
Universidad de Valladolid

ESCUELA DE INGENIERÍA INFORMÁTICA

GRADO EN INGENIERÍA INFORMÁTICA
Mención en Ingenieŕıa del Software

Análisis comparativo de motores de juego para juegos
en navegador: rendimiento y aspectos técnicos

Alumno: Alberto Aguado del Caño

Tutor: Diego Rafael Llanos Ferraris
Tutor: Jaime Finat (Rapture-Games)

2

University of Valladolid

School of Computer Engineering Bachelor’s Degree in Computer Engineering

Specialisation in Software Engineering

Comparison of Game Engines for Browser-Based
Games: Performance and Technical Features

Student: Alberto Aguado del Caño

Supervisor: Diego Rafael Llanos Ferraris
Supervisor: Jaime Finat (Rapture-Games)

2

Resumen

En la industria actual del videojuego, donde la accesibilidad y la eficiencia energética son factores clave,
optimizar el rendimiento de los juegos en plataformas limitadas se ha vuelto una necesidad creciente.
Este trabajo se enmarca en el contexto de la exportación de videojuegos ligeros para navegadores web,
con especial atención a su ejecución en sistemas operativos de bajo consumo como Raspberry Pi OS. Se
ha desarrollado un prototipo de minijuego con funcionalidades básicas, implementado en tres motores de
videojuegos ampliamente utilizados en la industria: Unity, Unreal Engine y Godot. El prototipo incluye
dos modos de funcionamiento: un modo manual, donde el usuario controla directamente el personaje, y
un modo automático, en el que el sistema recorre una serie de puntos predefinidos y dispara a objetivos
de forma autónoma.

El objetivo principal de este trabajo es evaluar el rendimiento comparativo de cada motor al exportar el
juego a formato web y ejecutarlo en diferentes entornos, incluyendo un ordenador de especificaciones
modestas y una Raspberry Pi. Para ello, se definieron una serie de parámetros clave a medir —como tasa
de fotogramas por segundo (FPS), uso de CPU y memoria, entre otros— y se utilizaron herramientas de
análisis de rendimiento (profilers) disponibles en navegadores web. Cada motor fue sometido a un mı́nimo
de cinco ejecuciones por entorno, asegurando aśı la fiabilidad estad́ıstica de los resultados obtenidos.

Finalmente, se realiza un análisis comparativo de los resultados para determinar qué motor ofrece un
mejor equilibrio entre rendimiento, calidad gráfica y facilidad de exportación a navegador. Las
conclusiones de este trabajo permiten ofrecer recomendaciones fundamentadas para desarrolladores que
buscan crear experiencias web optimizadas, especialmente en aplicaciones de realidad virtual o en
dispositivos con recursos limitados.

3

4 RESUMEN

Abstract

In today’s video game industry, where accessibility and energy efficiency are increasingly important,
optimising performance for games on limited hardware platforms is a growing concern. This thesis
focuses on the development and web-based deployment of lightweight games intended to run on
low-resource systems such as Raspberry Pi OS, through web browsers without the need for local
installation. A prototype mini-game was developed using three major game engines — Unity, Unreal
Engine, and Godot — each supporting the implementation of basic gameplay mechanics.

The mini-game features two operational modes: a manual mode, where the user directly controls the
character, and an automatic mode, in which the system navigates through a set of predefined waypoints
whilst autonomously shooting targets. The core objective of this work is to assess and compare the
performance of each engine when exporting the game to WebGL or equivalent formats, and executing it
in constrained environments — specifically, a low-end personal computer and a Raspberry Pi.

To conduct a fair comparison, performance metrics such as frame rate (FPS), CPU usage, and memory
consumption were monitored using browser profiling tools. Each engine underwent a minimum of five
test runs per environment, ensuring reliable average performance data. The gathered results were then
analysed to determine which engine provides the best trade-off between performance efficiency, visual
quality, and ease of deployment to the web.

This study offers valuable insights and practical recommendations for developers seeking to optimise
game performance on low-power or embedded devices, with applications in web-based gaming,
educational tools, or even virtual reality environments where resource constraints are critical.

5

6 ABSTRACT

Contents

Resumen 3

Abstract 5

Contents 7

1 Introduction 11

1.1 Context . 11

1.2 Objectives . 13

1.3 State of the art . 14

1.3.1 Why use web browsers? . 16

1.3.2 And why in low-end systems? . 17

1.3.3 Game engines and libraries . 18

2 Analysis Model 19

2.1 Model and project planning . 20

2.1.1 Scope of the project . 20

2.1.2 Methodology project . 20

2.1.3 Project planning . 21

2.1.4 Risk management plan . 21

2.2 Cost estimation . 23

2.3 User requirements . 24

2.3.1 Functional requirements . 24

2.3.2 No-functional requirements . 24

2.3.3 Information requirements . 24

2.4 User Cases . 25

2.4.1 UC01: Move . 26

7

8 CONTENTS

2.4.2 UC02: Shoot . 27

2.4.3 UC03: Reload . 28

2.4.4 UC04: Disappear shooting panel . 29

2.4.5 UC05: Player victory . 30

2.4.6 UC06: Restart . 31

2.4.7 UC07: Exit . 32

2.4.8 UC08: Run automated test . 33

2.4.9 UC09: Process performance data . 34

2.5 Domain Model . 35

3 Design 37

3.1 Redefinition of the domain model . 38

3.1.1 Core Classes and Responsibilities . 38

3.1.2 Supporting Classes . 39

3.1.3 Additional Components . 39

3.1.4 Class Relationships . 39

3.2 Sequences diagram for use cases . 40

3.2.1 UC01: Move . 40

3.2.2 UC02: Shoot . 41

3.2.3 UC03: Reload . 42

3.2.4 UC04: Disappear shooting panel . 43

3.2.5 UC05: Player victory and UC07: Exit . 44

3.2.6 UC06: Restart . 45

3.2.7 UC08: Run automated test . 46

3.2.8 UC09: Process performance data . 48

3.3 Weapon animation machine state . 49

3.4 Game state machine . 51

3.5 Technologies used . 51

3.6 Research about profilers . 52

3.6.1 Objective . 52

3.6.2 Methodology . 52

3.6.3 Profilers most used . 52

3.6.4 Comparative table . 52

CONTENTS 9

3.6.5 Conclusion . 54

3.7 Importing GLTF files with Sketchfab . 54

4 Implementation (manual mode) 57

4.1 Prototipe development . 57

4.2 General Structure in Game Engine . 57

4.3 Unity . 58

4.3.1 Introduction . 58

4.3.2 Environment . 58

4.3.3 Collider implementation . 60

4.3.4 Code explanation . 60

4.4 Unreal Engine . 87

4.4.1 Introduction . 87

4.4.2 Environment . 87

4.4.3 Collider implementation . 88

4.4.4 Code explanation . 89

4.5 Godot . 105

4.5.1 Introduction . 105

4.5.2 Environment . 105

4.5.3 Collider implementation . 106

4.5.4 Code explanation . 106

5 Implementation (automatic mode) 117

5.1 Prototipe development . 117

5.2 General Structure in Game Engine . 117

5.3 Unity . 118

5.3.1 Navigation mesh implement . 119

5.3.2 NPC implement . 121

5.4 Unreal Engine . 124

5.4.1 Navigation mesh implement . 124

5.4.2 NPC implement . 125

5.5 Godot . 129

5.5.1 Navigation mesh implement . 129

5.5.2 NPC implement . 131

10 CONTENTS

6 Project deployment 135

6.1 Introduction . 136

6.2 Unity . 137

6.3 Unreal Engine . 138

6.4 Godot . 139

7 Performance testing 141

7.1 Methodology . 142

7.1.1 FPS trace . 142

7.1.2 Performace test script . 145

7.2 Results . 148

7.2.1 PC results . 148

7.2.2 Raspberry Pi results . 158

7.3 Performance Analysis . 167

8 Conclusions and Future work 171

8.1 Conclusions . 171

8.1.1 Actual Project Cost . 172

8.2 Future work . 173

Bibliography 175

A 3D Rotation Theory — Euler Angles, Gimbal Lock, and Quaternions 179

A.1 Euler angles . 179

A.2 Gimbal lock problem . 180

A.3 Quaternions . 182

B Navigation Mesh Concept Overview 185

C Abbreviations and Acronyms 187

D Glossary 189

Chapter 1

Introduction

This chapter presents the general context that underpins this Final Year Project, which focuses on
the comparison of game engines designed for browser-based deployment. Traditionally, video games
have been developed and deployed primarily on desktop platforms and gaming consoles, where local
hardware performance played a critical role in delivering a satisfactory user experience. However, recent
advancements in web technologies — such as WebGL and WebAssembly — have enabled the execution
of increasingly complex games directly within web browsers, eliminating the need for installation while
offering competitive performance.

In addition to the technological background, this chapter outlines the main objectives of the project,
which involve evaluating and comparing different game engines in terms of performance, technical features,
and their suitability for developing browser-based games.

Finally, a review of the state of the art is provided, examining previous comparative studies on game
engines. This analysis aims to identify existing research, methodologies employed, and current gaps in
the literature, thereby supporting the relevance and originality of the present work.

1.1 Context

The gaming industry is rapidly evolving with advancements in AI, Cloud gaming, and immersive
experiences such as VR and AR. Developers must innovate to stay competitive. They must improve user
experiences, optimise operational efficiency, and use advanced graphics to create more realistic, engaging
games. This transformation requires adapting to new technologies and market demands to maintain
relevance and success in an increasingly digital and immersive environment.

Among others, some of the main detected causes for this rapidly evolving enviroment would be:

• New forms of human–computer interaction: Traditional methods of playing video games,
such as controllers or keyboards and mice, are becoming outdated. Some of these methods have
been on the market for years but were not fully developed. However, in recent years, significant
research and investment have made them more appealing[1]. Some of these are:

– Voice recognition: various solutions have been proposed in the field, such as keyword
recognition, emotion recognition, interactive games, and command recognition. From the
early models of voice interaction—such as the japanese version of The Legend of Zelda for
the NES console (known in Japan as the Famicom), where certain enemies could be defeated
by shouting into the microphone of the controller[2], to more recent developments like the
use of Convolutional Neural Network (CNN) to control the classic Snake in Python through
voice commands such as “up”, “down”, “left”, and “right”, the field has undergone significant
evolution[3].

– Facial recognition: it has been demonstrated that the use of this technology in video games
enhances player experience, making it more engaging. Furthermore, if a difficulty system

11

12 CHAPTER 1. INTRODUCTION

were to be implemented based on facial expressions, it could suggest lowering the difficulty
level when the player shows signs of frustration, or increasing it when signs of satisfaction are
detected. This would allow for a clearer representation of the player’s learning curve[4].
It is true that, among all the advances in human-computer interaction, this is one of the
least emphasized. In the field of virtual reality, where the subject of study is based, there are
challenges in capturing facial expressions or all facial features, as the face is often obscured.
Nevertheless, thanks to the use of Machine/Deep learning, significant results can be achieved.
One such example is the use of CNN, which can accurately categorise emotions using only
facial features extracted from areas of the face other than the eyes and eyebrows, even when
facial information in those regions is absent. This suggests that the model can effectively
detect emotions across different gaming scenarios[5].

– Gesture control: it is the area that has received the most emphasis in recent years, from
the early tracking models, such as Kinect. Which is an input device developed by Microsoft,
originally released for the Xbox 360 gaming console and later made compatible with Xbox One
and PC, this device uses a series of sensors, such as an RGB camera, a depth sensor (which
uses infrared technology), and a microphone, to capture the user’s movement and actions, the
used algorithms are k-nearest neighbors (KNN) or Support Vector Machine (SVM)[6].
Currently, VR is used by implementing CNN as an algorithm[7].

1.2. OBJECTIVES 13

• Diversification of platforms and business models: in recent years, the number of platforms
where any video game can be developed and deployed has increased, the rapid growth of this
industry has created a need for business models that align with this expansion:

Figure 1.1: The Boston Consulting Group examines how the gaming industry’s revenue surged from
$131 billion to $211 billion between 2017 and 2021, reflecting a compound annual growth rate of 13%,
influenced by diversified platforms and business models.[8]

Therefore, it has been reflected in new market strategies, such as: developing a subscription strategy,
embracing AI and automation for efficiency, or focusing on untapped demographics among others.[9]

• Increased social and cultural acceptance: video game music is gaining cultural recognition, as
seen in events like the London Soundtrack Festival, which celebrates video game scores alongside
traditional film and TV music[10].

• Impact of the COVID-19 pandemic; the pandemic led to a surge in gaming, with millions of
new players purchasing games and consoles during lockdowns, significantly boosting the industry’s
growth.[11]

• Rise of streaming and content creators: the rise of streaming platforms and the influence of
content creators have had a significant impact on the video game industry, transforming both the
way games are consumed and developed. Streamers have played a crucial role in spreading and
popularising various titles. For instance, games like Among Us and Fornite saw a notable increase
in their player base thanks to live streams conducted by influencers.[12]

As can be seen, the industry is consolidated, so we must place great importance, as computer
engineering professionals, on following engineering processes to deliver the highest quality product
possible. This will allow us to achieve better revenue and ensure backward compatibility when creating
better products than previous ones.

1.2 Objectives

Main objective

To analyse and compare different game engines focused on web browser game development, primarily
assessing their performance.

14 CHAPTER 1. INTRODUCTION

Specific objectives:

• Investigate main game engines: a memory of each engine will be prepared highlighting the pros
and cons, detected weaknesses and best case scenarios.

• Define metrics: at least the following metrics will be measured for each engine: FPS, RAM, size
of the exported game, among others that might arise during the development of the project.

• Create test prototypes: configurable automatic execution for every engine/browser, automatically
outputting the aforementioned metrics.

• Analyse and comparation: look the results and determine the strengths and weaknesses of each
engine in different development scenarios.

• Draft conclusions and recommendations: identifying the most suitable engine based on
different use cases, such as 2D games, 3D games, multiplayer experiences, or lightweight interactive
applications.

1.3 State of the art

The focus of this thesis will be to determine which game engine performs the best in web browsers,
specifically on low-resource computers or embedded systems, such as virtual reality glasses.

First of all, let’s conduct a state of the art related to this subject. Previous studies on performance
metrics in libraries that run natively in the browser using WebGL, such as ThreeJS and BabylonJS (later,
the nature of these libraries will be explained.), have been considered, In the following tables:

Library
Chrome Firefox

CPU (%) GPU (%) CPU (%) GPU (%)

Three.js 6–8 31–41 6–8 38–41
Babylon.js 5–7 31–41 5–8 36–38

Table 1.1: CPU/GPU usage on high-end systems in 3D graphics in browsers[13]

Library
Chrome Firefox

CPU (%) GPU (%) CPU (%) GPU (%)

Three.js 53–67 40–42 43–49 36–38
Babylon.js 46–48 44–45 32–40 36–40

Table 1.2: CPU/GPU usage on low-end systems in 3D graphics in browsers[13]

the usage of CPU and GPU can be observed in high-end and low-end computers respectively, for
the rendering of 3D graphics, it can be seen that GPU usage does not vary significantly between both
systems, whereas CPU usage increases considerably. Therefore, it can be concluded that programs must
be optimised in order to avoid bottlenecks that could render the video game unplayable.

This becomes even more evident in the following tables:

1.3. STATE OF THE ART 15

Library
Chrome Firefox

@30FPS @60FPS @30FPS @60FPS

Three.js 29998 15157 15844 8977
Babylon.js 6360 3490 4820 2610

Table 1.3: Simultaneous sprites reached to achieve 30 and 60 FPS on high-end systems in 3Dgraphics in
browsers[13]

Library
Chrome Firefox

@30FPS @60FPS @30FPS @60FPS

Three.js 13030 5449 5670 2340
Babylon.js 2530 1080 1940 710

Table 1.4: Simultaneous sprites reached to achieve 30 and 60 FPS on low-End systems in 3Dgraphics in
browsers[13]

which show how many sprites the engine can render without the performance dropping below a given
target framerate (in these cases, 30 and 60 FPS respectively). It can be seen that at 30 FPS, both
high-end and low-end systems are able to render nearly twice as many sprites as at 60 FPS. This is because
fewer sprites must be displayed at 60 FPS in order to maintain smoother performance, avoiding excessive
processing that could impact the frame rate. Nevertheless, the performance gap between high-end and
low-end systems remains evident, reinforcing the conclusion mentioned earlier. These 3D graphics libraries
will be explored in more detail in a later section.

Following the research, it has been found that comparative studies between engines have been
conducted, but always from a superficial perspective and without examples based on simple video games,
instead relying on specific hardware features[14].

In conclusion, it can be seen that there are no studies that have made a real comparison with prototypes
or that also specify programming-related aspects.

The key terms used in this state of the art study have been: Comparison of Game Engines for
Browser-Based Games, Browser-Based Games performance, game engines performance comparison

16 CHAPTER 1. INTRODUCTION

1.3.1 Why use web browsers?

We will focus on a part of video games that may generate the least revenue as shown in the image:

Figure 1.2: The graph below shows the market share percentage, clearly segmenting gaming revenues
based on platforms and gaming categories for 2021.[1]

but is still important, which is browser-based games. Browser-based games have indeed lost some
of their appeal due to their basic graphics, almost non-existent artistic design, and the fact that many of
them are now programmed using AIs like ChatGPT or third-party AIs that create the game without
understanding how it works internally, resulting in high-performance costs. However, they remain relevant
and important for several factors, which are:

• Easy accessibility: one major reason that browser-based games remain popular is their unbeatable
ease of access. In contrast to classic video game methods that normally would require specific
hardware or installing specific software, browser games are instantly playable on any device with an
Internet connection. This is very convenient, and users can enjoy gaming experiences during short
breaks at work while using public transportation, or from the comfort of their home.

• Cost-effectiveness: design and graphics play a crucial role in the overall development cost of
applications. Games that incorporate advanced graphic assets, such as 3D graphics, offer an
impressive visual experience and an attractive user interface. However, these resources require
intensive use of time and resources, significantly increasing development costs. Furthermore, it is
noted that 3D graphics are more expensive than 2D graphics, what can be seen in this comparison:

1.3. STATE OF THE ART 17

Scale and Complexity – Basic 2D graphics with simple assets and ani-
mation may cost around $10,000 to $10,000

– Complex 2D graphics with high-resolution as-
sets and advanced animation could cost around
$10,000 to $50,000

3D Graphics – Basic 3D graphics with simple animations could
cost around $5,000 to $20,000

– Advanced or complex 3D graphics with high
resolution, animations, and special effects could
cost $20,000 or more.

Table 1.5: A comparison of 2D vs 3D graphics costs in mobile games, also applicable to browser-based
games.[15]

• Educational potential: browser-based games can also be used in an educational setting. The
ease of access and low barriers to entry make them perfect tools for interactive learning experiences.
Games such as Duolingo have completely changed the way people look at learning languages by
providing playful, browser-based exercises, and making education a game. In addition to language
learning, browser-based games can help kids (and adults) with math, biology, geography, and
history.

A good example of these factors is netQuake (https://www.netquake.io/). This browser edition of
the globally famous first-person shooter game proves that graphically games can now be enjoyed directly
from a web browser too.

1.3.2 And why in low-end systems?

In a high-end computer, even if performance optimisation is carried out, the difference will not be noticeable,
as the CPU, GPU, and RAM more than compensate for the shortcomings of poor optimisation. This is
especially true considering recent technologies such as NVIDIA’s Deep Learning Super Sampling (DLSS)
and AMD’s FidelityFX™ Super Resolution (FSR). However, in low-performance systems, optimising our
programs is critical to prevent a poor user experience.

For the tests and evaluations, trials will be conducted not only on a desktop computer, but also on a
Raspberry Pi 4 Model B, which features the following specifications[16]:

• CPU: Broadcom BCM2711, Quad core Cortex-A72 (ARM v8) 64-bit SoC @ 1.8GHz
• RAM: 8GB
• Graphic interface: OpenGL ES 3.1, Vulkan 1.0
• Temperature: 0–50 degrees C ambient

As can be noted, there is no external GPU present, as it is integrated within the CPU itself. In this
case, the integrated GPU is the VideoCore VI, which delivers a performance of approximately 0.3
TFLOPS[17]. This highlights just how far its performance falls behind even that of entry-level desktop
PCs or gaming consoles, for example, the Playstation 5 have 10.28 TFLOPS[18].

In addition to this, it must be noted that the Raspberry Pi OS is a GNU/Linux distribution, which
means that the majority of games cannot be run, as most of them are developed for Windows platforms,
this is due to that the majority of games on the market are compatible with DirectX, that is a set of
APIs that serve as a bridge between games and a PC’s hardware, allowing game developers to create
games without requiring knowledge of the specific CPU, GPU, RAM, motherboard, or other components
of a given system. is a middleman between the hardware drivers and the game.[19]

This makes libraries such as OpenGL or Vulkan less attractive for programming, as they require
explicit management of hardware resources. Additionally, most games are developed with compatibility
for DirectX.

https://www.netquake.io/

18 CHAPTER 1. INTRODUCTION

However, if we run the games in a browser, Chromium and Firefox browsers can enable hardware
acceleration. This allows the GPU to dedicate all its resources to rendering graphics, making the CPU
less burdened and thereby improving performance.

1.3.3 Game engines and libraries

The game engines to be studied are:

• Unity: widely used game engine that allows developers to create games for PC, mobile platforms,
consoles, and the web. It is known for its ability to create highly detailed graphics and user
experiences, which can be challenging for devices with limited resources.[20]

• Unreal Engine: is another well-known game engine used in the development of AAA games and
other interactive applications. Unreal Engine is famous for its impressive graphics capabilities and
powerful physics engine, which may demand more resources and pose challenges when running on
low-performance systems.[21]

• Godot: an open-source game engine that has gained popularity for its flexibility, ease of use, and
cross-platform support. Godot tends to be lighter in terms of resource usage, making it an attractive
option for games on systems with limited hardware. However, it has a smaller community compared
to the two engines mentioned, and its visual appearance is not as polished as theirs.[22]

Having established the motivation, objectives, and background of the project, the next step is to
define a formal analysis model that supports the development and evaluation process. The following
chapter introduces the scope of the system, user requirements, and use cases, which together provide the
technical framework necessary to design and implement the comparative prototype for browser-based
game engines.

Chapter 2

Analysis Model

This chapter outlines the analysis phase of the project, which establishes the technical and functional
foundations for the design and implementation stages. The objective of this phase is to define the scope of
the system, identify user requirements, and model the core functionality that the prototype must support
in order to serve as a valid platform for comparing game engines in a browser-based environment.

The chapter begins by describing the scope and planning of the project, followed by the methodology
adopted and an assessment of potential risks. It then presents a detailed specification of functional,
non-functional, and information requirements. Based on these requirements, a set of use cases is defined
to illustrate user interactions and system responses, including gameplay actions and test automation.
Finally, a domain model is introduced to represent the key entities and relationships within the game
system.

19

20 CHAPTER 2. ANALYSIS MODEL

2.1 Model and project planning

2.1.1 Scope of the project

The project scope will be defined, focusing on three fundamental points, which are:

• FPS development: a basic FPS game prototype will be developed in Unity, Unreal, and Godot.
• Performance testing in web browsers: compare the performance of these engines under the

same conditions (*) using browser profilers.
• Performance testing on different hardware platforms: the tests will be executed on two

types of hardware platforms: PC and Raspberry Pi.

(*) Equivalent conditions will be ensured, within reasonable expectations, by implementing in-game
logic that automatically completes the game with the same behaviour in each engine.

2.1.2 Methodology project

An agile methodology will be adopted for the development of this project, following a hybrid approach
that combines elements of both Kanban and Scrum frameworks, to adapt to the different stages of work.

In the initial phase, which will involve research and the early development of the prototype (starting
with the Unity engine), a Kanban approach will be used. This model will allow tasks to be managed
continuously. It is true that Kanban also manages time, but it is more flexible than Scrum, which makes
it suitable for the first phase, as research is being conducted on how to use the aforementioned game
engines, as well as the use of profilers in web browsers.

Once the exploratory phase is completed and a stable foundation of the project is in place, the Scrum
framework will be adopted, using two-week sprints. In each sprint, specific tasks will be planned, progress
will be monitored regularly, and reviews will be conducted to ensure objectives are met. A retrospective
will follow each sprint to evaluate what was achieved and improve future iterations.

This hybrid model will make it possible to start with flexibility and then introduce greater control and
structure as the project progresses, adapting both to technical requirements and to the time constraints
of the final year project.

Given that the work team consists of two people, the agile methodology has been adapted (combining
Scrum and Kanban principles) to suit the project’s needs. Two main roles have been defined:

• Developer: responsible for the technical implementation of the project, including code development,
functional testing, and technical documentation. The role is also responsible to organise and prioritise
the work using the Kanban board in Jira.

• Reviewer and Validator: responsible for overseeing the work done, reviewing code quality, and
validating deliverables against the established objectives. The roles also ensure that the requirements
are met and suggest improvements once the development process has been marked as completed.

2.1. MODEL AND PROJECT PLANNING 21

2.1.3 Project planning

The following estimated schedule is based on a standard 40-hour workweek, with the project divided into
phases using Kanban and Scrum methodologies as appropriate:

Phase Weeks Methodology Hours/week Estimated total hours

Training in profiling and game engines 1–4 Kanban 40 160
Sprints 1 to 4: prototype creation and auto-
matic mode

5–12 Scrum 40 320

Sprints 5 to 7: testing, conclusions, and adjust-
ments

13–18 Scrum 40 240

Sprint 8: documentation and closure 19–20 Scrum 40 80

Total project hours 800

Table 2.1: Estimated project planning using Kanban and Scrum

The project begins with one month under the Kanban methodology for training in profiling and
game engines, allowing flexibility and focus on initial learning, with an approximate dedication of 160
hours. Subsequently, Scrum is implemented during the development, testing, and closing phases, applying
structured sprints totaling 640 hours to ensure incremental deliveries and adaptability.

2.1.4 Risk management plan

The risks that have been identified are:

1. Graphics driver incompatibility with engines: some engines such as Unity, Unreal, or Godot
may require specific versions of drivers that may not be available or may not function correctly on
certain platforms, such as Raspberry Pi OS (Raspbian) or other Linux-based distributions.

2. Raspberry Pi performance limitations: the limited processing power and memory of the
Raspberry Pi could hinder performance results or even cause failure to execute tests.

3. Issues capturing profiling data: problems may arise when collecting, saving, or interpreting the
profiling metrics during performance tests.

4. Automation script failures: errors or unexpected behaviour in movement or shooting automation
may disrupt the test flow.

5. Cross-browser performance variation: differences in system configuration can skew results,
making them hard to compare.

6. Delays in documentation delivery: final report writing may be delayed due to technical workload
or poor time management.

7. Developer illness: a potential sick leave or health issue affecting the only developer may halt
progress and delay project deadlines.

8. Communication breakdown between developer and reviewer: poor communication between
the developer and the reviewer could result in misunderstandings regarding the requirements,
development progress, or technical implementation details, potentially leading to undetected errors.

The risk management plan is presented in this table:

22 CHAPTER 2. ANALYSIS MODEL

ID Name Probability Impact Mitigation Strategy

R01
Graphics driver
incompatibility with
engines

Medium High

Check engine compatibility with
drivers from early stages, use
LTS or stable versions, and
maintain a documented
execution environment.

R02 Raspberry Pi performance
limitations Medium High

Lower graphical quality and
adjust settings to fit the
hardware limitations.

R03 Issues capturing profiling
data Medium Medium

Use tested profiling tools and
validate data capture from the
start.

R04 Automation script failures Medium Medium
Modularise scripts, implement
detailed logging, and perform
unit testing.

R05 Cross-browsers
performance variation High Medium

Standardize the testing
environment and ensure
consistent testing conditions
across browsers.

R06 Delays in documentation
delivery Low Medium

Set internal deadlines and
allocate time specifically for
documentation creation and
review.

R07 Developer illness Low High

Plan partial deliverables,
maintain up-to-date technical
documentation and foresee a
reasonable extension of the
schedule if needed.

R08
Communication
breakdown between
developer and reviewer

Medium Medium

Regular meetings to review
progress, ensure clear
documentation, and use project
management tools for task
tracking.

Table 2.3: Risk management plan table

2.2. COST ESTIMATION 23

Now proceed to make an estimation of time in days and cost. The expected risk is calculated using
the following formula:

Risk = Probability × Impact (days) (2.1)

Risk Probability (D) Impact (days) Risk (days)
R01 0.5 (Medium) 7 (High) 3.5
R02 0.5 (Medium) 7 (High) 3.5
R03 0.5 (Medium) 5 (Medium) 2.5
R04 0.5 (Medium) 5 (Medium) 2.5
R05 0.7 (High) 5 (Medium) 3.5
R06 0.3 (Low) 5 (Medium) 1.5
R07 0.3 (Low) 7 (High) 2.1
R08 0.5 (Medium) 5 (Medium) 2.5

Total expected cost if all risk occur 21.6

Table 2.4: Expected risk value in days

The conclusions drawn from this indicate that, as priorities, risks R01, R02, and R05 should be
mitigated as soon as possible.

2.2 Cost estimation

The following assumptions are considered for the cost estimation:

• Annual cost of a junior engineer: €40,000.
• Working hours: 52 weeks per year, 40 hours per week.
• Hardware cost (computer and monitor): €1,000.
• Hardware amortisation period: 3 years (36 months).
• Estimated project duration: 20 weeks (approximately 6 months).

Cost calculation

• Engineer hourly rate:
40, 000 €
52 × 40 ≈ 19.23 €/hour

• Total labour cost excluding risks:

800 hours × 19.23 €/hour = 15, 384 €

• Proportional hardware cost (assuming 36-month amortization):

1, 000 €
36 months × 6 months = 166.68 €

• Additional cost for risk contingency: Estimated 21.6 extra days × 8 hours/day = 172.8 hours.

172.8 hours × 19.23 €/hour = 3, 323 €

24 CHAPTER 2. ANALYSIS MODEL

Estimated total project cost

15, 384 € + 166.68 € + 3, 323 € = 18,873.68 €

This estimate includes a contingency margin to cover possible unforeseen events arising from the
identified risks, thus improving the reliability of the budget.

2.3 User requirements

The requirements to be provided are:

2.3.1 Functional requirements

1. FR01: the system must allow the player to move freely in a 3D first-person environment.
2. FR02: the system must allow the player to shoot with a weapon via an input command.
3. FR03: the system must allow the weapon to be reloaded either through a player input command

or automatically when the ammunition is depleted.
4. FR04: the system must allow the inclusion of shooting targets acting as enemies within the

environment.
5. FR05: the system must handle the disappearance of a shooting target when hit by the player’s

shot and update the count of remaining targets in the scene.
6. FR06: the system must provide the player with the option to restart the game or exit the game

either after a session ends or from the victory menu.
7. FR07: the system must activate the profiler at the start of the automated run and stop it upon

completion, collecting all performance data.
8. FR08: the system must automatically execute a predefined path in the scenario, where the player

moves without user input when execute the performance testing.
9. FR09: the system must automatically aim and shoot at each target panel in sequence until all

enemies (targets) have been eliminated, completing the performance test.

2.3.2 No-functional requirements

1. NFR01: the system must be compatible with three game development engines: Unity, Unreal
Engine, and Godot.

2. NFR02: the system must be compatible with most web browsers, primarily those based on
Chromium and Firefox.

3. NFR03: the system must be compatible with WebGL to render 3D graphics in web browsers.
4. NFR04: the system must start as fast as possible to reduce the initial waiting time. For web

browser video games, load times are expected to range between 3 and 6 seconds under standard
conditions for a smooth user experience.

5. NFR05: the system must be executable on a Raspberry Pi with a compatible browser, in order to
evaluate performance on low-cost, energy-efficient hardware.

2.3.3 Information requirements

1. IR01: the system shall display a HUD to the player showing the crosshair, ammunition, the current
number of targets, and the elapsed time.

2. IR02: the system must display a victory message and the elapsed time when the player eliminates
all targets in the scene.

3. IR03: the system must store performance profiling results in JSON files, enabling further analysis
and visualisation.

2.4. USER CASES 25

2.4 User Cases

The resulting use case diagram is as follows:

Figure 2.1: Use cases diagram

26 CHAPTER 2. ANALYSIS MODEL

2.4.1 UC01: Move

ID UC01: Move player

Related requirement(s) FR01
Actor(s) Player
Description This use case describes how the player can move freely within the

3D first-person environment using input controls.
Preconditions

• The system is initialized.
• The game scene is loaded.
• The player is in control (not in a cutscene or paused).

Main flow
1. The player presses directional keys (W, A, S, D or arrow

keys).
2. The system interprets the input and computes the new posi-

tion.
3. The system updates the player’s position in real time in the

3D environment.
Postconditions

• The player’s position has changed according to input.
• The 3D environment reflects the new position.

Alternative flows
• A1: Movement blocked by obstacle

– At step 2, if there is a wall or object in the direction of
movement, the system prevents the player from passing
through it.

– The player’s position remains unchanged.

Table 2.5: Use Case: Move

2.4. USER CASES 27

2.4.2 UC02: Shoot

ID UC02: Shoot

Related requirement(s) FR02
Actor(s) Player
Description This use case describes how the player can shoot with the weapon

using an input command, such as pressing a button or key on the
controller or keyboard.

Preconditions
• The player has a weapon equipped.
• The player is in the game environment (not in a menu or

paused screen).
Main flow

1. The player presses the command to shoot (e.g., “left mouse
click” or “spacebar”).

2. The system interprets the shoot command and checks if the
weapon is ready to shoot.

3. The system executes the shot, performing the impact calcu-
lation.

4. The system plays the shooting animation and the correspond-
ing visual and audio effects (shooting sound).

5. The system updates the HUD, reflecting the remaining am-
munition.

6. The system calculates whether the shot has hit a target
(panel shooting, objects, or nothing).

Postconditions
• The player’s ammunition has been reduced accordingly.
• The game state has been updated, reflecting the impact of

the shot (if applicable).
Alternative flows

• A1: Ammunition exhausted
– In step 2, if the player’s ammunition has been exhausted,

the system displays indicator in the HUD (e.g., “0/30”)
and does not allow shooting.

– The system triggers the use case UC03: Reload the
weapon.

• A2: Weapon not ready to shoot
– In step 2, if the weapon is not ready to shoot (e.g., if

it is in use case UC03: Reload the weapon), the
system prevents the shot.

• A3: Target hit
– In step 6, if the shot hits a target and the target is a

“shooting panel”, the system triggers the use case UC04:
Make panel disappear.

– otherwise, no further action is taken.

Table 2.6: Use Case: Shoot

28 CHAPTER 2. ANALYSIS MODEL

2.4.3 UC03: Reload

ID UC03: Reload

Related requirement(s) FR03
Actor(s) Player
Description This use case describes how the player can reload the weapon

manually via input, or automatically when the ammunition is
depleted.

Preconditions
• The system is initialised.
• The weapon is equipped.
• Current ammunition is below its maximum capacity.

Main flow
1. The player presses the reload key.
2. The system refills the weapon to its maximum allowed ca-

pacity.
3. The system updates the HUD to reflect the new ammunition

amount.
Postconditions

• The weapon is reloaded.
• The HUD correctly displays the updated ammunition.

Alternative flows
• A1: Automatic reload

– At step 1, if the player attempts to shoot with no am-
munition, the system automatically triggers the reload
process.

– Continue from step 2 of the main flow.

Table 2.7: Use Case: Reload

2.4. USER CASES 29

2.4.4 UC04: Disappear shooting panel

ID UC04: Disappear shooting panel

Related requirement(s) FR05
Actor(s)
Description This use case describes how the system removes a shooting panel

(target) when it is hit by a shot.
Preconditions

• The system is initialised.
• The player has fired and the shot has hit a target.
• The hit target is a shooting panel.

Main flow
1. The system removes the panel.
2. The system checks if there are any remaining targets in the

scene.
3. If there are more targets, no further action is taken.
4. The system updates the number of remaining targets on the

HUD.
Postconditions

• The shooting panel has disappeared from the scene.
• The number of remaining targets is correctly displayed on

the HUD.
Alternative flows

• A1: The Panels Shooting Dissapeared
– At step 2, if there are no remaining targets, the system

triggers the use case UC05: Player victory.

Table 2.8: Use Case: Disappear shooting panel

30 CHAPTER 2. ANALYSIS MODEL

2.4.5 UC05: Player victory

ID UC05: Player victory

Related requirement(s) FR06
Actor(s) Player
Description This use case describes how the system declares player victory once

all targets have been eliminated, and presents options to either
restart the game or exit.

Preconditions
• The system is initialised.
• All targets have been removed from the scene.

Main flow
1. The system displays a victory message to the player.
2. The system halts active gameplay logic.
3. The system disables the player control.
4. The system presents two buttons: “Restart” and “Exit”.
5. The player selects one of the two options.
6. The system triggers the corresponding use case:

• If “Restart” is selected, UC06: Restart is triggered.
• If “Exit” is selected, UC07: Exit is triggered.

Postconditions
• The player has been informed of their victory.

Table 2.9: Use Case: Player Victory

2.4. USER CASES 31

2.4.6 UC06: Restart

ID UC06: Restart

Related requirement(s) FR06
Actor(s) Player
Description This use case describes how the player can restart the scenario

after achieving victory.
Preconditions

• The player has been informed of their victory.
• The player has selected the “Restart” option.

Main flow
1. The system resets the game variables (targets, ammo, HUD,

etc.).
2. The system reloads the initial scene from the beginning.
3. The system enables the player to regain control.

Postconditions
• The game is reset and ready to play.
• The player can move and act normally.

Table 2.10: Use Case: Restart

32 CHAPTER 2. ANALYSIS MODEL

2.4.7 UC07: Exit

ID UC07: Exit

Related requirement(s) FR06
Actor(s) Player
Description This use case describes how the player can close the application

after achieving victory.
Preconditions

• The player has been informed of their victory.
• The player has selected the “Exit” option.

Main flow
1. The system gracefully shuts down the application.

Postconditions
• The application has been closed safely.

Table 2.11: Use Case: Exit

2.4. USER CASES 33

2.4.8 UC08: Run automated test

ID UC08: Run automated test

Related requirement(s) FR7, FR8, FR9
Actor(s) Developer
Description This use case describes how the developer initiates an automated

test that runs a predefined path and shoots targets in the scenario
without user input. The system handles the movement and actions.

Preconditions
• The profiler is initialised and capturing performance data.
• The system is initialised.
• The scene is loaded and contains the targets.

Main flow
1. The developer starts the automated test.
2. The system moves the player through the scenario without

user input following a predetermined path.
3. The system automatically aims and shoots at each target in

sequence until all targets are eliminated.
4. The system stops the automated test.
5. The system triggers the use case UC09: Process perfor-

mance data.
Postconditions

• The automated test has been completed.
Alternative flows

• A1: Error in automated test
– If the system detects an error during the test (e.g., a

failure in the path or shooting), the test is interrupted,
and error data is displayed.

Table 2.12: Use Case: Run automated test

34 CHAPTER 2. ANALYSIS MODEL

2.4.9 UC09: Process performance data

ID UC09: Process performance data

Related requirement(s) IR3
Actor(s)
Description This use case describes how the system saves the performance data

generated during the automated tests for later analysis.
Preconditions

• The automated test has finished.
• The performance data has been stored by the profiler.

Main flow
1. The system opens the execution profile generated during the

automated test.
2. The system analises and stores the filtered data in a file or

database.
3. The system displays a message confirming that the data has

been saved successfully.
4. The system checks if the number of iterations for the test

has been reached (5 by design).
5. The system generates the average values per execution and

stores the result in a separate file.
Postconditions

• The performance data has been successfully saved.
• The data is available for later analysis.

Alternative flows
• A1: Error saving/reading data

– If an error occurs while opening files with the data (e.g.,
lack of space or database failure, reading permissions,
etc.), the system displays an error message and asks the
user to fix it and try again.

• A2: Number of repetitions for the test not reached
– In step 4, if the maximum number of iterations is not

reached the system triggers the use case UC08: Run
automated test.

Table 2.13: Use Case: Process performance data

2.5. DOMAIN MODEL 35

2.5 Domain Model

Figure 2.2: Domain Model in analysis

36 CHAPTER 2. ANALYSIS MODEL

This domain model illustrates the key entities within the system: the player (Player) with their weapon
(Weapon) and position (Transform); the interface components (HUD and PanelShooting); the environment
(Scene); and the automated testing system (AutomaticTest).

The relationships capture how these objects interact and are positioned within the 3D space using
vectors (Vec3) and transformations.

In summary, this chapter has established the analytical framework of the project by defining the scope,
functional and non-functional requirements, use cases, and an initial domain model. This foundation
provides a clear understanding of the expected functionalities and system behaviours. The following
chapter will focus on detailed design, covering sequence diagrams, a refined domain model, state machine
diagrams, and the selection of technologies to be used in the development process.

Chapter 3

Design

This chapter addresses the design phase of the project, where the structure and behaviour of the system
are explored in depth based on the previously defined analysis model. A redefinition of the domain
model will be carried out, detailing the core classes, their responsibilities, and relationships. Additionally,
sequence diagrams illustrating the flow of the fundamental use cases will be presented, providing a clear
view of the interactions between system components.

Furthermore, the state machines governing weapon animation and the overall game state will be
described, which are key elements for the proper functioning of the internal logic. Finally, the technologies
selected for implementation will be outlined, with their selection justified according to the project’s
requirements and objectives.

37

38 CHAPTER 3. DESIGN

3.1 Redefinition of the domain model

The domain model proposed will be refined based on the operation of most video game engines, in order
to subsequently draw the sequence diagrams for the various use cases that have been identified. The
refined domain model is as follows:

Figure 3.1: Domain model in design

Below is a description of the main classes and their relationships:

3.1.1 Core Classes and Responsibilities

• Game: manages the overall game state and logic, such as handling victory conditions, halting
gameplay, restarting, and exiting the game. It holds references to key components like the HUD,
player entity, and scene.

• GameController: orchestrates the game lifecycle by starting the game and updating the game
state every frame. It interacts with the Game, Input, PlayerEntity, Scene, and HUD components.

• HUD: responsible for displaying the user interface elements, such as ammo count, objectives,
victory messages, and menu options for restart or exit. It is closely linked to the player entity to
reflect the current status.

3.1. REDEFINITION OF THE DOMAIN MODEL 39

• PlayerEntity: represents the player character with capabilities to move, look around, aim, shoot,
and control the equipped weapon. It can also be controlled automatically during tests and can have
control enabled or disabled by the game logic.

• Weapon: represents a weapon with ammunition management, shooting, reloading, and ammo refill
functionalities. It is owned by the player entity.

• Scene: contains the game environment, including targets and predefined paths for automated tests.
It provides methods to reload the scene, retrieve waypoints, check if all targets have disappeared,
and perform raycasting.

3.1.2 Supporting Classes

• Transform: Defines the spatial properties of game entities such as position, rotation, and scale.
It provides methods to move, rotate, and scale objects in 3D space. Every GameEntity owns a
Transform.

• Collider: Handles collision detection and spatial queries. It can check for collisions with other
colliders and compute potential positions based on movement vectors. Every GameEntity also owns
a Collider.

• SceneObject: Represents interactive objects in the scene, such as targets or obstacles. They have
tags to identify their type and can check for collisions. They can disappear when hit.

• Raycast: Facilitates raycasting operations for line-of-sight or shooting mechanics by detecting
objects along a ray within a specified range. It uses a collider and spatial data for detection.

3.1.3 Additional Components

• AutomaticTest: Supports automated gameplay testing by controlling the player entity through
predefined paths and shooting targets without user input.

• Profiler: Collects performance metrics during gameplay or automated tests. It allows starting and
stopping profiling and provides the collected data for analysis.

• Input: Manages player input such as movement commands, shooting, reloading, and menu selections.

3.1.4 Class Relationships

• GameEntity is an abstract class that represents entities in the game world. It owns exactly one
Transform and one Collider.

• PlayerEntity, Weapon, and SceneObject inherit from GameEntity, gaining spatial and collision
properties.

• The PlayerEntity has a composition relationship with a Weapon — the player owns exactly one
weapon.

• The HUD is associated with the PlayerEntity to reflect player status information such as ammo.
• Scene aggregates multiple GameEntity objects that represent scene elements including targets and

waypoints.
• The Raycast class depends on Collider to perform hit detection. Furthermore, a Scene will be

able to create the raycasts it deems appropriate.
• The Game class holds references to HUD, PlayerEntity, and Scene, orchestrating game logic across

these components.
• The GameController acts as the main coordinator, interacting with the Game and other components

like Input, PlayerEntity, Scene, and HUD.
• AutomaticTest controls the PlayerEntity for automated testing and communicates with the

Profiler and Scene to execute tests and gather performance data.

40 CHAPTER 3. DESIGN

3.2 Sequences diagram for use cases

3.2.1 UC01: Move

Figure 3.2: sequence diagram use case 01

1. The Player actor executes the movement command. The input is captured asynchronously by the
Input component within the game cycle.

2. The GameController requests the movement input vector from the Input system by invoking
GetMovementInput().

3. The Input system returns the movement vector of type Vec3 to the GameController.
4. The GameController instructs the PlayerEntity to attempt movement using TryMove(movementVector).
5. The PlayerEntity queries its Collider to compute the next proposed position by calling GetNextPosition

(movementVector).
6. The Collider returns the proposed position to the PlayerEntity.
7. The PlayerEntity queries the Scene for any nearby objects at the proposed position using

GetObjectNear(proposedPosition).
8. The Scene responds with a nearby SceneObject, if any exists, or null otherwise.
9. If a SceneObject is detected:

(a) The PlayerEntity obtains the Collider of the nearby object by calling GetCollider().
(b) The PlayerEntity also retrieves its own Collider for collision checking.
(c) The PlayerEntity requests collision detection by invoking CheckCollisionWith(playerCollider,

proposedPosition) on the object’s Collider.
(d) If no collision is detected (false), the PlayerEntity moves to the proposed position by calling

Move(proposedPosition).
(e) If a collision is detected (true), the movement is blocked, and the PlayerEntity maintains

its current position.
10. If no nearby object exists, the PlayerEntity moves directly to the proposed position.
11. The control flow returns from the PlayerEntity to the GameController, completing the movement

action.

3.2. SEQUENCES DIAGRAM FOR USE CASES 41

3.2.2 UC02: Shoot

Figure 3.3: sequence diagram use case 02

1. The actor Player executes the shoot command. The input is captured asynchronously by the Input
component.

2. The GameController requests the shoot command status from Input.
3. If a shoot command is detected, the GameController queries the player for the currently equipped

weapon.
4. The GameController asks the weapon whether it has available ammunition.
5. If ammunition is available, the GameController verifies whether the weapon is ready to shoot

(IsReadyToShoot()).
6. If the weapon is ready, the shooting action is executed:

• The HUD is updated to reflect the current ammunition count.
• The weapon requests the player’s transform (position and rotation) and look direction.
• Using this information, the weapon requests the scene to create a raycast with the appropriate

origin, direction, and range.
• The raycast performs collision detection in the scene and returns the object hit, if any.

7. If the impacted object has the tag PanelShooting, the use case UC04: Disappear shooting
panel is triggered.

8. If the weapon is not ready to shoot or ammunition is exhausted, the shooting action is not executed.
9. In the event of ammunition exhaustion, the HUD is updated to display zero ammunition and the use

case UC03: Reload is triggered.

42 CHAPTER 3. DESIGN

3.2.3 UC03: Reload

Figure 3.4: sequence diagram use case 03

• Manual reload:
1. The actor Player executes the reload command. The input is captured and stored by the

Input component.
2. The GameController queries the Input for the reload command.
3. Upon receiving the command, the GameController retrieves the currently equipped Weapon

from the PlayerEntity.
4. The GameController checks whether the weapon can be reloaded (CanReload()).
5. If allowed, the GameController instructs the Weapon to reload.
6. After reloading, the Weapon sends an update to the HUD to refresh the ammunition display.
7. The HUD reflects the updated ammunition values in the graphical interface.

• Automatic reload (triggered from UC02 - when attempting to shoot without ammo):
1. During UC02, if the player tries to shoot with no remaining ammo, the GameController

triggers UC03 internally.
2. The GameController retrieves the equipped Weapon and verifies reload availability.
3. If allowed, it sends the Reload() command to the Weapon.
4. The Weapon refills its ammunition.
5. The HUD is updated to reflect the new ammunition values.

3.2. SEQUENCES DIAGRAM FOR USE CASES 43

3.2.4 UC04: Disappear shooting panel

Figure 3.5: sequence diagram use case 04

1. The scene calls the method Disappear() on the target retrieved in UC02, hiding the panel from
the game.

2. Then, the scene updates the HUD by invoking UpdateObjectivesDisplay(this.remainingObjectives)
to reflect the new number of remaining objectives.

3. The scene checks if all panels have disappeared by calling AreAllPanelsDisappeared().
4. If all panels have disappeared, the scene sends the message Victory() to gameLogic and the use

case UC05: Player victory is triggered.
5. Otherwise, no further action is taken.

44 CHAPTER 3. DESIGN

3.2.5 UC05: Player victory and UC07: Exit

Figure 3.6: sequence diagram use case 05 and 07

1. gameLogic performs a self-call with the message HaltGameplay(), indicating that it internally halts
gameplay.

2. gameLogic sends a message to playerEntity with DisableControl(), disabling player control
during the victory sequence.

3. gameLogic requests the HUD to display the victory message via the message DisplayVictoryMessage().
4. gameLogic requests the HUD to show the restart or exit options via the message ShowRestartAndExitOptions().
5. The player selects one of the options displayed on the interface (“Restart” or “Exit”).
6. This interaction is captured by the input component, which executes getOption() to identify the

selected option.
7. The selected option is evaluated:

• If the option is Restart, the referenced use case UC06: Restart is triggered.
• If the option is Exit, gameLogic sends the Exit() message to gracefully shut down the

application.

3.2. SEQUENCES DIAGRAM FOR USE CASES 45

3.2.6 UC06: Restart

Figure 3.7: sequence diagram use case 06

1. gameLogic invokes ResetGameVariables() to reset all necessary game variables such as objectives,
ammunition, etc.

2. gameLogic requests scene to reload the initial scene by sending the message ReloadInitialScene().
3. gameLogic requests HUD to reset the visual interface via ResetDisplay().
4. gameLogic invokes RefillAmmo() on the weapon object to restore ammunition to its maximum

value.
5. gameLogic re-enables player control by calling EnableControl() on the player object.

46 CHAPTER 3. DESIGN

3.2.7 UC08: Run automated test

Figure 3.8: sequence diagram use case 08

1. The Developer starts the data collection by sending the message StartProfiling() to the
profiler object of type profiler. From this moment, the profiler remains active collecting
data in the background while the test runs.

2. The Developer starts the automated test by sending the message Start() to the test object of
type AutomaticTest.

3. Next, test instructs the player to begin the automated run using StartAutomatedRun(), enabling
player control in test mode.

4. For each waypoint in the scene.PredefinedPath list, the following sequence is executed:
• player requests the next waypoint from scene via GetNextWaypoint(), and the scene re-

sponds by sending a SceneObject.
• player requests from scene the target associated with that waypoint via GetTargetForWaypoint(waypoint),

and the scene replies with another SceneObject.
• player moves to the waypoint by executing MoveTo(waypoint).
• Then, player aims at the target using AimAtTarget(target).
• Finally, player shoots the target by sending Shoot() to the weapon object.

5. Once all waypoints have been completed, player notifies test that the route is finished.
6. test ends the test by executing Stop().
7. Afterwards, Developer requests the profiler to stop data collection.
8. test evaluates whether any errors were detected using HasErrorData():

• If no errors are detected, use case UC09: Process performance data is triggered.

3.2. SEQUENCES DIAGRAM FOR USE CASES 47

• Otherwise, test executes DisplayErrorData() to show the detected errors.

48 CHAPTER 3. DESIGN

3.2.8 UC09: Process performance data

Figure 3.9: sequence diagram use case 09

1. The AutomaticTest component initiates the processing of performance data once the automated
test has completed.

2. The test requests the collected data from the Profiler by sending the message GetCollectedData().
The profiler responds with the recorded performance data.

3. The test analyses and filters the received data to prepare it for storage.
4. The test attempts to save the processed data into persistent storage, represented as a JSON file, by

sending Save(processedData). The storage confirms successful saving.
5. Upon successful saving:

• The test displays a confirmation message indicating that the data has been saved successfully.
• The test checks whether the maximum number of test iterations (Five iterations have been

deemed sufficient to obtain a stable output; however, if any of these five iterations present
outlier values, additional repetitions may be performed to better filter out anomalous data
caused by background processes executed by the operating system.) has been reached.

• If the maximum iterations have been reached:
– The test calculates average values from all executed runs.
– It saves this summary data into persistent storage.

• If the maximum iterations have not been reached:
– The test triggers the use case UC08: Run automated test to perform another iteration.

6. If an error occurs while saving or reading data:
• The test displays an error message prompting the user to resolve the issue and retry.

7. The process concludes and the AutomaticTest component deactivates.

3.3. WEAPON ANIMATION MACHINE STATE 49

3.3 Weapon animation machine state

Weapon animations will be implemented to enhance the sense of movement and observe how this impacts
performance. To achieve this, a state machine diagram will be created, which is shown as follows:

Figure 3.10: Weapon animation state machine diagram for Player

The state machine consists of the following states:

• Draw: the weapon is being drawn.
• Idle: the weapon is stationary and ready.
• Walking: the player is moving while holding the weapon.
• Shooting: the weapon is firing.
• Reloading: the weapon is being reloaded.

The transitions between states are defined as follows:

• Draw → Idle: occurs automatically once the weapon is fully drawn.
• Idle ↔ Walking: triggered by pressing or releasing any movement key (W, A, S, or D).
• Idle / Walking → Shooting: occurs when the left mouse button is pressed.
• Shooting → Idle: occurs when the left mouse button is released.
• Idle, Walking, or Shooting → Reloading: occurs when the R key is pressed or automatically

when currentAmmo == 0.
• Reloading → Idle: occurs once currentAmmo == MAX AMMO.

50 CHAPTER 3. DESIGN

The state machine will also be implemented in the NPC for the automated performance test, albeit
with a slight modification. The diagram in question is as follows:

Figure 3.11: Weapon animation state machine diagram for NPC

The NPC weapon state machine consists of the following states:

• Draw: the weapon is being drawn.
• Idle: the NPC is stationary, deciding whether to move or engage a target.
• Walking: the NPC is moving towards the next point, with no target detected.
• Aiming: the NPC has detected a target and is aiming at it.
• Shooting: the NPC is firing at the target.
• Reloading: the weapon is being reloaded.

The transitions between states are defined as follows:

• Draw → Idle: occurs automatically once the weapon is fully drawn.
• Idle → Walking: occurs when the NPC’s speed is greater than zero and no target is detected.
• Walking → Idle: occurs when the NPC’s speed is zero or a target is detected.
• Idle → Aiming: occurs when a target is detected.
• Aiming → Shooting: occurs when the NPC locks on the target.
• Aiming → Aiming: remains aiming while the NPC has not locked the target yet.
• Aiming → Idle: occurs if the target is lost.
• Shooting → Idle: occurs when the NPC has finished with the target (e.g., eliminated).
• Shooting → Reloading: occurs when the NPC runs out of ammo.
• Reloading → Idle: occurs once ammo is fully replenished.

3.4. GAME STATE MACHINE 51

3.4 Game state machine

Lastly, but importantly, the game state transitions are represented using a classic state diagram. This
diagram illustrates when victory, restart, and exit conditions are triggered. In this case, it should be
clarified that there are no plans to implement a pause menu with resume, restart, or exit options, as the
prototype focuses solely on the victory condition. The diagram is as follows:

Figure 3.12: Game state machine diagram

The game state machine consists of the following states:

• Playing: the game is actively running.
• Victory: the player has achieved victory; end-of-game screen.

The transitions between states are defined as follows:

• Initial → Playing: occurs when start is triggered.
• Playing → Victory: occurs when all objectives have been completed, specifically when Scene.PanelShootings[]

== 0.
• Victory → Playing: occurs when restart is triggered.
• Victory → Final: occurs when exit is triggered.

3.5 Technologies used

The technologies chosen for the development of the project are as follows:

• Unity 6: release 6000.0.40f1
• Unreal engine 4: release 4.27.2
• Godot: release 4.4.1
• Visual Studio Community: An IDE used with Unity that allows code to be written and compiled

instantly for direct use within Unity, without the need for additional preliminary steps.
• Visual Studio Code: is a lightweight, open-source code editor that is highly customisable through

extensions.
• Plastic SCM: is a cross-platform, commercially distributed version control tool, available for

Microsoft Windows, Linux, and other operating systems. The tool includes a command-line interface,
native graphical user interfaces, a diff and merge tool, and integration with various IDEs. It provides
a complete version control solution that is not based on Git, although it can interact with it.[23]

The use of the engines in their respective versions is due to the development environment in which the

52 CHAPTER 3. DESIGN

project is being carried out. For example, Unreal Engine 5 was found to have compatibility issues with
integrated GPUs, such as those included in the CPU.

3.6 Research about profilers

3.6.1 Objective

The objective of this research is a methodological verification to ensure that the conclusions drawn from
the conducted tests are reliable.

Important aspects must be taken into account, among them are:

• Metrics: what are the most interesting metrics? Should all of them be used?
• Accessibility: which profiler is the most suitable? depending on the metrics, which one is the most

interesting to us?
• Cross-browsing: is the profiler valid for all browsers?

3.6.2 Methodology

The methodology to follow will be to determine which metrics are fundamental, and from there, decide
which profiler is necessary, in our case, when it comes to executing mini-games made with Unity, Unreal
or Godot, The methodology will determine which metrics are:

• FPS (frames per second): measures the frequency at which the game loop is executed; the
higher the value, the better the performance.

• RAM: the memory occupied by the mini-game in execution, calculating how much the scene,
elements, textures, lighting, sound, etc. occupy.

• Initial Load Time: the time it takes for the game to load from the moment the user accesses it
until they can start playing.

• Render Time:the time required to render a 3D scene, especially when loading new scenes or
animations. While the FPS is measuring a whole cycle for the game loop, the Render Time only
considers the time required for visual calculations

• GPU: there are different metrics that encompass the measurement of GPU power, duration,
frequency, etc.

• Input lag: the time it takes for the game to respond to the player’s input (for example, pressing a
key or moving the mouse).

3.6.3 Profilers most used

Next, let’s look at the most commonly used profilers and examine their advantages and disadvantages.
These are:

• Chrome DevTools: a tool developed by Google, integrated within the browser, and it only works
in the Google Chrome browser (Chromium)

• FireFox DevTools: a tool for the Firefox browser, it is integrated and only works in that browser.
• LightHouse: open-source tool created by Google for web browsers based on Chromium.
• playwright: a test automation tool for web applications that works with most web browsers.

3.6.4 Comparative table

For the investigation, a comparison will be made to determine which profiler is of most interest, depending
on the metrics and whether it is compatible with most browsers. This is shown in the following table:

3.6.
R

ESEA
R

C
H

A
B

O
U

T
PR

O
FILER

S
53

Profiler FPS RAM Initial
Load
Time

Render
Time

GPU
Usage

Input
Lag

Cross-Browser

Chrome DevTools yes yes yes yes yes yes Only Google Chrome or extensions
Firefox DevTools yes yes yes yes yes yes Only Firefox or extensions
Lighthouse no no indirectly

(FCP,
LCP)

indirectly
(FCP,
LCP)

no yes Chromium browsers, integrated in DevTools

Playwright no no indirectly
(FCP,
LCP)

indirectly
(FCP,
LCP)

no yes Yes, but not focused on profiling WebGL

FCP: First Contentful Paint; LCP: Largest Contentful Paint.

Table 3.1: Comparison of profiling tools and available metrics.

54 CHAPTER 3. DESIGN

3.6.5 Conclusion

After reviewing the comparison table, it is concluded that the most suitable profilers are those from
Google and Firefox, as all the metrics needed are provided without requiring additional calculations, and
they are the most representative browsers. However, if a specific browser not based on Chromium were
needed, the Playwright API would be used.

3.7 Importing GLTF files with Sketchfab

To save time on the work, a pre-modeled 3D environment 1 and weapon 2 with various details will be
added to the FPS prototype to assess their potential impact on performance. The models will be sourced
from Sketchfab.

Sketchfab (https://sketchfab.com/feed) is an online platform designed for uploading, sharing,
discovering, and trading 3D models, VR, and AR content. It offers a powerful WebGL viewer, enabling
users to interact with 3D assets directly within web browsers, whether on mobile, desktop, or virtual
reality devices.

For the import, the decision has been made to choose GLTF, which is a standard file format for
three-dimensional scenes and models. A GLTF file uses one of two possible file extensions: .gltf
(JSON/ASCII) or .glb (binary). This format has been chosen as it is compatible with the majority of
the engines and libraries selected. Nevertheless, some adjustments will be necessary in certain engines,
such as Unreal Engine, since in version 4.27 this technology was still in beta, in this case, the FBX format
will be used

To address this issue, since the environment does not support FBX import, Blender –an open-source
3D creation suite– will be used to convert the GLTF format to FBX.

The steps to perform the conversion are as follows:

1. Open Blender.
2. Go to: File > Import > glTF 2.0 (.glb/.gltf).
3. Select your file and click Import glTF 2.0.
4. Verify that meshes, materials, textures, and animations (if any) are correctly imported.
5. Go to: File > Export > FBX (.fbx).
6. Set the following important export settings:

• Path Mode: set to “Copy”, and click the icon next to it to embed textures.
• Apply Transform: enable this to bake transformations.
• Forward: -Z Forward.
• Up: Y Up (matches Unreal Engine’s coordinate system).
• It should look something like this:

1https://sketchfab.com/3d-models/lowpoly-fps-tdm-game-map-d41a19f699ea421a9aa32b407cb7537b
2https://sketchfab.com/3d-models/ak47-831519a097d84e079fd8bc4b15e5b57d

https://sketchfab.com/feed
https://sketchfab.com/3d-models/lowpoly-fps-tdm-game-map-d41a19f699ea421a9aa32b407cb7537b
https://sketchfab.com/3d-models/ak47-831519a097d84e079fd8bc4b15e5b57d

3.7. IMPORTING GLTF FILES WITH SKETCHFAB 55

Figure 3.13: settings export to FBX in Blender

7. Rename the file and click Export FBX.

After this, to import the environment into Unreal:

1. Go to: File > import into level
2. Choose location for importing the scene content (e.g /content directory)
3. In the Static Meshes section, under the normal import method, select Import Normals and

Tangents.
4. It should look something like this:

Figure 3.14: settings import from FBX in unreal in the Static Meshes section

5. If the 3D model has a skeleton or animations, make sure that import Animations is selected
under the Skeletal Meshes section.

6. It should look something like this:

56 CHAPTER 3. DESIGN

Figure 3.15: settings import from FBX in unreal in the Skeletal Meshes section

This chapter has developed a detailed system design, redefining the domain model and specifying
sequence diagrams for the main use cases. Additionally, state machines controlling weapon animation
and the overall game state have been defined, and the most suitable technologies for development have
been selected.

Building on this solid design foundation, the next chapter will proceed to the implementation phase,
starting with the development of the player-controlled manual mode prototype.

Chapter 4

Implementation (manual mode)

This chapter presents the implementation of the FPS game prototype in manual mode, where the player
directly controls the character. The development process across three different engines — Unity, Unreal
Engine, and Godot — is detailed. For each engine, the environment setup, collision system implementation,
and relevant code analysis are provided. This comparison aims to highlight the particularities and
differences between each platform.

4.1 Prototipe development

The first step is the minimum viable prototype defined for conducting performance tests. It has already
been mentioned that this is a simple FPS. The technical decisions made were:

1. The player will move using the W, A, S, and D keys, with W moving forward, A moving backward,
S moving right, and D moving left.

2. The player fires by pressing or holding down the left mouse button.
3. The player reloads the weapon using the R key.
4. The weapon will have animations to indicate to the player the action being performed at any given

moment, as well as to assess whether it impacts performance.
5. To determine whether a shot has been fired, a gunshot sound file will be played upon execution of

the action.
6. The player’s HUD will consist of the following elements:

• Crosshair: used for aiming at targets. By default, the crosshair is white, but when aiming at
an enemy, it will change to red.

• AmmoDisplay: displays the remaining ammunition in the weapon alongside the maximum
capacity.

• ObjetiveDisplay: displays the number of remaining targets.
• GameTimer: displays the elapsed game time.

7. When all targets are defeated, the HUD will update to display a victory message, the time elapsed
until victory, and two menu options: Restart and exit.

4.2 General Structure in Game Engine

This section provides an overview of the structure and interaction between the technologies used to
implement the FPS game prototype in manual mode. The development is carried out across three
main game engines: Unity, Unreal Engine, and Godot. Each engine serves as a foundational platform
supporting game logic, user input management, collision systems, and the visual interface.

Although each engine possesses its own features and particularities, they all share a common structure

57

58 CHAPTER 4. IMPLEMENTATION (MANUAL MODE)

that facilitates comparison and evaluation of the prototype across different environments. This structure
comprises the following fundamental components:

• Player control: User input is primarily managed through keyboard and mouse, allowing movement
of the character and execution of actions such as shooting or reloading. The W, A, S, and D keys
control movement, while the mouse is used for aiming and firing.

• Collision and physics system: Each engine implements mechanisms to detect interactions between
the player, the environment, and targets via colliders. This system is crucial for determining when
a shot hits an enemy and for managing the appropriate response within the game.

• User interface (HUD): A set of visual elements provides real-time information to the player,
including the crosshair, remaining ammunition, number of targets left, and elapsed time. This
interface is consistent across all engines, ensuring a comparable user experience.

• Animations and sounds: To enhance immersion and provide visual and auditory feedback,
animations indicating weapon actions (shooting, reloading) and accompanying sounds are integrated,
also contributing to the assessment of performance impact.

This modular and common structure ensures the prototype maintains consistent functionality across
different platforms, enabling evaluation and comparison of both technical capabilities and implementation
efficiency within each game engine.

The following sections will analyse in detail the environment setup, collision system implementation,
and code review for each engine, building upon this shared general structure.

4.3 Unity

4.3.1 Introduction

Unity is the first game engine used to implement the FPS prototype in manual mode. Its role in this
project is to serve as a reference base for developing and testing the core game functionalities: player
control, collision system, shooting and reloading logic, the HUD interface, and the audiovisual elements
required for a functional gameplay experience.

Unity was chosen due to its extensive documentation, ease of rapid prototyping, and flexibility in
scripting with C#. Moreover, as the first engine employed, additional time was allocated to explore its
potential and establish a solid foundation. This foundation could then be replicated across the other
engines to ensure fair and consistent comparisons.

Development was carried out using Unity version 6000.0.40f1. The following sections will detail the
environment configuration, collision system implementation, and source code analysis, while maintaining
the same functional prototype structure to ensure coherence across engines.

4.3.2 Environment

The environment is divided into clearly defined sections, which are as follows:

• Project window: this is the window where the project can be viewed and edited. It can be
organised according to user preference, but by default, a Unity project is structured according to
the types of assets it contains or the packages it uses.
An asset is a representation of any item that can be used in a game or project. An asset may
originate from a file created outside Unity, such as a 3D model, an audio file, an image, etc. There
are also other types of assets that can be created within Unity itself, such as an Animator Controller
or materials.
A package can be considered analogous to a library in programming; it provides the remaining tools
necessary for the engine to function, such as the graphics pipeline or the physics API. Additionally,
it is possible to add external packages to the project.

4.3. UNITY 59

• Hierarchy window:this is the window where all objects placed in the scene are displayed. These
can be organised according to user preference. There are two types of objects:

– Scene:these represent the game levels. This is where game objects for the respective level are
placed. They can later be saved and added to the project structure in order to be loaded for
editing or to transition to other scenes via code. They are represented by the white Unity logo.

– Game Object: these are the game elements, including shapes, cameras, lights, and the
HUD. However, a GameObject cannot perform any action by itself; it requires properties to
be assigned before it can become a character, environment, or special effect. To provide a
GameObject with the necessary properties, components must be added to it.
A Component in Unity is a functional unit or module attached to a GameObject that imparts
specific properties and behaviours. Examples of components include the Transform, which
indicates the position, rotation, and scale of the GameObject within the scene; the Mesh
Renderer, which defines the GameObject’s shape; and the Rigidbody, which enables the
GameObject to interact with Unity’s physics system.

• Scene view: this is where direct editing on the scene takes place. Objects can be moved, rotated,
and scaled without the need to access their Transform component directly. Objects can be dragged
into the scene from the hierarchy window.

• Game view: this is where the game can be tested. It can be paused to allow for review in the
Console window in case of errors or during debugging.

• Inspector Window: this is where the components of GameObjects can be viewed and interacted
with directly, without the need for coding.

60 CHAPTER 4. IMPLEMENTATION (MANUAL MODE)

It should be noted that this is the default version in which the environment is presented, although
it is possible to choose which tabs to display, as well as their arrangement, through the Layout menu
located at the top right of the interface.

An overview of a Unity project is depicted in this image:

Figure 4.1: Unity environment

4.3.3 Collider implementation

In Unity, assigning colliders to objects can be done through various types, ranging from simple shapes
like boxes (Box Collider) and spheres (Sphere Collider) to specialized components such as the Character
Controller, which combines a capsule with spheres at its ends to facilitate character movement and
collisions.

For objects with more complex geometries, the Mesh Collider is used, which approximates collision
based on the object’s actual mesh. However, this type of collider is significantly more performance-intensive,
especially when characters frequently interact with these objects. For this reason, it is recommended to
limit its use and prefer simple colliders whenever possible to optimise game smoothness and avoid FPS
drops.

Correct selection and configuration of colliders is crucial to balance collision accuracy and perfor-
mance—an essential aspect in developing an FPS prototype where responsiveness and stability take
priority.

4.3.4 Code explanation

In Unity, programming is primarily conducted through C# scripts that inherit from the MonoBehaviour
class. MonoBehaviour acts as the base class from which user-defined scripts derive to interact with the
Unity game engine’s lifecycle.

Within this class, methods can be defined to interact with the GameObjects in the scene and access
their components. In this way, scripts can be created that reflect behaviours within the game without
explicitly specifying what those objects must do. Therefore, each of the scripts will inherit from this class.

A view of the proposed class diagram would be as follows:

4.3.
U

N
IT

Y
61

Figure 4.2: Scripts Unity class diagram

62 CHAPTER 4. IMPLEMENTATION (MANUAL MODE)

The methods of interest for the MonoBehaviour class have been the following:

• Start(): is executed once the script is enabled, just before the first Update(). This allows
dependencies between objects to be assigned after they have been instantiated in the scene.[24]

• Update(): is executed every frame of the game after Start().[25]
• StartCoroutine(coroutine): Coroutines can be paused at any point using the yield statement,

which causes execution to resume in a subsequent frame. They are ideal for implementing behaviours
that span multiple frames. When StartCoroutine(coroutine) is called, control returns after the
first yield.[26]

These functions will be overridden as needed during the construction of our scripts,

Another important aspect in these scripts is the behaviour of the public and private access modifiers.
In addition to their standard role in object-oriented programming, declaring a variable as public allows it
to be exposed in the Unity Inspector of the object where the script is attached. This makes it possible to
test and adjust parameters during runtime without the need to constantly recompile scripts, facilitating
rapid iteration and debugging.

the following behaviours will be defined:

4.3. UNITY 63

PlayerMovement.cs

1. In Start(), the dependencies are obtained: the CharacterController, which represents the player
in the FPS using its built-in physics system; the playerCamera, which provides the camera inside
the player; and the Animator, which controls the weapon animation state machine in Unity. The
mouse cursor is hidden and locked to the centre of the screen. Additionally, initiating movement of
the player and the camera is allowed. The sequence diagram representation of this is as follows:

Figure 4.3: Sequence diagram of Start function of PlayerMovement script in Unity

2. In Update(), it is first checked whether movement is allowed, in case the player is in a victory state.
If true, the following methods are then called

• MovePlayer(): the first step is to retrieve the player’s movement inputs. This is done by
calling the static methods GetAxis(string axisName) from the Input class. By default in
Unity, “Horizontal” corresponds to left/right movement (A/D or Left/Right arrow keys), and
“Vertical” corresponds to forward/backward movement (W/S or Up/Down arrow keys).[27]
After this, the velocity on the X and Z axes is calculated. Since the GetAxis function returns
a value between -1 and 1, it is multiplied by the corresponding local axes of the character,
represented by transform.right (X axis) and transform.forward (Z axis). These vectors
are summed and then multiplied by speedX, which represents the movement intensity.
For the Y component of the velocity, which represents gravity, it is checked whether the
character is grounded using characterController.isGrounded(). If not, the movement is
calculated as free fall, which is mathematically represented as follows:

vt+∆t = vt − g · ∆t
where:

– vt: vertical velocity at the current time step.
– vt+∆t: vertical velocity after a time step ∆t.
– g: acceleration due to gravity (e.g. 9.81 m/s2).
– ∆t: time interval between frames (in Unity, Time.deltaTime).

64 CHAPTER 4. IMPLEMENTATION (MANUAL MODE)

Otherwise, the speedY will be zero.
After this, the character can be moved using characterController.Move(Vector3 velocity).
However, it should be noted that the fall represents an acceleration, so it must be multiplied
again by Time.deltaTime to ensure realism.
Finally, the weapon animation must be performed while walking. The handling of animations
in Unity will be explained later. For this case, the magnitude of the velocity is taken. In Unity,
due to ground collisions and the setup, it was observed that the velocity never reached zero but
fluctuated with an error of approximately 0.3–0.5. To address this, the constant FLUCTUATIONS
is used to ignore this error. If the velocity is less than this fluctuation, it is considered zero.
Afterwards, the animation state machine method for the weapon is called to check whether
it is possible to transition from the “idle” state to the “walking” state based on the velocity
magnitude(weaponEvents.SetFloat(‘‘movement’’, magnitude)).

4.3. UNITY 65

The sequence diagram for MovePlayer() in PlayerMovement is as follows:

Figure 4.4: Sequence diagram of MovePlayer function of PlayerMovement script in Unity

• LookAround(): similarly to MovePlayer(), the input axes are obtained using GetAxis(string
axisName), in this case the X axis (“Mouse X”) and Y axis (“Mouse Y”) of the mouse.
For the X axis, the value is simply multiplied by lookYawSpeed, which reflects the mouse
sensitivity, and then subtracted, indicating that moving the mouse to the right causes the
player to rotate to the right.
For the Y axis, the same procedure is followed, except that to prevent the player from look-
ing completely backwards or the camera from rotating excessively, Mathf.Clamp(float value,
float min, float max) is used to limit the pitch value between -/+CAMERA PITCH LIMIT,
which represents an angle of 160 degrees.
To manage the character’s orientation and rotations, Euler angles and quaternions are used.
The full theory on Euler angles, the gimbal lock problem, and how quaternions solve this
issue is developed in detail in Appendix A. Here, we focus on the practical application in the
different engines and the code analysis.
Horizontal rotation is applied to the player’s body. The function Quaternion.Euler(float x,
float y, float z) is used to convert an Euler angle into a quaternion, both for the rotation
of the body and the rotation of the camera.
In the case of the body rotation, it is applied in the negative direction because, when mapping
the mouse movement to Unity’s axis system, the rotation direction needs to be inverted to
match the expected behavior. Specifically, moving the mouse to the right produces a positive
input value, but a positive rotation around the Y-axis in Unity corresponds to turning left
(counterclockwise). Therefore, to make the character rotate to the right as the mouse moves
right, the rotation is applied in the negative direction (clockwise), and vice versa. Finaly, using
localRotation on the camera is important so that it only tilts vertically without affecting
the player’s global rotation.

66 CHAPTER 4. IMPLEMENTATION (MANUAL MODE)

The sequence diagram for LookAround() in PlayerMovement is as follows:

Figure 4.5: Sequence diagram of LookAround function of PlayerMovement script in Unity

4.3. UNITY 67

The sequence diagram for Update() in PlayerMovement is as follows:

Figure 4.6: Sequence diagram of Update function of PlayerMovement script in Unity

3. Lastly, there is the StopPlayerMovement() function, which is used to stop both the character and
camera movement. The reason and context for calling this function will be explained later.

68 CHAPTER 4. IMPLEMENTATION (MANUAL MODE)

The implemented code is as follows:

1 using System . Reflection ;
2 using UnityEngine ;
3 using UnityEngine . InputSystem .XR;
4 using UnityEngine . SceneManagement ;
5
6 public class PlayerMovement : MonoBehaviour
7 {
8 private const float CAMERA_PITCH_LIMIT = 80f;
9 private const float GRAVITY = 9.8f;

10 private const float FLUCTUACTIONS = 0.6f; // Due to physics , idle time in Unity is not
strictly 0

11
12 [Header (" Movement Settings ")]
13 public float speedXZ = 2f;
14
15 [Header (" Mouse Look Settings ")]
16 public float lookYawSpeed = 1.5f; // Mouse rotation speed on the X-axis
17 public float lookPitchSpeed = 1.5f; // Mouse rotation speed on the Y-axis
18
19 private CharacterController characterController ;
20 private Camera playerCamera ;
21 private Animator weaponEvents ; // Weapon animation event handler .
22
23 private GameController gameController ; // Check if the system is running in automatic test mode
24 private float pitch = 0f; // Mouse movement on the Y-axis
25 private float yaw = 0f; // Mouse movement on the X-axis
26 private float speedY = 0f; // Gravity
27 private bool canMove ; // Used When the player win , allows / blocks the player AND

camera movements
28
29 void Start ()
30 {
31 gameController = GameObject .Find("Game Controller "). GetComponent < GameController >();
32 characterController = GetComponent < CharacterController >();
33 ValidationUtils . CheckNotNull (gameController , " gameController script is missing .", this);
34 ValidationUtils . CheckNotNull (characterController , " CharacterController component is

missing .", this);
35 // Skip this update cycle
36 if (gameController . automaticMode)
37 {
38 // The CharacterController must be disabled during automatic test mode because having

both a Collider
39 // (through CharacterController) and a NavMeshAgent enabled at the same time is not

supported during runtime
40 characterController . enabled = false ;
41 this . enabled = false ;
42 }
43
44
45 playerCamera = GetComponentInChildren <Camera >();
46 weaponEvents = GetComponentInChildren <Animator >();
47
48 ValidationUtils . CheckNotNull (playerCamera , " Camera component is missing .", this);
49 ValidationUtils . CheckNotNull (weaponEvents , " Animator component for weapon events is

missing .", this);
50
51 Cursor . lockState = CursorLockMode . Locked ; // Locks the cursor to the centre
52 Cursor . visible = false ;
53 canMove = true ;
54 }
55
56 void Update ()
57 {
58 if (canMove)
59 {
60 MovePlayer ();
61 LookAround ();
62 }
63
64 }
65
66 private void MovePlayer ()
67 {
68 // Unity ’s default input axes:
69 // Input . GetAxis (" Horizontal ") corresponds to left/ right movement (A/D or Left/ Right arrow

keys).
70 // Input . GetAxis (" Vertical ") corresponds to forward / backward movement (W/S or Up/Down arrow

keys).
71 float directionX = Input . GetAxis (" Horizontal ");
72 float directionZ = Input . GetAxis (" Vertical ");
73
74 Vector3 velocity = (transform . right * directionX + transform . forward * directionZ) * speedXZ ;
75
76 // Apply gravity to the vertical speed
77 if (! characterController . isGrounded)

4.3. UNITY 69

78 {
79 speedY -= GRAVITY * Time. deltaTime ;
80 }
81 else
82 speedY = 0f;
83
84 velocity .y = speedY ;
85 // Mind the Y component will be multiplied by the deltaTime twice because the tˆ2
86 characterController .Move(velocity * Time. deltaTime);
87
88 // It is checked that the player moves :
89 // If the velocity ’s magnitude is greater than 0, the animation changes from idle to walking .
90 // else , the animation changes from walking to idle
91 float magnitude = velocity . magnitude ;
92 if (magnitude < FLUCTUACTIONS) magnitude = 0; // To avoid issues with the weapon animations ,

it is set to 0.
93 weaponEvents . SetFloat (" movement ", magnitude);
94 }
95
96 private void LookAround ()
97 {
98 // Rotation on the Y-axis (left/ right)
99 yaw -= Input . GetAxis (" Mouse X") * lookYawSpeed ;

100 // Rotation on the X-axis (up/down) clamped to the +/- CAMERA_PITCH_LIMIT
101 pitch -= Input . GetAxis (" Mouse Y") * lookPitchSpeed ;
102 pitch = Mathf . Clamp (pitch , -CAMERA_PITCH_LIMIT , CAMERA_PITCH_LIMIT);
103
104 // Rotate only the body on the Y-axis (yaw)
105 characterController . transform . rotation = Quaternion . Euler (0, -yaw , 0);
106
107 // Rotate only the camera on the X-axis (pitch)
108 playerCamera . transform . localRotation = Quaternion . Euler (pitch , 0, 0);
109 }
110
111 public void StopPlayerMovement ()
112 {
113 canMove = false ;
114 }
115 }

WeaponController.cs

1. In Start(), the dependencies are obtained: in addition to playerCamera and weaponEvents, obtain
the HUDManager, which will be the script responsible for managing all HUD elements, and the
ShotSource, which will handle the shooting sounds in 3D environments. Start with all bullets (30
by default) and perform a null check on all variables. If that is the case, force the game to exit
through another script called VictoryManager, which will be described later.

70 CHAPTER 4. IMPLEMENTATION (MANUAL MODE)

The sequence diagram for Start() in WeaponController is as follows:

Figure 4.7: Sequence diagram of Start function of WeaponController script in Unity

4.3. UNITY 71

2. In Update(), first, define how a state machine is used to control animations, as this will clarify the
implementation of the Update method.
In Unity, there is the Animator GameObject, which controls both 2D and 3D animations. Within
this interface, it is possible to define exactly what a state machine is and assign an animation to
each state.
The view appears as follows:

Figure 4.8: Unity environment animator Menu

As can be seen, in Unity, to keep the diagram cleaner, the Any State function can be used when it
is desired to transition from any defined state to the desired states. Then, each state is assigned the
animation that should be executed.

72 CHAPTER 4. IMPLEMENTATION (MANUAL MODE)

The area of interest is the transitions interface, where conditions for transitioning between states
can be defined. Additionally, it is possible to require that the current animation must finish before
the transition takes place, using the Has Exit Time parameter:

Figure 4.9: Unity environment animator Transition Menu

With this clarified, return to the code. The first step is to check whether the R key is pressed using
(Input.GetKeyDown(KeyCode.R)) or if there are no bullets remaining, which triggers automatic
reloading. Reloading can be performed only if a reload is not already in progress and the magazine
is not full. In such a case, a coroutine will be called to handle the reloading process.
Now move on to shooting. Shooting is triggered by holding down the left mouse button. However,
shooting cannot occur while the reload function is active. Additionally, a shooting cooldown has
been implemented to simulate the fire rate of a real weapon, preventing the ammunition from
being depleted too quickly. If the conditions are met, the shot is executed; otherwise, the shooting
animation is set to false to allow returning to “idle” or “walking” states.
After this, simply update the HUD with the remaining bullets.

4.3. UNITY 73

The sequence diagram for Update() in WeaponController is as follows:

Figure 4.10: Sequence diagram of update function of WeaponController script in Unity

3. Now proceed to explain both functions: reloading and shooting:
• Reload: defines a coroutine, allowing you to pause execution and resume after a delay, at this

point, ensure that no other animations occur, as the reload animation takes priority. Triggers
the reloading animation and waits for the duration of the reload animation before proceeding.
This simulates the time it takes to reload. When the reload animation finishes, refill the
weapon with the maximum ammunition and trigger a transition to the “idle” state. After this,
allow the checks to continue in the following frames.

• Shoot: activate the shooting animation and play the shooting audio file(Defined externally
in the Inspector). After this, create the raycast, starting from the player’s camera position,
and its direction is that of the camera. The raycast detects if any object with a collider is in
its path within the range distance. If the raycast collides with an object, that information
is stored in hit. If, in addition, the hit object is a shooting panel (this is determined by the
GameObject having a tag named “panel shooting”), then The PanelsManager script, which
manages the shooting panels, is called and the panel is made to disappear. The details of this
function will be explained later. In any other case, no action is taken. Regardless of what
happens, one bullet is subtracted from the weapon.

74 CHAPTER 4. IMPLEMENTATION (MANUAL MODE)

The sequence diagram for Shoot() in WeaponController is as follows:

Figure 4.11: Sequence diagram of Shoot function of WeaponController script in Unity

4.3. UNITY 75

The implemented code is as follows:

1 using System ;
2 using System . Collections ;
3 using System . Reflection ;
4 using TMPro ;
5 using Unity . Burst . Intrinsics ;
6 using Unity . VisualScripting ;
7 using UnityEditor ;
8 using UnityEngine ;
9 using UnityEngine . InputSystem ;

10 using UnityEngine . UIElements ;
11 using static UnityEngine . GraphicsBuffer ;
12
13 public class WeaponController : MonoBehaviour
14 {
15 public const int BULLETS_MAX = 30;
16
17 private const float RELOADING_ANIMATION_DURATION = 3f;
18
19 [Header (" Weapon Settings ")]
20 public float fireRate = 0.3f; // Time between shots , It is dependent on the shooting animation .
21 public float range = 100f;
22 public AudioClip weaponShotSound ;
23
24 private float nextFireTime = 0f; // Time in which shooting will be allowed again .
25 private int currentBullets ;
26 private Camera playerCamera ;
27 private Animator weaponEvents ; // Weapon animation event handler .
28 private AudioSource shotSource ;
29 private GameController gameController ;
30 private HUDManager HUDManager ;
31
32 // Prevent firing while reloading or to prevent reloading from repeating .
33 private bool isReloading = false ;
34
35
36 void Start ()
37 {
38 HUDManager = GameObject .Find("HUD"). GetComponent < HUDManager >();
39 playerCamera = GetComponentInParent <Camera >();
40 weaponEvents = GetComponent <Animator >();
41 shotSource = GetComponentInChildren < AudioSource >();
42 gameController = GameObject .Find("Game Controller "). GetComponent < GameController >();
43
44 // If any element is missing , the game is aborted .
45 ValidationUtils . CheckNotNull (HUDManager , " HUDManager script is missing .", this);
46 ValidationUtils . CheckNotNull (playerCamera , " Camera component is missing .", this);
47 ValidationUtils . CheckNotNull (weaponEvents , " Animator component for weapon events is

missing .", this);
48 ValidationUtils . CheckNotNull (shotSource , " AudioSource component for shotSource is missing .",

this);
49 ValidationUtils . CheckNotNull (weaponShotSound , " AudioClip component for weaponShotSound is

missing .", this);
50 ValidationUtils . CheckNotNull (gameController , " gameController script is missing .", this);
51
52 currentBullets = BULLETS_MAX ;
53 }
54 void Update ()
55 {
56 HUDManager . UpdateAmmoDisplay (currentBullets , BULLETS_MAX);
57 // Skip this update cycle
58 if (gameController . automaticMode)
59 return ;
60
61 // Reloading when desired with R button or when the bullets run out.
62 // Reloading is avoided multiple times at the same time.
63 if ((Input . GetKeyDown (KeyCode .R) || currentBullets == 0) && ! isReloading && currentBullets

!= BULLETS_MAX)
64 {
65 StartCoroutine (Reload ());
66 }
67
68 // The shot is fired by holding down the left mouse button and
69 // it is ensured that it does not reload at the moment
70 // in addition , Shooting is only allowed if the waiting time has passed .
71 if (Input . GetButton (" Fire1 ") && ! isReloading && Time.time >= nextFireTime)
72 {
73 nextFireTime = Time.time + fireRate ;
74 Shoot ();
75 }
76 }
77
78 public void Shoot ()
79 {
80 weaponEvents . SetTrigger (" isShooting ");
81 shotSource . PlayOneShot (weaponShotSound);

76 CHAPTER 4. IMPLEMENTATION (MANUAL MODE)

82
83 // A raycast hit is created , starting from the player ’s camera position , and its direction

is that of the camera .
84 RaycastHit hit;
85 Vector3 start = playerCamera . transform . position ;
86
87 // if the raycast hits an object that has a collision .
88 if (Physics . Raycast (start , playerCamera . transform .forward , out hit , range))
89 {
90 // If it is a shooting panel , it is hidden .
91 if (hit. transform . CompareTag (" PanelShooting "))
92 {
93 PanelsManager panelsManager = hit. transform . parent . GetComponent < PanelsManager >();
94 ValidationUtils . CheckNotNull (panelsManager , " PanelsManager script is missing .",

this);
95 panelsManager . DissapearPanel (hit. transform);
96 }
97 }
98
99 currentBullets --;

100 }
101 private IEnumerator Reload ()
102 {
103 isReloading = true ;
104 // Activate the reloading animation
105 weaponEvents . SetTrigger (" reloading ");
106 // It is waited for during the time the reload animation lasts .
107 yield return new WaitForSeconds (RELOADING_ANIMATION_DURATION);
108 currentBullets = BULLETS_MAX ;
109 // Reloading is finished .
110 weaponEvents . SetInteger (" bullets ", BULLETS_MAX);
111 isReloading = false ;
112 }
113 }

HUDManager.cs

1. In Start(), all visual elements of the HUD have been referenced in the code for management during
gameplay. Specifically, the following objects have been defined:

• ammoDisplay: represents the amount of ammunition displayed to the player.
• gameTimer: displays the elapsed game time.
• objectiveDisplay: indicates the number of remaining active targets.
• victoryDisplay: corresponds to a menu that is automatically activated once all targets have

been eliminated.
A null check was subsequently performed, followed by hiding the victoryDisplay element from the
HUD view.

4.3. UNITY 77

The sequence diagram for Start() in HUDManager is as follows:

Figure 4.12: Sequence diagram of Start function of HUDManager script in Unity

2. Subsequently, a set of functions is defined solely for updating the content of the display, which are in-
voked from other scripts.(UpdateObjectivesDisplay(int remainingObjectives) and UpdateAmmoDisplay(int
currentBullets, int bulletsMax))

3. Finally, the Victory() function is executed when all shooting targets have been defeated. Within
this function, all HUD elements are hidden, the NightEffect script is called to change the sky and
lighting, and the GameTimer script is invoked to retrieve the total elapsed time and display it in the
victoryDisplay along with a congratulatory message.
It should be noted that in Unity, the Find(string nameObject) function only works with active
objects. Therefore, the system is instructed to search for inactive objects as well, delegating
responsibility to the VictoryManager to display the victory options.

78 CHAPTER 4. IMPLEMENTATION (MANUAL MODE)

The sequence diagram for Victory() in HUDManager is as follows:

Figure 4.13: Sequence diagram of Victory function of HUDManager script in Unity

4.3. UNITY 79

The implemented code is as follows:
1 using System ;
2 using System . Reflection ;
3 using TMPro ;
4 using UnityEditor ;
5 using UnityEngine ;
6 using UnityEngine . SceneManagement ;
7
8 /* A script that manages all the player ’s HUD components . */
9 public class HUDManager : MonoBehaviour

10 {
11 private GameObject ammoDisplay ; // The ammunition indicated in the player ’s HUD.
12 private GameObject gameTimer ; // the game Time indicated in the player ’s HUD.
13 private GameObject objectiveDisplay ; // The number of targets that remain alive .
14 private GameObject victoryDisplay ; // A menu that is enabled when all the targets are

eliminated .
15 private GameController gameController ;
16
17 void Start ()
18 {
19 gameController = GameObject .Find("Game Controller "). GetComponent < GameController >();
20 ammoDisplay = GameObject .Find("Ammo Display ");
21 gameTimer = GameObject .Find("Time Display ");
22 objectiveDisplay = GameObject .Find(" Objective Display ");
23 victoryDisplay = GameObject .Find(" Victory Display ");
24
25 ValidationUtils . CheckNotNull (ammoDisplay , " ammoDisplay is missing .", this);
26 ValidationUtils . CheckNotNull (gameTimer , " gameTimer is missing .", this);
27 ValidationUtils . CheckNotNull (objectiveDisplay , " objectiveDisplay is missing .", this);
28 ValidationUtils . CheckNotNull (victoryDisplay , " victoryDisplay is missing .", this);
29 ValidationUtils . CheckNotNull (gameController , " gameController script is missing .", this);
30
31 victoryDisplay . SetActive (false);
32 }
33
34 public void UpdateObjectivesDisplay (int remainingObjectives)
35 {
36 objectiveDisplay . GetComponent < TextMeshProUGUI >().text = $" Remaining Objectives :

{ remainingObjectives }";
37 }
38
39 public void UpdateAmmoDisplay (int currentBullets , int bulletsMax)
40 {
41 ammoDisplay . GetComponent < TextMeshProUGUI >().text = currentBullets + "/" + bulletsMax ;
42 }
43
44 /* A function that manages the player ’s victory when all the targets have been eliminated . */
45 public void Victory ()
46 {
47 // The game elements are hidden .
48 ammoDisplay . SetActive (false);
49 objectiveDisplay . SetActive (false);
50 gameTimer . SetActive (false);
51
52 // Applies the night effect to the scene .
53 NightEffect nightEffect = GameObject .Find(" Directional Light "). GetComponent < NightEffect >();
54 ValidationUtils . CheckNotNull (nightEffect , " NightEffect script is missing .", this);
55 nightEffect . SetNightSky ();
56
57 // The game time is taken and displayed with a victory message .
58 string timerText = gameTimer . GetComponent < TextMeshProUGUI >().text;
59 victoryDisplay . GetComponent < TextMeshProUGUI >().text = $" CONGRATULATIONS ! Total { timerText }";
60 victoryDisplay . SetActive (true);
61
62 // he victory menu is opened with the available options .
63 VictoryManager victoryManager =

FindFirstObjectByType < VictoryManager >(FindObjectsInactive . Include);
64 ValidationUtils . CheckNotNull (victoryManager , " VictoryManager script is missing .", this);
65 if (! gameController . automaticMode)
66 victoryManager . ShowVictoryScreen ();
67 else
68 victoryManager . ExitGame ();
69 }
70
71 }

80 CHAPTER 4. IMPLEMENTATION (MANUAL MODE)

VictoryManager.cs

1. In Start(), the victory panel is hidden at the start (gameObject.SetActive(false)), as it should
not be displayed while the game is in progress. Subsequently, functions are assigned to the
retryButton and exitButton to ensure they respond to user clicks.

2. In ShowVictoryScreen(), The method is invoked when the player wins the game. First, Pause the
game’s time to stop all in-game activity, activate the victory panel to make it visible. Subsequently,
unlock and display the cursor so the player can interact with the HUD. Finally, disable player
movement by calling the StopPlayerMovement().

3. In Restart(), the game is resumed and the current level is reloaded.
4. In Exit(), the game is closed; if running within the Unity editor, the mode simply returns to edit

mode.

The implemented code is as follows:
1 using System . Collections ;
2 using UnityEngine ;
3 using UnityEngine . SceneManagement ;
4 using UnityEngine .UI;
5
6
7 public class VictoryManager : MonoBehaviour
8 {
9

10 public Button retryButton ;
11 public Button exitButton ;
12
13 void Start ()
14 {
15 // The panel is hidden at the start .
16 gameObject . SetActive (false);
17
18 ValidationUtils . CheckNotNull (retryButton , " retryButton component is missing .", this);
19 ValidationUtils . CheckNotNull (exitButton , " exitButton component is missing .", this);
20
21 // Functions are assigned to the buttons when using the mouse .
22 retryButton . onClick . AddListener (RestartGame);
23 exitButton . onClick . AddListener (ExitGame);
24
25
26 }
27
28 public void ShowVictoryScreen ()
29 {
30 Time. timeScale = 0f; // Paused game
31 gameObject . SetActive (true); // The panel is shown .
32 Cursor . lockState = CursorLockMode . Confined ; // The mouse is within the game screen .
33 Cursor . visible = true ;
34
35 PlayerMovement playerMovement = GameObject .Find(" Player "). GetComponent < PlayerMovement >();
36 ValidationUtils . CheckNotNull (playerMovement , " PlayerMovement script is missing .", this);
37 playerMovement . StopPlayerMovement ();
38 }
39 public void RestartGame ()
40 {
41 Time. timeScale = 1f; // Resume game
42 SceneManager . LoadScene (SceneManager . GetActiveScene ().name); // Reload the scene
43 }
44 public void ExitGame ()
45 {
46 Application .Quit (); // Close Game
47 #if UNITY_EDITOR
48 UnityEditor . EditorApplication . isPlaying = false ; // Stop in the editor
49 # endif
50 }
51 }

4.3. UNITY 81

PanelsManager.cs

1. In Start(), locate the HUDManager, count all shooting panels, and assign the total to the remaining
targets counter.

2. Use the DissapearPanel(Transform panelShot) function to receive the panel that has been hit
and simply hide it from the scene. Then, update the remaining targets and check whether all panels
have been removed.

3. In AreAllPanelsDissapeared(), If all targets have been eliminated, call the HUDManager to handle
the victory sequence.

The implemented code is as follows:
1 using TMPro ;
2 using Unity . VisualScripting ;
3 using UnityEngine ;
4
5 public class PanelsManager : MonoBehaviour
6 {
7 private int totalObjectives ;
8 private int remainingObjectives ;
9 private HUDManager HUDManager ;

10
11 void Start ()
12 {
13 HUDManager = GameObject .Find("HUD"). GetComponent < HUDManager >();
14 ValidationUtils . CheckNotNull (HUDManager , " HUDManager script is missing .", this);
15 totalObjectives = transform . childCount ; // Gets the number of active panels in the scene
16 remainingObjectives = totalObjectives ;
17 }
18 /**
19 * A function that makes the panel disappear from the scene , considering it as one less target .
20 *
21 * @param panelshot , The panel to disappear .
22 */
23 public void DissapearPanel (Transform panelShot)
24 {
25 panelShot . gameObject . SetActive (false);
26 remainingObjectives --;
27 HUDManager . UpdateObjectivesDisplay (remainingObjectives);
28 AreAllPanelsDissapeared ();
29 }
30
31 private void AreAllPanelsDissapeared ()
32 {
33 if (remainingObjectives == 0 && HUDManager != null)
34 HUDManager . Victory ();
35 }
36 }

82 CHAPTER 4. IMPLEMENTATION (MANUAL MODE)

NightEffect.cs

This script simply adds a night-time effect when the game ends. Initially, setDaySky() is used to apply
a sunny daytime environment at the start of the game. Once the game ends, replace the sky with a night
setting and adjust the directional light to create a night-time atmosphere. The implemented code is as
follows:

1 using UnityEngine ;
2
3
4 /* A script that implements a night sky effect when the game is won. */
5 public class NightEffect : MonoBehaviour
6 {
7 public Material daySkybox ; // Material for the sky during the day
8 public Material nightSkybox ; // Material for the starry sky during the night
9

10 private Light directionalLight ; // Directional light (sun)
11 private float nightIntensity = 0.2f; // Intensity of the night light
12 private Color nightLightColour = Color .blue; // Colour of the night light
13
14 void Start ()
15 {
16 directionalLight = GetComponent <Light >();
17 ValidationUtils . CheckNotNull (directionalLight , " Light is missing .", this);
18
19 ValidationUtils . CheckNotNull (daySkybox , " DaySkybox is missing .", this);
20 ValidationUtils . CheckNotNull (nightSkybox , " NightSkybox is missing .", this);
21
22 setDaySky ();
23 }
24
25 public void SetNightSky ()
26 {
27 RenderSettings . skybox = nightSkybox ; // Change the Skybox to a starry one
28 directionalLight . intensity = nightIntensity ; // Reduce the intensity of the sun ’s light
29 directionalLight . color = nightLightColour ; // Change the light ’s colour
30 RenderSettings . ambientLight = nightLightColour ; // Adjust the ambient light
31 }
32
33 public void setDaySky ()
34 {
35 RenderSettings . skybox = daySkybox ;
36 }
37 }

4.3. UNITY 83

GameTimer.cs

This script simply displays the elapsed time on screen after the game starts, formatting it into minutes
and seconds using two digits, similar to a digital clock.

The floor function rounds down to the smallest integer that is not greater than the number. Floor
is used because the time between one minute and the next has not yet fully passed. For example,
Floor(59.9) returns 59 seconds, which is correct as the full minute has not elapsed. If Round(59.9)
were used instead, it would return 60 seconds, potentially causing the timer to display 1 minute and 0
seconds prematurely, since it rounds to the nearest integer.

The implemented code is as follows:
1 using TMPro ;
2 using UnityEngine ;
3
4 public class GameTimer : MonoBehaviour
5 {
6 private float elapsedtimeSeconds = 0f;
7 private TextMeshProUGUI timeDisplay ; // UI where the time is displayed .
8
9 void Start ()

10 {
11 timeDisplay = GetComponent < TextMeshProUGUI >();
12 ValidationUtils . CheckNotNull (timeDisplay , " TextMeshProUGUI component in timeDisplay is

missing .", this);
13 }
14 void Update ()
15 {
16 elapsedtimeSeconds += Time. deltaTime ;
17 // We convert the total time into a digital clock format .
18 int minutes = Mathf . FloorToInt (elapsedtimeSeconds / 60);
19 int seconds = Mathf . FloorToInt (elapsedtimeSeconds % 60);
20 timeDisplay .text = $"Time: { minutes :D2 }:{ seconds :D2}"; // MM:SS Format
21 }
22
23 }

84 CHAPTER 4. IMPLEMENTATION (MANUAL MODE)

CrosshairManager.cs

1. In Start(), initialise the crosshair texture and apply a base version using the GetWhiteTransparent2DTexture()
function. Then, rescale it and position it at the centre of the screen. inally, retrieve the reference to
the player’s camera.

2. In Update(), the same principle used for shooting is applied: create a raycast that detects whether
it hits an object. If the raycast hits a shooting panel, change the crosshair colour to red to highlight
the target; otherwise, keep it white by default.

3. In GetWhiteTransparent2DTexture(Texture2D original), generate a new texture based on the
original by applying two transformations:

• All white pixels (RGB > 0.9) are made fully transparent (alpha = 0).
• All pixels with a colour similar to originalCrosshairColour(Colour similar to red), (using

IsColourClose) are replaced with white.
To understand the reason behind this, simply consider how the original crosshair looked:

Figure 4.14: Original Crosshair used in Unity

4. In IsColourClose(Color colour1, Color colour2, float tolerance), compare two colours
and determine whether their RGB components are similar within a given tolerance. This is mainly
used to identify colours in the texture that are similar to the original crosshair colour and need to
be replaced with white.

4.3. UNITY 85

The implemented code is as follows:

1 using GLTFast ;
2 using NUnit . Framework ;
3 using System ;
4 using Unity . VisualScripting ;
5 using UnityEngine ;
6 using UnityEngine .UI;
7 using static UnityEngine . GraphicsBuffer ;
8
9 /* Script that implements a crosshair configuration , resetting it to white .*/

10 public class CrosshairManager : MonoBehaviour
11 {
12 public Texture2D originalTexture ;
13 public float tolerance = 0.1f;
14 public float range = 100f;
15
16 private Camera cameraPlayer ;
17 private Color originalCrosshairColour = new Color (190f/255f, 57f/255f, 31/255 f);
18 private Color targetCrosshairColour = Color .red;
19 private Color defaultCrosshairColour = Color . white ;
20 private Image crosshairImage ;
21
22 void Start ()
23 {
24 ValidationUtils . CheckNotNull (originalTexture , " Texture2D component is missing .", this);
25 Texture2D changedTexture = GetWhiteTransparent2DTexture (originalTexture);
26
27 crosshairImage = GetComponent <Image >();
28 ValidationUtils . CheckNotNull (crosshairImage , " Image component is missing .", this);
29 crosshairImage . sprite = Sprite . Create (changedTexture , new Rect (0, 0, changedTexture .width ,

changedTexture . height), new Vector2 (0.5f, 0.5f));
30
31 cameraPlayer = GameObject .Find(" Player "). GetComponentInChildren <Camera >();
32 ValidationUtils . CheckNotNull (cameraPlayer , " Camera component is missing .", this);
33 }
34
35 void Update ()
36 {
37 // A raycast hit is created , starting from the player ’s camera position , and its direction

is that of the camera .
38 RaycastHit hit;
39 Vector3 start = cameraPlayer . transform . position ;
40 Vector3 direction = cameraPlayer . transform . forward ;
41 // if the raycast hits an object that has a collision .
42 if (Physics . Raycast (start , direction , out hit , range))
43 {
44 if (hit. transform . CompareTag (" PanelShooting ")) // If what is hit is a panel shooting
45 {
46 crosshairImage . color = targetCrosshairColour ; // change colour to target colour
47 return ; // Prevents it from turning default

colour again further down.
48 }
49 }
50 // Otherwise , the colour is default
51 crosshairImage . color = defaultCrosshairColour ;
52 }
53
54 /**
55 * Checks if two colours are practically the same within a given tolerance .
56 *
57 * @param colour1 The first colour to compare .
58 * @param colour2 The second colour to compare .
59 * @param tolerance The allowed difference between the RGB components of the colours .
60 * @return true if the colours are similar within the tolerance , false otherwise .
61 */
62 private bool IsColourClose (Color colour1 , Color colour2 , float tolerance)
63 {
64 float rDiff = Mathf .Abs(colour1 .r - colour2 .r);
65 float gDiff = Mathf .Abs(colour1 .g - colour2 .g);
66 float bDiff = Mathf .Abs(colour1 .b - colour2 .b);
67
68
69 return rDiff < tolerance && gDiff < tolerance && bDiff < tolerance ;
70 }
71
72 private Texture2D GetWhiteTransparent2DTexture (Texture2D original)
73 {
74 Texture2D editableTexture = new Texture2D (original .width , original .height ,

TextureFormat .RGBA32 , false);
75 editableTexture . SetPixels (originalTexture . GetPixels ());
76 editableTexture . Apply ();
77
78 // Modify white pixels to be transparent
79 for (int y = 0; y < editableTexture . height ; y++)
80 {
81 for (int x = 0; x < editableTexture . width ; x++)

86 CHAPTER 4. IMPLEMENTATION (MANUAL MODE)

82 {
83 Color pixel = editableTexture . GetPixel (x, y);
84 if (pixel .r > 0.9f && pixel .g > 0.9f && pixel .b > 0.9f)
85 {
86 pixel .a = 0;
87 editableTexture . SetPixel (x, y, pixel);
88 continue ;
89 }
90 if (IsColourClose (pixel , originalCrosshairColour , tolerance))
91 {
92 pixel = Color . white ;
93 editableTexture . SetPixel (x, y, pixel);
94 }
95
96 }
97 }
98 editableTexture . Apply ();
99 return editableTexture ;

100 }
101 }

4.4. UNREAL ENGINE 87

4.4 Unreal Engine

4.4.1 Introduction

Unreal Engine is the second engine used to implement the FPS prototype in manual mode. Its role
in this project is to provide a technically advanced alternative to Unity, enabling a comparison of the
implementation of the same set of functionalities in a different environment, with a more powerful graphics
system and a distinct architecture.

The same functional prototype has been implemented: player control, collision system, shooting and
reloading logic, HUD interface, and audiovisual elements. This ensures that the comparison between
engines is based on identical technical and design conditions.

Unreal Engine version 4.27.2 was used due to graphical incompatibilities with newer versions on
the development system. Nevertheless, this version retains all the necessary capabilities to develop and
evaluate the prototype without functional limitations.

The following sections describe the environment configuration in Unreal, followed by the implementation
of the collision system and game logic, replicating the structure previously established in Unity.

4.4.2 Environment

The environment is divided into clearly defined sections, which are as follows:

• Content browser:it works in the same way as Unity’s Window project, with the difference that
the packages are C++ preprocessor directives for engine resources.

• World outliner:it works in the same way as Unity’s Hierarchy window. Scene objects are referred
to as actors. These can range from simple forms—such as an empty character or a stage light,
which include the minimal components of a game object (transform, collision, etc.)—to complex
forms, typically composed of groups of actors that share similar behaviour

• Place actors:this panel allows searching for and placing predefined actors in the scene. Actors
can be added to the world easily by simply dragging them from a list of common elements into the
viewport.

• Viewport: same function as Unity’s Scene view.
• Game bar: this is where the game can be tested. Unreal Engine allows viewing the in-game logs

for debugging purposes, displaying them by default at the top right of the screen of the game.
• Details: this is where the components of actors can be viewed and interacted with directly, without

the need for coding.

It should be noted that this is the default version in which the environment is presented, although it is
possible to choose which tabs to display, as well as their arrangement, through the window menu located
at the top left of the interface.

88 CHAPTER 4. IMPLEMENTATION (MANUAL MODE)

An overview of a Unreal Engine project is depicted in this image:

Figure 4.15: Unreal environment

4.4.3 Collider implementation

In Unreal Engine, collision management is quite automatic and efficient. By default, the engine generates
collisions from the actor’s mesh using a simplified approximation known as a collision mesh or collision
hull. This approximation reduces the complexity of the original model to optimise collision calculations
without sacrificing accuracy in most cases.

For static or less complex objects, Unreal automatically creates simple collision shapes (such as boxes,
capsules, or spheres) that encompass the original geometry. For more complex models, complex collision
can be used, which detects collisions based on the actual mesh, albeit at a higher performance cost.

In the development of the prototype, the automatically generated collisions were sufficient, providing a
good balance between precision and efficiency. However, in more advanced projects, it may be necessary to
create custom colliders or adjust collision parameters to optimise performance and gameplay experience.

4.4. UNREAL ENGINE 89

4.4.4 Code explanation

In Unreal, programming is primarily conducted through Blueprint Visual Scripting, that provides a
comprehensive method to create game logic through a node-based visual interface within the Unreal editor.
Instead of writing traditional code, users connect nodes representing functions, events, and variables to
define behaviours and interactions[28].

From an object-oriented programming perspective, a Blueprint Class is a visual and editable class
that extends a base engine class (such as Actor, Pawn, or Character) and contains both data and
behavioural logic.

To access them, it is necessary to use the actor’s Details panel and select Blueprint/Add Script or
Edit Blueprint if one already exists. This action associates a Blueprint Class with the actor and
opens a window for editing the Blueprint. The layout of that window appears as follows:

Figure 4.16: Unreal Blueprint editor environment

In the Blueprint editor, the Details and World Outliner windows (in this case named Components)
are available. Additionally, there is other important windows such as My Blueprint that displays the
elements that belong to the given class. These elements include:

• Variables: act as the attributes of a class, defining their type and class scope.
• Functions: Just like traditional programming functions.
• Graphs: the Blueprint’s primary execution flow occurs within the Event Graph, which processes

both system-level events—such as those related to the game’s lifecycle—and input events from
devices like the keyboard or mouse. Additionally, the Anim Graph is used to simulate a state
machine, primarily for controlling animation behaviour. the various types of graphs available, these
two are the most relevant for the current context.

The explanations of the various Blueprints will describe the functions of the nodes and their connections.
For the prototype design, four Blueprints and one Animation Blueprint—a specialised type of Blueprint
responsible for handling animations—have been chosen. The weapon’s animation state machine will be
implemented within the Animation Blueprint.

NOTE: to visualise the entire execution flow of the various functions and procedures within the
blueprint, the Sequence node has been used, which divides the execution into separate blocks. To make
an analogy, it is similar to instructing a program to execute code blocks by pointing to their memory
addresses where each block begins.

All these Blueprints will be detailed below:

90 CHAPTER 4. IMPLEMENTATION (MANUAL MODE)

BP Player

The Player Blueprint is responsible for managing both the player’s behaviour and that of the weapon
they possess. In this case, since only a single weapon is used, all related logic has been included within a
single Blueprint. If multiple weapons were to be implemented, a separate Blueprint would be required for
each one.

The behaviour has been managed through several groups of nodes, each responsible for specific
functionality. These are:

• VariableSettings: this section initialises variables by assigning references to other Blueprints,
such as BP Scene and WeaponAnimationController. It also sets the initial display of the weapon’s
bullet count. This is displayed as follows:

Figure 4.17: Variable settings in BP player in unreal

• Movement: The first thing to consider is that the input system works differently from Unity. To
assign keys, gamepad buttons, or mouse inputs, the following steps must be taken:

1. Open the project in Unreal Engine.
2. Navigate to Edit > Project Settings.
3. In the left-hand panel, select Input under the Engine category.
4. Under the Bindings section, two primary types of mappings are available:

– Action Mappings: used for discrete inputs, such as key presses or mouse clicks.
– Axis Mappings: used for continuous inputs, such as directional movement.

5. Click the + button next to either Action Mappings or Axis Mappings.
6. Name the mapping, e.g., MoveForward.
7. Assign one or more keys:

– For example, assign W with a scale of +1.
– Assign S with a scale of -1.

8. For Action Mappings, assigning the corresponding key is sufficient, as it behaves like a boolean
value.

4.4. UNREAL ENGINE 91

It must have this appearance:

Figure 4.18: Input in project settings in unreal

After explaining this, the focus returns to the behaviour. The direction axis is multiplied by the
player’s forward vector according to the key pressed, and this resulting movement is applied to the
player.
The image showing this is as follows:

Figure 4.19: Movement in BP player in unreal

One point to highlight is that Unreal automatically handles gravity, so it is not reflected in the
Blueprint behaviour and does not need to be calculated.

92 CHAPTER 4. IMPLEMENTATION (MANUAL MODE)

• LookAround: the implementation is similar to that of Unity, with the difference that gimbal lock
does not occur directly because Unreal handles this issue automatically.
The image showing this is as follows:

Figure 4.20: LookAround in BP player in unreal

• Walking animation: the walking animation, which in this case affects only the weapon, is
controlled as follows. The first element to consider is the Event Tick node, which executes the
event every frame. This is similar to the Update() function in Unity. This mechanism will be used
in other behaviours later; however, in this instance, each frame verifies whether the player’s speed
is greater than zero, and the resulting logical value is assigned to the transition variable isWalking
in the WeaponAnimationController.
The image showing this is as follows:

Figure 4.21: Walking animation in BP player in unreal

An explanation will be provided regarding the state machine for weapon animations in Unreal.
As in Unity, a robust system is available to represent state machines for animations through the
Animation Blueprint.

4.4. UNREAL ENGINE 93

The appearance of the state machine in Unreal is as follows:

Figure 4.22: Animation Blueprint state machine in Unreal

Transitions are defined as boolean nodes that verify whether a transition can occur, while states
correspond to the execution of weapon animations, similar to Unity.
Finally, some animations need to be played entirely before proceeding, such as draw, reload, and
shooting. For these, notifies are defined, which notify when an animation has reached a specific
frame. When this occurs, a state change can be triggered.
To add notifies, the following steps must be taken:

1. In the project, open the animation in which the notify is to be added. This may be an
Animation Sequence.

2. In the animation window, observe the timeline curve where frames can be played and viewed.
3. Right-click on the notifies bar (below the timeline).
4. Select Add Notify → New Notify.
5. Assign a name to the notify, for example: “EndShooting”.
6. Drag or position the notify at the exact frame where the event should be triggered, approxi-

mately near the end in this case.
7. Open the AnimInstance that manages the animation (Animation Blueprint).
8. Locate the node Anim Notify or a similar event (it may be called anim NotifyEndShooting).
9. Within the event, use the notify’s name to distinguish which notify is executing and trigger

the desired logic (for example, playing a sound).

94 CHAPTER 4. IMPLEMENTATION (MANUAL MODE)

It should look something like this:

Figure 4.23: Notify events in Animation Blueprint in Unreal

• Reload state: the approach is similar to Unity. It is assumed that the R key has been previously
assigned for reloading. If the weapon is not currently reloading and the ammunition is not at
maximum capacity, the reload is triggered by calling the Reload function.
The image showing this is as follows:

Figure 4.24: Reload state in BP player in Unreal

In the Reload function, the reload animation is triggered first, followed by a delay of 2.7 seconds to
allow the animation to complete before continuing the execution flow. Once the delay has finished,
the HUD is updated to reflect the maximum number of bullets.

4.4. UNREAL ENGINE 95

The image showing this is as follows:

Figure 4.25: Reload Function in BP player in Unreal

• Shooting state: to simulate automatic weapon fire, the Gate node is used. While the left mouse
button (previously bound) is held down, the execution flow enters the firing behaviour. Once the
button is released, the flow is interrupted, as this logic is also driven by the Event Tick. If the
weapon is not currently reloading, the Get Time Seconds in World node (which represents the
total time elapsed since the level was loaded) must be greater than Next Time Fire, and there
must be available ammunition. If these conditions are met, the weapon can fire (as defined in
the corresponding Shoot function). After firing, if no ammunition remains, the automatic reload
process described previously is triggered.
The image showing this is as follows:

Figure 4.26: Shooting state in BP player in Unreal

In the Shoot function, the weapon’s animation is changed to the shooting animation, and a sound
simulating the gunshot is played. Subsequently, the CalculateRayCast function is invoked, which
will be defined later. This function returns a boolean, isHit, indicating whether an object in the
scene has been hit, and HitComponent, which refers to the object hit or null if nothing was struck.
If a hit is detected and the object is a shooting panel, the Disappear function from BP Scene is
called. In any case, the ammunition display is updated to reflect the decreased amount.

96 CHAPTER 4. IMPLEMENTATION (MANUAL MODE)

The image showing this is as follows:

Figure 4.27: Shooting function in BP player in Unreal

In the CalculateRayCast function, the camera position is obtained using Get World Location to
determine the start point of the ray. For the end point, the unit direction vector of the camera is
taken, multiplied by the weapon’s range, and added to the initial camera position. Then, the Line
Trace By Channel node is called, which returns a boolean indicating whether something has been
hit, and an object called hit. Using the break node, the hit object is decomposed into its various
attributes, and its static mesh component is obtained, as this will be required for later removal.
The image showing this is as follows:

Figure 4.28: Calculate ray cast in BP player in Unreal

• Update Crosshair: the same principle as with shooting is applied. In this case, if something is
hit and the object is the shooting panel, the crosshair is updated to red (using a crosshair texture
in PNG format). Otherwise, the crosshair remains white by default.
The image showing this is as follows:

4.4. UNREAL ENGINE 97

Figure 4.29: Update crosshair in BP player in Unreal

98 CHAPTER 4. IMPLEMENTATION (MANUAL MODE)

BP Scene

The blueprint for the scenario is responsible for managing the creation and removal of the shooting panels.

The behaviours and functions it contains are as follows:

• Count Panels: this function is called when the scenario is initially loaded (as seen in BP GameModeFPS).
Essentially, all the panels under the parent actor Panels Shooting are retrieved, counted using
remainingObjectives, and assigned the tag “Panel Shooting” for identification purposes. After-
wards, the HUD is updated.
The image showing this is as follows:

Figure 4.30: CountPanels in BP Scene in Unreal

• DissapearPanel: unlike in Unity, when objects are hidden in Unreal, they continue to interact
with the engine’s physics system. As a result, the raycast still detects their colliders. Therefore,
after hiding the object, its collider is disabled. Following this, the behaviour remains the same.
The image showing this is as follows:

Figure 4.31: DissapearPanel in BP Scene in Unreal

• AreAllPanelsDissapeared: as in Unity, the difference lies in which system is responsible for
determining the player’s victory — in this case, it is handled by BP GameModeFPS

4.4. UNREAL ENGINE 99

The image showing this is as follows:

Figure 4.32: AllArePanelsDissapeared in BP Scene in Unreal

100 CHAPTER 4. IMPLEMENTATION (MANUAL MODE)

BP HUDManager

All HUD elements are managed here. Additionally, each of these elements is hidden individually as
needed.

The behaviours and functions it contains are as follows:

• Event Graph: the click events for the restart and exit buttons are assigned here. The image
showing this is as follows:

Figure 4.33: Event graph in BP HUDManager in Unreal

• UpdateAmmoDisplay and UpdateObjectivesDisplay: notably, the Format node is used here
to set the desired values within a text.
The image showing this is as follows:

Figure 4.34: Update HUD example in BP HUDManager in Unreal

• ShowFinalMessage: the victory message is displayed along with its associated elements. This
function is called from BP GameModeFPS.
The image showing this is as follows:

4.4. UNREAL ENGINE 101

Figure 4.35: ShowFinalMessage in BP HUDManager in Unreal

102 CHAPTER 4. IMPLEMENTATION (MANUAL MODE)

BP GameModeFPS

The game restart and exit are controlled here, in addition to establishing the game victory.

The behaviours and functions it contains are as follows:

• VariableSettings: here, the HUD is created, and all the shooting panels are retrieved. Additionally,
all references to the various blueprints are set.
The image showing this is as follows:

Figure 4.36: Variable settings in BP GameModeFPS in Unreal

• VictoryScreen: the game is paused, the cursor is made visible, and the game elements are hidden.
Then, the ShowFinalMessage function from BP HUDManager is called.
The image showing this is as follows:

Figure 4.37: VictoryScreen in BP GameModeFPS in Unreal

• RestartGame: the cursor is simply made visible again, the game is unpaused, and the level is
reloaded.
The image showing this is as follows:

4.4. UNREAL ENGINE 103

Figure 4.38: RestartGame in BP GameModeFPS in Unreal

104 CHAPTER 4. IMPLEMENTATION (MANUAL MODE)

• ExitGame: it is simply a node that closes the application.
The image showing this is as follows:

Figure 4.39: ExitGame in BP GameModeFPS in Unreal

4.5. GODOT 105

4.5 Godot

4.5.1 Introduction

Godot is the third game engine used to implement the FPS prototype in manual mode. Its role in this
project is to provide a different perspective compared to more established engines such as Unity or Unreal,
particularly in terms of lightweight design, open architecture, and ease of adaptation to projects requiring
low resource consumption.

The implementation in Godot replicates the same prototype functionalities: player control via keyboard
and mouse, collision system, HUD, animations, and shooting and reloading mechanics. This enables a
comparison of how each engine addresses the same technical challenges and what advantages or limitations
each one presents, especially in the context of low-performance systems or web-based deployment.

Version 4.4.1 of Godot was used, one of the most recent and stable releases at the time of development.
This version introduces key improvements to the physics system, animations, and performance, which are
particularly relevant when assessing the engine’s viability for the development of a basic FPS like the one
proposed in this study.

The following sections detail the environment configuration, collision system implementation, and the
logic of the prototype developed in Godot, following the same structure used with the other engines.

4.5.2 Environment

The environment is divided into clearly defined sections, which are as follows:

• Scene: the place where different types of scene objects or different scenes can be selected. Unlike
other engines, a scene in Godot does not have to represent a complete level; it can instead represent
a single game element or a grouping of such elements, which can later be added to other scenes.
In this case, the Scene 3D type has been used, which typically contains elements called Node3D,
similar to Unity’s GameObjects with affine 3D transformation. However, for the prototype, Canvas
nodes — which are used for the HUD — have also been combined.

• FileSystem: similar to Unity’s Project window.
• Inspector and Nodes: The properties of scene objects can be accessed and modified directly from

the editor interface or through code. The Nodes panel allows the creation of functions that respond
to signals and events, without requiring manual connections in code.

• Viewport:Scene elements can be interacted with from this area. The top toolbar allows switching
between different editing modes:

– 2D, for working with Canvas or Node2D elements
– 3D, for editing Node3D elements
– Script, to view and edit the code of various scripts
– Game, to preview the project in execution
– Asset Library, to import required assets or libraries

An overview of a Unity project is depicted in this image:

106 CHAPTER 4. IMPLEMENTATION (MANUAL MODE)

Figure 4.40: Godot environment

4.5.3 Collider implementation

In Godot, a hierarchical structure must be created for each scene object assigned a collider. For this
purpose, the following three elements are defined:

• MeshInstance3D: node that represents a visual 3D object using a mesh. It is used to display 3D
models, either imported (e.g., ġlb files) or primitives such as boxes, spheres, and cylinders. This
node does not possess collision or physical behaviour on its own and typically acts as a parent or
sibling of a physics node that contains the collision logic.

• StaticBody3D: node that represents a static physical body. It does not move or react to physical
forces or collisions and serves as a fixed object in the scene, such as the ground or walls.

• CollisionShape3D: node that defines the geometric shape for collision detection. It does not
possess physical behaviour on its own and must be associated as a child of a physical body

With this structure, it is possible to create the required collider. Colliders can be created manually
for simple shapes or automatically for complex shapes. In this case, the latter is necessary for ramps,
barrels, and similar objects. The following steps should be followed:

1. Select the MeshInstance3D.
2. In the Inspector, locate the Mesh property.
3. Ensure that a mesh is assigned (e.g., ġlb, or a PrimitiveMesh).
4. In the 3D editing view, use the top toolbar to select the Mesh option.
5. Window will appear with two options to choose from. The following selections should be made:

• Collision Shape placement: choose “Static Body Child”
• Collision Shape Type: choose “Trimesh”

With this, the collider is now assigned based on the object’s mesh and ready to interact with the
player.

4.5.4 Code explanation

Godot features its own programming language, known as GDScript. It is a High-level, object-oriented
and scripting language, with a syntax similar to that of Python[29].

As in Unity, scripts are typically attached to scene objects in order to access their references without
the need to search through all nodes, unless strictly necessary.

he implemented functionality is as follows:

4.5. GODOT 107

PlayerMovement.gd

Responsible for the character’s movement, specifically its CharacterBody3D. In Godot, all 3D objects
inherit from a single base class called Node3D. It has the ability to possess a transform, as well as to hide
and show itself along with all its children.

Variable initialization is similar to that in Python; it can be implicit or explicit when type enforcement
is required. Similar to JavaScript, const represents the program’s constants, while var denotes variables
that will change throughout the execution.

It must be taken into account that the game objects’ lifecycle is important. Since the order in which
objects are created in the scene is unknown, and as these objects may reference others—resulting in the
possibility that a reference may be null when accessed—the @onready tag is used. This tag ensures that
the object is not referenced until the ready() function is called, which will be explained later.

There are two ways to reference an object in Godot. One is by using the object’s absolute path within
the FileSystem through the get node(object localization: String) function. The other is by using
the $ symbol, which allows the use of a relative path that accesses the child nodes of the current object
directly.

The ready() function corresponds to Unity’s Start() function; it initialises the object associated
with the script. In the case of this object, the only operation performed is to verify that the referenced
objects are not null. To this end, a script named Utils.gd has been created, which is responsible for
performing this verification. The method by which this is done will be explained later.

The physics process() function, inherited from Node, is executed during each lifecycle iteration
of the object. It does not behave like Unity’s Update() (that role is fulfilled by process() in Godot,
which will be discussed later)as it runs at a constant rate independent of the framerate. This makes it
particularly suitable for simulating physics, collisions, or realistic movement, as is required in this case.

The character is simply moved using the same underlying logic as in Unity: input is received, the
movement direction on the horizontal plane is calculated and multiplied by the speed. A similar approach
is applied for gravity. After this, the weapon’s animation states (walking or idle) are updated accordingly.

Subsequently, the function is panel shooting() is called to verify whether the aim is directed at a
shooting panel. If confirmed, the crosshair changes to red by invoking the hudmanager.gd script, which
will be detailed later.

The next function, unhandled input(event), detects events of any kind. In this case, if the event
corresponds to mouse movement, the function look around() is invoked, following the same principle as
that implemented in Unity. It should be clarified that the use of quaternions is not necessary in Godot,
as this engine does not suffer from the gimbal lock issue. Rotation using degrees is sufficient.

108 CHAPTER 4. IMPLEMENTATION (MANUAL MODE)

The implemented code is as follows:
1 extends CharacterBody3D
2

3 var utils = load (" res :// assets / scripts / Utils .gd ")
4

5 const GRAVITY : float = 9.8
6 const LOOK_SENSITIVITY : float = 0.5 # Mouse rotation speed
7 const CAMERA_PITCH_LIMIT : float = 80.0
8

9 var speed_xz : float = 2.0
10 var speed_y : float = 0.0 # Gravity
11

12 var yaw : float = 0.0 # Mouse movement speed on the X-axis
13 var pitch : float = 0.0 # Mouse rotation speed on the Y-axis
14

15 @onready var camera_player = $CameraPlayer
16 # A raycast hit is created , starting from the player ’s camera position , and its

direction is that of the camera .
17 @onready var raycast_player = $CameraPlayer / RayCastPlayer
18 @onready var hud_manager = get_node ("/ root/ MainStage /HUD ")
19 @onready var weapon = $CameraPlayer / Weapon
20

21 func _ready ():
22 # Null checker
23 utils . check_node_validity (camera_player , " cameraPlayer ")
24 utils . check_node_validity (raycast_player , " raycastPlayer ")
25 utils . check_node_validity (hud_manager , "HUD ")
26 utils . check_node_validity (weapon , " Weapon ")
27

28 func _physics_process (delta):
29 move_player (delta)
30 is_panel_shooting ()
31

32 func _unhandled_input (event):
33 if event is InputEventMouseMotion :
34 look_around (event)
35

36 func move_player (delta_time : float):
37

38 var input_x = Input . get_action_strength (" move_left ") - Input . get_action_strength ("
move_right ")

39 var input_z = Input . get_action_strength (" move_forward ") - Input . get_action_strength
(" move_back ")

40

41 var direction = (transform . basis .x * input_x + transform . basis .z * input_z).
normalized ()

42

43 velocity .x = direction .x * speed_xz
44 velocity .z = direction .z * speed_xz
45

46 # Apply gravity to the vertical speed
47 if not is_on_floor ():
48 speed_y -= GRAVITY * delta_time
49 else :
50 speed_y = 0.0
51 velocity .y = speed_y
52

53 move_and_slide ()
54 var magnitude = velocity . length ()
55 if magnitude > 0:
56 weapon . set_walking_animation (true)
57 else :
58 weapon . set_walking_animation (false)
59

60

61

62 func is_panel_shooting ():
63 var is_target_panel_shooting : bool = false
64 if raycast_player . is_colliding ():
65 var target = raycast_player . get_collider ()
66 is_target_panel_shooting = target . is_in_group (" panel_shooting ")
67 hud_manager . update_crosshair (is_target_panel_shooting)
68

4.5. GODOT 109

69 func look_around (event : InputEventMouseMotion):
70 # Rotation on the X-axis (left/ right)
71 yaw -= event . relative .x * LOOK_SENSITIVITY
72 # Rotation on the Y-axis (up/down) clamped to the +/- CAMERA_PITCH_LIMIT
73 pitch -= event . relative .y * LOOK_SENSITIVITY
74 pitch = clamp (pitch , -CAMERA_PITCH_LIMIT , CAMERA_PITCH_LIMIT)
75

76 # Rotate only the body on the Y-axis (yaw)
77 rotation_degrees .y = yaw
78

79 # Rotate only the camera on the X-axis (pitch)
80 camera_player . rotation_degrees .x = pitch

110 CHAPTER 4. IMPLEMENTATION (MANUAL MODE)

WeaponController.gd

Responsible for the weapon’s functions and its animations

The weapon’s import from Sketchfab results in unusual animation names. To minimise alterations to
the import, a dictionary has been created where the key corresponds to the weapon’s state and the value
is the name of the respective animation in the import.

Within the ready() function, null values are checked and the weapon’s initial animation, draw,
is triggered. Upon completion of this animation (handled via a signal that subsequently invokes the
animation weapon finished() function) the HUD is called to update the ammunition display. However,
it was identified during development that the HUD had not yet been initialised or constructed, resulting in
a null value. To resolve this issue, the call deferred() function is used. This function defers execution
until all scene objects have been fully instantiated. Once this condition is met, the target function can be
called by passing its name along with the required parameters.

Unlike physics process(), the process() function is framerate-dependent, as realistic behaviour is
not required for this particular functionality. Its operation remains consistent with the original design.
However, in this case, the weapon’s animation state machine cannot be implemented robustly using the
engine’s built-in tools. As a result, it has been manually and minimally modelled.

The first condition to check is whether the draw animation has completed, as no further actions can
be performed while it is in progress. This is represented by the is drawing variable. Subsequently, it is
verified whether the weapon is in a reloading or firing state. If neither condition is met, the remaining
possibility is that the weapon is either idle or in motion. This ensures that animations are neither
interrupted nor overlapped.

Reloading operates in the same manner; the only difference is that, upon completion of the animation,
a signal is emitted to invoke the animation weapon finished() function, which handles the remaining
functionality. As for firing, the behaviour is standard: a Raycast is created, and if it strikes a panel, the
panel is removed.

4.5. GODOT 111

The implemented code is as follows:
1 extends Node3D
2

3 var utils = load (" res :// assets / scripts / Utils .gd ")
4

5 const BULLETS_MAX : int = 30
6 const MS_TO_SECONDS : float = 1000.0
7

8 var fire_rate : float = 0.35 # Time between shots , It is dependent on the
shooting animation .

9 var current_ammo : int = BULLETS_MAX
10 var is_reloading : bool = false # Prevent firing while reloading or to prevent

reloading from repeating .
11 var is_drawing : bool = true
12 var is_walking : bool = false
13 var next_fire_rate : float = 0.0 # Time in which shooting will be allowed again .
14 var elapsed_time : float = 0.0
15

16 @onready var hud_manager = get_node ("/ root/ MainStage /HUD ")
17 @onready var weapon_events = $AnimationPlayer # Weapon animation event handler .
18 # A raycast hit is created , starting from the player ’s camera position , and its

direction is that of the camera .
19 @onready var raycast_player = get_parent (). get_node (" RayCastPlayer ")
20 @onready var panels_manager = get_node ("/ root/ MainStage / Scene / scene / Panels Shooting ")
21 @onready var shoot_sound = get_node (" ShootSound ")
22

23 var animation_names = {
24 "draw ": " Armature_003 |draw",
25 "idle ": " Armature_003 |idle",
26 " walking ": " Armature_003 |walk",
27 " shooting ": " Armature_003 | shooting ",
28 " reload ": " Armature_003 | reload "
29 }
30

31 func _ready ():
32 # Null Checker
33 utils . check_node_validity (hud_manager , "HUD ")
34 utils . check_node_validity (weapon_events , " AnimationPlayer ")
35 utils . check_node_validity (raycast_player , " raycastPlayer ")
36 utils . check_node_validity (panels_manager , " Panels Shooting ")
37 utils . check_node_validity (shoot_sound , " ShootSound ")
38

39 weapon_events .play(animation_names .draw)
40 # The HUD is waited for to be loaded in the scene to avoid a NullReferenceException .
41 hud_manager . call_deferred (" update_ammo_display ", current_ammo , BULLETS_MAX)
42

43 func _process (_delta):
44 # Prevent any animation from playing during the weapon deployment .
45 if is_drawing :
46 return
47 # Reloading when desired with R button or when the bullets run out.
48 # Reloading is avoided multiple times at the same time.
49 if (Input . is_action_just_pressed (" reload ") or current_ammo == 0) and not

is_reloading and current_ammo != BULLETS_MAX :
50 reload ()
51

52 # The shot is fired by holding down the left mouse button and
53 # it is ensured that it does not reload at the moment
54 # in addition , Shooting is only allowed if the waiting time has passed .
55 if Input . is_action_pressed (" shoot ") and not is_reloading :
56 elapsed_time = Time. get_ticks_msec () / MS_TO_SECONDS
57 if elapsed_time >= next_fire_rate :
58 next_fire_rate = elapsed_time + fire_rate
59 shoot ()
60

61 # If it ’s neither firing nor reloading , then it can only be either idle or walking .
62 update_movement_animation ()
63

64

65 func shoot ():
66 weapon_events .play(animation_names . shooting)
67 # A raycast hit is created , starting from the player ’s camera position , and its

direction is that of the camera .

112 CHAPTER 4. IMPLEMENTATION (MANUAL MODE)

68 if raycast_player . is_colliding ():
69 var target = raycast_player . get_collider ()
70 if target . is_in_group (" panel_shooting "):
71 panels_manager . disappear_panel (target)
72

73 current_ammo -= 1
74 hud_manager . update_ammo_display (current_ammo , BULLETS_MAX)
75

76 shoot_sound .play ()
77

78 func reload ():
79 is_reloading = true
80 weapon_events .play(animation_names . reload)
81

82 func set_walking_animation (active : bool) -> void:
83 is_walking = active
84

85 func update_movement_animation ():
86 # Only proceed if the current animation is not shooting or reloading ,
87 # to avoid interrupting those critical animations and
88 # to ensure there ’s no overlapping
89 if weapon_events . current_animation not in [animation_names .shooting , animation_names

. reload]:
90 if is_walking :
91 weapon_events .play(animation_names . walking)
92 else :
93 weapon_events .play(animation_names .idle)
94

95 # This function is automatically called when an animation finishes playing
96 func animation_weapon_finished (anim_name : StringName) -> void:
97 match anim_name :
98 animation_names .draw:
99 is_drawing = false

100 animation_names . reload :
101 is_reloading = false
102 current_ammo = BULLETS_MAX
103 hud_manager . update_ammo_display (current_ammo , BULLETS_MAX)

4.5. GODOT 113

PanelsManager.gd

There are no differences from the previously established approach. Null values are still checked, and
call deferred() is used to delay the function call. As in Unreal, visually removing objects does not
automatically remove their colliders, so they are explicitly disabled.

The implemented code is as follows:

Responsible for removing the panels and checking whether any targets remain.
1 extends Node3D
2

3 var utils = load (" res :// assets / scripts / Utils .gd ")
4

5 var total_objectives : int = 0
6 var remaining_objectives : int = 0
7 @onready var hud_manager = get_node ("/ root/ MainStage /HUD ")
8

9 func _ready ():
10 # Null checker
11 utils . check_node_validity (hud_manager , "HUD ")
12 # Gets the number of active panels in the scene
13 total_objectives = get_child_count ()
14 remaining_objectives = total_objectives
15 hud_manager . call_deferred (" update_objective_display ", remaining_objectives)
16

17 # A function that makes the panel disappear from the scene , considering it as one less
target .

18 # @param panel_shot , The panel to disappear .
19 func disappear_panel (panel_shot : StaticBody3D):
20 # Null checker
21 utils . check_node_validity (panel_shot , " Panel Shooting ")
22 panel_shot . get_parent ().hide ()
23 panel_shot . get_node (" CollisionShape3D "). disabled = true
24 remaining_objectives -= 1
25 hud_manager . update_objective_display (remaining_objectives)
26 _check_if_all_panels_disappeared ()
27

28 func _check_if_all_panels_disappeared ():
29 if remaining_objectives == 0:
30 hud_manager . victory ()

114 CHAPTER 4. IMPLEMENTATION (MANUAL MODE)

HUDManager.gd

Management includes both the HUD elements and the handling of player victory, game reset, and exit
procedures.

The HUD functionality remains consistent with previous implementations: updating ammunition,
displaying the number of targets, and showing elapsed time.

In the event of a game victory, get tree() is called to retrieve the current scene, allowing it to be
paused and enabling decisions regarding restart or exit. The operation of the exit and restart calls is
managed via events sent from mouse input to the HUD buttons.

The implemented code is as follows:
1 extends CanvasLayer
2

3 var utils = load (" res :// assets / scripts / Utils .gd ")
4

5 var elapsed_time : float = 0.0
6

7 @onready var crosshair = $Crosshair
8 @onready var default_crosshair_texture = preload (" res :// assets / textures / defaultCrosshair

.png ")
9 @onready var target_crosshair_texture = preload (" res :// assets / textures / targetCrosshair .

png ")
10 @onready var ammo_display = $AmmoDisplay # The ammunition indicated in the

player ’s HUD.
11 @onready var objective_display = $ObjetiveDisplay # The number of targets that remain

alive .
12 @onready var game_timer = $GameTimer # the game Time indicated in the

player ’s HUD.
13 @onready var victory_panel = $VictoryPanel # A menu that is enabled when all the

targets are eliminated .
14

15 func _ready ():
16 # Null checker
17 utils . check_node_validity (crosshair , " crosshair ")
18 utils . check_node_validity (ammo_display , " ammoDisplay ")
19 utils . check_node_validity (objective_display , " objetiveDisplay ")
20 utils . check_node_validity (game_timer , " gameTimer ")
21 utils . check_node_validity (victory_panel , " victoryPanel ")
22

23 utils . check_child_exists (victory_panel , " VBoxContainer / VictoryText ")
24 utils . check_child_exists (victory_panel , " VBoxContainer / GameTimerVictory ")
25 utils . check_child_exists (victory_panel , " VBoxContainer / RestartButton ")
26 utils . check_child_exists (victory_panel , " VBoxContainer / ExitButton ")
27

28 # Hide the cursor and lock it to the centre of the screen .
29 Input . set_mouse_mode (Input . MOUSE_MODE_CAPTURED)
30 victory_panel .hide ()
31 ammo_display .show ()
32 objective_display .show ()
33 game_timer .show ()
34

35 func _process (delta):
36 elapsed_time += delta
37 update_game_timer ()
38

39 func update_crosshair (is_panel_shooting : bool):
40 if is_panel_shooting :
41 crosshair . texture = target_crosshair_texture
42 else :
43 crosshair . texture = default_crosshair_texture
44

45 func update_ammo_display (current_ammo : int , max_ammo : int):
46 ammo_display .text = "%d / %d" % [current_ammo , max_ammo]
47

48

49 func update_objective_display (remaining_objectives : int):
50 objective_display .text = " Remaining Objetives : %d" % [remaining_objectives]
51

4.5. GODOT 115

52

53 func update_game_timer ():
54 # Convert the total time into a digital clock format .
55 var minutes : int = int(elapsed_time / 60)
56 var seconds : int = int(elapsed_time) % 60
57 game_timer .text = "Time: %02d:%02d" % [minutes , seconds]
58

59 # A function that manages the player ’s victory when all the targets have been eliminated
.

60 func victory ():
61 # Paused game
62 get_tree (). paused = true
63

64 # The game elements are hidden .
65 crosshair . visible = false
66 ammo_display . visible = false
67 objective_display . visible = false
68 game_timer . visible = false
69

70 # The game time is taken and displayed with a victory message .
71 victory_panel . get_node (" VBoxContainer / VictoryText ").text = " Congratulations !"
72 victory_panel . get_node (" VBoxContainer / GameTimerVictory ").text = game_timer .text
73 victory_panel .show ()
74

75 # The mouse is within the game screen
76 Input . set_mouse_mode (Input . MOUSE_MODE_VISIBLE)
77

78 func exit () -> void:
79 get_tree ().quit () # Close Game
80

81 func restart () -> void:
82 get_tree (). paused = false # Resume game
83 get_tree (). reload_current_scene () # Reload Scene

116 CHAPTER 4. IMPLEMENTATION (MANUAL MODE)

Utils.gd

This script is responsible for performing basic checks to ensure that nodes and their children exist and
are not null at runtime.

• check node validity: verifies that a node is not null. If it is, an error is thrown and execution is
halted in debug mode. This helps detect broken or improperly initialized references.

• check child exists: checks that a specific child node exists within a given parent node. If it does
not, an error is also thrown and execution is paused in debug mode. This ensures the scene structure
is as expected.

The implemented code is as follows:
1 extends Node
2

3 # Validates that a node is not null; if it is , shows an error and pauses execution in
debug mode.

4 static func check_node_validity (node: Object , nodeName : String) -> void:
5 if node == null :
6 push_error ("%s is null !" % nodeName)
7 assert (false)
8

9 # Validates that a child node exists within a parent node and pauses execution in debug
mode if not found .

10 static func check_child_exists (parent : Node , child_path : String) -> void:
11 if not parent . has_node (child_path):
12 push_error (" Child node ’%s’ not found in ’%s’" % [child_path , parent .name])
13 assert (false)

This chapter has detailed the manual implementation of the FPS prototype in Unity, Unreal Engine,
and Godot, analysing the environment setup, collision system, and associated code in each engine. Using
the manual prototype as a foundation, the following chapter will present the implementation in automatic
mode, where the player does not directly control the character but instead navigation and NPC behaviour
systems are employed to simulate gameplay and conduct performance testing.

Chapter 5

Implementation (automatic mode)

This chapter describes the implementation of the automatic control system, in which the player is replaced
by an NPC that navigates the environment autonomously, without user input. This functionality is
essential for simulating realistic behaviours in interactive environments, such as patrolling, obstacle
avoidance, or free movement across a closed map.

The starting point was the manual prototype described in the previous chapter, which enabled direct
control of the character using keyboard and mouse. However, to conduct tests in closed environments
in a more controlled, reproducible, and scalable manner, it became necessary to develop an automated
system. The manual prototype is retained as a reference and as a useful tool for future performance tests
or validation scenarios that may require direct user interaction.

Based on this foundation, three equivalent implementations were developed using Unity, Unreal
Engine, and Godot. In each engine, two core components were addressed: the generation and use of a
navigation mesh (NavMesh), and the logic that enables the NPC to move automatically by following the
NavMesh as a guide.

5.1 Prototipe development

After establishing the prototype using the manual model, the next step is to develop the automated
version for execution during performance testing. To achieve this, a non-player character NPC in first
person will be created, with its movement controlled by AI (further details on the implementation will be
provided later). The proposed requirements are as follows:

1. The scenario will include a set of points referred to as waypoints. These waypoints will be positioned
near the shooting panels and will serve as the targets towards which the NPC must move.

2. Upon reaching the target, regardless of its current facing direction, the NPC will gradually adjust
its aim towards the objective, simulating human-like behaviour

3. Once the NPC is aiming in the direction of the shooting panel, the weapon will behave identically to
the manual mode. After the target has been eliminated, the NPC must move to the next waypoint
and repeat the cycle.

4. The HUD elements are the same as in manual mode.
5. The victory conditions are the same as those in manual mode.

5.2 General Structure in Game Engine

Before diving into the specific implementation details of each engine, it is important to provide an overview
of how the involved technologies interact and the role each plays within the system.

117

118 CHAPTER 5. IMPLEMENTATION (AUTOMATIC MODE)

The project centres on simulating autonomous movement of character NPC within a virtual environ-
ment. To this end, three widely used game engines have been selected: Unity, Unreal Engine, and Godot.
Each of these engines offers its own set of tools, libraries, and APIs to manage navigation and character
control.

The general structure of the system in each engine follows a similar pattern, divided into two main
components:

• Navigation Mesh (NavMesh):
This represents the navigable space within the map. The NavMesh is either generated automatically
or manually configured depending on the engine, and it defines the areas where NPCs can move.
This mesh is fundamental for pathfinding and avoiding static obstacles (elements that do not move
within the environment). Further details on this concept will be covered in the append B.

• NPC Control and Logic:
Building on the foundation provided by the NavMesh, the logic responsible for autonomous NPC
control is developed. This includes route planning to enable characters to move towards specific
points in the scene, as well as managing behaviours such as aiming, shooting at targets, and reacting
to obstacles.

Thus, although each engine employs its own tools and methods, the core concept is shared: first define
where the NPC can move (NavMesh), and then how it behaves and moves within that space (control and
logic). This global perspective will facilitate later comparison and evaluation of each engine in terms of
ease of use, performance, and flexibility.

5.3 Unity

The implementation in Unity utilises its native Navigation Mesh system to define the navigable space,
facilitating pathfinding and obstacle avoidance. NPC logic is developed in C#, enabling seamless
integration with the engine’s tools to control movement and autonomous behaviours. Version 6000.0.40f1
is employed to ensure a stable and reproducible environment for development and testing.

5.3. UNITY 119

5.3.1 Navigation mesh implement

In Unity, the generation of the navigation mesh is carried out using a component called NavMesh Surface.
This component is responsible for constructing the geometry of all elements tagged as “walkable” by
default. Unity calculates the geometry in two ways: either using the meshes or using the colliders of the
game objects assigned to the walkable layer. For this prototype, it has been decided to use the meshes
due to the presence of complex shapes.

Figure 5.1: Navigation Mesh Properties in Unity

Other parameters to consider include the shape of the agent, which is a CharacterController with
additional properties, among which are:

1. Radius and Height: relating to the shape of the agent’s CharacterController
2. Step Height: it is the maximum height that an agent can step up onto, similar to a stair or curb.
3. Max Slope: it is the maximum slope angle of the terrain that the agent can walk on.

120 CHAPTER 5. IMPLEMENTATION (AUTOMATIC MODE)

Figure 5.2: Navigation Agent Properties in Unity

After setting the parameters, Unity calculates it and displays the shape of the navigation mesh in the
viewport using the colour blue:

Figure 5.3: Navigation mesh result in Unity

5.3. UNITY 121

5.3.2 NPC implement

The implementation in Unity, as with the manual mode, will use a script inheriting from MonoBehaviour
that performs this behaviour, which will be called Patrol.cs

1. In Start(), the dependencies are obtained: The GameController is a class that has a public
attribute called automaticMode, which can be enabled or disabled in Unity’s inspector. This allows
switching between game modes. If the game is not in automatic mode, both the agent and the script
itself are disabled. This is because the agent and the player share the same GameObject, which
has a CharacterController component to represent the collider. The GameObject also includes a
NavMeshAgent component, which behaves similarly to a CharacterController but is constrained
to the navigation mesh. Since both components act as colliders, they can overlap, potentially
preventing any movement or causing erratic behaviour.
Therefore, the agent is disabled. Additionally, by disabling the script, Unity halts its execution
cycle—specifically, Update() will no longer be called.
Once the objects have been initialised, if the game is in automatic mode, the agent is instructed to
move to the position of the assigned waypoint.

2. In Update(), for each frame, if the NPC is indeed moving, a desired rotation is calculated using
Quaternion.LookRotation(Vector3 forward) to face the direction of movement. The player’s
camera playerCamera is then smoothly rotated towards this direction using Quaternion.Slerp
(Quaternion a, Quaternion b, float t), which performs spherical interpolation for a smooth
and natural result. The factor Time.deltaTime * cameraRotateSpeed controls the speed of the
rotation, ensuring it remains frame-rate independent. This simulates human behaviour, as if a
mouse were being used to look around. The weapon’s animation is then updated while in the
walking state.
Finally, if the agent is not currently aiming, the NavMeshAgent has finished calculating the path
(i.e., it is not pending), and is already very close to the current destination (waypoint), the coroutine
AimShotAndMove() is invoked. This accounts for cases where the agent might never reach the exact
target position due to the precision limitations of the NavMeshSurface.

3. The function AimShotAndMove() manages the entire NPC behaviour cycle upon reaching a way-
point. It begins by setting the isAiming flag to true, preventing the aiming routine from being
triggered multiple times concurrently. Then, the Aim() coroutine is called and awaited, ensuring
progression halts until the camera is properly aligned with the target. Once aiming is complete,
the weapon’s Shoot() method is invoked. Subsequently, the NPC moves to the next waypoint via
MoveToNextWaypoint(). Finally, the isAiming flag is reset to false, allowing the process to repeat
as necessary during subsequent patrol cycles.

4. The function Aim(), This routine is responsible for smoothly aligning the NPC’s camera with the
current target. It works by calculating the direction vector from the camera to the target and
determining the required rotation using Quaternion.LookRotation(Vector3 forward). The an-
gular difference (angle) between the current rotation and the target rotation is then measured using
Quaternion.Angle(Quaternion a, Quaternion b). Within a do-while loop, the camera’s rota-
tion is interpolated each frame using Quaternion.Slerp(Quaternion a, Quaternion b, float
t), allowing a smooth and natural rotation over time. After each interpolation step, the routine
yields for one frame to allow the update. The process continues until the angle between the current
and target rotation falls below a predefined threshold (ERROR MARGIN ANGLE), at which point the
camera is considered sufficiently aligned. This approach ensures visually pleasing, -rate-independent
movement that simulates human-like behaviour when turning to face a target.

5. Finally, the function MoveToNextWaypoint() assigns the next waypoint to the agent, ensuring
continuous movement along the path. If the agent reaches the final waypoint in the list, the index
is reset to the beginning, effectively creating a circular patrol route.

122 CHAPTER 5. IMPLEMENTATION (AUTOMATIC MODE)

The implemented code is as follows:

1 using System ;
2 using System . Collections ;
3 using System . ComponentModel ;
4 using UnityEngine ;
5 using UnityEngine .AI;
6
7 public class Patrol : MonoBehaviour
8 {
9 private const float ERROR_MARGIN = 0.1f; // Due to physics , idle time in Unity is not

strictly 0
10 private const float MIN_DISTANCE = 0.1f; // The minimum distance for the waypoint to be

considered reached .
11 private const float ERROR_MARGIN_ANGLE = 1.0f; // The maximum allowed angular deviation (in

degrees) when comparing orientations .
12
13 public NavMeshAgent agent ; // The NPC ’s navigation agent used for pathfinding and movement .
14 public Transform [] waypoints ; // The points that define the predefined path the agent follows .
15 public Transform [] targets ;
16
17 public float cameraRotateSpeed = 3f;
18 public float range = 100f;
19
20 private int destinationPoint = 0;
21 private bool isAiming = false ;
22 private WeaponController weapon ;
23 private Animator weaponEvents ;
24 private Camera playerCamera ;
25 private GameController gameController ;
26
27 void Start ()
28 {
29 gameController = GameObject .Find("Game Controller "). GetComponent < GameController >();
30 ValidationUtils . CheckNotNull (gameController , " gameController script is missing .", this);
31 // Skip this update cycle
32 if (! gameController . automaticMode)
33 {
34 // The NavMeshAgent must be disabled during manual mode because having both a Collider
35 // (through CharacterController) and a NavMeshAgent enabled at the same time is not

supported during runtime
36 agent . enabled = false ;
37 this . enabled = false ;
38 }
39
40 weapon = GetComponentInChildren < WeaponController >();
41 weaponEvents = GetComponentInChildren <Animator >();
42 playerCamera = GetComponentInChildren <Camera >();
43
44
45 ValidationUtils . CheckArrayLengths (waypoints , targets , " Waypoints and targets validation

failed .", this);
46
47 for (int i = 0; i < waypoints . Length ; i++)
48 {
49 ValidationUtils . CheckNotNull (waypoints [i], $" Waypoint at index {i} is not assigned .",

this);
50 ValidationUtils . CheckNotNull (targets [i], $" Target at index {i} is not assigned .", this);
51 }
52
53 ValidationUtils . CheckNotNull (weapon , " WeaponController component is missing .", this);
54 ValidationUtils . CheckNotNull (weaponEvents , " Animator component for weapon events is

missing .", this);
55 ValidationUtils . CheckNotNull (agent , " NavMeshAgent component for agent is missing ", this);
56 ValidationUtils . CheckNotNull (playerCamera , " Camera component is missing .", this);
57
58 if (gameController . automaticMode)
59 agent . destination = waypoints [destinationPoint]. position ;
60 }
61
62 void Update ()
63 {
64 Vector3 Agentdirection = agent . velocity ;
65 Agentdirection .y = 0;
66
67 if (Agentdirection . magnitude > ERROR_MARGIN)
68 {
69 Quaternion agentRotation = Quaternion . LookRotation (Agentdirection);
70 // The camera is smoothly rotated towards the agent ’s direction while moving .
71 playerCamera . transform . rotation = Quaternion . Slerp (playerCamera . transform .rotation ,

agentRotation , Time. deltaTime * cameraRotateSpeed);
72 }
73
74 weaponEvents . SetFloat (" movement ", Agentdirection . magnitude);
75
76 // Only proceed if the NavMeshAgent has finished calculating the path
77 // and the agent is very close to its current destination

5.3. UNITY 123

78 if (! isAiming && ! agent . pathPending && agent . remainingDistance < MIN_DISTANCE)
79 StartCoroutine (AimShotAndMove ());
80 }
81
82 private IEnumerator AimShotAndMove ()
83 {
84 isAiming = true ;
85
86 // Wait until aiming is complete
87 yield return StartCoroutine (Aim ());
88 weapon . Shoot ();
89
90 MoveToNextWaypoint ();
91
92 isAiming = false ;
93 }
94
95 private IEnumerator Aim ()
96 {
97 Vector3 targetPos ;
98 Vector3 targetDir ;
99 Quaternion targetRot ;

100 float angle ;
101
102 do
103 {
104 targetPos = targets [destinationPoint]. position ;
105 targetDir = targetPos - playerCamera . transform . position ;
106
107 // Determine the rotation needed to look at the target
108 targetRot = Quaternion . LookRotation (targetDir);
109
110 // Computes the angular difference between the current orientation and the target

orientation
111 angle = Quaternion . Angle (playerCamera . transform .rotation , targetRot);
112
113 // Smoothly rotate the camera towards the target over time
114 playerCamera . transform . rotation = Quaternion . Slerp (playerCamera . transform .rotation ,

targetRot , Time. deltaTime * cameraRotateSpeed);
115
116 // Allowing the aiming animation to update smoothly over
117 yield return null ;
118
119 } while (angle > ERROR_MARGIN_ANGLE);
120 }
121
122 private void MoveToNextWaypoint ()
123 {
124 destinationPoint = (destinationPoint + 1) % waypoints . Length ;
125 agent . destination = waypoints [destinationPoint]. position ;
126 }
127 }

124 CHAPTER 5. IMPLEMENTATION (AUTOMATIC MODE)

5.4 Unreal Engine

In Unreal Engine, the implementation relies on the automatic generation of Navigation Meshes that
allow precise navigation in complex environments. NPC behaviour logic is created exclusively through
Blueprints, providing an intuitive and efficient visual toolset to design autonomous control without
traditional programming. Version 4.27.2 is used to take advantage of navigation improvements and
performance optimisation.

5.4.1 Navigation mesh implement

In Unreal Engine, a Nav Mesh Bounds Volume actor must be created to generate the navigation mesh.
By default, this volume automatically creates another actor named RecastNavMesh, which is responsible
for handling all necessary parameters related to navmesh generation. Unlike Unity, Unreal’s navigation
mesh considers only the colliders (collision geometry) of placed objects during generation. An overview of
the key parameters involved in this setup is as follows:

Figure 5.4: Navigation mesh Properties in Unreal

After the necessary configurations have been applied, Unreal Engine automatically generates the
navigation mesh. However, it is also possible to manually trigger its generation by selecting Build Paths
from the Build menu at the top of the viewport. This results in the creation of the navmesh, which
appears in the editor as a green surface, indicating walkable areas for AI agents:

Figure 5.5: Navigation mesh result in Unreal

5.4. UNREAL ENGINE 125

5.4.2 NPC implement

For the NPC implementation, two new Blueprints have been created to represent independent actors,
along with a modification to the existing BP GameModeFPS blueprint.

BP NPC AIController

This Blueprint is responsible for handling the NPC’s movement along the navigation mesh. As usual, the
internal workings are not of concern, since the Blueprint itself automatically calculates the path to the
defined waypoints.

MoveToNextWaypoint

The Move to Actor node is used to move the actor towards a target, in this case, the next waypoint.
The Acceptance Radius parameter defines a proximity threshold: if the NPC is within this radius of the
target actor’s position, the destination is considered reached. Once the movement is complete, an arrival
event is delegated to the MovementFinished event, where the result is checked to determine whether the
path was successfully completed. If so, the StopMovement method of the BP NPC blueprint is called to
indicate that the NPC can now aim at the target.

The image showing this is as follows:

Figure 5.6: Move to next waypoint in Unreal

BP NPC

The NPC Blueprint is essentially similar to the previously defined BP Player, ith the exception that
it does not include keyboard or mouse input handling. The new additions involve assigning waypoints
and shooting panels to the NPC. On every game tick, a check is performed to determine whether the
character is currently moving and aiming. If neither condition is met, the Aim method is called, which
will be described in detail shortly. If the NPC is neither aiming nor moving, it proceeds to fire using the
previously defined shooting method. After firing, the next waypoint is assigned, ensuring that the array
bounds are respected and the path continues in a circular manner if no immediate target is found.

126 CHAPTER 5. IMPLEMENTATION (AUTOMATIC MODE)

The image showing this is as follows:

Figure 5.7: AimShootAndMove method in BP NPC in Unreal

Unlike other engines, the Aim method in Unreal Engine is computed explicitly using vector mathematics
and the dot product to determine whether the NPC is already aligned with its target. First, the positions
of the camera and the target are retrieved. Then, the forward vector of the camera is obtained (typically
via the GetForwardVector node), and a target direction vector is calculated by subtracting the camera’s
position from the target’s position. This direction vector is then normalised, resulting in the desired
direction for aiming.

Once both vectors are available (the camera’s forward vector and the target direction), a dot product
is computed. Since both vectors are normalised, the result will always be:

• 1 if they are perfectly aligned (the target is directly in the line of sight),
• 0 if they are perpendicular (not aiming at all),
• -1 if they are pointing in opposite directions (target is behind the camera).

If the dot product is close to 1 (e.g., greater than a threshold like 0.999), the system considers the NPC
to be properly aimed. The aiming state is disabled, and the graph flow resumes. Otherwise, the Get
Rotator Camera To Target function is invoked (to be described later), and the camera is smoothly rotated
towards the resulting rotation.

5.4. UNREAL ENGINE 127

The images showing this is as follows:

Figure 5.8: Aim function in Unreal (part 1)

Figure 5.9: Aim function in Unreal (part 2)

With the direction vector pointing to the target (already normalised), its corresponding rotator is
obtained relative to the X rotation axis using Make Rot from X. This rotator represents the desired
camera orientation. The current camera rotation is then smoothly interpolated towards this target rotator
each frame using RInterp To.

128 CHAPTER 5. IMPLEMENTATION (AUTOMATIC MODE)

RInterp To takes the current rotation, the target rotation, the frame’s DeltaTime, and an interpolation
speed (Interp Speed). It returns a new rotation closer to the target, ensuring smooth, frame-rate
independent rotation.

Figure 5.10: Aim function in Unreal (part 3)

BP GameModeFPS

The blueprint has been modified to incorporate a choice between spawning the Player character or the
NPC. This decision is governed by a Boolean variable named automaticMode, analogous to its use in
Unity.

• If automaticMode is true: the NPC character is spawned. Subsequently, the player’s viewpoint is
switched to the NPC’s camera using the Set View Target with Blend node, which ensures the
player cannot directly control the NPC.

• If automaticMode is false: the Player character is spawned instead, and the player controller
possesses this character using the Possess function, enabling direct control.

The spawn point is obtained from a waypoint by retrieving its transform to position the character
correctly.

The image showing this is as follows:

Figure 5.11: GameModeFPS modified for NPC in Unreal

5.5. GODOT 129

5.5 Godot

The implementation in Godot uses its navigation system to generate NavMeshes guiding NPCs within the
3D environment. Logic is programmed in GDScript, enabling straightforward and agile integration. Ver-
sion 4.4.1 is applied, which includes new features enhancing navigation and overall system performance,
making it a viable choice for lightweight and flexible projects.

5.5.1 Navigation mesh implement

In Godot, the Navigation Mesh is generated using the NavigationRegion3D node, which serves as a
container for the NavigationMesh resource. This resource defines the navigable area within a 3D scene
and determines how agents move through the environment. Proper configuration of its parameters is
essential to ensure efficient and precise navigation.

Agent Parameters

These settings determine how the navigation mesh accommodates the agent’s size and movement capabil-
ities:

• Radius: specifies the agent’s collision radius. This ensures the agent maintains a safe distance from
obstacles and walls. If set too low, the agent might attempt to pass through unrealistically narrow
gaps.

• Height: minimum vertical clearance required for the agent to pass beneath objects.
• Max Slope: the steepest incline (in degrees) that the agent is allowed to climb. Slopes exceeding

this value are treated as impassable.
• Max Climb: the maximum height of vertical obstacles (e.g., steps or ledges) that the agent can

climb over automatically.

Geometry Parameters

The Geometry section determines which parts of the scene are considered during NavMesh generation:

• Use Geometry: specifies the data source for generating the NavMesh. This can be visual meshes,
physics colliders, or both.

• Source Geometry Group Name: filters the nodes to be considered based on group membership.
For example, using the group ‘‘walkable’’ ensures only nodes in that group are included.

Cell Parameters

These parameters define how the environment is sampled and discretised for navigation purposes:

• Cell Size: the horizontal resolution of the navigation mesh. Smaller values yield more accuracy
but increase computational load.

• Cell Height: the vertical sampling resolution. Lower values provide finer height details, at the
cost of increased build complexity.

130 CHAPTER 5. IMPLEMENTATION (AUTOMATIC MODE)

Figure 5.12: Navigation mesh Properties in Godot

which resulted in this:

Figure 5.13: Navigation mesh result in Godot

5.5. GODOT 131

5.5.2 NPC implement

The NPC implementation will be carried out in a way similar to how it would be done in Unity, with the
main difference being that, in Godot, the calculation of directions to the next points on the Navigation
Mesh (NavMesh) is not automatic. It is the developer’s responsibility to manage and update these paths
through code. The following script explains how this logic is implemented.

Patrol.gd

1. In ready(), nodes are validated and the initial patrol destination is set. If no waypoints or targets
are present, an error is thrown.

2. In physics process(delta), In each frame:
• If the destination has not yet been reached, the function move towards next position(delta)

is called. This function calculates the direction the NPC should move in, based on its current po-
sition and the next point provided by the navigation mesh. If the NPC is close to the waypoint, it
is considered to have arrived. In any case, the rotate camera towards (direction normalised,
delta) function is called first; this will be explained later. After that, the new velocity is
applied and the agent is moved.

• Otherwise, the aim and shoot(delta) function is called. This function is responsible for
calculating the aiming direction towards the target and performing the shot. Its logic is similar
to that implemented in Unity: from the camera, a gradual rotation is made towards the
target’s direction. If the angle between both directions is smaller than a threshold defined by
ERROR MARGIN ANGLE, the target is considered correctly aimed at. At that point, the shot is
executed and the destination is updated to the next point.

3. The rotate camera towards function is responsible for smoothly rotating the NPC’s camera
towards a target direction, ensuring a fluid transition. To maintain rotational stability during
movement, rotation is constrained to the Y-axis. Based on the normalised vector towards the target,
the desired rotation is calculated as a quaternion. This is then interpolated between the camera’s
current rotation and the desired one using slerp, with the frame’s delta and a configurable speed.
Finally, the new rotation is applied to the camera, and the NPC’s reticle is updated to reflect
whether it is aiming at a valid target.

132 CHAPTER 5. IMPLEMENTATION (AUTOMATIC MODE)

The implemented code is as follows:
1 extends CharacterBody3D
2

3 var utils = load (" res :// assets / scripts / Utils .gd ")
4

5 const MIN_DISTANCE_WAYPOINT : float = 0.1
6 const ERROR_MARGIN_ANGLE : float = 0.03 # The maximum allowed angular deviation (in

degrees) when comparing orientations .
7

8 var speed : float = 8.0
9 var cameraRotateSpeed : float = 5.0

10

11 var _waypoints : Array [Node3D] = [] # The points that define the predefined path the
agent follows .

12 var _targets : Array [Node3D] = []
13 var _destination_index : int = 0
14 var _is_aiming : bool = false
15

16 @onready var agent : NavigationAgent3D = $NavigationAgent3D
17 @onready var camera : Camera3D = $Camera
18 @onready var weapon : Node3D = $Camera / Weapon
19 @onready var raycast_npc : RayCast3D = $Camera / RayCastNPC
20 @onready var hud_manager : CanvasLayer = get_node ("/ root/ MainStage /HUD ")
21

22 func _ready ():
23 if _waypoints . is_empty () or _targets . is_empty ():
24 push_error (" Waypoints or targets are empty . Patrol wont start .")
25 return
26

27 utils . check_node_validity (agent , " agent ")
28 utils . check_node_validity (camera , " camera ")
29 utils . check_node_validity (weapon , " weapon ")
30 utils . check_node_validity (raycast_npc , " raycast_npc ")
31 utils . check_node_validity (hud_manager , " hud_manager ")
32

33 for waypoint in _waypoints :
34 utils . check_node_validity (waypoint , waypoint .name)
35 for target in _targets :
36 utils . check_node_validity (target , target .name)
37

38 agent . target_position = _waypoints [_destination_index]. global_position
39

40 func _physics_process (delta):
41 if _is_aiming :
42 return
43

44 if ! agent . is_navigation_finished ():
45 weapon . set_walking_animation (true)
46 _move_towards_next_position (delta)
47 else :
48 weapon . set_walking_animation (false)
49 _aim_and_shoot (delta)
50

51

52 func _move_towards_next_position (delta):
53 var next_pos = agent . get_next_path_position ()
54 var agent_pos = global_position
55

56 if agent_pos . distance_to (next_pos) < MIN_DISTANCE_WAYPOINT :
57 return
58 var direction = next_pos - agent_pos
59 var direction_normalized = direction . normalized ()
60

61 _rotate_camera_towards (direction_normalized , delta)
62

63 velocity = direction_normalized * speed
64 move_and_slide ()
65

66 func _rotate_camera_towards (direction_normalized : Vector3 , delta : float , is_moving :=
true):

67 # Movement only involves rotation around the Y axis , as it provides greater
stability

68 if is_moving :

5.5. GODOT 133

69 direction_normalized .y = 0
70

71 # Determine the rotation needed to look at the target
72 var target_rotation_in_quaternion = Quaternion (Basis . looking_at (direction_normalized

, Vector3 .UP))
73 var current_camera_rotation_in_quaternion = camera . global_transform . basis .

get_rotation_quaternion ()
74

75 # Smoothly rotate the camera towards the target over time
76 var new_camera_rotation = current_camera_rotation_in_quaternion . slerp (

target_rotation_in_quaternion , delta * cameraRotateSpeed)
77 camera . global_transform . basis = Basis (new_camera_rotation)
78

79 _update_npc_crosshair ()
80

81 func _aim_and_shoot (delta):
82 _is_aiming = true
83

84 var target = _targets [_destination_index]
85 var target_pos = target . global_position
86 var camera_pos = camera . global_position
87

88 var angle = 1.0
89

90 while angle > ERROR_MARGIN_ANGLE :
91 var direction_normalized = (target_pos - camera_pos). normalized ()
92

93 # Full and precise rotation during aiming
94 _rotate_camera_towards (direction_normalized , delta , false)
95

96 var forward = -camera . global_transform . basis .z. normalized ()
97 # Computes the angular difference between the current orientation and the target

orientation
98 # Returns the unsigned minimum angle to the given vector , in radians .
99 angle = forward . angle_to (direction_normalized)

100

101 # Allowing the aiming animation to update smoothly over
102 await get_tree (). process_frame
103

104 weapon . shoot ()
105 _go_to_next_waypoint ()
106 _is_aiming = false
107

108 func _go_to_next_waypoint ():
109 _destination_index = (_destination_index + 1) % _waypoints .size ()
110 agent . target_position = _waypoints [_destination_index]. global_position
111

112

113 func set_waypoints (waypoints : Node3D):
114 _waypoints . clear ()
115 for child in waypoints . get_children ():
116 if child is Node3D :
117 _waypoints . append (child)
118

119 func set_targets (targets : Node3D):
120 _targets . clear ()
121 for child in targets . get_children ():
122 if child is Node3D :
123 _targets . append (child)
124

125 func _update_npc_crosshair ():
126 var is_target_panel_shooting : bool = false
127 if raycast_npc . is_colliding ():
128 var target = raycast_npc . get_collider ()
129 is_target_panel_shooting = target . is_in_group (" panel_shooting ")
130 hud_manager . update_crosshair (is_target_panel_shooting)

134 CHAPTER 5. IMPLEMENTATION (AUTOMATIC MODE)

Main.gd

This script is responsible for managing the scene’s initialisation and the instantiation of the character,
whether it be the player or an NPC. A boolean variable named automatic mode is defined: if set to
true, the NPC is instantiated and assigned patrol waypoints and shooting targets. If false, the player
is instantiated instead, and the scene’s scale is adjusted accordingly. Afterwards, the validity of the
character’s weapon is verified, the instantiated character is added as a child of the main node, and it
is placed at the defined spawn point in the scene. The structure and control logic are analogous to the
system previously demonstrated in Unreal.

1 extends Node3D
2

3 var utils = load (" res :// assets / scripts / Utils .gd ")
4

5 @export var automatic_mode := true
6 @export var npc: PackedScene
7 @export var player : PackedScene
8

9 @onready var spawn_point : Node3D = $NavigationRegion3D / Scene / scene / SpawnPoint
10 @onready var patrol : Node3D = $NavigationRegion3D / Scene / scene / Patrol
11 @onready var targets : Node3D = $NavigationRegion3D / Scene / scene /" Panels Shooting "
12 @onready var scene : Node3D = $NavigationRegion3D / Scene
13

14 var character_instance : Node = null
15

16 func _ready ():
17 utils . check_node_validity (spawn_point , " spawn_point ")
18 utils . check_node_validity (patrol , " patrol ")
19 utils . check_node_validity (targets , " targets ")
20 utils . check_node_validity (scene , " scene ")
21

22 if automatic_mode :
23 character_instance = npc. instantiate ()
24 character_instance . set_waypoints (patrol)
25 character_instance . set_targets (targets)
26 else :
27 character_instance = player . instantiate ()
28 character_instance . scale_scene = scene . scale . length ()
29

30 var weapon = character_instance . get_node (" Camera / Weapon ")
31 utils . check_node_validity (weapon , " weapon ")
32

33 add_child (character_instance)
34 character_instance . global_transform . origin = spawn_point . global_transform . origin

This chapter has presented the implementation of the autonomous navigation system using Unity,
Unreal Engine, and Godot. Equivalent prototypes were developed in each engine to allow for a fair
comparison under consistent conditions. The focus was placed on the generation and configuration of
navigation meshes, alongside the control logic required to manage the autonomous behaviour of NPCs.

These implementations provide not only a functional basis for navigating virtual environments without
player input, but also a structured platform for assessing each engine’s capabilities in terms of usability,
adaptability, and development overhead. The manual control system developed in the previous chapter
has been retained to allow for targeted performance testing; however, the automated system proves more
suitable for systematic evaluation within controlled scenarios.

The next chapter will address the deployment of these prototypes across the three engines. It will
outline the project build procedures specific to each platform and define the testing methodology employed
to evaluate performance. This transition marks the beginning of the final technical analysis phase, in
which metrics such as frame rate and computational efficiency will be measured to assess each engine’s
suitability for the complete system.

Chapter 6

Project deployment

Following the implementation of the autonomous navigation system in Unity, Unreal Engine, and Godot,
it became necessary to prepare each project for performance testing. This chapter presents the process of
building and deploying the prototypes across the three engines, with a focus on replicating consistent
deployment conditions to ensure fair comparative analysis.

Although each engine provides its own set of tools and procedures for building executable versions of
a project, the aim has been to maintain equivalence across platforms by using default configurations and
minimal optimisation, unless required for functionality. This approach guarantees that the performance
metrics obtained later will reflect the baseline capabilities of each engine rather than artefacts of manual
tuning.

The deployment process is detailed individually for each engine, highlighting any relevant challenges,
workarounds, or limitations encountered when preparing the builds for subsequent analysis.

135

136 CHAPTER 6. PROJECT DEPLOYMENT

6.1 Introduction

A build is the process of packaging the entire project (scenes, scripts, assets, configurations), along with
the compiled code, into an executable or exportable application for a specific platform. n this case, for
WebGL — that is, to run in a web browser using JavaScript — WebAssembly needs to be used.

WebAssembly is a compact binary code format that allows applications to run almost as fast as native.
Thanks to WebAssembly, languages such as C++ (the language used by most game engines) have a way
to compile their code to run in any web browser.[30]

Figure 6.1: WebAssembly data flow

6.2. UNITY 137

6.2 Unity
1. Open your project in Unity.
2. Go to File -> Build Profiles.
3. In the platform list, select WebGL.
4. Click Switch Platform to change if it’s not already selected.
5. Click Player Settings (under Player Settings Overrides).
6. In the Player Settings window, locate the Publishing Settings section.
7. Configure the Compression Format option and select:

• Disabled for local testing (recommended if you only want to serve locally without hassle).
8. Close Player Settings.
9. In the Build Settings window, click Build.

10. Select the BuildWebGL/Unity folder as the build destination.
11. Wait for the build to finish and verify that the files are in the folder.

(The first build may take between 40 and 60 minutes.)

Figure 6.2: Building properties in Unity

138 CHAPTER 6. PROJECT DEPLOYMENT

6.3 Unreal Engine

By default, Unreal Engine 4.27 does not include support for WebGL. A fork of Unreal 4.27 that retains
this support has been used instead, with credit given to SpeculativeCoder1.

After downloading and compiling the engine, follow these instructions:

1. Open your project in Unreal.
2. If a message appears stating that the versions do not match your project, simply ignore it and

proceed.
3. Go to File -> Package Project -> HTML5.
4. Select HTML5.
5. Select the BuildWebGL/Unreal folder as the build destination.
6. Wait for the build to finish and verify that the files are in the folder.

(The first time may take between 60 and 80 minutes.)

If any changes are to be made during the project build, these should be done via:
Edit -> Project Settings -> Platforms -> HTML5

1https://github.com/SpeculativeCoder/UnrealEngine-HTML5-ES3

https://github.com/SpeculativeCoder/UnrealEngine-HTML5-ES3

6.4. GODOT 139

6.4 Godot
1. Open your project in Godot.
2. Go to Project -> Export.
3. Click the Add button in the top-left corner and select Web.
4. You may be prompted to install the export template; if so, go to Project -> Install Export

Templates.
• Click on Online mode and select the GitHub option.
• Wait approximately 3–5 minutes. Once the process is complete, the window can be closed.

5. Select Export Project.
6. Select the BuildWebGL/Godot folder as the build destination.
7. Wait for the build to finish and verify that the files are in the folder.

(The first time may take between 2 and 3 minutes.)

Figure 6.3: Building properties in Godot

This chapter has outlined the deployment procedures followed for Unity, Unreal Engine, and Godot,
explaining how executable builds were generated for each engine under equivalent conditions. These
deployments ensure that the performance of each engine can be fairly assessed, using exactly the same
content and logic, without influence from platform-specific optimisations.

With functional versions now prepared, it is possible to proceed to the next chapter, which will focus
on performance analysis. The testing methodology and tools employed to measure key metrics such as
FPS and computational load will be presented.

140 CHAPTER 6. PROJECT DEPLOYMENT

Chapter 7

Performance testing

This chapter details the methodology employed to evaluate the performance of the prototypes developed
in Unity, Unreal Engine, and Godot. It describes the tools and techniques used to record key metrics
such as FPS and computational load during project execution.

Furthermore, the results obtained on two reference platforms — a personal computer PC and a
Raspberry Pi — are presented. These data enable a comparative analysis of each engine’s performance
across different hardware environments, which is essential for determining the feasibility and efficiency of
each solution in real-world scenarios.

Understanding these performance characteristics is essential for selecting the most suitable engine for
the final system, ensuring that it can deliver smooth and reliable operation in both development and
deployment environments.

141

142 CHAPTER 7. PERFORMANCE TESTING

7.1 Methodology

For automated testing, a JavaScript script will be created to simulate an incognito window environment
and execute the full NPC test N times. Afterwards, both the trace for Chrome’s profiler and a set of logs
capturing the game’s frame rate will be saved. For this purpose, the Puppeteer library will be used, as it
allows for this type of automation[31].

7.1.1 FPS trace

Since it is difficult to observe the overall frame rate of the application using profilers, it has been decided
to record FPS log traces for each of the engines. The case of Unity is shown below; however, in practice,
the process works identically for the other two engines.

1 using System . Collections . Generic ;
2 using System . Globalization ;
3 using UnityEngine ;
4
5 [System . Serializable]
6 public struct FrameInfo
7 {
8 public int frame ;
9 public string timeStampInSec ;

10 public string frameTimeInMs ;
11 }
12
13 [System . Serializable]
14 public struct FrameStats
15 {
16 public string meanFrameTimeInMs ;
17 public string averageFPS ;
18 public string stdDevInMs ;
19 public int totalFrames ;
20 public int badFramesCount ;
21 }
22
23 public class FPSStats : MonoBehaviour
24 {
25 private List <float > frameTimes = new List <float >();
26 private int totalFrames = 0;
27
28 public float stdDevThreshold = 2.0f; // Threshold multiplier for identifying outliers (bad

frames)
29 public int logFrequencyInFrames = 10; // Frequency (in frames) to output log entries
30
31 void Start ()
32 {
33 if (logFrequencyInFrames <= 0) logFrequencyInFrames = 1;
34 if (stdDevThreshold < 0) stdDevThreshold = 0;
35 }
36
37 void Update ()
38 {
39 float frameTimeInSec = Time. unscaledDeltaTime ;
40 frameTimes .Add(frameTimeInSec);
41 totalFrames ++;
42 }
43
44 void OnApplicationQuit ()
45 {
46 if (totalFrames == 0) return ;
47
48 float mean = CalculateMean (frameTimes);
49 float stdDev = CalculateStdDev (frameTimes , mean);
50
51 // Define bounds for filtering outliers based on standard deviation threshold
52 float lowerBound = mean - stdDevThreshold * stdDev ;
53 float upperBound = mean + stdDevThreshold * stdDev ;
54
55 float timeAccumulator = 0f;
56 List <float > goodFrames = new List <float >();
57 int badFramesTotal = 0;
58
59 // Iterate over all recorded frames and classify them as good or bad
60 for (int i = 0; i < totalFrames ; i++)
61 {
62 bool isBadFrame = frameTimes [i] < lowerBound || frameTimes [i] > upperBound ;
63 if (isBadFrame)
64 badFramesTotal ++;

7.1. METHODOLOGY 143

65 else
66 goodFrames .Add(frameTimes [i]);
67
68 timeAccumulator += frameTimes [i];
69
70 if (i % logFrequencyInFrames == 0)
71 LogFrame (i, timeAccumulator , frameTimes [i], isBadFrame);
72 }
73
74 if (goodFrames . Count == 0)
75 {
76 Debug . LogWarning ("[FPSStats] No good frames detected to calculate statistics .");
77 return ;
78 }
79
80 float goodMean = CalculateMean (goodFrames);
81 float goodStdDev = CalculateStdDev (goodFrames , goodMean);
82 float avgFPS = 1f / goodMean ;
83
84 FrameStats summary = new FrameStats
85 {
86 meanFrameTimeInMs = (goodMean * 1000f). ToString ("F2", CultureInfo . InvariantCulture),
87 averageFPS = avgFPS . ToString ("F2", CultureInfo . InvariantCulture),
88 stdDevInMs = (goodStdDev * 1000f). ToString ("F2", CultureInfo . InvariantCulture),
89 totalFrames = totalFrames ,
90 badFramesCount = badFramesTotal
91 };
92
93 string summaryJson = JsonUtility . ToJson (summary , true);
94 Debug .Log("[STATS] " + summaryJson);
95 }
96
97 // Logs information about a single frame , tagged as good or bad
98 private void LogFrame (int frameIndex , float timeAccumulator , float frameTime , bool isBad)
99 {

100 FrameInfo frameInfo = new FrameInfo
101 {
102 frame = frameIndex ,
103 timeStampInSec = timeAccumulator . ToString ("F2", CultureInfo . InvariantCulture),
104 frameTimeInMs = (frameTime * 1000f). ToString ("F2", CultureInfo . InvariantCulture)
105 };
106
107 string json = JsonUtility . ToJson (frameInfo);
108 Debug .Log(isBad ? $"[BAD_FRAME] {json}" : $"[FRAME_DATA] {json}");
109 }
110
111 private float CalculateMean (List <float > data)
112 {
113 float sum = 0f;
114 foreach (float d in data)
115 sum += d;
116 return sum / data. Count ;
117 }
118
119 private float CalculateStdDev (List <float > data , float mean)
120 {
121 if (data. Count <= 1)
122 return 0f;
123 float sum = 0f;
124 foreach (float d in data)
125 sum += (d - mean) * (d - mean);
126 return Mathf .Sqrt(sum / (data. Count - 1));
127 }
128 }

144 CHAPTER 7. PERFORMANCE TESTING

Since profilers often make it difficult to observe the application’s overall frame rate, an alternative
logging system has been implemented to track frame times directly. Each individual frame time is
collected during execution. From this data, the mean and standard deviation are calculated. Initial
loading phases may produce abnormally high frame times, which can skew the results. These are treated
as outliers and excluded from the final statistics. A frame is classified as an outlier if its duration exceeds
the mean by more than two standard deviations.

Every N frames (default: 10), frame information is printed to the log to avoid overwhelming the
output. The following structure is used:

public struct FrameInfo
{

public int frame;
public string timeStampInSec;
public string frameTimeInMs;

}

Each entry is prefixed with a tag:

• [FRAME DATA]: if the frame is considered valid
• [BAD FRAME]: if the frame is considered an outlier

At the end of the execution, a summary log is printed with the tag [STATS], using the following
structure:

public struct FrameStats
{

public string meanFrameTimeInMs;
public string averageFPS;
public string stdDevInMs;
public int totalFrames;
public int badFramesCount;

}

7.1. METHODOLOGY 145

7.1.2 Performace test script

The complete logic is encapsulated in the following script:
const puppeteer = require (’puppeteer ’);
const fs = require (’fs ’);
const path = require (’path ’);

// Simple argument parser
const args = process .argv. slice (2);
const url = getArgValue (’--url ’) || ’http:// localhost :8000 ’;
const repetitions = parseInt (getArgValue (’-- repetitions ’)) || 1;
const TIMEOUT_MS = (parseInt (getArgValue (’--timeout ’)) || 45) * 1000;
const noTimeout = args. includes (’--no -timeout ’);
const engine = getArgValue (’--engine ’) || ’unity ’;

function getArgValue (option) {
const index = args. findIndex (arg => arg === option);
return index !== -1 ? args[index + 1] : null;

}

const TRACE_CATEGORIES = [
’-*’, // Exclude all categories by default , so only specified ones are collected
’devtools .timeline ’, // General Chrome DevTools timeline events (loading , scripting ,

rendering)
’v8.execute ’, // JS execution events from the V8 engine
’disabled -by -default -v8. cpu_profiler ’, // CPU profiling info for JS
’disabled -by -default -v8. runtime_stats ’, // Runtime stats for V8
’blink .console ’, // Console API calls like console .log
’disabled -by -default - devtools .timeline ’, // More detailed timeline events
’disabled -by -default - devtools . timeline .frame ’, // Frame - level timeline events
’toplevel ’, // Top - level event markers
’benchmark ’, // Benchmarking events
’blink . user_timing ’, // User - defined performance marks and measures
’disabled -by -default -memory -infra ’ // Memory infra events for memory profiling

]. join (’,’);

// Function that waits until "done" appears in the console or the timeout expires
function waitForDoneSignal (page , logs) {

return new Promise ((resolve , reject) => {
const logRegex = /\b!? done !?\b/i; // i = case - insensitive
// Listen to console messages for "done"
const onConsole = msg => {

const message = ‘[${msg.type () }] ${msg.text ()}‘;
logs.push(message);

if (logRegex .test(msg.text ())) {
if (timeoutId) clearTimeout (timeoutId);
page.off(’console ’, onConsole);
console .log(’ Detected "done" signal from console output ’);
resolve ();

}
};

page.on(’console ’, onConsole);

// Set timeout for the maximum wait time (unless --no - timeout was used)
let timeoutId ;
if (! noTimeout) {

timeoutId = setTimeout (() => {
page.off(’console ’, onConsole);
reject (new Error (‘ Timeout : the game did not complete within ${ TIMEOUT_MS

/ 1000} seconds .‘));
}, TIMEOUT_MS);

}
});

}

async function runTest (i, browser) {
console .log(‘ Execution ${i} started ‘);

// Create a new incognito browser context for clean state
const context = await browser . createBrowserContext ();

146 CHAPTER 7. PERFORMANCE TESTING

const page = await context . newPage ();

// Enable Chrome DevTools Protocol (CDP) session for performance tracing
const client = await page. createCDPSession ();

// Array to collect trace data chunks
const traceChunks = [];
client .on(’ Tracing . dataCollected ’, event => {

traceChunks .push (... event . value);
});

const tracingComplete = new Promise (resolve => {
client .once(’ Tracing . tracingComplete ’, resolve);

});

// Start tracing with specified categories and options
await client .send(’ Tracing .start ’, {

categories : TRACE_CATEGORIES ,
options : ’sampling - frequency =10000 ’ , // 10 kHz sampling frequency for high -res

CPU profiling
bufferUsageReportingInterval : 1000 // Report tracing buffer usage every 1 second

});
console .log(’ Tracing started ’);

await page.goto(url);

// Set viewport to match the screen size of the page
const screen = await page. evaluate (() => ({ width : window . screen .width , height :

window . screen . height }));
await page. setViewport ({ width : screen .width , height : screen . height });

// Wait for the fullscreen button to appear and have an onclick handler
switch (engine . toLowerCase ()) {

case ’unity ’:
await page. waitForSelector (’#unity - fullscreen -button ’, { visible : true ,

timeout : 10000 });
await page. waitForFunction (() => !! document . querySelector (’#unity - fullscreen

-button ’). onclick);
await page. click (’#unity - fullscreen -button ’);
console .log(’ Clicked Unity fullscreen button ’);
break ;

case ’unreal ’:
await page. waitForSelector (’# fullscreen_request ’, { visible : true , timeout :

10000 });
await page. waitForFunction (() => {

const btn = document . querySelector (’# fullscreen_request ’);
return btn && btn. offsetParent !== null;

});
await page. click (’# fullscreen_request ’);
console .log(’ Clicked Unreal fullscreen button ’);
break ;

case ’godot ’:
await page. waitForSelector (’# canvas ’, { visible : true , timeout : 10000 });
await page. click (’# canvas ’);
console .log(’ Clicked Godot fullscreen button ’);
break ;

default :
console .log(‘ Engine "${ engine }" no soportado .‘);
break ;

}

// Array to store all console log messages
const logs = [];

await waitForDoneSignal (page , logs);

await client .send(’ Tracing .end ’);
await tracingComplete ;
console .log(’ Tracing stopped ’);

7.1. METHODOLOGY 147

// Save console logs and performance trace data to files
const dir = path. resolve (‘./ output /${ engine . toLowerCase () }/ run_$ {i}‘);
fs. mkdirSync (dir , { recursive : true });

fs. writeFileSync (‘${dir }/ console_logs .txt ‘, logs.join (’\n ’));
fs. writeFileSync (‘${dir }/ performance_trace_$ {i}. json ‘, JSON. stringify ({ traceEvents :

traceChunks }, null , 2));

await context . close ();
console .log(‘ Execution ${i} complete . Output saved to ${dir }\n ‘);

}

// Main
(async () => {

const browser = await puppeteer . launch ({
headless : false ,
args: [’--autoplay - policy =no -user -gesture -required ’]

});

for (let i = 1; i <= repetitions ; i++) {
try {

await runTest (i, browser);
} catch (e) {

console . error (‘ Execution ${i} failed :‘, e. message);
}

}

await browser . close ();
console .log(’All test runs completed .’);

}) ();

Explication

1. The event categories that Chrome DevTools will collect are defined, focusing on performance,
JavaScript execution, memory, and timeline events.

2. The function waitForDoneSignal(page, logs) listens to the page’s console messages to detect
the keyword “done” (case-insensitive, with possible exclamation marks). If detected, the promise
resolves and the script proceeds. If the timeout expires (and is enabled) without detection, the
promise is rejected with an error. All console messages are also collected into a logs array.

3. The function runTest(i, browser) receives an index i and an open browser instance to execute a
complete test. It opens a new incognito context to ensure a clean state, initiates a CDP session to
trace performance, and navigates to the target İt adjusts the viewport size to the detected screen
dimensions. Depending on the engine, it detects whether a fullscreen button generated by the
engine’s build is present and activates it to enter fullscreen mode. Then, it calls waitForDoneSignal
and saves the results.

4. All of this is performed within an asynchronous main loop that launches the browser in visible
mode and closes browser instances once all runs are complete.

148 CHAPTER 7. PERFORMANCE TESTING

Execution

The script can be executed with the following command:

node performance-profile.js
--url <URL>
--repetitions <N>
[--timeout <seconds> | --no-timeout]
--engine <engine>

where:

• --url: URL of the page to be tested. Default: http://localhost:8000
• --repetitions: number of times to run the test. Default: 1
• --timeout: maximum duration in seconds allowed for each test run to complete. Default: 45
• --no-timeout (optional): disables the timeout limit. Each test run will be allowed to complete

regardless of duration.
• --engine: engine used to run the game. Required for handling full-screen mode during testing.

Default: unity

Output

After each run, a folder will be created at ./output/<engine>/run X / containing:

• console logs.txt → Browser console output during execution
• performance trace X.json → Performance trace in JSON format (compatible with Chrome

DevTools Performance)

7.2 Results

As previously established, two systems will be analysed: a low-end one based on a Raspberry Pi 4, and a
modest PC — in this case, the workstation in use. Five test runs have been performed with each engine,
and various technical aspects will now be examined.

7.2.1 PC results

The specifications of the PC are as follows:

1. CPU: Intel i3 550 3.33 GHz
2. RAM: 8 GB
3. GPU: NVIDIA GTX 960

Following this, we will analyse each of the key aspects in detail.

FPS

The following table shows the average frame times for each engine across five runs, as well as the average
frame rate and the number of bad frames recorded, along with their percentage relative to the total
number of frames, calculated from the previously mentioned logs:

In the graphs, the situation is observed as follows:

https://developer.chrome.com/docs/devtools/performance
https://developer.chrome.com/docs/devtools/performance

7.2. RESULTS 149

Engine Mean Frame Time (ms) Std Dev (ms) Avg FPS FPS Std Total Frames Bad Frames Bad Frames %
Godot 16.776 0.0493 59.598 0.1782 2339.4 10.8 0.462%
Unity 18.886 0.0434 52.944 0.1203 1994.0 2.0 0.100%
Unreal 16.652 0.0110 60.052 0.0349 2361.0 11.2 0.474%

Table 7.1: FPS stats in PC

Figure 7.1: FPS graphics in PC

150 CHAPTER 7. PERFORMANCE TESTING

When comparing the FPS, clear differences are observed both in smoothness and stability. Unreal
positions itself as the most powerful, achieving the highest average FPS and the lowest frame time, with
practically no variation between runs. Godot follows closely, with similar figures, although it shows slightly
greater instability which could result in occasional minor stutters. Unity, on the other hand, exhibits
the lowest performance in terms of FPS and frame time, although it maintains reasonable stability. In
summary, Unreal offers the smoothest and most consistent experience, Godot holds as a balanced option,
and Unity, although slower, maintains stable execution within its limitations.

7.2. RESULTS 151

CPU

To calculate CPU usage, the trace provided by the CDP is analysed. This is done by dividing the time
spent on scripting—which represents the CPU time exclusively dedicated to processing code— by the
total duration of the test. This yields the actual percentage of CPU usage during execution.

The formula is expressed as:

CPU Usage = Time spent on scripting
Total test duration × 100

All of this can be observed in the trace shown in the following figure:

Figure 7.2: CPU Example in CDP

152 CHAPTER 7. PERFORMANCE TESTING

The test results are as follows:

Godot CPU Time (s) Scripting Time (s)
Run 1 48.08 39.66
Run 2 42.54 36.41
Run 3 42.40 35.06
Run 4 42.40 34.76
Run 5 42.37 36.42

Unity CPU Time (s) Scripting Time (s)
Run 1 44.53 12.91
Run 2 42.85 11.87
Run 3 42.82 11.58
Run 4 42.83 11.44
Run 5 42.81 11.74

Unreal CPU Time (s) Scripting Time (s)
Run 1 48.46 21.41
Run 2 46.84 19.60
Run 3 46.65 19.64
Run 4 46.60 20.03
Run 5 46.71 19.57

The following chart is obtained using the proposed calculation:

Godot Unity Unreal
0

20

40

60

80

100

83.7

27.3

42.4

%
of

C
PU

T
im

e

CPU Time Distribution: Scripting

Figure 7.3: CPU Usage graphic in PC

7.2. RESULTS 153

Godot exhibits high usage in both total CPU time and scripting time, with scripting accounting for
approximately 83–85% of the CPU time, and scripting durations around 35–40 seconds. This indicates
that most of the load is due to code execution during the test.

Unity is clearly the most efficient in scripting, with times between 11 and 13 seconds, equivalent to
27–30% of total CPU time. Total CPU usage is slightly lower than in Godot and Unreal, reflecting an
engine more optimised for script execution.

Unreal shows the highest total CPU usage (approximately 46–48 seconds), but scripting accounts
for only 40–45% of CPU time, suggesting that a significant portion of CPU consumption is devoted to
non-scripting tasks such as rendering and system processing.

This pattern is consistent across all five runs, demonstrating stability in results and confirming these
efficiency differences between engines.

Memory heap

The Memory Heap data is obtained by enabling the memory option in the CDP above the profiler. At the
end of the profiling session, both the minimum and maximum memory allocations are displayed.

All of this can be observed in the trace shown in the following figure:

Figure 7.4: Memory heap Example in CDP

154 CHAPTER 7. PERFORMANCE TESTING

The test results are as follows:

Table 7.2: Godot – Sizes per Run

Run Initial Size (MB) Maximum Size (MB)
1 0.269 13.2
2 0.269 15.8
3 0.269 16.6
4 0.269 16.9
5 0.269 17.0

Table 7.3: Unity – Sizes per Run

Run Initial Size (MB) Maximum Size (MB)
1 1.1 16.8
2 1.2 16.8
3 1.2 17.8
4 1.2 17.8
5 1.2 16.6

Table 7.4: Unreal – Sizes per Run

Run Initial Size (MB) Maximum Size (MB)
1 1.1 40.2
2 1.3 40.4
3 1.3 40.4
4 1.3 40.4
5 1.1 40.3

The analysis of the Memory Heap reveals notable differences in memory management among the
evaluated engines.

Godot stands out for its extreme efficiency in memory usage. In all runs, it maintains a consistently
low minimum memory footprint of just 0.269 MB (269KB) and a maximum memory usage progressively
ranging between 13.2 MB and 17.0 MB. This behaviour suggests a lightweight and highly optimised
management model, especially suitable for resource-constrained environments.

Unity shows a higher, albeit stable, minimum usage (around 1.1–1.2 MB) and a maximum memory
range between 16.6 MB and 17.8 MB. This consistency indicates a good balance between performance
and efficiency, making it a solid and versatile choice.

On the other hand, Unreal Engine maintains a minimum memory usage similar to Unity’s (1.1–1.3 MB),
but its maximum memory consumption is considerably higher, reaching up to 40.4 MB. This elevated
usage reflects its greater technical complexity and orientation towards more graphically demanding
experiences.

7.2. RESULTS 155

In summary, in terms of memory consumption, Godot is clearly the most efficient engine. Nonetheless,
Unity may represent an attractive alternative for those seeking a compromise between performance,
portability, and moderate resource consumption.

All of this is summarised in the following chart:

Godot Unity Unreal
0

10

20

30

40

0.27 1.1 1.1

17 17.8

40.4

M
em

or
y

(M
B)

Average Minimum and Maximum Memory per Engine

Minimum memory Maximum memory

Figure 7.5: Memory Heap Graphic in PC

156 CHAPTER 7. PERFORMANCE TESTING

Load time

Load time is measured by the red segment at the top of the profiler timeline, representing the total
duration for both the webpage to load and the game engine to initialise.

The test results are as follows:

Table 7.5: Godot – Load Time

Run Load Time (s)
Run 1 7.35
Run 2 2.17
Run 3 2.11
Run 4 2.12
Run 5 2.09

Table 7.6: Unity – Load Time

Run Load Time (s)
Run 1 6.54
Run 2 5.01
Run 3 5.00
Run 4 5.01
Run 5 5.10

Table 7.7: Unreal – Load Time

Run Load Time (s)
Run 1 8.02
Run 2 6.52
Run 3 6.34
Run 4 6.38
Run 5 6.30

All of this is summarised in the following chart:

7.2. RESULTS 157

Run 1 Run 2 Run 3 Run 4 Run 5
0

2

4

6

8 7.35

2.17 2.11 2.12 2.09

6.54

5.01 5 5.01 5.1

8.02

6.52 6.34 6.38 6.3
Lo

ad
T

im
e

(s
)

Load Time per Run and Engine

Godot Unity Unreal

Figure 7.6: Load Time Graphic in PC

The load time varies significantly between engines. Godot exhibits a much slower first run (7.35
s) compared to subsequent runs (approximately 2.1 s), which may indicate initialisation or caching
processes that optimise later loads. Unity shows more consistent and slightly lower load times, around 5
seconds, indicating relative stability and speed. Unreal, on the other hand, has the longest load times
overall, with values ranging between 6.3 and 8 seconds, suggesting a heavier or more complex loading
process. These results suggest that for quick loads, Unity is the most efficient, followed by Godot after
the initial run, and finally Unreal with heavier load times.

158 CHAPTER 7. PERFORMANCE TESTING

7.2.2 Raspberry Pi results

The specifications of the Raspberry Pi are as follows:

1. CPU: Broadcom BCM2711, Quad core Cortex-A72 (ARM v8) 64-bit SoC @ 1.8GHz
2. RAM: 8GB
3. Graphic interface: OpenGL ES 3.1, Vulkan 1.0

Following this, we will analyse each of the key aspects in detail.

7.2. RESULTS 159

FPS

In the graphs, the situation is observed as follows:

Figure 7.7: FPS graphics in Raspberry Pi

160 CHAPTER 7. PERFORMANCE TESTING

And the table resume:

Engine Mean Frame Time (ms) Std Dev (ms) Avg FPS FPS Std Total Frames Bad Frames Bad Frames %
Godot 133.40 0.013 7.5 0.00 469.0 5.2 1.11%
Unity 292.55 1.79 3.42 0.02 202.4 2.2 1.09%
Unreal 122.77 3.11 8.15 0.21 341.2 14.4 4.22%

Table 7.8: FPS Stats in Raspberry Pi

Analysing these results, the following observations are made:

Unreal achieves the highest average FPS (8.15) and the lowest mean frame time (122.77 ms), although
it exhibits the greatest variability in frame time and the highest percentage of bad frames (4.22%),
suggesting occasional performance hiccups.

Godot performs slightly worse than Unreal in terms of average FPS (7.5) and mean frame time (133.40
ms) but maintains much lower variability and a significantly smaller percentage of bad frames (1.11%).

Unity shows the lowest overall performance, with an average FPS of only 3.42 and a mean frame
time of 292.55 ms, indicating less smooth gameplay. Nevertheless, it keeps the percentage of bad frames
similar to Godot’s (1.09%).

7.2. RESULTS 161

CPU

The following table presents the results for the Raspberry Pi 4 system:

Engine Total CPU Time (ms) Scripting Time (ms) CPU Usage (%)
Godot Run 1 113,166 107,912 95.36%
Godot Run 2 110,631 105,552 95.41%
Godot Run 3 110,560 105,389 95.32%
Godot Run 4 114,477 108,322 94.62%
Godot Run 5 111,068 106,095 95.51%
Unity Run 1 74,790 22,370 29.91%
Unity Run 2 81,514 22,117 27.14%
Unity Run 3 74,417 22,031 29.60%
Unity Run 4 75,097 21,757 28.97%
Unity Run 5 79,430 22,750 28.63%
Unreal Run 1 94,368 63,693 67.46%
Unreal Run 2 96,089 64,377 66.97%
Unreal Run 3 95,473 64,252 67.26%
Unreal Run 4 94,240 62,763 66.58%
Unreal Run 5 97,915 63,023 64.38%

Table 7.9: CPU Usage in Raspberry P̂ı

Godot Unity Unreal
0

20

40

60

80

100 95.24

28.45

66.53

%
of

C
PU

U
sa

ge

CPU Time Spent in Scripting (Raspberry Pi)

Figure 7.8: CPU usage graphic in Raspberry Pi

Godot exhibits extremely high scripting utilisation, consistently using around 95% of CPU time for
script execution. This indicates a very script-intensive execution model, which, while efficient in code
handling, may saturate the CPU quickly in low-end environments.

162 CHAPTER 7. PERFORMANCE TESTING

Unity shows significantly lower CPU scripting usage (around 28%), suggesting better delegation to
other engine components or more efficient runtime code execution.

Unreal lies in between, with scripting accounting for 66.5% of CPU time. This balance likely stems
from Unreal’s complex internal processes and heavier rendering pipelines that share CPU time with
scripting tasks.

7.2. RESULTS 163

Memory heap

The test results for the Raspberry Pi system are as follows:

Table 7.10: Godot – Sizes per Run (Raspberry Pi)

Run Initial Size (MB) Maximum Size (MB)
1 0.269 11.4
2 0.269 11.3
3 0.269 11.5
4 0.269 11.4
5 0.269 11.8

Table 7.11: Unity – Sizes per Run (Raspberry Pi)

Run Initial Size (MB) Maximum Size (MB)
1 1.1 14.5
2 1.1 14.7
3 1.2 14.7
4 1.2 14.5
5 1.2 14.7

Table 7.12: Unreal – Sizes per Run (Raspberry Pi)

Run Initial Size (MB) Maximum Size (MB)
1 1.1 32.7
2 1.3 32.8
3 1.3 32.7
4 1.1 32.8
5 1.1 32.7

164 CHAPTER 7. PERFORMANCE TESTING

Godot Unity Unreal
0

10

20

30

0.27 1.16 1.18

11.48
14.62

32.74

M
em

or
y

(M
B)

Average Minimum and Maximum Memory per Engine (Raspberry Pi)

Minimum memory Maximum memory

Figure 7.9: Memory Heap Graphic in Raspberry Pi

On the Raspberry Pi, no modifications were observed in the heap memory usage.

7.2. RESULTS 165

Load time

Table 7.13: Godot – Load Time

Run Load Time (s)
Run 1 17.90
Run 2 16.75
Run 3 16.56
Run 4 17.10
Run 5 16.82

Table 7.14: Unity – Load Time

Run Load Time (s)
Run 1 14.49
Run 2 13.65
Run 3 13.76
Run 4 13.59
Run 5 13.88

Table 7.15: Unreal – Load Time

Run Load Time (s)
Run 1 52.89
Run 2 57.74
Run 3 53.39
Run 4 51.94
Run 5 52.64

All of this is summarised in the following chart:

166 CHAPTER 7. PERFORMANCE TESTING

Run 1 Run 2 Run 3 Run 4 Run 5
0

20

40

60

17.9 16.75 16.56 17.1 16.8214.49 13.65 13.76 13.59 13.88

52.89
57.74

53.39 51.94 52.64

Lo
ad

T
im

e
(s

)

Load Time per Run and Engine on Raspberry Pi

Godot Unity Unreal

Figure 7.10: Load time graphic in Raspberry Pi

The load times on the Raspberry Pi show a clear difference between engines. Godot maintains a
steady load time around 16.5–17.9 s, Unity is consistently faster, around 13.5–14.5 s, while Unreal
exhibits significantly longer load times, ranging from 51.9 to 57.7 s. These results highlight the greater
resource demands of Unreal on this platform, while Godot and Unity perform more efficiently in terms of
loading speed.

7.3. PERFORMANCE ANALYSIS 167

7.3 Performance Analysis

Following the tests carried out in both desktop and Raspberry Pi environments, the following conclusions
have been drawn based on four key performance pillars:

FPS

• Godot achieved the highest average FPS on desktop, demonstrating smooth and stable graphical
performance, particularly suitable for lightweight or 2D experiences.

• Unity remained competitive, albeit slightly behind Godot, with consistently high and stable
performance.

• Unreal proved to be the most demanding engine; although it delivered decent performance, it did
not reach the frame rates achieved by the other two engines.

CPU usage

• Godot exhibited a notably high CPU usage, particularly in scripting (approximately 83.7%),
indicating that a significant portion of the workload is handled by the code logic rather than the
graphics engine.

• Unity distributed the CPU load more efficiently, with scripting accounting for only around 27.3%,
reflecting a well-optimised and modular internal structure.

• Unreal reported the highest total CPU usage, although scripting represented only approximately
42.4%, as most of the resources were allocated to rendering and advanced engine subsystems.

Memory heap

• Godot again stood out due to its extreme efficiency: starting at just 269KB and reaching a
maximum of 17MB on Raspberry Pi, making it ideal for low-resource environments.

• Unity required slightly more memory (up to 17.8MB) but remained stable and predictable within
acceptable limits.

• Unreal reached peaks of up to 40MB, indicating a clear prioritisation of visual and technical
capability over memory efficiency.

Load time

• Godot demonstrated a slow initial load time (˜7.3s), but subsequent runs stabilised at around 2
seconds, likely due to internal caching or initialisation mechanisms.

• Unity provided the most consistent and fastest load times from the first execution (˜5s), making it
suitable for use cases where short load times are critical.

• Unreal was once again the slowest in this aspect, with load times ranging between 6.3 and 8
seconds, reflecting the engine’s complexity and resource requirements.

168 CHAPTER 7. PERFORMANCE TESTING

Performance on Raspberry Pi

On Raspberry Pi, none of the three engines delivered functionally acceptable performance. To contextualise
these results, a basic WebGL performance test was conducted using a simple animation of a rotating
cube with a black background, lighting, and colours. The trace recorded in Chromium is shown below:

Figure 7.11: Performance about cube rotating in webGl with CDP

As observed, even such a simple scene exhibits frame rate fluctuations between 30 and 60 FPS. This
is due to the fact that only the rendering and painting systems are active. A complete engine involves
additional systems—physics, AI, networking, animations, etc.—which significantly increase the workload.

Storage

The final build sizes were also evaluated:

• Unity → 93.1 MB
• Unreal → 60.2 MB
• Godot → 70.6 MB

Unity produced the largest build size, primarily because it includes all internal libraries required for
execution, even those unrelated to the specific implementation. This also accounts for the longer build
times compared to Godot or Unreal.

It is also worth noting that the version used, Unreal Engine 4.27.2, does not officially support
WebGL export. An ad hoc solution based on WebGL 2.0 was required to conduct the tests. Therefore,
Unreal is effectively disqualified as a viable solution for modern WebGL development.

7.3. PERFORMANCE ANALYSIS 169

Final summary

For scenarios where maximum efficiency and portability are required, Godot is the optimal choice.
However, it is important to acknowledge that Godot is a relatively modern engine compared to Unity
and Unreal. Several of its features, such as the navigation mesh system, are still experimental or under
development.

Unity, by contrast, represents an excellent balance between performance, compatibility, and stability.
Its modular architecture, extensive community support, and consistent results make it the most robust
alternative—particularly for projects seeking a middle ground between efficiency and capability.

Unreal, while technically impressive, is excluded from consideration in this context due to its high
resource consumption, lack of official WebGL support, and excessive load times.

Following the presentation and analysis of the performance results across the different platforms, a
clear understanding is established regarding the strengths and limitations of each game engine in terms
of efficiency and execution capability.

These findings will form the basis for the final conclusions and proposed future work outlined in the
subsequent chapter, where key insights will be summarised and potential improvements and optimisations
will be suggested.

170 CHAPTER 7. PERFORMANCE TESTING

Chapter 8

Conclusions and Future work

8.1 Conclusions

During the course of this work, a comprehensive effort was made to compare and analyse the performance
of three different game engines, alongside addressing numerous technical challenges. Below is a step-by-step
breakdown of the work carried out:

• A functional mini-game prototype was developed in three leading industry engines: Unity, Unreal
Engine, and Godot, adapted for export to web format.

• The prototype includes two game modes: manual, with direct player control, and automatic, where
the system navigates and shoots at predefined targets.

• The game was exported and tested in resource-limited environments, including a modest PC and a
Raspberry Pi running Raspberry Pi OS.

• Key performance parameters such as FPS, CPU, and memory usage were defined and measured
using profiling tools integrated into web browsers, ensuring data comparability and objectivity.

• Each engine was tested through multiple runs to guarantee statistical reliability and eliminate bias
or anomalies.

• Comparative analysis of the results identified the strengths and limitations of each engine in web
environments and low-power hardware.

• It was found that engine choice should balance performance, graphical quality, and ease of ex-
port—factors that vary depending on the use case and target hardware.

• This work provides a technical and practical foundation for developers interested in optimising
games for web platforms and resource-constrained devices such as the Raspberry Pi.

Of course, there were complications during the development of this project, including:

• Hardware Compatibility: one of the computers used had a GTX 260 GPU, incompatible with
the drivers required for Unity 6, which necessitated waiting a week to receive a new PC that could
run Unity without issues. In Unreal Engine, only version 4.27.2 could be used due to similar
limitations.

• Scene Import and Adjustment: importing the scene from Sketchfab caused more problems
than benefits. Manual rescaling and adaptation of the navmesh were required for it to function
correctly across all three engines, a tedious and repetitive process.

• Handling Three Different Engines and Languages: mastering Unity (C#), Unreal (C++/Blueprints),
and Godot (GDScript) simultaneously proved to be an odyssey, with learning curves and conceptual
differences that slowed progress.

• Reliable FPS Measurement: the use of the CDP for measuring FPS was key, as the native tools
of each engine did not offer homogeneous or reliable comparisons for web performance. Learning to
use these profilers involved a steep curve.

• Technical Limitations of Web Export: exporting to the web from each engine posed various
technical challenges, from build configurations to specific optimisations required to maintain

171

172 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

playability on limited hardware. For example, Unreal required using a community version available
on GitHub, as the official version no longer exists or is maintained.

The learnings taken away as a computer engineer are also essential and important; these are:

• In-depth exploration of three major game engines (Unity, Unreal Engine, and Godot), gaining
practical knowledge in C#, Blueprints, and GDScript respectively.

• Improved understanding and application of profiling and performance analysis techniques, particu-
larly using the CDP to obtain reliable metrics in web environments.

• Applied software engineering methodologies to analyse, design, and document the development
process, ensuring an organised and professional approach.

• Task management and submission were learned using Jira, which allowed clear organisation, rigorous
tracking, and efficient prioritisation of daily work.

• Plastic SCM was used for version control, improving the ability to work as a team and handle code
conflicts, something essential for collaborative projects.

• Corrections and feedback received during the process were integrated, developing a mindset of
continuous improvement that will be key in the professional environment.

• The experience allowed familiarisation with agile workflows, progress reporting, and effective
communication with the team, aspects that will facilitate adaptation to the professional daily
routine.

8.1.1 Actual Project Cost

Although the original plan anticipated project completion by the end of May, development extended until
1st July, resulting in an approximate four-week delay. This extension was partly due to an additional two
weeks required for assimilating key concepts, reflecting the necessary learning curve. Furthermore, risk
R01 was activated for one week, and risk R07 occurred over three days, causing further delays. Despite
these setbacks, the documentation was finalised and valuable conclusions were drawn to meet the project
objectives.

The actual project cost has been calculated taking the following factors into account:

• Engineer hourly rate:
40, 000 €
52 × 40 = 19.23 €/hour

• Total hours worked (22 weeks × 40 hours/week):

22 × 40 = 880 hours

• Labour cost excluding risks:

880 × 19.23 = 16, 922.40 €

• Amortisation cost of original hardware (PC, 1 month out of 36 months):

1, 000 €
36 × 1 = 27.78 €

• Cost of replacement hardware (due to incompatibility issues):

1, 000 €

• Amortisation cost of Raspberry Pi 4[32] (6 months out of 36 months):

82, 50 €
36 × 6 ≈ 13.75 €

• Additional cost due to activated risks (1 week for risk R01 and 3 days for risk R07):

(5 + 3) × 8 = 64 hours

64 × 19.23 = 1, 230.72 €

8.2. FUTURE WORK 173

It should be noted that the original estimated total cost of

18,873.68 €

was calculated assuming that all anticipated costs and risk contingencies would be fully realised.

Therefore, the actual project cost of
19,194.65 €

exceeds the original estimate by approximately 320.97 €, mainly due to the extended development period
and the necessity of acquiring replacement hardware.

8.2 Future work

Based on the results obtained in this study, two main lines of future work have been identified, both of
which could provide deeper insight into the performance and viability of the evaluated engines:

• Optimisation of minimal builds: A key next step will involve identifying and removing
unnecessary libraries that are included by default in Unity-generated projects. The aim is to reduce
the final build size and assess the actual impact on load times and resource usage. This optimisation
would make it possible to evaluate the engine’s performance under more constrained and realistic
conditions, particularly for resource-limited environments such as embedded systems or low-powered
browsers.

• Development of a custom basic engine: The creation of a minimal, purpose-built graphics engine
is proposed, specifically tailored for comparative performance testing. To avoid the complexities
of working directly with WebGL, an abstraction layer based on the Three.js library will be used.
This will allow a focus on the essential aspects of the rendering system. A direct comparison with
existing engines will help identify which functionalities have a meaningful performance impact and
what trade-offs are necessary in terms of scalability and maintainability.

174 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

Bibliography

[1] M. S. Saleem, “Top advances in gaming technology in 2025 – important for gaming entrepreneurs,”
https://www.tekrevol.com/blogs/top-advances-in-gaming-technology, accessed: Apr. 1, 2025.

[2] R. Kreese, “Zelda famicom, screaming in the microphone!” https://youtu.be/A2UtC SwAfY?si=
1kWT3-BdrP4cXL1U, 2008, accessed: Apr. 21, 2025.

[3] D. M. Waqar, T. S. Gunawan, M. Kartiwi, and R. Ahmad, “Real-time voice-controlled game
interaction using convolutional neural networks,” in 2021 IEEE 7th International Conference
on Smart Instrumentation, Measurement and Applications (ICSIMA), 2021, pp. 76–81. [Online].
Available: https://doi.org/10.1109/ICSIMA50015.2021.9526318

[4] J. V. Moniaga, A. Chowanda, A. Prima, Oscar, and M. D. Tri Rizqi, “Facial expression recognition
as dynamic game balancing system,” Procedia Computer Science, vol. 135, pp. 361–368, 2018,
the 3rd International Conference on Computer Science and Computational Intelligence (ICCSCI
2018) : Empowering Smart Technology in Digital Era for a Better Life. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1877050918314741

[5] F. Dehghani and L. Zaman, “Facial emotion recognition in vr games,” 2023. [Online]. Available:
https://arxiv.org/abs/2312.06925

[6] Y. Zhu and B. Yuan, “Real-time hand gesture recognition with kinect for playing racing video
games,” in 2014 International Joint Conference on Neural Networks (IJCNN), 2014, pp. 3240–3246.
[Online]. Available: http://www.cmap.polytechnique.fr/∼nikolaus.hansen/proceedings/2014/WCCI/
IJCNN-2014/PROGRAM/N-14190.pdf

[7] N. Alnaim, “Hand gesture recognition using deep learning neural networks,” Ph.D. dissertation,
Brunel University London, 2020. [Online]. Available: https://bura.brunel.ac.uk/bitstream/2438/
20923/1/FulltextThesis.pdf

[8] G. Paizanis, R. Schonfeld, E. Pagano, and N. Schmidt, “Leveling up for the new reality,” https:
//www.bcg.com/publications/2024/leveling-up-new-reality, accessed: Mar. 31, 2025.

[9] Anonymous, “The future of the global gaming industry: Opportunities amid industry challenges,”
https://www.bcg.com/press/12december2024-future-of-global-gaming-industry, accessed: Jan. 4,
2025.

[10] D. Peppiatt, “Video game music has arrived on the festival circuit – and it’s only going to get bigger,”
https://www.theguardian.com/games/2025/mar/21/video-game-music-london-soundtrack-festival,
accessed: Apr. 1, 2025.

[11] Anonymous, “Gaming is booming and is expected to keep growing. this chart tells you all you
need to know,” https://www.weforum.org/stories/2022/07/gaming-pandemic-lockdowns-pwc-growth,
accessed: Jan. 4, 2025.

[12] E. Khasabo, “The rise of content creators in the gaming industry,” https://www.vidovo.com/blog/
the-rise-of-content-creators-in-the-gaming-industry, accessed: Jan. 4, 2025.

[13] V. Koski, “Benchmarking and comparison of open-source html5 game engine performance,” 2024,
accessed: Apr. 21, 2025. [Online]. Available: https://lutpub.lut.fi/handle/10024/168662

175

https://www.tekrevol.com/blogs/top-advances-in-gaming-technology
https://youtu.be/A2UtC_SwAfY?si=1kWT3-BdrP4cXL1U
https://youtu.be/A2UtC_SwAfY?si=1kWT3-BdrP4cXL1U
https://doi.org/10.1109/ICSIMA50015.2021.9526318
https://www.sciencedirect.com/science/article/pii/S1877050918314741
https://arxiv.org/abs/2312.06925
http://www.cmap.polytechnique.fr/~nikolaus.hansen/proceedings/2014/WCCI/IJCNN-2014/PROGRAM/N-14190.pdf
http://www.cmap.polytechnique.fr/~nikolaus.hansen/proceedings/2014/WCCI/IJCNN-2014/PROGRAM/N-14190.pdf
https://bura.brunel.ac.uk/bitstream/2438/20923/1/FulltextThesis.pdf
https://bura.brunel.ac.uk/bitstream/2438/20923/1/FulltextThesis.pdf
https://www.bcg.com/publications/2024/leveling-up-new-reality
https://www.bcg.com/publications/2024/leveling-up-new-reality
https://www.bcg.com/press/12december2024-future-of-global-gaming-industry
https://www.theguardian.com/games/2025/mar/21/video-game-music-london-soundtrack-festival
https://www.weforum.org/stories/2022/07/gaming-pandemic-lockdowns-pwc-growth
https://www.vidovo.com/blog/the-rise-of-content-creators-in-the-gaming-industry
https://www.vidovo.com/blog/the-rise-of-content-creators-in-the-gaming-industry
https://lutpub.lut.fi/handle/10024/168662

176 BIBLIOGRAPHY

[14] A. M. Barczak and H. Woźniak, “Comparative study on game engines,” Studia Informatica. Systems
and Information Technology. Systemy i Technologie Informacyjne, no. 1-2, 2019. [Online]. Available:
https://bazawiedzy.uws.edu.pl/info/article/UPH3c6a533b32d74ae89fb8273e94ff1c20/Publikacja+
%25E2%2580%2593+Comparative+study+on+game+engines+%25E2%2580%2593+Uniwersytet+
Przyrodniczo-Humanistyczny+w+Siedlcach?r=publication&ps=20&lang=en&pn=1&cid=5220

[15] Anonymous, “Mobile game app development cost: A detailed guide 2025,” https://www.apptunix.
com/blog/game-development-cost-how-much-does-it-cost-to-develop-a-game-app, accessed: Jan. 4,
2025.

[16] “Raspberry pi 4 tech specs,” accessed: Apr. 22, 2025. [Online]. Available: https:
//www.raspberrypi.com/products/raspberry-pi-4-model-b/specifications/

[17] Anonymous, “Broadcom videocore vi,” accessed: Apr. 24, 2025. [Online]. Available:
https://www.cpu-monkey.com/en/igpu-broadcom videocore vi

[18] W. contributors, “Playstation 5,” accessed: Apr. 24, 2025. [Online]. Available: https:
//en.wikipedia.org/wiki/PlayStation 5

[19] “What is directx? why does every pc game need it?” accessed: Apr. 22,
2025. [Online]. Available: https://www.corsair.com/us/en/explorer/gamer/gaming-pcs/
what-is-directx-why-does-every-pc-game-need-it/#:∼:text=DirectX%20is%20a%20collection%
20of,components%20in%20any%20given%20PC.

[20] W. contributors, “Unity (game engine),” https://en.wikipedia.org/wiki/Unity (game engine), ac-
cessed: Jan. 4, 2025.

[21] ——, “Unreal engine,” https://en.wikipedia.org/wiki/Unreal Engine, accessed: Jan. 4, 2025.

[22] ——, “Godot (game engine),” https://en.wikipedia.org/wiki/Godot (game engine), accessed: Jan. 4,
2025.

[23] ——, “Unity version control,” accessed: May. 12, 2025. [Online]. Available: https:
//en.wikipedia.org/wiki/Unity Version Control

[24] U. Technologies. (2025) Monobehaviour.start(). Accessed: May. 22, 2025. [Online]. Available:
https://docs.unity3d.com/ScriptReference/MonoBehaviour.Start.html

[25] ——. (2025) Monobehaviour.update(). Accessed: May. 22, 2025. [Online]. Available:
https://docs.unity3d.com/ScriptReference/MonoBehaviour.Update.html

[26] ——. (2025) Monobehaviour.startcoroutine. Accessed: May. 22, 2025. [Online]. Available:
https://docs.unity3d.com/ScriptReference/MonoBehaviour.StartCoroutine.html

[27] ——. (2025) Input.getaxis. Accessed: May. 23, 2025. [Online]. Available: https://docs.unity3d.com/
ScriptReference/Input.GetAxis.html

[28] E. G. Developers. (2025) Blueprints visual scripting. Accessed: June. 04,
2025. [Online]. Available: https://dev.epicgames.com/documentation/en-us/unreal-engine/
blueprints-visual-scripting-in-unreal-engine

[29] G. Developers. (2025) Gdscript reference. Accessed: June. 13, 2025. [Online]. Available:
https://docs.godotengine.org/en/stable/tutorials/scripting/gdscript/gdscript basics.html

[30] mdn web docs. (2025) Webassembly. Accessed: June. 29 2025. [Online]. Available:
https://developer.mozilla.org/en-US/docs/WebAssembly

[31] P. Developers. (2025) Puppeter. Accessed: June. 29 2025. [Online]. Available: https://pptr.dev/

[32] A. Logo. (2025) Raspberry pi 4 model b - 8 gb ram. Accessed: June. 29 2025. [Online]. Available:
https://www.adafruit.com/product/4564?src=raspberrypi

[33] W. mathworld. (2025) Euler angles. Accessed: May. 23, 2025. [Online]. Available:
https://mathworld.wolfram.com/EulerAngles.html

https://bazawiedzy.uws.edu.pl/info/article/UPH3c6a533b32d74ae89fb8273e94ff1c20/Publikacja+%25E2%2580%2593+Comparative+study+on+game+engines+%25E2%2580%2593+Uniwersytet+Przyrodniczo-Humanistyczny+w+Siedlcach?r=publication&ps=20&lang=en&pn=1&cid=5220
https://bazawiedzy.uws.edu.pl/info/article/UPH3c6a533b32d74ae89fb8273e94ff1c20/Publikacja+%25E2%2580%2593+Comparative+study+on+game+engines+%25E2%2580%2593+Uniwersytet+Przyrodniczo-Humanistyczny+w+Siedlcach?r=publication&ps=20&lang=en&pn=1&cid=5220
https://bazawiedzy.uws.edu.pl/info/article/UPH3c6a533b32d74ae89fb8273e94ff1c20/Publikacja+%25E2%2580%2593+Comparative+study+on+game+engines+%25E2%2580%2593+Uniwersytet+Przyrodniczo-Humanistyczny+w+Siedlcach?r=publication&ps=20&lang=en&pn=1&cid=5220
https://www.apptunix.com/blog/game-development-cost-how-much-does-it-cost-to-develop-a-game-app
https://www.apptunix.com/blog/game-development-cost-how-much-does-it-cost-to-develop-a-game-app
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/specifications/
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/specifications/
https://www.cpu-monkey.com/en/igpu-broadcom_videocore_vi
https://en.wikipedia.org/wiki/PlayStation_5
https://en.wikipedia.org/wiki/PlayStation_5
https://www.corsair.com/us/en/explorer/gamer/gaming-pcs/what-is-directx-why-does-every-pc-game-need-it/#:~:text=DirectX%20is%20a%20collection%20of,components%20in%20any%20given%20PC.
https://www.corsair.com/us/en/explorer/gamer/gaming-pcs/what-is-directx-why-does-every-pc-game-need-it/#:~:text=DirectX%20is%20a%20collection%20of,components%20in%20any%20given%20PC.
https://www.corsair.com/us/en/explorer/gamer/gaming-pcs/what-is-directx-why-does-every-pc-game-need-it/#:~:text=DirectX%20is%20a%20collection%20of,components%20in%20any%20given%20PC.
https://en.wikipedia.org/wiki/Unity_(game_engine)
https://en.wikipedia.org/wiki/Unreal_Engine
https://en.wikipedia.org/wiki/Godot_(game_engine)
https://en.wikipedia.org/wiki/Unity_Version_Control
https://en.wikipedia.org/wiki/Unity_Version_Control
https://docs.unity3d.com/ScriptReference/MonoBehaviour.Start.html
https://docs.unity3d.com/ScriptReference/MonoBehaviour.Update.html
https://docs.unity3d.com/ScriptReference/MonoBehaviour.StartCoroutine.html
https://docs.unity3d.com/ScriptReference/Input.GetAxis.html
https://docs.unity3d.com/ScriptReference/Input.GetAxis.html
https://dev.epicgames.com/documentation/en-us/unreal-engine/blueprints-visual-scripting-in-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/blueprints-visual-scripting-in-unreal-engine
https://docs.godotengine.org/en/stable/tutorials/scripting/gdscript/gdscript_basics.html
https://developer.mozilla.org/en-US/docs/WebAssembly
https://pptr.dev/
https://www.adafruit.com/product/4564?src=raspberrypi
https://mathworld.wolfram.com/EulerAngles.html

BIBLIOGRAPHY 177

[34] U. Technologies. (2025) Quaternion.euler. Accessed: May. 23, 2025. [Online]. Available:
https://docs.unity3d.com/6000.1/Documentation/ScriptReference/Quaternion.Euler.html

[35] W. van Toll, R. Triesscheijn, M. Kallmann, R. Oliva, N. Pelechano, J. Pettré, and R. Geraerts.
(2016) A comparative study of navigation meshes. Accessed: June. 27 2025. [Online]. Available:
https://www.cs.upc.edu/∼npelechano/MIG2016 Wouter.pdf

[36] Anonymous, “What is cloud gaming?” https://www.microsoft.com/en-us/edge/learning-center/
what-is-cloud-gaming?form=MA13I2, accessed: Apr. 16, 2025.

[37] ——, “What are convolutional neural networks?” https://www.ibm.com/think/topics/
convolutional-neural-networks, accessed: Apr. 21, 2025.

[38] “Nvidia dlss,” accessed: Apr. 22, 2025. [Online]. Available: https://developer.nvidia.com/rtx/dlss?
sortBy=developer learning library%2Fsort%2Ffeatured%3Adesc%2Ctitle%3Aasc&hitsPerPage=6

[39] “Amd fidelityfx™ super resolution,” accessed: Apr. 22, 2025. [Online]. Available: https://www.amd.
com/en/products/graphics/technologies/fidelityfx/super-resolution.html#requirements

[40] Anonymous, “What is the k-nearest neighbors (knn) algorithm?” https://www.ibm.com/think/
topics/knn#:∼:text=The%20k%2Dnearest%20neighbors%20(KNN)%20algorithm%20is%20a,
regression%20classifiers%20used%20in%20machine%20learning%20today., accessed: Apr. 21, 2025.

[41] ——, “Preface: What is opengl?” accessed: Apr. 24, 2025. [Online]. Available:
https://openglbook.com/chapter-0-preface-what-is-opengl.html

[42] W. contributors, “Snake (video game genre),” https://en.wikipedia.org/wiki/Snake (video game
genre), accessed: Apr. 21, 2025.

[43] Anonymous, “What are support vector machines (svms)?” https://www.ibm.com/think/topics/
support-vector-machine., accessed: Apr. 21, 2025.

[44] Vulkan, “What is vulkan?” accessed: Apr. 24, 2025. [Online]. Available: https:
//vulkan.lunarg.com/doc/view/1.4.304.1/mac/antora/guide/latest/what is vulkan.html

https://docs.unity3d.com/6000.1/Documentation/ScriptReference/Quaternion.Euler.html
https://www.cs.upc.edu/~npelechano/MIG2016_Wouter.pdf
https://www.microsoft.com/en-us/edge/learning-center/what-is-cloud-gaming?form=MA13I2
https://www.microsoft.com/en-us/edge/learning-center/what-is-cloud-gaming?form=MA13I2
https://www.ibm.com/think/topics/convolutional-neural-networks
https://www.ibm.com/think/topics/convolutional-neural-networks
https://developer.nvidia.com/rtx/dlss?sortBy=developer_learning_library%2Fsort%2Ffeatured%3Adesc%2Ctitle%3Aasc&hitsPerPage=6
https://developer.nvidia.com/rtx/dlss?sortBy=developer_learning_library%2Fsort%2Ffeatured%3Adesc%2Ctitle%3Aasc&hitsPerPage=6
https://www.amd.com/en/products/graphics/technologies/fidelityfx/super-resolution.html#requirements
https://www.amd.com/en/products/graphics/technologies/fidelityfx/super-resolution.html#requirements
https://www.ibm.com/think/topics/knn#:~:text=The%20k%2Dnearest%20neighbors%20(KNN)%20algorithm%20is%20a,regression%20classifiers%20used%20in%20machine%20learning%20today.
https://www.ibm.com/think/topics/knn#:~:text=The%20k%2Dnearest%20neighbors%20(KNN)%20algorithm%20is%20a,regression%20classifiers%20used%20in%20machine%20learning%20today.
https://www.ibm.com/think/topics/knn#:~:text=The%20k%2Dnearest%20neighbors%20(KNN)%20algorithm%20is%20a,regression%20classifiers%20used%20in%20machine%20learning%20today.
https://openglbook.com/chapter-0-preface-what-is-opengl.html
https://en.wikipedia.org/wiki/Snake_(video_game_genre)
https://en.wikipedia.org/wiki/Snake_(video_game_genre)
https://www.ibm.com/think/topics/support-vector-machine.
https://www.ibm.com/think/topics/support-vector-machine.
https://vulkan.lunarg.com/doc/view/1.4.304.1/mac/antora/guide/latest/what_is_vulkan.html
https://vulkan.lunarg.com/doc/view/1.4.304.1/mac/antora/guide/latest/what_is_vulkan.html

178 BIBLIOGRAPHY

Appendix A

3D Rotation Theory — Euler Angles,
Gimbal Lock, and Quaternions

A.1 Euler angles

Euler angles are a method of describing the orientation of a coordinate system in three-dimensional space
by means of three successive rotations around axes, which may be either fixed or moving. There are a
total of 12 possible sequences of Euler angle rotations [33]. For example, consider the ZXY convention,
which is the one used by Unity [34]. In this case, the rotations are applied in the following order: first
around the Z axis, then around the X axis, and finally around the Y axis.

Let:

• ϕ: roll angle (rotation around the Z-axis)
• θ: pitch angle (rotation around the X-axis)
• ψ: yaw angle (rotation around the Y-axis)

The elementary rotation matrices are as follows:

RZ(ϕ) =


cosϕ − sinϕ 0
sinϕ cosϕ 0

0 0 1

 , RX(θ) =


1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 , RY (ψ) =


cosψ 0 sinψ

0 1 0
− sinψ 0 cosψ



The total rotation matrix, applying the rotations in the ZXY order, is:

R = RY (ψ) ·RX(θ) ·RZ(ϕ)

Step 1: multiply RX(θ) and RZ(ϕ):

RX(θ)RZ(ϕ) =


1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 ·


cosϕ − sinϕ 0
sinϕ cosϕ 0

0 0 1

 =

179

180APPENDIX A. 3D ROTATION THEORY — EULER ANGLES, GIMBAL LOCK, AND QUATERNIONS

=


cosϕ − sinϕ 0

cos θ sinϕ cos θ cosϕ − sin θ
sin θ sinϕ sin θ cosϕ cos θ



Step 2: multiply RY (ψ) with the previous result:

R = RY (ψ) · (RX(θ)RZ(ϕ)) =


cosψ 0 sinψ

0 1 0
− sinψ 0 cosψ

 ·


cosϕ − sinϕ 0

cos θ sinϕ cos θ cosϕ − sin θ
sin θ sinϕ sin θ cosϕ cos θ



=


cosψ cosϕ+ sinψ sin θ sinϕ − cosψ sinϕ+ sinψ sin θ cosϕ sinψ cos θ

cos θ sinϕ cos θ cosϕ − sin θ
− sinψ cosϕ+ cosψ sin θ sinϕ sinψ sinϕ+ cosψ sin θ cosϕ cosψ cos θ


With this, any point in three-dimensional space can be rotated. Let v ∈ R3, be a vector; then the

rotated vector is given by:
v′ = Rv

As can be observed, this results in a hierarchy of rotations, since each subsequent rotation is applied
within a new coordinate system that has already been modified by the previous rotations. Specifically:

• The rotation about the Y-axis is applied in the original coordinate system.
• The rotation about the X-axis is applied within a system already rotated by Y.
• The rotation about the Z-axis is applied within a system that has already been rotated by both Y

and X.

This leads to a common issue in computer graphics known as gimbal lock.

A.2 Gimbal lock problem

Before describing the problem, it is necessary to demonstrate how the Euler angles can be recovered from
the rotation matrix. The total rotation matrix in ZXY order is then obtained:

R =


cosψ cosϕ+ sinψ sin θ sinϕ − cosψ sinϕ+ sinψ sin θ cosϕ sinψ cos θ

cos θ sinϕ cos θ cosϕ − sin θ
− sinψ cosϕ+ cosψ sin θ sinϕ sinψ sinϕ+ cosψ sin θ cosϕ cosψ cos θ



Step 1: calculation of θ

From the element R23:

R23 = − sin θ =⇒ θ = arcsin(−R23)

A.2. GIMBAL LOCK PROBLEM 181

Step 2: calculation of ψ

Use of the elements R13 and R33:

R13 = sinψ cos θ
R33 = cosψ cos θ

Dividing both:

tanψ = R13

R33
⇒ ψ = arctan 2(R13, R33)

Step 3: calculation of ϕ

Use of the elements R21 and R22:

R21 = cos θ sinϕ
R22 = cos θ cosϕ

Dividing both:

tanϕ = R21

R22
⇒ ϕ = arctan 2(R21, R22)

Here lies the problem. This procedure assumes that cos θ ̸= 0. if θ = ± π
2 , then:

R21 = 0
R22 = 0
R13 = 0
R33 = 0

and therefore

tanψ = 0
0 ⇒ ψ = arctan 2(0, 0) ⇒ indefinied

tanϕ = 0
0 ⇒ ϕ = arctan 2(0, 0) ⇒ indefinied

This is the issue known as gimbal lock It causes the expressions for the elements of the rotation matrix
to simplify in such a way that two of the rotation axes align, effectively eliminating one degree of freedom.
That is, the ability to rotate independently around one of the axes is lost.

Example: if θ = π
2 , then:

182APPENDIX A. 3D ROTATION THEORY — EULER ANGLES, GIMBAL LOCK, AND QUATERNIONS

R =


sinψ sinϕ+ cosψ cosϕ sinψ cosϕ− cosψ sinϕ 0

0 0 −1
cosψ sinϕ− sinψ cosϕ cosψ cosϕ+ sinψ sinϕ 0


It is observed that the entries R13, R21, R22, R33 become zero, indicating insufficient information to

distinguish between the angles ψ and ϕ: they have collapsed into a single composite rotation.

Graphically, the system loses the ability to rotate independently around one of the axes, which can
lead to unexpected or undesired behaviour in simulations or animations. This is a common problem in
representations using Euler angles.

To address this, another tool is used that resolves this issue: the quaternion.

A.3 Quaternions

Quaternions are an extension of complex numbers, a quaternion is defined as:

q = w + xi+ yj + zk

where w, x, y, z ∈ R and {i, j, k} are the imaginary units that satisfy the following relations:

i2 = j2 = k2 = ijk = −1

Before addressing rotations using quaternions, it is appropriate to introduce some preliminary concepts.

The norm of q, denoted ∥q∥, is given by:

∥q∥ =
√
w2 + x2 + y2 + z2

The inverse of a quaternion q is given by:

q−1 = q∗

∥q∥2

where q∗ = w − xi− yj − zk is the conjugate of q.

The demonstration is now presented.

Let v ∈ R3, be a vector; Its representation as a quaternion would be the following:

vq = 0 + xi+ yj + zk,

This is known as a pure quaternion. The rotation is defined by a unit quaternion (∥q∥ = 1) that
represents the axis and angle of rotation:

q = cos
(
θ

2

)
+ (uxi+ uyj + uzk) sin

(
θ

2

)
,

where:

A.3. QUATERNIONS 183

• θ is the total angle of rotation,
• (ux, uy, uz) is a unit vector indicating the axis of rotation.

To rotate the vector v⃗, the calculation performed is:

v′ = qvqq
−1,

Since a unit quaternion is used, its inverse equals the conjugate, which simplifies the calculations. As
can be observed, the rotation depends solely on a single operation with a unique angle, and therefore the
gimbal lock issue does not occur.

184APPENDIX A. 3D ROTATION THEORY — EULER ANGLES, GIMBAL LOCK, AND QUATERNIONS

Appendix B

Navigation Mesh Concept Overview

A navigation mesh is a simplified polygonal map of a virtual space that helps characters figure out where
they can walk and how to get from point A to point B smoothly, avoiding obstacles and collisions[35].

To define a navigation mesh, it is necessary to first introduce the concept of free space, denoted as
Efree:

Efree = {x ∈ R3 | x /∈ O}

where:

• R3 is the three-dimensional space in which the environment is defined.
• O denotes the set of obstacles (e.gẇalls, solid objects, or scene boundaries).

Thus, Efree comprises all points in space where an agent can move freely without colliding with
obstacles.

Once the free space Efree ⊂ R3 has been defined, a navigation mesh can be formally described as a
tuple:

M = (R,G)

where:

• R = {R0, R1, . . . , Rn} is a finite set of geometric regions in R3 that represent Efree. Each region Ri

is *P-simple*, meaning that its projection onto the ground plane P does not self-intersect.
• G = (V,E) is an undirected graph, where vertices V correspond to the regions Ri, and edges E

indicate navigable connectivity between adjacent regions.

Thanks to this, points can be defined in space for the NPC to traverse without needing to know how
it does so

185

186 APPENDIX B. NAVIGATION MESH CONCEPT OVERVIEW

Appendix C

Abbreviations and Acronyms

2D 2 Dimensional. 14, 16, 17, 71, 105, 167

3D 3 Dimensional. 14–17, 24, 26, 52, 54, 55, 69, 71, 105–107, 129

AI Artificial Intelligence. 11, 117, 124, 189

API Application Programming Interface. 17, 54, 58, 118, 189

AR Augmented Reality. 11, 54

CDP Chrome DevTools Performance. 147, 151, 153, 171, 172

CNN Convolutional Neural Networks. 11, 12

CPU Central Processing Unit. 14, 17, 52, 151, 153, 161, 162, 171

DLSS Deep Learning Super Sampling. 17

Famicom Family Computer. 11

FBX Filmbox. 54

FPS First Person Shooter. 20, 54, 57, 58, 63, 87, 105

FPS Frames Per Second. 14, 15, 52, 116, 139, 141, 142, 150, 171

FSR FidelityFX™ Super Resolution. 17

GLTF Graphics Library Transmission Format. 54

GNU GNU’s Not Unix. 17

GPU Graphics Processing Unit. 14, 17, 52

HUD Heads-Up Display. 24, 27–29, 31, 38, 39, 41–45, 57–59, 69, 72, 76, 77, 80, 87, 94, 98, 100, 102, 105,
110, 114, 117

IDE Integrated Development Environment. 51

JSON JavaScript Object Notation. 24

KNN K-Nearest Neighbors. 12

LTS Long-Term Support. 22

187

188 Abbreviations and Acronyms

NES Nintendo Entertainment System. 11

NPC Non Playable Character. 50, 116–118, 121, 124–126, 128, 131, 134

OS Operative System. 17

PC Personal Computer. 17, 18, 20, 141, 148

RAM Random Access Memory. 14, 17, 52

RGB Red Green Blue. 12, 84

SVM Support Vector Machine. 12

TFLOPS Tera Floating-Point Operations per Second. 17

URL Uniform Resource Locator. 148

VR Virtual Reality. 11, 12, 54

Appendix D

Glossary

Cloud gaming A type of online gaming that runs video games on remote servers and streams them
directly to a user’s device.[36]. 11

Convolutional Neural Network Type of neural network used for image classification and computer
vision tasks uses three types of layers: the convolutional layer to apply filters to the images to
obtain local patterns such as edges, textures, or different shapes; the pooling layer to reduce the
dimension of the data and make the network more efficient; and one or more fully connected layers,
where each neuron is connected to the neurons of previous layers, used for the final classification or
prediction.[37]. 11

Deep Learning Super Sampling Technology developed by NVIDIA that, through the use of deep
learning, reduces the game’s resolution to increase GPU performance, and then upscales it to the
native resolution of the display, making the resolution drop imperceptible.[38]. 17

FidelityFX™ Super Resolution Technology developed by AMD that uses upscaling techniques and
temporal image reconstruction with the use of Artificial Intelligence (AI) for frame generation to
enhance GPU performance and improve FPS fluidity.[39]. 17

k-nearest neighbors A supervised learning method that makes no assumptions about the shape of the
data. This classifier is based on the proximity between data points to make predictions or classify
new items, assigning them the most common category or value among these.[40]. 12

OpenGL Cross-language, cross-platform Application Programming Interface (API) that allows a pro-
grammer to communicate with graphics hardware.[41]. 17, 158

Snake A classic action video game in which the player controls a moving line — usually represented as a
snake — that grows longer each time it collects an item (such as food or points). The objective is
to survive for as long as possible without crashing into the edges of the playing area or into the
snake’s own body, which becomes increasingly difficult as the snake lengthens.[42]. 11

Support Vector Machine Supervised learning method used for classification and regression in machine
learning. Its main objective is to find the hyperplane that best separates the different classes in a
dataset, maximizing the margin between the classes.[43]. 12

Vulkan cross-platform API and open standard that conformant hardware implementations follow, it
was intended to address the shortcomings of OpenGL.[44]. 17, 158

189

	Resumen
	Abstract
	Contents
	Introduction
	Context
	Objectives
	State of the art
	Why use web browsers?
	And why in low-end systems?
	Game engines and libraries

	Analysis Model
	Model and project planning
	Scope of the project
	Methodology project
	Project planning
	Risk management plan

	Cost estimation
	User requirements
	Functional requirements
	No-functional requirements
	Information requirements

	User Cases
	UC01: Move
	UC02: Shoot
	UC03: Reload
	UC04: Disappear shooting panel
	UC05: Player victory
	UC06: Restart
	UC07: Exit
	UC08: Run automated test
	UC09: Process performance data

	Domain Model

	Design
	Redefinition of the domain model
	Core Classes and Responsibilities
	Supporting Classes
	Additional Components
	Class Relationships

	Sequences diagram for use cases
	UC01: Move
	UC02: Shoot
	UC03: Reload
	UC04: Disappear shooting panel
	UC05: Player victory and UC07: Exit
	UC06: Restart
	UC08: Run automated test
	UC09: Process performance data

	Weapon animation machine state
	Game state machine
	Technologies used
	Research about profilers
	Objective
	Methodology
	Profilers most used
	Comparative table
	Conclusion

	Importing GLTF files with Sketchfab

	Implementation (manual mode)
	Prototipe development
	General Structure in Game Engine
	Unity
	Introduction
	Environment
	Collider implementation
	Code explanation

	Unreal Engine
	Introduction
	Environment
	Collider implementation
	Code explanation

	Godot
	Introduction
	Environment
	Collider implementation
	Code explanation

	Implementation (automatic mode)
	Prototipe development
	General Structure in Game Engine
	Unity
	Navigation mesh implement
	NPC implement

	Unreal Engine
	Navigation mesh implement
	NPC implement

	Godot
	Navigation mesh implement
	NPC implement

	Project deployment
	Introduction
	Unity
	Unreal Engine
	Godot

	Performance testing
	Methodology
	FPS trace
	Performace test script

	Results
	PC results
	Raspberry Pi results

	Performance Analysis

	Conclusions and Future work
	Conclusions
	Actual Project Cost

	Future work

	Bibliography
	3D Rotation Theory — Euler Angles, Gimbal Lock, and Quaternions
	Euler angles
	Gimbal lock problem
	Quaternions

	Navigation Mesh Concept Overview
	Abbreviations and Acronyms
	Glossary

