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Abstract

In the pursuit of competitiveness, human capital remains a critical asset for companies. While automation offers unparal-
leled production efficiency and error reduction, often surpassing the capabilities of even the most skilled personnel, several
factors -such as high initial investment costs, the diversity of products, and other operational complexities- ensure that
production systems continue to rely heavily on human involvement as a key resource. This work focuses on assembly
workstations, which are integral to a wide range of industries. At these stations, operators perform tasks such as selecting
components, assembling parts, verifying outputs, labelling and packaging. The concept of “pick-to-assemble” is widely
discussed in the literature, often accompanied by the use of selection support systems like “’pick-to-light” technology,
which assist operators in their tasks. Designing efficient workstations involves considering various factors, including Lean
manufacturing principles and ergonomic design. In our study, we prioritized optimizing an assembly line designed to
handle multiple product variations. The assistance systems were tailored to adapt to the operator’s level of expertise and
experience. By integrating Industry 4.0 concepts, we implemented real-time performance monitoring, enabling the system
to dynamically support workers, even when new product references are introduced to the assembly line.
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1 Introduction

In the industrial sector of developed economies, automa-
tion is increasingly penetrating diverse production envi-
ronments. Nevertheless, human intervention continues to
deliver significant added value. Human error, whether in
managing or executing work procedures, remains a topic of
considerable economic importance. Even the press [1] often

Elena Merino-Gomez and Francisco J. Santos contributed equally to
this work.

< Manuel San-Juan
mansan@uva.es

Elena Merino-Gémez
elena.merino.gomez@uva.es

Francisco J. Santos

francisco.santos@uva.es

' Department of CMeIM-EGI-ICGM-IM-IPF, University of
Valladolid, Escuela de Ingenierias Industriales, Paseo del
Cauce, 59, 47011 Valladolid, Spain

Published online: 29 October 2025

highlights these errors, sometimes overlooking the critical
role human capital still plays. The ability to learn and adapt
-especially in seemingly repetitive operations- continues to
be a highly valuable asset.

The concept of learning curves has traditionally been
employed to analyse a worker’s performance over time.
These models rely on prior knowledge of the tasks and the
individuals performing them. However, in the era of Indus-
try 4.0 and the Internet of Things (IoT), traditional models
have lost some of their appeal to industries that now seek
dynamic interaction with workers’ activities [2, 3].This evo-
lution marks the advent of the Internet of People (1oP) not
merely as a marketing concept but as a framework for obtain-
ing near-instantaneous insights into a worker’s activities. In
this context, it may be more fitting to refer to an ”Internet
of Workers” (IoW). The IoW presents new opportunities for
applying learning curves to optimize productivity in modern
industry, particularly in repetitive and automated processes.
These advanced models enable accurate predictions of how
operators improve with practice, reducing the time required
per task, cutting costs, and enhancing workflow efficiency.
Moreover, tracking learning curves facilitates qualitative
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evaluations of operator performance, allowing for the design
of roles that reward and leverage individual efficiency [4].

This study focuses on assembly workstations, which are
widely utilized across various industries. At these stations,
operators perform tasks such as selecting components,
assembling parts, verifying outputs, labeling and packag-
ing. The concept of pick-to-assemble” is well-documented
in the literature, often involving the use of selection support
systems like ”pick-to-light” technology [4, 5].

When designing assembly workstations, several factors
must be considered [4, 6], including Lean manufacturing
practices [7] and the ergonomic design of the workstation. In
this study, we concentrated on optimizing an assembly line
designed for producing multiple product variations. The assis-
tance systems were tailored to adapt to the operator’s level
of expertise and experience. Rather than relying on a static
system, our approach incorporates Industry 4.0 concepts,
enabling real-time monitoring of workers’ performance. This
dynamic adaptability ensures effective operations even when
new product references are introduced into the assembly line.

In short, the proposed design allows necessary training
to be carried out directly at the workstation (production),
whether for the onboarding of new operators or for the
assembly of new products (learning), without the need to
duplicate facilities. To avoid a loss of production pace and
reduced output, the aim is to progressively adjust the level
of assistance provided to the trainee, using real-time data
personalized for each individual.

2 Experimental learning curve models

The learning curve (LC) model is a method used to describe
an organization’s learning capability as it accumulates expe-
rience [8]. The concept of the learning curve model has been
widely applied in industry since the late 1930s. The first
study on learning curves was conducted by Wright [9] in
1936, within the aircraft industry. His model, known as the
log-linear learning curve model, is expressed in Eq. 1.

The key premise of learning curves is that each time
the production quantity doubles, the resources required to
produce the product decrease by a fixed percentage of the
previous resource requirements [10]. The Wright learning
curve is defined as follows [9]:

Y,=A-X"° (1)

where:
Y : the time to produce the X-th unit;
X : the cumulative unit number;
A : the time required to produce the first unit;
b : the learning index.
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Wright also observed that production time decreases at
a consistent rate as the production quantity doubles. This
rate, known as the learning rate, quantifies the reduction in
resources required to produce output when the quantity dou-
bles [10]. The learning rate can be calculated using Eq. 2.

¢=27" 2)

where:

¢: the learning rate.

There are several LC models proposed in the literature
[11]; most notably (i) power models, such as Wright’s, Pla-
teau, Stanford-B’s, DeJong’s and the S-curve, (ii) hyper-
bolic models, and (iii) exponential models. Among these,
Wright’s model is the most widely recognized, primarily
due to its simplicity and effectiveness in describing empiri-
cal data. Learning curve analysis is particularly valuable in
scenarios that offer opportunities for improvement or reduc-
tions in labour time per unit.

As noted by [10], traditional models often require a pri-
ori knowledge. When examining the mathematical formu-
lation of conventional parametric learning curve theories,
it becomes evident that certain assumptions must be made
beforehand. Learning curves can be applied also to individ-
ual processes performed by the operator, in our case study:
picking componentes, assemble and packaging. The impact
of learning on overall process capacity is reflected in the
cycle time, which represents the total time required to com-
plete all operations related to the final product [8]. It is also
worthwhile to explore how the learning process progresses
across different operations. Additionally, it is important to
consider that learning curve models may vary for different
product variants.

In conclusion, empirical investigations based on real-life
data are rarely addressed in practical-level theory devel-
opment. Several reasons may explain this, as outlined by
Loske [12]: (a) logistics companies produce real live data
through their daily business operations, but are not willing
to share it with scholars, (b) scholars cannot use the real
live data possibly provided by companies, (c) real-life cases
often lack the a priori knowledge required to apply existing
traditional learning curve models and (d) the volume and
complexity of the a priori knowledge needed to apply con-
ventional learning curve models to real-world scenarios are
prohibitively challenging.

Nevertheless, the learning curve itself cannot be regarded
as an objective at the industrial level. Instead, it serves as a
tool to improve the scheduling of production processes or,
as we will discuss below, to dynamically assess the maturity
of a process. The ultimate goal is to achieve optimal produc-
tion capacity as quickly as possible. Moussavi [13] proposes
an approach for ergonomic job assignment by determining



The International Journal of Advanced Manufacturing Technology

the ergonomic adequacy level between workers and work-
stations in a manufacturing system. The analysis should
focus not so much on the workstation itself, but rather on
the characteristics of the worker. The same study highlights
four particularly significant factors: 1. Height, 2. Age, 3.
Skill level, and 4. Experience level.

Therefore, with a global data approach, we would be
missing out on most of the analytical potential. Thus, to ana-
lyze what happens at a workstation where different work-
ers (W) perform their tasks and various products or product
families (F) are assembled, the use of a disaggregated learn-
ing curve is proposed, so that:

Yow.r = Aw.r - Xop p* 3)
where:

Y, w F: the time to produce the X-th unit of product F
by worker W;

Xw,r: : the cumulative unit number of product F pro-
duced by worker W;

Aw p: : the time required to produce the first unit of
product F by worker W;

bw, r: : the learning index of workwer W for product F.

We have already seen how Moussavi [13] placed the bio-
metric factor as a top priority. When designing a worksta-
tion, the term “ergonomic” is almost automatically included,
although the development can be more advanced-ranging
from the use of digital twins [14] to simply following the
company’s own ergonomic guidelines. Once the installation
is in place, ergonomic problems may become evident, at
worst, through worker injury, but they almost certainly lead
to a loss in performance [12, 15]. The inclusion of a gender
perspective in ergonomic diagnostics is a growing practice,
as seen in the work of O’Sullivan [15].

Therefore, by deepening the diagnosis of a production
system, we can personalize the analysis by increasing the
level of disaggregation, including: global or individual pro-
cesses performed, mode of assistance and also the gender
perspective.

Fig. 1 Workstation prototype unit. Ergonomic design

3 Workstation prototype

In our case, we developed a prototype assembly worksta-
tion integrated with a pick-to-light warehouse, a system that
guides the operator in selecting the components for the next
order. The workstation (Fig. 1) is designed as a “’pick-to-
assemble” unit where the operator’s learning process can
occur, whether the worker is new to the job or needs to
adapt to changes introduced by new variables in the product
range. The system’s assistance is tailored to the worker’s
proficiency level, defined by four operational stages: learn-
ing plus, learning, standard or expert (from the highest level
of assistance to the lowest).

In our prototype unit, the assembly of industrial wheels
was selected as a case study, though this choice is not criti-
cal to the research methodology. The variety of product
configurations is determined by factors such as the charac-
teristics of the supports, the material of the rolling surface,
and the overall design, which dictate load capacity and suit-
ability for specific work environments. This setup allows
for the assembly of 24 distinct product variants within the
unit. The operator works on a demand-driven basis, assem-
bling products individually rather than in batches. In the
initial implementation, a barcode-based ordering system is
employed. The operator scans the barcode, which triggers
the corresponding assembly process in the workstation.

The prototype is managed using Arduino and Raspberry
as the core hardware components. These devices are pro-
grammed to collect and process real-time data, enabling
precise time tracking. The design of the warehouse and
work area incorporates fundamental ergonomic principles
and warehouse management strategies, employing a Kan-
ban-style flow for replenishing parts from the back.

Traceability is a key feature of the system, as it records
various details, including: the worker assigned to the unit,
the type of product being assembled, any unplanned pro-
duction interruptions, the time the order was received (via
barcode scanning), and the moment the last component for
the assembled reference is collected. The prototype includes
a warchouse capable of holding up to 16 components.

@ Springer
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Operators select components for each product variant with
the assistance of a pick-to-light system. To ensure ergo-
nomic efficiency, the warehouse is arranged with three
height levels across six columns. This configuration also
includes a dedicated column for quality defect management
and another equipped with a monitor to assist operators or
facilitate communication. Products are identified using a
barcode reader, but the system also supports RFID-based
identification through integrated tags in the container trays.

4 Learning curves and results

The system’s functionality was validated by having multiple
workers assemble different references based on a randomly
generated demand. The total number of references was
grouped into product families, considering factors such as
the number of components and the similarity of the assem-
bly procedures (e.g. we use F4 to identify the product family
with 4 components). The assistance provided to the worker is
controlled through a display showing a short video for each
task or through the pick-to-light system, which can oper-
ate in either sequential or global mode. In sequential mode,
each component must be selected in the prescribed order,
while in global mode, the operator can choose components

in any order that best suits their workflow. Figure 2 provides
an overview of the four assistance modes.

Real-time data is collected, which will be used to esti-
mate experimental learning curves. Data processing is done
separately for each worker and each product family, as illus-
trated in Fig. 3, initiating the first level of disaggregation for
diagnostics. This approach opens the possibility for tailor-
ing the assistance based on individual worker performance.
The individualisation of data collection also allows us to
immediately address the gender perspective throughout the
analysis.

We measured production time per unit and cumulative
production volume using data from the production process
to construct disaggregated learning curve models. The anal-
ysis was initially performed on a worker-by-worker basis.
The model was updated with data from each completed
product, so that by the end of two work shifts, a learning
curve model of Y = 108.73X ~0-1%6 was obtained, which
corresponds to a Learning Rate of 89.75 % (Fig. 4 for
worker W1968, by the time 48 pieces have been produced).
That is why we use the term disaggregated learning curve,
to distinguish it from the typical learning curves used for a
workstation.

As shown in Fig. 4, we present the production times for
each unit, along with the time spent on picking (represented

Fig. 2 Modes of worker assistance: learning plus,
learning, standard or expert (from the highest level of
assistance to the lowest)

Picking Assemble Packaging

MODE

Learning
video

Summary
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Take one by
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Take as you
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Fig. 3 Data processing for the estimation of experimental .
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.
Data Prod}uct Learning curve
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Fig.4 General behaviour of the workstation. Produc-
tion time per unit (s) and experimental learning
curves, W1968 & X=48

Production time per unit (s)

by the blue line) and assembly (represented by the orange
line). From this, we can observe the stability of these opera-
tions and estimate a learning curve for overall production.
Additionally, we could derive separate learning curves for
picking and assembly processes. The learning curve for
picking develops more quickly, as the process is intuitive
and the times are easily predictable. In contrast, the assem-
bly phase exhibits greater variability, due to the inherent
complexity of the task and the need to handle parts contain-
ers. Although a Kanban system with three circulating con-
tainers is in place, when the current container is emptied, the
operator must place it on the replenishment line. The learn-
ing curve is continuously updated with production times at
each step, providing data that can be used to apply machine
learning systems for the automatic selection of the optimal
assistance mode for each operator and product family.

But the power of the diagnostic method improves when
we begin to compare data across different disaggregated
parameters. Figure 5 shows a snapshot of how production

Fig. 5 Experimental disaggregated learning curves
for workers W1999 and W1968, for product families
F4 and F5, in standard assistance mode

| standard

Production time per unit (s)

Cumulative production volume (unit)

Standard

w1999

Production time per unit (s)

Cumulative production volume (unit)

Learning Curves

Standard

y=108,73x°%156

Units: (48 )

Cumulative production volume (unit)

is being carried out. Working in the standard assistance
mode, we visualize the curves for two workers, W1968 and
W1999. At the top, we see the evaluation when they are
working with product family F4, while at the bottom, we
have product family F5.

Having disaggregated data allows us to understand to
what extent a particular worker adapts to the different opera-
tions or processes of specific products. In particular, Fig.
5 shows how the picking operation is very intuitive, and
improvement over time is barely significant. Occasionally,
increases in time occur due to the need for control opera-
tions or the use of poka-yokes. The reduction in times due
to learning is more significant for product family F5, regard-
less of the operator.

When introducing the gender perspective into the disag-
gregation, it was observed that picking times for the group
of women were slightly higher than for men. It was identi-
fied that this was not due to a shortcoming of the control
group used but rather the poor ergonomic adaptation of the

Standard ‘

140 W1968

y =90,424x 0128

y =80,725x

Production time per unit (s)

Cumulative production volume (unit)

l Standard

\ Wl'ﬁbél

y = 109,23 0204

y=94,772x

Production time per unit (s)

Cumulative production volume (unit)
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workstation. For assembly, this problem was not significant.
It is likely that the same ergonomic adaptation problem
occurs among men of different sizes, but with the disaggre-
gation parameters used, no conclusion could be drawn.

A new factor identified was the possible onset of tired-
ness, more significant in some workers, which would
increase production times, offsetting improvements gained
through increased skill.

Figure 6 shows an estimation of the learning curves based
on the selected assistance mode in the system. The ”’learning
plus” mode significantly increases production times, so its
usage should be minimized. This mode could be used for the
first few units (e.g., 1 or 2) that an operator assembles or in
cases where the worker’s work has been interrupted (such
as after long breaks or shifts spanning several days). The
”learning” mode is more effective in reducing variability in
production times and is particularly useful when adapting
to new product references. In contrast, the “expert” mode
offers greater flexibility to the worker, though it may also
increase the risk of errors in component selection.

Fig. 6 Experimental learning curves for each of the
four modes of assistance, W1968 & F5

Finally, an estimate of the effects of the assistance modes
on production is shown. Figure 7 illustrates how the choice
of assistance mode impacts production capacity. The learn-
ing curves provide personalized insights into production
capacity for each worker and product family (in this case,
worker W1968 and product family F5). This enables us
to identify the most suitable worker for each product type
and assess specific training needs [12] In a more intuitive
way, the production output is presented as a percentage,
with expert mode as the reference for maximum capacity.
The integration of IoT technology, in a non-intrusive way,
brings us closer to what could be considered the ”Internet of
Workers” (I1oW). This approach opens up the possibility of
dynamically adjusting assistance modes, while ensuring full
traceability of the entire process.

These results serve to highlight some of the success sto-
ries of the analysis methodology, given that the data obtained
on worker behaviour -the subject of social sciences- pres-
ents a diversity inherent both to the study population and to
external factors.

W1968
h
.‘é‘
3
3 =
° y =136,96x 0244 Learning +
£
54 ] Learning \
-
3 Standard
a »
y =105,04x%27 Expert
Cumulative production volume (unit) l
Fig. 7 Production capacity for each of the four
modes of assistance. - 100%
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80%
50 70%
60%
40
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30 40%
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20%
10
10%
0 0%
Learning + Learning Standard Expert
m Production (pieces/hour) 40 51 65 72
® Production (%) 56% 71% 90% 100%
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5 Conclusions

Instead of relying on a passive system, the application of
Industry 4.0 concepts allows for real-time monitoring of
worker performance, even when new product references are
introduced to the pick-to-assemble line. The following points
can be considered as the main conclusions of this work:

e Progress has been made in the concept of the Internet
of Workers (IoW) by identifying signals that provide in-
sight into worker performance with minimal intrusion.
The availability of such systems enables more advanced
analysis compared to traditional passive picking systems.

e Real-time learning curves (LC) have been successfully
generated, addressing the limitations of theoretical curves.

e Data discrimination allows for a deeper understanding of
individual worker and product family behavior.The dis-
aggregation of experimental data to obtain disaggregated
learning curves opens new possibilities in diagnostics.

e The system allows us to collect sex-disaggregated data
and gender-sensitive job information as a first step in
gender-sensitive strategic planning. The application to
ergonomic adaptation problems can be immediate.

e The application of machine learning techniques opens
up new possibilities for production optimization.

Looking ahead, this study establishes the groundwork for
comprehensive observational methodologies that will be
progressively enriched with additional parameters -such as
age and potential disabilities- thereby expanding their scope
and enhancing generalizability. Subsequent investigations
will increase the sample size and involve industry partners
to broaden and diversify the cohort under observation.
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