencias centradas en cero, lo que lo hace menos sensible a artefactos causados por el 

volume conduction. A partir de este índice surge el weighted Phase Lag Index (wPLI), 

una variante ponderada que mejora la detección de cambios en la sincronización de fase 

al reducir la influencia del ruido no correlacionado y aumentar el poder estadístico. A 

diferencia de otros índices de fase, el wPLI incorpora información tanto de fase como de 

amplitud, lo que proporciona una estimación más robusta de la conectividad funcional 

(Niso et al., 2013). 

 

En el presente trabajo se ha seleccionado el wPLI como métrica principal para calcular la 

conectividad funcional a partir de señales EEG, debido a sus múltiples ventajas: permite 

identificar interacciones con desfase temporal (aportando una noción de direccionalidad), 

se adapta al análisis en el dominio frecuencial y es especialmente resistente a los efectos 

del volume conduction, lo que lo convierte en una herramienta fiable para estudios sobre 

conectividad cerebral.  

 

1.4.4. Limitaciones en el análisis de conectividad 
 

Como ya se ha mencionado anteriormente, una de las limitaciones más relevantes es el 

volume conduction. Este fenómeno ocurre cuando la actividad eléctrica generada en una 

región del cerebro es registrada simultáneamente por varios electrodos, lo que produce 

una autocorrelación espacial a nivel del sensor. Como consecuencia, puede parecer que 

existe una conexión funcional entre dos electrodos, cuando en realidad ambos están 

captando la misma fuente de señal cerebral. 

 

Este efecto puede dar lugar a conectividad espuria, es decir, relaciones aparentes entre 

regiones cerebrales que en realidad no están interactuando. El volume conduction es un 

fenómeno inevitable, ya que forma parte del proceso físico de propagación de la señal 

eléctrica desde el interior del cerebro hasta la superficie del cuero cabelludo (He et al., 

2019). 

 

Para mitigar este problema se han propuesto diferentes estrategias. Una primera 

aproximación consiste en utilizar métricas de conectividad menos sensibles al volume 

conduction. Por ejemplo, índices basados en el desfase de fase como el PSI o el wPLI 

permiten detectar interacciones con cierto retraso temporal, ignorando las correlaciones 

instantáneas que suelen ser producto de este efecto (Niso et al., 2013). Otra alternativa, 

empleada en otros estudios, es el uso de técnicas de análisis de fuentes (source imaging), 

que permiten estimar la actividad neuronal en el espacio fuente a partir de las señales 

registradas en el cuero cabelludo (espacio sensor), reduciendo así la probabilidad de 

detectar conectividad espuria debida a la propagación de volumen (Jiang, Bian and Tian, 

2019; Chiarion et al., 2023). En el presente trabajo se optó únicamente por la primera 

estrategia, sin aplicar procedimientos de source imaging. 

1.5. Conectividad funcional dinámica 
 

El cerebro debe integrar, coordinar y responder de forma dinámica a estímulos internos y 

externos a través de múltiples escalas temporales. Por ello, las interacciones cerebrales 

no son estáticas, sino que las relaciones funcionales entre diferentes regiones cerebrales 

cambian a lo largo del tiempo (Hutchison et al., 2013). 
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Para estimar la conectividad funcional dinámica (dynamic functional connectivity, dFC), 

es necesario aplicar métodos que permitan observar cómo varían las conexiones entre 

regiones cerebrales en el tiempo. Todos estos métodos requieren un número suficiente de 

puntos temporales para obtener resultados fiables.  

 

En las siguientes secciones se describen los métodos empleados para estimar la dFC y la 

construcción de matrices de conectividad que permiten representar de manera 

estructurada dichas interacciones. 

 

1.5.1. Métodos de estimación: sliding window  
 

Una de las formas más sencillas y ampliamente utilizadas para estimar la dFC es el 

enfoque de ventanas deslizantes (sliding window). Este método consiste en dividir la serie 

temporal de la señal EEG en ventanas de duración fija (Ge et al., 2023). A continuación, 

la ventana se desplaza a lo largo del tiempo por un número determinado de puntos, 

también conocido como paso (step size), lo cual define el grado de solapamiento entre 

ventanas consecutivas (Hutchison et al., 2013). En cada ventana, se calcula una métrica 

de conectividad funcional, como la correlación, la coherencia o algún índice de 

sincronización de fase. De esta manera, se obtiene una secuencia de matrices que reflejan 

cómo evolucionan las interacciones funcionales entre regiones cerebrales a lo largo del 

tiempo (Ge et al., 2023). 

 

Una de las principales ventajas de este enfoque es su compatibilidad con una amplia 

variedad de métricas de conectividad estática, lo que lo convierte en una herramienta 

flexible y accesible (O’Neill et al., 2018). Sin embargo, presenta algunas limitaciones 

como la selección de la longitud de la ventana: si es demasiado corta, puede introducir 

ruido o inestabilidad en la estimación; si es demasiado larga, puede suavizar en exceso 

las transiciones rápidas entre estados cerebrales. Además, diferentes métricas requieren 

duraciones mínimas distintas para generar resultados fiables. Por ejemplo, se ha 

observado que las métricas basadas en fase requieren más datos que las basadas en 

amplitud para alcanzar consistencia (O’Neill et al., 2018). 

 

En este trabajo se ha aplicado este enfoque de ventanas deslizantes para estimar la 

conectividad funcional dinámica a partir de los registros EEG obtenidos durante la AOT. 

Este método permite observar cómo varían las interacciones entre regiones cerebrales a 

lo largo de las distintas fases del vídeo de la AOT, facilitando el análisis de posibles 

reconfiguraciones funcionales inducidas por el estímulo. Su uso resulta especialmente 

adecuado en este contexto, ya que ofrece una resolución temporal suficiente para captar 

cambios relevantes durante la tarea, al tiempo que se mantiene una implementación 

metodológica robusta y compatible con métricas como el PLI. 

 

Cabe destacar que también existen métodos alternativos, conocidos como métodos 

instantáneos, que no requieren segmentar la señal en ventanas temporales. Técnicas como 

la transformada de Hilbert o la transformada wavelet continua permiten estimar la fase y 

potencia instantáneas en cada momento del tiempo, lo que puede resultar útil en tareas 

muy rápidas o con transiciones abruptas. No obstante, estos métodos son más sensibles 

al ruido y exigen señales con oscilaciones bien definidas para ofrecer resultados fiables 

(Ge et al., 2023). 
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1.5.2. Matrices de conectividad 
 

Una red es una representación matemática de un sistema complejo del mundo real, y se 

define como un conjunto de nodos (o vértices) y enlaces (o aristas) que conectan pares de 

nodos. En las redes cerebrales los nodos corresponden a electrodos, y las aristas a alguna 

medida de conectividad entre pares de estos (Rubinov and Sporns, 2010). 

 

Todas las redes pueden representarse mediante matrices de conectividad (también 

denominadas matrices de adyacencia). Las filas y columnas de estas matrices representan 

los nodos, mientras que cada entrada (, ) representa el valor de conectividad entre los 

electrodos  e . Así, dado un conjunto de  electrodos, se obtiene una matriz cuadrada 

de tamaño   , en la que se codifica la conectividad entre todos los pares posibles. 

 

La conectividad puede calcularse en distintos dominios, como el temporal o el 

frecuencial, lo que implica que cada matriz 2D representa la conectividad en un punto 

específico del espacio tiempo-frecuencia (Rubinov and Sporns, 2010). 

 

Según el tipo de medida utilizada, la matriz de conectividad puede presentar diferentes 

propiedades estructurales (véase la Figura 1.3). Si el valor en la posición (, ) es 

idéntico al de (, ), se trata de una matriz simétrica, como suele ocurrir en la 

conectividad funcional. En este caso, los triángulos superior e inferior respecto a la 

diagonal principal contienen información redundante. Por el contrario, una matriz 

asimétrica refleja relaciones direccionales o diferentes medidas en cada sentido, como por 

ejemplo si el triángulo inferior representa la conectividad de  a , mientras que el 

superior la de  a  (Rubinov and Sporns, 2010). 

 

 

 

 
 

Figura 1.3 Representación de una matriz de adyacencia simétrica (panel A) y una matriz de 

adyacencia asimétrica (panel B). Imagen adaptada de (Rubinov and Sporns, 2010). 
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La naturaleza ruidosa de las medidas de conectividad funcional, junto con la presencia de 

múltiples conexiones espurias o débiles, puede dificultar notablemente la interpretación 

de los resultados. Esta dificultad se incrementa especialmente cuando se trabaja con un 

elevado número de electrodos. Por ello, los métodos de umbralización (thresholding) 

resultan útiles para obtener una visualización y comprensión más clara y simplificada de 

la red cerebral, permitiendo centrarse únicamente en las conexiones más relevantes 

(Cohen and Mike X, 2014). 

 

Existen distintas estrategias para aplicar umbrales. Una de las más comunes es la 

umbralización absoluta, que consiste en establecer en cero todas las medidas de 

conectividad que estén por debajo de un determinado valor de corte. Este valor puede 

definirse de forma arbitraria (por ejemplo, un determinado percentil o un número de 

desviaciones estándar por encima del valor medio de conectividad) (Cohen and Mike X, 

2014). 

 

Otras estrategias comunes de umbralización consisten en especificar el número de 

conexiones que se desean conservar, y fijar a cero el resto. El valor del umbral puede 

mantenerse constante para toda la población o adaptarse a cada paciente en particular 

(Rubinov and Sporns, 2010; Cohen and Mike X, 2014). 

 

En este caso, se utiliza una umbralización basada en un número específico de conexiones 

conservadas. De esta manera, una vez calculados los valores de conectividad mediante el 

índice wPLI y construidas las matrices de conectividad en cada una de las ventanas 

deslizantes, se aplica un umbral sobre ellas. Así, las matrices umbralizadas se podrán 

representar de forma más interpretable mediante grafos o comunidades.  

 

Aunque existen múltiples formas de analizar estas matrices, en este trabajo nos 

centraremos en la detección de comunidades, como se detallará en el siguiente apartado. 

1.6. Teoría de grafos 
 

Estudiar cómo se organiza el cerebro durante una tarea o estado mental concreto es 

esencial, ya que tanto los cambios como los patrones estables en la red neuronal pueden 

tener implicaciones fisiológicas relevantes (Puxeddu, Petti and Astolfi, 2021). Para 

abordar esta cuestión, una herramienta muy utilizada es la teoría de grafos, una rama de 

las matemáticas que se encarga de analizar redes formadas por un conjunto de nodos y 

aristas que representan los elementos de un sistema y sus interrelaciones (Bassett and 

Sporns, 2017). En este enfoque, las matrices de conectividad de tamaño    se 

transforman en grafos, donde  indica el número de nodos. A partir de estos grafos, es 

posible aplicar técnicas de análisis que permiten describir su estructura topológica 

(Rubinov and Sporns, 2010). 

 

Este tipo de análisis permite extraer métricas que reflejan aspectos tanto locales como 

globales de la red. Entre las más relevantes se encuentran aquellas relacionadas con tres 

grandes bloques: segregación funcional, integración funcional y centralidad (Rubinov and 

Sporns, 2010). 
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La integración funcional se refiere a la capacidad del cerebro para combinar información 

procedente de áreas dispersas entre sí. Para cuantificarla, se analiza cómo de fácil es la 

comunicación entre nodos distantes. Este análisis se basa en el concepto de camino, 

entendido como la secuencia de enlaces que conecta dos nodos. En particular, la longitud 

del camino más corto representa el número mínimo de enlaces necesarios para conectar 

un par de nodos. Una de las métricas más comunes es la eficiencia global (global 

efficiency, GE), que se calcula como el inverso del promedio de las distancias más cortas 

entre todos los pares de nodos (Rubinov and Sporns, 2010; Cohen and Mike X, 2014). 

 

Las medidas de centralidad permiten identificar los nodos centrales o "hubs" dentro de 

las redes cerebrales. Por ejemplo, el grado (degree, D) contabiliza el número de 

conexiones de un nodo, mientras que su versión ponderada, llamada fuerza (strength), 

suma los pesos de esas conexiones. La centralidad de intermediación (betweenness 

centrality, BC), por otro lado, muestra cuántos caminos más cortos de la red pasan por un 

nodo determinado (Rubinov and Sporns, 2010). 

 

La segregación funcional del cerebro hace referencia a su capacidad para llevar a cabo 

procesos especializados dentro de grupos de regiones altamente interconectadas, 

conocidas como clústeres o módulos. Una de las métricas más potentes en este sentido es 

la modularidad (Q), que evalúa en qué medida una red puede dividirse en subconjuntos o 

comunidades claramente diferenciadas, con muchas conexiones internas y pocas 

conexiones externas (Rubinov and Sporns, 2010). 

 

Para estimar esta métrica en redes cerebrales reales, especialmente aquellas derivadas de 

datos EEG, es necesario aplicar algoritmos específicos que permitan identificar dichas 

comunidades de forma automática. A continuación, se describe el enfoque de detección 

de comunidades, que constituye la base metodológica empleada en este trabajo. 

 

1.6.1. Algoritmo de detección de comunidades 
 

El análisis de la estructura modular resulta especialmente útil en el contexto del EEG, ya 

que esta técnica ofrece una excelente resolución temporal. Aplicar enfoques de detección 

de comunidades sobre redes derivadas del EEG permite observar cómo se agrupan 

dinámicamente las regiones cerebrales durante una tarea, siendo útil en campos como la 

epilepsia, la percepción visual o los procesos cognitivos (Puxeddu, Petti and Astolfi, 

2021). 

Los algoritmos de detección de comunidades permiten descomponer una red en grupos 

densos de nodos llamados “módulos” o más comúnmente “comunidades” (Bassett et al., 

2013). De forma general, una comunidad es un conjunto de nodos que están “más 

densamente” conectados entre sí que con nodos de otras comunidades. En las particiones 

más comunes, cada nodo pertenece a una única comunidad, lo que se conoce como 

partición rígida (Bazzi et al., 2017). 

Para identificar dichas comunidades dentro de la red, se suele recurrir a la optimización 

de una función de calidad, siendo la modularidad (Q) la métrica más empleada. Esta 

medida evalúa hasta qué punto una partición presenta más conexiones dentro de las 

comunidades de lo que cabría esperar por azar, comparándola con un modelo nulo 

aleatorio (Bassett et al., 2013). Cuanto mayor sea la modularidad, mayor será la cohesión 

interna de las comunidades encontradas frente a su conexión con el resto de la red.  
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Debido a que la búsqueda de la partición óptima es un problema computacionalmente 

complejo, se utilizan algoritmos heurísticos como el de Louvain, ampliamente utilizado 

por su eficiencia para encontrar máximos locales de la función de modularidad (Bassett 

et al., 2013). 

Los dos enfoques más habituales a la hora de detectar comunidades son el análisis en una 

sola capa (single-layer community detection) y el enfoque multicapa (multi-layer 

community detection). En el análisis monocapa, el algoritmo de Louvain clásico se aplica 

de manera independiente a cada matriz de conectividad correspondiente a una ventana 

temporal. Esto implica que las comunidades detectadas en una ventana pueden diferir 

completamente de las de la siguiente, dificultando el seguimiento de la evolución 

temporal de la organización funcional del cerebro (Puxeddu, Petti and Astolfi, 2021). 

En cambio, el enfoque multicapa, basado en el algoritmo GenLouvain, generaliza la 

maximización clásica de la modularidad incorporando un término adicional que tiene en 

cuenta el acoplamiento de los nodos entre capas temporales consecutivas. De esta manera, 

se puede capturar de forma más precisa la evolución temporal de las comunidades, 

observando cómo se mantienen, se reorganizan o desaparecen a lo largo de la tarea 

(Puxeddu, Petti and Astolfi, 2021). 

El algoritmo de Louvain, tanto en su versión clásica como multicapa, se desarrolla en dos 

fases iterativas. Partiendo de una partición inicial, se consideran los nodos uno por uno 

(en algún orden) y se asigna cada nodo a la comunidad que produzca el mayor aumento 

de modularidad. Si ningún cambio mejora la puntuación, el nodo conserva su asignación 

actual. Esta primera fase se repite hasta alcanzar un máximo local (Bazzi et al., 2020). 

En la segunda fase, se construye una nueva matriz de modularidad agregando los 

conjuntos de nodos obtenidos tras la convergencia de la primera fase. Luego, se vuelve a 

aplicar la primera fase sobre esta nueva matriz, repitiendo ambas fases hasta que se 

converge a un máximo local (Bazzi et al., 2020). 

Esta función de modularidad está influida por dos parámetros clave: gamma () y omega 

(). Gamma es el parámetro de resolución estructural y ajusta la granularidad con la que 

se detectan comunidades. Cuando gamma es bajo, se tiende a identificar comunidades 

más grandes; en cambio, valores altos favorecen comunidades más pequeñas y específicas 

(Zamani Esfahlani et al., 2021).  

 

Por su parte, el parámetro omega determina la fuerza del acoplamiento entre capas 

temporales. Un omega bajo implica que las comunidades se detectan casi de forma 

independiente en cada capa, generando una mayor fragmentación. En cambio, un omega 

alto promueve la estabilidad de las comunidades a lo largo del tiempo, favoreciendo que 

los nodos mantengan su asignación comunitaria en ventanas sucesivas (Rizkallah et al., 

2018) 

 

En este trabajo se ha aplicado el algoritmo de detección de comunidades multicapa 

GenLouvain, con el objetivo de estudiar cómo se reconfiguran las redes cerebrales en 

función del tiempo durante la AOT. 
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1.7. Descripción del documento 
 

Este apartado se centra en la estructura de este Trabajo de Fin de Grado (TFG), el cual 

está dividido en varios capítulos. A continuación, se enumeran dichos capítulos junto con 

una breve explicación de lo que contiene cada uno de ellos.  

 

• Capítulo 1. Introducción y marco teórico. Este capítulo se estructura en cinco 

secciones. En primer lugar, se introduce la AOT, abordando sus bases 

neurofisiológicas y su relevancia en el ámbito de la rehabilitación. A 

continuación, se profundiza en los principios fundamentales de la EEG, junto con 

sus ritmos de frecuencia característicos y las principales limitaciones asociadas a 

la adquisición de señales. La tercera sección está dedicada a la conectividad 

cerebral, incluyendo sus distintos tipos, dominios de análisis y métricas empleadas 

para su evaluación. En la cuarta sección se describen los fundamentos de la teoría 

de grafos y su aplicación al análisis de redes cerebrales, con especial énfasis en 

los algoritmos de detección de comunidades. Finalmente, se presentan las 

hipótesis y objetivos del estudio, que guían el análisis desarrollado en los capítulos 

siguientes. 

 

• Capítulo 2. Revisión del estado del arte: Terapia de Observación de la Acción 

y Conectividad Funcional Dinámica. En este capítulo se realiza una revisión de 

los principales estudios existentes que relacionan la AOT con la conectividad 

cerebral, prestando especial atención a aquellos que utilizan EEG y métricas como 

el wPLI, así como técnicas de conectividad dinámica. También se incluyen 

estudios con fMRI que permiten una comprensión complementaria del fenómeno. 

Por último, se destacan las limitaciones asociadas a la literatura existente. 

 

• Capítulo 3. Hipótesis y objetivos. Se formula la hipótesis central del trabajo y se 

detallan los objetivos generales y específicos que guían la investigación. 

 

• Capítulo 4. Materiales y métodos. En este capítulo se describe el conjunto de 

datos utilizado, el diseño experimental, las etapas de preprocesamiento del EEG 

y la metodología de análisis de conectividad dinámica aplicada, incluyendo el 

cálculo del índice wPLI, el enfoque sliding window y el algoritmo GenLouvain. 

 

• Capítulo 5. Resultados. Se presentan los hallazgos derivados del análisis, 

combinando resultados cuantitativos y representaciones visuales. Se muestran las 

variaciones en el número y dimensión de comunidades, las particiones grupales 

derivadas de la matriz de consenso y los valores del índice NMI como medida de 

estabilidad. Además, se incluyen comparaciones entre bandas de frecuencia (alfa 

y beta), condiciones experimentales y fases del estímulo, resaltando ejemplos de 

reorganización modular y patrones de transición o fragmentación en las redes. 

Finalmente, se analiza la influencia de los parámetros 𝛾 y 𝜔 en la detección de 

comunidades y en la interpretación de la dinámica funcional. 

 

• Capítulo 6. Discusión. En este capítulo se interpretan los resultados obtenidos a 

la luz de la literatura revisada, destacando las implicaciones de los hallazgos para 

la comprensión de la reorganización cerebral inducida por la AOT. Se analizan 

las diferencias observadas entre bandas de frecuencia, se discute la relevancia del 
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uso de métricas de modularidad multicapa y se valoran las limitaciones 

metodológicas del estudio. 

 

• Capítulo 7. Conclusiones. En esta sección se sintetizan los principales resultados 

del trabajo, subrayando la evidencia de que la AOT genera reorganizaciones 

dinámicas en la conectividad cerebral captables mediante EEG y análisis 

multicapa. Asimismo, se plantean posibles aplicaciones clínicas en el ámbito de 

la neurorrehabilitación y se proponen líneas de investigación futuras que podrían 

profundizar en la validación de estos hallazgos y en su transferencia a contextos 

clínicos. 
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Capítulo 2. Revisión del estado del arte: 
Terapia de Observación de la Acción y 

Conectividad Funcional dinámica 
 

La AOT y el estudio de la dFC han mostrado un notable potencial para comprender la 

reorganización de las redes cerebrales. En este capítulo se revisan los principales 

hallazgos en este campo y las limitaciones que motivan el presente trabajo. 

2.1. Estudios previos en AOT y conectividad cerebral 
 

En los últimos años, la AOT se ha consolidado como una terapia prometedora en el campo 

de la neurorrehabilitación. A través de la observación de acciones, se promueve el 

aprendizaje motor y se inducen cambios positivos en la plasticidad neuromotora, incluso 

sin necesidad de ejecutar físicamente los movimientos. Por este motivo, la AOT se ha 

planteado como una alternativa o complemento eficaz a la terapia física convencional 

(Kim and Cho, 2016). 

 

Diversos estudios han demostrado que la AOT puede inducir cambios significativos en la 

conectividad funcional cerebral, favoreciendo procesos de reorganización y plasticidad 

(Buccino et al., 2001; Rizzolatti et al., 2021). Sin embargo, el enfoque metodológico ha 

variado considerablemente entre estudios, especialmente en cuanto a la técnica de registro 

utilizada. Las dos herramientas más utilizadas han sido la EEG y la resonancia magnética 

funcional (fMRI). 

En el caso del EEG, varios estudios se han centrado en el análisis de la desincronización 

y resincronización relacionada con eventos (ERD/ERS) para caracterizar la actividad 

cortical durante AOT (Muthukumaraswamy and Singh, 2008; Gonzalez-Rosa et al., 

2015). En particular, Kim y colegas (2016) observaron una clara desincronización del 

ritmo mu en las regiones centrales (C3 y C4), caracterizando una activación de la corteza 

motora. Asimismo, la banda alfa demostró reducciones significativas en las regiones 

frontal, central, parietal y occipital. Por el contrario, la actividad de la banda beta aumentó 

significativamente en las regiones central y occipital, con una mayor coherencia en las 

áreas frontocentrales. Estos resultados respaldan la hipótesis de una reactivación de las 

áreas motoras inducida por la observación (Kim and Cho, 2016). 

 

Por su parte, Adham et al. (2024) estudiaron las respuestas corticales durante tareas de 

observación (O), imaginación (OI) y ejecución motora (OM) de miembros inferiores. 

Observaron una desincronización de la banda alfa en las regiones centroparietales durante 

la ejecución motora, así como una modulación progresiva del ritmo beta dependiendo del 

tipo de tarea. Además, el análisis del rebote beta pone de manifiesto la necesidad de añadir 

intención motora a la observación de la acción para activar los mecanismos de validación 

motora. (Adham et al., 2024). 

 

Desde un enfoque de conectividad funcional, Zhang y colegas (2018) utilizaron EEG y el 

índice wPLI para explorar la interacción entre la Action Observation Network (AON) y 

la Mentalizing Network (MZN) durante la AOT. Encontraron que las acciones familiares 

activaban predominantemente la AON, mientras que las ambiguas o sin intención clara 
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movilizaban la MZN. A nivel de red, se observó una reconfiguración dinámica con 

cambios en la GE y en la centralidad de ciertos nodos, destacando una transición funcional 

relevante durante la observación de acciones (Zhang et al., 2018). 

 

En el ámbito de los estudios basados en fMRI, la evidencia también respalda la capacidad 

de la AOT para modificar los patrones de conectividad funcional cerebral. Un ejemplo 

destacado es el estudio de Meng et al. (2023), quienes compararon la eficacia de una 

intervención de AOT basada en movimientos de Tai Chi (TC-AOT) con la de una terapia 

física convencional, aplicada en pacientes con enfermedad de Parkinson en fases 

tempranas. Ambos enfoques terapéuticos resultaron efectivos, mostrando mejoras 

significativas en la función motora, el equilibrio y la calidad de vida. Sin embargo, 

únicamente el grupo que recibió TC-AOT mostró un incremento en la conectividad 

funcional entre múltiples regiones cerebrales, lo cual sugiere que esta modalidad de AOT 

podría inducir una reorganización más eficiente de los circuitos motores y cognitivos que 

la terapia tradicional (Meng et al., 2023). 

 

Por último, Cordani y colegas (2021) analizaron la dFC en sujetos sanos durante y 

después de la observación de vídeos de acciones. Observaron una disminución progresiva 

de la dFC tras la tarea, lo que sugiere un proceso de adaptación y reorganización funcional 

posiblemente vinculado a mecanismos de consolidación o automatización motora 

(Cordani et al., 2021). 

 

En conjunto, la literatura apoya la idea de que la AOT no solo activa el sistema motor 

durante la observación pasiva de acciones, sino que también promueve una 

reorganización dinámica de las redes cerebrales. Estos efectos se han medido tanto en 

escalas temporales rápidas (EEG) como espaciales (fMRI), y parecen modulados por 

factores como la perspectiva del observador, la familiaridad de la acción y la complejidad 

de la tarea. Sin embargo, los resultados disponibles son todavía heterogéneos y en muchos 

casos dependen de la metodología empleada, lo que dificulta extraer conclusiones 

consistentes. 

2.2. Limitaciones de la literatura existente 
 

A pesar de los avances descritos, los estudios previos presentan limitaciones importantes. 

En primer lugar, aunque la fMRI ha permitido identificar con gran detalle las regiones 

cerebrales implicadas en la AOT, su baja resolución temporal limita la posibilidad de 

captar interacciones rápidas y dinámicas, que resultan fundamentales para comprender 

cómo se coordinan las redes cerebrales durante la observación de acciones. Por su parte, 

el EEG ofrece la ventaja de registrar la actividad neuronal en escalas de milisegundos, 

pero la mayoría de las investigaciones se han centrado en analizar ritmos relacionados 

con eventos (ERD/ERS), sin profundizar en métricas de conectividad capaces de describir 

con mayor precisión las interacciones entre áreas cerebrales. 

 

Asimismo, los estudios que han abordado la conectividad funcional dinámica durante la 

AOT son todavía escasos y, en general, no han empleado indicadores de modularidad que 

permitan caracterizar cómo se reorganizan las comunidades funcionales a lo largo de la 

tarea. A ello se suma una notable heterogeneidad metodológica, tanto en los paradigmas 

experimentales como en las poblaciones analizadas y en las métricas utilizadas, lo que 

dificulta la comparación de resultados y la obtención de conclusiones generalizables. 
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En este contexto, se hace necesario un estudio que integre el registro EEG con medidas 

de conectividad funcional y análisis de modularidad, con el fin de caracterizar de manera 

más precisa los cambios dinámicos que la AOT puede inducir en la organización cerebral. 
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Capítulo 3. Hipótesis y Objetivos 
 

En este capítulo se presenta la hipótesis central y los objetivos que orientan el presente 

TFG. 

3.1. Hipótesis 

El presente TFG plantea la hipótesis de que la aplicación de la AOT induce una 

reorganización dinámica de las redes cerebrales, que puede observarse mediante 

cambios en la estructura modular a lo largo del tiempo. En particular, se espera que 

durante la observación de acciones se produzcan patrones de modularidad específicos que 

reflejen el papel del sistema de neuronas espejo en el aprendizaje motor y la simulación 

de movimientos. A partir del análisis de señales EEG y mediante la aplicación del 

algoritmo de detección de comunidades multicapa, se prevé identificar patrones de 

conectividad que reflejen la formación, estabilidad o disolución de comunidades 

funcionales durante la tarea. Esta reconfiguración dinámica aportaría evidencia sobre 

cómo se organiza el cerebro ante estímulos visomotores, y contribuiría a una mejor 

comprensión del papel de la modularidad en el aprendizaje motor y la simulación de 

acciones observadas. 

3.2. Objetivos del trabajo 

El objetivo principal de este TFG es identificar los patrones de la reorganización 

dinámica de la conectividad funcional del cerebro durante la AOT en sujetos sanos, 

a partir de registros EEG. Para ello, se estudia la evolución temporal de la arquitectura 

modular de las redes cerebrales, aplicando técnicas de detección de comunidades 

multicapa sobre las matrices de conectividad. 

Específicamente, los objetivos son: 

I. Obtener los patrones de conectividad funcional a partir de las señales EEG 

mediante el índice de fase wPLI, que permite estimar la conectividad funcional 

minimizando el efecto del volumen conductor. 

 

II. Desarrollar y aplicar un enfoque de conectividad funcional dinámica mediante 

ventanas deslizantes para capturar cómo varía la interacción entre regiones 

cerebrales a lo largo del tiempo durante la observación de acciones. 

 

III. Identificar la organización modular de dichas redes utilizando el algoritmo 

GenLouvain para detectar comunidades cerebrales y estudiar su estabilidad y 

evolución temporal. 

 

IV. Evaluar el impacto de diferentes parámetros (como gamma y omega) en la 

detección de comunidades y evaluar cómo se reorganizan funcionalmente las 

redes cerebrales durante la AOT. 
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Capítulo 4. Materiales y métodos 
 

En esta sección se presentan los materiales y métodos empleados en este TFG para 

alcanzar los objetivos propuestos. Se describe el conjunto de datos utilizado, el diseño 

experimental y las distintas herramientas empleadas. Todos los análisis se llevaron a cabo 

en el entorno de MATLAB. 

4.1. Base de datos y paradigma experimental 
 

El conjunto de datos empleado en este estudio procede de un trabajo previo realizado en 

el mismo laboratorio (Coelli et al., 2023), en el que se registraron señales de EEG durante 

tareas de observación de la acción (AO) y MI. En el presente trabajo, únicamente se han 

analizado los ensayos correspondientes a la condición de AO, sin incluir los datos de MI. 

 

Las señales se registraron en 46 participantes sanos y todos ellos diestros. El conjunto lo 

conforman 22 mujeres y 24 hombres, con edades comprendidas entre los 20 y los 30 años. 

La adquisición de las señales se realizó con un casco de 61 canales y el sistema de registro 

poligráfico SD LTM 64 Express (Micromed, Mogliano Veneto, Italia). Las señales se 

muestrearon a una frecuencia de 1024 Hz y las impedancias se mantuvieron por debajo 

de 20 KOhm mediante el uso de un hidrogel conductor (Coelli et al., 2023). 

 

El protocolo de AO y MI fue aprobado por el Comité Ético Interno del Istituto Clinico 

Humanitas (Rozzano, Italia). Todos los sujetos firmaron un consentimiento informado 

antes de los registros.  

 

En la tarea de AO, los sujetos observaban un vídeo de 6.5 segundos en el que se mostraba 

un movimiento de la extremidad superior desde una perspectiva en primera persona. La 

acción era realizada por un actor del mismo sexo que el participante, y solo era visible el 

miembro superior en movimiento. La duración total de cada estímulo alcanzaba los 11.5 

segundos, ya que el vídeo iba precedido por un periodo de reposo de 3 segundos (fijación 

en una cruz) y un periodo de preparación de 2 segundos (presentación de un círculo rojo). 

La secuencia completa se repitió en 20 ensayos (Coelli et al., 2023). 

 

La tarea de MI siguió exactamente la misma estructura temporal. Sin embargo, en este 

caso se presentaba únicamente el primer fotograma del vídeo durante los 6.5 segundos, e 

inmediatamente después se pedía a los participantes que imaginaran estar ejecutando el 

movimiento ellos mismos. También en esta condición se realizaron 20 ensayos. Cabe 

señalar que esta tarea no incluía retroalimentación en tiempo real, por lo que no se trataba 

de un paradigma de interfaz cerebro-computador (BCI), sino de un ejercicio de 

imaginación motora sin feedback externo. 

 

En total, cada participante completó tres bloques de estimulación (W1, W2 y W3), 

separados por periodos de descanso durante los cuales podían moverse libremente. Cada 

bloque presentaba un tipo distinto de movimiento transitivo y se diferenciaba por el grado 

de interacción con un objeto (véase Figura 3.1). W1 consistía en recoger cinco monedas 

pequeñas, W2 presentaba el uso de un martillo para clavar un clavo y W3 mostraba la 

interacción con unas pinzas para mover un objeto pequeño a un vaso de plástico. El orden 

de presentación de los vídeos se determinó de forma aleatoria para cada participante 

(Coelli et al., 2023). 
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Figura 4.1 Secuencia de estimulación para las tareas de AO y MI. Imagen adaptada de (Coelli et 

al., 2023). 

 

4.2. Preprocesado y análisis de datos 
 

 Los datos empleados en este trabajo fueron proporcionados ya preprocesados por el 

grupo de investigación responsable de la recogida. El preprocesamiento de las señales de 

EEG se realizó utilizando el toolbox EEGLAB junto con otros scripts personalizados 

adaptados a los objetivos del estudio. En primer lugar, se aplicó un filtro Finite Impulse 

Response (FIR) paso banda, de fase cero, con un rango de frecuencia entre 1 y 45 Hz, con 

el fin de eliminar artefactos de baja frecuencia y ruido eléctrico de alta frecuencia. 

Posteriormente, las señales se remuestrearon a 256 Hz aplicando un filtro antialiasing, y 

se realizó una inspección visual para identificar y eliminar los canales con mala calidad 

de señal (Coelli et al., 2023). 

 

Las señales se segmentaron en ensayos comprendidos entre -5 y +6.5 segundos con 

respecto al inicio de la presentación del estímulo principal (vídeo). Después, se aplicó un 

análisis de componentes independientes (ICA) mediante el algoritmo Extended Infomax 

sobre los ensayos concatenados, con el objetivo de identificar y eliminar fuentes de 

artefactos no cerebrales, como parpadeos o actividad muscular. Los ensayos con 

artefactos residuales se revisaron manualmente y se descartaron (Coelli et al., 2023). 

 

Para cada participante y tipo de vídeo se seleccionaron 18 ensayos (trials) limpios, 

correspondientes al intervalo comprendido entre el inicio del estímulo y el final de la fase 

de observación. De esta manera, el conjunto de datos utilizado se estructuró en matrices 

de 55 electrodos x 2944 muestras x 18 ensayos diferentes. Aunque la adquisición original 

se realizó con un casco de 61 electrodos (Coelli et al., 2023), tras el preprocesado se 

restringió el análisis a 55 canales, descartando aquellos que presentaban peor calidad de 

señal o cuya localización periférica resultaba menos relevante para el estudio de la 

dinámica sensoriomotora. 
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Cabe señalar que, debido a la calidad variable de los registros, el número de sujetos 

incluidos en cada análisis no fue el mismo para todas las condiciones. En W1 se 

excluyeron los sujetos 16 y 38, mientras que en W2, los sujetos 13, 14, 15, 16, 26 y 38. 

Finalmente, en W3 se dispuso de datos completos para todos los participantes. 

 

Asimismo, el análisis se restringió a las bandas alfa (8–13 Hz) y beta (13–30 Hz), por ser 

las más estrechamente vinculadas a la actividad sensorimotora y a los procesos de 

observación de la acción. Tal como se expone en la revisión de la literatura (sección 2), 

estas bandas muestran patrones consistentes de ERD/ERS en estudios previos de AOT 

(Kim and Cho, 2016), lo que facilita la comparabilidad con trabajos anteriores y, al mismo 

tiempo, reduce la complejidad analítica frente al uso de un rango más amplio de 

frecuencias. 

4.3. Estimación de la conectividad funcional 
 

En esta sección se detallan el índice y los parámetros empleados para realizar el análisis 

de conectividad, que constituye el objetivo principal de este trabajo. 

 

4.3.1. Índice wPLI 
 

Para cuantificar la conectividad funcional entre regiones cerebrales, se empleó el wPLI 

(Detti et al., 2019). Este índice mide la consistencia del desfase de fase entre pares de 

señales EEG a lo largo del tiempo, proporcionando una estimación robusta de la 

interacción neuronal y reduciendo la influencia de artefactos como el volume conduction 

(Stam, Nolte and Daffertshofer, 2007). 

 

El PLI es una métrica que descarta las diferencias de fase próximas a cero, ya que estas 

suelen deberse a fuentes comunes o referencias activas. Para descartar estas diferencias, 

el PLI se basa en calcular un índice de asimetría que mide la probabilidad de que la 

diferencia de fase ∆𝜙 entre dos señales se encuentre dentro del intervalo (−𝜋, 𝜋) (Detti 

et al., 2019). 

 

En este contexto, PLI = 0 indica ausencia de acoplamiento o un acoplamiento con 

diferencia de fase centrada en 0 (mod ), mientras que PLI = 1 refleja un acoplamiento 

de fase perfecto con un valor de ∆𝜙 distinto de 0 (mod ). Cuanto más fuerte sea este 

acoplamiento de fase distinto de cero, mayor será el valor del PLI (Detti et al., 2019). 

 

El wPLI constituye una extensión del PLI. La mejora clave de este índice es que pondera 

cada diferencia de fase por la magnitud de la componente imaginaria del espectro 

cruzado. Esto atenúa el impacto de ruidos no correlacionados y aumenta la capacidad para 

detectar variaciones reales en la sincronización de fase (Vinck et al., 2011). 

 

El wPLI se define mediante la siguiente ecuación: 

  

 

 

𝑤𝑃𝐿𝐼ℎ,𝑘,∆𝑡 =
|
1
𝑁

∑ 𝑠𝑖𝑛(𝜙ℎ(𝑝) − 𝜙𝑘(𝑝))𝑁
𝑝=1 |

1
𝑁

∑ |𝑠𝑖𝑛(𝜙ℎ(𝑝) − 𝜙𝑘(𝑝))|𝑁
𝑝=1

  

  

 

(1) 
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donde ℎ y 𝑘 se definen como el par de canales o electrodos cuya conectividad se está 

midiendo, y ∆𝑡  corresponde a una ventana temporal con 𝑁  muestras o instantes de 

tiempo. Las fases 𝜙ℎ(𝑝) 𝑦 𝜙𝑘(𝑝) son las de las señales en el instante 𝑝 para los canales 

ℎ y 𝑘, respectivamente (Detti et al., 2019). 

El índice wPLI también toma valores entre 0 y 1. Las diferencias de fase cercanas a cero 

apenas contribuyen al valor final, lo que disminuye la probabilidad de detectar 

conectividad espuria causada por volume conduction y mejora la capacidad para 

identificar sincronización genuina (Detti et al., 2019). 

Con el objetivo de implementar este índice en el presente estudio, las fases de las señales 

EEG se obtuvieron siguiendo el enfoque propuesto por Cohen, basado en la convolución 

de wavelets de Morlet con la señal previamente filtrada (Cohen and Mike X, 2014). Para 

cada canal, se calculó la Transformada Rápida de Fourier (FFT) de la señal, y, 

posteriormente, para cada frecuencia, se multiplicó punto a punto por la FFT de la wavelet 

correspondiente. La transformada inversa (IFFT) proporcionó una señal compleja de la 

cual se extrajo la fase instantánea en cada punto temporal.  

 

El análisis se realizó en un conjunto de 25 frecuencias equiespaciadas entre 2 y 40 Hz, 

con especial atención a las bandas alfa (8–13 Hz) y beta (14–30 Hz). A partir de las fases 

instantáneas, se calculó el índice wPLI empleando ventanas de 1 segundo (256 muestras) 

con un solapamiento del 50% (128 muestras). Dado que cada ensayo tenía una duración 

aproximada de 11.5 segundos (desde -5 hasta +6.5 s respecto al inicio del estímulo), este 

procedimiento generó un total de 22 ventanas consecutivas. 

 

Finalmente, el cálculo del wPLI entre todos los pares de electrodos en cada ventana 

temporal permitió construir matrices de conectividad funcional para cada vídeo 

experimental (W1, W2 y W3), cada banda de frecuencia (alfa y beta) y cada sujeto. Las 

matrices resultantes tuvieron dimensiones 55 x 55 x 22, correspondientes a los 55 

electrodos y las 22 ventanas temporales analizadas. 
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Figura 4.2 Ejemplo de matrices de conectividad funcional obtenidas mediante el índice wPLI en 

la condición W1 (acción de recoger monedas) y en la banda alfa (8–13 Hz).  

 

Finalmente, las matrices de conectividad fueron umbralizadas. Dado que los valores de 

umbral suelen determinarse de manera arbitraria, lo más adecuado es caracterizar las 

redes a lo largo de un rango amplio de densidades con el fin de obtener una descripción 

más robusta y fiable de su organización topológica (Rubinov and Sporns, 2010). Por esta 

razón, manteniendo el parámetro 𝜔  = 1, se evaluaron diferentes valores de densidad 

(10%, 20% y 30%). En este contexto, se fijó un límite inferior del 10%, ya que densidades 

más bajas tienden a generar una fragmentación excesiva de la red, y un límite superior 

del 30%, dado que valores mayores incrementan la probabilidad de incluir conexiones 

espurias y de enmascarar la estructura modular (Fornito, Zalesky and Bullmore, 2010). 

Los resultados mostraron que, a medida que se incrementa el umbral, se observa una 

tendencia decreciente en el número de comunidades detectadas, lo cual concuerda con la 

mayor restricción impuesta a la red al conservar únicamente las interacciones más fuertes. 

De esta manera, se consideró el 30% como un compromiso adecuado entre la reducción 

de la fragmentación, la minimización de las conexiones espurias, y la alta variabilidad 

intersujeto (Calcagno et al., 2024), garantizando una caracterización más estable de la 

dinámica modular. 
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4.4. Detección de comunidades multicapa 
 

En esta sección se presenta el procedimiento de detección de comunidades multicapa 

aplicado a las matrices de conectividad obtenidas, con el fin de analizar su organización 

modular y su evolución temporal en función de las condiciones experimentales. 

 

4.4.1. Matriz de modularidad 
 

Una vez obtenidas las matrices de conectividad para cada sujeto, tipo de vídeo y banda 

de frecuencia (alfa y beta), y a lo largo de 22 ventanas temporales, se reorganizó su 

estructura en un arreglo de celdas donde cada elemento correspondía a la matriz de 

conectividad de una ventana específica. Este formato es necesario, ya que la función de 

cálculo de modularidad empleada requiere una celda como entrada. 

 

La matriz 𝐵 representa los valores de modularidad que posteriormente se utilizan en el 

algoritmo de detección de comunidades. Se trata de una matriz dispersa de dimensiones 

[N x T] x [N x T], donde 𝑁 es el número de nodos y 𝑇 el número de capas o ventanas de 

la red. Esta matriz indica en qué medida cada conexión contribuye a la calidad de la 

partición en comunidades. Un valor positivo significa que los nodos están más conectados 

de lo que estarían si no existieran comunidades, mientras que un valor negativo indica lo 

contrario (Mucha et al., 2010). 

 

La matriz de modularidad multicapa 𝐵 se calculó de la siguiente manera: 

 

 𝐵 = (𝐴𝑖𝑗𝑙 − 𝛾𝑙𝑃𝑖𝑗𝑙)𝛿𝑙𝑟 + 𝛿𝑖𝑗𝜔𝑗𝑙𝑟 

 

(2) 

donde 𝐴𝑖𝑗𝑙  es la matriz de conectividad entre los nodos 𝑖  y 𝑗  en la capa 𝑙  (calculada 

mediante el índice wPLI), 𝑃𝑖𝑗𝑙 es el valor esperado de conectividad según el modelo nulo, 

𝛿𝑙𝑟 y 𝛿𝑖𝑗 son deltas de Kronecker que activan respectivamente las conexiones intracapa e 

intercapa,  𝜔𝑗𝑙𝑟 es el parámetro de acoplamiento entre capas, mientras que 𝛾𝑙  es el 

parámetro de resolución estructural (Mucha et al., 2010). 

 

El parámetro 𝛾  controla las conexiones intralayer (dentro de una misma capa) 

comparando la conectividad real entre dos nodos con la conectividad esperada según un 

modelo nulo. Actúa como un peso sobre dicho modelo: si la diferencia es positiva, los 

nodos tienden a permanecer en la misma comunidad, mientras que, si es negativa, tienden 

a separarse. Determina el tamaño de los módulos dentro de cada capa. Valores altos 

producen comunidades más pequeñas y numerosas; valores bajos generan comunidades 

más grandes y en menor número (Farahani et al., 2024). 

 

Por su parte, 𝜔 regula las conexiones interlayer (entre diferentes capas), determinando la 

fuerza con la que un mismo nodo se conecta a lo largo de las distintas ventanas 

temporales. Si es alto, favorece que el nodo permanezca en la misma comunidad a lo largo 

del tiempo, lo que reduce el número de comunidades y aumenta su tamaño. En cambio, 

un valor bajo facilita que el nodo cambie de comunidad entre ventanas, generando más 

comunidades y de menor tamaño (Mucha et al., 2010). 
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En este trabajo se mantuvo gamma fija en 1, ya que su influencia requiere un estudio más 

profundo. Por otro lado, se modificaron los valores de omega con 𝜔 ∈ [0.1, 0.5, 0.7, 1] 
porque el objetivo principal era analizar la dinámica del cambio de comunidades a lo 

largo del tiempo, comparando la organización modular antes y después de la observación 

del vídeo. 

 

4.4.2. Algoritmo GenLouvain 
 

Una vez definida 𝐵 , se utilizó como entrada para el algoritmo de detección de 

comunidades GenLouvain, que busca grupos de nodos (comunidades) fuertemente 

conectados entre sí. El algoritmo comienza asignando cada nodo a su propia comunidad 

y, de forma iterativa y en orden aleatorio, evalúa si mover un nodo a otra comunidad 

mejora la modularidad 𝑄. Si es así, realiza el cambio. Cuando no es posible mejorar más, 

agrupa los nodos que han quedado en la misma comunidad y los trata como un único 

“mega-nodo”, repitiendo el proceso hasta que la modularidad no aumenta (Zamani 

Esfahlani et al., 2021). 

 

La función de modularidad se define mediante la siguiente ecuación: 

 

 

 
𝑄 =  

1

2𝜇
∑ {(𝐴𝑖𝑗𝑙 − 𝛾𝑙𝑃𝑖𝑗𝑙)𝛿𝑙𝑟 + 𝛿𝑖𝑗𝜔𝑗𝑙𝑟}

𝑖𝑗𝑙𝑟
𝛿(𝑔𝑖𝑙 , 𝑔𝑗𝑟) 

(3) 

donde 𝑔𝑖𝑙  indica la asignación de comunidad del nodo 𝑖 en la capa 𝑙, y 𝑔𝑗𝑟  la asignación 

del nodo 𝑗 en la capa 𝑟. Además,  𝛿(𝑔𝑖𝑙 , 𝑔𝑗𝑟) = 1 si los dos nodos están asignados a la 

misma comunidad y 0 en caso contrario (Mucha et al., 2010). 

La modularidad de la red multicapa se estimó 100 veces en cada caso, ya que el valor de 

𝑄  puede presentar variaciones entre ejecuciones debido al carácter heurístico del 

algoritmo (Bassett et al., 2013; Rizkallah et al., 2018). A partir de estas repeticiones se 

construyó una matriz de consenso, cuyos elementos representan la proporción de veces 

en la que cada par de nodos fue asignado a la misma comunidad. 

 

De manera similar, para cada ventana temporal se generó un modelo nulo aleatorio 

mediante la estrategia de randomización de redes (Network randomization) implementada 

en el Brain Connectivity toolbox (BTC). Este enfoque genera redes aleatorias que 

preservan la distribución de grados de la red original, mientras redistribuyen las 

conexiones entre nodos (Rubinov and Sporns, 2010). Este procedimiento también se 

repitió 100 veces, obteniendo en cada repetición una partición modular y, a partir de todas 

ellas, una matriz de consenso correspondiente al modelo nulo (Bassett et al., 2013; 

Rizkallah et al., 2018). 

 

El proceso de umbralización final consistió en conservar únicamente aquellas 

asociaciones de la matriz de consenso real que aparecían con mayor frecuencia que en el 

modelo nulo. Finalmente, sobre la matriz de consenso umbralizada se aplicó el algoritmo 

de GenLouvain para obtener la partición modular definitiva (Rizkallah et al., 2018). 
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De esta manera, obtuvimos finalmente una matriz de particiones 𝑆, en la cual cada nodo 

recibía una etiqueta de comunidad. El tamaño de esta matriz fue de 55 x 22, 

correspondiente al número de nodos y de ventanas temporales, respectivamente. Este 

procedimiento se repitió de forma independiente para cada banda de frecuencia, cada 

sujeto, cada condición de vídeo y para los distintos valores de 𝜔 ∈ [0.1, 0.5, 0.7, 1]. 

4.5. Métricas para el análisis dinámico de 

comunidades 

Con el fin de evaluar el comportamiento dinámico de la red cerebral durante la AOT, se 

calcularon varias métricas derivadas de la detección de comunidades. Estas medidas 

permiten caracterizar cómo evoluciona la organización modular a lo largo de las ventanas 

temporales y analizar si dicha organización varía en función de las condiciones 

experimentales (vídeos), de la banda de frecuencia considerada y de los diferentes valores 

del parámetro de acoplamiento temporal. De este modo, no solo se estudia la 

configuración modular en un instante concreto, sino también su reconfiguración en el 

tiempo. 

4.5.1. Número de comunidades 
 

A partir de la matriz de particiones 𝑆 generada por el algoritmo de detección multicapa, 

se contabilizó el número de comunidades distintas presentes en cada ventana temporal. 

Esta métrica se interpreta como un indicador del grado de segregación funcional de la red 

en cada instante. En la literatura se han empleado enfoques similares para extraer métricas 

dinámicas a partir de la evolución temporal de las comunidades (Designed Research; D, 

Performed Research; D and Pnas, 2011; Rizkallah et al., 2018; Puxeddu, Petti and Astolfi, 

2021) 

 

El cálculo se realizó en las 22 ventanas temporales definidas, para cada banda (𝛼 y 𝛽) y 

condición experimental, considerando únicamente los sujetos con datos disponibles para 

cada vídeo (𝑁 = 46 menos los descartados). El procedimiento se repitió para distintos 

valores del parámetro de acoplamiento temporal 𝜔, con el objetivo de analizar cómo 

influye en la partición modular obtenida. 

 

Para ello, se analizaron los distintos valores de 𝜔 y, para cada uno, se procesaron todos 

los sujetos válidos. En cada ventana temporal se identificaron las comunidades presentes 

y se contabilizó cuántas distintas aparecían. Los resultados se almacenaron en una matriz 

de dimensiones sujetos x ventanas y posteriormente en una estructura tipo celda que 

guarda, para cada 𝜔, la distribución completa del número de comunidades en todos los 

sujetos y ventanas.  

 

Finalmente, se calculó la media del número de comunidades por ventana, promediando 

entre todos los sujetos, para obtener la evolución temporal media de la segregación 

modular bajo cada condición, banda y valor de omega. 
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4.5.2. Dimensión de comunidades 

La dimensión de comunidad se define como el número de nodos que componen cada 

módulo en una ventana temporal determinada. Su análisis permite estudiar cómo varía el 

tamaño de las comunidades a lo largo del tiempo y entre condiciones experimentales. Esta 

métrica se ha utilizado en estudios previos para caracterizar la estructura modular de redes 

cerebrales y su evolución dinámica (Bassett et al., 2011; Puxeddu, Petti and Astolfi, 

2021). 

Se trata de una medida complementaria al número de comunidades, ya que en lugar de 

contabilizar cuántas comunidades existen en una partición, describe su tamaño medio. De 

esta manera, ambas aportan información relacionada: cuando la red se fragmenta muchas 

comunidades, cada módulo tiende a ser más pequeño, mientras que una red menos 

fragmentada concentra los nodos en comunidades más grandes. 

En redes cerebrales, los tamaños de comunidad no son homogéneos y pueden presentar 

una amplia variabilidad, coexistiendo muchas comunidades pequeñas con unas pocas de 

gran tamaño (Lancichinetti, Fortunato and Radicchi, 2008). 

Su cálculo se realizó de manera análoga al del número de comunidades: para cada 

combinación de 𝜔, sujeto y ventana, se identificaron las comunidades presentes y se 

contaron cuántos nodos integraban cada una de ellas. Los resultados se almacenaron en 

una estructura que organiza los tamaños de comunidad por 𝜔, sujeto y ventana, lo que 

permite posteriormente obtener la dimensión media por ventana promediando entre todos 

los sujetos válidos, y así describir la evolución temporal del tamaño de los módulos bajo 

cada condición, banda y valor de omega. 

 

4.5.3. Matriz de consenso 

Con el objetivo de obtener una representación grupal que integrase la información de 

todos los sujetos en cada condición experimental, banda de frecuencia y valor de 𝜔, se 

construyó una matriz de consenso en cada una de las 22 ventanas temporales. Este 

enfoque se ha utilizado en análisis de redes cerebrales para derivar estructuras modulares 

representativas a nivel de grupo (Jeub, Sporns and Fortunato, 2018) y permite facilitar la 

comparación entre condiciones a partir de una partición común. 

En la práctica, para cada valor de 𝜔 y ventana temporal se recopilaron las particiones de 

comunidades de todos los sujetos en una matriz de dimensiones 55 x N_sujetos, donde 

las filas corresponden a los nodos y cada columna indica la etiqueta de comunidad de un 

sujeto en esa ventana. A partir de estas matrices se calculó una matriz de consenso de 55 

x 55, en la que cada elemento representa la proporción de veces que dos nodos fueron 

asignados a la misma comunidad en esa ventana. 

Posteriormente, sobre cada matriz de consenso se calculó la modularidad y se aplicó el 

algoritmo GenLouvain, obteniendo una partición grupal única de los nodos para esa 

ventana. Repitiendo este procedimiento en las 22 ventanas, las particiones obtenidas se 

organizaron en una matriz final de dimensiones 55 x 22, donde las filas representan los 

nodos y las columnas las ventanas temporales. 
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De esta manera, cada nodo queda etiquetado en comunidades a lo largo de todas las 

ventanas, proporcionando una representación dinámica y grupal de la organización 

modular de la red. Este proceso, repetido para cada valor de 𝜔 , permite analizar y 

comparar la evolución temporal de la modularidad entre vídeos y bandas de frecuencia. 

4.5.4. NMI 

Para evaluar la estabilidad temporal de la organización modular a nivel grupal se utilizó 

el índice Normalized Mutual Information (NMI). Este índice permite estimar cuánta 

información de una partición puede explicarse a partir de otra. Es decir, en qué medida 

conocer una partición aporta información sobre la otra únicamente a partir de la estructura 

de la red (Danon, Diaz-Guilera and Arenas, 2006). 

Sean X e Y las variables aleatorias que describen las asignaciones de comunidad de dos 

particiones distintas, la información mutua I(X,Y) mide la dependencia estadística entre 

ambas, es decir, cuánta información del etiquetado X se puede conocer a partir de Y, y 

viceversa. Sin embargo, dado que I(X,Y) no tiene un límite superior definido, se utiliza 

una versión normalizada que permite acotar los valores entre 0 y 1, facilitando la 

interpretación y la comparación entre casos (Strehl and Ghosh, 2002). 

En este trabajo se emplea la normalización basada en la media geométrica de las entropías 

de las dos particiones, propuesta en (Strehl and Ghosh, 2002), por su analogía con un 

producto escalar normalizado. La expresión final es: 

 
𝑁𝑀𝐼(𝑋, 𝑌) =  

𝐼(𝑋, 𝑌)

√𝐻(𝑋) ∙ 𝐻(𝑌)
 

 

(4) 

donde 𝐻(𝑋) y 𝐻(𝑌) representan las entropías de las particiones X e Y. De esta forma, el 

NMI toma el valor 1 cuando ambas particiones son idénticas, y 0 cuando son 

completamente independientes. (Danon, Diaz-Guilera and Arenas, 2006). 

En nuestro caso, las particiones comparadas corresponden a las obtenidas tras aplicar el 

algoritmo GenLouvain sobre las matrices de consenso en ventanas temporales 

consecutivas. Dichas particiones se organizaron en una matriz grupal de 55 x 22, donde 

cada columna representa la asignación de comunidades de los 55 nodos en una ventana. 

A partir de esta representación, se calculó el NMI entre las particiones de las ventanas 1–

2, 2–3, y así sucesivamente hasta la pareja 21–22, obteniendo un total de 21 valores por 

cada combinación de condición experimental, banda de frecuencia y valor de 𝜔. 

Este procedimiento se repitió para distintos valores del parámetro omega y para todos los 

vídeos, lo que permitió evaluar cómo influye en la estabilidad de la partición modular. 

Un valor medio de NMI cercano a 1 indica que la red mantiene una organización modular 

estable entre ventanas consecutivas, mientras que valores más bajos reflejan una 

reconfiguración modular más frecuente a lo largo del tiempo. 
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4.6. Análisis estadístico 

Para evaluar la significancia de las diferencias observadas en la métrica de número de 

comunidades se aplicó el test de Friedman. Dado que los datos no mostraron ser normales 

y homocedásticos, este procedimiento no paramétrico es adecuado para diseños de 

medidas repetidas (Zippo et al., 2018). Este test se considera la alternativa al ANOVA de 

un factor cuando los datos no cumplen los supuestos de normalidad y se utiliza para 

comparar k condiciones medidas sobre los mismos sujetos (diseño intrasujeto). La 

hipótesis nula (𝐻0) establece que las distribuciones son iguales a lo largo de las medidas 

repetidas, mientras que la hipótesis alternativa (𝐻1) plantea que existen diferencias entre 

condiciones (Kim, 2014). 

El procedimiento consiste en transformar los valores en rangos dentro de cada sujeto y 

calcular las sumas de rangos por condición. A continuación, se evalúa si estas difieren 

significativamente entre sí mediante un estadístico con distribución aproximada chi-

cuadrado. La fórmula empleada es: 

 

 
𝑋𝑟

2 =
12

𝑁 ∙ 𝑘(𝑘 + 1)
∑ 𝑅𝐽

2
𝑘

𝑗=1
− 3𝑁 ∙ (𝑘 + 1) 

 

 

(5) 

 

donde k es el número de condiciones, N es el número de sujetos y 𝑅𝑗 es la suma de los 

rangos en la condición j. 

 

En este trabajo, el test de Friedman se aplicó de manera independiente en cada una de las 

22 ventanas temporales. Para ello, se consideraron todos los sujetos válidos y los cuatro 

valores del parámetro de acoplamiento 𝜔 (0.1, 0.5, 0.7 y 1). De esta forma, en cada 

ventana se disponía de cuatro vectores de datos correspondientes al número de 

comunidades obtenido por cada sujeto en cada valor de 𝜔. Sobre estos vectores se aplicó 

el test, obteniendo un p-valor por ventana. Se estableció un nivel de significación de 𝛼 = 

0.05, de modo que, cuando el valor resultaba significativo (p < 0.05), se rechazaba la 

hipótesis nula y se concluía que la distribución difería entre los distintos valores de 𝜔. En 

total se obtuvieron 22 p-valores, uno por cada ventana temporal, lo que permitió evaluar 

si la dinámica modular mostraba diferencias significativas entre valores de 𝜔  en el 

tiempo. 

 

Cabe señalar que el test se aplicó únicamente a la métrica de número de comunidades. 

Dado que la dimensión de comunidades constituye una medida complementaria y 

directamente relacionada, su análisis estadístico habría arrojado resultados equivalentes. 
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Capítulo 5. Resultados 
 

Una vez descrita la metodología empleada, en este capítulo se presentan los resultados 

obtenidos. En primer lugar, se muestran los resultados con los parámetros por defecto, es 

decir, fijando 𝛾 = 1 y 𝜔 = 1. A continuación, se presentan los resultados obtenidos al 

modificar los valores del parámetro 𝜔 ∈ [0.1, 0.5, 0.7, 1] , con el fin de analizar su 

influencia en la dinámica modular. Las métricas consideradas (número de comunidades, 

dimensión de comunidades, matriz de consenso y NMI) se muestran tanto para los valores 

por defecto como para los valores modificados de omega, permitiendo así una 

comparación directa entre condiciones experimentales, bandas de frecuencia y 

configuraciones del modelo. 

5.1. Reconfiguración modular inducida por la AOT 

En primer lugar, se analizó la dinámica modular con los parámetros por defecto (𝛾 = 1 y 

𝜔 = 1). En este caso, se representan las particiones de los 55 nodos en comunidades a lo 

largo de las 22 ventanas temporales, donde cada color corresponde a una comunidad 

distinta. En las figuras, cada recuadro corresponde a un sujeto. El eje X representa las 

ventanas temporales y el eje Y los nodos. Así, las líneas horizontales muestran la 

pertenencia de cada nodo a una comunidad a lo largo del tiempo: cuando el color 

permanece estable, el nodo sigue en la misma comunidad, mientras que los cambios de 

color indican transiciones comunitarias. Además, cuando dos nodos presentan el mismo 

color en una ventana determinada, significa que en ese instante pertenecen a la misma 

comunidad. 

Se observa que, en todos los casos, los nodos no permanecen estáticos, sino que presentan 

una clara reconfiguración a lo largo del tiempo. Este efecto es especialmente evidente en 

torno a los momentos marcados por las dos líneas rojas discontinuas: la primera indica el 

inicio del proceso de preparación (señalado experimentalmente por un círculo rojo) y la 

segunda corresponde al inicio del vídeo. Estos puntos temporales actúan como hitos que 

desencadenan reorganizaciones significativas en la estructura modular de la red cerebral. 

En la Figura 5.1 (condición W1, banda alfa) se aprecia que la dinámica modular cambia 

notablemente tras el inicio del vídeo, momento en el que las comunidades muestran una 

mayor fragmentación. Además, se observa una marcada variabilidad entre sujetos: 

algunos presentan transiciones frecuentes en la asignación de comunidades, mientras que 

otros mantienen patrones más estables. Por ejemplo, en los sujetos 6 y 23 muchas filas 

cambian repetidamente de color a lo largo de las ventanas, reflejando una alta 

reconfiguración modular. En contraste, en los sujetos 8 y 16 la mayoría de las filas 

mantienen un color homogéneo y continuo, lo que indica una mayor estabilidad 

comunitaria en el tiempo. 

En la Figura 5.2 (condición W1, banda beta) se aprecia una mayor fragmentación modular 

en comparación con la banda alfa, reflejada en un incremento de los cambios de color a 

lo largo de las ventanas. Esto indica que la dinámica en beta es más inestable y presenta 

transiciones más frecuentes entre comunidades. A diferencia de lo observado en alfa, 

apenas se encuentran sujetos con franjas homogéneas y continuas, lo que revela una 

menor estabilidad comunitaria. En prácticamente todos los sujetos se aprecia una clara 

reorganización, siendo especialmente evidente en el sujeto 31.  
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En la Figura 5.3 (condición W2, banda alfa) se aprecia que, aunque se mantiene el mismo 

patrón general observado en la banda alfa de W1, la dinámica cambia en función del 

vídeo. Sujetos como el 6 o el 23, que en W1 presentaban una fuerte fragmentación, 

muestran en W2 un comportamiento más estable, mientras que otros, que en la primera 

condición mantenían comunidades más homogéneas, en W2 evidencian una mayor 

variabilidad.  

 

En la Figura 5.4 (condición W2, banda beta) se observa una dinámica más fragmentada 

que en la banda alfa de la misma condición, con la mayoría de los sujetos mostrando 

transiciones frecuentes entre comunidades a lo largo de las ventanas. A diferencia de W1 

beta, donde casi todos los sujetos presentaban una reorganización constante, en W2 beta 

se aprecian algunos casos con mayor estabilidad relativa. Por ejemplo, el sujeto 42 

mantiene franjas más homogéneas, mientras que en otros como el 12 o el 20 predomina 

la reconfiguración modular continua.  

 

En este apartado se muestran únicamente los resultados de las condiciones W1 y W2, ya 

que representan los casos más contrastados y permiten ilustrar de forma clara las 

diferencias en la dinámica modular. La condición W3 presenta un comportamiento 

intermedio entre ambas, con patrones de reorganización que no alcanzan la marcada 

fragmentación de W1 ni la variabilidad de W2, por lo que se ha considerado menos 

representativa a efectos de exposición. 
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5.2. Influencia del parámetro 𝝎 en la organización 

modular 
 

Tras el análisis inicial con 𝛾 = 1 y 𝜔  = 1, se exploró cómo la modificación de 𝜔 , 

parámetro que regula el grado de acoplamiento temporal entre ventanas, afecta a la 

organización modular. A modo ilustrativo, en las Figuras 5.5 – 5.8 se muestran los 

resultados del sujeto 1 en la condición W1 - banda alfa para distintos valores de 𝜔 ∈
[0.1, 0.5, 0.7, 1]. 
 

Cuando 𝜔  = 0.1 (Figura 5.5), se observa una fuerte variabilidad: los nodos cambian 

frecuentemente de comunidad, lo que refleja una red con alta flexibilidad temporal. A 

medida que se incrementa el valor de 𝜔, el acoplamiento entre ventanas se hace más 

fuerte y las particiones resultantes tienden a ser más consistentes. Por ejemplo, con 𝜔 = 

0.5 (Figura 5.6) ya se aprecia una reducción de los cambios bruscos entre ventanas, y con 

𝜔 = 0.7 (Figura 5.7) esta tendencia se acentúa, con comunidades más regulares a lo largo 

del tiempo. Finalmente, con 𝜔 = 1 (Figura 5.8) los nodos permanecen en gran medida 

dentro de las mismas comunidades durante todo el periodo, lo que implica una partición 

mucho más homogénea y con menos fragmentación que en valores bajos de 𝜔. 

 

Este ejemplo individual muestra cómo el parámetro 𝜔  actúa como un factor de 

acoplamiento temporal, forzando en mayor medida a los nodos a mantener su asignación 

comunitaria entre ventanas consecutivas. Con valores bajos de 𝜔 se capturan mejor las 

fluctuaciones dinámicas de la red, mientras que con valores altos las particiones tienden 

a ser más uniformes a lo largo del tiempo.  

 

No obstante, estas observaciones son solo cualitativas. En los siguientes apartados se 

cuantificarán de manera sistemática mediante diferentes métricas (número de 

comunidades, dimensión de comunidades, NMI y matrices de consenso), lo que permitirá 

evaluar con mayor precisión cómo la elección de ω modula la dinámica de las 

comunidades entre condiciones y sujetos. 

 

 



 58 

 
 

Figura 5.5 Ejemplo ilustrativo de las particiones en comunidades del sujeto 1 en la condición 

W1-alfa (𝝎 = 0.1).  

 

 

 
 

Figura 5.6 Ejemplo ilustrativo de las particiones en comunidades del sujeto 1 en la condición 

W1-alfa (𝝎 = 0.5). 
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Figura 5.7 Ejemplo ilustrativo de las particiones en comunidades del sujeto 1 en la condición 

W1-alfa (𝝎 = 0.7). 

 

 
 

Figura 5.8 Ejemplo ilustrativo de las particiones en comunidades del sujeto 1 en la condición 

W1-alfa (𝝎 = 1). 
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5.3. Evaluación mediante métricas dinámicas 
 

Para caracterizar la dinámica modular se calcularon distintas métricas complementarias: 

el número de comunidades, la dimensión de las comunidades y la combinación de 

matriz de consenso con NMI. Estas medidas permiten evaluar la fragmentación, el 

tamaño y la estabilidad de la organización modular a lo largo del tiempo. 

 

5.3.1. Número de comunidades 
 

Con el objetivo de analizar cómo varía la fragmentación de la red en función del 

acoplamiento temporal, se calculó el número de comunidades en cada ventana para cada 

sujeto, condición experimental, banda de frecuencia y valor de 𝜔. Posteriormente, se 

promedió este número de comunidades entre todos los sujetos en cada ventana, 

obteniendo así una medida grupal que permite comparar de manera más directa la 

dinámica modular entre diferentes valores de 𝜔.  

 

En este apartado se han mostrado ejemplos representativos (W1 y W2) para ilustrar con 

más detalle las dinámicas observadas. No obstante, los mismos patrones generales se 

reproducen en el resto de las condiciones. 

 

En la Figura 5.9 (condición W1, banda alfa) se observa cómo el número de comunidades 

varía en función del parámetro 𝜔. Para 𝜔 = 0.1, el promedio se mantiene en torno a 3-4 

comunidades, con ligeras oscilaciones entre ventanas. Con 𝜔 = 0.5 y 𝜔 = 0.7 el valor 

medio se estabiliza alrededor de 3, mientras que con 𝜔 = 1 se alcanzan los valores más 

altos, cercanos a 4–5 comunidades. Este resultado indica que el mayor acoplamiento 

temporal no reduce el número de comunidades, como cabría esperar según lo descrito en 

la literatura donde valores altos de 𝜔 suelen favorecer particiones más estables y menos 

fragmentadas, sino que incrementa la fragmentación modular de la red en esta condición. 

Esta discrepancia se abordará en el capítulo de Discusión, donde se analizarán posibles 

explicaciones. 

 

El análisis estadístico mediante el test de Friedman confirmó la existencia de diferencias 

significativas entre los cuatro valores de 𝜔 . En todas las ventanas temporales de la 

condición W1, banda alfa, se obtuvieron p-valores inferiores a 0.05 (Tabla 1), lo que 

indica que el número de comunidades varía de manera consistente en función del 

parámetro omega. 
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Figura 5.9 Ejemplo del número promedio de comunidades en la condición W1, banda alfa, para 

distintos valores de 𝝎. 

 

Tabla 1 Resultados del test de Friedman aplicados al número de comunidades en la condición 

W1, banda alfa. Se muestran los p-valores obtenidos en cada una de las 22 ventanas temporales. 

Ventana p-valor Significativa (p < 0.05) 

1 0.000465 Sí 

2 1.095e-05 Sí 

3 9.837e-09 Sí 

4 8.374e-07 Sí 

5 4.192e-06 Sí 

6 8.78e-06 Sí 

7 3.657e-07 Sí 

8 5.515e-06 Sí 

9 3.927e-08 Sí 

10 5.047e-06 Sí 

11 0.001881 Sí 

12 1.716e-07 Sí 

13 2.287e-12 Sí 

14 2.859e-06 Sí 

15 0.00369 Sí 

16 4.974e-07 Sí 

17 1.196e-09 Sí 

18 2.504e-09 Sí 

19 0.0006261 Sí 

20 0.0004677 Sí 

21 2.206e-05 Sí 

22 0.0004623 Sí 
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En la Figura 5.10 (condición W1, banda beta) se aprecia un contraste más marcado entre 

los distintos valores de 𝜔 que en la banda alfa. Para 𝜔 = 0.1 y 𝜔 = 0.5 el número de 

comunidades se mantiene estable en torno a 3, mientras que con 𝜔  = 0.7 asciende 

ligeramente hasta valores cercanos a 4. En cambio, con 𝜔 = 1 se alcanza un número 

claramente superior, entre 7 y 9 comunidades, que además se mantiene relativamente 

constante a lo largo del tiempo. Este resultado refuerza la influencia directa de 𝜔 sobre la 

fragmentación modular de la red, mostrando en la banda beta un efecto aún más 

pronunciado que en la alfa. 

 

El análisis estadístico mediante el test de Friedman confirmó esta observación: en las 22 

ventanas se obtuvieron p-valores altamente significativos (Tabla 2), en muchos casos del 

orden de 10−20  incluso más pequeños que en la condición W1 alfa. Este resultado 

concuerda con lo observado en la Figura 5.10, donde la línea morada correspondiente a 

𝜔 = 1 aparece claramente más separada del resto de curvas, reflejando que las diferencias 

entre los valores de 𝜔 son todavía más pronunciadas. 

 

 

 

 

 
 

Figura 5.10 Ejemplo del número promedio de comunidades en la condición W1, banda beta, para 

distintos valores de 𝝎. 
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Ventana p-valor Significativa (p < 0.05) 

1 1.818e-19 Sí 

2 2.457e-19 Sí 

3 5.827e-20 Sí 

4 1.543e-20 Sí 

5 4.829e-20 Sí 

6 9.777e-20 Sí 

7 1.584e-19 Sí 

8 1.373e-19 Sí 

9 8.376e-20 Sí 

10 7.329e-20 Sí 

11 7.138e-20 Sí 

12 4.661e-21 Sí 

13 3.734e-21 Sí 

14 3.367e-20 Sí 

15 2.946e-21 Sí 

16 1.476e-20 Sí 

17 8.179e-20 Sí 

18 1.764e-19 Sí 

19 2.889e-21 Sí 

20 9.786e-21 Sí 

21 5.329e-18 Sí 

22 2.140e-16 Sí 
 

Tabla 2 Resultados del test de Friedman aplicados al número de comunidades en la condición 

W1, banda beta. Se muestran los p-valores obtenidos en cada una de las 22 ventanas temporales. 

 

 

En la Figura 5.11 (condición W2, banda alfa) se observa que el número de comunidades 

depende del valor de 𝜔, aunque con diferencias más sutiles que en W1. Para 𝜔 = 0.1 la 

curva muestra mayores fluctuaciones, con picos aislados como en la ventana 22 donde se 

superan las 5 comunidades. En cambio, para 𝜔 = 0.5, 0.7 y 1 las curvas se mantienen más 

estables en torno a 3-4 comunidades, especialmente a partir de la ventana 10, coincidiendo 

con el inicio del vídeo. Esto refleja una dinámica más coherente y menos ruidosa que en 

la banda beta, donde la fragmentación resultaba más acusada. 

 

El análisis estadístico mediante el test de Friedman refleja este comportamiento: aunque 

en varias ventanas se encontraron diferencias significativas entre los valores de 𝜔 (p < 

0.05 en las ventanas 3–5, 8–10, 12 y 17–20), en muchas otras no se alcanzó la 

significación (Tabla 3). En conjunto, aproximadamente la mitad de las ventanas 

resultaron significativas, lo que concuerda con la menor separación visual de las líneas 

en la Figura 5.11 y confirma que en esta condición la influencia de 𝜔 sobre el número de 

comunidades es más limitada y dependiente del intervalo temporal analizado. 
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Figura 5.11  Ejemplo del número promedio de comunidades en la condición W2, banda alfa, para 

distintos valores de 𝝎. 

Ventana p-valor Significativa (p < 0.05) 

1 0.467 No 

2 0.06536 No 

3 0.04785 Sí 

4 0.02157 Sí 

5 0.004124 Sí 

6 0.1679 No 

7 0.308 No 

8 0.04337 Sí 

9 0.0188 Sí 

10 0.01575 Sí 

11 0.4582 No 

12 0.0004714 Sí 

13 0.3729 No 

14 0.1356 No 

15 0.6291 No 

16 0.2921 No 

17 0.006407 Sí 

18 0.001966 Sí 

19 0.01188 Sí 

20 0.02183 Sí 

21 0.3326 No 

22 0.003768 Sí 
 

Tabla 3 Resultados del test de Friedman aplicados al número de comunidades en la condición 

W2, banda alfa. Se muestran los p-valores obtenidos en cada una de las 22 ventanas temporales. 
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El patrón general se mantiene a lo largo de todas las condiciones experimentales (W1–

W3, en bandas alfa y beta), aunque con diferencias en la magnitud del efecto. En 

particular, en W1 se observa el incremento más acusado en el número de comunidades al 

aumentar 𝜔, mientras que en W2 el efecto es más moderado y en W3 aparece como una 

situación intermedia, con un aumento presente pero menos marcado. 

 

De forma global, se aprecia que, antes del inicio del vídeo, el número de comunidades 

suele ser menor, mientras que tras el comienzo de la tarea de observación se produce un 

aumento progresivo, reflejando la reorganización dinámica de la red cerebral inducida 

por el estímulo. Este efecto se amplifica especialmente para 𝜔 = 1, alcanzando en la 

banda beta valores máximos cercanos a 10 comunidades, mientras que en la banda alfa 

se mantiene alrededor de 5. 

 

5.3.2. Dimensión de comunidades 
 

Además del número de comunidades, se analizó la dimensión media de las mismas a lo 

largo de las ventanas temporales para los diferentes valores del parámetro 𝜔. Según la 

literatura, cabría esperar que un mayor acoplamiento entre capas (𝜔 más altos) se asociara 

con un menor tamaño medio de las comunidades, ya que la red tiende a fragmentarse en 

grupos más pequeños y estables. Sin embargo, los resultados muestran un patrón más 

complejo y no siempre consistente con esta hipótesis. 

 

En la condición W1, banda alfa (Figura 5.12), se observa que para 𝜔 = 1 el tamaño medio 

de las comunidades es claramente inferior al de otros valores, situándose entre 13 y 15 

nodos. Para 𝜔 = 0.1 este valor asciende ligeramente hasta 15–16 nodos, mientras que para 

𝜔 = 0.5–0.7 se mantiene más estable en torno a 16–18 nodos. 

 

En la condición W1, banda beta (Figura 5.13), la diferencia es aún más marcada. Con  

𝜔 = 1 el tamaño medio desciende de forma pronunciada, alcanzando valores de apenas 

7–9 nodos, mientras que para el resto de los valores (0.1–0.7) las comunidades se 

mantienen considerablemente más grandes, en torno a 15–17 nodos. 
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Figura 5.12 Ejemplo de la dimensión promedio de comunidades en la condición W1, banda alfa, 

para distintos valores de 𝝎. 
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Figura 5.13 Ejemplo de la dimensión promedio de comunidades en la condición W1, banda beta, 

para distintos valores de 𝝎. 

 

 

 

 

 

En la condición W2, banda alfa (Figura 5.14) se observa un patrón distinto al esperado 

según la literatura. A diferencia de W1, aquí el tamaño medio de las comunidades no 

disminuye de forma marcada con 𝜔 = 1; por el contrario, los valores son comparables a 

los obtenidos con 𝜔 intermedios (0.5–0.7) e incluso en algunos momentos superiores. En 

cambio, para 𝜔 = 0.1 los tamaños son notablemente más bajos. Además, se aprecia una 

mayor fluctuación a lo largo de las ventanas, con variaciones constantes y la aparición de 

picos puntuales donde el número de nodos por comunidad aumenta de manera abrupta. 
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Figura 5.14 Ejemplo de la dimensión promedio de comunidades en la condición W2, banda alfa, 

para distintos valores de 𝝎. 

 

 

En la condición W2, banda beta (Figura 5.15), el comportamiento se asemeja más al 

observado en W1. Para 𝜔 = 1 el tamaño medio de las comunidades se reduce claramente 

respecto a los demás valores, situándose en torno a 7–9 nodos, mientras que para 𝜔 bajos 

(0.1–0.7) se mantiene alrededor de 15–17 nodos. Este resultado sí coincide con lo descrito 

en la literatura, donde un mayor acoplamiento entre capas tiende a fragmentar la red en 

comunidades más pequeñas y estables. 

 

En el caso de W3-alfa y W3-beta, el patrón general se conserva, con comunidades más 

reducidas para 𝜔 = 1 y mayores dimensiones para 𝜔 bajos. No obstante, en W3-beta las 

diferencias entre condiciones se atenúan en comparación con W1 y W2. 
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Figura 5.15 Ejemplo de la dimensión promedio de comunidades en la condición W2, banda beta, 

para distintos valores de 𝝎. 

 

En resumen, los resultados muestran que la dimensión de las comunidades varía de 

manera significativa en función del parámetro de acoplamiento temporal ω, con un 

descenso más marcado en la banda beta que en alfa. Además, se aprecian diferencias entre 

condiciones experimentales: mientras que en W1 el efecto de 𝜔  es más claro y 

consistente, en W2 se observan mayores fluctuaciones y patrones menos definidos. Estos 

hallazgos ponen de manifiesto la influencia conjunta del valor de ω, la banda de 

frecuencia y el tipo de estímulo sobre la dinámica comunitaria de la red cerebral. 
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5.3.3. Matriz de consenso y NMI 
 

La combinación de la matriz de consenso y la métrica NMI aportan una visión 

complementaria al análisis de comunidades. Mientras que la matriz de consenso permite 

obtener una partición grupal representativa a partir de las soluciones individuales, el NMI 

cuantifica la estabilidad de dichas particiones entre ventanas temporales consecutivas 

(Lancichinetti and Fortunato, 2012). De este modo, es posible evaluar tanto la 

organización modular promedio del grupo como su evolución dinámica a lo largo del 

tiempo. Dado el volumen de resultados (diferentes condiciones, bandas y valores de ω), 

en este apartado se incluyen únicamente ejemplos ilustrativos seleccionados por su 

relevancia, ya que no es posible mostrar todos los casos. En particular, la condición W2 

no se presenta en detalle al haber resultado la más variable y menos representativa, lo que 

dificultaría la extracción de conclusiones generales. 

En la condición W1, banda alfa con 𝜔 = 1 (Figura 5.16), la matriz de consenso revela 

comunidades bien definidas y relativamente homogéneas. El NMI (Figura 5.18) muestra 

un patrón muy estable antes de los estímulos, con valores cercanos a 1, pero tras el inicio 

del vídeo aparecen oscilaciones y caídas puntuales, lo que refleja una reorganización 

dinámica de la red inducida por la tarea de observación. 

En la condición W1-alfa con 𝜔  = 0.5 (Figura 5.17) la matriz de consenso muestra 

comunidades más homogéneas que con 𝜔  = 1, con una estructura que se mantiene 

relativamente estable a lo largo de las ventanas. El índice NMI (Figura 5.19), confirma 

esta tendencia: antes de los estímulos los valores son cercanos a 1, y aunque tras el inicio 

del vídeo aparecen caídas puntuales, la recuperación es rápida y se mantiene un nivel alto 

de estabilidad. Esto indica que con un acoplamiento intermedio la red conserva parte de 

su flexibilidad sin perder consistencia en la asignación comunitaria. 
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Figura 5.19 Evolución del índice NMI para la condición W1 en banda alfa con 𝝎 = 0.5. 

Figura 5.18 Evolución del índice NMI para la condición W1 en banda alfa con 𝝎 = 1. 
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En cambio, en la condición W1, banda beta con 𝜔 = 1 (Figura 5.20), el patrón es distinto: 

aunque la matriz de consenso indica una mayor fragmentación inicial, el NMI (Figura 

5.22) resulta menos variable que en alfa. Si bien presenta inestabilidad en los primeros 

instantes, tras el estímulo alcanza un nivel de consistencia elevado, estabilizándose cerca 

de 1 a partir de la ventana 15. Esto sugiere que, en banda beta, el mayor acoplamiento 

temporal favorece una partición más estable en fases tardías de la tarea. 

Por su parte, con 𝜔 = 0.5 (Figura 5.21) la matriz de consenso refleja una organización 

más fragmentada desde el inicio, con comunidades menos compactas y más cambios en 

la asignación. El NMI (Figura 5.23), es más variable en comparación con alfa, mostrando 

caídas repetidas que evidencian transiciones frecuentes entre particiones. No obstante, 

hacia las últimas ventanas la estabilidad tiende a recuperarse, alcanzando valores cercanos 

a 1. 

En conjunto, los resultados muestran que en alfa la estabilidad inicial se rompe con 

reorganizaciones puntuales inducidas por el estímulo, mientras que en beta predomina la 

variabilidad desde el principio y el estímulo genera una disrupción más clara seguida de 

una estabilización posterior. 
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Figura 5.22 Evolución del índice NMI para la condición W1 en banda beta con 𝝎 = 1. 

 

 
 

Figura 5.23 Evolución del índice NMI para la condición W1 en banda beta con 𝝎 = 0.5. 
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En la condición W3, banda alfa con 𝜔 = 0.1 (Figura 5.24), la matriz de consenso muestra 

una organización poco homogénea, con comunidades que se reorganizan con relativa 

frecuencia entre ventanas. El índice NMI (Figura 5.26) refleja esta dinámica: aunque 

antes del estímulo los valores se mantienen altos y cercanos a 1, tras el inicio del vídeo 

aparecen caídas pronunciadas y oscilaciones recurrentes, lo que evidencia una 

reorganización más variable y menos estable. 

 

En la condición W3, banda beta (Figura 5.25), este efecto se intensifica. La matriz de 

consenso revela una fragmentación más acusada y cambios más frecuentes en la 

asignación comunitaria. El NMI (Figura 5.27) confirma esta inestabilidad, mostrando 

caídas más profundas y sostenidas a lo largo de las ventanas, en especial después del 

inicio del vídeo. Aunque hacia el final se aprecia cierta recuperación de la estabilidad, el 

comportamiento general es más fluctuante que en alfa, indicando que en esta banda la red 

responde con mayor variabilidad a la tarea de observación. 
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Figura 5.26 Evolución del índice NMI para la condición W3 en banda alfa con 𝝎 = 0.1. 

 
 

Figura 5.27 Evolución del índice NMI para la condición W3 en banda beta con 𝝎 = 0.1 
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Capítulo 6. Discusión 
 

El estudio de la dinámica funcional del cerebro ha cobrado un interés creciente en los 

últimos años, especialmente en el ámbito de la neurorrehabilitación, donde técnicas como 

la AOT se han consolidado como herramientas prometedoras para la recuperación motora 

en pacientes con daño neurológico (Kim and Cho, 2016; Cordani et al., 2021). La base 

de estas intervenciones reside en la activación del MNS y en la reorganización dinámica 

de redes cerebrales durante la observación de acciones, lo cual puede evaluarse a través 

de índices derivados de la conectividad funcional obtenida con EEG (Bassett and Sporns, 

2017; Rizkallah et al., 2018). 

 

En este contexto, el presente TFG ha planteado como objetivo caracterizar la 

reorganización modular del cerebro durante la observación de distintas acciones, 

comparando las bandas alfa y beta y evaluando la influencia del parámetro de 

acoplamiento temporal en la detección de comunidades multicapa. Se emplearon 

diferentes métricas con el fin de cuantificar tanto la fragmentación como la estabilidad 

temporal de la organización modular. 

En la primera sección de esta discusión se analizará el efecto de la AOT sobre la dinámica 

modular, considerando tanto las diferencias entre bandas como entre las tres condiciones 

experimentales. En la segunda sección se abordará el papel del parámetro 𝜔  y sus 

implicaciones metodológicas. Posteriormente, se integrarán los hallazgos derivados de 

las métricas empleadas, discutiendo su coherencia y discrepancias con estudios previos 

de dinámica funcional. Finalmente, se discutirán las limitaciones del estudio, destacando 

aquellos aspectos que condicionan la interpretación y generalización de los resultados. 

6.1. Implicaciones de la reconfiguración modular 

observada 

Los resultados obtenidos muestran que la AOT induce una reorganización modular 

dinámica del cerebro, caracterizada por cambios significativos en torno a los hitos 

experimentales, especialmente en la fase de preparación y en el inicio del vídeo. Esta 

reorganización refleja que la red cerebral no mantiene una configuración estática, sino 

que ajusta de manera continua su estructura comunitaria en función de las demandas de 

la tarea (Ge et al., 2023). 

Con los parámetros por defecto (𝛾 = 1, 𝜔 = 1) se evidenció un patrón diferenciado entre 

las bandas alfa y beta. En la banda alfa se observó un comportamiento heterogéneo entre 

sujetos: algunos mostraron comunidades relativamente estables, mientras que otros 

presentaron transiciones frecuentes. En la banda beta, en cambio, predominó una 

reorganización más fragmentada y con menor estabilidad comunitaria, lo que sugiere una 

mayor sensibilidad de esta frecuencia a la tarea. Esta variabilidad interindividual respalda 

la idea de que los patrones de modularidad cerebral evolucionan en el tiempo en función 

de las condiciones del sujeto, la naturaleza de la tarea y el intervalo de frecuencia 

considerado (Puxeddu, Petti and Astolfi, 2021). 
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Estos hallazgos se alinean con lo descrito por Kim y Cho (2016), quienes observaron que, 

durante la AOT, la banda alfa muestra una supresión significativa de potencia y una 

reducción de la coherencia en redes frontocentrales y parieto-occipitales, fenómeno 

interpretado como desincronización alfa (ERD) vinculada a la activación cortical y a 

procesos de atención. Por el contrario, la banda beta presentó incrementos tanto en 

potencia como en coherencia, especialmente en regiones motoras y sensoriales, lo que 

refleja una mayor sensibilidad a la tarea y a la reorganización funcional (Kim and Cho, 

2016). 

Asimismo, las condiciones experimentales modulaban de forma específica estos patrones. 

En W1 se evidenció una clara diferenciación entre sujetos con mayor estabilidad y otros 

con fuerte reconfiguración, lo que apunta a un efecto heterogéneo de la tarea. En W2, 

algunos sujetos que en W1 mostraban fragmentación pasaron a exhibir mayor estabilidad, 

mientras que en otros ocurrió lo contrario, lo cual indica que el tipo de acción observada 

influye de forma directa en la organización modular. Finalmente, W3 se situó en un punto 

intermedio: la mayoría de los sujetos presentó reorganizaciones dinámicas, pero sin 

alcanzar la inestabilidad marcada de la banda beta ni la homogeneidad observada en 

algunos casos de alfa. 

Estas diferencias pueden entenderse en función de la naturaleza de los movimientos 

observados. La tarea de W1 (recoger monedas) implicaba una motricidad fina, repetitiva 

y rápida, que demanda un control visomotor detallado y una mayor atención sostenida, lo 

que podría explicar la fragmentación modular observada en varios sujetos. En cambio, 

W2 (uso de un martillo) representaba un gesto más global, rítmico y automático, asociado 

probablemente a una menor carga atencional y a patrones de organización más estables 

en algunos participantes. Por su parte, W3 (uso de pinzas) requería precisión manual y 

planificación, situándose en un punto intermedio al combinar elementos de control fino y 

secuencias motoras más amplias.  

En conjunto, estos resultados respaldan la hipótesis de que la AOT genera 

reconfiguraciones rápidas y específicas de la red cerebral, moduladas tanto por la 

frecuencia analizada como por el tipo de acción observada. La alta variabilidad 

interindividual observada refuerza la idea de que los efectos de la AOT no son uniformes, 

sino que dependen del perfil dinámico de cada sujeto. Lejos de ser una limitación, esta 

variabilidad constituye un aspecto central para entender cómo la observación de acciones 

puede adaptarse a distintos contextos y perfiles clínicos, abriendo la puerta a personalizar 

protocolos de rehabilitación basados en AOT. 

6.2. Interpretación de las métricas comunitarias 

En la literatura se han empleado múltiples aproximaciones para caracterizar comunidades 

en redes cerebrales. Por ejemplo, Puxedu et al. (2020) revisan trabajos donde el número 

de comunidades se fija de antemano, se varía su tamaño o densidad, o se evalúa el 

rendimiento de los algoritmos en función de métricas como la dimensión o la densidad 

media (Puxeddu et al., 2020). Por su parte, Rizkallah y colegas (2018) aplicaron 

algoritmos de modularidad multislice a una tarea de reconocimiento visual y mostraron 

que, además de contabilizar el número de comunidades, es posible describir la dinámica 

modular con indicadores como la integración entre módulos o la ocurrencia (Rizkallah et 

al., 2018). 
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En este contexto, el trabajo de Puxeddu y colegas (2021) mostró que el rendimiento de 

algoritmos como genLouvain y FacetNet depende fuertemente de los valores de sus 

parámetros, 𝜔 y 𝛾. Al probar distintos rangos y condiciones, los autores concluyeron que 

no existe un valor universal óptimo, sino que la elección de estos parámetros debe 

ajustarse a las características específicas de cada red, como su estabilidad, nivel de ruido 

o número de capas (Puxeddu, Petti and Astolfi, 2021). 

En nuestro caso, un análisis cualitativo inicial (sujeto 1, condición W1–alfa) mostró un 

comportamiento coherente con la teoría: valores bajos de omega generaron una red muy 

flexible con cambios frecuentes, mientras que valores altos favorecieron particiones más 

consistentes y estables en el tiempo (Mucha et al., 2010; Puxeddu, Petti and Astolfi, 

2021). Sin embargo, cuando se pasó al análisis cuantitativo mediante métricas, los 

resultados fueron más complejos y en ocasiones contrarios a lo descrito en la literatura. 

En relación con el número de comunidades, en la mayoría de las condiciones, los valores 

promediados se situaron entre 3 y 5, un rango coherente con lo reportado en la literatura 

(Bassett et al., 2011; Designed Research; D, Performed Research; D and Pnas, 2011; M.G 

Puxeddu et al., 2017). Sin embargo, este patrón se rompe al aplicar 𝜔 = 1, tanto en la 

banda beta como en algunas condiciones de alfa, donde el número de comunidades 

aumenta de forma notable y se desvía de lo esperado. Teóricamente, se esperaría un 

comportamiento opuesto: valores más bajos de 𝜔 deberían favorecer más comunidades y 

valores altos menos. No obstante, en nuestros resultados ocurre lo contrario. Tal como 

destacan (Puxeddu, Petti and Astolfi, 2021), estas discrepancias pueden depender de las 

propiedades específicas del dataset y del preprocesamiento aplicado. 

Una posible explicación metodológica es el proceso de umbralización aplicado a las 

matrices de conectividad. Al umbralizar con un enfoque de densidad fija (30%), se 

eliminan conexiones débiles y se altera de forma sustancial la distribución de grados. En 

la práctica, esto implica que el algoritmo recibe otro input de matriz, lo cual puede 

cambiar de manera significativa el número de comunidades detectadas. De hecho, al 

comparar los análisis sin (Figura 6.1) y con thresholding (Figura 6.2) se observa que los 

valores previos a la umbralización tienden a ser más consistentes con lo descrito en la 

literatura, mientras que tras el thresholding emergen más fragmentaciones.  
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Figura 6.1 Evolución del número de comunidades en función de la ventana temporal para 

distintos valores de 𝝎 (0.1, 0.5, 0.7 y 1) en la banda analizada, sin aplicar thresholding.  

 

Figura 6.2 Evolución del número de comunidades en función de la ventana temporal para 

distintos valores de 𝝎 (0.1, 0.5, 0.7 y 1) en la misma banda, tras aplicar thresholding. 
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En cuanto a la dimensión media de las comunidades, los resultados fueron más 

consistentes con lo esperado, aunque no de forma uniforme. En varias condiciones, 

especialmente en beta, un mayor acoplamiento sí se tradujo en comunidades más 

pequeñas y estables, en línea con la literatura (Danon, Diaz-Guilera and Arenas, 2006; 

Lancichinetti, Fortunato and Radicchi, 2008; Designed Research; D, Performed 

Research; D and Pnas, 2011). Sin embargo, en condiciones como W2–alfa este patrón no 

se mantuvo, ya que 𝜔 altos no redujeron el tamaño medio de manera clara e incluso 

aparecieron picos de crecimiento inesperados. Esto apunta a que la relación entre 𝜔 y el 

tamaño de las comunidades depende no solo del parámetro en sí, sino también de la banda 

de frecuencia y del tipo de estímulo. 

El uso de matrices de consenso se justifica por la elevada heterogeneidad intersujeto 

observada en los datos. Cada participante presenta patrones de conectividad propios, lo 

que dificulta la comparación directa y complica la integración de la información en un 

único análisis (Puxeddu, Petti and Astolfi, 2021). El consenso ofrece una solución robusta 

al calcular la coocurrencia de nodos en las mismas comunidades a lo largo de sujetos y 

ventanas, generando así una partición modular representativa del grupo (Jeub, Sporns and 

Fortunato, 2018). De este modo, es posible obtener una única partición por ventana que 

sintetiza la dinámica global de la muestra y facilita la comparación entre bandas de 

frecuencia y condiciones experimentales sin perder la información conjunta. 

La combinación del consenso con el índice NMI permite además evaluar la estabilidad 

de las comunidades de manera cuantitativa. Mientras que el consenso refleja visualmente 

la robustez de la partición, el NMI mide la similitud entre particiones de distintas 

repeticiones y ventanas, proporcionando un indicador numérico de estabilidad 

(Lancichinetti and Fortunato, 2012). En la banda alfa, se observó un patrón relativamente 

estable antes del inicio del estímulo, con descensos puntuales del NMI en las primeras 

ventanas tras la aparición del vídeo, seguidos de una recuperación rápida. En la banda 

beta, en cambio, predominó la variabilidad desde el inicio, y el estímulo intensificó la 

fragmentación, prolongando las caídas de NMI antes de que apareciera una estabilización 

en fases más tardías. Estos resultados concuerdan con la mayor sensibilidad de la beta a 

reorganizaciones rápidas y a procesos motores. 

Cabe destacar que, aunque en general valores altos de 𝜔 favorecen una mayor estabilidad, 

con el NMI más cercano a 1, no siempre representan la condición óptima. En algunos 

casos, valores intermedios de 𝜔 ofrecieron perfiles de NMI más consistentes a lo largo 

de las ventanas temporales. 

6.3. Limitaciones 
 

El presente trabajo presenta varias limitaciones metodológicas y experimentales que 

deben tenerse en cuenta a la hora de interpretar los resultados. En primer lugar, la señal 

EEG, aunque aporta una excelente resolución temporal, tiene limitaciones espaciales y 

está sujeta a artefactos fisiológicos y de registro que pueden afectar a la estimación de la 

conectividad. A pesar de aplicar preprocesado exhaustivo y métricas robustas como el 

wPLI, no es posible eliminar completamente estos efectos.  
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En segundo lugar, el tamaño muestral, aunque razonable en el contexto de estudios con 

EEG, no es muy elevado, lo que reduce la potencia estadística y limita la generalización 

de los resultados. 

 

También debe señalarse es la elevada variabilidad intersujeto, que constituye un desafío 

para la obtención de patrones consistentes. Aunque se emplearon matrices de consenso 

para integrar los resultados a nivel grupal, este procedimiento puede enmascarar 

diferencias individuales relevantes.  

 

A ello se suma que buena parte de las conclusiones se apoyan en una interpretación visual 

de las métricas y figuras, lo que reduce la solidez cuantitativa del análisis. Aunque se 

aplicó un análisis estadístico mediante el test no paramétrico de Friedman, este se limitó 

al número de comunidades, sin extenderse a otras métricas, de modo que sus resultados 

deben interpretarse con cautela. 

 

Asimismo, no se realizó un análisis de fuentes (source imaging), lo que habría permitido 

mitigar de forma más directa los efectos de la conducción de volumen y obtener una mejor 

localización cortical de las interacciones. La ausencia de este paso limita la interpretación 

espacial de los hallazgos y deja abierta la posibilidad de que algunas conexiones 

observadas estén influidas por efectos espurios derivados del registro en superficie. 

 

Otra limitación es la dependencia de los resultados respecto a parámetros como el valor 

de 𝜔 , cuya elección no cuenta con un criterio universal y puede inducir resultados 

divergentes según la condición y la banda de frecuencia. Por último, el enfoque de 

thresholding aplicado a las matrices de conectividad, necesario para reducir el impacto 

de conexiones espurias, también modifica la topología de la red y puede influir en el 

número y tamaño de comunidades detectadas. 
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Capítulo 7. Conclusiones 
 

Este trabajo constituye un estudio piloto sobre la reorganización modular del cerebro 

durante la AOT a partir de registros EEG y análisis de comunidades multicapa. Los 

resultados muestran que la AOT induce reconfiguraciones dinámicas de la red cerebral, 

especialmente en torno al inicio de los estímulos, con un comportamiento diferenciado 

entre bandas: la alfa tiende a recuperar la estabilidad tras una reorganización inicial, 

mientras que la beta mantiene una mayor variabilidad a lo largo del tiempo. El parámetro 

de acoplamiento temporal (𝜔) se confirma como un modulador clave de la estabilidad 

comunitaria: valores altos promueven particiones más estables, aunque en algunos casos 

intermedios se observó mayor coherencia temporal, en línea con lo descrito en la 

literatura. Pese a la complejidad de los resultados y a la heterogeneidad interindividual, 

el uso combinado de matrices de consenso y del índice NMI permitió obtener una 

caracterización robusta de la dinámica modular. En conjunto, este trabajo aporta 

evidencia preliminar de que la AOT genera reorganizaciones funcionales medibles 

mediante EEG, abriendo el camino hacia estudios más amplios que validen estos 

hallazgos y exploren su aplicabilidad en entornos clínicos de neurorrehabilitación. 

7.1. Líneas futuras 
 

De cara a investigaciones futuras, sería recomendable ampliar el número de sujetos y 

explorar condiciones experimentales más diversas para aumentar la generalización de los 

hallazgos. Asimismo, la combinación de EEG con otras modalidades como fMRI o MEG 

podría enriquecer el análisis multimodal, compensando las limitaciones espaciales del 

EEG. Otra línea prometedora consiste en explorar métricas adicionales de dinámica 

modular, como la flexibilidad o la persistencia de los nodos, que aportarían una visión 

más completa de los patrones de reorganización. Igualmente, convendría analizar la 

interacción entre bandas de frecuencia desde un enfoque de redes multiplex, lo que 

permitiría caracterizar cómo se coordinan las oscilaciones alfa, beta y gamma durante la 

AOT. Por último, en el ámbito clínico, futuras investigaciones podrían evaluar estos 

mismos análisis en pacientes con patologías neurológicas, con el fin de determinar si la 

dinámica modular puede servir como biomarcador del efecto de la AOT y guiar 

protocolos personalizados de rehabilitación. 
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