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Abstract

In this work, we study linear codes with the folded Hamming distance, or equivalently, codes
with the classical Hamming distance that are linear over a subfield. This includes additive
codes. We study MDS codes in this setting and define quasi MDS (QMDS) codes and dually
QMDS codes, which attain a more relaxed variant of the classical Singleton bound. We
provide several general results concerning these codes, including restriction, shortening,
weight distributions, existence, density, geometric description and bounds on their lengths
relative to their field or alphabet sizes. We provide explicit examples and a binary construction
with optimal lengths relative to their field or alphabet sizes, which beats any MDS code (in
terms of length compared to the field or alphabet size).

Keywords Additive codes - Finite geometry - Folded Hamming distance - MDS codes -
Polynomial ideal codes - Weight distributions

Mathematics Subject Classification 94B05 - 94B27 - 94B65

1 Introduction

In this manuscript, we study linear codes in the folded Hamming distance or, equivalently,
codes in the classical Hamming distance which are linear over a subfield (this includes
additive codes).

We define quasi MDS codes (or QMDS codes), which lie in between classical MDS codes
and almost MDS codes [12] (their dimensions are larger than those of almost MDS codes
for a given minimum distance). We show that their duals are not QMDS in general and then
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define dually QMDS codes (both themselves and their duals are QMDS), which lie between
classical MDS codes and near MDS codes [10]. As we show in Sect. 6, there exist dually
QMDS codes whose lengths relative to their field or alphabet size beat the MDS conjecture
[2]. This makes them an interesting family of codes to study, since they have better parameters
than almost and near MDS codes and at the same time can be longer than any classical MDS
code for a fixed field or alphabet size.

Linear codes in the folded Hamming distance have been studied in the context of byte
error correction [11], low density MDS codes [7, 27] and recently in relation to quantum
codes [3]. Notice also that linear codes in the folded Hamming distance can be seen as array
or matrix codes with the Hamming distance defined column-wise [7, 27]. In particular, they
are a special case of linear codes in the sum-rank distance [23]. However, most properties
and constructions discussed in this manuscript simply do not hold for the sum-rank distance
in general [8].

Interestingly, most capacity-achieving and efficient list-decodable codes turn out to be
QMDS or dually QMDS codes in the folded Hamming distance. Such codes fall under the
umbrella family of polynomial ideal codes [6, 24], which include in particular folded Reed—
Solomon codes and (univariate) multiplicity codes (see [6]). We show their dually QMDS
property in Sect. 4.

The contributions of this manuscript are as follows. In Sect. 2, we provide some preliminary
definitions and results on the folded Hamming distance, mainly concerning duality and code
equivalence. In Sect. 3, we introduce QMDS and dually QMDS codes, characterize their
minimum distances and dimensions and study their restricted and shortened codes. In Sect.
4, we explicitly show the existence of dually QMDS for all parameters for large field sizes
(using polynomial ideal codes) and then show that the family of dually QMDS codes is dense.
In Sect. 5, we study their weight distributions, which make use of the previous results on
restriction and shortening, and which will be later used for bounds on code lengths. In Sect. 6,
we study how long (dually) QMDS codes can be. We provide two upper bounds on the code
length relative to their field or alphabet sizes, some examples of QMDS codes and a general
binary construction of dually QMDS codes with optimal lengths, longer than any MDS code
(relative to the alphabet size). Finally, in the Appendix, we provide a 1-1 correspondence
between equivalence classes of linear codes in the folded Hamming distance and equivalence
classes of pseudo arcs, which are useful for constructing MSRD codes and PMDS codes [20,
22].

2 The folded Hamming distance

In this section, we introduce the folded Hamming distance, define duality and characterize
its linear isometries. In the following, I, denotes the finite field with g elements. We will
also denote [n] = {1,2,...,n}and [m,n] = {m,m + 1, ..., n} for integers m < n.

Definition 1 For¢c = (¢y,...,¢,) € IF;”, where ¢; € IF; for i € [n], its r-folded Hamming
weight is defined as wr (¢) = [{i € [n] : ¢; # 0}|. We define the r-folded Hamming distance
betweenc, d € IF(’]” asdr(c,d) = wr(c—d). In general, acodeisasubsetC C F(’I".We define
the minimum r-folded Hamming distance of C as d(C) = min{dr(c,d) : ¢,d € C, ¢ # d}.
IfC C IE‘(’I” is [F;-linear, notice that d(C) = min{wr(c) : ¢ € C\{0}}.

Definition 2 We say that C is a code of type [n, r, k,d] if C C IF;" is F;-linear, k is its
dimension over F, and d = d(C) is its minimum r-folded Hamming distance. We also say
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that n is the (r-folded) length of the code C. We will only say folded Hamming distance
instead of r-folded Hamming distance when r is clear from the context.

Observe that the classical Hamming distance in F? is nothing more than the 1-folded
Hamming distance (the case r = 1, in which F" = [F¢). In general, the r-folded Hamming
distance in 7" is nothing but the classical Hamming distance of length n over the alphabet
[y, For this reason, we call n the r-folded length. Notice that the alphabet size will be ¢",
but we will focus on I -linear codes.

Furthermore, I, -linear codes in F;” with the r-folded Hamming distance are the same
as [Fy-linear codes in IF;, with the classical Hamming distance, due to the following. Let
B =B1,....0) € IE‘(’], be an ordered basis of F,r over IF,. Define the expansion map
eg :Fyr — IF:I by eg(ciBi+---+cB) = (c1,...,¢c), forcy, ..., cr € Fy. If we extend
it componentwise, it is obvious that eg : ), —> F;" is an Fy-linear isometry considering
the classical Hamming distance in F}, and the r-folded Hamming distance in F". Note,
however, that over infinite fields (such as R) there may be no field extension of degree r for
every positive integer r.

Notice that additive codes with the classical Hamming distance in Fy, where ¢ = p" and
p is prime, are thus equivalent to IF ,-linear codes with the folded Hamming distance in [F",".

We will focus on duality based on the usual inner product in ", given as follows.

Definition 3 We define the inner product between ¢, d € IF;” asc-d=cidy+---+crpdin,
where ¢ = (c1,...,¢p) andd = (dy, ..., dpy). Given an [F;-linear code C C IE‘(’I”, we define

its dual as C+ = {d € IF;” :c-d=0, foralle € C}.
Notice that the usual inner product in F7" is not Fyr -bilinear when considered in IE‘Z, via

the maps eg. However, when considering Fr-linear codes, their duals with respect to the
usual inner products in F Z, and F)" coincide if we use appropriate expansion maps.

Proposition4 Let C C IFZ, be an Fr-linear code and let ct c ]FZ, denote its dual with
respect to the usual inner product in IE‘Z,. IfB=B1,...,B)anda = (a1, ..., o) are dual
ordered bases of Fyr over I, (i.e., Tr(Bia;) = §; j, where Tr is the trace of Fyr over Fy),

then
£g (CL) = so,(C)J‘.
(Dual bases of Fy4r over Fy always exist, see [19, p. 54].)

Proof By counting dimensions over F,, we only need to show that eg (C1) € &4 (C)*.

Now this holds since, given ¢ = (c¢1,...,¢y) € Candd = (dy,...,d,) € ¢, with
eg(ci) = (ci1, ..., ciy) and eq(d;) = (d; 1, ..., d; ), fori € [n], we have that
n n r r n r
0 =Tr(0) = Tr <Z cid,) = 3 i disTeBijou) =Y Y cijdr;.
i=1 i=1 j=1k=1 i=1 j=I
O

Finally, we notice that the folded Hamming distance in IE‘;” coincides with the sum-rank
distance in such a space by considering a vector in [F;" as a tuple of n matrices over F, of size
1 x r. See [23] for more information on the sum-rank distance. In particular, the F,-linear
isometries for the folded Hamming distance are known, see [21, Th. 2].
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Proposition 5 [[21]] Let ¢ : ]F;” — IF;" be an F4-linear vector space isomorphism.
Then wr(¢(c)) = wpg(c), for all ¢ € F'", if and only if there exist invertible matrices
Ay, ..., Ay € GL,(Fy) and a permutationo : [n] —> [n]suchthat, foralley, ..., ¢, € IF;,

$(er, ..., ) = (Co)Al, ..., ComAn) -

Definition 6 We say that two linear codes C, C’ C IF;" are equivalent if there is an [F;-linear
isometry for the folded Hamming distance ¢ : F;" —> F7" such that C'=¢©).

The following result is straightforward from Proposition 5.
Corollary 7 Two linear codes are equivalent if, and only if, so are their duals.

However, note that the results that we will obtain in this manuscript are either unkown or
simply do not hold for the sum-rank distance in general. For instance, MacWilliams equations
(Theorem 5) do not exist in general for the sum-rank distance [8].

Throughout the remainder of the manuscript, linear will mean FF,-linear. Notice that the
alphabet size will be considered as ¢, i.e., it is not the same as the size of the field of linearity.

3 Quasi MDS codes

In this section, we provide a relaxed version of the Singleton bound and define and study
QMDS and dually QMDS codes.

Item 1 in the following proposition is equivalent to the classical Singleton bound for linear
or non-linear codes in the classical Hamming distance [17, Th. 2.4.1]. Item 2 is straightforward
from Item 1, and Item 3 is the dual statement.

Proposition 8 Let C be a linear code of type [n,r, k,d] and let C+ be its dual, of type
[n,r,rn —k, dl]. Then

1. k<r(n—d+1),
2.d<n—[81+1=n—- 5] and
at <5+ 1=10

As usual, a linear code is MDS if it attains the bound in Item 1. If r | k (necessary for the
code to be MDS), then Items 1 and 2 coincide. However, when r 1 k, the second bound may
be attained but the first one cannot. This motivates the following definition.

Definition 9 We say that a linear code of type [n, r, k, d] is quasi-MDS or QMDS if d =
n— H‘ﬂ +1=n-— L?J. A linear MDS code is a QMDS code such that r | k.

Remark 10 Considering IF,-linear codes in F”, with the classical Hamming distance, which
is equivalent to Fy-linear codes in ;" with the r-folded Hamming distance (see Sect. 2),
we have that the dimension of an F,-linear code C C IFZ, is of the form k = r Léj + p with
0 < p < r.Ifd =d(C) (its classical minimum Hamming distance in ]FZ, or its minimum
r-folded Hamming distance in F;"), then:

1. C is MDS (in the classical sense) when k = r(n —d + 1).
2. Cis QMDS but not MDS whenk =r(n —d) + pand 0 < p < r.
3. Cis almost MDS [12] when k = r(n — d).
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Therefore, for a prefixed ambient space (IF‘Z, in the classical Hamming distance or " in the
r-folded Hamming distance) and a given minimum distance, we see that QMDS codes lie
in between classical MDS codes and almost MDS codes in terms of dimensions for a given
minimum distance.

The dual of a linear MDS code is MDS, also for the folded Hamming distance. The
following result has been independently proven in [7, Lemma 3.3], [27, Th. 1] and [3, Th.
9].

Proposition 11 ([3, 7, 27]) A linear code C < IF‘Z” is MDS if, and only if, so is its dual.
However, this is not the case for QMDS codes in general.

Example 12 Over any field, the linear code of type [3, 3, 4, 2] with the following generator
matrix is QMDS but its dual is of type [3, 3, 5, 1], thus not QMDS:

100/100(000
010010000
001j000|010
100/010{100

G =

This motivates the following definition (we will give examples in Sects. 4 and 6).
Definition 13 A linear code is dually QMDS if both itself and its dual are QMDS.

Remark 14 A g-analog of QMDS and dually QMDS codes have been considered before
[9], called quasi maximum rank distance (QMRD) and dually QMRD codes. However, in
the rank metric there exist linear MRD codes for any choice of parameters [13]. In contrast,
QMDS and dually QMDS codes may attain lengths and alphabet sizes not achievable by MDS
codes as we show in Sect. 6. Other properties make the folded-Hamming-metric counterpart
different in essence, such as the density results (Sect. 4) or their applications in practice [3,
6, 7].

A first observation is that the dually QMDS property is preserved by equivalence, which
follows from Corollary 7.

Proposition 15 A code that is equivalent to a dually QMDS code is also dually QMDS.

‘We may also characterize dually QMDS codes in terms of the sum of the distances of the
code and its dual.

Proposition 16 Let C be a linear code of type [n,r, k,d) and let C* be its dual, of type
[n,r,rn—k,d*). Ifr | k, then either d +d*+ = n+2 ord +d* < n, whereas if r { k, then
d +d* < n+ 1. Furthermore, the following hold:

1. Cis MDS if, and only if, C* is MDS if. and only if, d + d+ = n + 2.
2. Cis dually QMDSaner(kif,andonlyif,d—i—dl =n+ 1L

Proof If we add the Singleton bounds for C and C* (Items 2 and 3 in Proposition 8), we

obtain ' .
d+dt < <n—[—-‘+1>+<LfJ+1) <n+2.
r r
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Notice however that, if r 1 k, then fél = L%J + 1, which implies in this case that d + d+ <
n+ 1. Note also that, if » | k and d + d+ = n+1, then C is MDS but C* is not (or viceversa),
which is not possible by Proposition 11. Thus if 7 | k and d +d+ < n+2, thend +d* < n.

In particular, d + d*+ = n + 2 may only happen if 7 | k, in which case it must also hold
thatk =r(n —d + 1) and rn —k = r(n —d* + 1), and C (thus C1) is MDS. Conversely, if
C (thus Cl) is MDS, then we have d + d+ = n + 2, and Item 1 is proven.

Similarly, if r t k and d +d L = n+ 1, then equalities in both Items 2 and 3 in Proposition
8 must hold, i.e., C is dually QMDS. The reversed implication is straightforward and Item 2
is proven. O

Remark 17 Notice that for F,-linear near MDS codes [10] in IE‘;” for the r-folded Hamming
distance (or, equivalently, in ]Fg, for the classical Hamming distance), it holds that d+d L=n.
Since d + d* = n + 2 for MDS codes and d + d* = n + 1 for dually QMDS codes which
are not MDS, we see that the latter lies in between classical MDS codes and near MDS codes
in terms of d + d*, as stated in the Introduction. See also Remark 10.

As in the classical case of MDS codes, we may characterize QMDS codes in terms of their
generator and parity-check matrices. We start with the following result, which generalizes
[17, Cor. 1.4.14 & Th. 1.4.15] from r = 1 to r > 1 in general. For a k x (rn) matrix
G = (Gq]|...|Gp), where G, is of size k x r, we say that G; is the ith column block of G
formed by r columns.

Proposition 18 Let C be a linear code of type [n, r, k, d] with generator matrix G and parity-
check matrix H.

1. d is the maximum number such that the submatrix formed by the r(n — d + 1) columns
of any set of n — d + 1 column blocks of G has rank k.

2. d — 1 is the maximum number such that the submatrix formed by the r (d — 1) columns of
any set of d — 1 column blocks of H has rank r(d — 1).

Proof For Item 1, d is the minimum number such that it is possible to obtain zeros in
n — d column blocks by making (nontrivial) linear combinations with the rows of G. As a
consequence, any submatrix formed by the columns of G in n — d + 1 column blocks must
have rank & since k < r(n—d + 1), and there exists n — d column blocks in G whose r(n — d)
columns form a matrix of rank lower than k.

For Item 2, since HGT = 0, any set of n — d + 1 column blocks of G has maximum rank
if, and only if, it is not possible to obtain zerosinn — (n —d 4+ 1) = d — 1 column blocks
in nontrivial linear combinations of the rows of H. In other words, any submatrix formed by
the columns of H in d — 1 column blocks must have rank r(d — 1) since r(d — 1) < rn —k.
0

As a consequence, we obtain the following characterizations of QMDS codes, which
recovers the characterizations of classical MDS codes [17, Th. 2.4.3] when r = 1.

Corollary 19 Let C be a linear code of type [n, r, k, d] with generator matrix G and parity-
check matrix H. The following are equivalent:

1. Cis QMDS.
2. Anyk xr [%] submatrix of G formed by [é] column blocks has rank k.
3. Any (rm — k) x r(n — fé]) submatrix of H formed by n — fé] column blocks has rank

r(n — 5.
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In particular, C is dually QMDS if, and only if, any k x r [é] submatrix of G formed by [é]
column blocks has rank k and any k x r Léj submatrix of G formed by [%J column blocks
has rank r L%J.

Remark 20 Note that Proposition 11 follows immediately from the previous corollary.

We now turn to restricted and shortened codes. Apart from being of interest on their own,
we will use them when computing the weight distribution of dually QMDS codes in Sect. 5.
Definition 21 Given I C [n], we define the projection 7y : ]F;" — IF;'” such that
mi(er, ..., ) = (€)ier, forer, ..., ¢, € Fp.

Definition 22 Given a code C C IF‘Z” and I C [n], we define the restricted code C! = 7;(C),
the null subcode C(/) = C N ker(r7) and the shortened code C; = my (C([n]\1)).

Restricting and shortening QMDS codes yield again QMDS codes.

Proposition 23 Let C be a linear code of type [n, r, k, d].

1. Cis QMDS if. and only if, C! is of dimension k for all I C [n] withr|I| > k.

2. IfCis QMDS, then C! is of dimension k! withr(|I| — 1) < k! < r|I|forall I < [n] with
rll] < k.

3. Cis QMDS if, and only if, C; = O forall I C [n] withr(n — |I]) > k.

4. IfC is QMDS, then Cy is of dimension ky withk —r(n — |I|) <k; <k —r(n—|I|) +r
forall I C [n]withr(n—|I|) < k.

Furthermore, if C is QMDS, then so are C! and Cy, for all I < [n].

Proof Ttem 1 (including the fact that C’ is QMDS) follows directly from Corollary 19.

For Item 3, we haved > n — fé] if,and only if,C; = Oforall I C [n]with |I| <n— {é},
which is equivalent to r(n — |I|) > k.

Next we prove Item 2. Let I C [n] with 7|I| < k. Consider a generator matrix G of C, and
let G be the submatrix of G formed by the column blocks indexed by I. Since G is of size
k x (r|I]) and r|I| < k, there can be at most r — 1 columns in G that linearly depend on
the rest of the columns of G; (otherwise thereis a k x r fé] submatrix of G of rank smaller
than k, contradicting Corollary 19). Hence k' =dim(@C" = r|I|— (¢ —1) > r(I|—1) and
any nonzero linear code in IF;'” of such a dimension is QMDS.

Finally we prove Item 4. Let I < [n] with r(n — |I|) < k. We have k — k; =
dim (1 (C)) < r(n — |I]). Thus

k — |1 k k
d(cl)id:n—lrf—‘-l-]Zn—’rw-‘+]:|[|_’7i—‘+]_
r r r
By the Singleton bound, C; is QMDS and the inequalities above are equalities. In particular,
ki +r(n—I)) <r[%] <k +r. hence k; <k —r(n —|I|) +r. O

Similarly, any restriction and shortening of a dually QMDS code is again a dually QMDS
code. Moreover, their dimensions characterize the dually QMDS property.

Theorem 1 For a linear code C of type [n, r, k, d], the following are equivalent:

1. Cis dually QMDS.
2. dim(C") = kifr|I| > k and dim(C") = r|I| if r|I| < k, for all I C [n].
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3. dim(Cy) =k —r(n—|I))ifr(n —|I]) < kand dim(C;) = 0ifr(n — |I|) > k, for all
1 C [n].

Furthermore, if C is dually QMDS, then so are C! and Cy, for all I C [n)].

Proof We first show that Item 2 implies Item 1. We will repeatedly use chHt = b,
(see [17, Th. 1.5.7]). First, from dim(C’) = k if r|I| > k, we deduce that C is QMDS by
Proposition 23. Next, if || < Léj, then

dim((C1);) = dim((C€HY) = r|I| — dim(C) = r|I| = r|I| = 0,

which means that d(C1) > Léj + 1, and we conclude that C is dually QMDS.

Using (C hL — (¢1);, one can similarly show that Item 3 implies Item 1. Therefore, we
only need to prove that Item 1 implies Items 2 and 3, and that ' and C; are dually QMDS.

Assume that C is dually QMDS. First, C! and C; are QMDS by Proposition 23. Using that
€cht = hy, )t = (€)' and that C* is also QMDS, we deduce that both ¢/ and C;
are dually QMDS, again by Proposition 23.

We now compute dimensions. If 7|I| > k, then dim(C’) = k by Proposition 23. Now
assume that 7|/| < k. Since C* is QMDS and r(n — |I]) > dim(C1), then dim((C1);) =0
by Proposition 23. Using again (C’)* = (C*);, we have

dim(c’) = r|I| — dim((C)) = r|I| — dim((C1);) = r|1].
We now turn to C;. First, using once again (C L = (¢1);, we have that
dim(C;) = dim((¢H)h) = r|I] = dim((CH)).

Using the formula for dim( chHh already computed (since clis dually QMDS), we obtain
the formula for dim(C;) given in the proposition. O

We now illustrate how the dimension formulas in Theorem 1 do not hold for all QMDS
codes.

Example 24 Consider the QMDS code C of type [3, 3, 4, 2] from Example 12. If I = {3},
then dim(C’) = 2 # 3 and if I = {1, 2}, then dim(C;) = 2 # 1.

4 Existence and density of dually QMDS codes

In this section we show that dually QMDS codes exist for all parameters given a sufficiently
large finite field. We first give an existential result, which also shows that the family of such
codes is dense (they appear with probability approaching 1 for large fields). Then we show
that the explicit codes known as polynomial ideal codes [6, 24] are dually QMDS covering
general parameters for sufficiently large finite fields. Later in Sect. 6, we explore dually
QMDS over small finite fields relative to their code length.

For the existence and density, we will make use of the DeMillo-Lipton-Schwartz-Zippel
bound [18, Lemma 16.2]. We denote by IF; [x1, x2, . . ., X;,] the polynomial ring in m variables
X1, X2, ..., Xy over Fy. For F € Fy[xy, x2, ..., xp], we consider deg(F) as its total degree
and we denote Z(F) = {a € IFZ’ : F(a) = 0}.

Lemma 25 (DeMillo-Lipton-Schwartz-Zippel [18]) Let F' € Fy[x1, x2, ..., Xp]. Then

|Z(F)| < deg(F)-q" "
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Proposition 26 Let n, k, r be positive integers and let I, be a finite field such that k < rn

and k
. n ri] k n k
Cln.r- k) ""(r’ﬂ)( k )”M <LfJ><rL’iJ> -

1. There exists at least one dually QMDS code C of type [n,r,k,d],d =n — [k] + L
2. The probability that a code C of type [n, r, k, d] ( where d is not fixed) chosen uniformly
at random is dually QMDS is at least 1 — Curk)

Proof We only need to prove Item 2. Choosing a code of type [n, r, k, d] (where d is not
fixed) uniformly at random is equivalent to choosing a full-rank £ x (rn) matrix G over
F, (modulo multiplying on the left by invertible k x k matrices over IF,). We consider the
entries of G as variables xi, xa, ..., x;; with m = krn, and an instantiation of G consists in
choosing a point in IE‘Z’ uniformly at random and evaluating the variables x1, x7, ..., X in
such a point.

By Corollary 19, G generates a dually QMDS code if any k£ x r[%l submatrix of G
formed by fél column blocks has rank k (QMDS condition), and any k x r I_éj submatrix
of G formed by Léj column blocks has rank r Léj (dual QMDS condition). This condition
holds if all of the involved minors are nonzero, i.e., the product of all such minors is nonzero.
Such a product is a polynomial F* € Fy[xy, x2, ..., x,] of degree deg(F) = C(n,r, k) < q.
The probability that a point in F”*, chosen uniformly at random, does not lie in Z(F) is

—1Z(P)| _ g" —deg(F)g" ™! Cln.r.k)

q™ B q™ q
by Lemma 25, and we are done. O

Noting that C(n, r, k) only depends on n, r, k and not on g, we conclude the following.

Corollary 27 Dually QMDS codes are dense in the set of codes of type [n, r, k, d] (where d is
not fixed) since the probability that a uniformly random code of such a type is dually QMDS
tends to 1 as q tends to infinity.

Remark 28 1In particular, the probability that a uniformly random code of type [n, r, k, d]
(where d is not fixed) is QMDS but not dually QMDS tends to 0 as ¢ tends to infinity. That
is, the family of such codes is sparse.

Remark 29 As shown in [15], maximum rank distance (MRD) codes which are linear over
a subfield are not dense in general. Together with Corollary 27, this shows an essential
difference between MRD and MDS codes that are linear over subfields. The question remains
open in general for the sum-rank distance [23] (for MSRD codes that are linear over a
subfield).

We now turn to an explicit construction that works for any choice of n, r, k, called poly-
nomial ideal codes, introduced in [6], and their generalization [24]. However, their field size
q is far from optimal in general (we will explore small field sizes in Sect. 6).

Definition 30 (Polynomial ideal codes [6, 24]) Let Fy, F>, ..., F, € F,[x] be pairwise
coprime polynomials of degree r. By the Chinese remainder theorem, we have the I -linear
vector space isomorphism

— F" . F > (F mod F})"

(I F) =t

@ Springer



U. Martinez-Pefas et al.

where F' mod G denotes the remainder of the Euclidean division of F by G, which we

identify with a vector in Fgeg(G) by writing its coefficients as a list. For k € [rn], we define
the polynomial ideal code

CLU(F1, Fa, .o Fy) = {@(F) 1 F € Fylx], deg(F) < k}.
Given also Ay, ..., A, € GL,(IF,), we define the generalized polynomial ideal code
CENF1L . Fui AL Ap) = (1AL ... eaAp) : (e1. ... ¢) € CER(F1L .. Fy)).

Polynomial ideal codes recover as particular cases codes which are known to have good
list-decoding properties, such as folded Reed—Solomon codes and multiplicity codes, see [6].

Clearly, generalized polynomial ideal codes are equivalent to polynomial ideal codes by
Proposition 5. However, they will be necessary to express duals, as we show later.

First, we show that generalized polynomial ideal codes are always QMDS.

Theorem 2 The generalized polynomial ideal code C,f)l (F1,..., Fy; Ay, ..., Ay) from Def-
inition 30 is QMDS of type [n, r, k,dl, d =n — 5]+ L.

Proof Tt is enough to prove the result for polynomial ideal codes (i.e., A; the identity matrix
for all i € [n]), by Proposition 5.

First, clearly the code is linear. We now show that it has dimension k. It is enough to show
that if F* € Fy[x] of deg(F) < k satisfies ¢(F) = 0, then F' = 0, since the vector space
of polynomials of degree less than k has dimension k. The condition ¢(F) = 0 means that
]_[,’-’=l F; divides F since Fy, F», ..., F, are pairwise coprime. However, deg(]—I?:1 F) =
rn > k > deg(F), thus it must hold that F' = 0.

Now we show the QMDS property. Let F' € FF;[x] be such that F' # 0 and deg(F) <
k. Assume that d = dF(C,fI(Fl, F, ..., F;)) = wr(e(F)). Without loss of generality,
we may assume that F mod F; = 0, fori € [n — d]. That is, ]_[;’;ld F; divides F since
Fi, Fa, ..., F,_g4 are pairwise coprime. Therefore

n—d
r(n — d) = deg (]‘[ Fi> <deg(F) <k <r(n—d+1),

i=l1

where the last inequality is the Singleton bound (Proposition 8). This means that [é] =
n—d+1,ie.,C'(F\, Fa, ..., F,)is QMDS and we are done. o

It remains to show that duals of generalized polynomial ideal codes are again QMDS.
Such duals are hard to describe even in particular cases [24]. However, when F; completely
factorizes in I, then the duals are of the same form [24, Th. 3.4].

Theorem 3 ([24]) Let a; j € Fy, fori € [n] and j € [r], be such that {a; 1, ..., a;,} N
{aj1,...,a;,) =D ifi # jand such that F; = (x —a; 1) -+ (x —a; ), fori € [n]. Then
forall Ay, ..., A, € GL,(FF,), there exist By, ..., B, € GL,(F,) such that

CHI(F1, .. Fa Ar . A =CP N (Fi, ..., Fai Bi, ... By).
Combining Theorems 2 and 3, we deduce the following.

Corollary 31 Let a; j € F,, for i € [n] and j € [r], be such that {a;,...,a;,} N
{aj1,....,a;,} = Difi # j and such that F; = (x —a;1)---(x — a;), fori € [n].
Then forall Ay, ..., A, € GL,(IF,), the linear code C,fI(Fl, o By Aq, Lo Ay) is dually
OMDS.
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Notice that these codes may be constructed for n = g (choosing a; 1 = ... = a; ,, for all
i € [n], which yields multiplicity codes). Observe that MDS codes (such that r|k) exist for
n=gq" + 1. In Sect. 6, we will construct dually QMDS codes for n = 2" ! — 1 over F, for
some dimensions that are not multiples of r.

Remark 32 We will see in Proposition 38 that a subcode of a QMDS code of the right
dimension is again QMDS. In this way, one can obtain QMDS of any dimension for any
lengthn < ¢" 4 1 by using extended Reed—Solomon codes. However, as we show in Remark
40, such subcodes are not always dually QMDS. To the best of our knowledge, the codes in
Corollary 31 are the only dually QMDS codes that cover all possible lengths and dimensions
(given sufficiently large fields).

5 Weight distributions

In this section, we study weight distributions of linear codes in the folded Hamming distance.

Definition 33 The (folded) weight distribution of a linear code C C ]FZ” is defined as the
numbers A; (C) = |{c € C: wr(c) = j}I, for j € [0, n].

We start by computing the weight distribution of dually QMDS codes. As in the classical
MBDS case, the weight distribution of dually QMDS codes only depends on their parameters,
i.e., two dually QMDS codes of the same parameters have the same distribution. We later
obtain a stronger result (Theorem 6) using MacWilliams equations. However, we give now
a simple proof that only relies on Theorem 1.

Theorem 4 Let C be a dually QMDS code of type [n, r, k, d). Then Ag = 1, Aj = 0 for all
jeld—1),andif j € [d,n], then

j—d .
=)o

i=0

Proof The only non-trivial cases are those with j € [d, n]. By Theorem 1, for I C [n],

k=r=IID i r(n — |I]) <k,
|cz|={q = M

1 if r(n — |1)) > k.

Note that N; = Zm:n—r |Cr| counts the number of words in C with folded weight < n — 1,
counted once for each C; they appear in, where [I| = n — t. By (1), we have

_ (")qk*” if ret <k,
N = { ™ it >k
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By the inclusion—exclusion principle, we deduce that

J L
(n—J+1
Aj = E (—1)l< ; )Nn—j+i
i=0

LE)+j—n

nif(n—J i n k—r(n—j+i)
> (T e
i=0
J L
fn—Jj+i n
o X ()G

l=LéJ+]*l’l+l

Using (") (, ) = ()0) and Ly (<14 () =~ S -1 (). we e

LEJ+j—n
( ) Z ( 1) ( > k—r(n—j+i) 1)’

for j € [d,n]. Now, if r { k, then we obtain the desired formula since Lf‘fj +j—n=
51— 14 j—n=j—d Finally,ifr | k,then | 5]+ j—n="%—14+j—n=j—d+1,
but the (j — d + 1)th term in the sum is zero, and we obtain again the desired formula. O

In fact, when the code is not dually QMDS, we have certain degrees of freedom for the
weight distribution of the code. We show this stronger result in Theorem 6 below. To prove
it, we will need MacWilliams equations for the folded Hamming distance. MacWilliams
equations for the folded Hamming distance can be derived from more general results [4, 14,
16]. However, in order to use them in our context and notation, it is shorter and easier to give
a direct proof.

Theorem 5 (MacWilliams Equations) LetC be a code of type [n, r, k, d], andlet A; = A; (C)
and Ajf =Aj (Cl),forj € [0, n]. Then, for v € [0, n],

n—v . v .
n—yj k—rv n—yj 1
A = A+,
S ("=t ()

j=0 j=0

Proof Denote k = dim (C) and k; = dim (C'), for I < [n]. We have

n—v

Z <I’l .]> Z qk k[ (2)

j=0 |=v

for v € [0, n], since both sides count the pairs (¢, /) such thatc € C, I C [n], |[I| = v, and

m7(¢) = 0. First, for ¢ € C such that wr(c) = j, there are (") possible sets / < [n] with

[I| =vandm;(c) =0. Second, given I C [n] with |I| = v, there are qk’kl words in C with

zeros in the v blocks of 7, since dim (C N ker(;ry)) = dim (C) — dim (77 (C)) = k — k;.
Next, the right-hand side of (2) equals

Y (CI>J- F Y Xv:AJ <<CI)L> :qkfrvi 3 4 ((cl)l), 3)

[|=v [I=v j=0 j=0|I|=v
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Now we prove that

3 4 ((CL) ) - (" {)A,%. &)
= I v—j/) -
Both numbers count the possible pairs (¢, /) such thatc € ¢l wr(e) = j, I < [n],|I] =,
and 7,7 (¢) = 0. First, for I C [n] with |I| = v, there are A; ((C*),) words in C*+ with
weight j and with zeros outside the v blocks of /. Second, for ¢ € ¢+ such that wr(c) = J
there are (Z:ﬁ) = (:’):j) possible sets I € [n] such that |I| = v and 7,,y7(¢) = 0.

The theorem follows by using that (2) and (3) are equal, and applying (4) together with
(c")" = (c*), (see [17, Th. 1.5.7)). o

In order to give the strengthening of Theorem 4, we need the following preliminary lemma.

L n,n L\ 1,n
Lemma 34 Considerthe matrices M,, = ((—1)””*1( i)) and N, = (("71)) ,
=17 Ji=0,j=0 b 7)i=0,j=0
of size (n + 1) x (n + 1) over Z, where (';) =0ifv > u. Then N, = Mn_l.
Proof We prove that M, N, = I,,+1, the identity of size n 4 1. The product of the ith row of
M,, and the jth column of N, is

5 it € n—j
;( ) <n_i>( . ) @)

If i < j, then clearly (5) equals 0. If i = j, then (5) becomes (—1)"*—1) (Z:)(Z:) = 1.
Finally, if i > j, then (5) becomes

n—j ) . i—j ) s
3 (—D”””( )(" ”) = Z(—l)‘(" - )( " ) ©)
Pl n—i L = n—i i—j—¢
Now, we have that (14x) 7"+ =1 = 7% /(—1)* (") x (see [1, p. 56]) and (1 +x)"~/ =
ZZ;(J) (";j )x?. Using these series expansions in Z[[x]), it is straightforward to see that the
right-hand side of (6) coincides with the (i — j)th coefficient of (14 x) "~ 1(1 4 x)"~/ =
(1 4+ x)*=/=1, which is zero. Therefore (6) equals zero if i > j and we are done. O

‘We may now prove the above mentioned strengthening of Theorem 4.

Theorem 6 LetC be alinear code of type [n, r, k, d], anddenoted* = d(C) andAj = A;(C),
for j € [0, n)]. Then for j € [n — d+ + 1, nl, it holds

Jomd n\ [ j nod n—j+i n—v
Aj= Yy (.)(.)(q"‘“"‘”“—l)— > ( . )( . .)Av
= J 1 =t I n—j+i
In particular, the whole weight distribution of C is determined by Agq, Ag41, ..., A,_4L.
Proof Denote AT = A;(C*). Using Ag = Ay = 1, Ay = ... = A4 = 0and A} =
.= AL = 0 in Theorem 5, we have, for u € [0, d+ — 1],

dt-1
= n—j n nd’ n—v
D O e L B W (i I
Jj=n—d++1 v=d

@ Springer



U. Martinez-Pefas et al.

We can rewrite these equations in matrix form as

(dlo_l) (dLo_z) (o) ©) Augtin

il I
(d 1 l) (d 1 2) (i) 0 Aty
@ 0 ...0 0 An
n n— n— L1
(o)(‘lk - D ( od) ( g+1) (dol) 1
| @ =n ) e () —Aa
n N, ker@te ned (n—d at A
(di—l)(qk @=n_y (dL:ll) (dejll) (dil—l) An-at

Since the matrix on the left-hand side is N1 _;, we may solve such linear equations by
multiplying by M1 _; on the left on both sides, by Lemma 34. This tedious calculation
yields

d_-1 i n nd: i n—v
L _\n—j+i k—ir _ _ -
A= 2D (2 )t 2 ()0
j—n+d*-—1 A
- > (—h"((”_’ J.”)( ! ‘><qk—<f+"—f>f -1
= n—j n—j+i

L

nd n—j+i n—uv

- Z o o + . Av )
= n—j n—j4i
. 1 . — i _ i

for j € [n —d— + 1, n], and the theorem follows by using (""ij ’)(nf]fﬂ) = ('}) ({) O
Remark 35 1In the case of dually QMDS codes, we have d+d* € {n+1, n+2} by Proposition
16. In that case, we have d > n — d+ and clearly Theorem 6 recovers Theorem 4 (notice
that for linear MDS codes, Theorem 6 gives A, ;1,1 = Ag—1 = 0 as expected). In all other
cases, it holds thatd + d+ < nand we haven —d —d+ +1> 1 degrees of freedom for the
weight distribution of the code according to Theorem 6.

We conclude by noting that QMDS codes that are not dually QMDS never have the same
weight distribution as dually QMDS codes. This fact follows by combining Theorems 4 and
5. It also follows by using Theorem 1 and noting that the first proof we gave of Theorem 4
only depends on the dimensions of the restricted codes.

Corollary 36 A linear code C of type [n, k, r, d] is dually QMDS if, and only if; its weight
distribution A j(C), j € [n], is given as in Theorem 4.

Example 37 Considerthe code C of type [3, 3, 4, 2] from Example 12 over F», which is QMDS
but not dually QMDS. We observe that A>(C) > 4, since it has the following codewords of
folded weight 2: (1,0, 0]1, 0, 0]0, 0, 0), (0, 1, 0]0, 1, 0]0, 0, 0), (0, 0, 1|0, 0, 0]0, 1, 0) and
(1, 1,010, 0, 0|1, 0, 0). However, according to Theorem 4, a dually QMDS code of type
[3, 3, 4, 2] over I, satisfies Ay = 3. Since there exists a dually QMDS code of type [3, 3, 4, 2]
over IF (a restriction of the code in Construction 1 for » = 3), we conclude that there exist
two QMDS codes with the same parameters and different weight distributions, in contrast
with dually QMDS codes.
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6 Long QMDS codes over small fields or alphabets

In this section, we study how long QMDS and dually QMDS codes can be over a given
(preferably small) finite field or alphabet. We give two bounds and an optimal-length binary
construction.

We start with a simple upper bound on the length n of QMDS codes given by the distance
d and the field and alphabet sizes, ¢ and ¢”. This result is inspired by the discussion at the
beginning of [25] and we prove it for arbitrary (linear or nonlinear) codes.

Theorem?7 Let C C Fi" be a (linear or nonlinear) code of size g~ and minimum distance

d=n— fé] + 1 > 3 (in particular, if C is linear, then it is QMDS). Then
n<d=3+¢T1H g +1) <d=3+4"" ¢ +1).

In particular, fé’l < q”é]_k(qr +h=2<q¢ '@ +1) -2

Proof Let I = [n]\ [d — 3]. Clearly |C!| = ¢* and d(C') > 3. Thus we may apply the

classical Hamming bound to C I j.e., the balls B (c, 1) of folded Hamming radius 1 around
every codeword ¢ € C! are pairwise disjoint. Thus

" (1+ (0 —d+3)(q" =) =1C"-|BO, | < [F;!| = g7~

This inequality can be rearranged as follows,

r(n—d+3)—k __ 1

q
<d-3
n < + 7 —1
r814+2-k _
PP Al
q"—1
kq_
_d_3+qr!'%'\—k_q2r_1 qr(ﬂ k_q
qr _1 qr — 1
<d=3+¢T g +1)+1,
where in the last inequality we use that 0 < r [%1 — k < r, and we are done. O

Notice that if d is unrestricted, then the previous bound does not imply that # is restricted
by ¢ or r (although k is). However, in the case of dually QMDS codes, we can obtain bounds
on d and n in terms of ¢ and r based on their weight distributions (Theorem 4). This result
generalizes [17, Cor. 7.4.3] fromr = 1tor > 1.

Theorem 8 Let C be a dually QMDS code of type [n, r, k, d] and denote d* = d(C™). Let
e=r— 81—k elrlands =r — (k—r|5]) elrl.

L Ifk > r, thendfq’—l—l—tqr—_lj.

1
2 Ifk <r(n—1), thend: = [¥17 < g" — 1 + Bajj
In particular, ifr <k <r(n — 1), then
2" -2 ifr|k,
"= {qu =34 |4 |+ 4] wrie
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Proof The bound on n follows by adding the bounds in Items 1 and 2 and using Proposition
16 for d + d+. Moreover, Item 2 is the dual statement of Item 1, hence we only prove the
latter.

If r { k, then k > r implies d* > 2andd = n + 1 — d* < n — 1 by Proposition 16. If
r | k,then k > r implies k > 2r, hence d+ >3, thusd = n+2—dt < n—1too. Therefore
in both cases (r | k or not), we may consider As+1. By Theorem 4, we have that

_ n k+rd+1-n) _ 1 _ k+r(d—n) _
Agy1 = <d+ 1) (q 1—d+1)(q 1)) > 0.

Now, we have k +r(d —n) = k — r([é] — 1) = ¢, and the previous inequality is equivalent
to g — 1> (d + 1) (¢° — 1). Therefore

qs+r_1_qs+r_qr+qr_1_r qr_l

d+1< = .
= q° =1 q° =1 q°—1

m}

‘We now turn to constructions. The first observation is that QMDS codes of lower dimension
may be easily obtained from a given QMDS code (e.g., a given linear MDS code), as follows.

Proposition 38 Let C be a QMPS code of type [n, r, k,d] and let k' be an integer such that
r(fé] — 1) < k' < k (thus (k71 = (é}). Then any linear subcode of C of dimension k' is
OMDS of type [n, r, k', d].

Corollary 39 Let C be a linear MDS code of type [n, r,r(n — 1), 2], which exists over any
field (take, e.g., the dual of the classical repetition code). For any integer k with r(n — 2) <
k < r(n — 1), any linear subcode of C of dimension k is a QMDS code of type [n, r, k, 2].

Thus there exist QMDS codes of dimension r(n — 2) < k < r(n — 1) for any length n
over any field. Thus the last bound in Theorem 8 does not hold for general QMDS codes
when r(n —2) < k < r(n — 1). Moreover, since the distance is 2, this result also shows that
the bound on n in Theorem 7 does not hold if d > 3 is not satisfied.

Remark 40 Notice that the QMDS codes from Corollary 39 may not be dually QMDS codes
if n is longer than the bound in Theorem 8. In particular, one may not always obtain a dually
QMDS code by choosing a subcode of a dually QMDS code as in Proposition 38.

Next we give a construction of optimal-length binary dually QMDS codes, longer than
any MDS code, for a fixed alphabet size ¢". We first give an example.

Example 41 The linear code over [F, with the following generator matrix is dually QMDS of
type [7, 2, 3, 6]:
10{10{10/10{10{10/00
G=101{01{01|01|10]|00f10
11/10/01{00[01]01]01

The distance of the code is 6 since any nontrivial [';-linear combination of the rows of G has
exactly one zero block. Thus the code is QMDS. Moreover, since the rows of any block of
G span the whole space IF2, then the dual has distance 2 and thus the code is dually QMDS.

In order to provide the general construction, we need the following technical lemma.
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Lemmad42 Letr be a positive integer and let ey, .. ., e, € I be the vectors of the standard
basis(i.e,ej j =08 j) Letl ={iy,...,i;} C[r+1]withl <iy <ip <...<1i; <r+land
t > 1(ie, I # @). Finally, defineu; ; = e; fori € [i;—1],u;; = e;_; fori € [i;+1,r+1],
uy;, = Zt;ll € ift >2anduy; = 0ift = 1. Then, for any nonempty J C [r + 1], it
holds that ) ;. ;uy; = 01if, and only if, J = I.

Proof First ) ;. ,u;; = 22'];11 e; = 0if J = /. Now assume that J # I.1f i, ¢ J, then
all the components of ), ; u; ; corresponding to J # & equal 1, hence ), ; u;; # 0. If
i; € J, then there exists j € I\J or j € J\I with j # i;. If j < i;, then the jth component
of ) ;c;uz; must be 1, and if j > i;, then the (j — 1)th component of ) ;_; u;; must be
1, thus ) ;. ;us; # 0 and we are done. |

Construction 1 Let r be a positive integer and enumerate all the nonempty subsets of [r + 1]
as Iy, I>,..., I, wheren = 2" 1 _1.LetCc C IF; be the linear code with generator matrix

Up,1 | Unq |--- W1
G = : o ,
W71 | W r1 |- - - |0, 41

where uy, ; is as in the previous lemma, fori € [n] and j € [r + 1].

Theorem 9 The linear code in Construction 1 is dually QMDS of type [2"t! — 1,r,r +
1,20+ -2,

Proof Consider a nonzero codeword ¢ = (¢, ..., ¢,) € C,where¢; € F,, fori € [n]. There
exists a nonzero X = (X, ..., X,41) € ]FEJrl such that ¢ = xG. Define J = {j € [r + 1] :
xj # 0}. Since J # @, there exists i € [n] such that J = [;. By Lemma 42, we deduce that
¢ = Zjej uy ; =0, whereas if £ € [n]\{i}, then ¢, = Zjej uy, ; # 0since J # Ip. In
other words, wr(c) = n — 1, and therefore d(C) = n — 1. Since the generator matrix G is
clearly of full rank r + 1, we conclude that C is QMDS of type [2" ! — 1,7, r + 1,27+ —2].

Finally, for every i € [n], the rows in the ith block of G, uy, 1, ..., uy, 41, span the whole
space [}, thus there cannot be a codeword in C* of folded weight 1. We conclude that
d(C) > 2, which means that C1 is also QMDS and C is dually QMDS. ]

Remark 43 The distance d = 2"t! — 2 of the code in Construction 1 attains the bound in
Item 1 in Theorem 8. Observe that in that theorem, & = 1, thus such a bound is
, q —1 2 —1

-1 =2 1+ =2t _o2_g
¢t T T

Moreover, for an arbitrary linear or non-linear MDS code in F ;” of r-folded distance d (or
equivalently in F”, with classical distance d) and size ¢”*, it is known [25] that n < 2¢" — 2
if r <k <r(n—1). Notice that g" = |Fyr| = |F2"| is the alphabet size considering the r-
folded distance as the classical Hamming distance. In the case ¢ = 2, we obtainn < o+l o
but the code in Construction 1 attains the length n = 2"*! — 1, thus is longer than any MDS
code for the alphabet size 2".

We observe also that all the known (linear or non-linear) MDS codes in F ;” of r-folded
distance d and of size ¢"* satisfy n < ¢” + 1. In the case ¢ = 2, this means n < 2" + 1. The
code in Construction 1 satisfies n = 2'+! — 1 = 2" 4+ 1 4 (2" — 2), which is strictly larger
than 2" 4 1 for r > 1, for the same alphabet size 2". Note that the bound n < ¢” 4 1 (known
as the MDS conjecture) holds for prime alphabet sizes [2].
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From the proof of Theorem 9 we also conclude the following property.

Corollary 44 The linear code in Construction 1 is a one-weight or constant-weight code, that
is, all of its nonzero codewords have the same weight.

Furthermore, these are the longest QMDS codes of dimension k withr + 1 < k < 2r
over [F.

Proposition 45 Let r and k be positive integers such that r + 1 < k < 2r. If there exists a
OMDS code of type [n, r,k,n — 1] over Fa, thenn < 2"+ — 1.

Proof By choosing an (r+1)-dimensional subcode, we may assume that there exists a QMDS
code of type [n, r,r + 1, n — 1] over F> by Proposition 38. Consider a generator matrix of
the code G = (G| ...|G,), where G; isabinary (r 4 1) x r matrix. If v; 1, ..., v; ,41 € )
denote the rows of G;, then there must exist anonempty /; € [r+1] such that Zjel,» vij=0.

Therefore, given a nonzero X = (x1,...,Xr41) € IF;H, the codeword ¢ = xG is zero at
least in the ith block if it holds that I; = {j € [r + 1] : x; = 0} (/; is the support of x). Since
the code has distance n — 1, then the nonempty sets /1, ..., I, must be all distinct, and thus
n<2rtl 1, o

In fact, for r +2 < k < 2r, lengths n = 2" 1 _ 1 are not achievable over F, by dually
QMDS codes.

Proposition 46 Assume thatr > 2 andr + 2 < k < 2r. If there exists a dually QMDS code
of type [n, r, k,n — 1] over Fy, then

4
n§??—D+1<T“—Z

Proof By Theorem 8, we have that

- 2r—1
n—1=d<2"—14——

26 —1’
where e =r — (r (él —k) =r — 2r — k) = k —r > 2. Therefore, we conclude that

-1 4
=72 -1,

—1<2"—1
nTh= tao1 T3

and we are done. ]

We conclude the section with some examples of binary linear QMDS codes that are longer
than any possible MDS code for a fixed alphabet size g".
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Example 47 The linear code over F> with the following generator matrix is QMDS of type
[9,2,13,3]:

1000000000001 0/10]00
010000000000|01|00]01
001000000000|00|10]01
000100000000|10f11]00
000010000000|01|10]00
000001000000|00|01]01
G=|000000100000(10{10|10
000000010000|11|00]01
000000001000|01|10]01
000000000100/00J0 1|11
000000000010|10/00]11
00000000000T1|11|01]01
000000000000|1 1|1 1]11

Notice that a (linear or nonlinear) MDS code of distance d = 3 must satisfy n < ¢” + 1 by
Theorem 7. In the case ¢ = r = 2 as in this example, it must satisfy n < 5. However, the
QMDS code of distance d = 3 in this example satisfies n = 9. Note also that, for this code,
(kril} =7>6>2"—1+ L%J , thus the bound on & in Theorem 8, Item 2, does not hold
for general QMDS codes.

Example 48 The linear code over Iy with the following generator matrix is dually QMDS of
type [6, 2, 5, 4]:
10{00[01/00]|0 1j11
01{00/00f11/01]01
G=]100{10/11/00]01]01
00[01j00f11(10{10
00{00{10[01|10]01

According to the MDS conjecture, a (linear or nonlinear) MDS code in )" with 7 = 2 must
satisfy n < 2" 4+ 1 = 5. However, the dually QMDS code in this example satisfies n = 6.

A Pseudo arcs: a geometric description

In this Appendix, we provide a finite-geometry counterpart of linear codes in the folded
Hamming distance, which coincides with what is called arcs or pseudo arcs in the finite-
geometry literature [3]. They generalize projective systems associated to linear codes in the
classical Hamming distance [26] and partial spreads [5]. Furthermore, pseudo arcs are the
building blocks of recent general families of MSRD and PMDS codes with small field sizes
[20, 22].

Definition 49 A pseudo arc of type [n, r, m, t]is a tuple H = (H;)}_, such that

1. H; C IF:? is an (IF,-linear) subspace of dim(H;) = r, forall i € [n].
2. t is the maximum positive integer such that H; N (3 jeJ H;) =0, foralli € [n] and all
J C [n\{i} with |J| =t — 1 (i.e., any ¢ of the subspaces are in direct sum).

Remark 50 A partial spread [5] is a pseudo arc of type [n, r, m, t] with ¢ > 2.
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Remark 51 Definition 49 coincides with the definition at the beginning of [3, Sec. 4] after
projectivization, except the parameter ¢ is not considered to be maximum in [3].

We need to consider nondegenerate pseudo arcs in order to associate them to linear codes
in the folded Hamming distance.

Definition 52 A pseudo arc H = (H;)}_, of type [n, r, m, t] is nondegenerate if YU Hi =
Fm,
q

We will now define a correspondence between pseudo arcs and linear codes in the folded
Hamming distance.

Definition 53 Let H = (H;)]_; be a pseudo arc of type [n,r,m,t]. We say that h =
(hi'j)?;’l’j:l is a basis of M if h; 1,...,h; , € F' are m x 1 column vectors forming a
basis of H;, fori € [n]. Next, define the m x (rn) matrix

Hh - (hl,l; '~~ah1,r| ~~~|hn,1; ~~'ahn,r)'

Finally, we define the linear code Cp, € F7" as that with parity-check matrix Hp.

Conversely, given a linear code C C IF;" of dimension k = rn — m with a (full rank)
parity-check matrix H, ifh; ; € IE";XI is the ((i — 1)r + j)th column of H, then we define
Hu = (H;)}_,;, where H; is the subspace generated by h; 1, ..., h; ,, fori € [n].

We have the following exact correspondence between parameters.

Theorem 10 1. If'H = (H;)!_, is a nondegenerate pseudo arc of type [n, r, m, t] with basis
h, then Cy, is a linear code of type [n, r, k,d] withk =rn —mandd =t + 1.

2. IfCis alinear code of type [n, r, k, d] and H is one of its parity-check matrices, then Hy
is a nondegenerate pseudo arc of type [n,r,m,tlwithm =rn —kandt =d — 1.

Proof Item 2 is proven similarly, thus we only prove Item 1. The fact that  is nondegenerate
is equivalent to Hy having rank m. Thus k = dim(C) = rn — m. Finally d =t + 1 follows
by combining Proposition 18 (Item 2) and Definition 49 (Item 2). O

Remark 54 A similar connection is made in [20]. However, the notion of degenerateness of
pseudo arcs is not considered there. In particular, the relations between the corresponding
parameters could only be given in [20] as bounds (which are not always tight) instead of as
exact equalities.

However the correspondence in Definition 53 is not bijective. In fact, for every pseudo
arc, we may obtain multiple codes, and viceversa. In order to obtain a bijection, we need to
consider equivalent codes (Definition 6) and equivalent pseudo arcs, which we now define.

Definition 55 Given pseudo arcs H = (H;)!_, and H' = (H})!_,, both of type [n, r, m, 1],
an equivalence between them is a pair (¢, o), where o : [n] —> [n] is a permutation and
@ IE‘Z’ — IE‘Z’ is a vector space isomorphism such that H; 0= @(H;), foralli € [n]. If it
exists, we say that H and H’ are equivalent (and clearly one is degenerate if, and only if, so
is the other).

We may now obtain a bijection between equivalence classes of linear codes (Definition
6) and pseudo arcs (Definition 55).
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Theorem 11 1. Let H and H' be equivalent nondegenerate pseudo arcs with bases h and
b, respectively. Then Cy and Cy are equivalent.

2. Let C and C' be equivalent linear codes in IF;" with parity-check matrices H and H',
respectively. Then Hy and Hp are equivalent.

Proof Ttem 2 is proven similarly, thus we only prove Item 1. Let H = (H;)}_, and H' =
(H; _,» both of type [n,r,m,t], and let (p, o) be the equivalence between them. There
exists an invertible matrix B € GL,,(IF,) such that ¢(x) = Bx, for every m x 1 column
vector X € IFg’. Now the equality H’ )= ¢ (H;) means that there exists an invertible matrix

o(i
A; € GL,(IF;) such that

B(hi,h cees hi,r) = (hé(i)‘la cees h/g'(i)’r)Ai7 (7)
forevery i € [n]. Let P, be the only (rn) x (rn) matrix over F; such that (cy, ..., ¢,) Py =
(Co(1)s - -sCa(my), foraller, ..., ¢, € IF; Then (7) is equivalent to

BHh = Hh/PgDiag(Al, ey An),

where Diag(Aj, ..., A,) denotes the block diagonal matrix with Ay, ..., A, in the main
diagonal. Thus we deduce that le and C;% are equivalent by Proposition 5. Hence Cy, and Cyy
are equivalent by Corollary 7, and we are done. O

Combining Theorems 10 and 11, we conclude the following.

Corollary 56 The correspondence in Definition 53 induces a bijection between equivalence
classes of linear codes of type [n, r, k, d] and equivalence classes of nondegenerate pseudo
arcs of type [n, r,m,t]withm =rn —kandt =d — 1.

As a consequence, all of the results in this paper concerning linear codes in the folded
Hamming distance can be immediately translated to results for nondegenerate pseudo arcs.
We leave the details to the reader.
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