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ABSTRACT
Within the symmetric inverse eigenvalue problem, the case of bisymmetric Jacobi
matrices occupies a central place, since for any strictly monotone list of n real
numbers there exists a unique bisymmetric Jacobi matrix realizing the list. Apart
from their meaning in several issues such physics, mechanics, statistics, to cite some
of them, the families of this kind of matrices whose spectrum is known are used as
models for testing the different algorithms to recover the entries of matrices from
spectra data. However, the spectrum is known only for a few families of bisymmetric
Jacobi matrices and the examples mainly refer to the case when the spectrum is given
by a linear or quadratic function of the order and of the row index. In the first part
of the paper, we join all known cases by proving a general result about bisymmetric
Jacobi realizations of strictly monotone sequences that are quadratic at most. In the
second part we focus on the nonnegative bisymmetric realizations, obtaining new
necessary conditions for a given list to be realized by a nonnegative bisymmetric
Jacobi matrix. The main novelty in our techniques is considering the gaps between
the eigenvalues instead of focusing on the eigenvalues themselves. In the last part of
the paper, we explicitly obtain the bisymmetric realization of any list for order less
or equal to six.
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1. Introduction

Throughout the paper, for given n ∈ N∗, en ∈ Rn denotes the vector of all ones,
whereas In is the identity matrix of order n. As a general rule, we drop the subindex
n when it does not lead to confusion. Given v = (v1, . . . , vn) ∈ Rn, v′ denotes the
decreasing rearrangament of v; that is v′ = (v′1, . . . , v

′
n) with v′1 ≥ · · · ≥ v′n. We write

v ≥ 0, respectively v > 0, when v′n ≥ 0, respectively v′n > 0. Analogous notations are
in force for v ≤ 0 and v < 0 or even for square matrices of order n with real entries.
If v,w ∈ Rn, then v < w (respectively v ≤ w) means that w − v > 0 (respectively
w − v ≥ 0).

Here we deal with n× n real symmetric matrices. If M is such a matrix, it is well-
known that its eigenvalues are real and moreover the matrix is orthogonally similar
to a diagonal one. The set of eigenvalues of M, considering multiplicities, is denoted
by Λ(M). We always assume that the list Λ(M) = {λ1(M), · · · , λn(M)} is ordered in
decreasing order; that is, λ1(M) ≥ · · · ≥ λn(M).
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The symmetric inverse eigenvalue problem aims to determine if, for a given list of n
ordered real values, say Λ = {λ1, · · · , λn}, there exists an n-order symmetric matrix M
such that Λ = Λ(M), in which case we say that M realizes Λ. Clearly, M realizes Λ iff

QΛ(x) =
n∏
k=1

(x−λk) is the characteristic polynomial of M, det(xI−M). Stated in these

terms, the problem becomes trivial, because any diagonal matrix whose entries are
the λ′s solves it. Therefore additional properties on the family of the matrix realizing
the given list are considered, as irreducibility and/or nonnegativeness, or specifying
the structure of the family, as for instance demanding the realization by tridiagonal
matrices.

Many partial results around this problem have been obtained along the last fifty
years, given either necessary or sufficient conditions on the list and focusing the prob-
lem on specific families of matrices (and hence specializing the corresponding given list
to this kind of matrices). For instance, Perron-Frobenius’ theory assures that λ1 ≥ |λj |,
j = 2, . . . , n and λ1 simple are necessary conditions for Λ to be the spectrum of a some
non-negative and irreducible matrix. In this case, λ1 is called the dominant eigen-
value or the Perron eigenvalue. Moreover, if λ1 + λn = 0 then λi + λn+1−i = 0 for
i = 2, . . . , dn2 e. Therefore, when λ1 + λn = 0 any realization of Λ by a non-negative
and irreducible matrix has all its diagonal entries null.

The essential monograph [21], edited in Russian at the beginning of the forties
of the past century, coined the term Jacobi matrix to refer to a tridiagonal matrix
with real coefficients; that is, a square matrix J = (aij) satisfying that aij = 0 for
|i − j| > 1. Then, J is irreducible iff akk+1ak+1k 6= 0, k = 1, . . . , n − 1. In addition,
when akk+1ak+1k ≥ 0, k = 1, . . . , n−1, then J is isospectral with the symmetric Jacobi

matrix Ĵ = (âij), where âkk = akk, k = 1 . . . , n, and âkk+1 = âk+1,k =
√
akk+1ak+1k,

k = 1, . . . , n− 1, see [18, Lemma 0.1.1], which implies that each eigenvalue of J is real
and simple. As a conclusion of the above properties, most of the real lists Λ realizable
by irreducible tridiagonal matrices are realizable by a symmetric tridiagonal matrix
with positive secondary diagonal. In fact, due to the above properties, nowadays, and
specially in the context of the reconstruction matrices from spectral data, it is com-
monly accepted that the term Jacobi matrix means a real, symmetric, tridiagonal
matrix, J = (aij) such that akk+1 = ak+1k > 0, k = 1, . . . , n− 1, see [4,5,13,22,24,26–
29,41]. This will be the point of view in this work so, in what follows, we denote it by
J(a, b), where a = (a1, . . . , an) ∈ Rn and b = (b1, . . . , bn−1) ∈ Rn−1, b > 0, the Jacobi
matrix

J(a, b) =



a1 b1 0 · · · 0

b1 a2 b2
. . .

...

0
. . .

. . .
. . . 0

...
. . .

. . . an−1 bn−1

0 · · · 0 bn−1 an

 .

We remark that we always assume that b > 0, and hence that J(a, b) is irreducible.
Therefore, if J(a, b) realizes a list Λ, then there exist infinite nonsymmetric Jacobi
matrices J = (aij) with the same diagonal a and realizing the same list Λ: For any

akk+1 > 0, k = 1, . . . , n − 1 the choice ak+1k =
b2k

akk+1
, k = 1, . . . , n − 1, leads to

an irreducible tridiagonal matrix realizing Λ. Notice that the nonnegativeness of the
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off-diagonal entries; that is b > 0, is a necessary condition to achieve some kind of
uniqueness of the realization, since when b > 0, J(a, b) and J(a, b̂) where b̂k = ±bk,
k = 1, . . . , n are isospectral via signature matrices. In particular, we could choose
akk+1 = ak+1k = ±bk, k = 1, . . . , n − 1, so the signs of the b′s is irrelevant for
realizability and there exist 2n−1 different irreducible and symmetric realizations with
the same diagonal a. This kind of hypotheses on b are also assumed in the literature, see
for instance [22,38–40] where the considered symmetric Jacobi matrices have b < 0 and
hence they are Z-matrices. It is the case in papers related with combinatorial issues,
where Jacobi matrices are interpreted as Laplacians or more generally Schrödinger
operators on a path, see for instance [2]. Besides, in [18] the Jacobi matrix J(a, b)
is called normal Jacobi matrix when it is a Z-matrix; that is, b ≤ 0 (however, in
[21] the term normal refers to the case b > 0). We hope that this type of possible
misunderstandings does not occur here, where we always assume the hypothesis b > 0.

Tridiagonal or Jacobi matrices appear in many areas of applied mathematics, see
previous references and other mentions that we make later in the paper. Many of them
are closely related to the interpretation of the linear systems whose coefficient matrix is
a Jacobi matrix as a discrete self-adjoint boundary value problem, specifically a Sturm-
Liouville problem; thus linking Jacobi matrices with the so-called three-terms recur-
rences and hence with orthogonal polynomials, some combinatorial sequences, and so
on. Of course, keeping the three-term recurrence, more general boundary conditions
could be considered. In particular, periodic boundary conditions lead to the so-called
periodic Jacobi matrices, see [16,17] and references therein for a general treatment of
this theory. Therefore, λ ∈ R is an eigenvalue for J

(
a, b
)

iff there exists z = (z1, . . . , zn)
non null satisfying

(a1 − λ)z1 + b1z2 = 0,
bk−1zk−1 + (ak − λ)zk + bkzk+1 = 0, k = 2, . . . , n− 1,

bn−1zn−1 + (an − λ)zn = 0

 (1)

which, in the boundary value problems terminology, means that the Sturm-Liouville
problem (1) is not regular. This point of view already appeared in the well-known
book [42], see the formula 48.1, 48.2 and 48.3 there. Irreducibility implies that for any
data w ∈ Rn, any initial value problem, zk = α, zk+1 = β, where 1 ≤ k ≤ n− 1, has a
unique solution. Moreover, standard arguments from Sturm-Liouville problems show
that the space of solutions of (1) has dimension 1 at most, or equivalently, that the
nullity of J(a − λe, b) equals 1, see [18, Lemma 0.1.1] for an alternative proof, based
on matrix theory.

Fixed n and a list Λ ⊂ R with n different values, if we ask for the possible Jacobi
matrices of order n realizing Λ, we see that we need to determine 2n− 1 entries from
n data. So, in order to obtain a unique solution, we need to give n− 1 additional data
at least. This additional data could be focus either on n − 1 additional spectra data,
see [4,5,24,26–29,40,41] or in the inner structure of the matrix. This last option is the
one we adopted in this paper.

The Jacobi matrix J(a, b) is called bisymmetric when it is symmetric about both of
its main diagonals; that is, when its entries satisfy that ak = an+1−k, k = 1, . . . , n and
bk = bn−k, k = 1, . . . , n− 1, or equivalently

ak = an+1−k and bk = bn−k, k = 1, . . . ,
⌈
n
2

⌉
. (2)

The structure of both general bisymmetric matrices and their spectrum were described
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by A. Cantoni and P. Butler in [9]. In the third section, we specify these results for
Jacobi matrices, the kind of matrices we are dealing with in this work.

Notice that bisymmetry reduces to n the number of entries to determine, so it is
reasonable to expect that there is only one Jacobi bisymmetric matrix realizing a given
list with n different values. The interpretation of bisymmetry in terms of the related
mechanical systems can be found for instance in the monography [22, Section 4.6], see
also [39].

In the 1970s, H. Hochstadt proved that given an ordered list Λ there exists at most
one bisymmetric Jacobi matrix J(a, b) with b > 0 realizing Λ, see [27, Theorem 3], and
O. Hald showed that such a matrix exists, see [26, Theorem 3]. Both authors obtained
their results as consequence of their reasonings to solve the Jacobi Inverse Eigenvalue
Problem (JIEP), that are strongly based on interlacing, so imposing n− 1 additional
spectral data. They also proved the continuous dependence of J(a, b) from the data,
describing an algorithm for its construction which however is unstable, see also the
work by L. J. Gray and D. G. Wilson [24, Theorem 1] for an alternative proof. Just a
couple of years later, C. de Boor and G. H. Golub developed an efficient algorithm to
obtain J(a, b), based on orthogonal polynomials, and hence in the known three-term
recurrence, see [4, Section 4]. In this paper, the problem of finding a bisymmetric
Jacobi matrix, called there Problem C, is also considered, incorporating some valuable
comments about the intriguing choice of the weights, that already appeared in [27],
see also [22, section 4.3] for an explanation.

Summing up, in this paper we are interested in the spectral properties of bisymmetry
Jacobi matrices, specially in the nonnegative inverse eigenvalue problem. We remark
that apart from their physical meaning, Jacobi bisymmetric matrices are important
because each list characterizes a unique Jacobi bisymmetric matrix realizing it.

Since we are interested in (non-negative) realizability characterizations, it is im-
portant to have examples of bisymmetric Jacobi matrices for which the spectrum is
known. In fact, many of these kinds of matrices are used as test problems to verify the
efficiency of some algorithms to compute eigenvalues and also in regard to its stability,
see the comments in [23, Section 1]. However, we also remark that, despite having a
very simple structure, in general Jacobi matrices, or even bisymmetric Jacobi matrices,
with closed form eigenvalues are rare.

The paper is organized as follows. In Section 2, we survey the known realizations
of ordered lists from bisymmetric Jacobi matrices. Perhaps the main novelty consists
in presenting the known results in a fairly unified way. It is surprising that most of
the known realizable lists correspond to two specific types of bisymmetric matrices
whose entries either have a slight periodicity (generally of period 2 at most) or are
linear or quadratic functions of the order of the matrix and of the row index, which
leads to lists of eigenvalues of the same kind, quadratic at most. It is also surprising
how the same results appear rediscovered several times in the numerous publications
in this field. In Section 3, we present the specialization of the JNIEP to bisymmetric
matrices. The main novelty in our treatment is that we focus the reasonings on the gaps
between eigenvalues instead on the eigenvalues themselves. The idea of considering the
sequence of gaps appears from our results in low order bisymmetric Jacobi matrices
and, in fact, was implicit in many of the mentioned references, see for instance [23],
where a more than implicit mention to gaps is made. We first translate into terms
of gaps the necessary conditions on the given list to be realizable by a nonnegative
Jacobi matrix obtained in [20]. For the case of bisymmetric realizations, we show
that, for a given gap sequence, there exists a threshold value for the lower eigenvalue,
assuring the non-negativeness. Moreover, the adaptation of the results by Cantoni and
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Butler to bisymmetric Jacobi matrices allows us to obtain explicitly two entries of the
realizing matrix and hence a new necessary condition on the gaps for nonnegative
bisymmetric Jacobi realizability. The last section of the paper is devoted to obtaining
the unique (nonnegative) bisymmetric Jacobi realization for an ordered list with low
order, meaning n ≤ 6.

2. Known bisymmetric Jacobi realizations

The purpose of this section is to survey the (few) families of bisymmetric Jacobi
matrices for which the spectrum is known. Basically, two kinds of matrices J(a, b)
have been analyzed: the first one is related to vectors a and b with periodic entries
and the second corresponds to vectors a and b whose entries are given by linear or
quadratic functions of the order and the row index.

2.1. Periodic entries

We consider here Jacobi matrices J(a, b) whose coefficients a and b are periodic; that
is, there exists p ∈ N∗ such that ak = ak+p, k = 1, . . . , n − p and bk = bk+p, k =
1, . . . , n− 1− p. The known cases are reduced to very low periods, p = 1, 2. Of course,
the case p = 1 corresponds to constant diagonals and in this case J(a, b) is known as
Jacobi-Toeplitz matrix.

We analyze first a slight variation of the 1-periodic case, that appears in the dis-
cretization of boundary value problems for second order linear differential equations,
see for instance [7], specially Section 5. In this case, a = (α, a, . . . , a, α) ∈ Rn, α ∈ R
and b = b en−1 ∈ Rn−1, b > 0. Notice that the choice α = a becomes the 1-periodic
case. Applying techniques from discrete Sturm-Liouville problems, see [2], we obtain
that λ ∈ R is an eigenvalue of the bisymmetric Jacobi matrix J(a, b) iff λ is a root of
the n degree polynomial

P (x) =
[
(α− a)2 − b2

]
Un−2

(x− a
2b

)
− b
[
2α− a− x

]
Un−1

(x− a
2b

)
,

where Uk denotes the Chebyshev polynomial of second kind, see [33] for the definition
and the main properties and also [2]. In general, no closed formulas to obtain the roots
of the above Chebyshev polynomials are available. Therefore, this is a good example of
how complicated the computation of the eigenvalues of bisymmetric Jacobi matrices
is, even when the matrix has a nice and simple structure. However, since the roots
Um(z) are cos

( jπ
m+1

)
, j = 1, . . . ,m, see [33, Section 2.2], when P becomes a multiple

of Um, then we have a closed formula for the eigenvalues of the given Jacobi matrix.
Next, we list these cases that have appeared periodically in the literature (we newly
remark that we are only considering the bisymmetric examples), see [43,44].

1. α = a, see [25, Example 7.4] and also [34, page 514]. In this case,

P (x) = −b2Un
(x− a

2b

)
,

which implies that Λ
(
J(a, b)

)
=
{
a+ 2b cos

( kπ

n+ 1

)}n
k=1

.
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2. α = a+ b, see [25, Example 7.7]. In this case,

P (x) = −b(a+ 2b− x)Un−1

(x− a
2b

)
,

which implies that Λ
(
J(a, b)

)
=
{
a+ 2b cos

(π
n

(k − 1)
)}n

k=1
.

3. α = a− b, see [44, Theorem 4]. In this case, we obtain that

P (x) = −b
[
a− 2b− x

]
Un−1

(x− a
2b

)
,

which implies that Λ
(
J(a, b)

)
=
{
a+ 2b cos

(kπ
n

)}n
k=1

.

The particular choice a = 0 was considered in [7, Identity (25)]. All the three cases are
also considered in [12, Theorem 2], where the main motivation was the discretization
of some boundary value problems as an intermediate step to study Navier-Stokes
equations with non-slip boundary conditions.

When the period p = 2, to the best of our knowledge, the only bisymmetric example
in the literature corresponds to n odd, which implies that b = b en−1, b > 0, see for
instance [31,32]. Then, the ordered eigenvalues are, see [25, Example 7.9],

λk =
1

2

[
a1 + a2 +

√
(a1 − a2)2 + 16b2 cos2

( kπ

n+ 1

)]
, k = 1, . . . , bn2 c,

λdn
2
e = a1,

λk+dn
2
e =

1

2

[
a1 + a2 −

√
(a1 − a2)2 + 16b2 cos2

( kπ

n+ 1

)]
, k = 1, . . . , bn2 c.

When a2 = a1 we recover the 1-periodic case above.
The following variant, where only the main diagonal has 2-periodic entries and

b ∈ Rn−1 is given by bk = b
√
k(n− k), b > 0, k = 1, . . . , n − 1, was analyzed in [32,

Section 2]. Then, the ordered eigenvalues are

λk =
1

2

[
a1 + a2 +

√
(a1 − a2)2 + 16b2(bn2 c − k)2

]
, k = 1, . . . , bn2 c,

λdn
2
e = a1,

λk+dn
2
e =

1

2

[
a1 + a2 −

√
(a1 − a2)2 + 16b2k2

]
, k = 1, . . . , bn2 c.

When a2 = −a1 we recover the alternating main diagonal entries case, studied in
[31].

2.2. Eigenvalues as a strictly monotone quadratic sequence

The known examples of Jacobi matrices J(a, b), whose entries are given by linear or
quadratic functions of the order and the row index, correspond to Jacobi matrices
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whose eigenvalues are linear or quadratic functions of the order and the row index of
the matrix.

For a quadratic sequence, we understand
{
νk
}

given by

νk = γk2 + βk + α, k ∈ N∗,

where α, β, γ ∈ R. Clearly, quadratic sequences encompass linear sequences, that cor-
respond to taking γ = 0. Given m ≥ 3, then νm−k = νk for some k = 1, . . . ,m − 1
such that 2k 6= m iff β = −mγ and hence we can express the sequence as

νk = −γ(ρ+ k)(ρ+m− k) + γρ(ρ+m) + α, k = 1, . . . ,m− 1,

for any ρ ∈ R. Therefore, the only linear sequences a or b that could appear in a
bisymmetric Jacobi matrix J(a, b) are constant.

For the reason that will be clear in the next sections, we prefer to tackle the problem
from the structure of the eigenvalues. So, given n ∈ N, n ≥ 2, the non constant
sequences with n terms we deal with here are expressed as

µk = ck2 + (2b− c)k + a− 2b, k = 1, . . . , n, (3)

where a, b, c ∈ R and |c|+ |b| > 0, since otherwise µk = a− 2b and hence the sequence
is constant. It is clear that the sequence is linear when c = 0, quadratic when c 6= 0
and in both cases describes the most general sequence of these types. Of course, the
above sequence can also be expressed in the flipped way as

µn+1−k = (n− k)
[
c(n+ 1− k) + 2b

]
+ a, k = 1, . . . , n,

and
{
µk
}n
k=1

is strictly increasing iff
{
µn+1−k

}n
k=1

is strictly decreasing. Obviously,
each µk is an integer when a, b, c are integers.

On the other hand, µk − µk+1 = −2(b + ck), k = 1, . . . , n − 1, which implies that{
µk
}n−1

k=1
is strictly decreasing iff either b < c(1−n) when c ≥ 0 or b < −c when c < 0,

whereas
{
µk
}n−1

k=1
is strictly increasing iff either b > −c when c ≥ 0 or b > c(1 − n)

when c < 0. Summing up and defining
b

0
= −∞ when b < 0 and

b

0
= +∞ when b > 0,

the sequence
{
µk
}n−1

k=1
is strictly monotone iff c−1b /∈ [1− n,−1].

Next, we join in a common statement all known results about the realizability of the
strictly monotone quadratic sequence

{
µk
}n
k=1

. Since, to the best of our knowledge,
such a result does not appear explicitly in the literature, we include here a proof for
the sake of completeness. It is strongly based on the proof given in [39, Theorem 1]
for a particular case.

Theorem 2.1. Given n ∈ N, n ≥ 2, a, b, c ∈ R, such that |c| + |b| > 0 and c−1b /∈
[1− n,−1], consider the sequence

µk = ck2 + (2b− c)k + a− 2b, k = 1, . . . , n,
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and the vectors an ∈ Rn and bn−1 ∈ Rn−1 whose entries are

ank = −c
[
(n− k)2 + (k − 1)2

]
+ (n− 1)(b+ cn) + a, k = 1, . . . , n,

bn−1
k =

√
k(n− k)(b+ ck)

(
b+ c(n− k)

)
, k = 1, . . . , n− 1.

Then J(an, bn−1) is bisymmetric and

Λ
(
J(an, bn−1)

)
=


{
µn+1−k

}n
k=1

,
if either c ≥ 0 and b > −c,
or c < 0 and b > c(1− n),

{
µk
}n
k=1

,
if either c ≥ 0 and b < c(1− n),
or c < 0 and b < −c.

Proof. We proceed by induction on n to prove that the spectrum of the bisymmetric
Jacobi matrix J(an, bn−1) is {µk}nk=1. First, for n = 2 we have that c−1b 6= −1, so
b 6= −c and hence |b+ c| > 0. Moreover,

J(a2, b1) =

[
a+ b+ c |b+ c|
|b+ c| a+ b+ c

]

whose eigenvalues are µ1 = a and µ2 = a+ 2(b+ c).
Assume that the claim is true for n ≥ 2 and take a, b, c ∈ R such that c−1b /∈

[−n,−1], which implies that c−1b /∈ [1− n,−1]. Consider the values

hk =
√

(n+ 1− k)
∣∣b+ c(n+ 1− k)

∣∣, k = 1, . . . , n+ 1,

rk =
√
k|b+ ck|, k = 0, . . . , n.

Notice that the hypothesis on b and c implies that either b+ck > 0 for any k = 1, . . . , n
or b + ck < 0 for any k = 1, . . . , n and hence, hkrk = bnk , k = 1, . . . , n and also

hk+1rk = bn−1
k , k = 1, . . . , n− 1.

Define the matrix M = (mij) ∈ M(n+1)×(n+1)(R) whose entries are given by
mjj = hj , j = 1, . . . , n + 1, by mj+1j = rj , j = 1, . . . , n and by 0 otherwise. Then,

M>M =

[
J(d̂, bn−1) 0>

0 0

]
where d̂k = h2

k + r2
k, k = 1, . . . , n, whereas MM> = J(d, bn)

where dk = h2
k + r2

k−1, k = 1, . . . , n+ 1. On the other hand µn+1 = cn2 +n(2b+ c) +a.

If b+ ck > 0, k = 1, . . . , n, then

dk = c
[
(n+ 1− k)2 + (k − 1)2

]
+ nb = µn+1 − an+1

k , k = 1, . . . , n+ 1,

d̂k = c
[
(n+ 1− k)2 + k2

]
+ (n+ 1)b

= c
[
(n− k)2 + (k − 1)2

]
+ 2nc+ (n+ 1)b = µn+1 − ank , k = 1, . . . , n

which implies that

M>M = µn+1In+1 −

[
J(an,−bn−1) 0>

0 µn+1

]
, MM> = µn+1In+1 − J(an+1,−bn).
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Taking into account that J(an,−bn−1) and J(an, bn−1) are isospectral and also that
J(an+1,−bn) and J(an+1, bn) are isospectral, from the first identity, and applying the
induction hypothesis, the eigenvalues of M>M are µn+1 − µk, k = 1, . . . , n + 1. Since
MM> has the same eigenvalues as M>M, from the second identity, we conclude that
the eigenvalues of J(an+1, bn) are µk, k = 1, . . . , n+ 1.

If b+ ck < 0, k = 1, . . . , n, then

dk = −c
[
(n+ 1− k)2 + (k − 1)2

]
− nb = an+1

k − µn+1, k = 1, . . . , n+ 1,

d̂k = −c
[
(n+ 1− k)2 + k2

]
− (n+ 1)b

= −c
[
(n− k)2 + (k − 1)2

]
− 2nc− (n+ 1)b = ank − µn+1, k = 1, . . . , n

which implies that

M>M =

[
J(an, bn−1) 0>

0 µn+1

]
− µn+1In+1, MM> = J(an+1, bn)− µn+1In+1.

From the first identity, and applying the induction hypothesis, the eigenvalues of
M>M are µk − µn+1, k = 1, . . . , n+ 1 and from the second identity, we conclude that
the eigenvalues of J(an+1, bn) are µk, k = 1, . . . , n+ 1.

Observe that the entries of an can also be expressed as

ank = 2c(k − 1)(n− k) + a+ (b+ c)(n− 1), k = 1, . . . , n,

and also as

ank = 2ck(n+ 1− k) + n(b− c) + a− b− c, k = 1, . . . , n.

As by-products of the previous general theorem, some specific results that appear
in the literature can be obtained. The first one refers to the Jacobi realizability of a
list given in arithmetic progression; that is, when c = 0. The result is well known and
basically corresponds to the symmetric version of the so called Kac-Sylvester matrix,
also named Clement matrix, whose origins go back to the nineteenth century, see [36],
but appears recurrently in the literature, see [3,6,8,11,35] and also [15,19,30,37] for
some applications of this kind of matrices in the analysis of random walks and some
problems from statistical mechanics or quantum physics.

Corollary 2.2. Given n ∈ N, n ≥ 2, a, b ∈ R, such that b 6= 0, consider the vectors
a ∈ Rn and b ∈ Rn−1 whose entries are

ak = b(n− 1) + a, k = 1, . . . , n,

bk = |b|
√
k(n− k), k = 1, . . . , n− 1.

Then

Λ
(
J(a, b)

)
=


{

2b(n− k) + a
}n
k=1

, if b > 0,{
2b(k − 1) + a

}n
k=1

, if b < 0.
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The following cases refer to the realizability of non linear, quadratic and monotone
lists; that is, when c 6= 0. They are a sample of how quadratic lists are used as test
examples, and they reappear from time to time even in recent literature. We rename
the other parameters in Theorem 2.1 as cb and a−2cb instead of b and a, respectively.

Corollary 2.3 ([8, Section 5]). Given n ∈ N, n ≥ 2, a, b, c ∈ R, such that c 6= 0 and
b /∈ [1− n,−1], consider the vectors a ∈ Rn and b ∈ Rn−1 whose entries are

ak = 2ck(n+ 1− k) + c(b− 1)n(n− 1) + a, k = 1, . . . , n,

bk = |c|
√
k(n− k)(b+ k)(b+ n− k), k = 1, . . . , n− 1.

Then

Λ
(
J(a, b)

)
=



{
c(n+ 1− k)(n+ 2b− k) + a

}n
k=1

,
if c > 0 and b > −1,
or c < 0 and b < 1− n,{

ck(k + 2b− 1) + a
}n
k=1

,
if c > 0 and b < 1− n,
or c < 0 and b > −1.

The objective in [8] was to relate tridiagonal matrices with some orthogonal poly-
nomials. In fact, the above result appears in relation with the so-called Dual Hahn
Polynomials. We newly remark that we are considering here only bisymmetric matri-
ces.

The choice b = 1 in the above Corollary was considered by W. Chu in [10, Section
2] with the objective of introducing a family of tridiagonal matrices whose entries
depend on three parameters, really two, since one of them corresponds to a constant
diagonal value, all three being quadratic functions of the row index and the order.
He identified only six pairs of these values for which it is possible to compute their
eigenvalues. However, only one of these pairs, corresponding to b = 1, produces a
Jacobi bisymmetric matrix.

Considering −c and a + cn(n − 1) instead of c and a in the above corollary, the
choice b = 0 leads to the following result.

Corollary 2.4 ([14, Identity (2)]). Given n ∈ N, n ≥ 2, a, c ∈ R, such that c 6= 0,
consider the vectors a ∈ Rn and b ∈ Rn−1 whose entries are

ak = c
[
(k − 1)2 + (n− k)2

]
+ a,

bk = |c|k(n− k), k = 1, . . . , n− 1.

Then

Λ
(
J(a, b)

)
=


{
c
[
(2n− 1)2 − (2(n− k) + 1)2

]
+ a
}n
k=1

, if c < 0,{
c
[
(2n− 1)2 − (2k − 1)2

]
+ a
}n
k=1

, if c > 0.

We remark again that we are considering bisymmetric realizations and with the
notation of [14], the above corollary corresponds to taking s = 0 there. The choice
c = 1 was treated in [6, Sections 3-5].
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The most recent example corresponds, in a somewhat simplified form, to taking
b = (2m− 1) c2 , m > −1

2 , in Theorem 2.1.

Corollary 2.5 ([1, Section 2]). Given n ∈ N, n ≥ 2, a, c ∈ R, such that c 6= 0,
consider the vectors a ∈ Rn and b ∈ Rn−1 whose entries are

ak = a+ c
[
(2m+ 1)(n− 1) + 4(k − 1)(n− k)

]
, k = 1, . . . , n,

bk = |c|
√
k(n− k)

(
2(m+ k)− 1

)(
2(m+ n− k)− 1

)
, k = 1, . . . , n− 1.

Then

Λ
(
J(a, b)

)
=


{
a+ 2c(m+ n− k)2

}n
k=1

, if c > 0,{
a+ 2c(m+ k − 1)2

}n
k=1

, if c < 0.

The case m = 0 in the above corollary was solved in [39, Theorem 1]. Observe that
when a = 0 and m ∈ N, the eigenvalues are perfect squares, which is one of the main
motivations to consider this kind of matrices.

Of course many similar examples can be obtained by choosing an appropriate rela-
tion between c and b.

3. Bisymmetric nonnegative Jacobi matrices

Our aim in this section is to study the spectral properties of irreducible and bisymmet-
ric Jacobi matrices of order n. So, we consider J(a, b), where b > 0 and Λ

(
J(a, b)

)
=

{λ1, . . . , λn} is its (ordered) list of eigenvalues. We also study conditions on the list Λ
assuring the nonnegativeness of J(a, b).

At the end of the 1970s, S. Friedland and A.A. Melkman gave in [20] a very com-
plete list of necessary conditions on the given list Λ to be realized by an irreducible
and nonnegative Jacobi matrix. These conditions were shown sufficiently to solve the
JNIEP for order less than or equal to 6, see the last remark [20, pg. 253]. Below, we
mention these conditions, expressing them according to our techniques. However, ex-
cept for the easy case when the lowest element in the list Λ is nonnegative, neither of
the above conditions guarantees that the realizing nonnegative matrix is additionally
bisymmetric. Recently, R. Vaia and L. Spadini and also Andelić, da Fonseca, Kiliç
and Stanić, have treated the case in which the elements of the list Λ are proportional
to a sequence of squares of n successive integers. In this case, the realizing Jacobi
matrix is explicitly obtained and it is used to design arbitrarily long perfectly periodic
mass-spring chains, see [39, Theorem 2], returning to the initial motivation to study
bisymmetric Jacobi matrices in [21].

Our strategy is based on considering the gaps in the list Λ instead of considering
the elements of the list. Specifically, if Λ = {λ1, . . . , λn} is an ordered list, then the
gap sequence is gj = λj − λj+1, j = 1, . . . , n − 1. Clearly, gj > 0 for j = 1, . . . , n − 1

and λk = λn +

n−1∑
j=k

gj , for any k = 1, . . . , n. For instance, the gap sequence for the list

in [39] is gj = ω2
(
2(n− j)− 1

)
, j = 1, . . . , n− 1, where ω > 0.
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We call any positive vector in Rn−1 gap vector; that is, g ∈ Rn−1 such that g > 0.
If g = (g1, . . . , gn−1) is a gap vector, then g1, . . . , gn−1 is its associated gap sequence
and we define the (flipped) accumulated gap sequence as

µk(g) =

n−1∑
j=k

gj , k = 1, . . . , n. (4)

Clearly,
{
µk(g)

}n
k=1

is strictly decreasing and moreover µn(g) = 0, because we adopt
here the common agreement that empty sums equal 0. Since gk = µk(g)−µk+1(g), k =
1, . . . , n−1, the accumulated gap sequence determines the gap sequence or equivalently
the gap vector.

Given a gap vector g > 0, for any real value λ ∈ R we consider the ordered list
Λ(g;λ) =

{
λ+µk(g)

}n
k=1

and J(g;λ), the unique bisymmetric Jacobi matrix realizing
the list Λ(g;λ). Therefore, λ is the lowest eigenvalue of J(g;λ) and moreover

J(g;λ) = λIn + J(g), (5)

where J(g) = J(g; 0) is the unique bisymmetric Jacobi matrix realizing the accumulated
gap list Λ(g) = Λ(g; 0) =

{
µk(g)

}n
k=1

. The results mentioned in Section 1 ensure that,

given n ≥ 2, for any g ∈ (0,+∞)n−1, there exist unique vectors a(g) ∈ Rd
n

2
e and

b(g) ∈ Rb
n

2
c such that b(g) > 0 and

J(g) =



a1(g) b1(g) 0 · · · 0

b1(g) a2(g) b2(g)
. . .

...

0 b2(g)
. . .

. . . 0
...

. . .
. . . a2(g) b1(g)

0 · · · 0 b1(g) a1(g)

 . (6)

The extreme property of the Rayleigh quotient determines the inequalities
µn(g) = 0 < ak(g), bk(g) < µ1(g), k = 1, . . . , dn2 e, and hence a(g) > 0, see [26, Lemma
2]. In particular, J(g) > 0 and hence, J(g, λ) is nonnegative for λ ≥ 0. Moreover, for
any g > 0, the set of values λ ∈ R, such that the bisymmetric Jacobi matrix J(g;λ) is
also nonnegative, is the closed unbounded interval

[
−Φ(g),+∞

)
, where the threshold

value Φ(g) equals a′dn
2
e(g), since a′dn

2
e(g) = min

j=1,...,dn
2
e
{aj(g)}, and hence Φ(g) > 0.

If Θ ∈ R satisfies that Θ ≤ Φ(g) and λ ≥ −Θ, then J(g;λ) ≥ 0, whereas when Θ ≥
Φ(g) if J(g;λ) ≥ 0, necessarily λ ≥ −Θ. Therefore, any lower bound of the threshold
value leads to a sufficient condition for bisymmetric realizability and any upper bound
produces a necessary condition. As immediate consequences of the identity (4) and
the above reasonings we have the following result.

Proposition 3.1. Given g > 0, J(g;λ) is nonnegative when λ ≥ 0. Moreover, if for
some λ the matrix J(g, λ) is nonnegative, then it has null trace iff a(g) = a e, a > 0
and then Φ(g) = −λ = a.

Later, in Proposition 3.5 we characterize when the conditions of the above proposi-
tion hold; that is, when J(g, λ) has null diagonal entries. As we will see, this corresponds
to a certain symmetry of the gap sequence.
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Remark 1. Instead of basing our reasonings on gap sequence and the lowest eigen-
value, we could also consider µ = λ1 and hence, λk = µ−µ1(g)+µk(g), k = 1, . . . , n and

Ĵ(g;µ) the unique bisymmetric Jacobi matrix realizing the list
{
µ−µ1(g)+µk(g)}nk=1.

Therefore, Ĵ(g;µ) =
(
µ − µ1(g)

)
In + J(g) and hence Ĵ(g;µ) is nonnegative iff µ ∈[

µ1(g) + Φ(g),+∞
)
. Notice that if we define â(g) = a(g) − µ1(g)e, then â(g) < 0

and Ĵ(g;µ) = µIn; +J
(
â(g), (

¯
g)
)
. Moreover, J

(
− â(g), b(g)

)
is the unique bisymmetric

Jacobi matrix realizing the list
{ n−k∑
j=1

gj

}n
k=1

and it is nonnegative.

Summing up, the raised problem is reduced to obtaining the functions
a : (0,+∞)d

n

2
e −→ (0,+∞) and b : (0,+∞)b

n

2
c −→ (0,+∞) such that for any g > 0,

J(g) determined by (6) is the unique bisymmetric Jacobi matrix realizing the accumu-
lated gap list Λ(g) =

{
µ1(g), . . . , µn(g)

}
.

The nonnegativeness of J(g;λ) depends only on a(g). In fact, the real problem is to
estimate the size of the interval [−Φ(g), 0).

The results of Section 2 determine that the problem is completely solved for linear
sequences of gaps; that is, for gaps forming an arithmetic progression.

Assume that the entries of the gap vector g ∈ Rn−1 are given in arithmetic progres-
sion, specifically gk = −2(ck + b), k = 1, . . . , n − 1, where b, c ∈ R. Clearly, the gap
sequence is strictly increasing if c < 0, strictly decreasing when c > 0 and constant
when c = 0. Since the gaps must be positive, it is necessary that |b|+ |c| > 0 and also
that b < −c when c < 0 and b < c(1− n) when c ≥ 0. So, assuming that b < 0 when
c = 0, we have that

gk = −2(ck + b), k = 1, . . . , n− 1, |b|+ |c| > 0 and c−1b /∈ [1− n,−1]. (7)

The accumulated gap sequence is given by

µk(g) = ck2 + (2b− c)k + a− 2b, k = 1, . . . , n,

where a = (1− n)(nc+ 2b) = 1
2(n− 1)(g1 + gn−1). Notice that a > 0, µ1 = a, µn = 0

and moreover, {µk(g)}nk=1 is strictly decreasing.

Theorem 2.1 shows the entries of the bisymmetric realization in terms of the pa-
rameters b and c. We now translate its results in terms of the gaps.

Corollary 3.2. Given n ∈ N, n ≥ 2, b, c ∈ R, such that |c| + |b| > 0 and c−1b /∈
[1 − n,−1], and g ∈ Rn−1 whose components are gk = −2(ck + b), k = 1, . . . , n − 1,

then the entries of vectors a(g) ∈ Rd
n

2
e and b(g) ∈ Rb

n

2
c are

ak(g) =
1

2
(n− 1)gn−1 + (k − 1)(gn−k − gk+1 + gk − g1), k = 1, . . . , dn2 e,

bk(g) =
1

4

√
k(n− k)gkgn−k, k = 1, . . . , bn2 c.
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Moreover, the threshold value is Φ(g) =
1

2
(n− 1)gn−1 when c ≥ 0 and

Φ(g) =
1

2
(n− 1)gn−1 +

(n− 2)(gdn
2
e − g1)

4(g1 − gn−1)2

(
(n− 2)(g1 − gbn

2
c) + g1 − gn−1

)
,

when c < 0.

For periodic gaps related to 1-periodic eigenvalues, we know the following cases:
Given b > 0,

1. If gk = b sin
(
(2k+1)θ

)
, k = 1, . . . , n−1, where θ =

π

2(n+ 1)
, then the accumulated

gap sequence is

µk(g) =
b

sin(θ)

[
cos2(kθ))− cos2(nθ)

]
, k = 1, . . . , n.

On the other hand, a(g) = 0, b(g) =
b

4 sin(θ)
ebn

2
c and hence Φ(g) = 0. Notice that

the gap sequence is symmetric in the sense that gn−k = gk, k = 1, . . . , n− 1.

2. If gk = b sin
(
(2k − 1)φ

)
, k = 1, . . . , n − 1, where φ =

π

2n
, then the accumulated

gap sequence is

µk(g) =
b

2 sin(φ)

[
cos
(
2(k − 1)φ)

)
+ cos(2φ)

]
, k = 1, . . . , n,

On the other hand, a(g) =
b

4 sin(φ)
(1, 0, . . . , 0), (

¯
g) =

b

4 sin(φ)
ebn

2
c, and hence

Φ(g) = 0. The symmetry of the gap sequence is given by gn+1−k = gk, k =
2, . . . , n− 1.

3. If gk = b sin
(
(2k + 1)φ

)
, k = 1, . . . , n − 1, where φ =

π

2n
, then the accumulated

gap sequence is

µk(g) =
b cos2(kφ)

sin(φ)
, k = 1, . . . , n,

On the other hand, a(g) =
−b

4 sin(φ)
(1, 0, . . . , 0), (

¯
g) =

b

4 sin(φ)
ebn

2
c and Φ(g) =

−b
4 sin(φ)

. Now the symmetry presented by the gap sequence is given by gn−1−k = gk,

k = 1, . . . , n− 2.

In general, obtaining a(g) is a very difficult problem and the same applies to the
threshold value. However, we can obtain an upper bound for Φ(g) by formulating, in
terms of the gap sequence, the necessary conditions for nonnegative realizability given
in [20]. Observe first that, for any k = 1, . . . , dn2 e, we have that

µn+1−k(g) = µk(g)−
n−k∑
j=k

gj and hence µk(g) + µn+1−k(g) = 2µk(g)−
n−k∑
j=k

gj .
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Lemma 3.3. ([20, Theorem 2]) Given g > 0, if J(g;λ) is nonnegative, then for any
k = 1, . . . , dn2 e it is satisfied that

2Φ(g) ≤ a′n(g) + a′n−1(g) ≤ 2µk(g)−
n−k∑
j=k

gj ≤ a′1(g) + a′2(g) < 2µ1(g)

and hence, λ ≥ 1

2

n−k∑
j=k

gj − µk(g), k = 1, . . . , dn2 e.

From the above inequalities we directly conclude that when λ ≥ −Φ(g); that is,

when J(g;λ) is nonnegative, necessarily λk(g) = λ+ µk ≥
n−k∑
j=k

gj and hence λk(g) > 0

for any k = 1, . . . , dn2 e − 1 and λdn
2
e(g) ≥ 0 with strict inequality when n is even. In

addition, the inequalities in Lemma 3.3, suggest considering for any k = 1, . . . , dn2 e,
the function ψk : (0,+∞)n−1 −→ (0,+∞) defined for g > 0 as

ψk(g) =
1

2

(
µk(g) + µn+1−k(g)

)
= µk(g)− 1

2

n−k∑
j=k

gj =

n−1∑
j=k

gj −
1

2

n−k∑
j=k

gj (8)

and also the function Ψ: (0,+∞)n−1 −→ (0,+∞),

Ψ = min
k=1,...,dn

2
e

{
ψk
}
. (9)

Notice that ψ1(g) = 1
2 µ1(g), whereas ψdn

2
e(g) = µdn

2
e(g)− 1

4

(
1 + (−1)n

)
gdn

2
e. In addi-

tion, Φ(g) ≤ Ψ(g) < µ1(g), so Ψ(g) is an upper bound of the threshold value. Unlike
the value Φ(g), the value Ψ(g) is easy to obtain, since it depends only on the gap
sequence. Moreover, when λ > −Ψ(g) we know, see [20, Theorem 3], that the list
Λ(g;λ) is realizable by a nonnegative, in fact positive, Jacobi matrix, but we do not
know if any of the realizations are bisymmetric. Most of the paper [20] is devoted to
obtaining necessary conditions under which Ψ(g) ≤ Φ(g), or equivalently Ψ(g) = Φ(g).
We remark that Ψ(g) ≤ Φ(g); that is, Ψ(g) = Φ(g), which means that there exists
` = 1, . . . , dn2 e such that ψ`(g) ≤ Φ(g), or equivalently J

(
g,−ψ`(g)

)
is nonnegative.

When this happens, then Φ(g) = Ψ(g) = ψ`(g) and for any k = 1, . . . , dn2 e such
that ψ`(g) < ψk(g), we know that some diagonal entry of the bisymmetric matrix
J
(
g,−ψk(g)

)
is negative.

The following result, easy to prove, establishes when ψ`(g) ≤ ψk(g).

Lemma 3.4. Given g > 0, for any k, ` = 1, . . . , dn2 e we have that ψ`(g) ≤ ψk(g) iff

sign(`− k)

max{k,`}−1∑
j=min{k,`}

(gj − gn−j) ≥ 0

and the inequality is strict when ψ`(g) < ψk(g). In particular, it is satisfied that
ψ1(g) = · · · = ψdn

2
e(g) iff gn−j = gj, j = 1, . . . , dn2 e in which case ψ1(g) =
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dn
2
e−1∑
j=1

gj +
1

4

(
1 + (−1)n

)
gdn

2
e.

The following result is the gap version of [20, Theorem 5] and characterizes when
ψ1(g) = Φ(g). It completes the result in Proposition 3.1.

Proposition 3.5. Given g > 0, we have that ψ1(g) = Φ(g) iff gn−j = gj,
j = 1, . . . , dn2 e and then J

(
g,−ψ1(g)

)
has null trace and hence, a(g) = ψ1(g) e.

Next we obtain necessary conditions for Ψ(g) = Φ(g) when ψ1(g) > Φ(g), which
represent the gap version of Lemmas 2 and 3 in [20].

Proposition 3.6. Given g > 0, assume that ψ1(g) > Φ(g) = Ψ(g) and consider
` = 2, . . . , dn2 e satisfying that Ψ(g) = ψ`(g). Then g`−1 > gn+1−`, gn−` > g` and

`−1∑
j=1

(gj−gn−j) > 0. In particular, when n is even then ` < dn2 e and

dn
2
e−1∑
j=`

(gj−gn−j) < 0.

Moreover, ak(g) ≥ ψ`(g), k = 1, . . . , n, with equality for at least n + 1 − ` indices,
a1(g) = an(g) = ψ`(g) and furthermore a2(g) = an−1(g) = ψ`(g) except when n is odd
and ` = dn2 e.

Since the diagonal entries of a bisymmetric matrix are symmetric with respect to
the secondary diagonal, we obtain the following consequence, that is more precise than
the result in [20, Theorem 7].

Corollary 3.7. Given g > 0, assume that ψ2(g) = Φ(g) < ψ1(g). Then, n is odd,

g1 > gn−1, gn−2 > g2,
k−1∑
j=2

(gj − gn−j) ≤ 0 for k ≥ 4, and moreover a(g) = ψ2(g) e +

(0, . . . ,

dn
2
e
↓
a , . . . 0), where a > 0.

Remark 2. If n > 4, there exist 2 ≤ `1 < · · · < `k ≤ dn2 e, k ≥ 2, such that
ψ`j (g) ≤ Φ(g) < ψ1(g), j = 1, . . . , k, then ψ`1(g) = · · · = ψ`k(g), g`j−1 > gn+1−`j ,
gn−`j > g`j , j = 1, . . . , k, and

`1−1∑
j=1

(gj − gn−j) > 0,

`2−1∑
j=`1

(gj − gn−j) = · · · =
`k−1∑
j=`k−1

(gj − gn−j) = 0.

In particular, when n is even, then `k < dn2 e and

dn
2
e−1∑

j=`k

(gj − gn−j) < 0. Besides,

ak(g) ≥ ψ`1(g), k = 1, . . . , n, with equality for at least n+1− `1 indices and moreover,
a1(g) = a2(g) = an−1(g) = an(g) = ψ`(g).

In addition to considering the gap sequence to describe realizability, we also use the
A. Cantoni and P. Butler characterization of the spectra of bisymmetric matrices, see
[9], to reduce the given problem to an equivalent one but of half the size. In fact, this
treatment goes back to the original one given by F.R. Gantmacher and M.G. Krein
[21].
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To do this, given n ≥ 2, a ∈ Rn and b ∈ Rn−1, we consider the vectors ẽ =
(0, . . . , 0, 1) ∈ Rb

n

2
c−1, ã =

(
a1, . . . , abn

2
c
)

and b̃ =
(
b1, . . . , bbn

2
c−1

)
and the values

a = adn
2
e, b = bbn

2
c. Then the Jacobi matrix J(ã, b̃) is the principal submatrix of J(a, b)

with order bn2 c. Clearly, when J(a, b) is nonnegative, then J(ã, b̃) is also nonnegative.

Lemma 3.8 ([9, Lemmas 2 and 3, Theorems 5 and 6]). Consider n ≥ 2, a ∈ Rn,
b ∈ Rn−1 and assume that the Jacobi matrix J(a, b) is bisymmetric. Then, the following
properties hold:

(i) If n is even, then

λ2k−1

(
J(a, b)

)
= λk

(
J(ã + b ẽ, b̃)

)
and λ2k

(
J(a, b))

)
= λk

(
J(ã− b ẽ, b̃)

)
,

for any k = 1, . . . , dn2 e.
(ii) If n is odd, then λ2k

(
J(a, b))

)
= λk

(
J(ã, b̃)

)
for any k = 1, . . . , bn2 c, whereas

λ2k−1

(
J(a, b)

)
= λk

([
J(ã, b̃)

√
2 b ẽ>√

2 b ẽ a

])
,

for any k = 1, . . . , dn2 e.

The spectrum of any bisymmetric Jacobi matrix appears as the union of the spectra
of two symmetric Jacobi matrices, so the order of the initial matrix is reduced to a half.
We end this section applying the results in the above lemma, to determine the value
adn

2
e(g) of the diagonal entry of the matrix J(g). Since Φ(g) ≤ adn

2
e(g), we obtain a

new necessary condition for bisymmetric nonnegative realizability: if J(λ; g) ≥ 0, then
λ ≥ −adn

2
e(g). Moreover, from Proposition 3.5, if the gap sequence is symmetric, that

is gn−k = gk, k = 1, . . . , n− 1, then the above inequality becomes an equality.

Theorem 3.9. Given n ∈ N∗ and g ∈ Rn−1 such that g > 0, then

adn
2
e(g) =


(

2

m∑
j=1

g2j−1

)−1
m∑
j=1

(
g2

2j−1 + 2g2j−1

n−1∑
i=2j

gi

)
, n = 2m,

m∑
j=1

g2j−1, n = 2m+ 1,

bbn
2
c(g) =



1

2

m∑
j=1

g2j−1, n = 2m,√√√√1

2

m∑
j=1

g2j−1

m∑
i=j

g2i, n = 2m+ 1.

Proof. Consider m = bn2 c and for any k = 1, . . . ,m, the following values related to
the values of the symmetric functions at the accumulated gaps:

Ok(g) =
∑

1≤i1<···<ik≤m
µ2i1−1(g) · · ·µ2im−1(g),

Ek(g) =
∑

1≤i1<···<ik≤m
µ2i1(g) · · ·µ2im(g).
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Notice that as µn(g) = 0, then when n is even Em(g) = 0 and more generally

Ek(g) =
∑

1≤i1<···<ik≤m−1

µ2i1(g) · · ·µ2im(g),

whereas, when n is odd then

Ok(g) =
∑

1≤i1<···<ik≤m+1

µ2i1−1(g) · · ·µ2ik−1(g).

On the other hand, we denote by Qg(x) the characteristic polynomial of the Jacobi
matrix

Jm(g) =



a1(g) b1(g) 0 · · · 0

b1(g) a2(g) b2(g)
. . .

...

0 b2(g)
. . .

. . . 0
...

. . .
. . . am−1(g) bm−1(g)

0 · · · 0 bm−1(g) am(g)


and by Pg(x) the characteristic polynomial of Jm−1(g), the matrix obtained from Jm(g)
by removing its last row and its last column. Throughout the proof we assume that

Qg(x) =

m∑
k=0

αk(g)xm−k and Pg(x) =

m∑
k=0

βk(g)xm−k,

where α0(g) = 1, β0(g) = 0 and β1(g) = 1. In addition,

β2(g) = −
(
a1(g) + · · ·+ am−1(g)

)
and α1(g) = −

(
a1(g) + · · ·+ am(g)

)
,

which implies that am(g) = β2(g)− α1(g).

When n is even, from part (i) of Lemma 3.8, we know that

m∏
j=1

(
x− µ2j−1(g)

)
=

m∑
k=0

(
αk(g)− bm(g)βk(g)

)
xm−k,

m∏
j=1

(
x− µ2j(g)

)
=

m∑
k=0

(
αk(g) + bm(g)βk(g)

)
xm−k,

which implies that

αk(g)− bm(g)βk(g) = (−1)kOk(g), k = 1, . . . ,m,

αk(g) + bm(g)βk(g) = (−1)kEk(g), k = 1, . . . ,m,

and hence that

2bm(g)βk(g) = (−1)k
(
Ek(g)−Ok(g)

)
, k = 1, . . . ,m,

2αk(g) = (−1)k
(
Ek(g) +Ok(g)

)
, k = 1, . . . ,m,
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Since β1(g) = 1, we obtain

2bm(g) = O1(g)− E1(g) =

m∑
j=1

(
µ2j−1(g)− µ2j(g)

)
=

m∑
j=1

g2j−1,

and hence,

am(g) = β2(g)− α1(g) =
E2(g)−O2(g)

O1(g)− E1(g)
+

1

2

(
E1(g) +O1(g)

)
=

2E2(g)− 2O2(g) +O1(g)2 − E1(g)2

2
(
O1(g)− E1(g)

)
=
(

2
m∑
j=1

g2j−1

)−1 m∑
j=1

(
µ2

2j−1(g)− µ2
2j(g)

)
=
(

2
m∑
j=1

g2j−1

)−1 m∑
j=1

(
g2

2j−1 + 2g2j−1µ2j(g)
)
.

When n is odd, the characteristic polynomial of the Jacobi matrix

a1(g) b1(g) 0 · · · 0 0

b1(g) a2(g) b2(g)
. . .

...
...

0 b2(g)
. . .

. . . 0 0
...

. . .
. . . am−1(g) bm−1(g) 0

0 · · · 0 bm−1(g) am(g)
√

2 bm(g)

0 · · · 0 0
√

2 bm(g) am+1(g)


is

(
x− am−1(g)

)
Qg(x)− 2b2m(g)Pg(x) = xm+1 +

m∑
k=0

γk+1(g)xm−k,

(
x− am−1(g)

)
Qg(x)− 2b2m(g)P (x) = xm+1 +

m+1∑
k=1

γk(g)xm+1−k,

where γm+1(g) = −am+1(g)αm(g)− 2b2m(g)βm(g) and

γk(g) = αk(g)− am+1(g)αk−1(g)− 2b2m(g)βk−1(g), k = 1, . . . ,m

From part (ii) of Lemma 3.8, we know that

m∏
j=1

(
x− µ2j(g)

)
= Qg(x) =

m∑
k=0

αk(g)xm−k,

m+1∏
j=1

(
x− µ2j−1(g)

)
= xm+1 +

m+1∑
k=1

γk(g)xm+1−k,
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and hence γm+1(g) = 0 and

αk(g) = (−1)kEk(g), k = 1, . . . ,m,

γk(g) = (−1)kOk(g), k = 1, . . . ,m;

which imply that

2b2m(g)β0(g) = O1(g)− E1(g)− am+1(g)α0(g),

2b2m(g)βk−1(g) = (−1)k
[
Ek(g)−Ok(g) + am+1(g)Ek−1(g)

]
, k = 2, . . . ,m,

2b2m(g)βm(g) = (−1)m+1am+1(g)Em(g).

Taking into account that β0(g) = 0 and that α0(g) = 1, from the first equation we
obtain that

am+1(g) = O1(g)− E1(g) =

m∑
j=1

g2j−1.

On the other hand, bearing in mind that β1(g) = 1, taking k = 2 we obtain that

2b2m(g) = E2(g)−O2(g) + E1(g)
(
O1(g)− E1(g)

)
.

which determines the value of bm(g).

As a consequence, we have the following upper bound of Φ(g), that can be seen as
a necessary condition for nonnegativeness.

Corollary 3.10. Given n ∈ N∗ and g ∈ Rn−1 such that g > 0, then

Φ(g) ≤



(
2

bn
2
c∑

j=1

g2j−1

)−1( bn2 c∑
j=1

g2
2j−1 + 2

bn
2
c∑

j=1

g2j−1

n−1∑
i=2j

gi

)
, when n is even,

bn
2
c∑

j=1

g2j−1, when n is odd.

More precise results are available when the gap vector is symmetric.

Corollary 3.11. Given n ∈ N∗ and g ∈ Rn−1 such that g > 0 and gn−k = gk,
k = 1, . . . , bn2 c, then

Φ(g) =

bn
2
c∑

j=1

gj −
gbn

2
c

4

(
1 + (−1)n

)
.
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Moreover a(g) = Φ(g) e, whereas

bbn
2
c(g) =



gm
4

(
1− (−1)m

)
+

bm
2
c∑

j=1

g2j−1, n = 2m,√√√√√1

2

dm
2
e∑

j=1

g2
2j−1 +

bm
2
c∑

j=1

g2j−1

m∑
i=2j

gi, n = 2m+ 1.

In particular, when the gap sequence is constant, g = ge, then the above formula
becomes

Φ(g) =
g

2
(n− 1) and bbn

2
c =

g

2

√⌊n
2

⌋(
n−

⌊n
2

⌋)
.

In fact, from Corollary 3.2, we know that bk(g) = g
4

√
k(n− k), k = 1, . . . , bn2 c

4. Low order bisymmmetric realizations

As is shown in proof of Theorem 3.9, it would be possible to obtain the coefficients of
the bisymmetric Jacobi matrix J(g) either from the identities

2bm(g)βk(g) = (−1)k
(
Ek(g)−Ok(g)

)
, k = 1, . . . ,m,

2αk(g) = (−1)k
(
Ek(g) +Ok(g)

)
, k = 1, . . . ,m,

(10)

when n = 2m, in which case Em(g) = 0, or

αk(g) = (−1)kEk(g), k = 1, . . . ,m,

2b2m(g)β0(g) = O1(g)− E1(g)− am+1(g)α0(g),

2b2m(g)βk−1(g) = (−1)k
[
Ek(g)−Ok(g) + am+1(g)Ek−1(g)

]
, k = 2, . . . ,m.

2b2m(g)βm(g) = (−1)m+1am+1(g)Em(g),

(11)

when n = 2m+ 1. In both cases

det
(
xI− Jm(g)

)
=

m∑
k=0

αk(g)xm−k and det
(
xI− Jm−1(g)

)
=

m∑
k=0

βk(g)xm−k,

which imply that α0(g) = 1, β0(g) = 0 and β1(g) = 1. However, the high non-linearity
relation between a′s and b′s with α′s and β′s, which grows with m, makes it impossible
in practice to determine the vectors a(g) ∈ Rd

n

2
e and (

¯
g) ∈ Rb

n

2
c.

We end this paper obtaining these vectors for low orders, n ≤ 6, when the complexity
of the above mentioned relations still allow us to solve them. We proceed by increasing
the order, going from the easy cases to very complex ones, thus showing the difficulties
we must face in the general case.
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4.1. Nonnegative Bisymmetric Jacobi Matrices of order n = 2

In this case, m = 1, and Theorem 3.9 gives us all the information. For any g = g > 0,
we have that Λ(g) = {g, 0}, ψ1(g) = g

2 , a1(g) = b1(g) = g
2 . Moreover, Φ(g) = Ψ(g) = g

2 .
Of course, this case could have been solved directly without any of the previous results.

The only bisymmetric Jacobi matrices are given by J(a, b) =

[
a b
b a

]
, where a, b ∈ R

and b > 0. Since Λ
(
J(a, b)

)
= {a+ b, a− b}, then λ1 = a+ b, λ2 = a− b, which implies

that g = 2b. Moreover, if λ = λ2, then a = λ+ g
2 , b = g

2 and hence

J(a, b) = λ

[
1 0
0 1

]
+
g

2

[
1 1
1 1

]
, J(g) =

g

2

[
1 1
1 1

]
.

Therefore, J(a, b) is nonnegative iff a ≥ 0; that is, iff λ ≥ −g
2 .

4.2. Nonnegative Bisymmetric Jacobi Matrices of order n = 3

Given g = (g1, g2) > 0, then Λ(g) = {g1 + g2, g2, 0}, ψ1(g) = 1
2 (g1 + g2), ψ2(g) = g2,

which implies that ψ1(g) = ψ2(g) iff g1 = g2.
From Theorem 3.9 we have a2(g) = g1 and b1(g) =

√
g1g2

2 . To obtain a1(g) we use
the identity am(g) = βm−2(g) − αm−1(g). Taking into account that β−1(g) = 0 and
α0 = −E1(g) = −g2, we obtain that a1(g) = g2 and hence,

J(g) =

 g2

√
g1g2

2 0√
g1g2

2 g1

√
g1g2

2

0
√

g1g2
2 g2

 .
Moreover, Φ(g) = min{g1, g2} ≤ Ψ(g) = 1

2 min
{
g1 + g2, 2g2

}
and the equality holds iff

g2 ≤ g1. In this case, Φ(g) = ψ1(g) iff g2 = g1, or equivalently a1(g) = a2(g); whereas
Φ(g) = ψ2(g) iff g2 < g1, in which case we have

a(g) = ψ2(g)(1, 1) + a(0, 1), where a = g1 − g2 > 0,

which is in agreement with the results in Proposition 3.5 and Corollary 3.7. Notice
that the case g2 > g1 shows that that Φ(g) < Ψ(g) can happen.

4.3. Nonnegative Bisymmetric Jacobi Matrices of order n = 4

Given g = (g1, g2, g3) > 0, then Λ(g) = {g1 + g2 + g3, g2 + g3, g3, 0} and hence,
ψ1(g) = 1

2(g1 + g2 + g3), ψ2(g) = g3 + g2
2 , which implies that ψ1(g) = ψ2(g) iff g1 = g3.

From Theorem 3.9, we have

a2(g) =
g2

1 + 2g1(g2 + g3) + g2
3

2(g1 + g3)
=

1

2
(g1 + g3) +

g1g2

g1 + g3
and b2(g) =

1

2
(g1 + g3).

Since Qg(x) =
(
x − a1(g)

)(
x − a2(g)

)
− b21(g) and Pg(x) =

(
x − a1(g)

)
, we get

β0(g) = −a1(g), α0(g) = a1(g)a2(g) − b21(g) and α1(g) = −a1(g) − a2(g). Moreover,
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from (10),

a1(g)a2(g)− b21(g) = α0(g) =
1

2

(
E2(g) +O2(g)

)
=
g3

2
(g1 + g2 + g3),

a1(g) + a2(g) = −α1(g) =
1

2

(
E1(g) +O1(g)

)
= 1

2(g1 + 2g2 + 3g3),

which imply that

a1(g) =
1

2
(g1 + 2g2 + 3g3)− 1

2
(g1 + g3)− g1g2

g1 + g3
=
g3(g1 + g2 + g3)

g1 + g3
,

b21(g) =
g3(g1 + g2 + g3)

2(g1 + g3)

(
2a2(g)− (g1 + g3)

)
=
g1g2g3(g1 + g2 + g3)

(g1 + g3)2
.

In addition,

Φ(g) =
1

2(g1 + g3)
min

{
(g1 + g3)2 + 2g1g2, 2g3(g1 + g2 + g3)

}
,

Ψ(g) =
1

2

[
g2 + g3 + min

{
g1, g3

}]
.

Therefore, Ψ(g) = ψ1(g) iff g1 ≤ g3 and then

Ψ(g)− Φ(g) =
1

2
(g1 + g2 + g3)− g1 + g3

2
− g1g2

g1 + g3
=
g2(g3 − g1)

2(g1 + g3)
≥ 0,

whereas when g3 < g1, then

Ψ(g)− Φ(g) = g3 +
g2

2
− g3 −

g2g3

g1 + g3
=
g2(g1 − g3)

2(g1 + g3)
> 0.

So, Ψ(g) = Φ(g) iff g1 = g3 in which case,

a1(g) = a2(g) = g1 +
g2

2
, b1(g) =

√
g2(2g1 + g2)

2
, b2(g) = g1.

4.4. Nonnegative Bisymmetric Jacobi Matrices of order n = 5

Given g = (g1, g2, g3, g4) > 0, then

Λ(g) =
{
g1 + g2 + g3 + g4, g2 + g3 + g4, g3 + g4, g4, 0

}
and ψ1(g) = 1

2(g1 + g2 + g3 + g4), ψ2(g) = g4 + 1
2(g2 + g3) and ψ3(g) = g3 + g4,

which implies that ψ1(g) = ψ2(g) = ψ3(g) iff g1 = g4 and g2 = g3 in which case
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Ψ(g) = g1 + g2. From Theorem 3.9, we have

a3(g) = g1 + g3,

b2(g) =

√
g1(g2 + g4) + g3g4

2
,

and the remaining equations from the system (11) are

−
(
a1(g) + a2(g)

)
= α1(g) = −E1(g) = −(g2 + g3 + 2g4),

a1(g)a2(g)− b21(g) = α2(g) = E2(g) = g4(g2 + g3 + g4),

−2b22(g)a1(g) = 2b22(g)β2(g) = −a3(g)g4(g2 + g3 + g4).

Then we easily obtain that

a1(g) =
g4(g1 + g3)(g2 + g3 + g4)

g1(g2 + g4) + g3g4
,

a2(g) =
g2

4(g1 + g3) + g1g2(g2 + g3 + 2g4)

g1(g2 + g4) + g3g4
,

b1(g) =

√
g1g2g3g4(g1 + g2 + g3)(g2 + g3 + g4)

g1(g2 + g4) + g3g4
,

and hence

Φ(g) =
1

g1(g2 + g4) + g3g4
min

{
g4(g1 + g3)(g2 + g3 + g4),

g2
4(g1 + g3) + g1g2(g2 + g3 + 2g4),

(g1 + g3)
(
g1(g2 + g4) + g3g4

)}
.

When g4 = g1, then ψ1(g) = g1 + 1
2(g2 +g3), ψ2(g) = g1 + 1

2(g2 +g3), ψ3(g) = g1 +g3

and Φ(g) = g1 + min
{
g2, g3

}
. If g3 6= g2, then

g1 + 1
2(g2 + g3) = Ψ(g) > Φ(g) = g1 + g2, when g3 > g2,

g1 + g3 = Ψ(g) = Φ(g) = g1 + g3, when g3 < g2.

4.5. Nonnegative Bisymmetric Jacobi Matrices of order n = 6

Given g = (g1, g2, g3, g4, g5) > 0, then

Λ(g) =
{
g1 + g2 + g3 + g4 + g5, g2 + g3 + g4 + g5, g3 + g4 + g5, g4 + g5, g5, 0

}
and

ψ1(g) = 1
2(g1 + g2 + g3 + g4 + g5)

ψ2(g) = g5 + 1
2(g2 + g3 + g4)

ψ3(g) = g4 + g5 + g3
2 ,
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which implies that ψ1(g) = ψ2(g) = ψ3(g) iff g1 = g5 and g2 = g4 in which case
Ψ(g) = g1 + g2 + g3

2 . From Theorem 3.9, we have

a3(g) =
g2

1 + g2
3 + g2

5 + 2
(
g1(g2 + g3 + g4 + g5) + g3(g4 + g5)

)
2(g1 + g3 + g5)

,

b3(g) =
1

2
(g1 + g3 + g5),

and the remaining equations from the system (10) are

2b3(g)
(
a1(g) + a2(g)

)
= O2(g)− E2(g),

2b3(g)
(
a1(g)a2(g)− b21(g)

)
= O3(g),

2
(
a1(g)a2(g) + a1(g)a3(g) + a2(g)a3(g)− b21(g)− b22(g)

)
= E2(g) +O2(g),

2
(
a1(g)a2(g)a3(g)− a3(g)b21(g)− a1(g)b22(g)

)
= O3(g).

Substituting the first and the second identities in the third one, we obtain

b21(g) = a1(g)a2(g)− O3(g)

2b3(g)
,

b22(g) =
O3(g)

2b3(g)
+

a3(g)

2b3(g)

(
O2(g)− E2(g)

)
− 1

2

(
E2(g) +O2(g)

)
.

After some calculations we finally obtain that,

a1(g) =
g5(g3 + g4 + g5)(g1 + g2 + g3 + g4 + g5)(g1g2 + g1g4 + g3g4)

g1(g1 + g2 + g3)(g2g3 + g2g5 + g4g5) + g5(g3 + g4 + g5)(g1g2 + g1g4 + g3g4)
,

a2(g) =
ρ(g)

g1(g1 + g2 + g3)(g2g3 + g2g5 + g4g5) + g5(g3 + g4 + g5)(g1g2 + g1g4 + g3g4)
,

where

ρ(g) = g3
1g2g3(g3 + g4 + 2g5)

+
(
g2

5(g2 + g4)(g3
1 + 2g2 + 3g3 + 2g4 + 2g5 + g2

5 + 2g5(g2 + 2g3 + g4)
)

+ g2
1g2g3g5

(
4g2 + 6g3 + 4g4 + 3g5 + g2g3 + (g2 + 2g3)(g3 + g4)

)
+
(
(g2 + 6g3 + 3g4)g2

2 + (6g2
3 + 7g3g4 + 3g2

4)g2 + g4(g3 + g4)(3g3 + g4)
)
g2

5

+ g1g2g3

(
(g3 + 2g5)(g2 + g3)(g2 + g3 + g4) + 2g5(g2 + g3)

)
+ g3g4g

2
5(g3 + g4 + g5)2.

4.6. Some examples

We finish this work showing some specific examples in low dimension that to the best of
our knowledge have not been considered in the literature on the subject. Given n ∈ N,
n = 2, . . . , 6, and r > 0, we will consider two types of gap sequences, determined by
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r: gk = rn−k and ĝk = (n − k)r, k = 1, . . . , n − 1. Note that if r = 1, then {gk} is
constant whereas {ĝk} is linear, cases that have been treated and completely solved in
section 2.2.

In order to simplify the presentation we will only study the cases corresponding
to r = 2. Therefore, both gap sequences are decreasing and the accumulated gap
sequences are

µk = 2(2n−k− 1) and µ̂k =
1

6
(n− k)(n+ 1− k)(2(n− k) + 1), k = 1, . . . , n− 1. (12)

For the sake of simplicity, in this section we denote as Jn and Ĵn the unique bisym-
metric matrices realizing the lists

Λn = {2(2n−k − 1)}nk=1 and Λ̂n =
{1

6
(n− k)(n+ 1− k)(2(n− k) + 1)

}n
k=1

,

respectively. Note that Λn+1 = {2(2n−1)}∪Λn and Λ̂n+1 =
{

1
6n(n+1)(2n+1)

}
∪ Λ̂n.

In both cases we also denote by Φn and Φ̂n the corresponding threshold values and we
use the identities obtained in the preceding subsection. The results are the following
ones:

1) When n = 2, g1 = 2; ĝ1 = 1, Λ2 = {2, 0}, Λ̂2 = {1, 0} and hence,

J2 =

[
1 1
1 1

]
and Ĵ2 =

1

2

[
1 1
1 1

]
.

Moreover, Φ = 1 and Φ̂ = 1
2 .

2) When n = 3, g1 = 2, g2 = 4, ĝ1 = 4, ĝ2 = 1, Λ3 = {6, 2, 0}, Λ̂3 = {5, 1, 0} and
hence,

J3 =

2 2 0
2 4 2
0 2 2

 and Ĵ3 =

 1
√

2 0√
2 4

√
2

0
√

2 1

 .
Moreover, Φ = 2 and Φ̂ = 1.

3) When n = 4, g1 = 2, g2 = 4, g3 = 8, ĝ1 = 9, ĝ2 = 4, ĝ3 = 1, Λ4 = {14, 6, 2, 0},
Λ̂4 = {14, 5, 1, 0} and hence,

J4 =
1

5


14 4

√
14 0 0

4
√

14 41 25 0

0 25 41 4
√

14

0 0 4
√

14 14

 and Ĵ4 =
1

5


7 3

√
14 0 0

3
√

14 43 25 0

0 25 43 3
√

14

0 0 3
√

14 7

 .
Moreover, Φ = 14

5 and Φ̂ = 7
5 .

4) When n = 5, g1 = 16, g2 = 8, g3 = 4, g4 = 2, ĝ1 = 16, ĝ2 = 9, ĝ3 = 4, ĝ4 = 1,
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Λ5 = {30, 14, 6, 2, 0}, Λ̂5 = {30, 14, 5, 1, 0} and hence,

J5 =
1

3


10 8

√
2 0 0 0

8
√

2 38 6
√

21 0 0

0 6
√

21 60 6
√

21 0

0 0 6
√

21 38 8
√

2

0 0 0 8
√

2 10


and

Ĵ5 =
1

41


70 6

√
406 0 0 0

6
√

406 545 41
√

82 0 0

0 41
√

82 820 41
√

82 0

0 0 41
√

82 545 6
√

406

0 0 0 6
√

406 70

 .

Moreover, Φ = 10
3 and Φ̂ = 70

41 .
5) When n = 6, g1 = 32, g2 = 16, g3 = 8, g4 = 4, g5 = 2, ĝ1 = 25, ĝ2 = 16, ĝ3 = 9,

ĝ4 = 4, ĝ5 = 1, Λ6 = {62, 30, 14, 6, 2, 0}, Λ̂6 = {55, 30, 14, 5, 1, 0}. As we have seen,
this case is more complex than the previous ones, and clearly shows that n = 6 is,
in general, the limiting dimension for effective calculations. Since the coefficientes
of the realizing matrices are expressed in terms of both the gaps and the symmetric
functions, we give here these values for this particular cases. According to section
4.5 we have that O2 = 1020, O3 = 1736, E2 = 180, Ô2 = 839, Ô3 = 770, Ê2 = 150,
a3 = 37, b3 = 21, â3 = 2297

70 and b̂3 = 35
2 . Then,

J6 =
1

51



186 16
√

186 0 0 0 0

16
√

186 834 68
√

102 0 0 0

0 68
√

102 1887 1071 0 0

0 0 1071 1887 68
√

102 0

0 0 0 68
√

102 834 16
√

186

0 0 0 0 16
√

186 186


and

Ĵ6 =



51590
26563

5250
√

319
26563 0 0 0 0

5250
√

319
26563

16496257
929705

2
√

53126
35 0 0 0

0 2
√

53126
35

2297
70

35
2 0 0

0 0 35
2

2297
70

2
√

53126
35 0

0 0 0 2
√

53126
35

16496257
929705

5250
√

319
26563

0 0 0 0 5250
√

319
26563

51590
26563


.

Moreover, Φ = 62
17 and Φ̂ = 51590

26563 .
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and the Laplacian controllability of half graphs. Electron. J. Linear Algebra 38 (2022),
559-571.

[2] E. Bendito, A.M. Encinas, A. Carmona: Eigenvalues, eigenfunctions and Green’s
functions on a path via Chebyshev polynomials. Appl. Anal. Discrete Math. 3 (2009),
282-302.

[3] R. Bevilacqua, E. Bozzo:The Sylvester-Kac matrix space. Linear Algebra Appl. 430
(2009), 3131-3138.

[4] C. de Boor, G.H. Golub: The numerically stable reconstruction of a Jacobi matrix
from spectral data. Linear Algebra Appl. 21 (1978), 245-260.

[5] D.L. Boley, G.H. Golub: Structured inverse eigenvalue problems. Inverse Problems 3
(1987), 595-622.
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