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Abstract
We introduce a numerical method which is developed to approach the solution to a nonlinear
age-structured population model with a finite life-span. The new scheme employs given
numerical approximations to the intrinsic survival probability to set a full discretization of
the problem, in which the numerical approach to the age-specific density of the population
is separated from the difficulties arising due to the singular mortality rate. Its convergence is
completely established without an explicit dependence on the asymptotic behaviour of the
natural mortality rate near the maximum age. We include a numerical experimentation that
confirms numerically the second-order convergence of the approximations provided by the
corresponding theorems.
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1 Introduction

We consider an age-structured population model with a finite life-span

ut + ua = −μ(a, Iμ(t), t) u, 0 < a < a†, t > 0, (1)

u(0, t) =
∫ a†

0
β(a, Iβ(t), t) u(a, t) da , t > 0, (2)
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u(a, 0) = u0(a), 0 ≤ a < a†. (3)

Here, the argument a ∈ [0, a†] represents age, where a† denotes the maximum age of
individuals in the population, t ≥ 0 represents time and u(a, t) gives the density function for
the age-distribution of the individuals in the population at time t .

Equation (1) describes the balance of individuals in the population through the aging and
death processes.We consider a nonnegativemortality rate functionμ(a, Iμ(t), t) that is given
in a separable form as

μ(a, Iμ(t), t) = μ0(a) + μb(a, Iμ(t), t), (4)

to discern between the natural mortality rate, μ0, depending only on age, and a bounded
mortality rate term, μb. The natural mortality rate, μ0(a), is nonnegative and satisfies the
following hypothesis

∫ a†

0
μ0(s)ds = +∞. (5)

The functionμb gives an account of the variability of themortality rate due to seasonal factors
and the competition among individuals, as represented by the dependence on the functional

Iμ(t) =
∫ a†

0
γμ(a) u(a, t) da, t ≥ 0, (6)

with γμ(a) ≥ 0, a ∈ [0, a†]. We also assume μb(a, 0, t) = 0, a.e. a ∈ [0, a†].
For convenience, we introduce the survival functions [11]

π0(a) = exp

(
−
∫ a

0
μ0(s) ds

)
, 0 ≤ a < a†, (7)

and

π(a, t)=π0(a) exp

(
−
∫ a

0
μb(s, Iμ(t − a + s), t − a + s) ds

)
, 0 ≤ a < a†, t ≥ a, (8)

that gives the probability that an individual that was born at time t − a will survive up to
time t with age a. We call π0(a) as the intrinsic survival probability, and should decrease
to zero as the age increases to a† because the assumption (5). Negative values of μb are not
excluded, they only mean that the probability of an individual to survive given by (8) might
be greater than the intrinsic survival probability (7), due to external factors.

The birth-law for individuals is given by the condition (2) with a nonnegative fertility rate
function β(a, Iβ(t), t) that also depends on a functional

Iβ(t) =
∫ a†

0
γβ(a) u(a, t) da , t ≥ 0, (9)

with γβ(a) ≥ 0, a ∈ [0, a†], to represent again the competition. By restricting the support
of function γβ(a) to an appropriate compact subinterval of [0, a†], we also model the age-
fertility windows for individuals in the population. Finally, the nonnegative function u0 in (3)
describes the initial age-distribution of the individuals in the population.

On the one hand, a finite life-span age-structured population model with maximum age
a† < ∞ appears biologically more realistic than models with infinite life-span. In those
models, the mortality rate function must blow-up close to a† to force that individuals die
before the maximum age (existence, uniqueness and regularity of solutions of these models
in appropriate function spaces were already considered in the monographs [11, 12]). On
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the other hand, it is usual to associate the unbounded behaviour of the mortality nearby
the maximum age to a natural age-dependent mortality term, μ0 (note assumption (5)), and
to isolate it from seasonal and density dependent effects on the mortality rate that can be
introduced in a bounded mortality term, μb, as in (4).

The difficulties produced in the numerical treatment of the singularity in the natural age-
dependent mortality rate were investigated in [1, 13] by assuming a specific behaviour for the
growth of the mortality in a neighbourhood of the maximum age, [a∗, a†), which is generally
stated in the form of a negative power-law bound

μ0(a) ≤ λ

(a† − a)α
, a ∈ [a∗, a†), α ≥ 1, λ > 0, (10)

with 0 ≤ a∗ < a† and μ0(a∗) = maxa∈[0,a∗] μ0(a). It is shown that the order of conver-
gence of the numerical approximations considered for the intrinsic survival probability (7)
is strongly dependent on the parameters α ≥ 1, λ > 0, that model the asymptotic behaviour
of the natural mortality, μ0.

Consequently, the numerical solution of (1)-(3) is also affected by the unbounded nature of
the mortality. To circumvent the obstacles, some authors require a detailed knowledge of this
rate [1–10, 14–17, 19, 20]. In particular, for the linear problem with μb = 0 and β = β(a),
in [2] we propose a method for the numerical solution of the problem using second-order
approximations for the intrinsic survival probability, irrespective of the particular technique
bywhich these estimates have been obtained. Thus, in that case, it is not necessary to assume a
specific behaviour in the asymptotic growth of μ0 as, for example, in (10). A straightforward
analysis of the propagation of the quadrature errors in the discretization allows us to ensure
that the error committed by the numerical solution when approximating the grid restriction
of the exact solution goes to zero as the discretisation parameter decreases. More precisely,
it is established that the method provides second-order approximations assuming certain
acceptable regularity conditions on the unknown exact solution.

In this paper, we extend the previous approach to the nonlinear problem (1)-(3): we decou-
ple the task of obtaining estimates to the intrinsic survival probability from that of calculating
approximations to the solution of the problem. Again, having second-order approximations
to the survival function in advance will allow us to design a discretization technique that
provides numerical estimates to the population density function, with the same second-order
of convergence. In this case, we prove the second-order of convergence using a different
technique than the one used in [2] for the linear case: now it is based on the analysis of
consistence and nonlinear stability properties of the discretization.

In Section 2, we introduce the numerical procedure which is developed to approximate the
solution to problem (1)-(3). Section 3 is devoted to the complete analysis of the convergence
of this numerical method. Section 4 shows the numerical experimentation that confirms
numerically the theoretical results. Section 5 concludes.

2 Numerical approximation

In addition to the non-linearity of the model, the singularity of the natural mortality rate
μ0, at the maximum age a†, is the main challenge to develop the numerical approximation
of problem (1)-(3). Our approach to the model considers a change of variable with the
relationship, assuming that π0 ∈ C1([0, a†)),

u(a, t) = π0(a) v(a, t), 0 ≤ a < a†, (11)
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and reformulates the boundary and initial value problem (1)-(3) in terms of the new dependent
variable v(a, t). Therefore, taking into account that π ′

0(a) = −μ0(a)π0(a), and dividing by
π0(a) �= 0, function v satisfies

vt + va = −μb(a, Iμ(t), t) v, 0 < a < a†, t > 0, (12)

v(0, t) =
∫ a†

0
π0(a) β(a, Iβ(t), t) v(a, t) da , t > 0, (13)

v(a, 0) = u0(a)

π0(a)
, 0 ≤ a < a†, (14)

with nonlocal terms

Iμ(t) =
∫ a†

0
π0(a)γμ(a)v(a, t) da, Iβ(t) =

∫ a†

0
π0(a)γβ(a)v(a, t) da , t ≥ 0. (15)

Besides, in order to ensure that the function v is bounded over [0, a†) at the initial time, we
impose that

lim
a→a†

u0(a)

π0(a)
< ∞. (16)

We emphasize that the unbounded natural mortality rate μ0 only appears in the new prob-
lem (12)-(14) through the intrinsic survival probability π0: in the nonlocal functional terms
Iμ(t) and Iβ(t) defined by (15), and which are involved in (12) and (13), respectively; in the
birth law (13); and in the new initial condition (14). Therefore, the new balance law (12) does
not longer include any singular term and, on the other hand, the new non-local terms only
incorporate the survival probability π0, which is already a bounded function and does not
introduce any singularity. In conclusion, assuming (16), by discretizing problem (12)-(14),
we circumvent the difficulties coming from the singularity of the natural mortality rate when
analysing the convergence of the approximations to the solution v.

First, we discretize the age variable. For convenience, we suppose that there exists a
value for age a∗, 0 < a∗ < a†, that represents an important characteristic of the model
to be taken into account. For example, from a theoretical point of view, when a∗ fixes
an appropriate asymptotic growth behaviour as in (10). Also, from an experimental point
of view, when modeling the intrinsic survival probability π0, from census data: using a
piecewise polynomial function representation in the subinterval [0, a∗], and an appropriate
least-squares approximation using a model function for the growth of the mortality in the
subinterval [a∗, a†), can be useful.

Therefore, given a positive integer J ∗, we define the step size (the discretization parameter)
as h = a∗/J ∗. Then, we introduce the discrete ages a j = j h, j = 0, 1, . . . , J , where J is
the closest integer strictly less than a†/h. As a result, aJ∗ = a∗ and 0 < a† − aJ ≤ h.

In contrast, if there is no highlighted age like a∗, the discretization of the age variable is as
follows: for a positive integer J , let us define h = a†/(J +1) as the discretization parameter.
Again a j = j h, j = 0, 1, . . . , J , and then aJ = J h, satisfies 0 < a† − aJ = h.

Next, assuming that we are going to perform the numerical integration on a bounded time
interval [0, T ], T > 0, we use the same step size h for the discretization of the time variable.
Therefore, we introduce the discrete times tn = n h, n = 0, 1, . . . , N , where N = 
T /h�.
We use the following vector notation: at each time level tn , n = 0, 1, . . . , N , the numerical
solution is described by a (J + 1)-dimensional vector Vn = (V n

0 , V n
1 , . . . , V n

J ), where V n
j

would be the numerical approximation to v(a j , tn), j = 0, 1, . . . , J , solution of (12)-(14).
Vector Π = (Π0,Π1, . . . ,ΠJ ), with capital letters, recovers the approximations to the
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intrinsic survival vector π0 = (π0(a0), π0(a1), . . . , π0(aJ )), in lower case. That is, Π j is an
approximation to π0(a j ), j = 0, 1 . . . , J , which is obtained by approximation of π0 in (7)
with a numerical method, or from an appropriate modelling of this survival function.

We assume, from now on, that Π = (Π0,Π1, . . . , ΠJ ), contains positive second-order
approximations to the intrinsic survival probability of the population:

(H0) Π j > 0, j = 0, 1, . . . , J , and max
j=0,...,J

|Π j − π0(a j )| = O(h2), as h → 0.

The condition Π j > 0, j = 0, 1, . . . , J , can be easily satisfied if these approximations
to (7) are obtained by exponentials of a quadrature rule (as in [1]), or it can be imposed
when modeling the intrinsic survival probability of the population from field data. In this
way, we separate the problem of approaching the intrinsic survival probability π0, from the
approximation of the density function v.

First we rewrite the new balance law. Note that the solution of (12) satisfies, for each
t > 0, a ∈ (0, a†), and each h > 0, such that a + h < a†,

v(a + h, t + h) = v(a, t) exp

(
−
∫ h

0
μb

(
a + s, Iμ(t + s), t + s

)
ds

)
. (17)

For practical reasons, to approximate the integrals that appear in the boundary condi-
tion (13), and in the arguments of functions β and μb (that is, the nonlocal terms described
in (15)), we use the same open quadrature rule as in [2]: for a vector Y = (Y0, Y1, . . . , YJ ),
we define

Qh(Y) = h Y1 +
J−1∑
j=1

h

2

(
Y j+1 + Y j

)
) + (a† − aJ ) YJ . (18)

Thus, given a suitable approximation V0, to the initial condition (14), we perform the
evolution in time of the numerical method computing Vn+1, n = 0, 1, . . . , N − 1, from Vn ,
the approximation to the solution at the previous time-step. To do so, we first calculate an
auxiliary approximation, represented by Vn+1,∗ = (V n+1,∗

0 , V n+1,∗
1 , . . . , V n+1,∗

J ), obtained
from Vn and which is subsequently used to compute Vn+1, n = 0, 1, . . . , N − 1.

The scheme, based on the discretization of (17) and (13), is described component-wise as
follows: for n = 0, 1, . . . , N − 1, and j = 0, 1, . . . , J − 1

V n+1,∗
j+1 = V n

j exp
(−h μb

(
a j ,Qh(Π · γ μ · Vn), tn

))
, (19)

V n+1,∗
0 = Qh(Π · βn+1,∗ · Vn+1,∗), (20)

V n+1
j+1 = V n

j exp

(
−h

2

[
μb

(
a j ,Qh(Π · γ μ · Vn), tn

)

+μb
(
a j+1,Qh(Π ·γ μ · Vn+1,∗), tn+1) ]) , (21)

V n+1
0 = Qh(Π · βn+1 · Vn+1). (22)

The components of vectors γ μ, γ β , β
n+1, and βn+1,∗, n = 0, 1, . . . , N − 1, are described,

for j = 0, 1, . . . , J , as

(γμ) j = γμ(a j ), βn+1
j = β(a j ,Qh(Π · γ β · Vn+1), tn+1),

(γβ) j = γβ(a j ), β
n+1,∗
j = β(a j ,Qh(Π · γ β · Vn+1,∗), tn+1).
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Finally, the products Π ·γ μ ·Vn ; Π ·γ μ ·Vn+1,∗ ; Π ·βn+1 ·Vn+1 ; Π ·βn+1,∗ ·Vn+1,∗ ;
Π · γ β · Vn+1 and Π · γ β · Vn+1,∗ , n = 0, 1, . . . , N − 1, represent the element-wise
product of the corresponding vectors.

Remember that the quadrature rule (18) does not require the first component of the vector
where it is applied. Then, in the effective implementation of the method, it is unnecessary
to calculate V n+1,∗

0 , n = 0, 1, . . . , N − 1, (the first component of Vn+1,∗ defined by (20)),
because it is not requiered in order to compute Qh(Π · γ μ · Vn+1,∗) in (21), and therefore,
for obtaining Vn+1. However, if a quadrature rule that is not open on the left were used, it
would be mandatory to compute (20).

Finally, we describe the process to obtain the numerical approximation of the solution
to the original problem (1)-(3), by means of the numerical approach computed with the
method previously presented, for the solution to the problem (12)-(14) which appears after
the change of variable (11). Again, at each time level tn , n = 0, 1, . . . , N , the numerical
solution is described by a (J+1)-dimensional vector Un = (Un

0 ,Un
1 , . . . ,Un

J ), where Un
j

represents the numerical approximation to u(a j , tn), j = 0, 1, . . . , J , the values of the
solution to (1)-(3) on the established age-time meshgrid.

Therefore, the numerical procedure requieres the following steps:

• Preprocessing: Given a numerical approximation U0 to the initial condition (3), we
define V0 with components, for j = 0, 1, . . . , J ,

V 0
j = U 0

j

Π j
. (23)

• Time evolution: We compute at each time level tn+1, n = 0, 1, . . . N − 1, the approxi-
mation Vn+1 of the solution to (12)-(14), by means of (19)-(22).

• Postprocessing: We obtain the approximationUn+1, n = 0, 1, . . . N −1, of the solution
to the original problem (1)-(3), with components, for j = 0, 1, . . . , J ,

Un+1
j = Π j · V n+1

j . (24)

3 Convergence

In this section, we investigate the converge property of the procedure (23), (19)-(22), (24),
introduced in Section 2, that approaches the solution to the problem (1)-(3).

To this end, previously we analyze the numerical method (19)-(22) for the approximation
of the solution to (12)-(13). We emphasize that the values of the function v(a, t) within the
integrals (13) and (15), always appear as the product π0(a) v(a, t), that is, as the values of
u(a, t) due to (11). Therefore, in the following, the discretization errors for the numerical
method (19)-(22) are analised assuming smoothness assumptions on the function u(x, t),
and some additional requirements on v(a, t). Thus, let be T > 0 the final time, and let us
suppose that

(H1) u ∈ C2([0, a†] × [0, T ]), π0 ∈ C2([0, a†)), and v(a, t) := u(a, t)/π0(a) is bounded in
[0, a†) × [0, T ].

(H2) γμ, γβ ∈ C2([0, a†]), are nonnegative.
(H3) β ∈ C2([0, a†]×Dβ ×[0, T ]), is nonnegative, where Dβ is a compact neighbourghood

of
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{
Iβ(t), 0 ≤ t ≤ T

} =
{∫ a†

0
π0(a) γβ(a) v(a, t) da, 0 ≤ t ≤ T

}

=
{∫ a†

0
γβ(a) u(a, t) da, 0 ≤ t ≤ T

}
.

(H4) μb ∈ C2([0, a†] × Dμ × [0, T ]), where Dμ is a compact neighbourghood of

{
Iμ(t), 0 ≤ t ≤ T

} =
{∫ a†

0
π0(a) γμ(a) v(a, t) da, 0 ≤ t ≤ T

}

=
{∫ a†

0
γμ(a) u(a, t) da, 0 ≤ t ≤ T

}
.

Notice that the second-order smoothness with respect to the age variable in the compact
[0, a†] (that appears in (H1) for the solution u, and in (H2)-(H4) for the data functions) is the
minimum requirement to achieve second order of convergence for the numerical quadratures
involved in obtaining the numerical approximation.

The convergence analysiswill be addressedwith the study of the consistency and nonlinear
stability properties of the numerical scheme. We shall employ the discretization framework
introduced by J.C. López-Marcos and J.M. Sanz-Serna (see [18]), then we describe the
numerical integration adapted to it. Thus, we assume that the discretization parameter h
takes values in the set H = {h > 0 | h = a∗/J ∗, J ∗ ∈ N}, and for each h ∈ H , J is
defined as the closest integer strictly lower than a†/h, and we consider the vector spaces
Xh = (RJ+1)N+1 and Yh = R

J+1 × R
N × (RJ )N . In the case where no significant age a∗

has to be taken into account, we consider H = {h > 0 | h = a†/(J + 1), J ∈ N} to define
Xh and Yh .

Now, we endow both spaces with suitable norms. Note that in the definition of Xh and Yh

appear Cartesian products of RL+1, L = J − 1, J , N − 1, so for Y = (Y0, Y1, . . . , YL) ∈
R

L+1, we use the discrete L∞ norm

‖Y‖∞,L+1 = max
j=0,...,L

|Y j |.

Taking into account that the quadrature rule (18) does not depend onY0, the first component
of vector Y = (Y0, Y1, . . . , YJ ) ∈ R

J+1, we also consider the seminorm

|Y|∞,J+1 = max
j=1,...,J

|Y j |,

where |Y|∞,J+1 ≤ ‖Y‖∞,J+1.
In the analysis, we also use the discrete L1 norm and seminorm in R

J+1: for Y =
(Y0, Y1, . . . , YJ )

‖Y‖1 =
J∑

j=0

h |Y j |, |Y|1 =
J∑

j=1

h |Y j |,

respectively. Now |Y|1 ≤ ‖Y‖1 and note that
‖Y‖1 ≤ (J + 1) h ‖Y‖∞,J+1 ≤ (a† + h) ‖Y‖∞,J+1 ≤ 2 a† ‖Y‖∞,J+1, (25)

and, similarly

|Y|1 ≤ a† |Y|∞,J+1. (26)
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Therefore, if Y = (Y0, Y1, . . . , YJ ) and Z = (Z0, Z1, . . . , Z J ) are in R
J+1, and Y · Z

represents the element-wise multiplication of the vectors, then

|Qh(Y · Z)| ≤ 3

2
h|Y1Z1| +

J−1∑
j=2

h|Y j Z j | + 3

2
h|YJ Z J | ≤ 3

2
‖Y‖∞,J+1 |Z|1. (27)

As a consequence, from (26)

|Qh(Y · Z)| ≤ 3

2
a† ‖Y‖∞,J+1 |Z|∞,J+1, (28)

and, in particular

|Qh(Y · Z)| ≤ 3

2
a† ‖Y‖∞,J+1 ‖Z‖∞,J+1. (29)

Also, from (27), we have

|Qh(Y · Z)| ≤ 3

2
‖Y‖∞,J+1 ‖Z‖1. (30)

Then, we define the following norm in Xh : for Wh = (W0,W1, . . . ,WN ) ∈ Xh ,

‖Wh‖Xh = max
n=0,...,N

‖Wn‖∞,J+1.

In addition, in Yh we introduce the following norm: for Zh = (Z0,Z0,Z1∗, . . . ,ZN∗ ) ∈ Yk ,

‖Zh‖Yk = ‖Z0‖∞,J+1 + ‖Z0‖∞,N +
N∑

n=1

h ‖Zn∗‖∞,J .

For each h ∈ H , the element uh = (u0,u1, . . . ,uN ) ∈ Xh recovers the mesh-
grid values of the solution u to (1)-(3): that is, at each time level tn , n = 0, 1, . . . , N ,
un = (u(a0, tn), u(a1, tn), . . . , u(aJ , tn)). In the same way, vh = (v0, v1, . . . , vN ) ∈ Xh ,
where vn = (v(a0, tn), v(a1, tn), . . . , v(aJ , tn)), represents the grid restriction of the solu-
tion v to (12)-(14) at each time level tn , n = 0, 1, . . . , N .

For h ∈ H , let Rh a positive real number, and denote by BXh (vh, Rh) ⊂ Xh , the open ball
with center vh and radious Rh . Then, we introduce the map Φh : BXh (vh, Rh) ⊂ Xh → Yh

that describes the equations of the discretization proposed to obtain the approximation of v:
forWh = (W0,W1, . . . ,WN ) ∈ BXh (vh, Rh)

Φh(Wh) = Zh, (31)

where Zh = (Z0,Z0,Z1∗, . . . ,ZN∗ ) ∈ Yh . Each component of Zh refers to the residual
generated by each part of the discretisation when applied to an elementWh of the space Xh

to which the numerical approximation Vh belongs. Thus, Z0 ∈ R
J+1 refers to the residual

generated by the approximation of the initial data, that is

Z0 = W0 − V0, (32)

(remember thatV0, is a suitable approximation to the initial condition (14)). The components
of Z0 ∈ R

N , that represents the residual in the numerical boundary condition (22), are
characterized by

Zn+1
0 = Wn+1

0 − Qh(Π · βn+1 · Wn+1), n = 0, 1, . . . , N − 1. (33)
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Finally, for n = 0, 1, . . . , N − 1, vector Zn+1∗ ∈ R
J , which relates to the residual generated

by the discretisation (21) of the balance law (17), is described by: for j = 0, 1, . . . , J − 1,

Zn+1
j+1 = 1

h

{
Wn+1

j+1 − Wn
j exp

(
−h

2

[
μb

(
a j ,Qh(Π ·γ μ ·Wn), tn

)

+μb
(
a j+1,Qh(Π ·γ μ ·Wn+1,∗), tn+1)])

}
, (34)

wherewe require to compute the auxiliar vectorsWn+1,∗ defined by: for j = 0, 1, . . . , J−1,

Wn+1,∗
j+1 = Wn

j exp
(−h μb

(
a j ,Qh(Π · γ μ · Wn), tn

))
, (35)

Wn+1,∗
0 = Qh(Π · βn+1,∗ · Wn+1,∗), (36)

although it should be remembered that the auxiliary value Wn+1,∗
0 is not necessary in the

study.
Then Vh = (V0,V1, . . . ,VN ) ∈ BXh (vh, Rh), is a solution of the scheme with initial

data V0, and described by equations (19)-(22) if, and only if,

Φh(Vh) = 0.

First, a theorem is introduced which establishes that the operator is well-defined for the
analysis.

Theorem 1 Assume the regularity hypotheses (H1)-(H4) on the data functions and the solu-
tion v(a, t), and the disposal of approximations to the intrinsic survival probability π0 that
satisfy (H0).

Considering that Rh = o(1), as h → 0, if Wh = (W0,W1, . . . ,WN ) ∈ BXh (vh, Rh)

then, for h sufficiently small, and n = 0, 1, . . . , N

Qh(Π · γ μ · Wn) ∈ Dμ , Qh(Π · γ β · Wn) ∈ Dβ ,

and, the auxiliar vectorsWn,∗, n = 1, 2, . . . , N, defined by (35), (36), also satisfy

Qh(Π · γ μ · Wn,∗) ∈ Dμ .

Proof The definition and the convergence property of Qh together with (29), the regularity
hypotheses assumed and the boundedness of functions, provide, for n = 0, 1, . . . , N

|Qh(Π · γ μ · Wn) − Iμ(tn)| ≤ |Qh(Π · γ μ · (Wn − vn))|
+|Qh((Π − π0)·γ μ ·vn)| + |Qh(π0 ·γ μ ·vn) − Iμ(tn)|

≤ 3

2
a† ‖Π · γ μ‖∞,J+1 ‖Wn − vn‖∞,J+1

+3

2
a† ‖γ μ · vn‖∞,J+1 ‖Π − π0‖∞,J+1 + O(h2)

≤ C Rh + O(h2). (37)

From now on, C will denote a positive constant which is independent of h, and possibly has
different values in different places.

We can proceed in a similar way to set, for n = 0, 1, . . . , N

|Qh(Π · γ β · Wn) − Iβ(tn)| ≤ C Rh + O(h2). (38)
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On the other hand, the use of (35) and (17), theMeanValue Theorem, the expression of the
error of the rectangle quadrature rule, and (37) allow us to obtain, for n = 0, 1, . . . , N − 1,
j = 0, 1, . . . , J − 1

|Wn+1,∗
j+1 − vn+1

j+1 | ≤ |Wn
j − vnj | exp

(
−
∫ h

0
μb

(
a j + s, Iμ(tn + s), tn + s

)
ds

)

+ |Wn
j |
∣∣∣∣ exp

(−h μb
(
a j ,Qh(Π · γ μ · Wn), tn

))

− exp

(
−
∫ h

0
μb

(
a j +s, Iμ(tn+s), tn+s

)
ds

)∣∣∣∣
≤ (1+Ch) |Wn

j − vnj |

+C

∣∣∣∣
∫ h

0
μb

(
a j +s, Iμ(tn+s), tn+s

)
ds − hμb

(
a j ,Qh(Π ·γ μ ·Wn), tn

)∣∣∣∣
≤ (1+Ch) |Wn

j − vnj |

+C

∣∣∣∣
∫ h

0
μb

(
a j +s, Iμ(tn+s), tn+s

)
ds − hμb

(
a j , Iμ(tn), tn

)∣∣∣∣
+C h

∣∣μb
(
a j , Iμ(tn), tn

) − μb
(
a j ,Qh(Π · γ μ · Wn), tn

)∣∣
≤ (1 + C h) |Wn

j − vnj | + C h |Iμ(tn) − Qh(Π · γ μ · Wn)| + O(h2)

≤ (1 + C h) Rh + O(h2). (39)

Then, note that it is not necessary to bound |Wn,∗
0 − vn0 | to conclude that, for n =

1, 2, . . . , N ,

|Wn,∗ − vn |∞,J+1 ≤ (1 + C h) Rh + O(h2). (40)

Finally, if we use (28), (29) and (40), we have, for n = 1, 2, . . . , N

|Qh(Π · γ μ · Wn,∗) − Iμ(tn)| ≤ |Qh(Π · γ μ · (Wn,∗ − vn))|
+|Qh((Π − π0) · γ μ · vn)| + |Qh(π0 · γ μ · vn) − Iμ(tn)|

≤ 3

2
a† ‖Π · γ μ‖∞,J+1 |Wn,∗ − vn |∞,J+1

+3

2
a† ‖γ μ · vn‖∞,J+1 ‖Π − π0‖∞,J+1 + O(h2)

≤ C (1 + h) Rh + O(h2). (41)

We conclude the result taking into account that Rh = o(1), as h → 0, in (37), (38)
and (41). ��

Now, we define the local discretization error as Φh(vh) ∈ Yh , and we say that the
discretization is consistent if limh→0 ‖Φh(vh)‖Yh = 0. The following result establishes the
consistency of the numerical scheme defined by (31).

Theorem 2 (Consistency) Assume the regularity hypotheses (H1)-(H4) on the data func-
tions and the solution v(a, t), and the disposal of approximations to the intrinsic survival
probability π0 that satisfy (H0). Then, as h → 0,

‖Φh(vh)‖Yh = ‖v0 − V0‖∞,J+1 + O(h2). (42)
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Proof Let us denote the components of the local discretization error vector as Φh(vh) =
(z0, z0, z1∗, . . . , zN∗ ).

Following the steps given in Theorem 1 to obtain (37), but taking Wn = vn (that is, the
center of the ball), for n = 0, 1, . . . , N , we conclude that

|Qh(Π · γ μ · vn) − Iμ(tn)| = O(h2). (43)

In a similar way, for n = 0, 1, . . . , N , we can arrive at

|Qh(Π · γ β · vn) − Iβ(tn)| = O(h2). (44)

From vn we define the auxiliar vectors vn+1,∗, n = 0, 1, . . . , N − 1, with components:
for j = 0, 1 . . . , J − 1,

v
n+1,∗
j+1 = vnj exp

(−h μb(a j ,Qh(Π · γ μ · vn), tn)),
v
n+1,∗
0 = Qh(Π · βn+1,∗ · vn+1,∗),

where βn+1,∗ has components β
n+1,∗
j = β(a j ,Qh(Π · γ β · vn+1,∗), tn+1), j = 0, 1, . . . J .

Then, as in Theorem 1 to get (39) but takingWn+1,∗ = vn+1,∗, and from (43), we obtain for
n = 0, 1, . . . , N − 1, J = 0, 1, . . . , J − 1,

|vn+1,∗
j+1 − vn+1

j+1 | = O(h2),

and, therefore

|vn+1,∗ − vn+1|∞,J+1 = O(h2). (45)

Finally, by (45) and following Theorem 1 to set (41), again with Wn,∗ = vn,∗, for n =
1, 2, . . . , N , we have

|Qh(Π · γ μ · vn,∗) − Iμ(tn)| = O(h2). (46)

Now, we analyze the different vectors that make up the local discretization error Φh(vh).
First, from (32),

‖z0‖∞,J+1 = ‖v0 − V0‖∞,J+1.

Next remember (33), and by means of (13), the components of z0 are, for n =
0, 1, . . . , N − 1,

zn+1
0 =

∫ a†

0
π0(a) β(a, Iβ(tn+1), tn+1) v(a, tn+1) da − Qh(Π · βn+1 · vn+1),

here βn+1 has components βn+1
j = β(a j ,Qh(Π · γ β · vn+1), tn+1), j = 0, 1, . . . J .

Also, for the sake of simplicity, we define the vector βn+1
I , with components

(
βn+1
I

)
j

=
β(a j , Iβ(tn+1), tn+1), j = 0, 1, . . . J , n = 0, 1, . . . , N − 1. Then, the smoothness of the
solution v and the function β, the convergence property of Qh , inequality (29), the accu-
racy of the approximations in Π, the Mean Value Theorem and the result (44), lead to, for
n = 0, 1, . . . , N − 1,

|zn+1
0 | ≤

∣∣∣∣
∫ a†

0
π0(a) β(a, Iβ(tn+1), tn+1) v(a, tn+1) da − Qh(π0 · βn+1

I · vn+1)

∣∣∣∣
+
∣∣∣Qh((π0 − Π) · βn+1

I · vn+1)

∣∣∣ +
∣∣∣Qh(Π ·

(
βn+1
I − βn+1

)
· vn+1)

∣∣∣
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≤ 3

2
a† ‖βn+1

I · vn+1‖∞,J+1 ‖π0 − Π‖∞,J+1

+3

2
a† ‖Π · vn+1‖∞,J+1 ‖βn+1

I − βn+1‖∞,J+1 + O(h2)

≤ C |Iβ(tn+1) − Qh(Π · γ β · vn+1)| + O(h2) = O(h2),

and then, ‖z0‖∞,N = O(h2).
To end, when n = 0, 1, . . . , N−1, from (34) and using (17), we can write the components

of zn+1∗ as, for j = 0, 1, . . . , J − 1,

zn+1
j+1 = 1

h
vnj

{
exp

(
−
∫ h

0
μb

(
a j + s, Iμ(tn + s), tn + s

)
ds

)

− exp

(
−h

2

[
μb

(
a j ,Qh(Π · γ μ · vn), tn)

+μb
(
a j+1,Qh(Π · γ μ · vn+1,∗), tn+1)])

}
.

Then, again, the boundedness of the functionμb and the solution v, theMeanValue Theorem,
the expression of the error of the trapezoidal quadrature rule, and inequalities (43) and (46)
leads to

|zn+1
j+1| ≤ C

h

∣∣∣∣h2
[
μb

(
a j ,Qh(Π ·γ μ ·vn), tn) + μb

(
a j+1,Qh(Π ·γ μ ·vn+1,∗), tn+1)]

−
∫ h

0
μb

(
a j + s, Iμ(tn + s), tn + s

)
ds

∣∣∣∣
≤ C

2

∣∣μb
(
a j ,Qh(Π · γ μ · vn), tn) − μb

(
a j , Iμ(tn), tn

)∣∣
+C

2

∣∣μb
(
a j+1,Qh(Π · γ μ · vn+1,∗), tn+1) − μb

(
a j+1, Iμ(tn+1), tn+1)∣∣

+C

h

∣∣∣∣h2
[
μb

(
a j , Iμ(tn), tn

) + μb
(
a j+1, Iμ(tn+1), tn+1)]

−
∫ h

0
μb(a j + s, Iμ(tn + s), tn + s)ds

∣∣∣∣
≤ C

(|Qh(Π · γ μ · vn) − Iμ(tn)| + |Qh(Π ·γ μ ·vn+1,∗) − Iμ(tn+1)|)+O(h2)

= O(h2),

Thus, ‖zn+1∗ ‖∞,J = O(h2), 0 ≤ n ≤ N − 1, and (42) is proved. ��
Next, we introduce the stability with h-dependent thresholds. For h ∈ H , let Rh a real

number (the stability threshold) with 0 < Rh < ∞: we say that the discretization (31) is
stable for vh restricted to the threshold Rh , if there exist two positive constants h0 and S (the
stability constant) such that, for any h ∈ H with h ≤ h0, the open ball BXh (vh, Rh) ⊂ Xh

is in the domain of Φh , and forWh,Ph ∈ BXh (vh, Rh)

‖Wh − Ph‖Xh ≤ S ‖Φh(Wh) − Φh(Ph)‖Yh .
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Theorem 3 (Stability) Assume the regularity hypotheses (H1)-(H4) on the data functions and
the solution v(a, t), and the disposal of approximations to the intrinsic survival probability
π0 that satisfy (H0). Then the discretization is stable for vh with thresholds Rh = R h.

Proof Since Rh = R h = o(1), as h → 0, Theorem 1 assures that Φh is well-
defined over BXh (vh, Rh), for h small enough. Then, for Wh = (W0,W1, . . . ,WN )

and Ph = (P0,P1, . . . ,PN ) in BXh (vh, Rh), we denote, respectively, Zh = Φh(Wh) =
(Z0,Z0,Z1∗, . . . ,ZN∗ ), and Sh = Φh(Ph) = (S0,S0,S1∗, . . . ,SN∗ ).

First of all, we make some remarks on the notation. On the one hand, note that the
components of Z0 and S0 are defined as in (33). However, in order to avoid any confusion,
we write, for n = 0, 1, . . . , N − 1,

Zn+1
0 = Wn+1

0 − Qh(Π · βn+1
W · Wn+1), (47)

Sn+1
0 = Pn+1

0 − Qh(Π · βn+1
P · Pn+1), (48)

where βn+1
W and βn+1

P , represent the vectors with components defined by
(
βn+1
W

)
j
=

β(a j ,Qh(Π · γ β · Wn+1), tn+1) and
(
βn+1
P

)
j

= β(a j ,Qh(Π · γ β · Pn+1), tn+1), j =
0, 1, . . . , J , n = 0, 1, . . . , N − 1, respectively.

On the other hand, for n = 0, 1 . . . , N − 1, we define as in (35), (36) the auxiliar vectors
Wn+1,∗ and Pn+1,∗ with components: for j = 0, 1, . . . , J − 1,

Wn+1,∗
j+1 = Wn

j exp
(−h μb

(
a j ,Qh(Π · γ μ · Wn), tn

))
, (49)

Wn+1,∗
0 = Qh(Π · β

n+1,∗
W · Wn+1,∗),

Pn+1,∗
j+1 = Pn

j exp
(−h μb

(
a j ,Qh(Π · γ μ · Pn), tn

))
,

Pn+1,∗
0 = Qh(Π · β

n+1,∗
P · Pn+1,∗), (50)

where β
n+1,∗
W and β

n+1,∗
P are the vectors with components defined by

(
β
n+1,∗
W

)
j

=
β(a j ,Qh(Π · γ β · Wn+1,∗), tn+1) , and

(
β
n+1,∗
P

)
j

= β(a j ,Qh(Π · γ β · Pn+1,∗), tn+1),

j = 0, 1, . . . , J , respectively.
We set En = Wn − Pn , n = 0, 1, . . . , N , and En+1,∗ = Wn+1,∗ − Pn+1,∗, n =

0, 1, . . . , N − 1, and initially we are going to bound ‖En‖1, and then ‖En‖∞,J+1.
To this end, we obtain some preliminary bounds. From the regularity of the functions,

using the Mean Value Theorem and (30), for n = 1, 2, . . . , N , j = 0, 1, . . . , J , we have
∣∣∣(βn

W

)
j − (

βn
P

)
j

∣∣∣ ≤ C |Qh(Π · γ β · En)| ≤ 3

2
C ‖Π · γ β‖∞,J+1‖En‖1,

and then

‖βn
W − βn

P‖∞,J+1 ≤ C ‖En‖1. (51)

Also, from (49), (50), if we employ the regularity hypotheses, boundedness of Ph , the Mean
Value Theorem and (30), for n = 0, 1, . . . , N − 1, j = 0, 1, . . . , J − 1, we arrive at

|En+1,∗
j+1 | = |Wn+1,∗

j+1 − Pn+1,∗
j+1 |

≤ |En
j | exp

(−h μb
(
a j ,Qh(Π · γ μ · Wn), tn

))
+|Pn

j |
∣∣ exp (−h μb

(
a j ,Qh(Π · γ μ · Wn), tn

))
− exp

(−h μb
(
a j ,Qh(Π · γ μ · Pn), tn

))∣∣
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≤ (1 + C h) |En
j | + C h

∣∣μb
(
a j ,Qh(Π · γ μ · Wn), tn

)
−μb

(
a j ,Qh(Π · γ μ · Pn), tn

)∣∣
≤ (1 + C h) |En

j | + C h |Qh(Π · γ μ · En)|
≤ (1 + C h) |En

j | + 3

2
C h ‖Π · γ μ‖∞,J+1‖En‖1.

As a consequence,

|En+1,∗|1 =
J∑

j=1

h |En+1,∗
j |

≤ (1 + C h)

J∑
j=1

h |En
j−1| + C h a† ‖En‖1 ≤ (1 + C h) ‖En‖1. (52)

For n = 0, from the definition of vectors Z0 and S0 as in (32), we have

E0 = W0 − P0 = (
Z0 + V0) − (

S0 + V0) = Z0 − S0. (53)

For n = 1, 2, . . . , N , on the one hand, the expressions (47) and (48) describing Z0 and
S0, respectively, bounds (30), (29), the regularity hypotheses and (51), gives

|En
0 | = |Wn

0 − Pn
0 | ≤ |Zn

0 − Sn0 | + |Qh(Π · βn
W · Wn) − Qh(Π · βn

P · Pn)|
≤ |Zn

0 − Sn0 | + |Qh(Π · βn
W · En)| + |Qh(Π · (βn

W − βn
P ) · Pn)|

≤ |Zn
0 − Sn0 | + 3

2
‖Π · βn

W ‖∞,J+1 ‖En‖1

+3

2
a† ‖Π · Pn‖∞,J+1‖βn

W − βn
P‖∞,J+1

≤ C ‖En‖1 + |Zn
0 − Sn0 |. (54)

On the other hand, from (34) that describes the components of vectors Zn+1∗ and Sn+1∗ ,
n = 0, 1, . . . , N − 1, using the regularity hypotheses and the boundedness of Ph , the Mean
Value Theorem, and the bounds (30) and (27), we obtain, for j = 0, 1, . . . , J − 1

|En+1
j+1 | = |Wn+1

j+1 − Pn+1
j+1 |

≤ h |Zn+1
j+1 − Sn+1

j+1 |

+
∣∣∣∣∣Wn

j exp

(
− h

2

[
μb

(
a j ,Qh(Π · γ μ · Wn), tn

)

+μb
(
a j+1,Qh(Π · γ μ · Wn+1,∗), tn+1) ]

)

−Pn
j exp

(
− h

2

[
μb

(
a j ,Qh(Π · γ μ · Pn), tn

)

+μb
(
a j+1,Qh(Π · γ μ · Pn+1,∗), tn+1) ]

)∣∣∣∣∣
≤ h |Zn+1

j+1 − Sn+1
j+1 |
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+|En
j | exp

(
− h

2

[
μb

(
a j ,Qh(Π · γ μ · Wn), tn

)

+μb
(
a j+1,Qh(Π · γ μ · Wn+1,∗), tn+1) ]

)

+|Pn
j |

∣∣∣∣∣ exp
(

− h

2

[
μb

(
a j ,Qh(Π · γ μ · Wn), tn

)

+μb
(
a j+1,Qh(Π · γ μ · Wn+1,∗), tn+1) ]

)

− exp

(
− h

2

[
μb

(
a j ,Qh(Π · γ μ · Pn), tn

)

+μb
(
a j+1,Qh(Π · γ μ · Pn+1,∗), tn+1) ]

) ∣∣∣∣∣
≤ h |Zn+1

j+1 − Sn+1
j+1 | + (1 + C h) |En

j |
+C

h

2

∣∣μb
(
a j ,Qh(Π · γ μ · Wn), tn

) − μb
(
a j ,Qh(Π · γ μ · Pn), tn

)∣∣
+C

h

2

∣∣μb
(
a j+1,Qh(Π · γ μ · Wn+1,∗), tn+1)

−μb
(
a j+1,Qh(Π · γ μ · Pn+1,∗), tn+1)∣∣

≤ h |Zn+1
j+1 − Sn+1

j+1 | + (1 + C h) |En
j |

+C h |Qh(Π · γ μ · En)| + C h |Qh(Π · γ μ · En+1,∗)|
≤ h |Zn+1

j+1 − Sn+1
j+1 | + (1 + C h) |En

j |
+3

2
C h ‖Π · γ μ‖∞,J+1

(‖En‖1 + |En+1,∗|1
)
.

Finally, by using inequality (52), we can write, for n = 1, 2, . . . , N , j = 1, 2, . . . , J ,

|En
j | ≤ (1 + C h) |En−1

j−1 | + C h ‖En−1‖1 + h |Zn
j − Snj |,

and, by a recursive reasoning, we conclude that: if 1 ≤ j < n ≤ N , then

|En
j | ≤ (1 + C h) j |En− j

0 | + C h
n−1∑

l=n− j

(1 + C h)n−1−l ‖El‖1

+h
n∑

l=n− j+1

(1 + C h)n−l |Zl
j−n+l − Slj−n+l |, (55)

but if 1 ≤ n ≤ j ≤ J , then

|En
j | ≤ (1 + C h)n |E0

j−n | + C h
n−1∑
l=0

(1 + C h)n−1−l‖El‖1

+h
n∑

l=1

(1 + C h)n−l |Zl
j−n+l − Slj−n+l |. (56)
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Now, we obtain the following bound of the discrete L1 norm of En , n = 1, 2, . . . , N , by a
recursive way. Note that it is necessary to distinguish the case n > J , which does not involve
any component of E0, from opposite case, which does. In the following, in order to unify
both situations, we will assume that the sum having an initial index strictly greater than the
final one does not describe any summand.

From (55), (56) and (54)

‖En‖1 =
J∑

j=0

h |En
j | = h |En

0 | +
min {n−1,J }∑

j=1

h |En
j | +

J∑
j=min {n−1,J }+1

h |En
j |

≤ h |En
0 |

+
min {n−1,J }∑

j=1

h (1 + C h) j |En− j
0 |

+
min {n−1,J }∑

j=1

h

⎧⎨
⎩C h

n−1∑
l=n− j

(1 + C h)n−1−l‖El‖1

+h
n∑

l=n− j+1

(1 + C h)n−l |Zl
j−n+l − Slj−n+l |

⎫⎬
⎭

+
J∑

j=min {n−1,J }+1

h (1 + C h)n |E0
j−n |

+
J∑

j=min {n−1,J }+1

h

{
C h

n−1∑
l=0

(1 + C h)n−1−l‖El‖1

+h
n∑

l=1

(1 + C h)n−l |Zl
j−n+l − Slj−n+l |

}

≤
min {n−1,J }∑

j=0

h (1 + C h) j
{
C ‖En− j‖1 + |Zn− j

0 − Sn− j
0 |

}

+
J∑

j=min {n−1,J }+1

h (1 + C h)n |E0
j−n |

+
min {n−1,J }∑

j=1

C h2

⎧⎨
⎩

n−1∑
l=n− j

(1 + C h)n−1−l‖El‖1
⎫⎬
⎭

+
J∑

j=min {n−1,J }+1

C h2
{
n−1∑
l=0

(1 + C h)n−1−l‖El‖1
}

+
min {n−1,J }∑

j=1

h2

⎧⎨
⎩

n∑
l=n− j+1

(1 + C h)n−l |Zl
j−n+l − Slj−n+l |

⎫⎬
⎭

+
J∑

j=min {n−1,J }+1

h2
{

n∑
l=1

(1 + C h)n−l |Zl
j−n+l − Slj−n+l |

}
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=
J∑

j=min {n−1,J }+1

h (1 + C h)n |E0
j−n |

+
min {n−1,J }∑

j=0

C h (1 + C h) j‖En− j‖1

+
n−1∑

l=max {n−J ,0}
C h2

⎧⎨
⎩

J∑
j=n−l

(1 + C h)n−1−l‖El‖1
⎫⎬
⎭

+
min {n−1,J }∑

j=0

h (1 + C h) j |Zn− j
0 − Sn− j

0 |

+
n∑

l=max {n−J ,0}+1

h2

⎧⎨
⎩

J∑
j=n+1−l

(1 + C h)n−l |Zl
j−n+l − Slj−n+l |

⎫⎬
⎭

≤
J−n∑

j=min {J−n+1,0}
C h |E0

j |

+
n∑

l=max {n−J ,1}
C h ‖El‖1 +

n−1∑
l=max {n−J ,0}

C h

⎧⎨
⎩

J−n+l+1∑
j=1

h ‖El‖1
⎫⎬
⎭

+
n∑

l=max {n−J ,1}
C h |Zl

0 − Sl0| +
n∑

l=max {n−J ,0}+1

C h

⎧⎨
⎩

J−n+l∑
j=1

h |Zl
j − Slj |

⎫⎬
⎭

≤
J∑

j=0

C h |E0
j | +

n∑
l=1

C h ‖El‖1 +
n−1∑
l=0

C h

⎧⎨
⎩

J∑
j=1

h ‖El‖1
⎫⎬
⎭

+
n∑

l=1

C h |Zl
0 − Sl0| +

n∑
l=1

C h

⎧⎨
⎩

J∑
j=1

h |Zl
j − Slj |

⎫⎬
⎭

≤ C
J∑

j=0

h |E0
j | + C h

n∑
l=1

‖El‖1 + C h (J h)

n−1∑
l=0

‖El‖1

+C (n h) max
l=1,...n

|Zl
0 − Sl0| + C h (J h)

n∑
l=1

‖Zl∗ − Sl∗‖∞,J .

As a conclusion, for n = 1, 2, . . . , N ,

‖En‖1 ≤ Ch
n∑

l=0

‖El‖1 + C ‖E0‖1 + ‖Z0 − S0‖∞,N + C
N∑
l=1

h ‖Zl∗ − Sl∗‖∞,J , (57)

and, for h sufficiently small, bymeans of the Gronwall discrete lemma in (57), and due to (53)
and the relation (25) between the two norms being used, for n = 0, 1, . . . , N , we arrive at

‖En‖1 ≤ C ‖E0‖1 + C ‖Z0 − S0‖∞,N + C
N∑
l=1

h ‖Zl∗ − Sl∗‖∞,J
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≤ C

{
‖Z0 − S0‖∞,J+1 + ‖Z0 − S0‖∞,N +

N∑
l=1

h ‖Zl∗ − Sl∗‖∞,J

}

= C ‖Zh − Sh‖Yh . (58)

Next, we establish a similar bound of the discrete L∞ norm of En , n = 0, 1, . . . , N . On
the one hand, at the left boundary grid point we employ (58) in (54) to also conclude that,
for n = 1, 2, . . . , N

|En
0 | ≤ C ‖En‖1 + |Zn

0 − Sn0 |
≤ C ‖Zh − Sh‖Yh + ‖Z0 − S0‖∞,N ≤ C ‖Zh − Sh‖Yh . (59)

On the other hand, we consider the inner grid points. If 1 ≤ j < n ≤ N , using (55), (59),
and (58), we arrive at

|En
j | ≤ C |En− j

0 | + C
n−1∑

l=n− j

h ‖El‖1 + C
n∑

l=n− j+1

h |Zl
j−n+l − Slj−n+l |

≤ C ‖Zh − Sh‖Yh + C (J h) ‖Zh − Sh‖Yh + C
N∑
l=1

h ‖Zl∗ − Sl∗‖∞,J .

Now, if 1 ≤ n ≤ j ≤ J , using (56), (53) and (58),

|En
j | ≤ C |E0

j−n | + C
n−1∑
l=0

h ‖El‖1 + C
n∑

l=1

h |Zl
j−n+l − Slj−n+l |

≤ C ‖Z0 − S0‖∞,J+1 + C (J h) ‖Zh − Sh‖Yh + C
N∑
l=1

h ‖Zl∗ − Sl∗‖∞,J .

In any case, for n = 1, 2, . . . , N , j = 1, 2, . . . , J , we can write

|En
j | ≤ C ‖Zh − Sh‖Yh , (60)

In conclusion, from (59) and (60), n = 0, 1, . . . , N , it yields

‖En‖∞,J+1 ≤ C ‖Zh − Sh‖Yh ,

that proofs the stability. ��

Finally, we compare the solution of the differential problem with its numerical approxi-
mation. To this end, we define the global discretization error as

eh = vh − Vh ∈ Xh,

and we say that the discretization is convergent if there exists h0 > 0 such that for each
h ∈ H , with h ≤ h0, the numerical method has a solution Vh , and

lim
h→0

‖eh‖Xh = 0.

To derive the existence and convergence of numerical solutions of (19)-(22) to the solution
of problem (12)-(14), we use the following result of the general discretization framework
introduced in [18]:
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Theorem 4 (J.C. López-Marcos & J.M. Sanz-Serna, 1985) Assume that the discretization
Φh is consistent and stable for vh restricted to the threshold Rh. If Φh is continuous in
BXh (vh, Rh) and ‖Φh(vh)‖Yh = o(Rh) as h → 0, then

1. for h sufficiently small, the discrete equations Φh(Vh) = 0 posses a unique solution in
BXh (vh, Rh),

2. as h → 0, the numerical solutions converge, and ‖eh‖Xh = O(‖Φh(vh)‖Yh ).

Then, from this result, the convergence of the numerical solution provided by (19)-(22) is
directly obtained bymeans of the consistency and stability results (Theorem2 andTheorem3,
respectively).

Theorem 5 (Convergence of v) Assume the regularity hypotheses (H1)-(H4) on the data
functions and the solution v(a, t), and the disposal of approximations to the intrinsic survival
probabilityπ0 that satisfy (H0). Considering that the numerical initial conditionV0 is chosen
such that, as h → 0

‖V0 − v0‖∞,J+1 = o(h), (61)

then, for h sufficiently small, there exists a unique solution Vh ∈ BXh (vh, R h) of equa-
tions (19)-(22) and, as h → 0,

‖Vh − vh‖Xh = O(‖V0 − v0‖∞,J+1 + h2). (62)

Remark 1 In particular, if V0 is the grid restriction v0 of the initial condition (14), then the
scheme (19)-(22) is second order accurate for approximating v.

Now, we present the convergence theorem of the approximations given by (19)-(24) to
the solution u(a, t) to problem (1)-(3).

Theorem 6 (Convergence of u) Assume the regularity hypotheses (H1)-(H4) on the data
functions and the solutions u(a, t) and v(a, t), and the disposal of approximations Π to the
intrinsic survival probability π0 that satisfy (H0). Considering that the initial condition u0

and its numerical approximation U0 are chosen such that, as h → 0
∥∥∥∥ h u0

Π · π0

∥∥∥∥∞,J+1
= o(1),

∥∥∥∥U
0 − u0

Π

∥∥∥∥∞,J+1
= o(h), (63)

then, for h sufficiently small, there exists a unique solution Uh ∈ Xh of equations (19)-(24)
and, as h → 0,

‖Uh − uh‖Xh = O
(∥∥∥∥U

0

Π
− u0

π0

∥∥∥∥∞,J+1
+ h2

)
, (64)

where the product and the quotient of vectors must be considered in a componentwise sense.

Proof Quotients in (63) are well defined due to (H0) and the fact that the only point in which
the intrinsic survival probability vanishes, the maximum age a†, is not a grid node.

Now, we check (61). From the definition of the initial conditions (23) and (14), we obtain
the following bound for j = 0, 1, . . . , J ,

|V 0
j − v0j | =

∣∣∣∣∣
U 0

j

Π j
− u0(a j )

π0(a j )

∣∣∣∣∣ ≤
∣∣∣∣∣
U 0

j − u0(a j )

Π j

∣∣∣∣∣ +
∣∣∣∣ u0(a j )

Π j π0(a j )

∣∣∣∣ |Π j − π0(a j )|.
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Thus, from hypothesis (H0) and (63), we conclude that, as h → 0,

‖V0 − v0‖∞,J+1 = o(h).

Then, on the one hand, Theorem 5 ensures the existence of a unique solution Vh ∈
BXh (vh, R h) of equations (19)-(22) and the behaviour of the error described in (62).

On the other hand, equations (24) and (11) allow us to arrive, for n = 1, 2, . . . , N ,
j = 0, 1, . . . , J , at

|Un
j − unj | = |Π j V

n
j − π0(a j ) vnj | ≤ |Π j | |V n

j − vnj | + |vnj | |Π j − π0(a j )|, (65)

which we combine with (62) and hypothesis (H0) to conclude (64). ��
Remark 2 The same analysis gives second order of convergence if we further demand con-
ditions on the initial data stronger than (63): for example, assuming that, as h → 0,∥∥∥∥ u0

Π · π0

∥∥∥∥∞,J+1
= O(1),

∥∥∥∥U
0 − u0

Π

∥∥∥∥∞,J+1
= O(h2). (66)

We would like to note that the first condition in (66) (and then, in (63)) imposes a specific
decay of the initial data of the problem near the maximum age, and it depends not only on the
size of the intrinsic survival probability (as in (16)), but also on the size of its approximation.
This restriction is easily to satisfy if we consider an initial condition u0 with compact support
inside [0, a†).

On the other hand, the second condition in (66) (and in (63)) establishes the degree of
accuracy of the numerical initial data to the theoretical one, with respect to the size of the
approximation to the intrinsic survival probability. This restriction is trivially achieved if, for
example, we start the numerical method with the grid restriction of the theoretical initial data
u0.

4 Numerical results

In this section we corroborate the convergence results, previously demonstrated, through rep-
resentative numerical simulations. To this end, we consider different test problems involving
someof the vital parameters that have alreadybeen introduced in [15]. First of all, it is assumed
that the vital functions depend on the density through the total size of the population

p(t) =
∫ a†

0
u(a, t) da, t ≥ 0,

that is, the weight functions in (6) and (9), are γμ(a) = γβ(a) = 1.
For simplicity, a constant fertility rate is chosen β(a, p, t) = β, and the bounded compo-

nent of the age-dependent mortality rate in (4) is considered to depend solely on population
size μb(a, p, t) = μb(p). In such a case, it is known that the exact solution to (1)-(3) has
the separable expression

u(a, t) = β p(t) π0(a) e−σ a, 0 ≤ a < a†, t ≥ 0, (67)

where π0 is the intrinsic survival probability (7), depending on the unbounded mortality rate
μ0 considered in (4). On the other hand, the value of the parameter σ in (67) satisfies the
nonlinear equation

β

∫ a†

0
π0(a) e−σ a da = 1. (68)
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Therefore, in order to obtain the expression of the solution to themodel, chosen amaximum
age a†, a natural mortality rate μ0 (and then, the corresponding intrinsic survival probability
π0), and a value of the constant fertility rate β, then the corresponding value of the parameter
σ is computed by solving (68). Note that if

β

∫ a†

0
π0(a) da > 1,

then there exists a unique σ > 0 that satisfies (68).
In the numerical experiments, the bounded mortality rate is contemplated as in [15]:

μb(p) = p. In such a case, the total population is

p(t) = σ p0
p0 + (σ − p0) e−σ t

, t ≥ 0, (69)

where p0 represents the initial total population. Therefore, a preset value of the total popu-
lation p0, provides the total size population at each time level from (69) to arrive, finally, to
u(a, t) in (67), the exact solution to (1)-(3) with initial value

u0(a) = β p0 π0(a) e−σ a, 0 ≤ a < a†. (70)

In order to check the validity of the convergence Theorem 6, it is necessary to assume
that the hypotheses about the initial data are fulfilled. But, it is not clear how the initial
condition (70) satisfies the first hypothesis in (63). However, for σ > 0, if we consider a
sufficiently large maximum age, the function u0(a)/π0(a), and its derivatives up to a certain
order, take very small values just before a†. Therefore, if we truncate u0, nullifying it near
the maximum age (that is, we construct a function with compact support strictly contained
inside [0, a†)), then we obtain an initial condition that trivially verifies such hypothesis and,
moreover, it can be accepted as a sufficiently smooth function, at least numerically up to
a certain degree of precision in its computational representation. Even more, the choice of
the grid restriction of this compact support function, as initial data of the numerical method,
would avoid the possible difficulties that the calculation of the quotient (23) entails. With
this in mind, for the numerical experiments to be presented here we have found that it is
appropriate to assume a† = 10.

With respect to the natural mortality rate, and the relevance of using adequate approx-
imations to it fulfilling (H0), the following representative case, that is paradigmatic in the
numerical solution of finite life-span age-structured population models (see [13, 15], for
example), has been chosen:

μ0(a) = λ

(a† − a)α
, 0 ≤ a < a†, (71)

with λ > 0 and α ≥ 1. For this function, the explicit expression of the intrinsic survival
probability is easily obtained

π0(a) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

exp

{
− λ

α − 1

(
1

(a† − a)α−1 − 1

aα−1
†

)}
, if α > 1,

(
1 − a

a†

)λ

, if α = 1,

0 ≤ a < a†. (72)

Finally, in the experiments,we set the constant fertility rateβ = 4 and the initial population
p0 = 1.
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Fig. 1 Numerical errors involved in the simulation along the time interval [0, 1], for the natural mortality rate

μ0(a) = 1

(a† − a)3
. Line plotted in the lower right-hand corner represents slope 2

We have carried out simulations with the numerical scheme introduced in Section 2 over
the time interval [0, 1]. Since the exact solution is known, we are able to show quantitatively
the efficiency of the method.

Note that the natural mortality rate (71) does not incorporate an age a∗ specifying a
particular behaviour near the maximum age, therefore, given a positive integer J , we define
the step size as h = a†/(J + 1).

In order to achieve approximations to the intrinsic survival probability π0, associated to
the mortality function (71), of which we know exactly how accurate they are, we consider
the numerical method introduced in [1], that approximates the integral in (7) by means of the
composite trapezoidal quadrature rule over an age grid.

For a valueh > 0of the step size,wedenote the size of the global error in the approximation
to the intrinsic survival probability as eπ,h = ‖Π − π0‖∞,J+1 (remember that vector π0

collects the exact values of the intrinsic survival probability over the age grid, and Π their
numerical approximations); the size of the global error in the approximation to the density
function as eu,h = maxn=0,...,N ‖Un −un‖∞,J+1 (now, at each time level n, n = 0, 1, . . . N ,
un contains the grid values of the exact solution (67) with σ satisfying (68) and p defined
by (69), andUn the numerical counterparts computedwith the previously discussed numerical
procedure (19)-(24)); and the size of the global error of the solution after the change of variable
as ev,h = maxn=0,...,N ‖Vn − vn‖∞,J+1.

We start the experimentation with the natural mortality rate (71) for α > 1. In this case,
it is known that the numerical approximations to the survival probability offered by the
numerical method in [1] are of second order for λ > 0. Here we present the results obtained
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Fig. 2 Numerical errors involved in the simulation along the time interval [0, 1], for the natural mortality rate

μ0(a) = 2

a† − a
. Line plotted in the lower right-hand corner represents slope 2

with λ = 1 and α = 3: the numerical solution of the nonlinear equation (68) provides the
value σ = 3.99891639334478.

Figure 1 shows, in logarithmic scale, the different errors involved in the simulation for the
values of the step size h = 10/1250, 10/2500, 10/5000, 10/10000, 10/20000, 10/40000,
10/80000 (in the rest of the efficiency comparisons, the same values of the step size h
are always considered). Dashed line corresponds to the errors eπ,h , dash-dotted line to the
errors ev,h , and dotted line to eu,h (this same way of representing the errors is used in the
following graphs). Notice that these last two errors coincide in the simulation, and that this
figure shows the expected second order of convergence in the all the different processes (as
it is confirmed by the solid line plotted in the lower right-hand corner which represents the
quadratic behaviour).

The next case corresponds to the natural mortality function (71) for α = 1. Now, it is
known that the numerical method in [1] provides approximations of second order when
λ ≥ 2. However, the order of convergence does deteriorate when 0 < λ < 2: in such a
case, simulations show that the effective order of convergence is only λ. Just these same
conclusions are obtained for the numerical technique proposed in [13] for this mortality rate.
Then, numerical experiments would address the role of precision in estimating the values
of (72) on the general process of approximating the population density function, by taken
different values of λ.

Firstly, we take λ = 2 for which second-order approximations to the survival probability
are guaranteed. Now, according to (68), the value of the parameter in the exact solution is
σ = 3.79473725889754. The results are in Figure 2, and the conclusion is just the same as in
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Fig. 3 Numerical errors involved in the simulation along the time interval [0, 1], for the natural mortality rate

μ0(a) = 1

a† − a
. Lines plotted in the lower right-hand corner represents, from top to bottom, slopes 2 and 1,

respectively

the previous experiment: second order in all the numerical approximations, and coincidence
of the error in the approach of the density solutions, before and after the change of variable.

Now we will address the question of how the loss of accuracy in the estimation of the
survival probability can affect the overall approximation process. For example, this case can
be represented by λ = 1, where now σ = 3.89736659610103. The results are depicted in
Figure 3. It is known that the numerical approximation to (72), offered by [1], is only first
order as h decreases: this is corroborated by the linear slope that shows this error (dashed
line). On the other hand, the approximation to the solution of the modified problem after the
change of variable is, nonetheless, second order (dash-dotted line), which seems consistent
with the thesis of Theorem 5 (convergence of v), due to the choice of the truncated initial
data. However, despite the poor approximation in π0, the error in the density function of the
original problem is, still, second order (dotted line). Note that, this behaviour observed does
not agree with that presented for the linear case in [2], although for a different test problem:
there, eπ,h and eu,h showed only first order although ev,h exhibited second order.

Moreover, we have observed this same behaviour for other values of 0 < λ < 2, that cause
a deterioration in the order of approximation to the survival probability. However, it does not
seem to affect the effective order of the general approximation process to the density function.
For example, similar observations can bemadewhenλ = 0.5 (nowσ = 3.94868278711609):
Figure 4 shows that the order of convergence in the approximation of π0 is 0.5, but the order
of convergence in the approximation of u (and v) is still 2.
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Fig. 4 Numerical errors involved in the simulation along the time interval [0, 1], for the natural mortality rate

μ0(a) = 0.5

a† − a
. Lines plotted in the lower right-hand corner represents, from top to bottom, slopes 2 and

0.5, respectively

This discrepancy in the order of convergence shown in the global process with respect to
the linear case, suggests that this situation is only justified by the nature of the simulation
carried out here. So we have tried to understand this unexpected behaviour by Figure 5,
that represents the different terms in inequality (65) for λ = 0.5, at the final time T = 1.
The left column of pictures describes the age distribution of the errors, for the step sizes
h = 10/1250 (dotted line) and h = 10/12500 (dash-dotted line): in the density solution u
to the original problem (just, the left-hand side of (65)); in the solution v to the modified
problem; and in the intrinsic part of the survival probability π0 (these last two on the right-
hand side of (65)), respectively. The right column of pictures presents: the age-distribution
of the computed approximation to the survival probability Π; and function v (again, both
two on the right-hand side of (65)), respectively.

First of all, note that the age distributions of the error in u and in v are quite similar (first
and second pictures on the left): in both cases, the maximum error is reached in births, and the
distance between the errors obtained with the two considered values of h, certifies the second
order of these approximations. Therefore, on the one hand, the error in v multiplied by the
bounded size of the approximation Π to the survival probability (second row of pictures in
Figure 5) gives second order terms in the estimate of the error in u given by (65). In addition,
note that for newborns, the value of computed survival probability is equal to 1.

On the other hand, the last term on the right-hand size of (65), represents the age-
distribution of the error in the approximation to π0, multiplied by the bounded size of the

123



2 Page 26 of 29 Journal of Scientific Computing (2025) 105 :2

Fig. 5 Results obtained in the simulation at the final time T = 1, for the naturalmortality rateμ0(a) = 0.5

a† − a
.

Left: age distribution of the errors in u, v and π0, respectively. Right: age distribution of the approximation
Π and the exact function v, respectively
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solution v. The convergence order in the approximation of the survival probability is known
to deteriorate near the maximum age, which is where its maximum value is reached but, at
the end of the age interval, the solution to the problem obtained after the change of variable
is practically zero (see the third row of pictures in Figure 5). As a consequence, the product
vanishes near a†, where the orden could be affected, keeping the second order of convergence
certified at the beginning of the interval.

5 Conclusions

Mathematical models that describe population dynamics usually employ physiological age to
structure the individuals in the population. In this context, age-structured population models
with a finite life-span present a strong biological meaning. In addition, nonlinear models
increase this significance because they consider the influence of the environment on the
population through the dependence of the vital rates on functionals of the population density.
However, the more realistic a model is, the more difficult it is to study. Thus, an analytical
expression of the solution is not attainable in general nonlinear age-structured population
problems, and the use of numerical techniques is an affordable manner to address the solution
to these models.

In this paper, we have introduced a new procedure for the numerical approximation to the
solution to (1)-(3). Convergence proofs of such approaches should circumvent the difficulties
caused by the singularity of the mortality rate near the finite maximum age. By separating
the numerical approximation of the intrinsic survival probability from the approximation to
the age-dependent density, we can establish convergence of the numerical solution without
an explicit dependence on the asymptotic growth behaviour of the natural mortality rate as
in previous works. For this purpose, we reformulate the model problem (1)-(3) in terms of
the age-dependent density function for the population rescaled with the intrinsic survival
probability. This new variable is solution of an age-structured population model in which
the effects of the singular natural mortality rate are limited through its influence on the
intrinsic survival probability. By full discretization of this new problem (12)-(14), using
given appropriate approximations to the intrinsic survival probability, we get a completely
explicit scheme that arrives at the numerical solution to (1)-(3), after a preprocessing to obtain
the new initial condition on the age grid and a postprocessing of the results achieved in the
time evolution. Furthermore, we should point out that the numerical scheme is ready to use
with given approximations to the intrinsic survival probability instead to a known expression
of the natural mortality rate function.

This new numerical method has been completely analyzed under convenient regularity
hypotheses on the data functions involved. For this purpose, we have studied its consistency
and nonlinear stability properties to address its convergence in the following way. First, we
have studied the convergence of the time evolution approximation of the solution to (12)-(14)
(to this end, we have employed the discretization framework given in [18]) and next, we have
extended this convergence result to the approach given to the solution to (1)-(3).

We have also provided a complete and representative numerical experimentation that
corroborates the convergence results. We have observed that, even though the order of the
approximation to the survival probability deteriorates, we recover the second-order of conver-
gence to the age-dependent density function for the population u(a, t), due to the fact that the
approximations to the age-dependent density function scaled with the survival probability,
v(a, t), are decreasing to zero when the age approaches to the maximum age.
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