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highlights these errors, sometimes overlooking the critical 
role human capital still plays. The ability to learn and adapt 
-especially in seemingly repetitive operations- continues to 
be a highly valuable asset.

The concept of learning curves has traditionally been 
employed to analyse a worker’s performance over time. 
These models rely on prior knowledge of the tasks and the 
individuals performing them. However, in the era of Indus-
try 4.0 and the Internet of Things (IoT), traditional models 
have lost some of their appeal to industries that now seek 
dynamic interaction with workers’ activities [2, 3].This evo-
lution marks the advent of the Internet of People (IoP) not 
merely as a marketing concept but as a framework for obtain-
ing near-instantaneous insights into a worker’s activities. In 
this context, it may be more fitting to refer to an ”Internet 
of Workers” (IoW). The IoW presents new opportunities for 
applying learning curves to optimize productivity in modern 
industry, particularly in repetitive and automated processes. 
These advanced models enable accurate predictions of how 
operators improve with practice, reducing the time required 
per task, cutting costs, and enhancing workflow efficiency. 
Moreover, tracking learning curves facilitates qualitative 

1  Introduction

In the industrial sector of developed economies, automa-
tion is increasingly penetrating diverse production envi-
ronments. Nevertheless, human intervention continues to 
deliver significant added value. Human error, whether in 
managing or executing work procedures, remains a topic of 
considerable economic importance. Even the press [1] often 
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evaluations of operator performance, allowing for the design 
of roles that reward and leverage individual efficiency [4].

This study focuses on assembly workstations, which are 
widely utilized across various industries. At these stations, 
operators perform tasks such as selecting components, 
assembling parts, verifying outputs, labeling and packag-
ing. The concept of ”pick-to-assemble” is well-documented 
in the literature, often involving the use of selection support 
systems like ”pick-to-light” technology [4, 5].

When designing assembly workstations, several factors 
must be considered [4, 6], including Lean manufacturing 
practices [7] and the ergonomic design of the workstation. In 
this study, we concentrated on optimizing an assembly line 
designed for producing multiple product variations. The assis-
tance systems were tailored to adapt to the operator’s level 
of expertise and experience. Rather than relying on a static 
system, our approach incorporates Industry 4.0 concepts, 
enabling real-time monitoring of workers’ performance. This 
dynamic adaptability ensures effective operations even when 
new product references are introduced into the assembly line.

In short, the proposed design allows necessary training 
to be carried out directly at the workstation (production), 
whether for the onboarding of new operators or for the 
assembly of new products (learning), without the need to 
duplicate facilities. To avoid a loss of production pace and 
reduced output, the aim is to progressively adjust the level 
of assistance provided to the trainee, using real-time data 
personalized for each individual.

2  Experimental learning curve models

The learning curve (LC) model is a method used to describe 
an organization’s learning capability as it accumulates expe-
rience [8]. The concept of the learning curve model has been 
widely applied in industry since the late 1930s. The first 
study on learning curves was conducted by Wright [9] in 
1936, within the aircraft industry. His model, known as the 
log-linear learning curve model, is expressed in Eq. 1.

The key premise of learning curves is that each time 
the production quantity doubles, the resources required to 
produce the product decrease by a fixed percentage of the 
previous resource requirements [10]. The Wright learning 
curve is defined as follows [9]:

Yx = A · X−b� (1)

where:
Y : the time to produce the X-th unit;
X : the cumulative unit number;
A : the time required to produce the first unit;
b : the learning index.

Wright also observed that production time decreases at 
a consistent rate as the production quantity doubles. This 
rate, known as the learning rate, quantifies the reduction in 
resources required to produce output when the quantity dou-
bles [10]. The learning rate can be calculated using Eq. 2.

ϕ = 2−b� (2)

where:
ϕ: the learning rate.
There are several LC models proposed in the literature 

[11]; most notably (i) power models, such as Wright’s, Pla-
teau, Stanford-B’s, DeJong’s and the S-curve, (ii) hyper-
bolic models, and (iii) exponential models. Among these, 
Wright’s model is the most widely recognized, primarily 
due to its simplicity and effectiveness in describing empiri-
cal data. Learning curve analysis is particularly valuable in 
scenarios that offer opportunities for improvement or reduc-
tions in labour time per unit.

As noted by [10], traditional models often require a pri-
ori knowledge. When examining the mathematical formu-
lation of conventional parametric learning curve theories, 
it becomes evident that certain assumptions must be made 
beforehand. Learning curves can be applied also to individ-
ual processes performed by the operator, in our case study: 
picking componentes, assemble and packaging. The impact 
of learning on overall process capacity is reflected in the 
cycle time, which represents the total time required to com-
plete all operations related to the final product [8]. It is also 
worthwhile to explore how the learning process progresses 
across different operations. Additionally, it is important to 
consider that learning curve models may vary for different 
product variants.

In conclusion, empirical investigations based on real-life 
data are rarely addressed in practical-level theory devel-
opment. Several reasons may explain this, as outlined by 
Loske [12]: (a) logistics companies produce real live data 
through their daily business operations, but are not willing 
to share it with scholars, (b) scholars cannot use the real 
live data possibly provided by companies, (c) real-life cases 
often lack the a priori knowledge required to apply existing 
traditional learning curve models and (d) the volume and 
complexity of the a priori knowledge needed to apply con-
ventional learning curve models to real-world scenarios are 
prohibitively challenging.

Nevertheless, the learning curve itself cannot be regarded 
as an objective at the industrial level. Instead, it serves as a 
tool to improve the scheduling of production processes or, 
as we will discuss below, to dynamically assess the maturity 
of a process. The ultimate goal is to achieve optimal produc-
tion capacity as quickly as possible. Moussavi [13] proposes 
an approach for ergonomic job assignment by determining 

1 3



The International Journal of Advanced Manufacturing Technology

the ergonomic adequacy level between workers and work-
stations in a manufacturing system. The analysis should 
focus not so much on the workstation itself, but rather on 
the characteristics of the worker. The same study highlights 
four particularly significant factors: 1. Height, 2. Age, 3. 
Skill level, and 4. Experience level.

Therefore, with a global data approach, we would be 
missing out on most of the analytical potential. Thus, to ana-
lyze what happens at a workstation where different work-
ers (W) perform their tasks and various products or product 
families (F) are assembled, the use of a disaggregated learn-
ing curve is proposed, so that:

Yx,W,F = AW,F · X
−bW,F

W,F � (3)

where:
Yx,W,F : the time to produce the X-th unit of product F 

by worker W;
XW,F : : the cumulative unit number of product F pro-

duced by worker W;
AW,F : : the time required to produce the first unit of 

product F by worker W;
bW,F : : the learning index of workwer W for product F.
We have already seen how Moussavi [13] placed the bio-

metric factor as a top priority. When designing a worksta-
tion, the term ”ergonomic” is almost automatically included, 
although the development can be more advanced-ranging 
from the use of digital twins [14] to simply following the 
company’s own ergonomic guidelines. Once the installation 
is in place, ergonomic problems may become evident, at 
worst, through worker injury, but they almost certainly lead 
to a loss in performance [12, 15]. The inclusion of a gender 
perspective in ergonomic diagnostics is a growing practice, 
as seen in the work of O’Sullivan [15].

Therefore, by deepening the diagnosis of a production 
system, we can personalize the analysis by increasing the 
level of disaggregation, including: global or individual pro-
cesses performed, mode of assistance and also the gender 
perspective.

3  Workstation prototype

In our case, we developed a prototype assembly worksta-
tion integrated with a pick-to-light warehouse, a system that 
guides the operator in selecting the components for the next 
order. The workstation (Fig. 1) is designed as a ”pick-to-
assemble” unit where the operator’s learning process can 
occur, whether the worker is new to the job or needs to 
adapt to changes introduced by new variables in the product 
range. The system’s assistance is tailored to the worker’s 
proficiency level, defined by four operational stages: learn-
ing plus, learning, standard or expert (from the highest level 
of assistance to the lowest).

In our prototype unit, the assembly of industrial wheels 
was selected as a case study, though this choice is not criti-
cal to the research methodology. The variety of product 
configurations is determined by factors such as the charac-
teristics of the supports, the material of the rolling surface, 
and the overall design, which dictate load capacity and suit-
ability for specific work environments. This setup allows 
for the assembly of 24 distinct product variants within the 
unit. The operator works on a demand-driven basis, assem-
bling products individually rather than in batches. In the 
initial implementation, a barcode-based ordering system is 
employed. The operator scans the barcode, which triggers 
the corresponding assembly process in the workstation.

The prototype is managed using Arduino and Raspberry 
as the core hardware components. These devices are pro-
grammed to collect and process real-time data, enabling 
precise time tracking. The design of the warehouse and 
work area incorporates fundamental ergonomic principles 
and warehouse management strategies, employing a Kan-
ban-style flow for replenishing parts from the back.

Traceability is a key feature of the system, as it records 
various details, including: the worker assigned to the unit, 
the type of product being assembled, any unplanned pro-
duction interruptions, the time the order was received (via 
barcode scanning), and the moment the last component for 
the assembled reference is collected. The prototype includes 
a warehouse capable of holding up to 16 components. 

Fig. 1  Workstation prototype unit. Ergonomic design 
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in any order that best suits their workflow. Figure 2 provides 
an overview of the four assistance modes.

Real-time data is collected, which will be used to esti-
mate experimental learning curves. Data processing is done 
separately for each worker and each product family, as illus-
trated in Fig. 3, initiating the first level of disaggregation for 
diagnostics. This approach opens the possibility for tailor-
ing the assistance based on individual worker performance.
The individualisation of data collection also allows us to 
immediately address the gender perspective throughout the 
analysis.

We measured production time per unit and cumulative 
production volume using data from the production process 
to construct disaggregated learning curve models. The anal-
ysis was initially performed on a worker-by-worker basis. 
The model was updated with data from each completed 
product, so that by the end of two work shifts, a learning 
curve model of Y = 108.73X−0.156 was obtained, which 
corresponds to a Learning Rate of 89.75 % (Fig. 4 for 
worker W1968, by the time 48 pieces have been produced).
That is why we use the term disaggregated learning curve, 
to distinguish it from the typical learning curves used for a 
workstation.

As shown in Fig. 4, we present the production times for 
each unit, along with the time spent on picking (represented 

Operators select components for each product variant with 
the assistance of a pick-to-light system. To ensure ergo-
nomic efficiency, the warehouse is arranged with three 
height levels across six columns. This configuration also 
includes a dedicated column for quality defect management 
and another equipped with a monitor to assist operators or 
facilitate communication. Products are identified using a 
barcode reader, but the system also supports RFID-based 
identification through integrated tags in the container trays.

4  Learning curves and results

The system’s functionality was validated by having multiple 
workers assemble different references based on a randomly 
generated demand. The total number of references was 
grouped into product families, considering factors such as 
the number of components and the similarity of the assem-
bly procedures (e.g. we use F4 to identify the product family 
with 4 components). The assistance provided to the worker is 
controlled through a display showing a short video for each 
task or through the pick-to-light system, which can oper-
ate in either sequential or global mode. In sequential mode, 
each component must be selected in the prescribed order, 
while in global mode, the operator can choose components 

Fig. 3  Data processing for the estimation of experimental 
learning curves
 

Fig. 2  Modes of worker assistance: learning plus, 
learning, standard or expert (from the highest level of 
assistance to the lowest)
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is being carried out. Working in the standard assistance 
mode, we visualize the curves for two workers, W1968 and 
W1999. At the top, we see the evaluation when they are 
working with product family F4, while at the bottom, we 
have product family F5.

Having disaggregated data allows us to understand to 
what extent a particular worker adapts to the different opera-
tions or processes of specific products. In particular, Fig. 
5 shows how the picking operation is very intuitive, and 
improvement over time is barely significant. Occasionally, 
increases in time occur due to the need for control opera-
tions or the use of poka-yokes. The reduction in times due 
to learning is more significant for product family F5, regard-
less of the operator.

When introducing the gender perspective into the disag-
gregation, it was observed that picking times for the group 
of women were slightly higher than for men. It was identi-
fied that this was not due to a shortcoming of the control 
group used but rather the poor ergonomic adaptation of the 

by the blue line) and assembly (represented by the orange 
line). From this, we can observe the stability of these opera-
tions and estimate a learning curve for overall production. 
Additionally, we could derive separate learning curves for 
picking and assembly processes. The learning curve for 
picking develops more quickly, as the process is intuitive 
and the times are easily predictable. In contrast, the assem-
bly phase exhibits greater variability, due to the inherent 
complexity of the task and the need to handle parts contain-
ers. Although a Kanban system with three circulating con-
tainers is in place, when the current container is emptied, the 
operator must place it on the replenishment line. The learn-
ing curve is continuously updated with production times at 
each step, providing data that can be used to apply machine 
learning systems for the automatic selection of the optimal 
assistance mode for each operator and product family.

But the power of the diagnostic method improves when 
we begin to compare data across different disaggregated 
parameters. Figure 5 shows a snapshot of how production 

Fig. 5  Experimental disaggregated learning curves 
for workers W1999 and W1968, for product families 
F4 and F5, in standard assistance mode

 

Fig. 4  General behaviour of the workstation. Produc-
tion time per unit (s) and experimental learning 
curves, W1968 & X=48
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Finally, an estimate of the effects of the assistance modes 
on production is shown. Figure 7 illustrates how the choice 
of assistance mode impacts production capacity. The learn-
ing curves provide personalized insights into production 
capacity for each worker and product family (in this case, 
worker W1968 and product family F5). This enables us 
to identify the most suitable worker for each product type 
and assess specific training needs [12] In a more intuitive 
way, the production output is presented as a percentage, 
with expert mode as the reference for maximum capacity. 
The integration of IoT technology, in a non-intrusive way, 
brings us closer to what could be considered the ”Internet of 
Workers” (IoW). This approach opens up the possibility of 
dynamically adjusting assistance modes, while ensuring full 
traceability of the entire process.

These results serve to highlight some of the success sto-
ries of the analysis methodology, given that the data obtained 
on worker behaviour -the subject of social sciences- pres-
ents a diversity inherent both to the study population and to 
external factors.

workstation. For assembly, this problem was not significant. 
It is likely that the same ergonomic adaptation problem 
occurs among men of different sizes, but with the disaggre-
gation parameters used, no conclusion could be drawn.

A new factor identified was the possible onset of tired-
ness, more significant in some workers, which would 
increase production times, offsetting improvements gained 
through increased skill.

Figure 6 shows an estimation of the learning curves based 
on the selected assistance mode in the system. The ”learning 
plus” mode significantly increases production times, so its 
usage should be minimized. This mode could be used for the 
first few units (e.g., 1 or 2) that an operator assembles or in 
cases where the worker’s work has been interrupted (such 
as after long breaks or shifts spanning several days). The 
”learning” mode is more effective in reducing variability in 
production times and is particularly useful when adapting 
to new product references. In contrast, the ”expert” mode 
offers greater flexibility to the worker, though it may also 
increase the risk of errors in component selection.

Fig. 7  Production capacity for each of the four 
modes of assistance.

 

Fig. 6  Experimental learning curves for each of the 
four modes of assistance, W1968 & F5
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if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless 
indicated otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons licence and your intended 
use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright 
holder. To view a copy of this licence, visit ​h​t​t​p​​:​/​/​​c​r​e​a​​t​i​​v​e​c​​o​m​m​o​​n​s​.​​o​
r​g​​/​l​i​c​e​n​s​e​s​/​b​y​/​4​.​0​/.
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5  Conclusions

Instead of relying on a passive system, the application of 
Industry 4.0 concepts allows for real-time monitoring of 
worker performance, even when new product references are 
introduced to the pick-to-assemble line. The following points 
can be considered as the main conclusions of this work:

	● Progress has been made in the concept of the Internet 
of Workers (IoW) by identifying signals that provide in-
sight into worker performance with minimal intrusion. 
The availability of such systems enables more advanced 
analysis compared to traditional passive picking systems.

	● Real-time learning curves (LC) have been successfully 
generated, addressing the limitations of theoretical curves.

	● Data discrimination allows for a deeper understanding of 
individual worker and product family behavior.The dis-
aggregation of experimental data to obtain disaggregated 
learning curves opens new possibilities in diagnostics.

	● The system allows us to collect sex-disaggregated data 
and gender-sensitive job information as a first step in 
gender-sensitive strategic planning. The application to 
ergonomic adaptation problems can be immediate.

	● The application of machine learning techniques opens 
up new possibilities for production optimization.

Looking ahead, this study establishes the groundwork for 
comprehensive observational methodologies that will be 
progressively enriched with additional parameters -such as 
age and potential disabilities- thereby expanding their scope 
and enhancing generalizability. Subsequent investigations 
will increase the sample size and involve industry partners 
to broaden and diversify the cohort under observation.
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