
S
u
bm

it
te
d
fo
r
P
u
bl
ic
at
io
nMRI Sequence Design and Simulation as a Service

in a Free and Open-Source Web Platform

Pablo Villacorta-Aylagas1*, Manuel Rodŕıguez-Cayetano1,2,
Carlos Castillo-Passi3,4,5,6, Pablo Irarrázaval-Mena3,4,5,

Federico Simmross-Wattenberg1,2, Carlos Alberola-López1,2

1* Laboratorio de Procesado de Imagen, Universidad de Valladolid,
Paseo Belén 15, Valladolid, 47011, Spain.

2 IBioVall, Institute for Health Research, C. Rondilla Sta. Teresa, s/n,
Valladolid, 47010, Spain.

3 Institute for Biological and Medical Engineering, Pontificia
Universidad Católica de Chile, Santiago, Chile.

4 Millennium Institute for Intelligent Healthcare Engineering
(iHEALTH), Pontificia Universidad Católica de Chile, Santiago, Chile.

5 School of Biomedical Engineering and Imaging Sciences, Kings
College, London, UK.

6 Department of Radiology, Stanford University, California, USA.

*Corresponding author(s). E-mail(s): pablo.villacorta@uva.es;
Contributing authors: manuel.rodriguez@uva.es; cncastillo@uc.cl;

pim@uc.cl; fedsim@uva.es; carlos.alberola@uva.es;

Abstract

We present MRSeqStudio, a new all-in-one web-based tool for MRI sequence
development and simulation, with the physics-based simulator KomaMRI run-
ning at the back-end and our own sequence designer at the front-end. It combines
accessibility, interactivity and technical flexibility, within an environment suit-
able for both education and research. Our tool provides MR sequence design and
simulation as a service, with no local installation needed by the user; alterna-
tively, the code is publicly available on GitHub, for users who wish to deploy the
application on their own server.

Keywords: MRI, simulation, sequence design, web service.

1

S
u
bm

it
te
d
fo
r
P
u
bl
ic
at
io
n

1 Introduction

Pulse sequence design enables the development of novel magnetic resonance imaging
(MRI) acquisition protocols —as well as the optimization of those already existing—
for reducing scan time, improving or achieving new image contrasts or eliminating
artifacts. Complementarily, simulation provides the ground to test these sequences
without the need to access a physical scanner; it also provides the capability to ana-
lyze specific phenomena in the acquisition process (e.g., off-resonance effects) and to
synthesize images for further usage, such as training of learning models or creation
of signal dictionaries [1]. Moreover, simulation serves as a powerful resource for edu-
cation and training [2]. The coordination of both activities, namely, sequence design
and simulation, is essential to fully harnessing the potential of MRI technology.

Originally, sequence design relied on vendor-specific frameworks, which were only
available to scanner manufacturers [3, 4] or to associated research institutions. In
response to this, open-source initiatives for sequence design [3–9] have emerged in
recent years. Some of them also include a web interface that provides easier access,
and has led to coining the term sequence as a service [4]. As for sequence exchange,
Pulseq [10, 11] has become the de facto standard in the field.

A number of MRI simulators have been released, either with simple simula-
tion engines based on evaluating the analytical expressions of the most common
sequences [2, 12], or with more involved physics-based engines. About the latter, open-
source tools such as JEMRIS [13], MRiLab [14, 15], KomaMRI [1], and CMRsim [16]
are well-known. Proprietary options have also been reported, such as BlochSolver [17]
or Corsmed, which is an evolution of MRISIMUL [18, 19] and coreMRI [20]. About the
open-source simulators, JEMRIS, CMRsim and KomaMRI provide support for com-
plex motion, cardiovascular MR (CMR), and MR angiography (MRA) simulations.
KomaMRI stands out in terms of performance [21]; this is due to the fact that CMR-
sim is written in Python and the original JEMRIS lacks GPU support; KomaMRI,
however, is written in Julia and benefits from its vendor-agnostic GPU support. More-
over, a recent GPU-compatible extension of JEMRIS does not seem to be competitive
with KomaMRI [22].

As previously stated, the coordination of sequence design and simulation seems
mandatory. However, software tools in which these two activities are integrated is
scarce. Actually, most of the pulse design tools enumerated above do not have direct
interfaces to MRI simulators but rely on Pulseq as an intermediate step. An exception
to this seems to be CAMRIE [23, 24], presented as a comprehensive cloud-compatible
simulation pipeline. However, it is not publicly available, since it uses a modified
non-public version of KomaMRI and, as described in [24], the project remains under
development. Complementarily, [9] also reports a connection with a simulation engine
but the simulator itself is not clearly identified.

This paper introduces a new web-based tool, referred to as MRSeqStudio, that
bridges the gap between sequence design and MRI simulation, with KomaMRI run-
ning at the back-end and our own sequence designer at the front-end. It aims to
combine accessibility and interactivity with technical flexibility, offering an environ-
ment suitable for both education and research. Graphical capabilities of KomaMRI
running in the back-end are displayed in the front-end with no loss of interactivity.

2

S
u
bm

it
te
d
fo
r
P
u
bl
ic
at
io
n

Sequence design is accompanied with different viewers (sequence, slice selection and
simulation results). Global variables can be arbitrarily defined by the user and then
referenced within the configuration of individual sequence blocks, allowing high-level
parameters such as TE, TR, or FOV to be defined once and automatically propagate
to all dependent blocks in the sequence. Overall, our tool provides MR sequence design
and simulation as a service: it requires no local installation, and offers an end-to-end
workflow in which pulse sequences can be designed in the browser, simulated in the
server —i.e., the cloud—, and stored together with their corresponding results.

2 Design and Implementation

2.1 Design objectives

Our main objective is to build an MRI sequence editor with an integrated simulator
that is easy to use for prospective users and achieves high physical accuracy and
competitive simulation times with respect to the state of the art in the open source.
Specifically, our aim is to provide the community with an application with the following
characteristics:

Block-by-block sequence design: blocks are defined as RF pulses, gradients, delays or
readout windows. Each block has its own parameter set according to its class. By
freely arranging these blocks, the user is able to build complex MRI sequences bottom-
up. Blocks can be added, modified, moved and deleted by using the keyboard or the
mouse. Blocks can also be grouped into composite blocks which behave like regular
blocks, thus achieving an arbitrary grade of complexity while maintaining the ease of
use that blocks provide.
Parseable user-defined global variables: Users may define global variables, which can
subsequently be referenced and manipulated throughout the editor. For example, one
could set variables A = 45 and B = 30 and then set the flip angle of an RF pulse to
the value A+B.
Interactive diagnostics panels: as the user composes arbitrarily complex sequences by
combining different blocks at will, the resulting sequence is displayed (by pressing a
button) in a time sequence diagram visualizer and a 3D slice viewer. The selected —
i. e., simulated— slice is displayed in a third view pane as well. The user can select
between an immediate slice visualization and a realistic volume rendering via the
KomaMRI simulator at the back-end.

2.2 Functional Design

The general operation of the application is illustrated in Fig. 1 and is based on a
client-server architecture, specifically, a REST architecture. The front-end runs in the
browser, where user interactions generate HTTP requests that are sent to the server.
This server, acting as an intermediary between the client and back-end resources —
such as the MRI simulator, database, or front-end files— uses a REST API. It follows
the typical request-response model: clients send requests, and the server processes
them and returns appropriate responses.

3

S
u
bm

it
te
d
fo
r
P
u
bl
ic
at
io
nSequence

Editor

Front-End Back-End

HTTP
Client

(Fetch API)

REST
Server

HTML
iframe

MRI
Simulator

EM_JS(plot_seq(sequence.json)) HTTP POST /plot (sequence.json)

sequence.json

plot.html

plot.html

plot.html

seq = json_to_seq(sequence.json)
p = plot_seq(seq)

Client request

Server reponse

Fig. 1: General operation of the web application. The web browser is responsible
for both rendering the front-end and acting as an HTTP client to communicate
with the server. The HTTP server, in turn, provides a REST API to the web
browser for accessing the back-end functionalities. Blue arrows represent client-
side requests; green arrows represent server responses.

Graphical Sequence Editor

The editor contains drop-down menus for file handling —creation, loading, and
saving—, as well as for plotting functionalities, and panels providing a) a schematic
overview of the sequence, b) predefined blocks that can be freely added to the
sequence, c) block groups management, d) selected block parameters, e) scanner
parameters, f) user-defined global variables, g) an editable text field where the user
can input a description for the sequence, and h) phantom selection and simulation
launcher. Qt has been chosen as the core framework for this part of the work for its
ability to create cross-platform GUI with a native appearance and usability. Compil-
ing to WebAssembly enables the execution of Qt (C++) applications within a web
browser [25].

Sequence Diagram Viewer

This module consists of a single panel displaying the sequence diagram generated by
KomaMRI. On the client side, a JSON file containing the complete sequence data
from the GUI is generated and sent to the REST server via a POST request. These
request flows are represented with blue arrows in Fig. 1. On the server side, KomaMRI
processes the request and generates an interactive HTML plot using PlotlyJS.jl. This
HTML file is sent back as the server’s response, which the front-end embeds into the
sequence diagram panel. This response flow is depicted with green arrows in Fig. 1,
completing the communication cycle and ensuring seamless integration of the sequence
visualization.

4

S
u
bm

it
te
d
fo
r
P
u
bl
ic
at
io
n

3D Slice Viewer

The 3D visualization module consists of a single panel displaying the phantom volume
loaded from a NIfTI file, along with the slice selected by the MRI sequence, which
is also part of that volume. The visualization is achieved using three orthogonal slice
planes1, as this reduces the computational load on the client side by avoiding render-
ing the full volume. Additionally, the slice selected by the MRI sequence is shown as
another slice plane, which results in four planes being displayed in total: three orthog-
onal planes plus the selected one. The implementation of this module is based on the
vtk.js library, which provides efficient in-browser rendering.

Simulation Result Viewer

Fig. 1 can also be used as a reference for understanding this part of the system, as
both the sequence viewer and the simulation results viewer are entirely analogous. The
only difference is that, in this case, the server must first receive not only the sequence
information but also the phantom and the scanner data, enabling it to perform the
simulation and return the corresponding results. These results are provided as an
HTML file which contains the plot generated by KomaMRIPlots.jl.

2.3 Back-end Module and front-end integration

The back-end of the application consists of an HTTP server and additional processes
responsible for generating the necessary data. The HTTP server acts as an intermedi-
ary between the front-end and the rest of the back-end. It receives requests from the
client, forwards them to the appropriate internal components, and returns the gener-
ated results. Notably, the entire back-end module has been implemented in Julia, and
its source files can be found in the /backend directory of the repository2. The appli-
cation is designed so that all repository files, including both back-end and front-end
components, reside on the server machine. The client, i.e., the end user, only requires
a web browser to access and use all functionalities.

For the design of the HTTP server, a REST API has been defined to handle
incoming HTTP requests from clients. In this architecture, the REST API and the
HTTP server are unified in the same process. Once the HTTP request reaches the
API, it directly calls Julia functions to interact with the back-end resources, bypassing
HTTP for internal processing. This approach ensures that communication with the
back-end occurs efficiently within the server process, without needing additional HTTP
calls. The implemented methods are documented3 and categorized into three sections:
web content rendering, simulation, and plotting.

The client needs to process the response content, ensuring appropriate actions
are taken based on the data received. When necessary, the information should be
displayed on the screen in the correct format. For example, when a simulation is
ongoing, progress updates should be displayed, and upon completion, the result should
be shown in a meaningful way to the user.

1As outlined in the viewer developed by [2], this approach follows a similar methodology.
2See https://github.com/pvillacorta/MRSeqStudio/tree/master/backend.
3API documentation available in: https://petstore.swagger.io/?url=https://raw.githubusercontent.com/

pvillacorta/MRSeqStudio/refs/heads/master/docs/api.yaml.

5

https://github.com/pvillacorta/MRSeqStudio/tree/master/backend
https://petstore.swagger.io/?url=https://raw.githubusercontent.com/pvillacorta/MRSeqStudio/refs/heads/master/docs/api.yaml
https://petstore.swagger.io/?url=https://raw.githubusercontent.com/pvillacorta/MRSeqStudio/refs/heads/master/docs/api.yaml

S
u
bm

it
te
d
fo
r
P
u
bl
ic
at
io
n

3 Results

3.1 Application overview. GUI and Features

Fig. 2 shows the main interface of the application4, which occupies the entire available
screen space and adapts to the browser window size. Thanks to this responsive design,
the application can be executed seamlessly on mobile device browsers, as illustrated in
Fig. 3. The layout is organized into multiple panels that ensure a clear separation of
functionalities. Panels A–G are dedicated to sequence design. In panel A, the sequence
is constructed my means of blocks, which are placed sequentially and can be freely
rearranged through drag-and-drop operations. These blocks can be also wrapped into
groups that allow repetitions and enable the user to emulate, for instance, the set of
sequence events occurring during a TR. Panel B provides a menu with buttons for
different block types; clicking one inserts the corresponding block into panel A. Panel
C stores the groups that, once created, can be replicated and instantiated within the
sequence. Panel D displays the configuration menu and adjustable parameters which
correspond to the block selected in Panel A. Panel E is used to define the parameters
of the MRI scanner on which the sequence is to be executed; these include, among
others, the main magnetic field strength B0 and the maximum values for the RF
pulse amplitude, gradient strength, and slew rate supported by the system. Panel F
provides a lightweight programming environment where global variables can be defined
as either numerical values or mathematical expressions. Such variables can be used to
control block parameters and ensure that modifications to high-level settings —such
as TE, TR or FOV— automatically propagate without the need to manually adjust
individual blocks. Panel G allows the user to define a sequence description in plain
text format. Panel H is used to select the anatomical model —i.e., the phantom— for
visualization and simulation. The “Simulate” button can then be used to launch the
back-end simulation using the sequence currently being developed in the interface and
the chosen phantom. Panels I–K serve as interactive visualization modules, and display,
respectively, the sequence temporal diagram, the phantom, and the MRI simulation
output. Specifically, the phantom viewer offers two visualization modes: a lightweight
representation based on three orthogonal slices, and a volume-rendering mode in which
the individual spins composing the phantom can be displayed. The former mode also
allows the user to observe the specific slice selected by the sequence (see Fig. 2), and
the latter enables the visualization of phantom motion or blood flow if present. Panel
L is a menu bar that provides file handling for loading and saving sequence files, as
well as a menu to display the sequence diagram in Panel I. Finally, button M opens
the user panel, which allows managing the current session, logging out, or accessing
user information, stored sequences, and results from previous simulations.

In addition to the main interface, the application includes dedicated panels for
complementary tasks. A results panel (Fig. 4) allows each user to access and review
previously generated simulations. For administrators, a dedicated panel (Fig. 5) pro-
vides tools for user management, usage statistics, and inspection of stored sequences
and results, organized across three tabs.

4Available at https://mrseqstudio.lpi.tel.uva.es.

6

https://mrseqstudio.lpi.tel.uva.es

S
u
bm

it
te
d
fo
r
P
u
bl
ic
at
io
n

Fig. 2: Application main layout, which is divided into panels that ensure a clear sepa-
ration of functionalities. The example shown corresponds to the design and simulation
of a GE-EPI sequence on a 3D brain phantom.

3.2 User Workflow and Examples

The application is intended to accommodate different types of users, ranging from
radiographers to sequence programmers and MRI researchers. Depending on the user
profile, the workflow slightly differs. For radiographers, the typical approach consists
of loading pre-defined sequences and adjusting global parameters (such as TE, TR,
or FOV) before running a simulation. All of the examples presented in this paper fall
under this usage profile. By contrast, researchers and sequence programmers can design
sequences from scratch by building them block by block, defining custom variables,
and creating reusable groups.

EPI

One of the simplest use cases is the loading and adjustment of a single-shot GE-EPI
sequence. The interface shown in Fig. 2 illustrates this process through the concatena-
tion of four blocks: the Ex block implements a sinc-shaped RF pulse with a frequency
offset of –20 kHz and a simultaneous slice-select gradient in z. This offset shifts the
excited slice downward along the z-axis, so that its center is no longer located at the
origin; the Dephase block adds a negative z gradient immediately after the RF pulse
(i.e., a post-excitation dephasing [26]); the Delay block introduces a 1 ms delay; and
the predefined EPI ACQ block performs a 100×100 point EPI acquisition, fully cover-
ing k-space. In the global variables panel, in addition to the default variable gamma,
the variables A and N are defined. These variables control, respectively, the amplitude

7

S
u
bm

it
te
d
fo
r
P
u
bl
ic
at
io
n

(a) (b) (c) (d)

Fig. 3: Screenshots of the application running in a mobile browser. The example
corresponds to the design and simulation of a GRE-EPI sequence. The slice-selection
gradient applied along the x-axis produces a sagittal slice on the 3D brain phantom.
(a) Sequence editor. (b) Sequence diagram visualizer. (c) 3D Phantom visualizer. (d)
Simulation result.

of the z gradients in both the Ex and Dephase blocks, and the number of k-space
lines and points per line which are sampled within the EPI ACQ block. Simulation
is then carried out over a 3D brain phantom. The Supplementary Video S1 further
demonstrates this use case.

Spin Echo

Another use case is the loading and adjustment of a spin echo sequence. Fig. 6 shows
the application GUI with the corresponding block arrangement. The first key aspect
to highlight is the presence of a block group called TR, which contains all blocks that
repeat every TR. The number of repetitions of this block has been set to N matrix =
100, a value that has also been assigned to the Samples field of the Readout block.
This results in a 100 × 100 k-space matrix. The two Ex blocks represent the 90º and
180º RF pulses. The first Dephase block applies gradients in x and y to position
the readout pointer at the top-right corner of k-space, and in z to compensate for
the effect of the slice-selection gradient. The second and third Dephase blocks act
as a crusher gradient pair straddling the 180º refocusing pulse [27]. The Readout

block acquires a single k-space line of 100 points while simultaneously applying a
frequency-encoding gradient along the x direction. Finally, the Delay blocks introduce
timing delays to ensure compliance with the predefined TE and TR values. In this
case, multiple global variables have been defined and referenced within each block’s
configuration. The right panel of Fig. 6 shows simulation results of the spin-echo
sequence for three experiments with different TE and TR values. These variations

8

S
u
bm

it
te
d
fo
r
P
u
bl
ic
at
io
n

Fig. 4: Simulation results interface. The panel shows the history of simulations con-
ducted by an specific user. These simulation results can be downloaded or deleted.

Fig. 5: Administrator panel of the application, which provides tools for user and
resource management organized across three tabs. The first tab (left) enables CRUD
operations (“Create, Read, Update, Delete”) for users. The second tab (top right)
allows inspection of sequences and simulation results generated by all users. The third
tab (bottom right) displays usage statistics, such as the number of sequences used per
day, simulations performed, and related metrics.

alter the image contrast, and enable the acquisition of T1, T2, or PD-weighted images.
This example is illustrated in Supplementary Video S2.

3.3 Motion, CMR and MRA Simulation

It is possible to perform simulations over dynamic phantoms, thanks to recent
improvements in KomaMRI [21]. This functionality enables the design and testing of
motion-related sequences —such as phase contrast and time of flight—, as well as the
assessment of motion-induced artifacts when conventional sequences are applied.

9

S
u
bm

it
te
d
fo
r
P
u
bl
ic
at
io
nT1-weighted

PD-weighted

T2-weighted

Fig. 6: Application GUI displaying the design of a spin-echo sequence. The sequence
is organized into a block group that repeats every TR, along with RF, dephasing,
crusher, readout, and delay blocks. Four block configuration panels are shown. The
right panel presents the results of three simulation experiments in which TE and TR
values were varied.

To illustrate this capability, we consider a cylindrical phantom with fluid flowing
inside. Both the cylinder wall and the flowing interior were assigned identical T1, T2,
and PD, so no intrinsic tissue contrast is present. Then, two different sequences were
designed and simulated within the application, selecting the exact same axial slice.
The first was an EPI acquisition (Fig. 7a), which produced images where the static
cylinder wall and the lumen appeared with equal intensities. The second was a bSSFP
acquisition (Fig. 7b), in which the lumen appeared brighter than the wall due to the
time-of-flight effect [28]. The illustrative Video S3 accompanies this example.

3.4 Performance

Benchmarks were conducted separately for the tasks executed in the front-end and
those performed in the back-end. For the front-end, the initial page (Fig. 2) loads
in approximately 3 seconds, most of which are spent downloading the compiled
WebAssembly (.wasm) file of the sequence editor. Regarding phantom visualization,
the vtk.js slice-based viewer runs entirely in the front-end, while the volume-rendering
viewer is computed in the back-end. Both processes thus run in parallel, with times
depending on phantom size and complexity. For a 2D brain phantom, slice rendering

10

S
u
bm

it
te
d
fo
r
P
u
bl
ic
at
io
n

0 ms 5 ms 10 ms 15 ms 20 ms 25 ms

−60

−40

−20

0

20

40

60

Gx Gy Gz |B1|_AM ∠B1_AM B1_FM ADC

0 20 40 60
0

10

20

30

40

50

60

0

1

2

3

4

5

6

x

y

(a)

0 ms 10 ms 20 ms 30 ms 40 ms 50 ms 60 ms 70 ms 80 ms

−15

−10

−5

0

5

10

15

Gx Gy Gz |B1|_AM ∠B1_AM B1_FM ADC

0 20 40 60
0

10

20

30

40

50

60

0

2

4

6

8

10

x

y

(b)

Fig. 7: Simulation of an axial slice of a cylindrical phantom with flow inside. (a) EPI
sequence, showing no contrast between static wall and flowing interior. (b) bSSFP
sequence, where the lumen appears brighter due to the time-of-flight effect.

takes about 2 seconds and volume rendering about 150 ms; for a 3D brain phantom,
these times increase to 10 seconds and 1.5 seconds, respectively. For back-end simula-
tions, while more detailed benchmarking has already been made [1, 21], the simple 2D
EPI sequence of Fig. 2 takes approximately 1 second end-to-end —from the moment
the simulation is launched in the front-end until the results are displayed back in the
interface— when executed on a CPU-only server with an AMD Ryzen 7 5800X 8-core
3.8 GHz processor.

All these performance measurements are strongly influenced by multiple factors,
including client and server specifications, and network speed and bandwidth.

11

S
u
bm

it
te
d
fo
r
P
u
bl
ic
at
io
n

4 Discussion

This application constitutes an all-in-one environment for MRI sequence development
and simulation. Unlike existing approaches that require switching between differ-
ent software tools for sequence programming, visualization, and MRI simulation, our
platform integrates this complete pipeline in a single environment.

The application runs entirely in the web browser and requires no local installations.
Trivial operations, such as configuring blocks or loading/saving sequence files, are exe-
cuted directly in the client, ensuring immediate interactivity. In practice, the initial
page loading and phantom viewer rendering only take a few seconds, and once every-
thing is loaded, interactions with the interface are immediate and fully responsive.
MRI simulations are performed in the KomaMRI-powered back-end, which is physics-
based for accuracy and GPU-compatible for accelerated performance; simulations
also run correctly on CPU-only servers, albeit more slowly. As described else-
where [1, 21], KomaMRI overcomes the main physics-based MR simulators available
in the public-domain.

Another distinctive feature of our platform is its support for motion-inclusive
simulations. Thanks to a recent enhancement to KomaMRI [21], arbitrary phantom
motion can be defined and simulated. This functionality has been integrated into the
web application, allowing users to load dynamic phantoms and observe the effects of
motion on MRI acquisitions, as illustrated in the time-of-flight experiment. Building
on these capabilities, additional features are planned; first, the ability to create and
configure phantom motion directly within the web interface, since currently only pre-
defined dynamic phantoms5 can be loaded. Then, we also plan to include a cine cardiac
viewer, as well as specific reconstruction methods and phase image viewers for MRA
acquisitions.

The tool provides a fully integrated MRI test environment that gives rise to the
aforementioned concept of sequence design and simulation as a service. Users can
store sequences and simulation results in the cloud, associated with their account,
and access them seamlessly at any time. Related improvements include flexible execu-
tion on GPU or CPU depending on user privileges (e.g., premium vs. standard) and
enhanced user management through database support. Future updates will also allow
users to adjust the phantom complexity —mainly the number of spins— directly from
the web interface, optimizing simulations for available computational resources.

The results presented in this paper illustrate three examples aligned with a
radiographer’s workflow, based on loading predefined sequences and adjusting global
parameters. Additionally, the application is fully compatible with research-oriented
use cases, where sequences can be built from scratch and customized. Although its
full-scale educational or research deployment is pending, it has already been tested
in pilot scenarios by members of the MRI community; a preliminary version was pre-
sented at the ISMRM Iberian Chapter 2025 [29], where it received the best poster
award. This recognition underscores the strong interest from the MRI community and
the potential of the platform to support both education and research.

5Dynamic phantoms can be created and configured in KomaMRI, as described in https://juliahealth.
org/KomaMRI.jl/stable/explanation/2-motion/.

12

https://juliahealth.org/KomaMRI.jl/stable/explanation/2-motion/
https://juliahealth.org/KomaMRI.jl/stable/explanation/2-motion/

S
u
bm

it
te
d
fo
r
P
u
bl
ic
at
io
n

All the code for both the front-end and back-end is publicly available on GitHub6.
Complete installation instructions, including prerequisites and compilation guidelines,
are provided for users who wish to deploy the application on their own server.

5 Conclusion

We have presented a web-based application that unifies the entire pipeline of pulse
sequence design and MRI simulation within a single environment. By combining
an interactive graphical interface with the physics-based KomaMRI back-end, the
platform provides a responsive, user-friendly experience while delivering accurate,
cloud-powered simulations. The tool is intended for a broad spectrum of users, rang-
ing from radiographers to MRI researchers. Moreover, the implemented MRI sequence
design and simulation as a service framework includes support for motion-inclusive
simulations. Overall, the platform constitutes a versatile, accessible, and extensible
resource that lowers the entry barrier to MRI simulation while opening new opportu-
nities for teaching, testing, and research in MR technology. The application is under
continuous development, with ongoing improvements —such as enhanced motion han-
dling, cloud resource management, and broader sequence compatibility— that will
further expand its capabilities.

Supplementary information

Additional supporting material may be found online in the Supporting Information
tab for this article.

• Video S1: EPI sequence simulation experiment. A GE-EPI sequence is loaded into
the application GUI and some of its parameters are modified. Then, simulation is
launched and the result is plotted within the “Results” panel.

• Video S2: Spin Echo simulation experiment. A SE sequence is loaded into the GUI
and three consecutive simulations are conducted, with varying TE and TR values.

• Video S3: Time-of-flight experiment. Two different sequences —a GE-EPI and a
bSSFP— are consecutively loaded and simulated over a cylindrical phantom with
flow inside.

Declarations

Funding

This work was supported by the Agencia Estatal de Investigación with grants PID2020-
115339RB-I00, TED2021-130090B-I00 and PID2022-142166NA-I00, and to Fundación
La Caixa with grant HR22-00533. Additional funds correspond to ANID-Chile grants
FONDECYT 1210747, FONDECYT Post-doctoral 3240576 and Millennium Science
Initiative Program - ICN2021 004.

6https://github.com/pvillacorta/MRSeqStudio

13

https://github.com/pvillacorta/MRSeqStudio

S
u
bm

it
te
d
fo
r
P
u
bl
ic
at
io
n

Conflict of interest/Competing interests

The authors declare that they have no competing interests.

Ethics approval and consent to participate

Not applicable

Consent for publication

Not applicable

Data and Materials availability

The source code of the application has been deposited in a public GitHub repository:
https://github.com/pvillacorta/MRSeqStudio.

Authors’ contributions

P. Villacorta-Aylagas was responsible for the conceptualization, implementation,
and software development of the tool, as well as for writing the first draft of the
manuscript. M. Rodŕıguez-Cayetano and F. Simmross-Wattenberg contributed to the
conceptualization and software implementation, and participated in reviewing and
refining the manuscript. C. Castillo-Passi and P. Irarrázaval-Mena assisted in revising
the manuscript and clarifying specific aspects related to KomaMRI, which is used in
the backend of the tool. C. Alberola-López supervised the work throughout all its
stages and contributed substantially to shaping and improving the final version of
the manuscript.

All authors have read and approved the final manuscript.

Acknowledgments

The authors acknowledge the financial support of the Agencia Estatal de Investigación,
Fundación La Caixa, and ANID-Chile through the projects mentioned in the Funding
section. The authors also wish to thank the members of the ISMRM Iberian Chapter
for testing the application and providing valuable feedback.

Clinical Trial Number

Not applicable.

14

https://github.com/pvillacorta/MRSeqStudio

S
u
bm

it
te
d
fo
r
P
u
bl
ic
at
io
n

References

[1] Castillo-Passi, C., Coronado, R., Varela-Mattatall, G., Alberola-López, C., Bot-
nar, R., Irarrazaval, P.: KomaMRI.jl: An open-source framework for general
MRI simulations with GPU acceleration. Magn. Reson. Med. 90, 329–342 (2023)
https://doi.org/10.1002/mrm.29635

[2] Treceño-Fernández, D., Calabia-Del-Campo, J., Bote-Lorenzo, M.L., Gómez-
Sánchez, E., Luis-Garćıa, R., Alberola-López, C.: A Web-Based Educational
Magnetic Resonance Simulator: Design, Implementation and Testing. Journal of
Medical Systems 44, 1–11 (2019) https://doi.org/10.1007/s10916-019-1470-7

[3] Weine, J., McGrath, C., Kozerke, S.: CMRSeq - A Python package for intu-
itive sequence design. In: 2023 ISMRM & ISMRT Annual Meeting & Exhibition,
Toronto, Canada (2023). https://archive.ismrm.org/2023/2398.html

[4] Artiges, A., Saimbhi, A.S., Castillo-Passi, C., Lattanzi, R., Block, K.T.: mtrk—A
flexible environment for developing open-source MRI pulse sequences. Magn.
Reson. Med. (2025) https://doi.org/10.1002/mrm.70067

[5] Magland, J.F., Li, C., Langham, M.C., Wehrli, F.W.: Pulse sequence program-
ming in a dynamic visual environment: SequenceTree. Magn. Reson. Med. 75(1),
257–265 (2016) https://doi.org/10.1002/mrm.25640

[6] Nielsen, J.-F., Noll, D.C.: TOPPE: A framework for rapid prototyping of MR
pulse sequences. Magn. Reson. Med. 79(6), 3128–3134 (2018) https://doi.org/10.
1002/mrm.26990

[7] Cordes, C., Konstandin, S., Porter, D., Günther, M.: Portable and platform-
independent MR pulse sequence programs. Magn. Reson. Med. 83(4), 1277–1290
(2020) https://doi.org/10.1002/mrm.28020

[8] Cencini, M., Wang, K., Huang, S., Schulte, R.F., Sprenger, T., Noll, D.C., Tosetti,
M., Nielsen, J.-F.: Pulserver: an open-source Pulseq-based client-server framework
for vendor agnostic, interactive MR sequence design. In: 2025 ISMRM & ISMRT
Annual Meeting & Exhibition., Honolulu, Hawaii, USA (2025). https://archive.
ismrm.org/2025/1275 4GECnHR7z.html

[9] Konstandin, S., Günther, M., Hoinkiss, D.C.: gammaSTAR: A framework for the
development of dynamic, real-time capable MR sequences. Magn. Reson. Med.
94(4), 1485–1499 (2025) https://doi.org/10.1002/mrm.30573

[10] Layton, K.J., Kroboth, S., Jia, F., Littin, S., Yu, H., Leupold, J., Nielsen, J.-
F., Stöcker, T., Zaitsev, M.: Pulseq: A rapid and hardware-independent pulse
sequence prototyping framework. Magn. Reson. Med. 77(4), 1544–1552 (2017)
https://doi.org/10.1002/mrm.26235

15

https://doi.org/10.1002/mrm.29635
https://doi.org/10.1007/s10916-019-1470-7
https://archive.ismrm.org/2023/2398.html
https://doi.org/10.1002/mrm.70067
https://doi.org/10.1002/mrm.25640
https://doi.org/10.1002/mrm.26990
https://doi.org/10.1002/mrm.26990
https://doi.org/10.1002/mrm.28020
https://archive.ismrm.org/2025/1275_4GECnHR7z.html
https://archive.ismrm.org/2025/1275_4GECnHR7z.html
https://doi.org/10.1002/mrm.30573
https://doi.org/10.1002/mrm.26235

S
u
bm

it
te
d
fo
r
P
u
bl
ic
at
io
n

[11] Ravi, K.S., Geethanath, S., Vaughan, J.T.: PyPulseq: A Python Package for
MRI Pulse Sequence Design. Journal of Open Source Software 4(42), 1725 (2019)
https://doi.org/10.21105/joss.01725

[12] Tönnes, C., Licht, C., Schad, L.R., Zöllner, F.G.: VirtMRI: a tool for teaching
MRI. Journal of Medical Systems 47(1), 110 (2023) https://doi.org/10.1007/
s10916-023-02004-4

[13] Stöcker, T., Vahedipour, K., Pflugfelder, D., Shah, N.: High-performance com-
puting MRI simulations. Magn. Reson. Med. 64(1), 186–193 (2010) https://doi.
org/10.1002/mrm.22406

[14] Liu, F., Kijowski, R., Block, W.: MRiLab: performing fast 3D parallel MRI numer-
ical simulation on a simple PC. In: 2013 ISMRM & ISMRT Annual Meeting &
Exhibition, vol. 2072. Salt Lake City, Utah, USA (2013). https://ismrm.gitlab.
io/2013/2373.html

[15] Liu, F., Velikina, J., Block, W., Kijowski, R., Samsonov, A.: Fast realistic MRI
Simulations based on Generalized Multi-Pool Exchange Tissue Model. IEEE
Transactions on Medical Imaging 36(2), 527–537 (2016) https://doi.org/10.1109/
TMI.2016.2620961

[16] Weine, J., McGrath, C., Dirix, P., Buoso, S., Kozerke, S.: CMRsim–A python
package for cardiovascular MR simulations incorporating complex motion and
flow. Magn. Reson. Med. 91(6), 2621–2637 (2024) https://doi.org/10.1002/mrm.
30010

[17] Kose, R., Kose, K.: Blochsolver: A GPU-optimized fast 3D MRI simulator for
experimentally compatible pulse sequences. Journal of Magnetic Resonance 281,
51–65 (2017) https://doi.org/10.1016/j.jmr.2017.05.007

[18] Xanthis, C., Venetis, I., Chalkias, A., Aletras, A.: MRISIMUL: a GPU-based
parallel approach to MRI simulations. IEEE Transactions on Medical Imaging
33(3), 607–617 (2014) https://doi.org/10.1109/tmi.2013.2292119

[19] Xanthis, C., Venetis, I., Chalkias, A., Aletras, A.: High performance MRI sim-
ulations of motion on multi-GPU systems. Journal of Cardiovascular Magnetic
Resonance 16(1), 48 (2014) https://doi.org/10.1186/1532-429X-16-48

[20] Xanthis, C., Aletras, A.: coreMRI: A high-performance, publicly available MR
simulation platform on the cloud. PLOS ONE 14(5), 1–26 (2019) https://doi.
org/10.1371/journal.pone.0216594

[21] Villacorta-Aylagas, P., Castillo-Passi, C., Kierulf, R., Menchón-Lara, R.M.,
Rodŕıguez-Galván, J.R., Sierra-Pallares, J., Irarrazaval, P., Alberola-López, C.:
Versatile and Highly Efficient MRI Simulation for Arbitrary Motion in KomaMRI.
Magn. Reson. Med. (2025) https://doi.org/10.1002/mrm.70145 . (Early view)

16

https://doi.org/10.21105/joss.01725
https://doi.org/10.1007/s10916-023-02004-4
https://doi.org/10.1007/s10916-023-02004-4
https://doi.org/10.1002/mrm.22406
https://doi.org/10.1002/mrm.22406
https://ismrm.gitlab.io/2013/2373.html
https://ismrm.gitlab.io/2013/2373.html
https://doi.org/10.1109/TMI.2016.2620961
https://doi.org/10.1109/TMI.2016.2620961
https://doi.org/10.1002/mrm.30010
https://doi.org/10.1002/mrm.30010
https://doi.org/10.1016/j.jmr.2017.05.007
https://doi.org/10.1109/tmi.2013.2292119
https://doi.org/10.1186/1532-429X-16-48
https://doi.org/10.1371/journal.pone.0216594
https://doi.org/10.1371/journal.pone.0216594
https://doi.org/10.1002/mrm.70145

S
u
bm

it
te
d
fo
r
P
u
bl
ic
at
io
n

[22] Nurdinova, A., Ruschke, S., Gestrich, M., Stelter, J., Karampinos, D.C.: GPU-
accelerated JEMRIS for extensive MRI simulations. Magnetic Resonance Mate-
rials in Physics, Biology and Medicine, 1–16 (2025) https://doi.org/10.1007/
s10334-025-01281-z

[23] Montin, E., Carluccio, G., Collins, C.M., Lattanzi, R.: CAMRIE - Cloud-
Accessible MRI Emulator. In: 2020 ISMRM & ISMRT Annual Meeting &
Exhibition. Virtual Conference, p. 1037 (2020). https://archive.ismrm.org/2020/
1037.html

[24] Montin, E., Serrallés, J.E.C., Giannakopoulos, I., Artiges, A., Castillo-Passi, C.,
Lattanzi, R.: A Modular End-to-End Open-Source Software Pipeline to Simu-
late the Entire MRI Experiment. In: 2025 ISMRM & ISMRT Annual Meeting
& Exhibition., Honolulu, Hawaii, USA (2025). https://archive.ismrm.org/2025/
0943.html

[25] Haas, A., Rossberg, A., Schuff, D.L., Titzer, B.L., Holman, M., Gohman, D., Wag-
ner, L., Zakai, A., Bastien, J.: Bringing the web up to speed with webassembly.
SIGPLAN Not. 52(6), 185–200 (2017) https://doi.org/10.1145/3140587.3062363

[26] Liang, Z., Lauterbur, P.C.: Principles of Magnetic Resonance Imaging: A Signal
Processing Perspective, 1st edn. IEEE Press Series on Biomedical Engineering.
Wiley–IEEE Press, New York, NY (1999)

[27] Bernstein, M.A., King, K.F., Zhou, X.J.: Handbook of MRI Pulse Sequences.
Elsevier, Burlington, M.A., USA (2004)

[28] Saloner, D.: The AAPM/RSNA physics tutorial for residents. An introduction to
MR angiography. RadioGraphics 15(2), 453–465 (1995) https://doi.org/10.1148/
radiographics.15.2.7761648 . PMID: 7761648

[29] Villacorta-Aylagas, P., Castillo-Passi, C., Irarrázaval, P., Simmross-Wattenberg,
F., Rodŕıguez-Cayetano, M., Alberola-López, C.: A Free and Open-Source Web
Application for Pulse Sequence Development and Simulation . In: ISMRM Iberian
Chapter Annual Meeting 2025. ISMRM, Barcelona, Spain (2025)

17

https://doi.org/10.1007/s10334-025-01281-z
https://doi.org/10.1007/s10334-025-01281-z
https://archive.ismrm.org/2020/1037.html
https://archive.ismrm.org/2020/1037.html
https://archive.ismrm.org/2025/0943.html
https://archive.ismrm.org/2025/0943.html
https://doi.org/10.1145/3140587.3062363
https://doi.org/10.1148/radiographics.15.2.7761648
https://doi.org/10.1148/radiographics.15.2.7761648

	Introduction
	Design and Implementation
	Design objectives
	Functional Design
	Graphical Sequence Editor
	Sequence Diagram Viewer
	3D Slice Viewer
	Simulation Result Viewer

	Back-end Module and front-end integration

	Results
	Application overview. GUI and Features
	User Workflow and Examples
	EPI
	Spin Echo

	Motion, CMR and MRA Simulation
	Performance

	Discussion
	Conclusion

