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Abstract

We consider invertible, row diagonally dominant real matrices and give inequalities
on their minors and diagonal entries of their inverses. A very special case is that all di-
agonal entries of an inverse, of a row stochastic, row diagonally dominant and invertible
matrix, are at least 1, with strict inequality at least when the dominance is strict. This
was conjectured in international trade theory in economics and motivated the present
work (though much more is proven). Some of the results generalize previously known
facts for M-matrices.
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The matrix A is considered to be n-by-n with entries a;; throughout. We also suppose
that A is row diagonally dominant (DD), i.e. [a;| > 3, |ai;], and invertible. (There are
corresponding statements for column DD.) Invertibility is often a consequence of DD, but
not always. For example, strict diagonal dominance or irreducible diagonal dominance suffice
[2], but are not necessary as indicated by

(e 1) = (1)
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Diagonal dominance means that the diagonal entry in each row is rather big, occupying at
least half the weight. One of our purposes is to show that the diagonal entries of the inverse
are also “big” in at least two senses, an absolute size sense and relative to column entries.
At first this seems no surprise, as AA~! = I, but it is, by no means, trivial from this. Some
of what we say generalizes known facts about M-matrices. But, we were also motivated
by questions coming from international trade theory in economics, whence M-matrices also
arise |4, 3]. In any event, these observations make a nice addition to core matrix analysis
and will likely be useful elsewhere.

By |A| we mean the entry-wise absolute value of A: |A| = (Ja;;]). Of course, A is row
(column) DD if and only if |A] is. We take our matrices to be real-entried. If e, as usual,
is the n-vector of all ones, let r(A) = |Ale, the vector of absolute row sums of A and let D,
be the diagonal matrix such that D,e = r(A). Then, assuming A has no zero rows, | D, ' A|
is row stochastic and row DD if A is row DD. It is the case of row stochastic, DD matrices
that generated the original motivating interest in international trade theory and these will
be special cases of work here.

In case A is real and DD, then sgn(det A) = sgn(] [}, ai;), weakly. If A is invertible, the
equality is precise.

Let A(i;j) denote the (n — 1)-by-(n — 1) submatrix of A resulting from deletion of row ¢
and column j. Of course, A(i;1), or for short A(7), is a principal submatrix. Our first major
fact is

Theorem 1. Let A € M, (R) be such that for some R > 1:
RZ|GU|§|GZZ|7 2:1,,n (1)
J#i
Then also
R|det A(7;5)| < |det A(7)|  for j # . (2)
For R =1, Theorem 1 yields
Corollary 2. If A € M,(R) is row DD, then

|det A(7;5)| < |det A(3)|, j7=1,2,...,n.
(In case the DD is strict and j # i, the above inequality is strict.)

Proof of Theorem 1. We can assume that the diagonal of A is nonnegative because all the
minors of

diag (sgn(an), - . sgn(an)) A

in absolute value are equal to the ones of A and the previous matrix has nonnegative diagonal.
Note that in this case det A(7) is nonnegative.
It suffices to show that
R| det(A(1; )] < det A(1),



or, equivalently,
det A(1) &= Rdet A(1;7) > 0; (3)

for others values of ¢ the proof will be analogous.
Let C, denote the r-th column of A without the first entry:

C, = (a2T7 s 7an7‘)T7

so that
A(]_,j) = (Cl,...,Cj_17cj+1,...,0n> and A(].) = (OQ,...7CTL).

Then (3) can be rewritten as
det(C'g, ce 7Cn) + Rdet(C’l, ceey Cj—la Cj+1, ce ,Cn) Z 0,
or, equivalently, det Ay > 0, where

A:I: = (Cg, ce ,Cj_l,Cj + (—l)jRC’l, Cj+1, ceey Cn)

Q2 ... Q25-1 A3y + (—1)jRCL21 a2j41 ... QAgp
= Qjj + (—1)jRCLj1

Any .. Qnj—1 Gnj £ (1) Rap1 Gpjt1 -.. up

Observe that the matrices AL have nonnegative diagonal entries and are row DD. Indeed,
ar, > 0 by assumption, while a;; £ Raj; > 0 due to (1). Furthermore, also due to (1):

CL”ZRZ‘CLNJZR Z ]aik|+R\aﬂ|+R\aijl > Z ]aik|+\aﬂj:Raij]

ki ki,j,1 ki,5,1
and
laj; = Raji| > lag| = Rlap| > R Y lag| = > laxg] .
k#3,1 k#3,1
The non-negativity of det Ay follows. O

We say that a matrix A is diagonally dominant of its (off-diagonal) column entries if, for
1=1,...,n,
laii| > |aj|, 7=1,...,n.
This, of course, is strictly weaker than the traditional diagonal dominance. If the inequality is

strict, for 7 # 7, we refer to this dominance as strict. A restatement of Theorem 1 generalizes
the known case of diagonally dominant M-matrices [2].

Corollary 3. If A € M,(R) is row DD and invertible, then A~" is diagonally dominant
of its column entries. If the row DD 1is strict, then the invertibility of A is ensured and the
diagonal dominance of the column entries in A~ is also strict.



Proof. This is a restatement of Corollary 2, using the co-factor form of the inverse. n

Recall that C' is the comparison matriz for A if ¢;; = |ai;|, ci; = — |aijl, i, =1,...,n;i #
j. An H-matrix is a matrix with its comparison matrix an M-matrix. Of course, the
comparison matrix of an M-matrix is this matrix itself, and so M-matrices are H-matrices
by default. According to [1, Theorem 5.7.5], if A, B € M, (R) are M-matrices, then so
is the Hadamard product A o B~!. With the use of Corollary 3, we have the following
generalization.

Theorem 4. Let A, B € M,(R) be H-matrices. Then Ao B~ also is an H-matriz.

Proof. The characteristic property of H-matrices is that they become strictly row DD upon
multiplying on the right by a suitable diagonal matrix with positive diagonal entries. So,
let D be the respective diagonal matrix for A, and E for BT. Applying Corollary 3 to BTE
we find that B~'E~! is diagonally dominant of its row entries. A direct computation shows
that then (AD) o (B7'E~!) is strictly row DD along with AD. It remains to observe that
(AD)o (B™'E™') = (Ao B7!')(DE™') and invoke the invariance of H-matrices under right
multiplication by positive diagonal matrices. O

Corollary 5. If A € M, (R) is row DD, then, fori=1,...,n,

|det A < <Z yaij\) | det A(3)|,

j=1
with strict inequality when the dominance is strict.

Proof. We have

|det A| = Z(—1>i+jaij det A(i; j)

J=1

n

<Y "y det A(i )] = |ag det A(i)[+ > ay; det A(is j)]
Jj=1 j=1
J#i

n

< lagdet A+ ) ai; det A(i)] = <Z yaij\) | det A(4)].
j=1 J=1
jAi
m
Corollary 6. If A € M, (R) is row stochastic, and row DD and invertible, then each diagonal

entry of A=Y is at least 1. If the dominance is strict, the diagonal entries of A~% are all strictly
greater than 1.
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Proof. Note that because A is invertible, nonnegative, and row DD, then sgn(det A) =
sgn(] ], ai) > 0 and det A(i) > 0 for i = 1,...,n. If we apply Corollary 5 to the matrix A
we have det A < det A(i) for i = 1,...,n. So the element (i,4) of A™! is

det A(7)
det A

> 1.

The row stochastic case may be generalized as follows.
Theorem 7. If A € M, (R) is row DD and invertible, then

1
(14fe);

‘(A_l)n“ >

This inequality is strict when the dominance is strict.

Proof. The theorem follows from Corollary 6 via left multiplication by D;-! and calculation.
O

We note that when the dominance is weak (equality in each row), the matrix may be
invertible, without further assumption, and if it is invertible the inequalities, given for the
diagonal entries of the inverse may or may not be strict. We illustrate this in the row
stochastic case. We note that in the 2-by-2 row stochastic case, invertibility cannot occur,
though it can in the non-row-stochastic, as illustrated by the example, earlier.

Example 8. The row stochastic matrix

/2 1/2 0
A= 0 1/2 1/2
/2 0 1/2
has all dominance inequalities weak, but
1 -1 1
Al = 11 -1
-1 1 1

exists. But the diagonal entries are all 1, so that equality can occur in Corollary 6.
Example 9. On the other hand

1/2 1/4 1/4
A= 1/4 1/2 1/4
1/4 1/4 1/2



is also invertible,

3 -1 -1
At=[ -1 3 -1 ],
-1 -1 3

but its diagonal entries are all > 1.

It appears that for n > 3, row stochastic, row DD matrices are generically invertible and
usually have inverse diagonal entries > 1. Real (weakly) row DD matrices seem also to be
invertible and usually satisfy the inequalities of Theorem 7 strictly.
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